
Actor Based Behavioural Simulation

as an Aid for Organisational Decision

Making

Souvik Barat

Director of Studies : Professor Balbir Barn

Supervisors : Professor Tony Clark

Vinay Kulkarni

Department of Computer Science

Middlesex University London

A thesis submitted to Middlesex University in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

January 2019

Candidate’s Declaration Form

Name of candidate : Souvik Barat

Student number : M00516635

Thesis Title : Actor Based Behavioural Simulation as an Aid for Organisational Decision

Making

Degree for which thesis is submitted: Doctor of Philosophy

1. Statement of associated studies undertaken in connection with the programme of re-

search (Regulation G3.1 refers)

While a registered student of the University, I attended the following courses /workshops /

conferences:

• 11th Innovations in Software Engineering Conference (ISEC), February 9-11 2018, Hy-

derabad, India

• 50th Winter Simulation Conference (WSC), December 3-6 2017, Las Vegas, USA

• 31st Annual European Simulation and Modelling Conference (ESM), October 25-27 2017,

Lisbon, Portugal

• 29th European Modeling and Simulation Symposium, September (EMSS), September

18-20 2017, Barcelona, Spain

• 15th International Conference on Practical Applications of Agents and Multi-Agent

Systems, June 21 – 23 2017, Porto, Portugal (Paper Presentation and Doctoral Consortium)

• 10th Innovations in Software Engineering Conference (ISEC), February 5-7 2017, Jaipur,

India

iii

• 9th IFIP Working Conference on The Practice of Enterprise Modeling (PoEM), November

8-10 2016, Scovde, Sweden (Paper Presentation and Doctoral Consortium)

• 11th International Conference on Software Engineering and Applications (ICSOFT – EA),

July 24-26 2016, Lisbon, Portugal

• 9th India Software Engineering Conference (ISEC), February 18-20 2016, Goa, India

• 18th International Conference on Model Driven Engineering Languages and Systems

(MoDELS), September 28 – October 2 2015, Ottawa, Canada

• 47th Conference on Summer Computer Simulation (SCSC), July 26-29 2015, Chicago,

USA

2. Concurrent registration for two or more academic awards

I declare that while registered as a candidate for the University’s research degree, I have not

been a registered candidate or an enrolled student for an award of another university, academic

or professional institution.

3. Material submitted for another award

I declare that no material contained in the thesis has been used in any other submission for an

academic award.

Signature of candidate: Souvik Barat Date : January 08, 2019

Acknowledgements

I would like to express my sincere gratitude to my supervisors Prof. Balbir Barn, Prof. Tony

Clark and Vinay Kulkarni for their invaluable support and motivation. It would never have been

possible for me to take this work to completion without their guidance and encouragement.

I have greatly benefited from Prof. Balbir Barn for his thought provoking discussions and

constructive feedback. His advice and suggestions on research methodologies, systematic study,

creative thinking and research in general have helped in generating new thoughts and carrying

out my research systematically. Thanks to Prof. Tony Clark for his scientific advice, sharing his

technical knowledge and insightful discussions about research. His encouragement, patience

and care have been invaluable. I cannot forget the help and valuable support that Vinay has

extended to me. He has inspired me to focus on this research, provided all kinds of technical

and non-technical support, and helped me to stay motivated throughout this journey. I have been

extremely lucky to have such supervisors.

I would like to express my special thanks to my organisation, Tata Consultancy Services

Limited, for allowing me to pursue this research and sponsoring my study.

I am truly grateful to my parents and brother for their encouragement and support. They

helped me in all possible ways to reach this stage in my life. I would like to thank my wife

Rupa for her inspiration, support and motivation to explore my potential and pursue my dreams.

Thanks to my kids Arka and Ayan for their patience and understanding while I was busy with

this research.

Finally, I wish to thank all my friends, relatives and colleagues of Tata Consultancy Services

who have extended their valuable support during the course of this research.

Abstract

Decision-making is a critical activity for most of the modern organizations to stay competitive in

rapidly changing business environment. Effective organisational decision-making requires deep

understanding of various organisational aspects such as its goals, structure, business-as-usual

operational processes, environment where it operates, and inherent characteristics of the change

drivers that may impact the organisation. The size of a modern organisation, its socio-technical

characteristics, inherent uncertainty, volatile operating environment, and prohibitively high cost

of the incorrect decisions make decision-making a challenging endeavor.

While the enterprise modelling and simulation technologies have evolved into a mature dis-

cipline for understanding a range of engineering, defense and control systems, their application

in organisational decision-making is considerably low. Current organisational decision-making

approaches that are prevalent in practice are largely qualitative. Moreover, they mostly rely on

human experts who are often aided with the primitive technologies such as spreadsheets and

visual diagrams.

This thesis argues that the existing modelling and simulation technologies are neither suitable

to represent organisation and decision artifacts in a comprehensive and machine-interpretable

form nor do they comprehensively address the analysis needs. An approach that advances the

modelling abstraction and analysis machinery for organisational decision-making is proposed.

In particular, this thesis proposes a domain specific language to represent relevant aspects of an

organisation for decision-making, establishes the relevance of a bottom-up simulation technique

as a means for analysis, and introduces a method to utilise the proposed modelling abstraction,

analysis technique, and analysis machinery in an effective and convenient manner.

Contents

Publications xi

List of Figures xvi

List of Tables xxi

List of Abbreviations xxiii

Font Style Convention xxvii

1 Introduction 1

1.1 Research overview . 1

1.2 Problem statement and research objectives . 3

1.3 Research questions . 5

1.4 Hypotheses . 5

1.5 Research method, contributions and validation 6

1.6 An illustrative example . 9

1.6.1 Description . 9

1.6.2 Decision space exploration scenarios 11

1.7 Thesis structure . 11

1.8 Summary . 13

2 Research Methodology 14

2.1 Philosophical grounding . 14

2.2 Design Science Research . 17

2.2.1 Design science artifacts . 17

2.2.2 Design science research cycles . 18

Contents vii

2.2.3 Research evaluation . 19

2.3 Synthesis and realisation of DSR methodology 21

2.3.1 Research method and activities . 22

2.4 Summary . 25

3 Organisational Decision Making 26

3.1 Characteristics of complex organisation . 27

3.1.1 Organisation as open, complex and socio-technical system 27

3.1.2 Philosophical viewpoints for system understanding 29

3.2 Characteristics of organisational decision making 30

3.2.1 Core concepts of organisational decision-making 30

3.2.2 Classification of organisational decision-making 32

3.2.3 Organisational decision-making processes 36

3.3 Review synthesis and requirements derivation 39

3.3.1 Conceptual model . 39

3.3.2 Tenets of organisational decision-making 42

3.3.3 Illustration of concepts and characteristics 43

3.4 Summary . 46

4 Modelling and Analysis Techniques 48

4.1 Broad spectrum of modelling and analysis techniques 49

4.2 Literature review methodology . 52

4.3 Enterprise modelling and analysis techniques 53

4.3.1 Literature identification and mapping 54

4.3.2 Evaluation of EM techniques . 57

4.3.3 Review report of EM technologies . 65

4.4 Actor and agent technologies . 68

4.4.1 Literature identification and mapping 68

4.4.2 Evaluation of actor and agent technologies 70

4.4.3 Review report of actor and agent technologies 73

4.5 Synthesis of literature reviews . 75

4.6 Summary . 77

Contents viii

5 An Actor-based Simulation Aid 78

5.1 Solution considerations . 79

5.2 Background . 80

5.2.1 Modelling and simulation . 81

5.2.2 Enterprise Simulation Language (ESL) 85

5.3 Overview of proposed solution . 88

5.4 OrgML meta-model . 92

5.5 Transformation of OrgML to simulation language 105

5.6 Method . 111

5.7 Summary . 118

6 Proof of Concept Technology Aids 119

6.1 Core activities and expected technology aids 119

6.2 OrgML Workbench . 121

6.2.1 Language definitions . 121

6.2.2 Language features . 129

6.2.3 Implementation details . 133

6.2.4 Execution of OrgML specification . 136

6.3 OrgViz Data Visualiser . 136

6.3.1 Temporal data model and visualisation 137

6.3.2 Implementation details of OrgViz Data Visualiser 139

6.4 A decision making framework . 143

6.4.1 Tool architecture . 144

6.4.2 Method realisation . 146

6.4.3 Summary . 146

7 Research Validation 147

7.1 Software Service Provisioning Organisation 148

7.1.1 Problem entity . 149

7.1.2 OrgML model . 151

7.1.3 Instantiation, simulation and decision making 154

7.1.4 Summary . 160

7.2 Demonetisation . 160

Contents ix

7.2.1 Problem entity . 161

7.2.2 OrgML model . 163

7.2.3 Instantiation, simulation and decision making 167

7.2.4 Summary . 171

7.3 University case study . 172

7.3.1 Problem entity . 172

7.3.2 OrgML model . 175

7.3.3 Instantiation, simulation and decision making 179

7.3.4 Summary . 183

7.4 Evaluation . 183

7.4.1 Comparison and improvements . 184

7.4.2 Applicability . 187

7.4.3 Research artifact communications . 190

7.4.4 Evaluation summary . 190

7.5 Limitations, threats and further improvements 190

7.5.1 Limitations . 191

7.5.2 Threats to validity . 191

7.5.3 Further improvements and future work 195

7.6 Summary . 197

8 Conclusion 198

8.1 Research contributions and significance . 200

8.2 Limitations . 202

8.3 Reflection . 202

8.4 Future research directions . 203

8.5 Concluding remark . 204

Bibliography 206

Appendix A Review of remaining EM techniques 221

Appendix B OrgML Notations 229

Appendix C OrgML to ESL translation rules 231

C.1 Overview of Xtend model transformation language 231

Contents x

C.2 OrgML to ESL transformation rules . 232

C.2.1 Transformation rule for OrgML Action, Event and BSpec 233

C.2.2 Transformation rule for OrgML Calendar 234

C.2.3 Transformation rule for inherited OrgUnit 234

Appendix D An experiment with Akka 237

D.1 A brief overview of Akka . 237

D.2 Experiment . 239

D.2.1 Experimental model . 239

D.2.2 Implementation using ESL and Akka 241

D.2.3 Simulation using ESL and Akka . 246

D.2.4 Synthesis . 246

D.3 OrgML to Akka transformation . 248

D.4 Summary . 248

Appendix E Business Process Outsourcing case study 249

E.0.1 Problem entity . 250

E.0.2 OrgML model . 251

E.0.3 Instantiation, simulation and decision making 255

E.0.4 Summary . 257

Appendix F Multi-modelling and co-simulation using Enterprise Modelling tech-

niques 258

F.1 Software service provisioning organisation . 259

F.2 Environment for multi-modelling and co-simulation 260

F.3 Multi-modelling, co-simulation and decision making 261

F.4 Synthesis . 265

F.5 Summary . 266

Publications

Research Publications

2018

RP [1] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2018b). A Model Based Approach for

Complex Dynamic Decision-Making. In Communications in Computer and Information

Science, volume 880, pages 94–118. Springer

RP [2] Barat, S., Kulkarni, V., and Barn, B. (2018a). Towards Improved Organisational Decision-

Making–A Method and Tool-chain. Enterprise Modelling and Information Systems

Architectures, 13:6–31

2017

RP [3] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017d). An actor-model based bottom-up

simulation—An experiment on Indian demonetisation initiative. In Winter Simulation

Conference (WSC), 2017, pages 860–871. IEEE

RP [4] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017a). A domain specific language for

complex dynamic decision making. In ESM 2017: 31st Annual European Simulation and

Modelling Conference, pages 135–142 (Best Paper)

RP [5] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017b). A method for effective use of

enterprise modelling techniques in complex dynamic decision making. In IFIP Working

Conference on The Practice of Enterprise Modeling, pages 319–330. Springer

xii

RP [6] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017c). A Model based Realisation

of Actor Model to Conceptualise an Aid for Complex Dynamic Decision-making. In

MODELSWARD 2017, pages 605–616

RP [7] Barat, S., Rajbhoj, A., Kumar, P., and Kulkarni, V. (2017e). A Case Study Exploring

Suitability of Bottom Up Modelling and Actor-based Simulation for Decision Making. In

Proceedings of Modeling Symposium, pages 1–6

RP [8] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015b). Supporting organisational decision

making in presence of uncertainty. In European Modeling and Simulation Symposium,

EMSS 2017, pages 87–101 (Best Paper)

2016

RP [9] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2016a). A conceptual model for organisa-

tional decision-making and its possible Realisations. In ESM 2016: 30th Annual European

Simulation and Modelling Conference, pages 174–176

RP [10] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2016c). Enterprise modeling as a decision

making aid: A systematic mapping study. In IFIP Working Conference on The Practice

of Enterprise Modeling, pages 289–298. Springer

RP [11] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2016b). A simulation-based aid for

organisational decision-making. In ICSOFT-EA 2016: 11th International Conference on

Software Engineering and Applications, pages 109–116

2015

RP [12] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015c). Toward overcoming accidental

complexity in organisational decision-making. In Model Driven Engineering Languages

and Systems (MODELS), pages 368–377

xiii

Doctoral Consortium

DC [1] Barat, S. (2017). An actor-based bottom-up Simulation aid for complex dynamic decision

making. In International Conference on Practical Applications of Agents and Multi-Agent

Systems, pages 275–278. Springer

DC [2] Barat, S. (2016). A simulation based aid for complex dynamic decision making. In PoEM

Doctoral Consortium, pages 22–31

xiv

Publications from Overarching Research Initiative

2018

OP [1] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2018). A homogeneous actor-based

monitor language for adaptive behaviour. In Programming with Actors, pages 216–244.

Springer

2017

OP [2] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017c). ESL: An Actor-Based Platform for

Developing Emergent Behaviour Organisation Simulations. In International Conference

on Practical Applications of Agents and Multi-Agent Systems, pages 311–315. Springer

OP [3] Clark, T., Barn, B., Kulkarni, V., and Barat, S. (2017a). Querying histories of organisation

simulations. Information Systems Development (ISD) - Advances in Methods, Tools and

Management, 9:1–12

OP [4] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017b). Actor monitors for adaptive

behaviour. In Proceedings of the 10th Innovations in Software Engineering Conference,

pages 85–95. ACM

OP [5] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017d). Generating Filmstrip Models

from Actor-Based Systems. In MODELS (Satellite Events) 2017, pages 576–582

OP [6] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017e). The Construction and Interrogation

of Actor Based Simulation Histories. In ER Forum/Demos 2017, pages 320–333

2015

OP [7] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015d). Using simulation to address

intrinsic complexity in multi-modelling of enterprises for decision making. In Proceedings

of the Conference on Summer Computer Simulation, pages 1–11. Society for Computer

Simulation International

xv

OP [8] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015a). A wide-spectrum approach

to modelling and analysis of organisation for machine-assisted decision-making. In

Workshop on Enterprise and Organizational Modeling and Simulation, pages 87–101

2014

OP [9] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2014). Model Based Enterprise Simulation

and Analysis - A Pragmatic Approach Reducing the Burden on Experts. In ER Workshops

2014, pages 3–12

OP [10] Clark, T., Kulkarni, V., Barn, B., France, R., Frank, U., and Turk, D. (2014). Towards the

model driven organization. In 47th Hawaii International Conference on System Sciences

(HICSS), pages 4817–4826. IEEE

List of Figures

1.1 Organisational decision-making . 3

1.2 Structural description of University . 9

1.3 Thesis structure, objectives and contributions 12

2.1 Design Science Research Framework for Information System (Source [95]) . . 18

2.2 Hierarchy of criteria for IS artifact evaluation (Source Figure 1 of [160]) 19

2.3 Strategic DSR Evaluation Framework (Source Figure 1 of [161] 20

2.4 Overview of research methodology . 23

3.1 System theory view of complex organisation 28

3.2 Top-down and bottom-up visualisation . 29

3.3 High level schema of organisational decision-making 30

3.4 Organisational decision-making process proposed by Herbert Simon [181] . . . 36

3.5 Organisational decision-making process proposed by Richard Daft [70] 37

3.6 Meta model of organisational decision-making 40

3.7 Illustration of conceptual model using university case study 44

4.1 Overview of simulation research . 49

4.2 Spectrum of analysis approaches . 50

4.3 Systematic review methodology (Sources [155] and [111]) 51

4.4 Execution of SMS on enterprise modelling and analysis techniques 56

4.5 Meta model to understand EM techniques . 57

4.6 Overview of Zachman Framework (Source [220]) 58

4.7 Instance model of Zachman Framework . 59

4.8 Instance model of ArchiMate . 60

4.9 Instance model of BPMN . 61

List of Figures xvii

4.10 Instance model of ARIS . 62

4.11 Instance model of i* . 63

4.12 Instance model of DEVS . 64

4.13 Instance model of System Dynamics . 64

4.14 Modelling capabilities of EM techniques . 66

4.15 Analysis capabilities of EM techniques . 67

4.16 Execution of SMS on actor technologies . 69

4.17 Conceptual overview of an actor or agent . 69

4.18 Topology of an actor based system . 73

5.1 Research consideration of proposed solution 79

5.2 Modelling architecture for simulation research 81

5.3 Illustration of conceptual model . 82

5.4 Modelling and validation method proposed by Robert Sargent [174] 84

5.5 ESL meta-model . 86

5.6 ESL specification . 87

5.7 Overview of proposed approach . 88

5.8 Realisation of Problem Entity using Conceptual Model 89

5.9 OrgML meta-model . 91

5.10 Illustration of Organisational Structure . 93

5.11 Illustration of Organisation and Environment 94

5.12 Illustration of OrgUnit Variables, Parameters and State 94

5.13 Illustration of Events . 96

5.14 Syntax of BSpec specification . 97

5.15 Semantics of event specification . 97

5.16 Example of Action and TimeEvent specifications 98

5.17 Illustration of Data and Traces . 99

5.18 Illustration of Goal, Goal structure and Goal-to-Measure relationship 100

5.19 Lever definition specification . 101

5.20 Example of Lever specifications . 102

5.21 An OrgML model . 104

5.22 Overview of translated ESL specification . 108

5.23 Overview of Action transformation . 109

List of Figures xviii

5.24 Illustration of Calendar . 110

5.25 Method for model construction, validation and decision-making 111

5.26 Modelling artifacts of Define Decision Problem process step [S1] 112

5.27 Modelling artifacts of Conceptualisation of Organisation Model process step [S2]113

5.28 Examples of OrgUnits and DataUnits of ABC University 114

5.29 Illustrative outcome of what-if analysis . 116

6.1 Core activities and expected technological aids 120

6.2 Syntax of GML specification . 122

6.3 An illustration of textual GM-L specification 123

6.4 Organisation specification language syntax . 124

6.5 An illustration of textual OrgML specification 126

6.6 Illustration of an extended OrgUnit . 128

6.7 Language features of OrgML workbench (Source [76]) 130

6.8 A snapshot of OrgML workbench with implemented features 132

6.9 Implemented OrgML workbench workflow 134

6.10 Execution of OrgML specification . 135

6.11 Implementation details of OrgViz Data Visualiser 139

6.12 Code fragments for OrgViz Data Visualiser 140

6.13 An illustration of Dashboard . 141

6.14 An illustration of Filmstrip . 142

6.15 OrgDM capabilities and workflows . 143

6.16 Architecture of organisational decision-making framework 144

7.1 A pictorial representation of Software Service Provisioning Organisation (SSPO)149

7.2 OrgML specification of Software Service Provisioning Organisation 150

7.3 Internal structure of Software Service Provisioning Organisation 151

7.4 Input parameters of Software Service Provisioning Organisation case study . . 154

7.5 Simulation dashboard of Software Service Provisioning Organisation 155

7.6 Effect of reducing price as well as delivery time 156

7.7 Effect of resource training . 157

7.8 Effect of resource training as well as productivity tools 158

7.9 Allocation / deallocation trends of the four kinds of resources 158

List of Figures xix

7.10 Effect of changed workforce distribution . 159

7.11 Pictorial representation of Indian Demonetisation scenario 161

7.12 OrgML specification of Demonetisation case study 162

7.13 Behaviours of key OrgUnits . 165

7.14 Simulation dashboard of Demonetisation case study 167

7.15 Simulation summary of Demonetisation case study 169

7.16 Payment transaction volumes of Demonetisation case study 170

7.17 Behaviours of active elements of University 173

7.18 OrgML specification of University Department 175

7.19 Input parameters of a Department . 179

7.20 Simulation dashboard of University case study 180

7.21 Status of Academics . 181

7.22 Status of Students . 181

7.23 Consolidated simulation results . 182

7.24 Extended conceptual model for organisational decision making 195

7.25 Integrated approach for organisational decision making 196

8.1 Research Overview – phases, methodology, artifacts and exploration space . . . 199

8.2 Dimensions of research contributions . 200

A.1 Instance model of UML . 222

A.2 Instance model of BMM . 222

A.3 Instance model of EKD . 223

A.4 Instance model of Petri Net . 224

A.5 Instance model of MEMO . 224

A.6 Instance model of DEMO . 225

A.7 Instance model of EPC . 226

A.8 Instance model of KAOS . 227

A.9 Instance model of EEML . 227

C.1 Overview of Xtend transformation . 232

C.2 Overview of OrgML to ESL transformation rules 233

C.3 OrgML model navigation rules . 234

C.4 Transformation of Action, Event and BSpec 235

List of Figures xx

C.5 Transformation of Calendar . 235

C.6 Navigation Rules for overriding and overloading 236

D.1 Illustration of Akka concepts and APIs . 238

D.2 A subset of University case study . 239

D.3 A schema and sample specification of ESL implementation 240

D.4 A schema of Akka implementation . 242

D.5 Akka specification to represent Department OrgUnit 243

D.6 Akka specification to represent Academic OrgUnit 243

D.7 Akka specification to represent Student OrgUnit 244

D.8 Akka specification for Calendar . 244

D.9 Simulation results of ESL and Akka . 245

E.1 A pictorial representation of Business Process Outsourcing organisation 249

E.2 Typical interactions and transitions in BPO environment 250

E.3 OrgML specification of Business Process Outsourcing organisation 252

E.4 Input parameters for Business Process Outsourcing case study 254

E.5 Simulation dashboard of Business Process Outsourcing case study 255

E.6 Quantitative comparison . 256

F.1 Business process for software provisioning . 259

F.2 Multi-modelling and co-simulation in organisational decision making 260

F.3 Elaborated i* model . 261

F.4 Stock-and-Flow model of Software Service Provisioning Organisation 263

F.5 Quantitative analysis using Stock-and-Flow model for profitability 264

List of Tables

1.1 Activities of Academics and Students . 10

2.1 Philosophical Assumptions (Source [1]) . 15

2.2 Design-Science Research Guidelines (Source [95]) 16

2.3 Evaluation methods . 20

3.1 Decision Making Approaches . 35

3.2 Decision step of organisational decision-making 38

3.3 Modelling and analysis requirements for effective organisational decision-making 42

3.4 Requirements mapping . 46

4.1 Review protocol for conducting systematic mapping study of EM techniques . . 54

4.2 Enterprise modelling and analysis techniques 55

4.3 Review synthesis of EM techniques . 65

4.4 Review protocol for conducting SMS on actor technology 68

4.5 Actor technologies . 70

4.6 The capabilities of actor and agent technologies 74

5.1 Conceptual mapping with existing specifications 103

5.2 OrgML to ESL transformation strategy . 105

5.3 An illustration of Decision Table . 113

6.1 OrgML validation rules . 134

7.1 Characteristics of validation case studies . 148

7.2 Activities of Academics and Students . 172

7.3 Technology advances . 186

List of Tables xxii

7.4 Validation through Communications . 189

7.5 Approaches to address threats to validity of research contributions 192

B.1 OrgML Notations . 229

D.1 Mapping from OrgML to Akka . 247

F.1 Qualitative Analysis using i* model . 262

F.2 Results of what-if analysis using simulation model 264

List of Abbreviations

4EM For Enterprise Modeling

ABCL Actor-Based Concurrent Language

AI Artificial Intelligence

ARIS ARchitecture of Integrated Information Systems

AST Abstract Syntax Tree

BAU business as usual

BDI Belief-Desire-Intention

BMM Business Motivation Model

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Model and Notation

BPO Business Process Outsourcing

CAS Complex Adaptive Systems

CIMOSA Computer Integrated Manufacturing Open Sys-

tems Architecture Framework

CTL Computation Tree Logic

DEMO Design and Engineering Methodology for Organi-

zations

DESIRE DEsign Specification of Interacting REasoning

components

DEVS Discrete Event System Specification

List of Abbreviations xxiv

DoDAF Department of Defense Architecture Framework

DSL Domain Specific Language

DSR Design Science Research

DSRM Design Science Research Methodology

EA Enterprise Architecture

EBNF Extended Backus-Naur-Form

EEML Extended Enterprise Modelling Language

EIF European Interoperability Framework

EKD Enterprise Knowledge Development

EM Enterprise Modelling

EPC Event-driven Process Chain

ESL Enterprise Simulation Language

FTE full time employee

GAML GAma Modeling Language

GERAM Generalized Enterprise Reference Architecture

and Methodology

GIM GRAI Integrated Methodology

GRAI Graphs with Results and Actions Interrelated

GST General System Theory

IDE integrated development environment

IDEF Integration DEFinition

IEM Integrated Enterprise Modeling

IS Information System

IT Information Technology

JADE Java Agent DEvelopment Framework

JVM Java Virtual Machine

List of Abbreviations xxv

KAOS Knowledge Acquisition in automated specification

or Keep All Objectives Satisfied

LTL Linear Temporal Logic

MDA Model Driven Architecture

MDO Model Driven Organisation

MEMO Multi-Perspective Enterprise Modelling

MoDAF British Ministry of Defence Architecture Frame-

work

NSS National Students Survey

OMG Object Modeling Group

OR Operational Research

PERA Purdue Enterprise Reference Framework

PIM Platform Independent Model

PIM Platform Specific Model

POJO Plain Old Java Object

RFP Request for Proposal

RM-ODP Reference Model of Open Distributed Processing

SD System Dynamics

SEAM Systemic Enterprise Architecture Methodology

SLR Systematic Literature Review

SMS Systematic Mapping Study

SnF Stock and Flow

SSPO Software Service Provisioning Organisation

SVBR Semantics of Business Vocabulary and Rules

List of Abbreviations xxvi

ToGAF The Open Group Architecture Framework

UEML Unifed Enterprise Modeling Language

UK United Kingdom

UML Unified Modelling Language

Font Style Convention

The font style convention followed in this thesis are:

Words in italics :
Concepts, words to introduce new term,
emphasis of words, and variables

Words in teletype font : Meta model elements, code fragments
‘Words in italics with single quotes’ : Model instances

Chapter 1

Introduction

1.1 Research overview

Modern organisations repeatedly evaluate their status-quo and make decisions to stay competitive

and economically viable [185] in a dynamic business environment that experiences globalisation,

intense competition, and technology innovations [70]. In this endeavour, the decision-makers

of the organisations constantly explore the answers for a range of decision questions such as:

Is the current state and form of the organisation appropriate to stay ahead of the competition

or economically viable? If not, What kind of changes are necessary to achieve organisational

goals? When to apply those changes? Where to apply those change? and How?

Predicting precise answers to these decision questions is extremely important for organisa-

tions as an inaccurate answer may lead to an ineffective decision and the cost of such a decision

is often prohibitively high in reality. Moreover an inappropriate decision limits the possibility of

suitable adaptation options later [177]. Therefore, decision makers are additionally tasked to

anticipate the consequences that include the evaluation of the utility, short-term and long-term

implication, and risk of a decision prior to its implementation.

Deciding on an effective decision with best possible consequences requires precise analy-

sis of various aspects of an organisation, such as goals, organisational structure, operational

processes, historical data, and its operating environment [177]. The inherent characteristics

of the modern organisation that include its socio-technical characteristics [132], complex and

dynamic organisational structure [141], nonlinearities in the interactions with its environment

[126, 62], unaccounted delays [185], inherent uncertainty [62] and emergent behaviour [150]

make decision-making exceedingly complex [183].

1.1 Research overview 2

The state-of-the-practice of organisational decision-making chiefly relies on the qualitative

approaches [152], such as discussion and interviews, with a minimum quantitative assistance

that comes from spreadsheets based data computation and analyses [126]. This excessive

dependency on human intuitions and interpretations compounded with inadequate quantitative

analysis often results in a less effective decision especially when the context is complex and

dynamic [135, 105]. A suitable combination of qualitative and quantitative approaches as

suggested by Kaplan in [106] is needed in this context.

A range of enterprise modelling and analysis techniques supporting quantitative approaches

exist. However, their utility is limited to a class of decision-making as compared to a wide range

discussed in management literature [68, 8, 141, 66, 177]. For example, inferential techniques

[138] that rely on the statistical and mathematical interpretation of historical system data are

suitable only for static environments (i.e., the environmental and organisational topologies are

fairly static with the time); mathematic models, such as linear programming [48] and integer

programming [176], work well for mechanistic systems that are not characterised as autonomous,

adaptable and uncertain; the enterprise models, such as ArchiMate[100], i* [218], and Business

Process Model and Notation (BPMN) [209], are found to be inappropriate for the systems that

exhibit uncertainty and emergent behaviour; whereas the actor and agent based models that are

based on the actor model of computation [2, 96] and agent-based systems [129] fall short for

expressing the complex organisational structure and uncertainty.

This research aims to supplement the state-of-the-practice of organisational decision-making

with appropriate technology aids to comprehend the necessary aspects of the organisation,

explore decision space, understand the consequences of possible decision alternatives, and

produce sufficient quantitative evidence to arrive at effective decisions. The necessary aspects

and characteristics of complex organisations for an effective decision-making are ascertained

by reflecting on organisational theory [206, 14, 10, 7] and management literature [180, 182].

The research contributions are: a domain specific modelling language to capture necessary

aspects and their characteristics, an approach to analyse decision alternatives and understand

their consequences, and a method to capture organisational aspects and perform various what-if

analyses leading to an effective decision-making.

The proposed modeling language considers six interrogative aspects: why, what, how, when,

where, and who, as suggested by Zachman in [220] as the necessary aspects for organisational

decision-making. The proposed modelling approach primarily differs from conventional En-

1.2 Problem statement and research objectives 3

Figure 1.1 Organisational decision-making

terprise Modelling (EM) as it considers an organisation as system of systems as opposed to

monolithic unit. The proposed approach extends the notion of actor [2, 96] to capture all

necessary aspects (i.e. six interrogative aspects proposed by Zachman) and the desired character-

istics of a complex organisation, such as autonomy, adaptability and uncertainty. The proposed

analysis approach draws upon bottom-up [192] simulation technique to understand the emergent

behaviour of the organisation [150], which is critical to understand modern organisations. The

proposed method is constructed based on the best practice of simulation based analysis [174]

and management view of decision-making [70]. In brief, the research proposes an approach to

represent a view of a real organisation using a purposive model, and perform the what-if analy-

ses by hypothesising possible changes on the constructed model and iterating the simulation

on modified model. It assumes that multiple iterations exploring the possible changes and a

human-in-the-loop comparative analysis of the simulation outcomes can lead to an effective

quantitative approach.

This chapter briefly introduces the research presented in this thesis by describing the precise

problem statement, objectives and aims, research questions, hypotheses, an overview of the

proposed approach, and it concludes with a chapter outline of this thesis.

1.2 Problem statement and research objectives

Organisational decision-making is a process of selecting suitable course of action that has

potential to achieve the organizational objectives or goals [130]. Kickert et al. define decision-

making as a problem solving method that aims to improve a certain organisational or managerial

status-quo in a desired direction [108]. Management theories [141, 8, 130, 67, 75] consider

organisational decision-making as intentional and consequential action where the most effective

1.2 Problem statement and research objectives 4

solution is chosen from a list of alternatives by adopting an appropriate viewpoint that ranges

from a rational model [8] to an anarchic model [60]. Methodologically, the management

literature approaches decision-making using four major steps: (1) problem identification, (2)

generation of alternative courses of action, (3) evaluation of courses of action, and (4) selection

of the most effective or feasible course of action as depicted in Figure 1.1.

The state-of-the-practice of organisational decision-making reflects on the intuitions and

cognitive abilities of the decision makers, and adopts interpretive approaches to perform the

decision-making steps noted above. The state-of-the-art modelling and analysis approaches

are best suited to perform step (3) of the repetitive programmed decision-making [67]. They

fail to demonstrate the expected efficacy for nonprogrammed decision-making [67] that is non

repetitive in nature and characterised by inherent uncertainties and significant ambiguities. This

research conceptualises and develops an effective technological aid to perform the organisational

decision-making steps depicted in Figure 1.1 for programmed and nonprogrammed decision-

making. The specific objectives are:

1. Capture decision problem and the context of the organisational decision-making in a

precise and unambiguous form, i.e., a modelling aid for step 1 .

2. Capture alternative courses of action, i.e., a modelling aid for step 2.

3. Understand the short-term and long-term consequences of all possible alternatives a-priori

and using quantitative terms, i.e., a quantitative analysis aid for step 3.

It is argued in this thesis that the adequate modelling and quantitative analyses support to

perform steps 1, step 2 and step 3 of Figure 1.1 help an effective organisation decision-making

in step 4.

This research is conceptualised as a specialised stream of an overarching research initiative,

Model Driven Organisation (MDO)1, which aims to promote models and modelling capabilities

to address strategic, tactical and operational needs of the modern enterprises as highlighted in

[OR11] (see the list of Publications from Overarching Research Initiative).

The overarching MDO research initiative presents a general purpose actor-based simulation

language termed as Enterprise Simulation Language (ESL) [OP2, OP3], ESL simulation engine

[OP2], and a set of supporting technologies such the monitor technology [OP1, OP5], query on

actor history [OP4, OP7], and visaulisation of simulation history using filmstrip [OP7]. The

1http://sites.tcs.com/innovation-forum/model-driven-organization

1.3 Research questions 5

research presented in this thesis specialises the focus to the modelling, analysis techniques and

technologies to address organisational decision-making.

1.3 Research questions

Information System (IS) research recommends that information should be amenable for com-

putational analysis and technology-aided analysis for better sense-making, understanding and

prediction [200, 219, 134]. In congruence to this viewpoint, this research explores the possibility

of utilising the technology-aided analysis to perform the decision-making steps depicted in

Figure 1.1. This research focuses on three broad research questions as follows:

[RQ1] What information of an organisation and its environment are necessary to under-

stand the possible consequences of prospective courses of action in an organisational

decision-making?

[RQ2] What kinds of modelling capabilities are expected to capture a decision problem,

possible courses of action, and necessary information of an organisational decision-making

in a precise and machine-interpretable form?

[RQ3] What kinds of analysis technique are appropriate to analyse the captured informa-

tion and produce necessary quantitative evidences for effective organisational decision-

making?

This research also focuses on an effective methodological rigour to identify the relevant

information, capture them using machine interpretable form, and perform required analyses in a

way that conforms to the management viewpoints.

This research primarily limits the exploration to the management and IS research. The

political [157], ethical [197], psychological, and the power [215] considerations of organisational

decision-making are considered as out of scope of this research.

1.4 Hypotheses

As suggested in the Zachman framework [220], this research makes an assumption that the why,

what, how, when, where, and who are necessary and sufficient information for organisational

decision-making. This research further hypothesises that the actor model of computation [2] is

1.5 Research method, contributions and validation 6

an effective modelling abstraction to capture complex dynamic organisation, and a bottom-up

behavioural simulation technique is an effective means to analyse alternative courses of action

and understand their consequences a-priori. Specific research contributions conforming to the

proposed hypotheses are described in the next section.

1.5 Research method, contributions and validation

A Design Science Research (DSR) philosophy in line with the guidelines proposed by Hevner et

al. [95] is adopted in this research to understand the problem space, conceptualise a pragmatic

approach, develop research contributions and validate their efficacies.

The research starts with an exploration of the management literature that focuses on the

organizational theory [68, 66, 10, 191], decision making [62, 177, 185], management theories

on the decision making methods [8, 66, 141, 60] to understand the problem space. Then, it

evaluates the state-of-the-art modelling and analysis techniques, such as Enterprise Modelling

[100, 204, 218, 209], Actor technologies [90, 5, 15, 187, 198, 12], the simulation literature

[31, 178, 129, 47, 174] and Model Driven Engineering, to understand the existing technological

capabilities and ascertain their suitability in the context of organisational decision-making.

The research shows the precise inadequacies of the state-of-the-art modelling and analysis

capabilities, and finally it proposes a conceptual approach supported by a proof-of-concept

technological aid implementation for quantitative analysis exploring decision alternatives.

A Domain Specific Language (DSL) to represent the necessary information for an organi-

sational decision-making, a simulation-based analysis technique for what-if scenario playing

and a method to use proposed research artifacts are presented as part of this research. The key

research contributions are four-fold:

Contribution 1: Concepts of organisational decision-making: A conceptual model

highlighting the relevant concepts and their relationships to sufficiently describe an

organisational decision-making problem. The concepts are discerned from the manage-

ment literature and expressed using a meta-model. From DSR standpoint, the proposed

conceptual model is a Constructs artifact [94] of this research.

Contribution 2: Meta-model and a DSL: A meta-model called OrgML to capture

necessary information for organisational decision-making. Its caters to relevant aspects of

the organisation, its socio-technical characteristics, and associated uncertainties. This is a

1.5 Research method, contributions and validation 7

Model artifact [94] in terms of DSR terminology. This research also presents a domain

specific language, named as OrgML, that realises the proposed OrgML meta model. The

OrgML can be seen as an Instantiation artifact from DSR perspective.

Contribution 3: An approach to convert captured information into simulatable

form: An actor-based simulation language, named as ESL, is considered as an un-

derlying simulation language for what-if analysis. This research proposes an approach to

transform the captured information, i.e. OrgML specification, into an ESL specification

using a model-to-model transformation technique. From DSR perspective, the proposed

transformation schema can be visualised as a Method artifact and transformation program

as an Instantiation artifact.

Contribution 4: Method: An integrated and iterative method to construct the purposive

simulation model leading to the organisational decision-making in a systematic manner.

The proposed method supports: (i) construction of a simulation model from available

information of an organisation, (ii) model validity, and (iii) simulation of constructed

model for what-if analyses. It extends the modelling and model validation methods

advocated by Robert Sargent [174] and refines the management view of decision-making

advocated by Richard Daft [70]. From DSR standpoint, the proposed method is a Method

artifact.

This research claims that the proposed concepts of organisational decision-making, i.e.

contribution 1, is a precise modelling and analysis requirement for an effective organisational

decision-making. This has an applicability beyond this research as it can be considered as

requirements to improve the state-of-the-practice of organisational decision-making. OrgML

is an advance over existing enterprise modeling and actor languages and it is a DSL for

organisational decision-making. The proposed approach to convert OrgML specification into

simulatable form, i.e. contribution 3, and proposed method, i.e., Contribution 4, are novel

contributions from a methodology perspective as they show how technological aids can be

systematically and meaningfully used in organisational decision-making.

The efficacy of these proposed research contributions, i.e. Constructs, Model, Method and

their Instantiations, are validated through an Artificial and Ex-Post [161] validation strategy.

Artificial yet close to real life case studies that are considered for research validation are

described below:

1.5 Research method, contributions and validation 8

Case Study 1: Software Service provisioning organisation: This case study models a

realistic Software Service Provisioning Organisation (SSPO), whose goal is to improve

the profit margin, maintain the quality of the developed software, and ensure on-time

software delivery. The short-term and long term implication of various courses of action,

such as the increase of resource strengths, improve the resource skills, and the use of

effective software development tools, are evaluated using proposed approach.

Case Study 2: Business Process Outsourcing organisation: This case study considers

a decision-making case from the Business Process Outsourcing (BPO) industry. The

proposed approach is used to explore BPO improvement initiatives, such as competi-

tive pricing model, in a competitive business environment. The simulation is used to

understand the consequences of the courses of action over the time horizon.

Case Study 3: Demonetisation: This case study imitates a subset of the Indian Demon-

etisation initiative2 and explores various actions that could have controlled the chaos

emerged in the initial stage of the Demonetisation in an effective manner.

Case Study 4: University: This case study models and simulate a University, whose

aim is to improve its ranking in terms of research index, teaching quality, and students’

satisfaction index. The proposed OrgML is used to model a University and an ESL based

simulation is used to select an effective course of action from a range of possibilities that

include the change in academic student ratio, prioritise teaching and research focus of the

academics, and adopt better timetable.

The research outcomes are communicated to the conference and journal papers. The problem

statement is presented in [RP5, DC1, DC2]. The inadequacy of the existing modelling and

analysis techniques is presented in [RP8, RP10]. The research contributions are presented in

[RP1, RP3, RP4, RP5, RP7]. The validation of the research contributions is reported in multiple

publications: Software Service Provisioning Organisation is illustrated in [RP3, RP6, RP9],

the case study on Business Process Outsourcing organisation is presented in [RP5], and the

Demonetisation case study is discussed in [RP2].

The rest of this thesis uses a subset of the University case study as a running example to

illustrate the proposed concepts and contributions. A brief overview of the University case study

is discussed in the next section.
2https://en.wikipedia.org/wiki/2016_Indian_banknote_demonetisation

1.6 An illustrative example 9

Figure 1.2 Structural description of University

1.6 An illustrative example

Considers a hypothetical university from United Kingdom (UK), lets refer to it as ABC Univer-

sity, aims to improve its ranking [6] along academic position and research ranking. In UK, the

academic position is typically measured using the academic results of the final year students,

the employability of outgoing students and the National Students Survey (NSS) score (the NSS

score is an outcome of the students survey on various aspects that includes the quality and speed

of feedback to the assessments, the employability options, quality of teaching and facilities). The

research ranking is primarily measured based on the research outcomes such as the publication

records at top-tier conferences and journals, research grants, and industry collaborations [128].

This section briefly introduces ABC University and discusses decision-making scenarios.

1.6.1 Description

The academics focus on teaching activities, such as offering course modules and student assess-

ment. They also conduct research in various topics and publish papers at top-tier conferences

1.6 An illustrative example 10

Table 1.1 Activities of Academics and Students

Active Element Activities

Research Academic
Research, Paper Writing, Writing Research Grand Proposal, Project Work, Research

Collaboration, Query Resolution, Complain Resolution

Teaching Academic
Prepare for Lecture, Delivering Lecture, Prepare for Student Assessment, Student

Assessment, Project Work, Query Resolution, Complain Resolution
Research and

Teaching Academic
The combination of the activities of Research Academic and Teaching Academic

Student
Attend Lecture, Self Study, Appear for Assessment, Raise Query, Raise Complaint,

Response to NSS Survey

and journals. The key concepts of ABC university that are considered are illustrated using a

class diagram in Figure 1.2. As shown in the figure, a Department is formed using a set of

Academics; Departments offers a set of Courses where each Course have multiple Modules.

ABC university has three types of Academics: Research academic, Teaching academic,

and Research & Teaching academic. The Research academics involve in research ac-

tivities that include preparation and submission of Research Grant Proposals, conduct

Research work, and publish Papers in quality Conferences and journals. The Teaching

academics prepare and deliver Lectures, prepare student Assessments, evaluate Students,

and publish Grades. The Research and Teaching academics are involved in both kinds of

activities. In addition, all these three types of Academics work on Projects and Industrial

collaborations, clarify student Queries, and resolve student Complaints. The Students

attend Lectures for their enrolled Modules, appear for Assessments, and get Grades. The

Students may raise Queries in case of any doubt in the Lectures and they may raise a

Complaint for some unanswered concerns. The final year Students response to the NSS

Survey that results into the NSS Score of their respective Department and University. Fi-

nally, the Students complete the Course with consolidated Grade, get Degree, and may get

an Employment in an academic or industrial institution.

In this setting, the behaviour of University and Departments emerge from the behaviours

and interactions of their constituent active elements such as Academics and Students. These

constituent elements are capable of performing a set activities as listed in Table 1.1 and they

choose to perform a specific activity (based on their state, objectives and interest) for a specific

time slot. There can be an inherent uncertainty and nonlinearity. For example, they may

randomly choose an activity at a given time and interrupt an activity at any time for a high

priority work. Moreover, their earlier activities, such as inadequate preparation for a lecture

1.7 Thesis structure 11

or incomplete research work, may force them to behave differently than the expected normal

behaviour.

1.6.2 Decision space exploration scenarios

Influential world ranking tables, such as THE3 and ARWU4, publish indicative improvement

factors5 or potential courses of action [128]. The courses of action which are commonly

discussed in this context are:

• Academic and student ratio.

• Balance between research and teaching academics.

• Work priorities of the academics.

• Appropriate timetabling.

• Experience and academic records of the academics.

• Industrial collaboration

However, it is not known which course of action is the most effective for a University as it

depends on several internal and environmental factors such as current state of the university,

its strengths, quality of potential students. The decision makers, such as a Dean and Head of

Department, attempt to understand the complex behaviour and associated dynamism to explore

the decision questions such: What alternative or set of alternatives are effective to improve the

teaching and research indicators? How do the alternatives compare? Are there any negative

consequences of a chosen alternative? When will the university will start observing the benefit

(i.e. near-term or long-term) for change? This research demonstrates how these decision-making

questions can be answered in a quantitative form and how they lead to decision-making.

1.7 Thesis structure

The rest of the thesis is structured as follows:

Chapter 2 : Research methodology - This chapter presents an overview of the methodological

foundations and justifies the suitability of the DSR methodology to conduct research activities

and validate research outcomes. A schema illustrating how the activities of this research are

conducted using the DSR methodology is discussed in this chapter.

3https://www.timeshighereducation.com
4http://www.shanghairanking.com
5https://www.topuniversities.com/student-info/university-news/university-oxford-tops-times-higher-education-

world-university-rankings-2018

1.7 Thesis structure 12

Figure 1.3 Thesis structure, objectives and contributions

Chapter 3 : Organisational decision-making: Explores the problem space by reviewing

the management literature on organisational decision-making. It presents the theoretical and

practical foundations of organisational decision-making, summarises the relevant concepts

using a concept meta-model, and discerns the modelling and analysis needs for an effective

organisational decision-making. Principally, this chapter focuses on the research question QR1

and presents Contribution 1 as a solution to RQ1.

Chapter 4 : Modelling and analysis techniques: Presents systematic literature reviews on a

spectrum of modelling and analysis techniques, such as enterprise modelling and actor/agent

technologies, to evaluate their capabilities with respect to the modelling and analysis require-

ments presented in Chapter 3. It also discusses specific inadequacies of the state-of-the-art

modelling and analysis techniques in the context of organisational decision-making.

Chapter 5 : An actor based simulation aid: Presents the core contributions of this research.

This chapter focuses on the research questions RQ2 and RQ3, and presents the Contribution 2

(i.e., OrgML meta-model), Contribution 3 (i.e., OrgML to ESL transformation strategy), and

Contribution 4 (i.e., method for model construction, validation and what-if analysis) to realise

the research objective outlined in this chapter.

Chapter 6 : Proof of concept technology aids: Presents a proof-of-concept implementation

of the proposed approach that include OrgML, OrgML to ESL translator, a tool to visualise

1.8 Summary 13

the key performance indicators of the organisation, and an overall simulation framework for

organisational decision-making.

Chapter 7: Research validation: This chapter validates the research outcomes using three

techniques - (i) artificial case-study based approach where four case studies are considered

as discussed in section 1.5 (ii) comparative approach by considering popular modelling and

simulation techniques such as System Dynamics (SD) model, and (iii) argumentative approach

by considering the modelling and analysis needs discussed in Chapter 3. This chapter also

discusses limitations of the proposed approach and scope for further improvements.

Chapter 8 : Conclusion: Concludes this thesis by highlighting the key contributions, potential

improvements of the state-of-the-practice of organisational decision-making, and a future

research agenda.

The overview of the thesis structure, key objectives of the each chapter, the research

contributions of the specific chapters are illustrated in Figure 1.3.

1.8 Summary

This chapter highlights a brief overview of the research presented in this thesis. It includes a

justification of the research objective to introduce technology-driven quantitative analysis for

organisational decision-making as opposed to qualitative approaches. Three research questions

that interrogate the necessary information, an intuitive representation, and suitable analysis

technique for the organisational decision-making are discussed. An introductory overview of the

thesis that adopts the actor model of computation as modelling abstraction and the simulation

method for organisational decision-making are presented in this chapter.

Chapter 2

Research Methodology

Research is often initiated when there is a need to find a solution for a known problem (i.e.,

Improvement), extend a known solution to a new problem (i.e., Adaptation) or invent a new

solution for new problem (i.e., Invention) [86].

This chapter sets out the philosophical grounding, methodology and a plan to conduct this

research. Section 2.1 discusses philosophies and methodological approaches that are explored

to establish a methodological viewpoint for this research. Section 2.2 briefly reviews the Design

Science Research (DSR) paradigm as it is considered as a basis for conducting this research

and validating research artifacts. The chapter concludes with a method with specific steps for

conducting research in section 2.3.

2.1 Philosophical grounding

A research philosophy is the ‘basic belief system or world view that guides the investigation’

[89]. In IS, the belief system of the researchers is typically framed using four philosophical

groundings: ontology, epistemology, methodology and axiology [149, 1]. The ontology is a set

of key concepts that sufficiently describe the belief system of a reality or a domain of interest,

the epistemology is how researchers think or a reflection of the reality, methodology is plan

describing how researchers are going to use an existing knowledge-base or epistemology to gain

new knowledge, and axiology is the morals or ethical considerations.

Researchers consider different philosophical standpoints as research paradigm to explore

various research problems [149]. For example, a set of researchers may attempt to understand a

system by quantitative analysis of empirical data or subjective analysis of multiple viewpoints

2.1 Philosophical grounding 15

Table 2.1 Philosophical Assumptions (Source [1])

Research
Paradigm

Philosophical Assumptions

Ontology Epistemology Methodology Axiology

Positivist
Single, stable

reality
Objective

Experimental,
Quantitative, Hypothesis

testing
Prediction

Interpre-
tive

Multiple
Realities

Subjective
Interactional,

Interpretation, Qualitative
Contextual Understanding

Critical
Socially

Constructed
Social and
Political

Discourse Analysis
Contextual Analysis

considering researchers’
value system

Design
Science

Contextually
situated
realities

Iterative
Developmental and

Knowing through making

Improvement through
control, creation and

progress

of a system. The system under consideration, existing knowledge about the system and veracity

of the knowledge help decide appropriate research paradigm. The notable research paradigms in

IS research are: positivist [145], interpretive [85], critical research [152] and design science

research [95]. The philosophical standpoint of four research paradigms, as discussed in [1], are

described in Table 2.1.

As described in the table, positivist research tries to gain knowledge through observations

of real system. It uses the empirical methods such as measurement and hypothesis testing. The

positivist research is a useful paradigm where a single truth about the reality or sufficient data

about the truth exists. An Interpretive research attempts to make sense of a system through

subjective evaluation from the perception of key stakeholders. It adopts qualitative methods such

as case studies, interviews, observations and action research to develop knowledge. Interpretive

paradigm is typically considered in a situation where getting sufficient data from reality is hard

but knowledgeable people exist. Similar to interpretive research, the Critical research considers

subjective evaluation with an additional focus on ethical consideration. The qualitative methods

such as ethnography and action research focusing on political, cultural and power relations in

a social setting are the basis for developing knowledge in critical research. Socio-economical

imbalance due to inadequate or inappropriate policies are subject for critical research.

The DSR relies on science of the artificial [184]. It focuses on man-made artifacts, such as

a model, as the basis to gain the knowledge as opposed to interpreting real system or system

related data. The DSR approach is useful when there is no single truth about the system so

2.1 Philosophical grounding 16

Table 2.2 Design-Science Research Guidelines (Source [95])

Guideline Description
Guideline 1: Design

as an Artifact
Design-science research must produce a viable artifact in the form of a construct, a

model, a method, or an instantiation.
Guideline 2: Problem

Relevance
The objective of design-science research is to address problems, which important

and relevant for business problems.
Guideline 3: Design

Evaluation
The utility, quality, and efficacy of a design artifact must be rigorously

demonstrated via well-executed evaluation methods.
Guideline 4:

Contributions
Effective design-science research must provide clear and verifiable contributions.

Guideline 5: Research
Rigor

Design-science research relies upon the application of rigorous methods in both the
construction and evaluation of the design artifact.

Guideline 6: Design
as a Search Process

The search for an effective artifact requires innovative utilisation of the available
means without violating the laws exist in the problem space.

Guideline 7:
Communication of

Research

Design-science research must be presented effectively to technology-oriented as
well as management-oriented audiences.

as to adopt positivist research, considering interpretive research is infeasible or they demand

significant effort and time.

The key activities of this research include: (i) understand problem space (i.e. organisational

decision-making) and existing solutions, (ii) conceptualise a new solution to improve state-of-

the-practice of organisational decision-making and state-of-the-art of modelling and analysis

techniques, and (iii) validate the efficacy of the proposed solution. Understanding problem

space by observing real organisational decision-making and validating the proposed solution

in real organisational setting are time and cost intensive activities. Moreover, there is no

universally accepted quantitative means that can establish the ‘efficacy’ of an organisational

decision-making solution. Thus the positivist approach is not an effective proposition for this

research. Similarly the interpretive approach and critical research are difficult to adopt as

the availability multiple key decision makers to express their subjective views is a concern.

The Design Science Research (DSR) methodology [94] is less dependent on the real system

and/or key stakeholders. It relies on an incremental approach to develop research artifacts

and a synthetic environment for research validation. Thus, this research draws an ontological

and epistemological foundation from the fields of organisational theory [66, 68, 126] and

organisational decision-making [62, 141, 185, 177]; it adopts Design Science Research (DSR)

[94] as methodological foundation for conducting research activities and validating research

artifacts; and considers incremental improvement as an axiological assumption. The next section

2.2 Design Science Research 17

presents the core concepts of DSR that help formalise a plan to conduct research activities in a

precise and systematic manner.

2.2 Design Science Research

The Design Science Research (DSR) methodology reflects on artificial artifacts, such as design,

reflection and abstraction, for problem solving and knowledge creation. The key considerations

of DSR methodology are: how to construct an artificial representation, how to establish the

truthfulness of the artificial representation, how to analyse an artificial representation for gaining

knowledge about a real system and how to correlate analysis results with the reality. The

principal guidelines of DSR paradigm (presented in [95]) are described in Table 2.2. As

described in the table, it considers design as the core research contribution, recommends a

methodology for conducting research, proposes validation strategies to evaluate the research

outcomes, and emphasises effective communication of the research outcomes to scholastic

communities and practitioners. Recommended research artifacts to represent a reality or a

system, a nominal process model to establish methodological rigour in DSR, and evaluation

strategy recommended in DSR projects are discussed below.

2.2.1 Design science artifacts

Design science research aims to improve the knowledge base by introducing and analysing new

and innovative artifacts [184]. Hevner and Chatterjee [94] classify these artifacts into four broad

categories as follows:

• Constructs: The concepts of a domain that describe the problem and help conceptualise

the solution. Vocabulary and ontology are example of constructs.

• Model: A set of propositions or statements that describe the relationships among con-

structs. Abstraction, representation, Entity-Relationships, meta-model are the example of

models.

• Method: A set of steps that help produce research outcome. Concept and model construc-

tion processes, algorithms, guidelines, and best practices are examples of method.

• Instantiation: Realisation of the constructs, models and methods as Information Technol-

ogy (IT) artifacts. The IT system and prototype are examples of instantiation.

2.2 Design Science Research 18

Figure 2.1 Design Science Research Framework for Information System (Source [95])

2.2.2 Design science research cycles

Figure 2.1 depicts the nominal process of DSR proposed by Hevner et al. [95]. As shown in the

figure, the process recommends three iterative and interacting cycles: Relevance Cycle, Design

Cycle and Rigour Cycle. The Relevance Cycle establishes the connection between problem

space and the design science activities. This cycle iteratively defines research requirements

(e.g., the Innovation, Improvement or Adaptation opportunities), acceptance criteria to evaluate

research outcomes and evaluation strategy to validate acceptance criteria.

The Design Cycle generates design alternatives and evaluates the alternatives against re-

quirements defined in relevance cycle until a satisfactory design is achieved [184]. In particular,

this cycle iterates between two activities - building of artifacts and its validation as depicted

in Figure 2.1 with an aim that the artifacts are rigorously evaluated for the properties that are

defined in relevance cycle.

The key considerations of rigor cycle are twofold - (a) ensure designs produced are not

routine design, i.e., they are either Improvement, Adaptation or Invention, and (b) establish

produced knowledge as new scientific knowledge. As shown in Figure 2.1, the new knowledge

can be broadly classified into two types - foundational contribution and methodological contri-

bution. The foundational contributions are the meta-artifacts [102], i.e., experiences, expertise

and knowledge about the invented artifacts such as theories, frameworks and models. The

methodological contribution is the knowledge that describes how an invention can be validated

and effectively used by the practitioners.

2.2 Design Science Research 19

Figure 2.2 Hierarchy of criteria for IS artifact evaluation (Source Figure 1 of [160])

2.2.3 Research evaluation

A collection of research contributions from Prat et al. [160], Pries-Heje et al. [161] and Venable

et al. [203] establish a comprehensive strategy to evaluate research artifacts produced in DSR.

The strategy includes four important dimensions - (1) why to evaluate, (2) what to evaluate, (3)

when to evaluate and (4) how to evaluate.

The why aspect or the objective of validation is to justify how well an artifact achieves

its expected utility. Prat et al. conducted a rigorous literature review [160] and developed an

exhaustive list of properties that are considered as validation criteria in a wide range of DSR

literature. The hierarchy of criteria presented in [160] is depicted using a tree structure in

Figure 2.2. As shown in the figure, Prat et al., proposed twenty evaluation criteria along five

system dimensions: Goal, Environment, Structure, Activity and Evolution (where presented

system dimensions conform to the components of design theory, i.e., purpose, scope, form,

2.2 Design Science Research 20

Figure 2.3 Strategic DSR Evaluation Framework (Source Figure 1 of [161]

Table 2.3 Evaluation methods

Strategy Method
Observational Case Study

Analytical Static Analysis, Architecture Analysis, Optimisation
Experimental Controlled Experiment, Simulation.

Testing Functional Testing, Structural Testing
Descriptive Informed argument, Scenario

function, artifact mutability [87]). Among these twenty properties, efficacy that indicates the

degree to which the artifact achieves its goal is the most prominent property of interest in DSR.

Venable et al. [203] also recommend efficacy as the property of interest for DSR projects. The

other properties that are prominently used in DSR projects are utility, ease of use, accuracy and

performance (highlighted in Figure 2.2).

Pries-Heje et al. [161] describe the what and when aspects of the artifact evaluation by intro-

ducing two dimensions of evaluation - naturalistic versus artificial and Ex Ante versus Ex Post

as shown in Figure 2.3. Naturalistic evaluation evaluates the real artifact whereas the artificial

evaluation considers artificial artifacts, i.e., constructs, models, methods and instantiations. The

artificial artifact is either assessed using an abstract form of the constructs/models or through

instantiations. This distinction corresponds to the Ex Ante evaluation (uninstantiated artifact)

and Ex Post evaluation (instantiated artifact). The dimension of naturalistic versus artificial

describes what to evaluate and the dimension of Ex Ante versus Ex Post describes the when to

evaluate an artifact in DSR.

2.3 Synthesis and realisation of DSR methodology 21

DSR literature, such as [184], further proposes a range of methods and guidelines for

evaluating artifacts. The high level strategy and corresponding evaluation methods recommended

are listed in Table 2.3. This methodological guidelines establish the How aspect of the artifact

evaluation.

2.3 Synthesis and realisation of DSR methodology

This research attempts to conceptualise and produce an approach and corresponding techno-

logical aid as research contributions to improve the efficiency [160, 203] of organisational

decision-making. It posits that the problem domain, i.e., organisational decision-making, is

a multi-disciplinary field that includes several applied sciences, such as information systems,

management, decision science and socio-technical systems. The context of the problem, i.e., the

organisation, is inherently complex and dynamic. Moreover, it exhibits significant uncertainty

and emergent behaviour. Therefore the success of the research, i.e., achieving efficiency in

organisational decision-making, largely depends on multiple factors such as effective technical

aids and cognitive capabilities of decision-makers. Such rationales and associated complexities

lend this research to consider two broad research activities: problem understanding and problem

solving as suggested by Hevner et al. [95] and March et al. [131].

Hevner et al. and March et al. recommend two complimentary paradigms: behavioural

science research and design science research for problem understanding and problem solving

respectively. This research adopts a design science research methodology for problem solving

methodology. However, it relies on systematic literature reviews in the form of Systematic

Mapping Study (SMS) [155] and Systematic Literature Review (SLR) [111] methodologies as

opposed to behavioural science research for problem understanding. The key reason for such

adaptation is to rely on the existing ontological and epistemological views (i.e., knowledge

exist in the form on publications, industrial reports and technologies) as the basis for problem

understanding as opposed to a derived kwnoledge from the reality through behavioural science

research.

Consistent with DSR methodology [95], the problem solving activity draws upon the

science of the artificial [184] as a philosophical foundation. Precisely the physical system

is visualised in terms of models and comprehended using simulation technique. As research

artifacts, this research produces a conceptual schema of decision-making, a domain-specific

meta-model to represent the physical system, an integrated method for model construction,

2.3 Synthesis and realisation of DSR methodology 22

model validation and decision-making, and a technology aid as an instantiation of research

contributions. In addition, property efficacy [203] is considered as a primary validation criteria

to validate research artifacts; Artificial experiments and Ex-Post [161] evaluation is adopted

as validation strategy; and publications, tutorials and proof-of-concept implementations are

considered as the communication channels for this research. A method that combines problem

understanding and problem solving activities in a seamless manner is described below.

2.3.1 Research method and activities

Peffers et al. [154] propose six activities to realise the nominal process presented by Hevner et

al. in [95]. As summarised in section 2.2.2, the activities proposed by Peffers et al. are: Problem

identification and motivation, Define the objectives for a solution, Design and development,

Demonstration, Evaluation and Communication. Problem identification and motivation activity

defines specific research problem and justifies the utility of a solution. Define the objectives for

a solution activity defines the objectives of a solution by defining the properties to be assessed.

The properties can be quantitative, e.g., quantitative terms in which a desirable solution would

be better than existing ones, or qualitative, e.g., a qualitative description of how a new artifact is

expected to address problems. Design and development activity produces artifact, i.e., constructs,

models, methods and/or instantiations. Demonstration activity demonstrates the utility of the

artifact through experimentation, simulation, case study, proof of concept, or other appropriate

method as described in Table 2.3. Evaluation activity validates the properties of interests. Finally,

the Communication activity communicates utility of produced artifacts to relevant scholastic

and academic communities.

This research extends the realisation method proposed by Peffers et al. as depicted in

Figure 2.4. As shown in the figure, the extended method contains eight research activities with

three iterative loops. The iterative execution of three research activities: Problem identification

and motivation, Exploring state-of-the-art and state-of-the-practice of organisational decision-

making and Define the objectives for a solution form the relevance cycle of this research. The

design cycle comprises next four research activities: conceptualisation of proposed approach,

Instantiation, and Evaluate research outcome and Demonstration and Communication. Finally,

research activity Establishing rigour defines the rigor cycle of nominal process presented by

Hevner at el. in [95].

2.3 Synthesis and realisation of DSR methodology 23

Figure 2.4 Overview of research methodology

From the perspective of realisation of DSR methodology presented by Peffers et al., the

research activity Problem identification and motivation and Exploring state-of-the-art and

state-of-the-practice of organisational decision-making of Figure 2.4 collectively represent

activity Define the objectives for a solution of DSR methodology. Activity Define the objectives

for a solution and Evaluate research outcome of Figure 2.4 respectively correspond to the

activity Define the objectives for a solution and Evaluation of DSR methodology. The research

activities Conceptualization of proposed solution and Instantiation of Figure 2.4 collectively

represent activity Design and development of DSR methodology. Activity Demonstration and

Communication of Figure 2.4 combines two DSR activities: Demonstration and Communication.

The description of eight research activities and their expected outcomes are described below:

1. Problem identification and motivation: A systematic literature review of management

literature and industrial reports for problem understanding. This step produces the research

statement and research questions, which are described in Chapter 1.

2.3 Synthesis and realisation of DSR methodology 24

2. Exploring state-of-the-art and state-of-the-practice of organisational decision-making:

Exploration of solution space, i.e., techniques and technologies used in practice and the

existing techniques and technologies that have potential to address the problem. This ac-

tivity uses three specialised techniques: SMS [155], SLR [111] and experimentation (with

modelling and analysis technologies) as a research approach to explore the capabilities

and limitations of state-of-the-art modelling and analysis techniques. This step produces

reports on suitability analysis of Enterprise Modelling techniques and actor technologies

as presented in Chapter 4.

3. Define the objectives for a solution: Define evaluation property and evaluation strategy to

validate property. This step identifies efficacy as a validation property and adopts Artificial

and Ex-Post [161] as an evaluation strategy. It is Artificial as the synthetic case studies

illustrating scenarios from industry and academia are used as validation and Ex-Post as

the evaluation is performed on produced technology, i.e., after Instantiation.

4. Conceptualization of proposed solution: Formation of ontology, model and method. This

step (a) formalises concepts (ontology) of decision-making and organisation (as context)

using meta-modelling techniques, (b) defines a domain-specific language to represent

an organisation, and (c) proposes an integrated method for model construction, model

validation and decision-making.

5. Instantiation: Develop a technology aid for domain specific language and integrated

method.

6. Evaluate research outcome: An Ex-Post validation is planned where proposed approach

and technology aid are used for organisational decision-making. This step considers four

synthetic but close to real life scenarios from software service provisioning organisation,

business process outsourcing industry, a financial disruption in India and a management

side of an University as discussed in Introduction chapter.

7. Demonstration and communication: Demonstration using industrial exemplars and com-

munication through scholastic publications and tutorials.

8. Establishing rigour: Establish connection between research outcomes and knowledge-

base using meta-analyses on Ex-Post evaluations of Evaluate research outcome activities.

2.4 Summary 25

2.4 Summary

The philosophical grounding, research design and research methodology followed in this

research are discussed in this chapter. From a broad methodological viewpoint, it justifies the

relevance of two fundamental research activities: problem understanding and problem solving

as proposed by March et al. [131]. For problem understanding, the existing epistemological

foundations are explored using a combination of SMS and SLR methodologies. The design

science research is adopted for problem solving. Consistent with the DSR methodology, four

artifacts are proposed as research outcomes. The artifacts are – (i) the key concepts of decision-

making (as constructs artifact), (ii) suitable schema (i.e., a meta-model) to represent complex

dynamic organisation (as a model artifact), (iii) a simulation based methodology to explore

decision-space (as an method artifact), and (iv) a technology aid that instantiates proposed meta-

model and simulation method (as an instantiation artifact). The efficacy of decision-making

is considered as desired validation criteria and an artificial Ex-Post validation is adopted as

validation strategy in this research.

Chapter 3

Organisational Decision Making

Diverse organisations such as corporate firms, banks and government agencies are not like

machines that are governed by the laws of physics or a set of mathematical equations. Herbert

Simon describes organisations as exceedingly complex systems that are – ‘made up of a large

number of parts that interact in a non-simple way. In such systems, the whole is more than the

sum of their parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense

that, given the properties of the parts and the laws of their interaction, it is not a trivial matter

to infer the properties of the whole.’ [183].

The management literature on organisational decision-making proposes a range of manage-

ment frameworks, approaches, methods and guidelines to understand the inherent complexities

of the involved organisation and effectively deal with the dynamism and uncertainties.

This chapter reviews the characteristics of complex organisations, explores the relevant

concepts and methods of organisational decision-making and discerns the key concepts in a

structured form. The chapter starts with a brief overview of system theory and management

view of the organisational theories in Section 3.1. It explores General System Theory (GST)

[206], cybernetics [14], System Dynamics (SD) [78], Complex Adaptive Systems (CAS) [99],

complexity theory [10, 7], and the Information System (IS) view of Enterprise Architecture (EA)

research, such as Zachman Framework [220]. Section 3.2 discusses the prominent methods

to address organisational decision-making as suggested by decision-making theorists such as

James March, Herbert Simon [180, 182], Henry Mintzberg and Richard Daft [69]. Section 3.3

concludes the chapter with a precise review synthesis using a conceptual model and a set of

requirements. The conceptual model describes the relevant concepts and their relationships to

3.1 Characteristics of complex organisation 27

describe the domain of organisational decision-making and requirements indicate the necessary

capabilities to effectively address organisational decision-making.

The first two sections of this chapter explore research question RQ1 that interrogates the

necessary information for an effective organisational decision-making. Section 3.3 presents

the Contribution 1, i.e., a Constructs artifact (from DSR perspective) to describe organisa-

tional decision-making, as described in the Introduction chapter. With respect to the research

methodology chapter presented earlier, this chapter focuses on three research activities: Problem

identification and motivation, Exploring the state-of-the-practice of organisational decision-

making and Define the objectives for a solution (see Figure 2.4).

3.1 Characteristics of complex organisation

The classic model of organisation as a closed and deterministic system has long been discred-

ited in the management discipline [183, 69]. The organisational science that considers the

organisation as a monolithic probabilistic entity, which can be specified and predicted using

the established mathematical and statistical techniques, is also turning out to be less relevant

in the context of a dynamic business environment [185]. Instead, the organisational theories

that focus on complex and open systems are gaining importance for decision-making in modern

organisation [124, 70]. This section discusses the concepts and theories of organisational science

that closely characterises the modern organisations.

3.1.1 Organisation as open, complex and socio-technical system

Organisational theory [183, 10, 7] visualises the modern organisation as open system. An

organisation is a system as it consists of interconnected components that work together [183]. It

is open as it exchanges messages and resources with its environment. An organisation contains

multiple continuous feedback loops with its environment for survival and success [10]. This

system theoretic view of the organisation is primarily derived from the study of General System

Theory (GST) [206] and cybernetics [14].

The foundation of complexity theory advances the canonical form of an organisation model.

In particular, theorists consider the organisation as a complex entity because an organisation

typically composes a large number of interdependent subsystems or elements [10, 69, 7] in

a nonlinear way [49]. John Casti associates the non linearity as a primary cause for the

organisational complexity. Thietart and Forgues [191] reflect on the butterfly effect of the chaos

3.1 Characteristics of complex organisation 28

Figure 3.1 System theory view of complex organisation

theory to emphasise the extreme effect of non-linearity in the organisational context. They

further demonstrate how the accumulation of several small changes in the environment or in a

subsystem results into an explosive situation [191]. Daft and Lewin relate the loose coupling

and autonomy of the individual elements as a prime factors for the organisational complexity

[69]. Richard Daft emphasises the complex organisational structure along three dimensions, i.e.,

vertical, horizontal and spatial [68], as a key cause for organisational complexity. To that view,

the organisational hierarchy forms the vertical complexity, the functional units and departments

form the horizontal complexity, and the distributed geographical locations of the organisation

characterises the spatial complexity of an organisation as depicted in Figure 3.1.

The study of the CAS [99] further enriches the understanding of the organisation model. In

principle, complex adaptive systems are not deterministic automatons, rather their behaviours

emerge from the interactions of the connected sub-systems, individuals or agents. A complex

adaptive system evolves over time by changing linkages between the agents, shifting the

pattern of interconnections, and changing the individual agent behaviours. Moreover, the

individual sub-systems, elements or agents self-organise [74] their structure and behaviour.

These characteristics emphasise the emergent behaviour, adaptability and autonomy of the

organisations and their constituent units.

Finally, modern organisational theory, mainly the research presented by Richard Daft [68],

investigates the characteristics of the system elements that include the sub-systems, elements

3.1 Characteristics of complex organisation 29

Figure 3.2 Top-down and bottom-up visualisation

and/or agents. The theory advocates a socio-technical viewpoint to describe the system elements.

It considers the organisations are made up of multiple mechanistic and organic entities, wherein

the mechanistic entities are not necessarily the machines but they are characterised by machine-

like standard laws and rules. The organic entities, in contrast, are free-flowing and adaptive.

They do not strictly conform to mathematical equations or law of physics, rather they are flexible

to adopt behavioural rules and regulations at any given time. This socio-technical viewpoint

acknowledges the adaptability and autonomy as described in CAS theory. In addition, the

socio-technical viewpoint imparts the uncertainty and intentionality as inherent characteristics

of the organisation.

3.1.2 Philosophical viewpoints for system understanding

From a philosophical perspective, reductionism and holism are two viewpoints that help investi-

gate a complex system or an organisation [34]. The reductionists claim a complex system, such

as an organisation, can be comprehended by understanding all its constituent parts, whereas the

holistic tradition tries to comprehend an organisation as a whole. Organisational theory argues

that the pure form of reductionism is less effective as a viewpoint to understand a complex

system [10] as the impact of the interconnections, feedback loops, and emergent behaviour are

grossly neglected if the parts or subsystems are studied in an isolation [34]. Therefore, the

theorists suggest a holistic view to understand the complex system with feedback, uncertainty

and nonlinearity.

In addition, top-down and bottom-up approaches can be used [192] as illustrated in Fig-

ure 3.2. The top-down approach visualises a system from a higher scale and focuses on an

aggregated macro-behaviour. Primarily, it adopts a belief that the constituent micro-behaviours

of a system can be reasonably approximated as a macro behaviour or set of macro-behaviours.

3.2 Characteristics of organisational decision making 30

Figure 3.3 High level schema of organisational decision-making

The System Dynamics (SD) model [78] and Enterprise Modelling (EM), such as Zachman

Framework [220] and ArchiMate [100] are popular computer models that support the top-down

approach. The bottom-up approach, in contrast, focuses on the micro-behaviours and attempts

to understand how multiple micro-level interactions drive the macro-behaviour of a complex

system, i.e. emergent behaviour. Cellular automata [148] helps to understand the behaviour

that emerges from the spatial composition and neighboring interactions, whereas the agent

based models [178, 47, 129] and actor model [2, 96] help to investigate a wide range of generic

bottom-up behaviours. Chapter 4 discusses a range of computer models and their suitability in

modelling and analysis of complex organisation in details.

3.2 Characteristics of organisational decision making

Organisational decision making is a process of selecting a belief or a course of action among

several alternative possibilities for achieving organisational goals [130]. Principally, a decision,

i.e., a course of action, is a consequential action that influences an organisation to grow, prosper,

or fail at varying range of significance over the time horizon [70]. The management perspective

defines, characterises and classifies these organisational decision-making processes and proposes

appropriate styles, methods and approaches to address a range of decision-making problems.

This section highlights decision-making concepts, classification schemes, approaches and

decision-making models.

3.2.1 Core concepts of organisational decision-making

The decision-making literature [180, 62, 108, 177, 8] considers four broad concepts to describe

organisational decision-making as illustrated in Figure 3.3. The decision problem or organ-

isational goals is the objective, contextual information is the relevant knowledge about the

3.2 Characteristics of organisational decision making 31

organisation and its environment, courses of action are the decision alternatives that decision

makers consider and the decision is a selected alternative, which is an outcome of a decision

making. James March formalises organisational decision-making [130] using four primitives as

follows:

• Knowledge of alternatives: A set of belief or courses of action that has the potential to

address the decision problem. The alternative may include an inaction.

• Knowledge of consequences: Possible consequences of the alternative courses of action.

• Consequent preference ordering: The variables by which the consequences of the courses

of action can be compared.

• Decision rule: Rules by which decision-makers rank and select a course of action from a

list of alternatives.

Theoretically, the Knowledge of alternatives represents the alternative courses of action,

the Knowledge of consequences simplifies the analysis or interpretation of the contextual

information, Consequent preference ordering represents the measurable variables that indicate

whether a decision problem is solved and/or the organisational goals are achieved, and the

Decision rule represents the rules for ranking and selecting alternative from available options by

knowing the Knowledge of consequences.

In this framework, the simplest form of decision-making is a situation where all the alterna-

tives are precisely known, the consequences are known or can be precisely computed/predicted

from the available contextual information, and the decision rule is the selection of an alternative

with the highest expected utility value (from economical perspective). However, the expecta-

tion of complete contextual information, i.e., the information necessary for an organisational

decision-making, is a difficult proposition. There are many specifics that are unaware, unknown

or uncertain in a typical organisational context [62]. For examples, interactions within organisa-

tional units can be probabilistic, environment where an organisation operates can be uncertain,

and goal of a decision problem can be unclear at the beginning of a decision-making.

These unknown factors and uncertainties are well studied in management literature and

they are precisely described using four terms [70], namely: certainty, risk, uncertainty, and

ambiguity. The certainty is a situation where the necessary information for a decision-making

is known; risk is a situation where there is a degree of uncertainty in predicting the possible

3.2 Characteristics of organisational decision making 32

consequences for known alternatives; uncertainty describes a situation where organisational

goals are known but the contextual information of a decision-making is largely unknown. The

ambiguity of a decision-making is a difficult decision situation where the problem to be solved

or the goals are unclear, the alternatives are difficult to know, and the information about the

consequences are unavailable. Richard Daft further defines an extreme ambiguous situation as

a wicked decision problem [70] where the goals are conflicting, the decision alternatives are

difficult to imagine, environment is fuzzy, and contextual information about the organisation is

incomplete and fragmented.

Based on the level of uncertainty, the organisational decision-making is classified into differ-

ent categories along multiple dimensions. Different classification schema and classifications are

described in the next subsection.

3.2.2 Classification of organisational decision-making

Conceptually, organisational decision-making is classified into two broad categories - pro-

grammed decision-making and nonprogrammed decision-making [67]. The programmed

decision-making addresses the decision problems, which are certain and associated with low

risk consequences. The alternatives are known, consequences of the alternatives are not signifi-

cantly high, decision rules for all possible alternatives are fully known (or can be derived from

historical occurrences), and the context is relatively static and mechanistic.

The nonprogrammed decision-making, in contrast, addresses the scenarios that are new or

novel, and they exhibit significant uncertainty and/or ambiguity. The nonprogrammed decision

making deals with the situation, where the alternatives, their consequences, and the decision rules

cannot be inferred from the historical occurrences. The strategic decision-making of modern

organisations are mostly nonprogrammed decision-making in nature. Decision practitioners

adopt different methodological viewpoints to approach these decision-making problems.

From a theoretical perspective, organisational decision-making follows a usual dichotomy

that distinguishes between the normative and descriptive decision-making styles, and considers

a third perspective - the prescriptive decision making style [35]. A normative decision making

style defines how a decision ought be made and provides guidelines for ideal decision-making

situation. The descriptive decision-making describes how decision makers make the decision

rather than what ought to be done in an ideal situation. On the hand, the prescriptive decision-

making combines both the styles by exploiting the normative theories, and adopting the useful

3.2 Characteristics of organisational decision making 33

observations of the descriptive decision-making. These viewpoints get reflected in management

classification that ranges from an economically rational model to a bounded rational model to

an anarchy model. From a management perspective, the organisational decision-making falls

into one of the four primitive decision-making models: Management science [8], Carnegie

Model [66], Incremental Process model [141] and Garbage Can model [60]. The primitive

models and their characteristics are described below:

Management Science model

The management Science model (also known as Operational Research (OR)) [8] is a rational

and normative approach that works under following assumptions

1. Decision problem or goals are precisely known.

2. Alternatives are known and bounded.

3. Potential consequences of the alternatives can be computed from available information.

4. Decision rules or criteria for ranking alternatives thrive to maximise the economic return.

This approach is an effective organisational decision-making model when a problem is

analyzable, the context can be represented using mathematical models, and the possible conse-

quences can be computed using mathematical and statistical rigour. This model is most useful

for the programmed decision-making.

Carnegie model

The Carnegie Model [66] is based on the work of Richard Cyert, James March, and Herbert

Simon undertaken at Carnegie University as an extension to the administrative behavioural

model [180]. It is a descriptive form of decision-making, where decision-makers actually make

decisions for the complex situations as opposed to dictating how the decision should be made in

a theoretical ideal. The basic assumptions of the Carnegie Model are:

1. Decision goals are uncertain and ambiguous.

2. Alternatives are partially known.

3. Probable consequences are conflicting.

3.2 Characteristics of organisational decision making 34

4. There is no fixed decision rules to select alternatives.

The Carnegie Model approaches decision-making based on two philosophical beliefs - (i)

bounded rationality, and (ii) satisficing (a term coined by Herbert Simon to describe satisfy and

suffice). The bounded rationality belief discusses how rational the decision makers can be in a

situation where the organisation is incredibly complex, there are infinitely many alternatives, and

the decision makers have limited time and processing capability. The concept satisfice suggests

choosing the first alternative that achieves the organisational goals as opposed to exploring all

options and select an economical optimum solution.

The model proposes discussion, negotiation, coalition and bargaining as possible manage-

ment aids to resolve ambiguous goals, conflicting beliefs about the possible consequences, and

inadequate decision rules [92].

Incremental Decision Process model

Henry Mintzberg et al. [141] approach a decision-making using a structured sequence of

activities that make a series of small choices to produce a significant decision. The basic

assumptions of the incremental decision process model are:

1. Decision problem or goals are well defined.

2. Alternatives are not known but the high-level line of attack in terms of fine-grained courses

of action are known.

3. Consequences are not known but the consequence of fine-grained courses of action can

be predicted or computed from available information.

This approach focuses on an iterative and incremental approach to solve a significant

decision problem (as opposed to the political and social considerations such as collaboration

and bargaining as described in the Carnegie Model). The process starts with an assumption or a

line of attack, and moves through various smaller decision points that consider the fine-grained

alternatives. The process may face the barriers where it cycles back to a previous decision

point, and try a new alternatives. These barriers are known as decision interrupts and the cycle

exploring a series of alternatives are known as decision loop [123]. The decision makers learn

the possible consequences through multiple decision interrupts and decision loops.

3.2 Characteristics of organisational decision making 35

Table 3.1 Decision Making Approaches

Model Characteristics Decision
Style Analysis Style Analysis Technique

Management
Science [8]

Problem and
solution spaces are

well defined
Normative

Formalize problem
statements as

mathematical formulae to
be solved using

appropriate algorithm.

Bayesian statistics, PERT
charts, linear
programming

Carnegie
Model [66]

Uncertainty about
problem space

Descriptive

Funnel in all relevant
information and rely on
decision makers to make

choices.

Discussion, Interview,
workshop, bargaining ,
negotiation and conflict

resolution.

Incremental
Process

model [141]

Certain about
problem space but

uncertain about
solution space.

Prescriptive
Solve big problem using

many incremental
judgmental decisions.

Judgmental call or
prediction based on past

experience, data, or
intuition.

Garbage Can
model [60]

Problem and
solution space both

are uncertain.
Prescriptive Organised anarchy. Intuition based

Garbage Can model

The garbage Can model is introduced by Michael Cohen, James March, and Johan Olsen [60] to

capture the most uncertain and ambiguous situations of the organisation. The basic assumptions

are:

1. The decision problem and goals are ambiguous.

2. Alternatives and decision rules are ill defined.

3. The contextual information is unclear and difficult to understand.

The Garbage Can model considers several atypical characteristics of the organisation

decision-making. For example, the decision can be made even when the problem does not exist,

the choices can be made without solving an actual problems, or some other problem may get

resolved while solving a problem. The fundamental belief behind the Garbage Can model is only

a few problems are actually solved in any decision-making initiative but the organisation should

keep working towards problem reduction. The management viewpoint suggests an anarchy to

aim for such unplanned but useful improvements.

Summary

The high-level characteristics, recommended analysis style and the state-of-the-practice of

analysis techniques for four decision-making models that are discussed in this section are

3.2 Characteristics of organisational decision making 36

Figure 3.4 Organisational decision-making process proposed by Herbert Simon [181]

summarised in Table 3.1. As it can be noticed, the organisational decision-making models

discussed in this section are limited to the management literature that excludes social, political

and psychological aspects. For example. decision makers can be politically and/or socially

biased in a decision-making process [157]. The literature that focuses on how to deal with such

situations are not considered in this thesis.

3.2.3 Organisational decision-making processes

The management literature advocates the methodological rigour for organisational decision-

making. Herbert Simon first proposed an iterative process in [181]. As shown in Figure 3.4,

the proposed process considers three phases: Intelligence, Design and Choice. The intelligence

phase defines the problem statement. The design phase investigates the context of the decision-

making, i.e., organisation and its environment, and develops possible alternatives. The choice

phase selects the most appropriate alternative from the available alternatives. Each phase of

the decision-making process may itself form a decision making process. For example, a design

phase may initiate an intelligence phase, and a choice phase may trigger an intelligence phase

followed by a design phase for various reasons as depicted in Figure 3.4.

Herbert Simon subsequently extended his essential process model with two additional phases:

Implementation and Review. The implementation phase implements the selected decision, and

the review phase evaluates the efficacy of the selected decision. Richard Daft further extends

Simon’s decision-making process by taking consideration of different categories of decision-

making (that includes the programmed and nonprogrammed decision-making) and range of

organisational decision-making models (that includes the Management Science, Carnegie Model,

Incremental Process model and Garbage Can model). A generic organisational decision-making

process is proposed by Richard Daft in [70] is pictorially shown in Figure 3.5. The specific

activities of the process steps are described below:

3.2 Characteristics of organisational decision making 37

Figure 3.5 Organisational decision-making process proposed by Richard Daft [70]

1. Recognition of Decision Requirement: A decision-making process typically starts with

a decision requirements in the form of either a problem or an opportunity. A problem

occurs when the performance of an organisation is less than its expectation or the or-

ganisation is unable to achieve its desired goals. Whereas an opportunity is a potential

improvement initiative.

2. Diagnosis and Analysis of Causes: This step analyses the context and the underlying

causal relationships associated with the decision situation. It makes an attempt to un-

derstand the inherent characteristics, current state, operating environment, and inherent

dynamism of the organisation.

3. Development of Alternatives: This step generates possible alternative solutions or

courses of action. For the programmed decision-making and the Management Science

model, all feasible alternatives are expected to be known from the historical instances or

through intuition. The nonprogrammed decision, however, expects a set of new courses of

action. For Carnegie Model, the decision makers start with limited alternatives to satisfice

the decision-problem. The Incremental Process model develops small choices that can be

sequenced to form the potential courses of action. The Garbage Can model expects an

innovative way to conceptualise new alternatives.

3.2 Characteristics of organisational decision making 38

Table 3.2 Decision step of organisational decision-making

Decision
Type

Recognition of
Decision

Requirement

Diagnosis and Analysis
of Causes

Development of
Alternatives

Selection of
Desired

Alternative

Pro-
grammed

Complete certainty
about the problem

statement

Uses mathematical,
statistical and/or OR

approaches

Bounded set of
alternatives

Optimum
solution is

derived

Non-
programmed

Problem statement
can be uncertain and

ambiguous

Uses intuition,
mathematical approach,

simulation

Alternatives are not
bounded

Solution may
not be optimum

Manage-
ment

Science

Complete certainty
about the problem

statement

Uses mathematical,
statistical and/or OR

approaches

Bounded set of
alternatives

Uses
optmisation
algorithm

Carnegie
Model

Problem statement is
not certain

Uses intuition based
approach. Exploit social
and political viewpoint

Alternatives are not
bounded

Solution
satisfice the

decision-
problem

Incremental
Process
model

Defines precise
problem statement

Uses incremental method
to understand context

solution is selected
from sequence of
micro-steps and

validations

Solution may
not be optimum

Garbage
Can Model

Problem statement
can be uncertainty

and ambiguous

Uses intuition,
mathematical approach,

simulation

Alternative is not
bounded at the

begining

Solution may
not be optimum

4. Selection of Desired Alternative: This step makes a decision choice by selecting the

most promising course of action. Decision maker tries to select a choice with least risk

and uncertainty. The Management Science model of decision-making uses mathematical

rigour, Carnegie Model relies on the intuitions and experiences gained from discussions

and interviews, and the Incremental Process model effectively combines the mathematical

rigour and intuition.

5. Implementation of Chosen Alternative: The success of a chosen alternative depends

on the selection of an effective course of action, and its successful implementation. The

step adopts communication, motivation, and leadership skills to resolve implementation

related uncertainties and ambiguities.

6. Evaluation and Feedback: This step evaluates the effectiveness of the chosen decision

in achieving the organisational goals, and generates feedback describing the efficacy

and/or inefficacy of a decision and its implementation. The feedback may initiate a new

decision-making process as depicted in Figure 3.5

Though the above decision-making process steps are common for the programmed / nonpro-

grammed decision-making and applicable for all four decision-making models, the activities

3.3 Review synthesis and requirements derivation 39

within the first four steps differ significantly based on decision-making classifications. Table 3.2

illustrates the fundamental differences for programmed decision-making, nonprogrammed

decision-making, Management Science model, Carnegie Model, Incremental Process model

and Garbage Can model. It can be observed from the table, the activities for programmed

decision-making and the Management Science model are same as they focus on similar class

of organisational decision-making problems whereas the nonprogrammed decision-making

conceptually represents the management classification of Carnegie Model, Incremental Process

model and Garbage Can model.

3.3 Review synthesis and requirements derivation

As highlighted in the earlier sections, the management literature establishes a strong theoretical,

conceptual and empirical foundations to address a wide range of organisational decision-making

problems. However, the effective utilisation of the technological aids are largely limited to the

programmed decision-making and the classical management science decision-making problems.

This research highlights an opportunity to develop suitable technological aids to address a

wider range of organisational decision-making problems. The research hypothesises a suitable

technological support to capture and analyse necessary information to explore the knowledge

of alternatives, enrich the knowledge of consequences with evidences, and develop effective

decision rules for unforeseen situations in the face of increasing complexity are key for such

wider adoption.

This section synthesises the knowledge of organisational decision-making and develops

two research artifacts - (i) a new conceptual model that describes the key concepts of the

organisational decision-making, and (ii) modelling and analysis needs to capture and analyse

the required information. From design science research methodology perspective, the proposed

conceptual model is a Constructs artifact [94] of this research. The proposed Constructs help

define the problem space. The modelling and analysis needs serve as the requirements to explore

the suitability of existing technologies and ascertain the required technological advancements.

3.3.1 Conceptual model

The theoretical foundations and the management viewpoints identify a set of concepts to describe

the organisational decision-making that are shown using a class diagram in Figure 3.6. The

models [8, 66, 141, 60] and the decision-making processes [181, 68] consistently use three

3.3 Review synthesis and requirements derivation 40

Figure 3.6 Meta model of organisational decision-making

concepts that principally describe - (i) the decision objective, (ii) the courses of action, and (iii)

the variables by which the consequences of courses of action can be measured. These concepts

are represented using three conceptual entities: Goal, Lever, and Measures in Figure 3.6.

The concept Goal represents the organisational goals as described in [68], the Intelligence as

described in [181], and the decision problem that triggers a decision-making process [69]. The

Lever is a conceptual representation of a course of action or an alternative from the knowledge

of alternatives [130]. Measure represents the key performance indicator (KPI) [68] or the

variables that form the Consequent preference ordering [130].

Key organisational decision-making literature [177, 62, 185, 126, 180, 130] acknowledges

that a decision-making cannot happen in vacuum. It requires the contextual information to (a)

compute or predict the consequences of the possible courses of action as suggested by Richard

Daft in [70], (b) develop the knowledge of consequences as recommended by James March in

[130], or (c) carry out the analysis required for Design phase of the process model defined by

Herbert Simon in [181]. The concepts Organisation and Environment are introduced in the

proposed concept model to represent the contextual information.

Modern organisation theory, such as [108], visualises an Organisation as an open system

(in consistent with GST as discussed in section 3.1.1). The notion of a system that has the struc-

ture, behaviour and state is explicated using three concepts: State, Structure and Behaviour.

In addition, the perception of an open system is imparted using the interacts relationship

between the Organisation and Environment as shown in Figure 3.6. Organisational theory

considers a notion of an organisational memory [124] that records historical states, interactions,

3.3 Review synthesis and requirements derivation 41

realisation of goals, and the useful phenomena. The concept Trace is introduced in the proposed

concept model to represent the relevant information of organisational memory.

The concepts Goal, Measure and Lever are derived from the methodological aspect of

the organisation decision-making, and the concepts Organisation, Environment and their

descriptive elements, such as Structure, Behaviour, State and Trace, are derived from the

organisational theory that includes the general systems theory [206], cybernetics [14], and the

complexity theory [10, 7]. The two sets of conceptual definitions converge at the concepts of

Lever and Measure. The courses of action or Levers are the changes or the transformation

functions over the elements of Organisation that includes the Structure, Behaviour, and

Goal. Measures are expression over an organisational memory, i.e., Trace and State of the

Organisation.

In this formulation, the organisational decision making can be defined as a process to

develop the Knowledge of consequences [130] by computing/predicting the Measures for all

Levers (i.e. the Knowledge of alternatives [130]), rank the Levers based on the Measure

values (i.e., Consequent preference ordering [130]), and select a Lever based on the Decision

rules. The programmed decision-making is the situation where Levers and Measures are

finite and bounded, the Organisation and its interactions with Environment are deterministic,

and they can be fomalised using mathematical and/or statistical models. The nonprogrammed

decision making is a range of situations where there can be uncertainty and ambiguity in Levers,

Measures, Organisation and/or Environment formation. Similarly, the Management science

model of decision making can be formed by constraining the Goal, Measure and Lever as

known and finite sets. In Carnegie Model [66], the Goals are uncertain, and the Structural and

Behavioural aspects of the Organisation are not precisely defined or known. In Incremental

Process model [141], the Levers can be visualised as a composable entity. In contrast, the

fundamental assumption of Garbage Can model [60] is the Goal, Lever, Measure can randomly

evolve in a decision-making process.

The derived concept model, which is depicted in Figure 3.6, captures the necessary concepts

to describe organisational decision-making. This concept model can be considered as a meta-

model to capture necessary aspects of organisational decision-making.

3.3 Review synthesis and requirements derivation 42

Table 3.3 Modelling and analysis requirements for effective organisational decision-making

Requirements Description
Sp

ec
ifi

ca
tio

n
C

ap
ab

ili
tie

s
Why Information on the intention or goal
What Structural information
How Behavioural information
Who Information on stakeholders and responsible human actors
When Temporality in behaviour
Where Information about the location or spatial information

O
rg

an
is

at
io

na
l

C
ha

ra
ct

er
is

tic
s

Modularity The organisation is a set of self-controlled units
Composability Unit and Organisation can be assembled from units

Reactive Unit and Organisation must respond appropriately to its environment

Autonomous
An unit is responsible for its own behavior and it can produce output

without an external stimulus
Intentional Unit must have intent and it behaves accordingly to achieve its intent
Adaptable Unit can adapt itself based on context and situation

Uncertainty It is not necessary that all information about an unit will be known
Temporality Indefinite time-delay between an action and its response

C
on

ce
pt

s Goal Ability to capture goals
Measure Ability to capture the Measures

Lever Ability to capture the courses of action or Lever

A
na

ly
si

s
A

id
s

Top-down &
Bottom-up

Support for top-down and bottom-up nodelling and analysis

Emergentism Ability to understand the emergent behaviour of interacting units
What-if analysis Ability to carry out what-if scenario playing

3.3.2 Tenets of organisational decision-making

An effective organisational decision-making depends on two factors: (i) the ability to capture

the core decision making concepts such as the one depicted in Figure 3.6, and (ii) the ability

to perform required analyses on the available information. The former requires completeness

and expressibility, and the latter expects the efficacy in analysis capabilities. A list of detailed

specification/modelling and analysis requirements is presented in Table 3.3.

The requirements are classified into four groups: specification capabilities, organisational

characteristics, concepts and analysis aids. The specification capabilities group explicates

organisational aspects derived from Zachman Framework [220] (which is considered as the

basis for all Enterprise Modelling (EM) researches [100, 204, 93, 115, 31]). All six interrogative

aspects: why, what, how, when, where, and who are considered to understand an organisation as

a whole. Organisational characteristics group discusses eight organisational characteristics by

reflecting on the theories that focus on organisational complexities as discussed in Section 3.1.

Complexity theory visualises an organisation as set of intentional, reactive, autonomous, and

adaptive units. The organisational theory discuss the possibility of the structural and the

behavioural uncertainty in an organisation. Cybernetics and organisational theory highlight the

3.3 Review synthesis and requirements derivation 43

existence of nonlinearity and temporal delays in the interactions within the organisational units

and between the organisation and its environment. The concepts group represents decision-

making concepts derived from management literature.

From a methodology perspective, capturing necessary information and analysing them

witness a curious dilemma between the top-down versus bottom-up [192] and the holistic versus

reductionists viewpoints [34] as discussed in section 3.1.2. In an organisation, the goals mostly

follow a top-down path where the top level goals are decomposed into various unit level goals

along the organisational structure. However, describing the overall behaviour of an organisation

in the face of increasing complexity and uncertainty is a difficult proposition. The behaviour is

known only for highly localised contexts, which suggest a bottom-up modelling approach. The

reductionist viewpoint helps to reduce the complexity but not able to recognise the emergentism,

whereas the holism helps to understand the emergent behaviour but does not provide suitable

guideline to address associated complexity. Therefore, a middle-out approach that combines the

top-down and bottom-up approaches, an ability to understand the emergentism, and an ability to

perform what-if analysis on available information are considered as the expected analysis aids.

3.3.3 Illustration of concepts and characteristics

The concept model presented in this section (and pictorially represented in Figure 3.6) and the

organisational characteristics discussed in Table 3.3 are illustrated using a department, say CS

Department, of ABC University, which is introduced in Section 1.6 of Chapter 1.

As discussed in section 1.6 and pictorially depicted in Figure 1.2, consider a goal of CS

Department is to improve the research and teaching ranking with respect to the other departments

within and outside university. From operational perspective, the department offers a set of

Courses/Modules and involves in research activities. Structurally the department is formed

with three kinds of Academics: Research Academics, Teaching Academics and Research and

Teaching Academics, and it has a set of Students who enroll for the courses.

The organisational decision-making concepts (i.e., the concepts from conceptual model

introduced in Figure 3.6) of CS Department is illustrated in Figure 3.7. As shown in the figure,

CS Department is a Department of ABC University and it has a Goal of ‘Improving Research

and Teaching Ranking’ from previous years. Simplistically in UK, the teaching ranking is

measured using NSS Scores and research ranking is often determined by multiple factors such

as publication counts. Therefore, the ‘NSS Score’ and ‘Publication Count’ of an academic year

3.3 Review synthesis and requirements derivation 44

Figure 3.7 Illustration of conceptual model using university case study

can be seen as the Measures for specified Goal. Similarly, there is evidence that balancing

research and teaching activities, and setting appropriate work priorities of the academics might

help improve the teaching and research qualities [128]. Thus, ‘Balance research and teaching

academics’ and ‘Specify work priorities of the academics’ can be considered as Levers for the

CS Department.

From operational perspective, the CS Department operates within ABC University and

competes with other Departments hence ABC University and other Departments (within

and outside university) form the Environment. The department is characterised by a set

state variables, such as ‘Location’, ‘NSS Score’, ‘Pass Rate’, ‘Dropout Rate’, ‘Employment

Rate’, ‘Publications’, ‘Collaborations’, and ‘Research Income’ - a snapshot of these state

variables at a given time defines its State of CS Department; it has a dynamic structure that

includes Academics, Students and Courses (as the topology may change over time); and

it exhibits behaviour that largely relies on the behaviours of the Academics and Students

(the behaviour of CS Department emerges from the behaviours of Academics and Students

and their interactions). The CS Department maintains a set of records, such as the publication

records of the individual Academics, yearly employment rate of CS Department, and the

yearly pass rate of CS Department. They form the Traces of the CS Department.

3.3 Review synthesis and requirements derivation 45

These conceptual aspects conform to the specification capabilities described in Table 3.3.

The ability to capture the structure of CS Department defines the need for what aspect, and the

behaviours of the active structural elements define the need for how, who, when and where as-

pects. The Goal of an organisation is suggestive of ‘why’ aspect; Measure specification requires

‘what’ information needs to be captured ‘when’ and ‘how’; whereas the Lever specification

expects the information about ‘what’ changes are required/expected ‘when’ and to ‘where’ for

achieving organisational Goal.

The elements described in this example exhibit the organisational characteristics discussed

in Table 3.3. For example, the Departments, Academics and Students are self-content

elements - thus they are modular units. They are intentional elements as they have their own

intentions and their behaviours largely are governed by their intentions. The Academics can

dynamically form the research Projects, therefore they are composable. The Academics and

Students are reactive elements as they can react to the environmental events such as Call for

Paper and Call for Research Proposal. They can continue their activities or interrupt current

activity without any external stimuli, therefore they are autonomous elements. The department

may change the topology over time by adding and/or eliminating Academics and Students;

similarly Academics and Students may change their behaviour over time - therefore they are

adaptable elements.

There are many events in a department that are governed by the fixed schedule (they are

independent of the states of the individual elements). The admission schedule, assessment

schedules, paper submission deadlines are such kinds of events. Similarly, there are some

known and/or indefinite time delays between some of the organisational events. For example,

time between paper submission and the notification, submission of research grant proposal and

the notification, and assessment period of a module are such examples. These kinds of fixed

schedules and time delays form the temporal behaviour of the CS Department.

On other hand, the Academics and Students exhibit different levels of uncertainties. For

examples, an Academic shows a probabilistic behaviour to choose an activity (from the set

activities as discussed in Table 1.1) at a specific time slot or interrupting the current activity to

take up another activity. For a research academic, there is a varying probability amongst the

individuals to write paper (from current research) or focus on more research activity for better

publications in the future. Similarly, there is an inherent randomness to know an individual

student will study in the free hours or not.

3.4 Summary 46

Table 3.4 Requirements mapping

Requirements Examples
O

rg
an

is
at

io
na

l
C

ha
ra

ct
er

is
tic

s
Modularity The organisation is a set of self-controlled units

Composability Department composes academics and students

Reactive
Academics react to various events such as student queries and complaints.

Similarly students react to lectures and assessments
Autonomous Academics and students are autonomous units as they behave their own way
Intentional Academics and students have their own intents
Adaptable Academics and students can adapt themselves based on context and situation

Uncertainty
Academic and students may choose any activity from the activity list (as

discussed in Table 1.1) at a given time

Temporality
A student may raise a query or complaint any time after a lecture or assessment.

Similarly, an academic can respond to a student query within a time range

C
on

ce
pt

s Goal Improving research and teaching ranking
Measure NSS Score, Publication Count

Lever
(i) Balance research and teaching academics, (ii) Specify work priorities of the

academics

A
na

ly
si

s
A

id
s

Top-down &
Bottom-up

The goal of a department propagate to the academics in a top-down manner
whereas the behaviour can be specified using academics and students (i.e.

bottom-up manner)

Emergentism
The behaviour of a department emerges from the behaviour of academics and

students
What-if
analysis

What would be the situation of a department if academics are directed to focus
more on teaching activity than research activity?

This case also demonstrates a scenario of emergent behaviour. The behaviour of CS

Department cannot be specified as whole - the behaviour emerges from the behaviour of

constituent Academics and Students, associated Environment where it operates and their

interactions. The examples of organisational characteristics, decision-making concepts and

analysis needs are consolidated in Table 3.4.

How all aspects and characteristics of organisation, such as CS Department as described

above, can be effectively captured and sufficiently analysed to quantitatively compare decision

alternatives and choose the best option are demonstrated in the rest of this thesis. The efficacy

and the effectiveness of the concept model and organisational decision-making requirements are

validated using near real-life case studies in Chapter 7.

3.4 Summary

This chapter presents a foundational overview, proposes a conceptual meta-model to describe the

necessary concepts, and discusses the modelling and analysis requirements for organisational

decision-making. The foundational basis, conceptual meta model and the requirements are

3.4 Summary 47

drawn from the general system theory, cybernetics, system dynamics, complex adaptive systems,

complexity theory, economics and behavioural science, and a range of management literature.

Overall, the contributions of this chapter are twofold - (i) detailed discussion on the problem

space of this research and introduction of the key concepts in the form of a conceptual meta

model, (ii) precise modelling and analysis requirements to enable the evidence-based quantitative

organisational decision-making. The proposed conceptual meta model is considered as the

concepts or vocabulary to describe organisational decision-making for the rest of this thesis

whereas the modelling and analysis requirements are used for conducting literature review,

define research solution and validate research outcomes.

Chapter 4

Modelling and Analysis Techniques

This chapter reviews a wide range of modelling and analysis techniques to evaluate their suitabil-

ity with respect to the needs of organisational decision-making (as discussed in Chapter 3). It

briefly evaluates two broad analysis categories that are considered for understanding complex en-

terprises or systems, namely: qualitative approach and quantitative approach [65] in section 4.1.

Section 4.1 also signifies the relevance of enterprise modelling and analysis techniques and actor

and agent technologies as prospective technology aids. Two comprehensive literature reviews

are conducted on the state-of-the-art enterprise modelling and analysis techniques (henceforth

EM techniques) and actor and agent technologies (henceforth actor technologies) to evaluate

their capabilities with respect to the modelling and analysis needs (as presented in Table 3.3).

The literature review methodology that is used is discussed in section 4.4. The review of EM

techniques is discussed in section 4.3 and review of actor technologies is discussed in section 4.4.

The chapter concludes with a synthesis of the literature reviews. It highlights the suitability

and limitations of the existing modelling and analysis techniques, which defines the scope for

technology improvements. From the research methodology adopted and described in Chapter 2,

this chapter iterates over the research activity Exploring the state-of-the-art of organisational

decision-making and concludes with Define the objectives for a solution by defining expected

improvements in the state-of-the-art modelling and analysis techniques (research activities are

described in Figure 2.4) .

4.1 Broad spectrum of modelling and analysis techniques 49

Figure 4.1 Overview of simulation research

4.1 Broad spectrum of modelling and analysis techniques

The analysis of complex systems or enterprises are typically approached using two broad

analysis categories: qualitative approach [133] and quantitative approach [65]. The qualitative

approach is concerned with the subjective assessment of the underlying system through a range

of management techniques such as interviews, discussions, and field studies. The quantitative

approach, in contrast, involves precise interpretation of system data, structure and behaviours.

The quantitative approach is further classified into three categories: inferential approach,

experimental approach and modelling and simulation approach [113] as pictorially represented

in Figure 4.1. The inferential approach [138] analyses the existing system data (i.e., trace or

historical data) to infer the characteristics of a system. The experimental approach comprehends

a system by manipulating the system variables and observing their effects in a controlled

environment. The modelling and simulation approach, in contrast, relies on the philosophy

of science of the artificial [184] where one or more aspect(s) of a system is/are represented

in an abstract form or a purposive model. The modelling and simulation approach imitates a

real system using a (purposive) model, explores a range of scenarios by simulating the possible

(forward looking) changes incorporated into the model, and develops a precise understanding

about a system by interpreting the simulation results. The modelling and simulation approach is

4.1 Broad spectrum of modelling and analysis techniques 50

Figure 4.2 Spectrum of analysis approaches

classified into various classes and sub-classes as shown in Figure 4.2. In particular, the modelling

and simulation approach visualises systems using two approaches: top-down approach and

bottom-up approach [192]. A top-down approach models a system as a whole and adopts

reductionist view to decompose it into smaller parts to understand the parts in isolation. This

approach uses a range of models to represent and analyse the overall systems. These models

are – (i) mathematic model and (ii) enterprise model (EM). The mathematical models, such

as Monte Carlo simulation model [144], represent a system using mathematical formulae and

use rigorous mathematical and statistical problem solving techniques for system analysis. The

operational research techniques are the specialised form of mathematical models. In particular,

they use models, such as linear programming [48], integer programming [176] and dynamic

programming [38], for system modelling and analysis. In contrast, the enterprise models, such

as ArchiMate [100], i* [218] and BPMN [209], and System Dynamics (SD) [134], are typically

less rigorous than mathematical models, however they serve a wide range of modelling and

analysis needs of the complex enterprises. A bottom-up approach starts from the parts or

micro-behaviours and arrives at a holistic view of a system through composition. The bottom up

approach uses the agent and actor based technologies, such as Erlang [12], Akka [5], and Scala

Actor [90], for modelling and analysing systems.

This research considers quantitative approach as a research direction over qualitative

approach to support quantitative what-if analyses. In particular, two kinds of modelling and

analysis approaches: EM techniques and actor technologies, are considered from a range of

analysis approaches highlighted in Figure 4.2.

The inferential approach relies on historical data, which works well for mechanistic systems

and the class of programmed decision-making problems thus it is not considered for further

4.1 Broad spectrum of modelling and analysis techniques 51

Figure 4.3 Systematic review methodology (Sources [155] and [111])

exploration. The experimental approach is not considered for two reasons - (i) conducting

experiments on a real setting is not always an economically viable option [184, 195] and (ii)

real life experiments are often restrictive and typically they are conducted in a localised context,

which fail to understand the ramification of the localised changes in a global context. The

modelling and simulation approach, in contrast, is less restrictive and free from historical

biases as compared to the other two approaches. It helps to analyse the (hypothetical) changes

and capable of observing the long term consequences under various anticipated/predicted

environmental disruptions. Moreover, the simulation is considered as an effective epistemic

engine to understand system when system data is not available, credibility of the existing data

is questionable, conducting experiments on a real system is not a feasible option or other two

options are not economically viable [184, 195]. From modelling and simulation approaches,

the mathematical model is useful consideration when relevant aspects of the system can be

suitably modelled using algebraic equations, which is difficult proposition for the organisations

that exhibit socio-technical characteristics, significant uncertainty and emergent behaviours

[183, 35]. The EM techniques are used to comprehend large and complex business enterprises

[127, 172] and actor technologies are discussed as relevant technology to model and analyse

socio-technical systems [129, 96]. Therefore, this research precisely focuses on those two

4.2 Literature review methodology 52

streams of modelling and analysis techniques to evaluate their suitability in organisational

decision-making.

4.2 Literature review methodology

The systematic reviews to evaluate the state-of-the-art modelling and analysis techniques are

performed using a two-step process as shown in Figure 4.3 (a). The objectives and the core

activities of the two-process steps are summarised below:

1. Identification: Identification step identifies the three artifacts: (i) literature corpus for

detailed reviews, (ii) the list of modelling and analysis techniques referred in the corpus,

and (iii) mappings from specific modelling and analysis techniques to relevant publications.

For example, the Identification step of the systematic review identifies (i) EM techniques

related publications, (ii) a list of EM techniques such as Zachman Framework, ArchiMate,

and ARIS, that are discussed in the EM publications, and (iii) the mappings from the EM

techniques to publication lists (i.e., a list of relevant publications for Zachman Framework,

a list of relevant publications for ArchiMate, etc).

Methodologically, this step adopts the process steps recommended in the conventional

Systematic Mapping Study (SMS) [155] as depicted in Figure 4.3 (c). Where each SMS

considers multiple digital libraries, such as Scopus, ScienceDirect, IEEE Xplore, and

ACM Digital Library to ensure the literature coverage. In addition, the snowballing

technique1 as described in [212] is also considered to confirm the core publications that

propose/introduce specific modelling and analysis technique is included in the review

corpus. For example, the paper that introduces the Zachman Framework, i.e., [220],

should be included in the corpus to study the Zachman Framework.

2. Evaluation: The key objective of evaluation step is to evaluate the suitability of mod-

elling and analysis techniques with respect to the modelling and analysis requirements

discussed in Table 3.3. This is an iterative step where each iteration follows the process

steps proposed for conventional Systematic Literature Review (SLR) [111] as depicted

in Figure 4.3 (b). For example, an iteration may evaluate the suitability of Zachman

Framework with respect to the requirement criteria as described in Table 3.3 using SLR

methodology.

1Snowballing refers to use the reference list of a paper or the citations to the paper to identify additional papers

4.3 Enterprise modelling and analysis techniques 53

This two-steps review method is used to validate EM techniques and actor technologies.

The method ensures the threat to validity of the overall review process by identifying all four

kinds of threats to validity evident in software engineering related reviews [213] and mitigating

them appropriately as discussed below:

1. Internal validity threat: Errors due to deviation from the standard or defined study protocol

cause this threat. An external validation of the review protocol and execution steps2, use of

standard publication sources (i.e., Scopus, ScienceDirect, IEEE Xplore, and ACM Digital

Library) and automated publications extraction from digital libraries minimise the threats

to internal validity.

2. External validity threat: Error due to inappropriate generalisation. The study of each

modelling and analysis technique is considered as a different SLR and no generalisation

is applied for overall review process. Therefore, the external validity is ensured in this

review method.

3. Construct validity threat: This threat arises due to the constructs that characterise a study

are incorrect for some reason such as inadequate publications and biases. The use of SMS

prior to a SLR and snowballing techniques ensures literature coverage. The biases are

addressed by considering multiple digital libraries.

4. Conclusion validity threats: An incorrect interpretation of the observed/extracted/experi-

mented data due to incorrect usage of statistical methods and lack of descriptive statistics

causes the threat to the conclusion validity. The use of simple descriptive statistics to

interpret observed data minimises the threat to conclusion validity.

The systematic review of the EM techniques and the actor technologies using this review

method are described in the next sections.

4.3 Enterprise modelling and analysis techniques

Enterprise Modelling and Analysis techniques are considered in various challenging business

problems such as business-IT alignment, process improvements, enterprise transformation, and

regulatory compliance [173]. This wide adoption and growing popularity of EM techniques

2The protocol and execution steps are reviewed by three supervisors who were not part of the review team.

4.3 Enterprise modelling and analysis techniques 54

Table 4.1 Review protocol for conducting systematic mapping study of EM techniques

SMS Arti-
fact Artifact Description

Research
Question

RQ1: What are the papers on Enterprise Modeling (EM) and Enterprise Architecture (EA) that
focus on organisation modelling?
RQ2: What are the EM techniques cited by identified papers?

Inclusion
Criteria

Keywords: Enterprise Architecture" OR "Enterprise Model" OR "Enterprise Modelling" OR
"Enterprise Modeling”
Subject Area: Computer Science
Document Type: Conference and Journal Paper
Language: English

Exclusion
Criteria

"workflow" OR "BPR“ OR "governance" OR "government" OR “security” OR "mining" OR
"re-engineering" OR "Six Sigma" OR "SOA" OR "mashups" OR "Web Service" OR "Cloud"
OR "data warehouse" OR "ERP" OR "SAP" OR "Digital Media" OR "MIS" OR OR "RFID"
OR "sensor network" OR "network management" OR "LAN" OR "database" OR "network
infrastructure" OR "NAS"

Quality Cri-
teria

a) Publication is peer reviewed, and b) Publication is cited by at least 1 paper if publication date
is prior to 2016

Sources Scopus, ACM Digital Library, IEEE Xplore, ScienceDirect and Web of Science
Study Tem-
plate

Template to capture Title, Authors information, Citation Count, EM techniques referred

in the industry practice [114, 172] make a case to explore them as a potential technology aid

for organisational decision-making. This section presents an overview of the systematic review

using the two-step method described in the previous section.

4.3.1 Literature identification and mapping

An SMS is conducted to identify a publication corpus and list of existing EM techniques. The

overview of the SMS planning and review protocol is described in Table 4.1. As highlighted in

the table, the protocol defines two broad research questions RQ1 and RQ2, an inclusion criteria,

an exclusion criteria and two quality criteria.

The inclusion criterion of this review is very broad as it is designed to find all the EM and

Enterprise Architecture (EA) related literature. The exclusion criterion is designed to eliminate

EM techniques that solely focus on workflow, process mining, security, and infrastructure related

topics as they are not relevant to organisational decision-making. Two constraints are defined

as part of quality criteria. The criteria are: (i) publication is peer reviewed and (ii) publication

should be cited by at least one refereed paper (excluding self-citation) if it is published before

4.3 Enterprise modelling and analysis techniques 55

Table 4.2 Enterprise modelling and analysis techniques

Enterprise Modelling Techniques Domain A-
Count

S-
Count

1. Zachman Framework [220] Information System 493 23
2. Unified Modeling Language (UML) [151] Information System 306 14
3. ArchiMate [100] Information System 190 19
4. Business Process Model and Notation (BPMN) [209] Information System 190 17

5.
ARchitecture of Integrated Information Systems (ARIS)
[175]

Information System 167 19

6. i* [218] Information System 71 4
7. Multi-Perspective Enterprise Modelling (MEMO) [80] Information System 61 10
8. The Open Group Architecture Framework (TOGAF) [93] Information System 53 7
9. The Discrete Event System Specification (DEVS) [47] Information System 47 9
10. Business Motivation Model(BMM) [189] Information System 38 5
11. System Dynamics [78] All 34 7
12. Enterprise Knowledge Development (EKD) [168] Information System 33 2

13.
Design and Engineering Methodology for Organizations
(DEMO) [73]

Information System 28 2

14. Event-driven process chain (EPC) [136] Information System 23 2
15. Petri Net [156] Information System 22 2
16. Semantics of Business Vocabulary and Rules (SBVR) [190] Information System 17 2

17.
Knowledge Acquisition in automated specification (KAOS)
[199]

Information System 13 1

18. Extended Enterprise Modeling Language (EEML) [115] Information System 9 2

19.
Reference Model of Open Distributed Processing (RM-ODP)
[164]

Information System 8 2

20. Integrated enterprise modeling (IEM) [37] Information System 8 3
21. European Interoperability Framework (EIF) [50] Information System 7 2
22. For Enterprise Modeling (4EM) [173] Information System 5 2

23.
Systemic Enterprise Architecture Methodology (SEAM)
[208]

Information System 5 1

24.
Department of Defense Architecture Framework (DoDAF)
[211]

Defence 83 7

25. Integration DEFinition (IDEF) [137] Defence 51 6

26.
The British Ministry of Defence Architecture Framework
(MoDAF) [17]

Defence 49 3

27.
Computer Integrated Manufacturing Open Systems Archi-
tecture Framework (CIMOSA)kosanke1995cimosa

Manufacturing 126 25

28.
Generalized Enterprise Reference Architecture and Method-
ology (GERAM) [101]

Manufacturing 92 13

29.
Graphs with Results and Actions Interrelated (GRAI) and
GRAI Integrated Methodology (GIM) [51]

Manufacturing 71 17

30. Unifed Enterprise Modeling Language (UEML)[204] Manufacturing 43 6
31. Purdue Enterprise Reference Framework (PERA)[210] Manufacturing 32 5

2016. The former quality criterion checks the quality of the publication and the latter criteria3

ensures minimum acknowledgment from the research community.

3Citation count is a weak quality criteria in IS research. Intentionally a weak criteria is used so as to include all ex-
isting EM techniques with a minimum filtering to exclude which are not matured or not received any acknowledgment
from the research community.

4.3 Enterprise modelling and analysis techniques 56

Figure 4.4 Execution of SMS on enterprise modelling and analysis techniques

The SMS conducted on the EM technique identified 178 publications from 563 unique EM

and EA related publications that are collated from 5 popular digital libraries: Scopus, ACM

Digital Library, IEEE Xplore, ScienceDirect and Web of Science. The overview of the review

execution is depicted in Figure 4.4. As shown in the figure, the inclusion criteria and exclusion

criteria are applied on the respective digital libraries to identify relevant publications and then

they are consolidated for evaluating the quality criteria. Finally 178 publications are manually

reviewed. The review concluded with 31 EM techniques as listed in Table 4.2.

As shown in the table, the EM techniques are used and exploited within three broad domains:

Information Technology, Manufacturing and Defence. Twenty three EM techniques focus on IS.

Three EM techniques, namely DoDAF, IDEF and MoDAF, are used in defence systems, and

CIMOSA, PERA, GERAM, GRAI and UEML are mostly used in the manufacturing domain.

The table also presents two appearance counts. The column A-Count represents the appear-

ance of a specific EM technique in 563 selected publications, and the column S-Count represents

their appearance in 178 publications (which are considered for precise review). The former

column indicates the popularity of the EM techniques. For example, the Zachman Framework,

Archimate, ARIS, UML are referred very frequently in the EM literature whereas the EEML,

IEM, KAOS are not referred extensively. The later column ensures the coverage in final review.

The next step of this systematic review focuses on the EM techniques from Information

System (IS) domain. However, the systematic review excludes ToGAF, EIF, SEAM, SVBR and

4.3 Enterprise modelling and analysis techniques 57

Figure 4.5 Meta model to understand EM techniques

RM-ODP for further evaluation as ToGAF and SEAM are primarily methodological guidances,

the SVBR is a standard that defines the vocabulary and rules for describing the business facts

and business rules, the EIF is a set of guidance to European public administrations about the

design of European public services, and the RM-ODP is a reference model for the distributed

systems.

4.3.2 Evaluation of EM techniques

In general, EM techniques are capable of representing or communicating a range of aspects of

an organisation. They often encompasses a (set of) modelling language(s) or specification(s) to

capture a set of organisational aspects, and a set of tools to visualise, analyse, simulate and/or

execute the supported specification(s). The key objectives of the evaluation phase is to study

the characteristics of EM techniques using iterative SLRs as depicted in Figure 4.3 (a). Each

SLR iteration in this review process focuses on a specific EM technique (such as Zachman

Framework or ArchiMate), review the publication list mapped to the specific EM technique, and

evaluate the modelling and analysis capabilities. The key objectives of the evaluation are to

evaluate:

• Capability to capture relevant aspects of organisation (as discussed in previous chapter).

• Capability to specify the organisational characteristics as discussed in Table 3.3.

• Required analyses capabilities and tool support.

4.3 Enterprise modelling and analysis techniques 58

Figure 4.6 Overview of Zachman Framework (Source [220])

The evaluations use a template in terms of a meta-model to capture the capabilities of the

EM techniques in a systematic and uniform manner. The meta-model, termed as EM Synthesis

meta-model4, is presented in Figure 4.5. As shown in the figure, the meta-model considers

that an Enterprise can be visualised along multiple dimensions/perspectives, which are terms

Viewpoints. Each viewpoint represents a set of aspects interest of an organisation, which are

termed Views. These views can be hierarchically decomposed into a set of sub-views or more

specific Views. A View may relate to another View through ViewRelation. An enterprise

modelling language or specification (termed as EM Language) offers a set of relevant constructs

to represent one or multiple Views and ViewRelations. Similarly, the EM Tools provide anal-

ysis and visualisation support for a set of Views. Possible characteristics of the ViewRelation,

EM Language and EM Tool are described using the categorisation as illustrated in the figure.

The ViewRelation can be described by one of the three types: Concept Mapping, Semantic

Interoperability and Concept Unification. In Concept Mapping, the concepts of two

Views of a ViewRelation are explicitly mapped (such as the one described in [146]). The

Semantic Interoperability establishes the relationship between the concepts from two different

Views using semantic mapping (as illustrated in [77]). The Concept Unification, in contrast,

uses a unified meta-model to establish relationships between the concepts of two Views (as

highlighted in [204]).

4The review template as a meta-model is used for consistency and completeness, better visualisation of the review
outcomes, and produce a machine interpretable information

4.3 Enterprise modelling and analysis techniques 59

Figure 4.7 Instance model of Zachman Framework

The EM Languages can broadly be categorized into two types – the one with precise

execution/simulation semantics (indicated as Type1) and the one without (indicated as Type2).

On the other hand, the EM Tools can be categorized into four broad classes – Visualization

tool, Analysis tool, Simulation tool and Execution tool.

The reviews of IS specific EM techniques, which are extensively referred in this thesis, are

summarised in this subsection. The reviews summary of the remaining EM techniques from IS

domain are discussed in Appendix A.

Zachman Framework

The Zachman Framework [220] is a structured way to visualise and define an enterprise. The

framework recommends six interrogative aspects of an enterprise along six perspectives as

shown in Figure 4.6. The aspects are: What, How, When, Who, Where, and Why. The What

aspect describes the data and structure of the enterprise, How is the functional specification,

When describes the time aspect, Who describes the people and stakeholders of the enterprise,

Where is the description of the location, and Why is the description of the motivation of an

enterprise. Supported perspectives are: Scope, Business Model, System Model, Technology

Model, Detailed representation and Functioning Enterprise. The Scope is a high-level executive

4.3 Enterprise modelling and analysis techniques 60

Figure 4.8 Instance model of ArchiMate

perspective, Business Model is the perspective of business management, System Model is the

viewpoint of architects, Technology Model is an engineers or programmers perspective, Detailed

representation is the perspective of technologists, and Functioning Enterprise is operational

perspective of an enterprise.

This understanding derived from the SLR on Zachman Framework is represented using an

instance model of the EM Synthesis meta-model as shown in Figure 4.7. The figure shows –

the Zachman Framework supports two Viewpoints: Abstraction and Perspective. Abstraction

viewpoint has six Views: What, How, When, Who, Where, and Why, where each View represents

an enterprise aspect. Whereas, the Perspective Viewpoint supports six Views namely: Scope,

Business Model, System Model, Technology Model, Detailed representation and Functioning

Enterprise. The Zachman framework has thirty six ViewRelations and supports six kinds of

specifications or EM languages as shown in the figure. The supported specification types are:

Thing-Relationship-Thing, Event-cycle-Event, People-work-People, Node-line-Node, Process-

input/output-Process and End-means-End. The ViewRelations are Concept Mapping type

relations, and the EM languages are Type1 type, i.e., specification without any execution/simu-

lation semantics.

ArchiMate

ArchiMate [100] is one of the most popular enterprise modelling language that supports the

description, analysis and visualization of the organizational structures, business processes, IT

systems, technical infrastructure and information flows of an enterprise in an unambiguous

4.3 Enterprise modelling and analysis techniques 61

Figure 4.9 Instance model of BPMN

manner. The core ArchiMate language describes an enterprise along three layers: Business

Layer, Application Layer and Technology Layer. The concepts of each layers are categorised

into three aspects: Active Structure Aspect, Behaviour Aspect and Passive Structure Aspect.

The complete ArchiMate language supports additional three layers (namely: Strategy Layer,

Physical Layer and Implementation and Migration Elements) and a aspect (namely Motivation

Aspect).

The Strategy Layer describes the business strategies, Business Layer specifies the business

services offered to the customers, Application Layer depicts the application services that support

the business, Technology Layer depicts the technology infrastructure, such as processing, storage,

and communication services, Physical Layer describes physical elements such as equipment,

facilities, and distribution network, and Implementation and Migration Elements describes the

work package, deliverables, operational constraints, etc.

The Active Structure Aspect represents the structural elements that have their own behaviour,

such as business actors, application components, and devices; the Behavior Aspect represents

the behaviour, such as processes, functions, events, and services; and the Passive Structure

Aspect represents the information objects, and the Motivation Aspect describes the motivations

that includes value, meaning, driver, assessment, goal, outcome, etc.

The instance model produced from the SLR on ArchiMate is depicted in Figure 4.8. As

shown in the figure, the ArchiMate visualises an enterprise along two Viewpoints: Layer

and Aspect. The Layer Viewpoint has six Views, and the Aspect Viewpoint has four Views

respectively. The Views are related with each other using Cross Layer dependency mappings,

the EM Language called as ArchiMate is Type2 category specification, the the popular EM Tool

known as Archi 5 is a visualisation tool.
5https://www.archimatetool.com/

4.3 Enterprise modelling and analysis techniques 62

Figure 4.10 Instance model of ARIS

Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) [209] is a language and notation for specifying

the business processes using flowcharting technique, which is similar to the activity diagram of

the Unified Modelling Language (UML).

The outcome of the SLR on BPMN is shown in Figure 4.9. The BPMN supports single

Viewpoint and a View that focuses on the business process aspect of an organisation. The

BPMN specification is a Type2 EM language. However, the Business Process Execution Lan-

guage (BPEL) is a Type1 EM language, i.e. it has a precise simulation and execution semantics.

The BPMN tools, such as Enterprise Architect6, Bizagi7, IBM Business Process Management

(BPM) tool8, offer a wide range of visualisation, simulation and execution capabilities.

ARchitecture of Integrated Information System (ARIS)

ARchitecture of Integrated Information Systems (ARIS) [175] is a multi-perspective enterprise

modeling approach that supports the modelling and analysis of various aspects of an enterprise,

and offers sophisticated industry-scale tools to simulate and execute the business process

specification. It helps to capture five views of an enterprise: Organisational Structure, Data,

Process, Functions and Product.
6http://www.sparxsystems.com/products/ea/trial/request.html
7https://www.bizagi.com/en
8https://www.ibm.com/us-en/marketplace/business-process-manager

4.3 Enterprise modelling and analysis techniques 63

Figure 4.11 Instance model of i*

The instance model produced from SLR on ARIS is depicted in Figure 4.10. The ARIS sup-

ports two Viewpoints: ARIS Views and ARIS Phases. Both the Viewpoints have five Views

respectively as shown in the figure. The Views are related to each other through ViewRelations

of category Concept Mapping. The ARIS supports a range of EM Languages with varying

semantics categories. Supported EM Languages are: Organization Chart (Type2 category), Net-

work Topology (Type2 category), Semantic Data Model (Type1 category), Relational Schema

(Type1 category), Function Model (Type2 category), Program Flow (Type2 category) and

Event-driven Process Chain (EPC) (Type1 category). The EM Tools, such as ARIS Architect9,

supports a varying range of capabilities that include visualisation, analysis, simulation and

execution.

i*

The language i* [218] is an agent-oriented modelling language for requirement engineering

that represents the goals, beliefs, abilities, and commitments of an enterprise and their strategic

relationships.

It supports the Viewpoint of Requirement Engineering and three Views that describe the

Goal, Resource and the Ability of an enterprise as shown in Figure 4.11. The i* specification

language has a unified meta-model to describe all three Views and has a precise semantics (i.e.,

Type1 EM Language). The i* specification is supported by a range of sophisticated visualisation

and analysis tools10.

9https://www.softwareag.com/corporate/products/aris_alfabet/bpa/aris_architect/default
10http://www.cs.toronto.edu/km/istar/Software

4.3 Enterprise modelling and analysis techniques 64

Figure 4.12 Instance model of DEVS

Figure 4.13 Instance model of System Dynamics

Discrete Event System Specification (DEVS)

Discrete Event System Specification (DEVS) [47] is a modular and hierarchical modelling

language to model and analyse the system behaviour using discrete event formalism. The speci-

fication is suitable for deterministic and causal systems. It allows the behavioural specification

at two levels. At the lowest level, an atomic DEVS describes the autonomous behaviour of the

fine grained units of a system, and at the higher level, a coupled DEVS describes a system as a

network of coupled components. The components of a coupled DEVS can be atomic DEVS

models and/or coupled DEVS models.

The model produced from the SLR on DEVS is depicted in Figure 4.12. It supports the

System Viewpoint and System Behaviour View. The DEVS modelling language is a Type1

EM Language and DEVS-based tools, such as DEVSimPy11 and MS412, support sophisticated

analysis and discrete event simulation.

System Dynamics (SD)

The System Dynamics (SD) [78] is a modeling technique that helps to understand the nonlinear

behaviour of a complex system over time. An SD model describes system behaviour using the

concepts of stocks, flows, auxiliary variables, feedback loops, table functions and time delays,

where the dynamism is specified using differential equations over time. The model produced

by applying the SLR on the SD approach is depicted in Figure 4.13. As shown in the figure,

11https://github.com/capocchi/DEVSimPy
12http://www.ms4systems.com/pages/devsjava.php

4.3 Enterprise modelling and analysis techniques 65

Table 4.3 Review synthesis of EM techniques

EM
Technique

Specification
Capabilities

Organisational
Characteristics

Concepts Analysis Aids

W
hy

W
ha

t

H
ow

W
ho

W
he

n

W
he

re

M
od

ul
ar

ity

C
om

po
sa

bi
lit

y

R
ea

ct
iv

e

A
ut

on
om

ou
s

In
te

nt
io

na
l

A
da

pt
ab

le

U
nc

er
ta

in
ty

Te
m

po
ra

l

G
oa

l

M
ea

su
re

L
ev

er

Sp
ec

Ty
pe

E
m

er
ge

nt
is

m

V
is

ua
lis

at
io

n

A
na

ly
si

s

Si
m

ul
at

io
n

Zachman S S S S S S S N N N N N N N I I N T2 N N N N
UML I S S S I I S S N N N N N N I S I T1 N S S N
ArchiMate S S S S I I S I S N S N N N S S I T2 N S S N
BPMN N I S S I I S S S N N N N N N S N T1 N SHow SHow SHow

ARIS I S S S I I S S S N N N N N I S N T1 N SHow SHow SHow

i* S N N I N N S S N N N N N N S S I T1 N SWhy SWhy SWhy

MEMO S S S S N N S S I I N N N I I S N T1 N S S I
DEVS N N S N S N S S S N N N N N N N N T1 N SHow SHow SHow

BMM S N I N N N I N N N S N N N S I N T2 N N N N
SD N I S N I N I N I S N N I S N N N T1 N I S SHow

EKD&
4EM

S S S S N N S S N N N N N N I I N T2 N S I N

DEMO N I S I N N I I S N N N N N N N N T2 N SHow SHow N
EPC N I S N I S S S S N N N I S N N N T1 N SHow SHow SHow

Petri Net N I S N S S S S S N N I S N N N N T1 N SHow SHow SHow

KAOS S I N I N N S S N N N N N N S I N T1 N I I N
EEML I S S S N N N N N N N N N N S I N T2 N I N N

S=Suitable, Sx = Suitable for Aspect X, I=Inadequate, N=Not Suitable, T1=Type1, T2=Type2

the SD technique is capable of representing the System Behaviour View using SD model or

Stock-and-Flow model. The SD models are Type1 EM Language and the EM Tools, such as

iThink13 and Simantics14, support system dynamics simulation.

4.3.3 Review report of EM technologies

The SLR iterations evaluated the EM techniques with respect to the desired modelling and

analysis needs. The evaluations are summarised in Table 4.3. As shown in the table, the EM

techniques exhibit a wide range of modelling and analysis capabilities. The capabilities of the

EM techniques represented in Table 4.3 are analysed along three dimensions – (i) modelling ca-

pability (i.e., as presented in Specification Capabilities columns and Organisational

characteristics columns of Table 4.3), (iii) decision-making concept specification capability

(i.e., data from Concepts columns), and (iv) analysis capabilities (i.e., data from Analysis

Aids columns). The findings are discussed below:

13https://www.iseesystems.com/
14http://sysdyn.simantics.org/

4.3 Enterprise modelling and analysis techniques 66

Figure 4.14 Modelling capabilities of EM techniques

1. Aspect specification capability: Table 4.3 shows a consensus among EM techniques that

an enterprise should be specified along multiple views or aspects. It is visible throughout

the table as all the EM techniques support more than one aspects. However, only four

EM techniques (i.e., Zachman Framework, UML, ArchiMate, and ARIS) out of 16 EM

techniques are capable of specifying all the six aspects: Why, What, How, Who, Where and

When. Moreover, the support for specifying the characteristics of the complex organisation

is a major concern across EM techniques.

The modelling capabilities of the EM techniques are pictorially shown in Figure 4.14. As

shown in the figure, the EM techniques are mostly process-oriented as 14 EM techniques

out of 16 support the How aspect of an enterprise. They are modular and composable;

not all EM techniques support reactiveness; and not suitable for specifying adaptability,

uncertainty, intentionality, autonomous behaviour and temporal characteristics.

2. Decision-making concept specification capability: As shown in the table, five EM

techniques: ArchiMate, i*, BMM, KAOS and EEML support adequate constructs to

specify the Goals and Measures. On the other hand, the Goals and Measures can also be

specified using UML, Zachman, ARIS, MEMO and 4EM through some indirect means.

For example, the Goals can be specified using UML by introducing a new stereotype.

However, none of the EM technique is capable of specifying the Lever of an organisational

decision making problem.

4.3 Enterprise modelling and analysis techniques 67

Figure 4.15 Analysis capabilities of EM techniques

3. Analysis capability: The analysis capabilities of the EM techniques are shown in Fig-

ure 4.15. As shown in figure, they mostly support the visualisation as an aid to understand

an enterprise or organisation. Thirteen EM techniques out of 16 support visualisation.

However, there is a considerable lacunae in Type1 EM language – 10 EM techniques

offer Type1 specification but none of them is capable of specifying all six aspects of

an enterprise. Similarly, the support for simulation is also limited to a specific aspect.

The review also identifies that none of the EM technique is capable of describing and

observing the emergent behaviour.

The above analysis leads to a conclusion that the state-of-the-art enterprise modeling and

analysis techniques are not adequate to address the needs in a comprehensive manner. The key

inadequacies are three-fold:

1. Inability to capture the inherent characteristics of the organisation that include autonomous

behaviour, adaptability, and uncertainty (as shown in respective columns of Table 4.3).

2. Lack of language constructs to specify decision-making concepts such as Lever and

Measure (see Concepts section of Table 4.3).

3. Inability to model and observe the emergent behaviour of a system (as it can be seen in

Emergentism column of Table 4.3).

4.4 Actor and agent technologies 68

Table 4.4 Review protocol for conducting SMS on actor technology

SMS Ar-
tifact Artifact Description

Research
Question

RQ1: What are the publications on actor and agent technologies?

RQ2: What are the actor/agent technologies cited by identified papers?
Inclusion
Criteria

Keywords: "Actor Language" OR "Actor Framework" OR "Actor Computation" OR "Actor
Model" OR "Agent Language"
Document Type: Conference and Journal Paper
Language: English

Exclusion
Criteria

"animation" OR ("multiprocessor" AND "architecture") OR "hypervideo" OR "hypermedia"
OR ("virtual" AND "reality") OR "SDH Network" OR "embedded" OR "mobile" OR "wireless"
OR "sensor" OR "video" OR "movie" OR "health" OR "medical" OR "Strategic Actor"

Quality
Criteria

a) Publication is peer reviewed, and b) Publication is cited by at least 1 paper if publication
date is prior to 2016

Sources Scopus, ACM Digital Library, IEEE Xplore, and ScienceDirect
Study
Template

Template to capture Title, Authors information, Citation Count, Actor technology referred

4.4 Actor and agent technologies

Actor and agent based systems are capable of representing, analysing and implementing complex

systems using the notion of an actor or an agent. Conceptually, an agent is an autonomous,

self-contained, reactive, and pro-active entity that can communicate with other agents through

message passing [216]. Similarly, actor [96] is a primitive and universal concept for a range

of distributed and concurrent computations. In the actor model of computation [2], actors

are computation units that support modularity, autonomy and reactive behaviour. This section

reviews the actor and agent technologies to evaluate their suitability. The systematic review is

conducted using a two-step process as shown in Figure 4.3 (a). The brief overview of the review,

review outcomes and the review summarisation are discussed in this section.

4.4.1 Literature identification and mapping

A Systematic Mapping Study (SMS) using a review protocol described in Table 4.4 is conducted

to identify the relevant literature on actor and agent technologies. As shown in the table, the

inclusion criterion is broad to include frameworks, languages and models on actors and agents.

The exclusion criterion is designed to eliminate languages and frameworks for video, streaming,

embedded systems, sensors, wireless devices, and mobile systems. The study also excludes

the actor/agent technologies, which are associated with the medical science, and the notion of

4.4 Actor and agent technologies 69

Figure 4.16 Execution of SMS on actor technologies

Figure 4.17 Conceptual overview of an actor or agent

actors from i* specification as they are not relevant for this study. Two constraints are defined

as part of quality criteria as discussed in the previous study that focuses on EM techniques.

The overview of the review execution is depicted in Figure 4.16. As shown in the figure,

the mapping study identifies 62 publications from 211 unique actor/agent technology related

publications that are collated from four digital libraries: Scopus, ACM Digital Library, IEEE

Xplore, and ScienceDirect. The review recognises two kinds of technologies - (i) actor/agent

languages and (ii) actor/agent frameworks and libraries. The languages offer a specification

language and its runtime system, whereas the frameworks offer a set of APIs on a specific

4.4 Actor and agent technologies 70

Table 4.5 Actor technologies

Actor Languages
1. Erlang [13], 2. Akka [5], 3. BDI [163], 4. SALSA [202], 5. Act [3], 6. E [140],
7. Actor Based Concurrent Language (ABCL) [217], 8. Rebeca [186], 9. Act 1, 2 and 3 [125],
10. Rosette [196], 11. ThAL [109],12. PLASMA [97], 13. Harmony/2[207], 14. Pony [59],
15. SARL [167], 16. GAML [88], 17. AgentSpeak [162], 18. 3APL [98]

Actor frameworks

Framework
Underlying
Lan-
guage

1. Scala Actor [90] Scala
2. AnyLogic [44] Scala
3. Kilim [187] Java
4. AmbientTalk [72] Java
5. Act++ [104] C++
6. Broadway [188] C++
7. Stackless Python [193] Python
8. Acttalk [46] Smalltalk
9. Actor Foundry [15] Java
10. Stage [16] Ruby
11. Actor Architecture [103] Java
12. Jetlang [165] .NET
13. JavAct [11] Java
14. AJ [221] Java
15. NetLogo [194] -
16. JADE [36] Java
17. JADEX [159] Java
18. Repast [61] Java
19. Karus [https://code.google.com/archive/p/korus] Java
20. Pykka [https://pypi.python.org/pypi/Pykka] Python
21. Nact [https://code.google.com/archive/p/n-act] .NET

22.
Microsoft Asynchronous Agents Li-
brary [https://msdn.microsoft.com/en-
us/library/dd492627(VS.100).aspx]

C++

23. Jetlang [https://github.com/jetlang] Java
24. actor-cpp [https://code.google.com/archive/p/actor-cpp] C++
25. Orleans [http://dotnet.github.io/orleans] .NET

technological platform to specify, analyse and simulate actors or agents. The review recognises

18 actor/agent languages and 25 frameworks as listed in Table 4.5.

4.4.2 Evaluation of actor and agent technologies

The capabilities of actor and agent technologies listed in Table 4.5 are evaluated using a series

of SLRs as discussed in Section 4.2. Conceptually, these technologies support a set of common

characteristics. An encapsulated entity named as actor or agent represents distributed and

interacting units of a system. As shown in Figure 4.17, each actor or agent (henceforth actor)

has an interface as an identity, an inbox or message queue for communication or interactions,

4.4 Actor and agent technologies 71

and an encapsulated and self-contained computing unit. The computing unit encapsulates actor’s

state, behaviour and a set of execution threads. Each actor has a thread which can update its state.

The threads are concurrent and cannot share actor state. The messages are asynchronous and

fair [2], however the order of the message delivery is not guaranteed in an actor communication.

Based on the purpose of the computation, the actor and agent technologies are broadly

categorised into two families: (i) languages and frameworks for general purpose distributed and

concurrent computing and (ii) distributed and concurrent computing to capture and understand

the spatial influences such as cellular automata [214] or game of life [63]. The languages GAma

Modeling Language (GAML) and NetLogo, Java Agent DEvelopment Framework (JADE),

JADEX, and Repast frameworks from the list depicted in Table 4.5 solely focus on the spatial

relationships. They are better suited to study the social and political systems, which is beyond

the scope of this thesis.

The review summary of the selected general purpose actor/agent languages and frameworks

(henceforth actor technologies) that are referred extensively in the literature are discussed below:

1. Actor languages

• Actor: Actor language proposed by Gul Agha [2] realises the notion of actors as a set of

concurrent objects. Each of these actors interacts with each other through asynchronous

message passing. The language supports three language primitives – create, send and

become to specify an actor system and its behaviour. The primitive create creates an

actor from a behaviour description and returns the address of the newly created actor; the

primitive send asynchronously sends a message and immediately returns the control to

the sender; and become replaces the behaviour of an actor.

• Erlang: Erlang [12] is a declarative general-purpose industry-strength actor-based lan-

guage. It realises the notion of an actor using lightweight processes. The Erlang processes

communicate using message passing. Each process has a mailbox that stores the mes-

sages, which are received but not processed. The Erlang processes use sophisticated

pattern-matching to identify the next message to be processed; the message-handling

logic processes a message if pattern is matched; and finally the messages are removed

from the mailbox when message is processed.

• E: The language E [140] realises the notion of an actor using a concept termed as

vat. A vat has an event queue, a heap of objects, a stack and single thread of control.

4.4 Actor and agent technologies 72

The vat encapsulates the objects that it owns and sends object references to other vat

using messages passing. When a vat receives a message, it enqueues the messages and

immediately returns a promise as an envelope. The promise is eventually resolved with

the return value of the message once that message is processed.

• ABCL: Actor-Based Concurrent Language (ABCL) [217] is an object-oriented concurrent

programming language. It realises the notion of an actor using the concept of an active

object. Each object has its own local persistent memory and a thread of control. In ABCL,

the state changes are not specified in terms of behaviour updates (i.e., become) instead

it uses assignment statements. It supports three types of messages passing – past, now

and future. The control of a past type message is immediately returned to the sender.

The now type messages are similar to the synchronous function calls. The future type

messages return a reference to query the return value in future.

• BDI: Belief-Desire-Intention (BDI) [163] is an agent-based programming language that

captures the beliefs, desires and intentions of an agent, and tries to achieve the desires

by using the beliefs and intentions. In BDI, the beliefs of an agent are the information

or facts that exist within an agent, the desires are the motivational state, and intentions

represent the actions and plans. It uses sophisticated inference rules and forward chaining

for developing new beliefs, and relies on temporal logic and Computation Tree Logic

(CTL) for reasoning and problem solving.

2. Actor frameworks

• Akka: Akka [5] is an industry-scale actor framework or a library developed using Java

and Scala platform that runs on JVM. In Akka, the actors can be modeled as Java/Scala

objects where each actor is identified using a reference, which is known as ActorRef; an

actor contains a mailbox to hold incoming messages until they are processed, and actors

communicate with others through asynchronous messages. Akka supports a hierarchical

actor structure where an actor may create multiple child actors. A parent actor supervises

its children by delegating activities which the child can handle and handling the exceptions,

which the child cannot handle. The Akka actor cannot enforce pure actor encapsulation

as the underlying Java/Scala object allows mutable data structures and capable of sending

references to other actors/objects.

4.4 Actor and agent technologies 73

Figure 4.18 Topology of an actor based system

• Scala Actor: The Scala Actor [90] is a library that offers a full-fledged implementation

of Erlang-style actors on top of Scala. The Scala actors are concurrent processes that com-

municate through exchanging messages. It supports both asynchronous and synchronous

message sends. In addition, the actors may communicate using futures. The messages are

asynchronous but they return future as an reference to query the return values.

• AnyLogic: AnyLogic [44] is an agent-based simulation technology. It considers a concept

of an agent to specify an organisation using a set of modular units. It uses discrete event

for message passing between the agents, and adopts a multi-model and co-simulation

approach for agent specification and simulation. The multi-modelling and co-simulation

includes the formalism such as Stock and Flow diagram [78], Statechart [91], Action

Chart [44] and Process Flow Charts [44].

4.4.3 Review report of actor and agent technologies

The SLR iterations evaluate a range of actor and agent technologies that consider actor and

agent as a universal concept and propose a common set of constructs to describe an actor/agent-

based system. A generic schema of the concepts proposed in the actor and agent languages is

depicted in Figure 4.18. As shown in the figure, an actor based System (that represents both

the term, i.e., actor and agent) is typically composed of a set of modular, self-contained, and

interactive Actors (it is also termed as active object, agent, activity, vat and grain in various

actor/agent languages/literature). Each Actor has its Interface, State, History, Inbox

(Inbox is also termed as mailbox, message queue and event queue) and a set of autonomous

Behaviour. An Actor interacts with each other through sending and receiving Messages (the

4.4 Actor and agent technologies 74

Table 4.6 The capabilities of actor and agent technologies

Requirements Support Discussion and Exception
Sp

ec
ifi

ca
tio

n
C

ap
ab

ili
tie

s Why
Supported only in
BDI technology

No explicit construct to capture Why aspect in rest of the actor
and agent technologies

What
Support simple
structure

1. Most of the actor and agent technologies support simple actor
structure
2. Akka supports a hierarchical actor structure

How Supported
Constructs Behaviour, Turn and Message specify the How
aspect

Who Supported Who aspect can be specified using Actor

When Not supported
No guarantee in the order in which the Messages can be deliv-
ered makes the When computation difficult for an actor System

Where Supported Where aspect can be represented using Actor of an actor System

O
rg

an
is

at
io

na
lC

ha
ra

ct
er

is
tic

s Modularity Supported Inherent characteristic of actor and agent technologies

Composability Limited support
The actor and agent frameworks rely on the underlying languages
for composition, whereas the the actor and agent languages
mostly support the distributed Actors

Reactive Supported
Sending and receiving Messages help to specify the reactive
nature

Autonomous Supported Inherent characteristic of all actor and agent technologies

Intentional
Supported only in
BDI technology

No other actor and agent technology is capable of specifying the
intention of an Actor

Adaptable Supported Constructs new and become help to specify the adaptability
Uncertainty Not supported No construct to capture uncertainty in an explicit manner
Temporality Not supported No construct to represent temporal behaviour in an explicit form

C
on

ce
pt

s Goal
Supported only in
BDI technology

No other actor and agent language is capable of specifying the
Goal

Measure Not supported No support in any of the actor and agent technology
Lever Not supported No support in any of the actor and agent technology

A
na

ly
si

s
A

id
s

Top-down &
Bottom-up
analysis

Partially Sup-
ported

The bottom-up analysis is supported in most of the actor and
agent technologies

Emergentism Supported
Actor and agent technologies are capable of producing emergent
behaviour

What-if Analy-
sis

Partially Sup-
ported

Actor and agent technologies support bottom-up simulation

Message is also known as envelop, event, and request). The History and State of an Actor

are encapsulated and they can only be accessed through message passing. The Behaviour

of an Actor is responsible for producing History, State change, message passing, and new

Actor creation in an actor System. An Actor can change its Behaviour and replace it with

another using a construct/API, which is typically termed as become. The Behaviour of an

Actor schedules Turn (also known as epoc and step) that processes the Messages from the

Inbox.

The Actors in most of the actor and agent technologies are typically characterised by

modularity, encapsulation, reactiveness and autonomous behaviour. They are capable of

changing a system topology by creating new Actors and have ability to change the Behaviour

4.5 Synthesis of literature reviews 75

of existing Actors using the become construct. Therefore, they are capable of specifying the

desired adaptability of an actor System. The autonomous Behaviour and unrestricted message

passing further help to produce the emergent behaviour of an overall actor System. However,

the existing actor and agent technologies are not capable of describing the intention of an Actor

in an explicit form. They are also not suitable to specify the inherent uncertainty and temporal

Behaviour. The consolidated evaluation of the actor and agent technologies with respect to the

requirements described in Table 3.3 (of Chapter 3) is presented in Table 4.6.

As shown in the table, the state-of-the-art actor and agent technologies support the desired

modularity, reactiveness, autonomy, and adaptability. They are capable of representing and

observing the emergent behaviour. However, they lack the following desired characteristics:

1. Lack of support for expressing complex structure. Moreover, it is hard to represent the

Why and When aspects using an actor language/framework.

2. Lack of language constructs to specify decision-making concepts, such as Goal, Measure

and Lever.

3. Existing actor languages and frameworks do not natively support uncertainty and temporal

behaviour.

4.5 Synthesis of literature reviews

The literature reviews on the state-of-the-art modelling and analysis techniques report a wide

spectrum of modelling, analysis and simulation capabilities. At one extreme are mathematical

models, such as linear programming, integer programming and dynamic programming, that

represent systems using mathematical equations and use mathematic techniques, such as opti-

misation, for precise analyses and problem solving. However, their use is largely limited for

deterministic and bounded systems. They are best suited for programmed decision-making

problems. The other class of models are various EMs. From the spectrum of enterprise models, a

class of enterprise models provide a well-defined structure to represent the organisational aspects

and offer a variety of visualisation techniques to help humans obtain the desired understanding

of the organisation. For instance, ArchiMate is one such specification. The other class of

enterprise models are machine interpretable and/or simulatable specifications. They are capable

of precise analyses for one or limited aspects. For instance, BPMN analyses and simulates the

behavioural aspect, i* analyses the high level goals and objectives, and SD model simulates

4.5 Synthesis of literature reviews 76

dynamic behaviour of the system. The multi-modelling and co-simulation environments, such

as DEVS and MEMO, demonstrate further advancements by supporting the analysis of mul-

tiple aspects. Principally, they adopt a top-down approach to model an organisation and use

a reductionist view for precise understanding. They are not capable of formulating a suitable

environment to construct and observe the inherent emergentism of an organisation.

The languages and specifications advocating the actor model of computation and the agent-

based systems support emergentism through bottom-up simulation. They fare better in analysing

the systems with socio-technical characteristics such as modularity, autonomy, reactiveness and

adaptability. However, they do not support the specification of complex goals, organisational

hierarchies, and behavioural uncertainty. Moreover, all kinds of models fall short as an intuitive

and closer-to-the-problem specification as they are not designed for organisational decision-

making. In particular they lack the concepts goal, measure and lever.

From a methodological viewpoint, the goal specification languages such as i*, EKD and

KAOS advocate a top-down method. The EM techniques such as ArchiMate, MEMO, and

4EM also advocate a top-down method and a globalized view of the system to represent the

goal, structure and behaviour of an organisation in an integrated manner. BPMN and SD model

predominantly support a top-down approach and reductionist view for a range of analyses. The

actor and agent languages and frameworks, in contrast, advocate the localised specification and

bottom-up analysis approach.

The other methodological advances follow the similar trend. For example, the DEsign

Specification of Interacting REasoning components (DESIRE) [201] and MEMO based decision-

making process [40] propose top-down modelling method and what-if analysis based on reduc-

tionist viewpoint. The methodology advocated in [110] supports the bottom-up approach using

BDI paradigm. Principally, none is capable of combining top-down/bottom-up design principles,

reductionist/emergentism analysis techniques, composional/decompositional abstractions, and

localized/globalized perspectives as desired for organisational decision making.

Therefore, it can be argued that these techniques capture only a fragment of what ought

to be captured and analysed for an effective organisational decision making as illustrated the

requirements described in Table 3.3. From the spectrum of modelling and analysis capabilities

reviewed in this chapter, the actor model and actor-based simulation techniques are found as the

closest match towards modelling and analysis needs for organisational decision making. This

research considers the actor model as a principal abstraction to represent complex organisation

4.6 Summary 77

and uses actor-based simulation technique as an analysis aid by advancing the state-of-the-art

actor technology as discussed in the next chapter.

4.6 Summary

This chapter reviews the existing modelling and analysis techniques using SMS and SLR

methodologies with an aim to evaluate their suitability with respect to the modelling and

analysis needs highlighted in Table 3.3. The reviews show the capabilities and limitations of the

modelling and analysis techniques, and highlight the utility of the actor model of computation

and actor based simulation. The reviews provide a detailed view of what can be adopted and

why they can be adopted in this research. The next chapter discusses the research contributions

that adopt actor model of computation and actor based simulation as a conceptual approach

and propose extensions to existing technologies to overcome the limitations highlighted in this

chapter.

The key contributions of this chapter are – the detailed reviews on enterprise modelling

techniques and actor technologies as no review on any of the two topics exists in IS literature,

precise gap analysis of the existing modelling and analysis capabilities, and a research direction

to model complex organisation and approach organisational decision-making.

Chapter 5

An Actor-based Simulation Aid

This chapter presents a pragmatic modelling and analysis approach along with a method to

address organisational decision-making through quantitative what-if analysis. The proposed

approach introduces three research contributions: (i) a domain specific specification, named

as OrgML, to represent an organisation and the organisational decision-making problem in an

intuitive and machine interpretable form (i.e., Contribution 2 of this thesis) (ii) an approach to

translate the OrgML specification into simulation specification (i.e., Contribution 3) and (iii) a

method to construct model, validate it and perform what-if analyses (i.e., Contribution 4).

From DSR perspective, the OrgML is introduced as a Model artifact of the Constructs

presented in Chapter 3, and the proposed approach to translate OrgML specifications into

simulation specifications and the presented method are realised as Method artifacts to effectively

utilise the research contributions. Methodologically, this chapter focuses on Conceptualization

of proposed solution research activity of the research method considered for this research (as

shown in Figure 2.4).

This chapter is organised into three parts – solution considerations, background information

and solution. The philosophical, conceptual, methodological and technological standpoints

adopted in the proposed approach are discussed as the solution considerations in section 5.1.

The conceptual and technological foundations that are used while conceptualising research

contributions are discussed as the background information in Section 5.2. A detailed descriptions

of the proposed approach and research contributions are presented in the rest of this chapter.

An overview of the proposed approach is presented in section 5.3. The proposed OrgML

meta-model is presented in section 5.4. The OrgML model to ESL specification transformation

5.1 Solution considerations 79

Figure 5.1 Research consideration of proposed solution

strategy and rules are discussed in section 5.5, and a detail description of the proposed method

is presented in section 5.6.

5.1 Solution considerations

A schematic overview of the research direction towards the proposed solution and the design

considerations are highlighted in Figure 5.1. As shown in the figure, the solution adopts a

model driven approach to represent an organisation, relies on simulation techniques to produce

quantitative evidence, and a human-in-the-loop evaluation step to evaluate the produced evidence.

The proposed solution considers an iterative loop where the courses of action can be introduced

as model change and their consequence can be observed by simulating the changed model to

decide most suitable course of action that can be implemented to the real organisation. The

key philosophical, conceptual, methodological and technological standpoints considered in the

proposed approach are:

1. Use of philosophical and methodological foundations of modelling and simulation to

conceptualise the overall approach. The foundations of the proposed approach can be

traced to science of the artificial [184], conceptual modelling [195] and methodological

viewpoint of simulation [174] as highlighted below:

(a) The philosophical viewpoint of the science of the artificial [184] is used to represent

the organisation as purposive models as shown in Figure 5.1.

(b) Simulation [195] as an epistemic engine for organisational decision-making.

5.2 Background 80

(c) The modelling methodology proposed by Stewart Robinson [166] and Andreas Tolk

et al. [195] to construct models from a real context.

(d) The simulation method proposed by Robert Sargent in [174] to develop a simulation

environment.

2. Consideration of actor model of computation [2] as a conceptual abstraction to model

complex organisation as highlighted in Figure 5.1.

3. Use of the management viewpoint proposed by Richard Daft in [70] to represent the

decision problem and capture purposive model of an organisation in a systematic manner.

4. Use of ESL, which is conceptualised and developed as part of overarching research agenda

as discussed in the Introduction chapter, as an underlying simulation technology.

The primary reasons for adopting modelling and simulation approach are – it is open-

ended (i.e., any hypothetical change can be modelled and analysed), free from historical biases

(as data is generated from simulation), and capable of analysing the systems in quantitative

terms. The concept of actor is adopted in this research as actors are modular, composable,

autonomous and reactive entities, which collectively help to imitate the real systems/organisation

and it helps to observe the emergent behaviour of the organisation as discussed in section 4.4.

The organisational decision-making method proposed by Richard Daft brings a management

perspective into the proposed solution. The ESL technology is chosen over the existing actor

languages, such as Erlang [12], Scala Actor [90] and Akka [5], due to its extensions that include

the support for uncertainty, the notion of time and restricted variable sharing as discussed in

section 5.2.2. However, this research does not disregard the use of existing actor languages as

alternative simulation means as discussed later of this chapter.

5.2 Background

As indicated in the previous section, the proposed solution is principally based on four founda-

tions that include – (i) modelling and simulation approach, (ii) actor model, (iii) management

viewpoint of organisational decision-making method, and (iv) actor technology (in particular

the ESL technology). The concept of actor is discussed in Chapter 4 and the management

perspective of the organisation decision-making is discussed in Chapter 3. The necessary back-

ground information to introduce the proposed solution for remaining two foundational aspects

5.2 Background 81

Figure 5.2 Modelling architecture for simulation research

are discussed in this section. In particular, a brief overview of the philosophical, conceptual

and epistemological perspective of the modelling and simulation approach is discussed in sec-

tion 5.2.1, and an overview of ESL language, which is considered as an underlying specification

and simulation engine in the proposed solution, is introduced in section 5.2.2.

5.2.1 Modelling and simulation

The proposed approach constructs a purposive and faithful model of the real organisation for

necessary what-if analyses. In this context, the constructed model provides an environment

to introduce various hypothetical changes (i.e., levers), and simulation of the constructed

model with/without change helps to understand the trends of the key performance indicators

(or measures) over time through observation of simulated results. Multiple such iterations

with various changes on (base) model and observations of key performance indicators help in

developing the knowledge about as-is (to-be) organisation and the possible consequences of the

courses of action.

Model synthesis as an epistemic tool for system understanding is an accepted technique. In

engineering fields, the scientific models that represent some aspects or parts of the real systems

are extensively used for system understanding as discussed by Mieke Boon et. al in [43]. The

enterprise modelling that represent aspects ranging from semantic to pragmatic viewpoints

is also a well established discipline for understanding complex systems and organisations

[172]. Simulation based is recognised as an important analytical tool in many disciplines [81].

However, the epistemic value of the knowledge developed through simulation of a model is

5.2 Background 82

Figure 5.3 Illustration of conceptual model

largely determined by the faithfulness of the models (i.e., how well a model represents the

relevant aspects of a real system) [82]. The simulationists deploy a methodological rigour to

ascertain the faithfulness of the constructed models1 as discussed in [195]. This section describes

a modelling architecture and a validation method that are used extensively in simulation research.

Modelling architecture

Computer-aided simulation recommends a two-layer modelling architecture that comprises the

conceptual model and computer model to develop a machine interpretable model from a real

system [166, 195]. Reflecting on the cognitive process of the modellers and domain experts,

Stewart Robinson [166] and Andreas Tolk et al. [195] introduce an additional abstraction layer

in the modelling architecture. They consider the conceptual model as a mental model and

introduce a new abstraction called as model design to represent the concrete description of

the conceptual model. This research, however, considers the canonical two-layer modelling

architecture2 as shown in Figure 5.2. The core concepts of conceptual model and computer

model are described below:

• Conceptual model: A conceptual model (or a model design) is a purpose specific view

of the real system. A conceptual model principally captures four aspects: objectives,

inputs, outputs, and model content [166]. The objectives represent the purpose of

the conceptual model. The inputs, or experimental factors, are the modelling elements

that can be altered to represent a problem situation. Outputs or responses are the

1The model is first constructed, it is then instantiated with known system data, and finally the constructed model
is simulated for several known scenarios to ensure the veracity of the constructed model and simulation tool.

2This modelling architecture that has close resemblance to Model Driven Architecture (MDA) architecture [112]
where the conceptual model is similar to Platform Independent Model (PIM) that captures the necessary information
using a domain-specific platform independent form and computer model is a Platform Specific Model (PIM) as it has
a semantic to simulate on a specific platform.

5.2 Background 83

modelling elements that demonstrate the reachability of the modelling objectives. The

model content captures the abstract representation of a real system.

For an example, a conceptual model of ABC university (which is discussed in Section 1.6

of Chapter 1) is depicted in Figure 5.3 for illustration purposes. As shown in the figure,

the objective of the conceptual model is to analyse how to ‘Improve Research and

Teaching Ranking’ of ABC university, the experimental factors or inputs that are con-

sidered – ‘Change research and teaching academics ratio’, ‘Change work priorities of

the academics’, ‘An optimum timetabling’, ‘New academic and student ratio’, ‘Recruit

experienced academics’, and ‘Focus on industrial collaboration’. The outputs that

needs to be observed to ascertain the reachability of specified objectives are – ‘NSS Score’,

‘Publication Count’, ‘Pass Rate’, ‘Dropout Rate’, and ‘Employment statistics’.

Two techniques, i.e., assumptions and simplifications, are used to abstract a model content

from a real system [166]. The assumption is way to incorporate the uncertainties, unknown

factors, and the beliefs about the real system. For example, an academic may focus on

any of the activities from a list of alternatives3 at a given time. Specifying such behaviour

using a probabilistic distribution is an assumption. Specifying the propensity of a student

to raise a query or complaint in a given situation is another example of an assumption.

The simplification is a technique to reduce the complexity of the reality by ignoring

certain aspects of the real system. The purposive nature of the model and modelling scope

help to achieve simplification [195]. The academics and students may get involved in

a wide range of non-academic activities from various aspects such as health, recreation

and entertainment and social work. Ignoring those activities in a model or considering all

those activities as one representative activity with a propensity factor while modelling

academic and student is an example of simplification.

• Computer model: A computer model is a machine interpretable form of the captured

conceptual model. It is typically a mathematical or software model. For example, System

Dynamics (SD) [78] uses a set of differential equations to represent a whole system in an

aggregated form, and considers the concept of stock and flow to derive the subsequent

state of a complex system. The agent-based and actor-based simulations [129, 5, 12] use

3Such as Research, Paper Writing, Writing Research Grand Proposal, Project Work, Research Collaboration,
Query Resolution, Complain Resolution, Prepare for Lecture, Delivering Lecture, Prepare for Student Assessment,
Student Assessment, Project Work as discussed in Table 1.1

5.2 Background 84

Figure 5.4 Modelling and validation method proposed by Robert Sargent [174]

the concept of interacting agents or actors to represent a system, and rely on emergentism

[150] to predict the output of a model.

Simulation method

A simulation method proposed by Robert Sargent in [174] is used extensively in simulation

research. As shown in the Figure 5.4, the simulation method recommends three representations:

problem entity, conceptual model and computerised model. The problem entity is the real

system or the knowledge about the system (refer Figure 4.1). The conceptual model is a purpose

specific view of the problem entity and the computerised model is a simulatable form of the

developed conceptual model as discussed in section 5.2.1.

In this method, a conceptual model is constructed from a problem entity during the Analy-

sis and modeling phase, and a computerised model is encoded from conceptual model in the

Computer programming and implementation phase. The synthesis on the problem entity is

conducted by simulating/executing the computerised model in Experimentation phase. Each

phase recommends a set of validations as shown in Figure 5.4. The Conceptual model validity

ensures the assumptions and simplifications are reasonable, i.e. the intended purpose is suf-

ficiently captured in the conceptual model and the underlying assumptions of the conceptual

model are correct. The key consideration of this validity is to capture complete and accurate

5.2 Background 85

information of the problem entity as discussed by Nelson et al. in [147], Krogstie et al. in [116],

and Moody et al. in [143]. The Computerised model verification ensures the faithful translation

of the conceptual model into Computerised model. The Operational validity ascertains that the

simulation results are sufficiently accurate, whereas the Data validity ensures the data necessary

for model construction, model validation, and model simulation are adequate and correct. The

validation techniques that are extensively considered in the simulation study are:

• Operational Graphics and Animation: This technique verifies a model by observing

simulation results through graphs and animations.

• Data Comparison: Establish validity of a model by comparing simulation results with

respect to the simulation results of a valid model. For example, comparison of a simulation

model with an analytical model, comparison of a simulation model that is constructed

using Stock-and-Flow with a valid simulation model that is constructed using linear

programming, etc.

• Historical Data Validation: Compare simulation results with the historical data of the real

system.

• Traces: Capture behaviour of the model entities in the form of traces and analyse them

through appropriate visualisation or analytical techniques.

• Sensitivity Analysis: Conduct sensitivity analyses of the input and internal parameters of a

the model to determine the effect upon the output of the model. The relationships should

be consistent with the known relationships of the real system.

5.2.2 Enterprise Simulation Language (ESL)

A general purpose actor technology named as Enterprise Simulation Language (ESL) to specify

and simulate the complex enterprises is developed as part of the overarching research initiative4

of this research (as discussed in Chapter 1). ESL supports the notion of concurrent actors,

asynchronous and fair message passing, and the notion of history that encapsulates the actor

specific execution traces as recommended in Actor definition [96].

In order to specify complex enterprises, ESL extends the traditional Actor definition along

three dimensions: (i) breaking of pure encapsulation of the state space of an actor, i.e. an actor

4http://tonyclark.github.io/ESL/index.html

5.2 Background 86

Figure 5.5 ESL meta-model

can access the exposed variables of other actors in read only mode, (ii) explicit support for the

stochastic behaviour to support the inherent uncertainties, i.e., support for specific construct to

specify non-deterministic behaviour and (iii) support for the notion of Time, i.e., support for

relative time and its progression.

The schematic representation of ESL is depicted using a meta-model in Figure 5.5. The

extended concepts are highlighted with bold text and boxes with the thick border. As shown

in the figure, the concept Actor interacts with other Actors through Events. An Actor

encapsulates and shares a set of typed Variables. These Variables represent the State

and Trace of the Actors. Structurally, an Actor may contains a set of Actors and each

Actor can create new set of Actors. The Actors are cognizant of Time and they have

their own Behaviour. The Behaviour of an Actor principally represents four kinds of be-

havioural patterns that include reactive behaviour, autonomous behaviour, temporal behaviour

and stochastic behaviour. The ESL meta-model represents these behavioural patterns using four

kinds of Behaviours: ReactiveBehaviour, AutonomousBehaviour, TemporalBehaviour

and StochasticBehaviour respectively.

ESL supports the standard language constructs such as assignment, expression evaluation,

loop, message passing, and creation of new actor to express standard Behaviour. In addition,

the StochasticBehaviour can be expressed using probably(p) x y construct that evaluates

to x in p% of cases and otherwise to y. The ReactiveBehaviour reacts to an Event or a set of

Events, the AutonomousBehaviour is typically triggered based on the state Variables, and

the TemporalBehaviour is specified as an expression over Time.

5.2 Background 87

0 /* Legend: ESL Keywords */
1 e x p o r t main;
2 type Student = Act {Time(I n t),QueryResolutionSession () };
3 type Academic = Act{StudentQuery(Student , I n t)};
4
5 a c t student(p_name :: S t r) ::Student {
6 e x p o r t studentName;
7 studentName :: S t r = p_name
8 QueryResolutionSession → { . . . };
9 Time(t :: I n t)→ { p r o b a b l y (20) { academic1 ← StudentQuery(s e l f ,t) } e l s e {}}

10 };
11
12 a c t academic(p_name :: S t r) :: Academic {
13 e x p o r t studentsWhoRaisedQueries;
14 academicName :: S t r = p_name;
15 studentsWhoRaisedQueries ::[S t r [I n t [S t r]]] = []
16
17 StudentQuery(originator ::Student , time :: I n t) → {
18 p r o b a b l y (80) {
19 studentsWhoRaisedQueries := studentsWhoRaisedQueries + [[originator.studentName ,time ,‘

Attended ’]];
20 originator ← QueryResolutionSession
21 } e l s e {
22 studentsWhoRaisedQueries := studentsWhoRaisedQueries + [[originator.studentName ,time ,‘

NotAttended ’]]
23 }
24 }
25 };
26
27 academic1 :: Academic = new academic(‘Professor ’);
28 student1 ::Student = new student(‘Student1 ’);
29 student2 ::Student = new student(‘Student2 ’);
30 simulationTime :: I n t = 20;
31
32 a c t main ::Main {
33 Time(time :: I n t) when time > simulationTime → {
34 print(academic1.studentsWhoRaisedQueries);
35 topAll ()
36 };
37 Time(time :: I n t) → {}
38 }

[[Student1 ,1,Attended],[Student1 ,4,Attended],[Student1 ,8, NotAttended],[Student2 ,8,Attended
],[Student2 ,12, Attended]]

Figure 5.6 ESL specification

As an illustrative example, an ESL specification that introduces two actor types: Aca-

demic and Student is shown in Figure 5.6. The Student actor type consumes Time and

QueryResolutionSession (shown in line 2), wherein the Time event is a primitive Time

event that is internally raised by the ESL simulation engine. The Academic actor type consumes

StudentQuery event as shown in line 3.

The illustrative definitions of Student and Academic actor types are shown line numbers

5–10 and 12–25 respectively. As listed, the Student has an actor Variable named as student-

Name (line 7), implements QueryResolutionSession event (line 8), subscribes and specifies the

behaviour for Time event (behaviour is defined in line 9) and exports studentName (as specified

in line 6). The behaviour for Time event illustrates an uncertain scenario. The specification

(described in line 9) states that a Student actor may raise StudentQuery in every Time event and

the probability of raising a StudentQuery for a student is 20%.

The Academic actor type contains two Variables – academicName and studentWhoRaised-

Query (as shown in line 14 and 15) wherein the studentWhoRaisedQuery Variable captures

5.3 Overview of proposed solution 88

Figure 5.7 Overview of proposed approach

the trace of the StudentQuery related information, i.e. who has raised the query, when it is

raised, and what is the response:– ‘Attended’ or ‘NotAttended’. Definition of StudentQuery

event (line 17–26) states that an academics respond to StudentQuery by raising (arranging)

a QueryResolutionSession for 80 % cases (line 18–21) otherwise they choose not to respond.

However, both the cases the academic actor captures the trace of StudentQuery’ along with the

response as shown in line 19 and 22 respectively. While capturing the StudentQuery related

information, the academic actor accesses an exposed Variable of student actor named as

studentName.

The rest of the ESL specification shows the actor instantiations and definition of ‘main’

actor that indicates the start of a simulation run. In particular, the specification instantiates one

Academic actor (line 27), two Student actors (line 28 and 29), sets simulation time (line 30) and

specifies ‘main’ actor (line 32 – 38). The ‘main’ actor eventually prints the trace ‘studentWho-

RaisedQuery’ (line 34) and stops all actors at the end of a simulation run. A simulation outcome

of the specification described above is also shown in bottom of the Figure 5.6.

5.3 Overview of proposed solution

An overview of the proposed solution is depicted in Figure 5.7. As shown in the figure, the

proposed solution conceptually considers three abstraction layers: Problem Entity, Conceptual

5.3 Overview of proposed solution 89

Figure 5.8 Realisation of Problem Entity using Conceptual Model

Model and Simulation Model as recommended by Robert Sargent in [174]. The key aspects that

are considered for each of these abstraction layer are described below:

1. Problem Entity: Problem Entity represents the real organisation, organisation with hy-

pothetical changes (i.e., courses of action or levers), or a mental model of the to-be

organisation as highlighted in Figure 5.7. The necessary information about the organi-

sational aspects derived from the management literature5 forms the Problem Entity. In

reality, the Problem Entity information can be found in spreadsheets, pictorial representa-

tions, software models, and/or in the form of tacit knowledge of the domain experts.

2. Conceptual Model: The Conceptual Model is a purposive and machine-interpretable

representation of the Problem Entity. The conceptual model has the following characteris-

tics:

(a) Conformance to the Conceptual Model presented by Stewart Robinson [166] and

Andreas Tolk et al. [195] as depicted in Figure 5.2. The model captures objective,

inputs, outputs and model content.

5As depicted in Figure 3.6 of section 3.3.1 in chapter 3 and also shown as Problem Entity Specification in
Figure 5.8

5.3 Overview of proposed solution 90

(b) Captures the necessary aspects of organisation (as depicted in Figure 3.6 and high-

lighted as Problem Entity Specification in Figure 5.8) using recursive decomposition

in the form of a specialised actor, termed as OrgUnit.

A conceptual schema is shown as Conceptual Specification in Figure 5.8. Conceptually,

how a monolithic organisation can be visualised using a set of interacting OrgUnits

and how the necessary aspects of the organisation can be specified using recursive

decomposition are highlighted using dotted line in the figure.

As shown in the figure, the Organisation is a set of OrgUnits where these OrgUnits

are modular and reactive units. They have their own state, goals, behaviour and trace.

They interact with each others using Events. The OrgUnit has its own UnitState

and UnitGoal. The collection of OrgUnit specific UnitStates form the organisational

State. The Behaviours of OrgUnits collectively define the organisational Behaviour

and the aggregation of OrgUnit specific fragmented Traces form the Trace of an

Organisation. An OrgUnit may own organisational Measures and an organisational

Lever is chiefly relevant for an OrgUnit or a set of OrgUnits. The OrgUnits can be

composed or decomposed to any level to imitate an organisation and their units (i.e.,

organisational structure). In this formation, the Goal captures the objective, Levers

define the input, Measures forms the output and other concepts describes the model

content of a conceptual model.

For an example, the ABC University (presented in section 1.6 of Introduction chapter) can

be visualised as a University OrgUnit, where the University OrgUnit is a composition of

a set of Department OrgUnits. These Departments OrgUnits are typically formed using

a set of Academics and Students OrgUnits. Each of these OrgUnits, i.e., University,

Department, Academic and Student, has its own goals and states. The Behaviour of a

University OrgUnit is chiefly derived from the Behaviours of Departments, and the

Behaviour of a Department OrgUnit is formed using the Behaviours of its constituent

Academics and Students. The Academics are responsible for the organisational Measures

such as number of publications, queries raised by the students and complains raised. The

changes of a University or a Department can be realised by changing the formation and/or

behaviour of the Academics and/or Students, i.e. using appropriate Lever definitions.

This decomposition structure of ABC University is illustrated with additional details in

the later part of this chapter.

5.3 Overview of proposed solution 91

Figure 5.9 OrgML meta-model

5.4 OrgML meta-model 92

3. Simulation Model: The Simulation Model is a simulatable specification of the informa-

tion captured as Conceptual Model. This research considers actor-based language/frame-

work as a simulation language such that the impedance mismatch between Conceptual

Model (i.e. OrgML model) and Simulation Model is minimised. However, it is expected

that they will differ in terms of the level of abstraction and primitive concepts. The OrgML

meta-model is a Domain Specific Language (DSL) for organisational decision-making.

It is capable of representing Goals, Measures and Levers along with the organisational

concepts such as organisation, organisational units and environment in an explicit form.

The actor languages and frameworks, in contrast, are general purpose language and rep-

resent complex system using the notion of actor, actor interactions or message passing,

actor computation, state and trace as described in Chapter 4. ESL is used to represent

the Simulation Model in this research, however any of the other actor languages and

framework, such as Erlang [12], Scala Actor [90] and Akka [5], can be considered as a

specification means for Simulation Model. An experiment with Akka specification [5] as

simulation model is presented in Appendix D.

5.4 OrgML meta-model

OrgML meta-model refines the conceptual model presented in Figure 5.8 to capture the organisa-

tion and its environment using a set of interacting OrgUnit. The OrgML meta-model is depicted

in Figure 5.9. As shown in the figure, OrgUnit is a typed and parametric element that can have:

a set of typed Variables to characterise a OrgUnit, a set of Goals to represent its intention

or objective, Data to capture state and trace, a set of BehaviouralUnits for the behaviour

of the OrgUnit, and a set of Events for interactions . An OrgUnit typically encapsulates a

set of Variables and it may expose a set of Variables to other OrgUnit thus relaxing data

hiding or encapsulation of the pure actor of actor model of computation [2]. Typically, an

OrgUnit receives a set of IncomingEvents, sends OutgoingEvents, subscribes specific set

of TimeEvents and internally processes a set of InternalEvents. An OrgUnit can have a

set of Measures that describe the key performance indicators. The core concepts of OrgML

meta-model that specify the structural, state, behaviour, data and decision-making related aspects

of OrgUnit are described below:

1. Structural elements

5.4 OrgML meta-model 93

Figure 5.10 Illustration of Organisational Structure

OrgUnit Type: ElementType of an OrgUnit capture type information and describes domain

semantics. For example, one can consider the Active and Passive structure as described in

ArchiMate [100] as the basis for OrgUnit type definition. In this classification, the Academics

and Students of ABC University can be classified as Active OrgUnits, whereas the Courses,

Modules and Projects are the examples of Passive OrgUnit (see Figure 1.2 for constituent

elements of ABC University). Alternatively, the OrgUnit can be categorised into three kinds

based on their behaviour such as – mechanistic entity, social entity, and composite socio-

technical entity. For an instance, the humans, machines and departments of an industry can be

classified as social entity, mechanistic entity, and socio-technical entity respectively.

Structural Relationships: The structural topology of an OrgUnit is specified using OrgReln

entity. It supports three kinds of relationships: Containment, Inheritance and Interaction.

The Containment relationship expresses composition. The Inheritance is used to extend and

override the structural and behavioural properties of an OrgUnit. The Interactions describe

message passing between OrgUnits.

A part of ABC University structure is depicted in Figure 5.10 (a) as an illustration. As

shown in the figure, ABC University is formed using a set of Departments wherein each Depart-

ment contains a set of Academics and Students. The Academics can be categorised into three

inherited Academics: ResearchAcademic, TeachingAcademic, and Research&Teaching

Academic. The key interactions between Students and Academics are also shown in the figure.

DataUnit: DataUnit represents a collection of Variables. It is similar to a data structure

definition of a programming language. Figure 5.10 (b) shows two illustrative DataUnit –

5.4 OrgML meta-model 94

Figure 5.11 Illustration of Organisation and Environment

Figure 5.12 Illustration of OrgUnit Variables, Parameters and State

Module and Course. The Course DataUnit describes course details using two typed Variables:

courseName and courseId, and Module DataUnit describes the course modules using four

typed Variables – moduleName, credit, lectureSlot and lecturePreparationTime.

Organisation and Environment: Both, the Organisation and Environment cannot be

composed within an OrgUnit. However, they can interact with other OrgUnit and decom-

pose into finer level of granularity. For example, an Organisation can interact with the

Environment and Organisation can be decomposed into organisational units. In the context

of ABC University, the ABC University is an Organisation and other universities, prospective

students, conference venues, industries are the Environment of ABC University. A conceptual

schema describing the interactions of ABC University with its Environment and its containment

relationships are shown in Figure 5.11.

Variable and Parameter: Variable and Parameters are typed entities that represent the

property or state variable of an OrgUnit. OrgML meta-model supports Integer, String, Double,

5.4 OrgML meta-model 95

Date primitive data types, and considers OrgUnit and DataUnit definitions as composite types.

The Variables with OrgUnit data types form the Containment relationship of an OrgUnit.

The Parameters need to be set to appropriate Values while instantiating an OrgUnit. to

characterise an OrgUnit.

Figure 5.12 shows examples of Variables and Parameters of TeachingAcademic OrgUnit.

As shown in the figure, ‘propensityOfTeachingPreparation’ is a Parameter of TeachingAca-

demic. It indicates the probability for preparing a lecture at a given time. The Variables:

‘teachingPreparationInHours’, ‘lectureDelivered’, and ‘lectureMissed’ describe the state of

a TeachingAcademic. In particular, ‘teachingPreparationInHours’ indicates hours spend on

preparing lectures, ‘lectureDelivered’ indicates number of lectures delivered, and ‘lectureMissed’

describes the number of lectures missed by a TeachingAcademic.

2. State information

State: State of an OrgUnit is formed based on the Values of the state Variables. The

initial State and State at 20 day (of an academic year) of TA1 TeachingAcademic is illustrated in

Figure 5.12. The figures shows, a TeachingAcademic named TA1, who has 60% probability of

spending time on lecture preparation, have spend 16 hours in lecture preparation, delivered 6

lectures and missed one lecture after 20 days from the starting of an academic year.

3. Behavioural elements

Event: OrgUnits interact with each other through Events. The Events are classified into

two categories: OutgoingEvent and BehaviouralEvent. An OrgUnit sends Data to other

OrgUnit through OutgoingEvents. In constrast, OrgUnit performs specific behaviour when

it receives a BehaviouralEvent. The BehaviouralEvents has its own behaviour, which is

specified using BehaviouralUnit. The BehaviouralEvent is further classified into three

kinds of events: IncomingEvent, InternalEvent and TimeEvent. The IncomingEvents are

the Events that are received from other OrgUnits, InternalEvents are triggered internally,

i.e., from a BehaviouralEvent of own OrgUnit. The TimeEvents are the global time events.

The OrgUnits receive subscribed TimeEvents and perform specific behaviour when they

receive a TimeEvent.

A set of Event specification and interactions between TeachingAcademic, ResearchAca-

demic and Students are shown in Figure 5.13. As shown in the figure, the TeachingAca-

demic has an InternalEvent named as TeachingPreparation, raises EvaluateStudent as an

5.4 OrgML meta-model 96

Figure 5.13 Illustration of Events

OutgoingEvent based on the EvaluateSlot TimeEvent, and raises DeliverLecture OutgoingEvent

while Lecture IncomingEvent. Similarly, a ResearchAcademic internally initiates Research

and WritePaper InternalEvent and may decide to submit paper based on PaperDeadline

TimeEvent. A Student typically focuses on SelfStudy as an InternalEvent, AttendLecture

based on LectureSlot TimeEvent and the DeliverLecture OutgoingEvent of TeachingAcademic

OrgUnit.

Behaviour: The behaviour of an OrgUnit is described using BehavouralUnits. They are a se-

quence of Statements where each Statement can create new OrgUnit, raise InternalEvent,

raise OutgoingEvent, update Variables and perform other computations. These Statements

can be categorised into four kinds – Deterministic, Stochastic, Temporal and Adaptive.

Standard language constructs, such as assignment, condition, loop, and message passing, are

Deterministic Statements. The StochasticStatement specifies the uncertainty in per-

forming specific Statements. The TemporalBehaviour uses TimeEvent to express temporal

relationships within behavioral specification. AdaptiveBehaviour describes adaptation rules.

It expresses the behavior which is activated when a specific condition is matched – it uses

TraceExpression, i.e., an expression over Trace element, to define the conditions. The

5.4 OrgML meta-model 97

0 /* Legends: OrgML Keywords , OrgML Meta Elements */
1 action ::= on event where state do { stmt* } Action specification
2
3 function ::= { stmt* } Function specification
4
5 event ::= p_event Primitive Event
6 | time Time Event
7 | event[exp] Number Of Occurrence
8 | no event Event Not Occurred
9 | { event* } Any Event From List

10 | event between [event ,event] Event Between Two Events
11 | [event*] Sequence Of Events
12 | [[event *]] Strict Sequence
13
14 p_event ::= id(type*) Event definitions
15
16 state ::= {exp* } List Of Conditions
17
18 exp ::= lvar Variable
19 | integer | boolean | string | float | date Constants
20 | n u l l Undefined
21 | exp op exp Binary expression
22 | n o t exp Negation
23 | fun(exp*) Function Call
24 | [exp*] List Of Expressions
25 | [] Empty Expression
26
27 stmt ::= decl Local Variables
28 | lvar := exp Assignment
29 | new id(exp*) Create New OrgUnit
30 | f o r (lvar:exp) do stmt Looping
31 | { stmt* } Block Statement
32 | i f exp t h e n stmt e l s e stmt Conditional Statement
33 | p_event(exp) → id Send Event
34 | p r o b a b l y (exp) stmt e l s e stmt Uncertainty
35
36 type ::= id Type OrgUnit , DataUnit
37 | I n t e g e r | B o o l e a n | S t r i n g | F l o a t | Date Primitive Types
38 | Void Undefined
39 | [type] List Type
40
41 lvar ::= variable OrgUnit Variable
42 | decl Local Variable
43
44 decl ::= id :: type Declare Local Variable
45
46 time ::= p_time Primitive Time
47 | (time) Grouping
48 | time(integer) o f time Every nth Occurrence
49 | time e x c e p t time Not Of TimeEvent
50 | [time*] Sequence Of TimeEvent
51 | a n y t i m e [time*] Anytime from a list Of TimeEvent.

Figure 5.14 Syntax of BSpec specification

no (E) � ¬(E) Negation [Line 8 in BSpec Syntax]
{E1 , E2, . . . , En} � (E1 ∨ E2 ∨ . . . ∨ En) Alternate [Line 9]
E between [E1 ,E2] � (E1 ∧ ♦ (E ∧ ♦ E2)) Between [Line 10]
[E1 ,E2 , . . . En] � (E1 ∧ ♦ (E2 ∧ ♦ (. . . ∧ ♦ (En)))) Sequence [Line 11]
[[E1,E2, . . . En]] � (E1 ∧ # (E2 ∧ # (. . . ∧ # (En)))) Strict Sequence [Line 12]

Figure 5.15 Semantics of event specification

element BSpec is a placeholder for textual behavioural specification. A high-level syntax of pro-

posed textual behavioural specification is shown in Figure 5.14. The syntax of the Statement

specification is described using stmt rule (line 27 – 34 of Figure 5.14). It supports local variable

declaration (line 27), assignment statement (line 28), ‘new’ operator (line 29), for loop (line

30), block statement (line 31), conditional statement (line 32), message passing (line 33) and

probabilistic statement (line 34).

5.4 OrgML meta-model 98

0 /* Legends: OrgML Keywords , OrgML Meta Elements */
1 ActOnQueries ::Action = on StudentQuery [4] do {
2 // Resolve queries by raising QueryResolution Event to all four students.
3 }
4
5 ActOnLectureSlot ::Action = on (no {Complain , StudentQuery [4]}) between [Day , LectureSlot] do

{
6 // Lecture a module by raising DeliverLecture Event
7 }
8
9 Calendar { // Example of TimeEvent Specification

10 Hour= primitive // Primitive Event
11 Day= Hour (8) //Raise a Day TimeEvent on every 8 Hour TimeEvents
12 Week= Day (5) //Raise a Week TimeEvent on every 5 Day TimeEvents
13 Month= Day (22) //Raise a Month TimeEvent on every 30 Day TimeEvents
14 }
15 // A complex expression that indicate raise two LectureSlots one on every third hour of

second working day of a week , and second one on every fifth hour of forth working day
of a week expect first working day of a month

16 LectureSlot = [(Hour (3) o f Day (2) o f Week), (Hour (5) o f Day (4) o f Week e x c e p t Day (1) o f
Month)]

17
18
19 // Alternate Definition of ActOnLectureSlot (A Lever specification)
20 ActOnLectureSlot ::Action = LectureSlot where (teachingPreparationInHours > 0) do {
21 // Lecture a module by raising DeliverLecture Event
22 }

Figure 5.16 Example of Action and TimeEvent specifications

As shown in Figure 5.9, the BehavouralUnit is specialised into two types of unit –

Function and Action. A Function is a behaviour unit that contains a coherent set of

Statements (syntax is shown in line 3 of Figure 5.14). These Functions must be called

from Statements as shown in line 23. The Action is a behaviour unit that triggers when a

complex event specification is satisfied. The syntax of a supported complex event specification is

shown as action rule in Figure 5.14. The specification supports repetition (line 7 of Figure 5.14),

negation (line 8), alternative (line 9), between (line 10), sequence (line 11) and strict sequence

(line 12). The semantics of the supported constructs are established using Linear Temporal

Logic (LTL) [158] as shown in Figure 5.15. For example, the negation of an event E is implied to

be true if event E is not occurred till now. The alternative of a set of events (i.e., { E1, E2,...,En}

implies at least one event is occurred till now. Similarly, the semantics of between, sequence

and strict sequence are defined using LTL formulae. The formulae are evaluated in simulation

runs using pattern matching over event traces.

Figure 5.16 highlights complex event specifications of two Actions of TeachingAcademic.

The Actions are: ‘ActOnQueries’ and ‘ActOnLectureSlot’. The definition ‘ActOnQueries’

(shown in line 1 –3) describes that a TeachingAcademic accumulates four ‘StudentQuery’

IncomingEvents to collectively act on them. Whereas the definition of ‘ActOnLectureSlot’

(line 5–7) states that a TeachingAcademic delivers a lecture (i.e., raises ’DeliverLecture’) when

following conditions are satisfied – (i) a ‘LectureSlot’ is raised, (ii) no ‘Complaint’ is raised on

the same Day, and (iii) the number of ‘StudentQuery’ raised on the same Day is less than four.

5.4 OrgML meta-model 99

Figure 5.17 Illustration of Data and Traces

Calendar: Calendar is an entity that contains global TimeEvents wherein each TimeEvent

indicates significant time, such as Day, Month, Beginning of Academic Year, End of Academic

Year. An illustration of Calendar entity: UniversityCalendar is shown in Figure 5.13. As

shown in the figure, UniversityCalendar contains four TimeEvents – ‘Day’, ‘EvaluationSlot’,

‘LectureSlot’, and ‘PaperDeadline’. The ‘Day’ event indicates the beginning of a day, ‘Evalua-

tionSlot’ indicates the time slots for module evaluations, ‘LectureSlot’ indicates a set of time

slots for lecturing a module, and ‘PaperDeadline’ indicates the various paper deadlines. These

TimeEvents could be either be a primitive time event (raised by underlying simulation engine)

or a derived time event, which is an expression over other time events. A syntax to describe

derived time events is highlighted in line 46–52 of Figure 5.14. The examples of derived time

expressions are shown in line 9–16 of Figure 5.16 where the specification states that a Day is 8

Hours, a Week is 5 Days, and a Month is 22 Days. Specification also highlights a complex time

expression that schedules a lecture slot twice in a week – (i) third hour of second day of every

week (i.e., every Tuesday 11 AM considering the working hour starts at 8 AM), and (ii) fifth

hour of forth day of a week excluding the day if forth day of a week is the first day of a month

(i.e., every Thursday 3 PM excluding the day if month starts with Thursday).

4. Data elements

Data and Trace: Data of an OrgUnit is a set of typed Variables that capture three elements:

State, EInfo, and Trace. EInfo captures the Events produced internally, Events communi-

cated to other OrgUnits, and Events received by an OrgUnit along with the time information.

The Trace is a sequence of Data from any time in the past. As an illustration, a set of States,

EInfo and Trace of a TeachingAcademic are highlighted in Figure 5.17. The figure shows a

sequence Data of TA1 TeachingAcademic, which are captured on Day TimeEvents. At Day

5.4 OrgML meta-model 100

Figure 5.18 Illustration of Goal, Goal structure and Goal-to-Measure relationship

1, the TA1 TeachingAcademic triggers TeachingPreparation and spend 2 hours on preparation

activity. Subsequently, TA1 TeachingAcademic delivers a lecture on Day 2 and misses a lecture

on Day 5.

5. Decision making concepts

Measure: Measures are specialised Variables that describe the key performance indicators

of an OrgUnit. The Measures of a TeachingAcademic are – number of lectures taken in an

academic year, number of lecture missed due to some high priority work, etc. The Measures are

connected to Trace using TraceExpression. The Measures are linked to Traces, Traces are

sequence of Data and Data hold Values. Therefore, the value of a Measure can be computed

by navigating Measures, Trace, Data relationships.

Goal: The Goal of an OrgUnit captures its intention or a set of objectives. A Goal can

be hierarchically decomposed into sub-Goals and a Goal can influence other Goals. These

relationships can be specified using GoalReln wherein the Refinement relationship captures

goal decomposition relationship and the Influence relationship specifies the goal influence

relationship. The Refinement can be further classified into two kinds of decomposition: And

decomposition and Or decomposition. In a goal hierarchical structure, the leaf level goals

(termed LeafGoals) are linked to appropriate Measures so that they can be quantitatively

measured. In particular, a LeafGoal is a conditional expression over Measures. Therefore, the

5.4 OrgML meta-model 101

Figure 5.19 Lever definition specification

LeafGoal can be computed using associated Measure values and other Goals can be computed

using bottom-up goal navigation and evaluation.

An example of Goal, Goal decomposition structure, and mapping between LeafGoals and

Measures are shown in Figure 5.18. As shown in the figure, the Research&TeachingAcademic

has a primary Goal to ‘Improve Departmental Ranking’ wherein the goal ‘Improve Depart-

mental Ranking’ can be achieved by achieving ‘Improve Student Satisfaction’ And ‘Improve

Research Ranking’. The goal ‘Improve Student Satisfaction’ is further decomposed of two

LeafGoals: ‘Reduce Student Concerns’ and ‘Increase High Quality Lecture’. The goal ‘Im-

prove Research Ranking’ is a decomposition of three LeafGoals: ‘Improve High Quality

Publications’, ‘Increase Research Earnings’ and ‘Increase Research Collaboration’.

Lever: Lever represents possible courses of action that can be applied on an OrgUnit. A Lever

can be decomposed. A lever specification contains two kinds of specification: (i) lever usage

specification and (ii) lever definition. Lever usage specification is illustrated in OrgML meta-

model (depicted in Figure 5.9) using LeverReln and its specialisation. The Lever inclusion

and exclusion relationships can be defined using LeverReln.

Lever specifies changes in either Data, Structure, behaviour of an OrgUnit or a combina-

tion thereof. This research adopts the notion of variability modelling [122] and uses the concept

of Variation Point and Variant to define lever specification. The concept of variability

modelling with respect to the OrgML meta-model is depicted in Figure 5.19. As shown in the

figure, each OrgUnit may have multiple VariationPoints and each VariationPoint of an

5.4 OrgML meta-model 102

Figure 5.20 Example of Lever specifications

OrgUnit should have a set of alternative Variants. A VariationPoint is an element of an

OrgUnit which is amenable for a change, and a Variant describes the change specification

that can be fitted into a VariationPoint. A predefined set of core elements of OrgML can

act as VariationPoint and Variant. Further, there is a notion of compatibility between

VariationPoint and Variant. As shown in the figure, Parameter, Variable, Action,

Function and OrgUnit of an OrgML model can act as VariationPoints wherein the ele-

ment Value can fit into Parameter and Variable; element Function can fit into Function;

element Action can fit into Action; and an OrgUnit can fit into an OrgUnit.

In this structural formation, a Lever is set of LeverSpec, where each LeverSpec se-

lects Variant for one or more VariationPoint(s). Figure 5.20 highlights the concept of

VariationPoint, Variation and Levers. As shown in the figure, the Parameter ‘propen-

sityOfTeachingPreparation’ is a VariationPoint with two Value Variants (i.e., 60% and

80% propensity for teaching preparation). Similarly, the Action ‘ActOnLectureSlot’ is a

VariationPoint with two Action Variants: ‘Action1’ and ‘Action2’. ‘Action1’ Variant

considers addressing students complaint and student queries as high priority activities than

delivering a lecture as specified in line 1–3 of Figure 5.16 whereas ‘Action2’ Variant considers

delivering lecture as a high priority activity than addressing complaint and queries (as specified

in line 20–22 of Figure 5.16). The figure shows a Lever specification named as ‘Increase

Teaching Preparation’. Lever selects Value 80 (%) for ‘propensityOfTeachingPreparation’

and Action2 as ‘TeachingPreparation’ action.

Discussion

The concepts introduced in the proposed meta-model is grounded in well understood theories in

the research literature and established practice. For example, the decomposition, moduarisation

5.4 OrgML meta-model 103

Table 5.1 Conceptual mapping with existing specifications

OrgML Concept Concepts from existing specification languages

OrgUnit
UML Class Diagram :: Class that represents Organisational elements such
Organisation, Organisational Unit, Environment.
ArchiMate:: Business Actor, Business Role, Business Object, Application
Component, System Software

Data UML Class Diagram:: Class that represents entities
ArchiMate:: Data Object, Artifacts.
BPMN:: Data Object

Goal i* specification:: Goal.
ArchiMate:: Meaning.

Behaviour UML State Machine:: State, Transition
ArchiMate:: Business Service, Business Process, Business Function, Applica-
tion Function, Infrastructure Function.
BPMN:: process definition.

Event UML State Machine: Transition.
BPMN:: Event.
ArchiMate:: Business Interaction, Business Event

Measure i* specification:: Task, Leaf level Goal.
BPMN:: KPI

and unit hierarchy of OrgUnit are taken from the notion of the component abstraction [32]. The

goal-directed reactive and autonomous behaviour are traced to actor behaviour [96]. An event

driven architecture [139] is adopted to introduce reactive behaviour. The concept of intentional

modelling is adopted to enable specification of goals [218]. The behavioural classification and

uncertainty is derived from the notion of known and known unknown uncertainty classification

coined by Donald Rumsfeld [170]. The concepts introduced in this meta-model also relate to

a range of Enterprise Modelling (EM) specifications. The conceptual mapping of the OrgML

concepts with the concepts defined in EM related literature are illustrated in Table 5.1.

The proposed OrgML meta-model realises the Constructs derived from management litera-

ture (depicted in Figure 3.6) and satisfies the modelling and analysis requirements illustrated

in Table 3.3 (of Chapter 3). OrgML meta-model explicitly supports the decision-making con-

cepts, such as Goal, Measure and Lever. Likewise, the Event definition, Data, and OrgUnit

structure collectively specify the what aspect, OrgUnit help specify the who and where aspects,

Goal specification specifies the why aspect, and the BehaviouralUnit along with the Event

specification specify the how and when aspects.

The concept OrgUnit enables the modelling of complex organisation using a set of hierarchi-

cally composable OrgUnits each listening/responding/raising events of interest. Each OrgUnit

encapsulates state (i.e., a set of State variables), trace (i.e., data along with the events that it has

responded to and raised till now) and behaviour (i.e., encoding of individual reactions). There-

fore, the concept OrgUnit ensures the required modularity and encapsulation. An OrgUnit

5.4 OrgML meta-model 104

Figure 5.21 An OrgML model

interacts with each other OrgUnits through a set of Events. The interactions between OrgUnit

helps to specify reactive behaviour, which gives rise to the emergent behaviour in a overall actor

topology.The InternalEvent and TimeEvent collectively specify the autonomous behaviour,

Stochastic behaviour provides uncertainty, the Temporal behaviour and TimeEvent specify the

temporal behaviour. Altogether, the proposed OrgML supports a top-down approach for defining

organisational goals, a middle-out approach for defining structural aspect of an organisation,

and a bottom-up approach for behavioural specification.

Therefore, this research argues that the proposed OrgML meta-model is a domain specific

language for organisational decision-making and also grounded with prevalent enterprise mod-

elling related concepts. The concepts introduced in the OrgML meta-model are represented

using a set of notations defined in Appendix B. The utility, efficacy and expressiveness of the

proposed OrgML meta-model are evaluated using case studies in Chapter 7.

5.5 Transformation of OrgML to simulation language 105

Table 5.2 OrgML to ESL transformation strategy

5.5 Transformation of OrgML to simulation language

This research has proposed the use ESL as a language for simulation specification to perform

quantitative what-if analysis. This section presents an one-way model transformation strategy

to translate OrgML model that conforms to OrgML meta-model (as shown in Figure 5.9) to

ESL constructs. The proposed translation strategy is illustrated using a subset of University case

study. The key transformation rules are described using a Xtend model transformation template

language [39] in Appendix C.

5.5 Transformation of OrgML to simulation language 106

Although ESL has been used as the simulation language, this research claims that other

actor languages and frameworks, such as Erlang [12], Scala Actor [90] and Akka [5], can also

be considered as simulation specification. As a justification to this claim, a transformation

strategy to transform OrgML specification into Akka specification [5], which is a Java based

industry-scale actor framework, is presented in Appendix D.

A subset of University case study

An OrgML specification describing a subset of University case study is presented in Figure 5.21

to discuss the OrgML to ESL transformation strategy and translation rules. The model shown

in the figure is an integrated view of a series of fragmented models presented in Figure 5.10

to Figure 5.20 in section 5.4. The model contains TeachingAcademic OrgUnit that inherits

from Academic OrgUnit, a Module DataUnit, a Calendar with four TimeEvents. The

Parameters, Variables, IncomingEvents, OutgoingEvents, InternalEvents, Traces,

Goals, Measures an Lever of Academic and TeachingAcademic are shown as discussed in

section 5.4.

An overview of OrgML to ESL transformation strategy

A high-level transformation strategy that describes the concept mapping along with sample ESL

code fragments are presented in Table 5.2. Conceptually, the OrgUnit and its specialisation, i.e.,

Organisation and Environment, are mapped onto ESL Actor. The DataUnit is realised as

ESL Actor without any behaviour. Calendar is realised as ESL Actor with TimeEvent related

behaviours. The interactions among OrgUnits are mapped onto event specifications.

The constituent elements of OrgUnit, DataUnit and Calendar are translated into the

elements of ESL Actor. The OrgUnit Parameters are translated into ESL Actor variables; all

exposed and encapsulated Variables are translated in ESL actor variables; and Traces are

translated into ESL actor variables with list data-type. The IncomingEvents, InternalEvents

and TimeEvents are translated into ESL event specification. All OrgML Statements that

describe the behavioural specification of OrgML Functions, Actions and Behavioural

Events are translated into ESL specification by translation OrgML Statements into ESL

specification. The OrgML Statements are the specifications that conform to the behavioural

stmt syntax presented in line 27 – 34 and exp rules presented in line 18–25 of Figure 5.14. These

statements specify variable assignments, new actor, looping, conditional statement, send event,

5.5 Transformation of OrgML to simulation language 107

and probably, which are also supported in ESL. Therefore, all statements can be mapped to ESL

statements by suitable syntactic transformation.

The Measures are mapped onto the ESL Variables and Levers are converted into ESL Event

specifications. Principally, the Levers are the change specification of OrgML Data, Event,

Function, Action and OrgUnit and their combination as shown in Figure 5.19. Therefore, an

OrgML Lever definition can be translated into ESL specification by applying multiple OrgML

concept to ESL transformation rules in specific sequence. Detailed transformation rules are

presented in Appendix C.2.

OrgUnit inheritance is resolved by translating inherited OrgUnits into ESL actors such

that each inherited OrgUnit includes its own and inherited Variables, Parameters, Events,

Functions and Actions. Conceptually, it adopts ‘one data entity for concrete class’ pattern

defined for object to relational tables mapping [107]. The transformation logic considers the

following overriding and overloading rules:

• Variables and Parameters cannot be overridden in an inherited OrgUnit.

• Events and Functions can be overridden and overloaded.

• Actions can be overridden but cannot be overloaded.

The precise rules to convert an inherited OrgUnit to an ESL actor is described in Ap-

pendix C.2.3.

As an illustration of the transformation strategy, the key elements of the translated ESL

specification of the OrgML model depicted in Figure 5.21 are shown in Figure 5.22. As shown

in the figure, the inherited TeachingAcademic OrgUnit is translated into teachingacademic ESL

actor specification. Actor teachingacademic considers all Parameters of TeachingAcademic

and Academic as actor parameters (line 1), exports all exposed Variables of TeachingAcademic

and Academic (line 3), and contains all Variables of TeachingAcademic and Academic as actor

variables (line 12–14, 16, 19, etc.). It subscribes TimeEvents by sending registration request to

‘calendar’ actor as shown in line 38–39 and it realises OrgML Lever specification using ESL

event definition as shown in line 65.

In addition, the translated teachingacademic actor contains the following elements:

• Trace variables to capture traces of TeachingAcademic and Academic OrgUnits (line 17,

20, etc.).

5.5 Transformation of OrgML to simulation language 108

0 /* Legend: ESL Keywords */
1 a c t teachingacademic(p_academicName :: Str ,p_workingHour :: I n t ,p_propensityOfTeachingPreparation

:: I n t) :: TeachingAcademic {
2
3 e x p o r t adacemicName ,workExperinece ,offeredModule;
4
5 queryResolution () :: Bool = { . . . };
6 complaintResolution () :: Bool = { . . . };
7
8 evaluate_studentConcerns () :: I n t = nth(trace_queryRaised ,length(trace_queryRaised)) + nth(

trace_complaintRecieved ,length(trace_complaintRecieved));
9

10 evaluate_teachingQuality () :: Bool = i f (teachingPreparationInHours > offeredModule.
lecturePrepTime) t h e n true e l s e false;

11
12 academicName :: S t r = p_academicName;
13 workingHour :: I n t = p_workingHour;
14 propensityOfTeachingPreparation :: I n t = p_propensityOfTeachingPreparation;
15
16 workExperinece :: I n t = 0;
17 trace_workExperinece ::[I n t]= [];
18
19 queryRaised :: I n t = 0;
20 trace_queryRaised ::[I n t] = [];
21 . . .
22 offeredModule ::Module = [];
23 trace_offeredModule ::[Module] = [];
24
25 teachingPreparationInHours :: I n t = 0;
26 trace_teachingPreparationInHours ::[I n t] = [];
27 . . .
28
29 studentConcenrs :: I n t =0;
30 trace_studentConcerns ::[I n t] =[];
31
32 teachingQuality :: Bool =0;
33 trace_teachingQuality ::[Bool] =[];
34
35 eventTrace ::[T] = []
36
37 → {
38 calender ← RegieterForLectureSlot(s e l f);
39 calender ← RegieterForHour(s e l f);
40 . . .
41 };
42
43 // IncomingEvents
44 StudentQuery → { . . . };
45 Complain → { . . . };
46
47 // InternalEvents
48 TeachingPreparation → { . . . };
49
50 // TimeEvents
51 Hour→ {
52 variable_PreprateForLecture ← Hour;
53 eventTrace := eventTrace + [Hour]
54 // delegate events to all relevant inner actors
55 };
56 Day(day :: I n t)→ { . . . };
57 Month(month :: I n t) → { . . . };
58 LectureSlot(. . .) → { . . . };
59 DeliverLecture(. . .) → { . . . };
60 ActionDone(. . .) → { . . . };
61
62 variableActPrepareForLecture :: ActPrepareForLecture = new actPrepareForLecture ();
63 a c t actPrepareForLecture () :: ActPrepareForLecture { . . . }
64 //For all other Actions
65 LeverIncreaseTeachingPreparation → { propensityOfTeachingPreparation = [1,5] }
66 };

Figure 5.22 Overview of translated ESL specification

• Translated ESL functions that computes the OrgML Functions (line 5 and 6).

• Functions to compute OrgML Measures (line 8 and 10).

• Translated Events specification (line 42–60).

• Specification to realise OrgML Actions (line 62 and 63).

5.5 Transformation of OrgML to simulation language 109

Figure 5.23 Overview of Action transformation

The translation of an OrgML Action to an equivalent ESL specification and transformation

of OrgML Calendar to ESL actor require complex transformation. They are discussed below:

Action Translation: A translation strategy is pictorially illustrated using ‘PrepareForLecture’

Action of TeachingAcademic OrgUnit in Figure 5.23. As shown in the figure, ‘Prepare-

ForLecture’ Action performs a set of Statements when the following two conditions are

satisfied:–

• A pattern matching over event trace: Every ‘Hour’ TimeEvent (specified as all occur-

rences of ‘Hour’ using Hour[x]) except it is first the ‘Hour’ of a ‘Day’ (specified as

‘Day’ followed by the first occurrence of ‘Hour’ using [Day,Hour[1]]) or a ‘Com-

plaint’ is raised in the previous ‘Hour’ (specified using [Hour[x-1], Complaint])

or ‘TeachingPrepration’ is already raised on the same ‘Day’ (specified using [Day,

TeachingPreparation]). The condition can be translated to LTL formula as shown in

Figure 5.23 to use the pattern matching over event traces.

• Condition over state variables: ‘teachingPreparationInHours’ is less than expected prepa-

ration value.

The Action of ‘TeachingAcademic’ OrgUnit is translated into an inner ESL actor (named as

‘ActPreparateForLecture’) of ‘TeachingAcademic’ ESL actor. The translated ESL specification

realises the ‘PrepareForLecture’ Action as follows:

5.5 Transformation of OrgML to simulation language 110

1 //An OrgML Calendar specification
2 Calendar {
3 Hour= primitive
4 Day= Hour [8]
5 Week =Day[5]
6 Month= Day [30]
7 LectureSlot = [(Hour (3) o f Day (2) o f Week), (Hour (5) o f Day (4) o f Week e x c e p t Day (4) o f

Month)]
8 }

9
10 // Translated ESL Actor specification
11 a c t calendar () :: Calendar {
12 hour :: I n t = 0;
13 hourSubscriber ::[T] = [];
14 . . .
15 Hour→ {
16 hour:= hour + 1;
17 f o r n :: I n t i n 0..(length(hourSubscriber) -1) do nth(hourSubscriber ,n) ← Hour
18 };
19 . . .
20 Time(primitive :: I n t)→ {
21 s e l f ← Hour;
22 i f ((hour % 8) = 0) t h e n s e l f ← Day e l s e {};
23 i f ((day % 5) = 0) t h e n s e l f ← Week e l s e {};
24 i f ((day % 30) = 0) t h e n s e l f ← Month e l s e {};
25 i f ((((hour % 8) = 3) and ((day % 5) = 2)) or (((hour % 8) = 5) and ((day % 5) = 4)

and n o t ((day % 30) = 4))) t h e n s e l f ← LectureSlot e l s e {}
26 };

Figure 5.24 Illustration of Calendar

• Each Action is translated into an inner actor with the following elements – (i) an ESL

variable to represent expected event trace (i.e., ‘expectedEventTrace’), (ii) an ESL vari-

able to capture actual event trace (i.e., ‘actualEventTrace’), an ESL function to evaluate

the pattern matching of actual event trace with respect to the expected event trace (i.e.,

‘EventTraceEvaluator()’), a function to evaluate the state variables (i.e., ‘ActionCondi-

tionEvaluator()’), and a function to perform the statements specified as action statement

(i.e., ‘PerformActionStatements()’).

• Expected event trace is formulated based on the semantic interpretation of the event

specification (as specified in Figure 5.15).

• All relevant events of the outer actor, such as ‘Hour’, ‘Day’, ‘Complaint’ and ‘Teaching-

Preparation’, are delegated to inner actor (so that the inner actor can trace the events).

• Event definitions of the inner actor update Variable that represents actual event trace.

The translated event definition triggers the action statements when event pattern and state

variable conditions are satisfied.

The transformation rule to transform OrgML Action and their Statements to ESL specifi-

cation are presented in Appendix C.2.1.

5.6 Method 111

Figure 5.25 Method for model construction, validation and decision-making

Calendar Translation: An OrgML Calendar is translated into ESL actor and the contained

TimeEvents are translated into ESL events as shown in Figure 5.24. Line 1 – 8 presents

a definition of OrgML Calendar that specifies five TimeEvents: ‘Hour’, ‘Day’, ‘Week’,

‘Month’ and ‘LectureSlot’. The TimeEvent‘Hour’ is mapped to a primitive event and rest of

the TimeEvents are expressed with respect to ‘Hour’ and other TimeEvents. The ESL actor

specification along with the logic for deriving non-primitive TimeEvents and sending those

TimeEvents to all subscribed actors are listed in line 10 – 26. The transformation rule to

transform OrgML Calendar to ESL actor specification is presented in Appendix C.2.2.

5.6 Method

An integrated and iterative method is introduced to represent necessary aspects of an organisation

as an OrgML model, ascertain model validity and simulate/execute constructed model for

required what-if analysis. The proposed method contains six steps over three swimlanes or types

of responsible stakeholders as shown in Figure 5.25. Three stakeholders are – decision makers,

domain experts and technology experts. The decision-makers are the users or clients [166] of a

simulation activity, domain expert is a team that contains the experts from the problem domain

and modellers [166] (e.g., OrgML modeller) and the technology experts are the programmers

who can encode the conceptual model into computerised model (e.g., ESL programmers).

The method steps are: Define Decision Problem [S1], Conceptualisation of Organisation

Model [S2], Implement Simulatable Model [S3], Simulation [S4], Evaluation of Simulation

5.6 Method 112

Figure 5.26 Modelling artifacts of Define Decision Problem process step [S1]

Results [S5], and Recommendation [S6]. Step S1 formalises the decision problem and defines

the scope for what-if scenario playing by specifying the Goals, Measures and Levers of an

Organisation. The step S2 conceptualises a model that imitates a real organisation for the

purpose of a decision problem defined in step S1. The step S3 transforms the conceptual model

into a simulatable model. Step S4 simulates the scenario defined in step S1. Step S5 evaluates

the simulation results with the step S6 providing the recommendations.

The method considers three representations: problem entity, conceptual model and comput-

erised model, refines the two-step model construction process, and adopts operational validity

to ascertain the model validity as recommended by Robert Sargent in [174]. In particular, the

process steps S1 and S2 of the proposed method capture the conceptual model of a decision

problem, the process step S3 converts captured conceptual model into simulatable model, and

the loop containing the process steps S2, S3, S4 and S5 realises the operational validity.

The management viewpoints of organisational decision-making process are also considered

as discussed in section 5.2.1. The process step S1 realises the activity Recognition of Decision

Requirement, process step S2 realises the activity Diagnosis and Analysis of Causes and

Development of Alternatives, the loop S4 and S5 with the process step S6 realise the activity

Selection of Desired Alternatives of the organisational decision-making process recommended

by Richard Daft in [70]. In addition, the concept of decision interrupts [123] to explore the

decision alternatives that emerge while evaluating the known decision alternatives is realised

through the loop S5, S1, S2, S3, and S4 as shown in Figure 5.25. Detailed activities of the

proposed process steps are illustrated below:

Define Decision Problem [S1]: This step identifies the Goals, Measures and Levers from

a problem entity using three sub-steps: Goal Definition, Measure Identification and Lever

Identification as shown in Figure 5.26 (a).

5.6 Method 113

Table 5.3 An illustration of Decision Table

Student
Concern

High
Quality
Lecture

High
Quality

Publication

Research
Earning

Research
Collabora-

tion
Increase Teaching
Preparation Hours

? ? ? ? ?

Balance of
Teaching and

Research activities
? ? ? ? ?

Introduce Better
Timetable

? ? ? ? ?

Figure 5.27 Modelling artifacts of Conceptualisation of Organisation Model process step [S2]

The Goal Definition sub-step uses a top-down approach to define Goals and goal decompo-

sition structure, Measure Identification sub-step identifies Measures for all LeafGoals of the

constructed goal model, and sub-step Lever Identification identifies a set of Levers that may

influence the Values of identified Measures. The goal decomposition structure along with the

goal-measure relationship of ABC University is shown in Figure 5.18 and an example of Lever

specification is illustrated in Figure 5.20.

The process step S1 creates two artifacts. The primary artifact is an instance of a part of

OrgML meta-model that describes GM–L structure, i.e., the Goal – Measure relationships and

a list of Levers that may influence the Measures. The relevant part of the OrgML meta-model

that captures the GM-L structure is depicted in Figure 5.26 (b). The second artifact is a derived

artifact from the GM-L structure that explicates the what-if scenario in the form of a table,

termed as decision table. A decision table can be constructed by considering the identified

Levers as rows and Measures as columns as shown in Figure 5.26 (c). In a decision table,

each grid is a question that explores the expected/possible value of the Measure when a Lever

is applied to the organisational model. A decision table of the Goal – Measure structure shown

in Figure 5.18 along with a set of University specific Levers are shown in Table 5.3.

5.6 Method 114

Figure 5.28 Examples of OrgUnits and DataUnits of ABC University

Conceptualisation of Organisation Model [S2]: This step conceptualises a purposive model

of the Organisation by considering derived GM–L structure as the purpose for organisa-

tion modelling. In particular, this process step captures Structure, Behaviour, Variables,

Traces and Events of an Organisation to understand Measures in the presence of Levers

of a GM–L structure derived in process step S1. This process step performs four activities, as

shown in Figure 5.27 (a), as described below:

1. Identify OrgUnits activity identifies the prospective OrgUnits and DataUnits from a

problem entity. All key elements of a problem entity are identified and then they are

classified into OrgUnits and DataUnits based on their characteristics. The elements

which are active, i.e., reactive, intentional and has autonomous behaviours, are classified as

OrgUnits, whereas the elements which are collection of data are classified as DataUnits.

5.6 Method 115

A set of OrgUnits and DataUnits of ABC University that are identified from the problem

entity description illustrated in section 1.6 (of Chapter 1) are shown in Figure 5.28. The

elements such as University, Department, Academic, Student, Industrial Collaborator are

the examples of OrgUnits. The Course, Module, Query, Complains, and Lectures are

the examples of the DataUnits.

2. Define OrgUnit activity chiefly defines the OrgUnit structure and identifies containment,

interaction and inheritance relationships of the identified OrgUnits. In particular, this

activity defines Parameters and Variables to represent State and Trace information,

identifies Events that interact with other OrgUnits, and defines structural containments

and the inheritance relationships. The relevant subset of OrgML meta-model that is

instantiated in this activity is shown in Figure 5.27 (b). This activity also defines the

DataUnits by identifying their Variables.

Activities Identify OrgUnit and Define OrgUnit navigate the containment relationships to

explore the decomposition and/or composition relationships of the OrgUnits, interaction

relationship to explore the vertical interactions, and the inheritance relationship to explore

specialisation (as shown in Figure 5.28).

3. Define GM-L of OrgUnit identifies the Goals that an OrgUnit owns, the Measures that

it can produce, and the Levers that can be applied on it. For an example, the Goal,

Measure and Lever of TeachingAcademic is shown in Figure 5.21.

4. Specify Behaviour captures the behavioural specification of the identified OrgUnits. This

step specifies the Deterministic, Stochastic, Temporal and Adaptive behaviour of

IncomingEvents, InternalEvent, subscribed TimeEvent, Functions and Actions.

Implement Simulation Model [S3]: This process step translates a conceptual model defined

using OrgML into ESL specification. It uses the rules defined in Table 5.2. The input of this

step is the OrgML models and output is an ESL specification. For example, an OrgML model of

a Teaching Academic as shown in Figure 5.21 is translated to an ESL specification as shown in

Figure 5.22.

Simulation [S4]: This step runs the simulation model (with or without Lever), observes

Measures from simulation runs, and captures results in a row of the decision table formulated

5.6 Method 116

Figure 5.29 Illustrative outcome of what-if analysis

in process step S1. Each simulation run helps to answer the what-if questions of a decision table

row. This research uses an ESL based simulation to analyse what-if scenario constructed in the

form of decision table, and visual representations of the Measures and Traces to understand

the consequence of the Levers.

An illustration of the simulation based what-if analysis outcomes captured using decision

table is shown in Figure 5.29. The graph of the each cell depicts a trend of a specific Measure

in the presence of a Lever over time axis. The time axis indicates the near term and long term

consequences of a Lever. For example, the graph in cell of row L1 and column M1 shows the

impact of Lever ‘Increase Teaching Preparation Hours’ on the Measure ‘Student Concern’

over time. Each point in the graph represents the sum of the complaints received and query

raised to all academics in a ‘Month’ (as defined in Figure 5.21).

Evaluation of Simulation Results [S5]: This step evaluates the simulation results captured

in the decision table. Human experts interpret the simulation results by triggering one of the

following possibilities: (i) initiate a Validation Loop that iterates process steps S2–S3–S4–S5 in

case simulation results of a known scenario don’t match the expected outcome (i.e., operation

validity is not satisfied), (ii) explore next Lever of a decision table by triggering an Evaluation

Loop that iterates process steps S5 and S4 , (iii) select the best possible Lever once all levers

are evaluated through simulation (i.e., S5 to S6 transition), (iv) identify a new Lever i.e., add a

new entry in the decision table and reiterate the overall process using Decision Interrupt Loop

described in Figure 5.25. Four scenarios are illustrated using the graphs shown in Figure 5.29 as

follows:

5.6 Method 117

• Model Validation: Consider a Department where the impact of Lever ‘Increase Teach-

ing Preparation Hours’ on Measure ‘High Quality Lecture’ is known (from historical

data). But a simulation result is showing a different outcome then there is a high possi-

bility that the constructed model is inaccurate for the Levers. The constructed model is

typically validated using sufficient number of known scenarios6.

• Lever Exploration: All cells of the constructed decision table need to be populated

using an iterative what-if analyses where each iteration considers a Lever. The iterations

terminates when all cells are populated in a decision table. For example, a decision table

as shown in Figure 5.29.

• Decision Interrupt: Decision makers may (manually) interpret results captured in a

decision table and decide to explore more Levers as part of decision space exploration.

For example, decision maker may choose to explore an option that combines the Lever

L1 and L2 as new Lever or a new set of Goals and thus Measures can be introduced as

part of Decision Interrupt Loop.

• Proceed to Recommendation: This is a situation when all above loops are sufficiently

concluded, i.e. all Levers of a decision table are explored on a validated model and no

new Lever is identified while exploring identified Levers.

Recommendation [S6]: This step recommends one or more Levers that can be implemented in

real organisation. Decision makers take the decision by evaluating quantitative simulation results

(or evidences that indicate near term and long term consequences) as shown in Figure 5.29. This

research argues that a decision based on a populated decision table is quantitatively justified.

Moreover, such decision can be considered as informed decision as the near-term and long-term

consequences are known to the decision makers.

Model and simulation validation

The proposed method considers two kinds of validations – (i) structural validation and (ii)

operational validation. The structural validation primarily ensures the OrgML model defined in

process step S2 conforms to the GM–L structure defined in process step S1. Two principal rules

of structural validation are:
6The required number of what-if analyses to ascertain the model validity is a discretion of the involved decision

makers

5.7 Summary 118

1. Measure well-formedness: All Measures of the GM–L structure identified in step S1

must be measured by an identified OrgUnit.

2. Lever well-formedness: All Levers of GM–L structure identified in step S1 must be

(jointly or individually) owned by identified OrgUnits.

The operational validity is ensured through a validation loop that iterates over process

steps S5, S2, S3 and S4 and compares experimental results with real or predicted data. The

validation process uses the operational graphics, i.e., graphical and/or tabular representation of

the Measures as a basis for the evaluation, and rely on human experts to certify the validity as

described in section 5.2.1. The other validation techniques, such as data validity or conceptual

validity, while being effort and time intensive, provide no additional certainty as discussed in

[70].

5.7 Summary

An actor-based behavioral simulation aid is presented in this chapter. The proposed approach is

illustrated using three research artifacts - (i) the OrgML meta-model that serves as a domain spe-

cific specification for organisational decision-making, i.e., Contribution 2, (ii) a transformation

strategy to convert the OrgML specification into an ESL based simulatable specification, i.e.,

Contribution 3, (iii) a method as a guidance to construct conceptual model, transform conceptual

model into simulatable model, ensure the validity of the constructed models, and perform the

required what-if scenario in a systematic manner, i.e., Contribution 4. Fundamentally, the

proposed approach uses the modelling and simulation as the philosophical basis, adopts an actor

based modelling abstraction and the bottom-up simulation as a technological basis, considers

the methodological rigour used by simulationist to raise the epistemic value of the proposed

simulation, and correlates with the management viewpoints to introduce expected management

rigour.

From the utility perspective, the OrgML meta-model is presented as an aid to capture

the decision-making related requirements using GM–L structure and model complex socio-

technical organisations using a set of composable and interacting OrgUnits. The use of ESL

and the proposed OrgML to ESL transformation strategy are effective enabler of the bottom-up

simulation approach. The proposed method is highlighted as methodological framework to

support technology aided evidence driven organisational decision-making.

Chapter 6

Proof of Concept Technology Aids

This research considers three technology aids to approach organisational decision-making using

the proposed OrgML based approach. The technology aids are: (i) a domain specific language

to capture necessary information of an organisation using a set of OrgUnits, (ii) simulation

technology for what-if analysis, and (iii) a visualisation aid to represent simulation results

in an intuitive form for sense-making. Two of the technology aids: OrgML workbench as an

integrated development environment (IDE) for OrgML spacification and OrgViz Data Visualiser

as a visualisation aid are developed and the ESL technology (i.e., ESL editor and simulation

engine) is used as simulation technology.

This chapter presents an overview of the proof-of-concept technology implementations.

Section 6.1 highlights critical and effort intensive activities of the proposed organisational

decision-making approach. Implementation details of OrgML workbench is presented in

section 6.2. Design considerations and implementation details of OrgViz Data Visualiser is

discussed in section 6.3. A framework, termed as OrgDM framework, is designed to integrate

the technology aids in an effective and systematic manner. OrgDM framework is presented

in section 6.4. From methodological perspective this chapter focuses on Instantiation of the

research artifacts produced in Conceptualization of proposed solution research activity (of

Figure 2.4).

6.1 Core activities and expected technology aids

The approach for evidence-driven organsational decision-making presented in Chapter 5 involves

three broad activities: modelling, simulation and decision-space exploration as summarised

6.1 Core activities and expected technology aids 120

Figure 6.1 Core activities and expected technological aids

in Figure 6.1. The modelling activity captures GM-L structure and organisation specification

using OrgUnits. It also constructs a simulation model by translating OrgML specification. The

simulation activity produces Measures and Traces for constructed model with or without

Levers. Activity decision space exploration interprets numerical data obtained from simulation

runs and evaluates them with respect to organisational goal to decide an option from following

three alternatives – (i) fine tune an existing Lever (e.g., explore parametric values of a lever)

(ii) combine existing Levers for better outcome and (iii) explore a new Lever prior to a

recommendation.

Therefore, the technology aids that help the organisational decision-making approach

presented in the earlier chapter are:

1. GM-L editor to capture GM-L structure.

2. OrgML editor to capture organisational model using OrgML specification and establish

consistency within organisational model and between GM-L and organisational model.

3. OrgML to ESL translator for simulation based what-if analysis.

4. ESL editor for simulation specification.

5. ESL simulator for simulation.

6.2 OrgML Workbench 121

6. Data visualiser to visualise simulation data in an intuitive manner. Two modes of visuali-

sation are useful for human-centric interpretation – (i) visualise a simulation run and (ii)

visualise historical simulation results.

7. Data analytics capability to help decision makers in decision space exploration.

In this research, the OrgML workbench realises GM-L editor, OrgML editor and OrgML to

ESL translator, the OrgViz Data Visualiser is developed to support the needs of data visualisation

capabilities, and a modelling and simulation framework, OrgDM is conceptualised to integrate

ESL technology. The rest of this chapter discusses the implementation details of OrgML

workbench, OrgViz Data Visualiser and OrgDM framework.

6.2 OrgML Workbench

The OrgML workbench is a domain-specific language workbench [79] that conforms to OrgML

meta-model (presented in Figure 5.9). It supports a set of language editing features for two

interoperable languages termed as GM-L specification and Organisation specification. The

GM-L specification language is conceptualised to help decision makers capture GM-L structure

using a simple and intuitive form. The Organisation specification language is designed for

domain experts to capture the necessary aspects and characteristics of an organisation. The

expressiveness is a key characteristic of Organisation specification language. The interoperability

between two specification languages is expected to ensure structural and conceptual consistency

as they collectively specify the necessary information for organisational decision-making. The

concrete syntaxes of the supported languages, language workbench related features and an

implementation of OrgML workbench are discussed in this section.

6.2.1 Language definitions

The GM-L specification and Organisation specification languages are designed by consid-

ering parts of OrgML meta-model as abstract syntaxes. The GM-L specification language

conforms to Goal, Measure, Lever definitions and their relationships, whereas the Organisa-

tion specification language conforms to the part of OrgML meta-model elements that describe

OrgUnit, DataUnit and Calendar. The key elements of the textual concrete syntax of GM-L

specification and Organisation specification are presented in this subsection.

6.2 OrgML Workbench 122

0 /* OrgML Specification Keywords , OrgML Meta Elements */
1 gml ::= GML { GML Specification
2 g o a l s : (goal*) Goal Spec
3 m e a s u r e s : (measure *) Measure Spec
4 l e v e r s : (lever *) L e v e r Spec
5 }
6 goal ::= id [description] g_expr Goal Declaration
7
8 g_expr ::= { g_expr g_reln g_expr } Goal Decomposition
9 | ⇒ leaf_goal LeafGoal

10
11 g_reln ::= ; And Relation
12 | | Or Relation
13 | → Sequence Relation
14
15 leaf_goal ::= m_exp Quantitative Expression
16 | r_exp Relative Expression
17
18 m_exp ::= measure Measure
19 | consts Constants
20 | exp op exp Binary expression
21 | N o t exp Negation
22 | fun(exp*) Function Call
23 | [exp*] List Of Expressions
24 | [] Empty Expression
25
26 r_exp ::= [prefix] qualifier [suffix] Relative Expression
27
28 prefix ::= A l w a y s | N e v e r
29 qualifier ::= I n c r e a s e | D e c r e a s e Relative Operations
30 | M a i n t a i n | M a x i m i s e | M i n i m i s e
31 suffix ::= t_exp time Time Expression
32 t_exp ::= A t | B e f o r e | A f t e r | D u r i n g
33
34 measure ::= id Measure Declaration
35 leaver ::= id L e v e r Declaration
36 time :: id TimeEvent

Figure 6.2 Syntax of GML specification

GM-L specification language

The proposed GM-L specification focuses on the model elements which are considered to

be instantiated in process step Define Decision Problem [S1] of the organisational decision-

making method presented in Chapter 5. The model elements include Goal, Goal decomposition,

Measure and Lever of OrgML meta-model. A concrete syntax that highlights the core concepts

of GM-L specification language is shown in Figure 6.2. As shown in the figure, the GML

specification contains goals, measures and levers specifications (line 1–5). A goal can either be

decomposed in finer goals (as shown in line 8) or it can be mapped to a measure to indicate a

LeafGoal (as shown in line 9). The decomposition relationships (i.e., g_reln) can be specified

using one of the three goal decomposition relations: and, or and sequence (as shown in line

11–13). The LeafGoal to Measure mapping can be specified either through a quantitative

expression (i.e., m_exp) or relative expression (i.e., r_exp). The quantitative expressions are

primarily mathematical and logical operators over measures as shown in line 18–24, whereas

the relative expression describes expected value of a measure with respect to its instances. A set

of language constructs such as Increase, Decrease, Maintain, Maximise and Minimise along

6.2 OrgML Workbench 123

Figure 6.3 An illustration of textual GM-L specification

with suitable prefix (such as Always and Never) and suffix that include a time expression are

proposed to specify the relative expression.

The measures and levers are defined as simple labels as shown in line 34 and 35. They

are expected to be introduced in GM-L specification and explicitly specified in Organisational

specification.

An illustration of GM-L specification is presented using a GM-L structure of ABC Uni-

versity in Figure 6.3. The illustration considers a goal that aims to increase its ranking by

improving research quality and teaching quality where the research quality can be measured

using yearly publication counts and the teaching quality can be measured using the number of

student complaints. The primary goal of ABC University is represented using ‘ImproveRanking’,

which is decomposed into two leaf level goals: ‘ImproveResearchQuality’ and ‘ImproveTeach-

ingQuality’ using an ‘and’ decomposition relationship. The leaf goal ‘ImproveResearchQuality’

is mapped to ‘YearlyPublications’ measure using a quantitative expression (i.e., ‘YearlyPub-

lications’ should be more than 100) whereas leaf goal ‘ImproveTeachingQuality’ is mapped

to ‘YearlyStudentComplaints’ using a relative expression (i.e. value of ‘YearlyStudentCom-

plaints’ always should be in decreasing order). The specification also introduces two levers:

‘BalanceReasearchAndTeaching’ and ‘RecruitResearchers’.

Organisation specification language

Organisation specification is defined to capture necessary information of an organisation as

proposed in Model Organisation [S2] process step of organisational decision-making method

(presented in Chapter 5). It specifies a set of interacting OrgUnits, a collection of DataUnits

6.2 OrgML Workbench 124

0 /* OrgML Specification Keywords , OrgML Meta Elements */
1 model ::= import_stmt calendar { element *} OmgML Spec
2
3 import_stmt ::= i m p o r t (orgml_spec_name*) Import OrgML Spec
4 calendar ::= C a l e n d a r id { time* } Calendar Entity
5 element ::= data_unit | org_unit | function Element Types
6
7 data_unit ::= D a t a U n i t id { (variable *) } DataUnit Declaration
8
9 org_unit ::= O r g U n i t OrgUnit Declaration

10 [e x t e n d s org_unit_name] { Inheritance
11 g o a l s : (goal*) Goal Specifications
12 m e a s u r e s : (measure *) Measure Declarations
13 v a r i a b l e s : (property *) Variable & Trace Declarations
14 u s e s : (id*) Variables from other OrgUnit
15 s u b s c r i b e s : (time_event_name *) Subscribed TimeEvent
16 c o n s u m e s : (behavioural_event *) [t r a c e] IncomingEvent
17 p r o d u c e s : (outgoing_event *) [t r a c e] OutgoingEvent
18 i n t e r n a l - e v e n t s : (behavioural_event*) [t r a c e] InternalEvent
19 f u n c t i o n s : (function *) Function Specifications
20 a c t i o n s : (action *) Action Specifications
21 l e v e r s : (lever*) Lever Specifications
22 }
23
24 property ::= [(@ augmentation)*] variable Encapsulated & Exposed Variables
25 variable ::= id :: type [:= exp] Variable
26
27 type ::= data_unit_name User defined DataUnit
28 | org_unit_name User defined OrgUnit
29 | I n t e g e r | S t r i n g | D o u b l e
30 | D a t e | B o o l e a n Primitive Type
31 | [type] List
32
33 augmentation ::= export | parameter Exposed Variable or Parameter
34 | t r a c e (time_event_name) Trace Variable
35
36 measure ::= variable @ time_event_name
37 [Display chart_type meta_data] Visualisation Mechanism
38
39 chart_type ::= B a r C h a r t | P i e C h a r t | L i n e
40 | B u b b l e C h a r t | T a b l e Chart Type
41
42 behavioural_event ::=
43 id (parameter*) → { stmt*} Behavioural Event
44
45 outgoing_event ::= id (parameter*) OutgoingEvent
46
47 parameter ::= id type
48
49 lever ::= L e v e r id (lever_spec*) Lever Declaration
50 lever_spec ::= A t event A p p l y { lever_stmt* } Lever Spec
51 lever_stmt ::= variable_name := exp Variable assignment
52 | R e p l a c e p_event By p_event Event Replacement
53 | I g n o r e p_event Ignore an Event
54 | D e a c t i v a t e action Deactivate an Action
55 | O m i t outgoing_event_name Don ’t send an OutgoingEvent

Figure 6.4 Organisation specification language syntax

and a Calendar entity. A concrete syntax of core constructs of Organisation specification

language is shown in Figure 6.4.

As shown in the figure, Organisation specification language contains three sections: import,

calendar and element description sections. The import section imports a set of OrgML files

that contain GM-L specification and other Organisation specifications. The calendar section

defines the Calendar entity of OrgML meta-model. The construct calendar is defined using a

set of ‘time’ constructs (line 4) where the ‘time’ construct is a textual specification of OrgML

TimeEvents as defined in Figure 5.14. Element description section defines OrgML Functions,

DataUnits and OrgUnits using the terms function, data_unit and org_unit respectively as

6.2 OrgML Workbench 125

shown in line 5. The concrete syntax of function considers the syntax definition of OrgML

Function as defined in Figure 5.14 (presented in Chapter 5).

Concept DataUnit of OrgML meta-model that contains a set of Variables can be specified

using a term data_unit. The term data_unit (shown in line 7) contains a set of variables where

variable is a typed element that represents the OrgML Variables. A type can be one of the three

alternatives – (i) primitive type, such as Integer, String, Boolean, Double and Date as shown in

line 29–30, (ii) a list as shown in line 31, or (iii) an user defined type, such as DataUnit and

OrgUnit definitions, as shown in line 27–28.

A concrete syntax to specify OrgUnit concepts1 along with the inheritance relationship is

shown in line 9 – 22 of Figure 6.4. The syntax of a OrgUnit declaration is shown in line 9,

line 10 captures the inheritance relationship, line 11 specifies the OrgUnit specific goals, and

measures can be specified using a syntax defined in 12.

A detailed syntax of measure specification is shown in lines 36–40. The measures are realised

as variables that needs to be displayed at specific time interval using a suitable visualisation

mechanism or chart_type. Supported chart_type are : bar chart, pie chart, line, bubble chart

and table (an extensible list of options). In addition, a set of display properties can be supplied

to the display unit through meta_data information (a set of name value pair to capture property

names and their values).

The OrgUnit Variables can be declared using a syntax definition as depicted in line num-

bers 13, 24–34. Term property defines the syntax for OrgML Variable, exposed Variables,

Parameter and Trace. Exposed Variables can be specified by augmenting a variable with

‘export’ keyword (as shown in line 24, 25 and 33), Parameter can be indicated by augmenting

a variable with a ‘parameter’ keyword, and a trace can be declared by augmenting a variable

with ‘trace’ keyword along with a time event (as shown in line 34). The exposed variables of

other OrgUnit can be accessed in an OrgUnit by declaring them as uses variable as shown in

line 14.

The syntax of OrgML Event specifications that include the TimeEvent, IncomingEvent,

OutgoingEvent and InternalEvent are specified as follows:

1An OrgUnit (of OrgML meta-model) contains Variables, Functions, InternalEvents and Actions. It
exposes a set of Variables, uses Variables from other OrgUnits, consumes a set of IncomingEvents, produces
OutgoingEvents and subscribes a set of TimeEvents. In addition, each OrgUnit has its own Goals, shows a set
of Measures and capable of introducing a set of Levers

6.2 OrgML Workbench 126

Figure 6.5 An illustration of textual OrgML specification

• Subscribe a set TimeEvents by creating a subscribes block and listing a set of time

definitions as shown in line 15.

• Define IncomingEvent using a term consumes, a set of behavioural_event definitions

and an optional trace indicator as shown in line 16.

• Declare OutgoingEvent using a term produces, a set of outgoing_event definitions and

an optional trace indicator as shown in line 17.

• Define InternalEvent using a term internal_events, a set of behavioural_event defini-

tions and an optional trace indicator as shown in line 18.

The trace indicator of the above definitions are used to indicate that an event needs be be

traced, i.e., the occurrence details should be captured along with the time stamp (i.e. OrgML

EInfo). The syntax of behavioural_event includes an event name, a set of event parameters and

a set of behavioural statements as shown in line 42–43. The syntax definition of behavioural

6.2 OrgML Workbench 127

statements uses the term stmt, which is defined as part of BSpec syntax as shown in Figure 5.14.

The outgoing_event, in contrast, declares an event by specifying an event name and list of event

parameters as shown in line 45. An OrgUnit may contain Functions and Actions. They can

be specified using BSpec syntax specification (shown in Figure 5.14) as highlighted in line 19

and 20.

Finally, the textual syntax of OrgML Lever specification is shown in line 21 and 49–55.

As shown in line 49, a lever is a set of lever_spec (line 49) where each lever_spec is a tuple

that contains an event and a collection of lever statements (i.e., lever_stmt). Consistent with

Lever specification proposed using variability modelling in Figure 5.19, a lever_stmt supports

variable assignment, event replacement, ignore an incoming event, omit an outgoing event and

deactivation of an action (as shown in line 51–55).

Figure 6.5 is an illustration of a textual specification of an OrgML model, which is pic-

torially shown in Figure 5.28 of Chapter 5. The specification imports a GM-L specification

(line 2) and contains a calendar definition (in line 3–4), Module DataUnit definition (line no

5–10), Academic OrgUnit definition (line 11-35) and an extended OrgUnit that represents

TeachingAcademic of ABC University.

Calendar specifies six TimeEvents where Hour is associated to the ‘primitive’ time;

TimeEvents Day, Week, Month and Year are specified using simple time expression; and

LectureSlot is defined using complex time expression as shown in line 4. The definition of

LectureSlot specifies two slots in a week: second hour of Monday and fifth hour of Thursday.

The Module DataUnit contains four variables with different variable types and assignment

expressions. The definition of Academic OrgUnit contains goals, measures with various

display mechanisms, and variables with appropriate augmentations to indicate parameters,

exposed variables and traces as shown in line 13–24. A Measure definition specifies associated

Variable, time interval and a visualisation means as follows:

TeachingStatistics = teachingStatistics @Month [Display BarChart]

The Measure definition ‘TeachingStatistics’ indicates that the value of ‘teachingStatistics’

Variable needs to be captured for every occurrence of ‘Month’ TimeEvent and visualised

using ‘Bar Chart’.

A Variable can be specified as Parameter of an OrgUnit using @parameter augmen-

tation, can be exported from an OrgUnit using @export augmentation, and can be defined

as a Trace variable using @trace(a_time_event) as shown in line 20–24. The value of a

6.2 OrgML Workbench 128

Figure 6.6 Illustration of an extended OrgUnit

Parameter should be provided while instantiating an OrgUnit. The exported variable can be

accessed from other OrgUnits. A Variable augmented with trace indicator captures the

value of the Variable at every occurrence of TimeEvent as trace of an OrgUnit.

The TimeEvent can be subscribed using subscribes: <list of TimeEvents> as

shown in line 27. An IncomingEvent can be specified by defining its parameters, e.g. <event

name>(parameter list along with their types), as shown in line no 30 and 31. An

event can be added into the traced element by augmenting @trace as shown in ‘StudentQuery’

and ‘StudentComplaint’ definitions in line 30 and 31. The Functions of an OrgML specification

are defined using:

<return type> <function name>(parameter list with their types)

{ <behavioural statements> }

6.2 OrgML Workbench 129

For an example, ‘queryResolution’ Function consumes a set of queries as a list of strings and

implement its behaviour to resolve those queries as shown in line 33. The inheritance relationship

is illustrated using TeachingAcademic OrgUnit that inherits from Academic OrgUnit is shown

in line 36.

A detailed specification of TeachingAcademic OrgUnit is shown in Figure 6.6. The specifica-

tion describes goals (line 38–42), goal decomposition (line 40), measures that uses the variables

of base OrgUnit, i.e., ‘queryRaised’ and ‘compaintsReceived’ of Academic OrgUnit (line 44–

45), a set of variable definitions (line 46–51), and a new time subscription (line 52). Specification

defines produces, internal-events, actions blocks. The definition of OutgoingEvents are spec-

ified using <event name>(parameter list along with their types) within produces

block. An example is shown in line 54. The InternalEvents are also specified in a similar

manner as shown in line 55.

The scenario to specify Actions that contain complex event specification (line 57), state

variable evaluation (line 64), function invocation (line 61 and 64), invocation of functions which

are defined in a base OrgUnit (line 61), and parameter mapping from event to function call

(line 57–61) are also illustrated in the figure. For example, Action ‘ActOnQueries’ detects a

sequence of four student queries, and in the absence of a student complaint it performs query

resolution by invoking ‘queryResolution’ Function with four query strings as a parameter list

as shown in 57–59. Action ‘ActOnComplaint’ detect a student complaint, evaluates its severity

and resolves it immediately if the severity is ‘High’ as shown in line 64 and 65.

An illustrative Lever specification is shown in line 66–70. As shown in the specification, the

lever ‘IncreaseTeachingPreparation contains two lever statements – the first statement changes

‘propensityOfTeachingPreparation’ by 10% and Ignores consumed ‘StudentComplaint event.

6.2.2 Language features

A typical language workbench [79] supports a common set of features to the language users for

their convenience. A set of commonly seen features of domain specific languages are presented

using a feature model in [76]. This subsection first discusses the language workbench features

as described in [76] and then it highlights the subset of the features, which are implemented in

OrgML workbench.

6.2 OrgML Workbench 130

Figure 6.7 Language features of OrgML workbench (Source [76])

Language workbench feature model

Figure 6.7 shows the feature model presented in [76] to represent the state of the art of language

workbenches in a structured and informative way. Pictorially, the mandatory features are con-

nected through filled circle, optional features are connected using empty circle, and alternative

features are shown using a filled edge connector. As shown in the figure, a typical language

workbench is formed using three mandatory features: notation, editor and semantics, and three

optional features: validation, composability and testing.

6.2 OrgML Workbench 131

The notation of a language defines how a program or a model can be represented. Alternative

representations are: textual, graphical, tabular or any of their combinations. The semantics or

formal basis of a language is typically established using translational semantics or interpretative

semantics. The translational semantics establishes the semantics of a language by providing

a mapping to another established language. The translational semantics can be defined using

model-to-text or model-to-model translation rules. The interpretative semantics, in contrast,

defines the semantics of a language using semantic theory such as denotational semantics and

axiomatic semantics. The former maps to a semantic domain and the latter sets up a logical

theory for a language.

The other mandatory feature of a language workbench is an editor. Typically, the modes of

editing includes free-form editing, i.e., programmers freely edit the models/specification, and

projectional editing where the programmers can edit only a projection of a model as described

in [205]. In addition to the core editing capability, the language workbenches typically provide a

set of syntactic and semantic editor services. The syntactic editor services include: highlighting

(e.g., syntax coloring and model highlighting), outline (e.g., navigation via an outline view),

folding to hide part of a model or specification, syntactic completion (i.e., code assist through

pre-defined templates), diff (e.g., version control) and auto formatting (e.g., restructuring,

aligning, or layouting). On the other hand, the semantic editor services include:

• Reference resolution to navigate variable, function and other concept declarations

• Error marking in case of any error or warning.

• Live translation, i.e., generation of targeted specification on the fly.

• Origin tracking that keeps track of source model of a transformed model.

• Semantic completion, i.e., code assist using semantic information such as reference

resolution.

• Quick fixes for errors.

• Refactoring that include renaming, move and other language-specific restructuring.

In addition to these mandatory features, the language workbenches may support a range of

validations that include structural validation (e.g. containment and multiplicity relationships

between language constructs/modelling concepts), name-space analysis and type checking.

6.2 OrgML Workbench 132

Figure 6.8 A snapshot of OrgML workbench with implemented features

The optional feature composability of a set of languages is a key requirement where multiple

languages or specifications are needed to represent different aspects of a system (e.g., GM-L

Specification and Organisation Specification). The composition can be supported through

incremental extension (i.e., language integration) or language unification (i.e., defining a unified

language for a set of languages). Another optional features of a language definition is testing

that includes: unit testing and debugging as shown in the figure.

Implemented language features

As shown in Figure 6.7, OrgML workbench supports a text-based notation (as shown in

section 6.2), a transformational semantics using OrgML meta-model to ESL transformation

as presented in section 5.5, a free-form eclipse-based editor with syntax highlighting, folding

and outline features. The OrgML editors (i.e., GM-L editor and OrgUnit specification editor)

support semantic services that include reference resolution, error marking and live translation

of valid OrgML model to ESL specification. In addition, it supports structural validations, type

checking, and a language unification based language composability between GM-L specification

and OrgUnit specification. A snapshot of the OrgML workbench highlighting the key features

is shown in Figure 6.8. The Figure shows a folder structure of OrgML specification file, file

structure of generated ESL file, Outline pane, Error description pane, and an editor canvas.

The OrgML workbench can be extended further to use the combination of graphical and

textual notations. In particular, the decision making concepts of GM-L, such as Goal, Measure,

Lever, and the structural concepts of Organisation specification, such as OrgUnit, DataUnit,

6.2 OrgML Workbench 133

Variable, Measure, and all kinds of Event declarations, can be represented using graphical

notations (as illustrated in Appendix B). The behavioural specification of Actions, Functions

and BehaviouralEvents can be specified using textual specification with projectional editing

capability. In addition, the current implementation establishes language semantics using OrgML

to ESL translation rules, which can be extended by defining the transformation rules from

OrgML to Akka [5] (as shown in Appendix D) or to other actor languages such as Scala [90]

and Erlang [12]. These features are considered as the future work of this thesis.

6.2.3 Implementation details

OrgML workbench is implemented using Eclipse Xtext2 language, Xtend3 model transformation

language and MWE24 [39] workflow engine.

Technically, Xtext is a flexible open-source framework and an expressive Java dialect

to define and develop new domain specific languages. It supports an Extended Backus-

Naur-Form (EBNF)-like syntax to specify language syntax and provides Java interfaces (e.g.,

IScopeProvider, IConcreteSyntaxValidator and ISyntaxErrorMessageProvider) and

abstract Java classes (such as AbstractDeclarativeValidator and AbstractGenerator)

to implement language features that include editor, type-checker, scope, validation and lan-

guage translation. Internally, Xtext uses ANTLR5 as the underlying LL(k) parser technology to

generate a parser for the new domain specific language. The generated parser then translates

a domain specific specification into Eclipse ECore6 based Abstract Syntax Tree (AST) that

can be traversed, evaluated and transformed using Java-based accessors classes and APIs. The

custom scoping, type-checking, structural validations, value converter and formatter can be

realised by implementing the provided Java Interfaces and abstract classes. In addition, Xtext

supports Xtend language to specify model-to-model and model-to-text transformation rules.

The transformation rules can be specified using Xtend language (as discusses in section 5.5)

and integrated with Xtext using MWE workflow engine. To realise the OrgML workbench, the

following Xtext modules are implemented:

• Parser: The concrete syntax of OrgML grammar is specified using Xtext format by

unifying the syntax of GM-L Specification and Organisation specification, which are
2http://www.eclipse.org/Xtext/
3http://www.eclipse.org/xtend
4help.eclipse.org/kepler/topic/org.eclipse.xtext.doc/contents/118-mwe-in-depth.html
5www.antlr.org
6https://www.eclipse.org/emf

6.2 OrgML Workbench 134

Table 6.1 OrgML validation rules

Validation rule Description Cate-
gory

Naming convention
OrgUnit, Goal, Measure, Lever and Events should start with a

capital letter, variables must start with a lower case letter
Warning

Duplicate name All element names of an OrgUnit and DataUnit should be unique Error
Duplicate argument

names
All parameters of an event must be unique; All event parameters of

an Action specification must be unique
Error

Measure
consistency

All measures of a GM-L specification should be owned by at-least
one OrgUnit

Warning

Lever consistency
All Levers of a GM-L specification should be specified by at-least

one OrgUnit
Warning

Figure 6.9 Implemented OrgML workbench workflow

presented in Figure 6.3 and Figure 6.4. All left-recursions of the syntax presented in

Figure 6.3, Figure 6.4 and Figure 5.14 are removed by left-factoring the grammar7.

• Scoping: The customised scoping rules are implemented for inherited OrgUnit ele-

ments, event parameters, functions parameters, and action parameters by implementing

IScopeProvider. In additional, the custom scoping rules are implemented to make

Goals. Measures and Levers accessible across Organisation specification.

• Validation: The naming conventions, type-checking and structural validations are im-

plemented by extending ‘AbstractDeclarativeValidator’. Implemented validations

rules along with the error classification are presented in Table 6.1

• Translator: The OrgML to ESL translation rules (as defined in section 5.5 of Chap-

ter 5) are encoded using Xtend language in a Java class class that extends abstract class

AbstractGenerator.

7Left-factoring is grammar rewrite in such a way that all recursive production rules consume at least one token or
character before going into the recursion

6.2 OrgML Workbench 135

/* Legend: OrgML Elements */

An OrgML program P := <Org , cal >, where
Org : A set orgs where each org represents an OrgUnit
cal : Calendar specification that defines a set of TimeEvents.

D e f i n i t i o n of org:
org := <init0, state , trace , inbox , Time , Inp_E , Internal_E , Out_E , Act , Behav >, where

init0 : Initial state of an OrgUnit. Initial state is defined using Parameter values
.
state : State of an OrgUnit. State is specified using OrgUnit Variables.
trace : Event trace of an OrgUnit.
inbox : Event queue of an OrgUnit. It contains a subset of {Time ,InpE , InternalE }.
Time : A set of subscribed TimeEvents.
InpE : A set of InputEvents.
InternalE : A set of InternalEvents.
OutE : A set of OutgoingEvents.
Measure : Set of Measures.
Act : Set of Actions.
Behav : Behavioural units of Action , BehaviouralEvent and Function , where

All behav ∈ Behav = {stmt1, stmt2, stmtk} where stmt i is a behavioural
statement

D e f i n i t i o n of cal:
cal := {time1, time2, timem}, where time i ∈ TimeEvent

D e f i n i t i o n of Levers:
L := {lever1, lever2, levern}, where lever i is a Lever specification

A l g o r i t h m :
A simulation is the execution of an OrgML program P = <Org , cal > with a lever p for x

iterations of time s where lever p = ∈ {∅, L}, and time s ∈ cal. In an OrgML program
execution , all orgs execute in parallel where each org takes out events from its inbox
, update trace information , evaluates trace and state conditions and performs
behaviours , which are t r u e at a given moment as follows:

execute(OrgML P, L lever p, Time time s) {
P= transform(P,lever p)
occurrence ts := 0
w h i l e (occurrence ts < x) {

compute non -primitive time of cal
∀ ti ∈ cal {

i f (ti = t r u e)
send ti to all orgs that subscribe ti

i f (ti = time s) { occurrence ts := occurrence ts + 1}
}
∀ org ∈ Org {
∀ event i ∈ inbox {

trace := <trace ,event i> // Update trace
execute (behav of event i , org) , where behav ∈ Behav of org

}
}

}
}
transform(OrgML P, L lever) {
∀ org ∈ Org {

i f (lever is applicable for org) {
transform org specification by considering lever definition.

}
}

}
execute(Behaviour behav , Org org) {
∀ stmtk ∈ behav { //For all statements of behaviour

behav
case (stmtk)
{

assignment ⇒ { <init0 | state > → statenew } // Assignment Statement; Update
State
new ⇒ { Org := {Org , new org} //New of OrgUnit; Update OrgUnit
set
send(event) ⇒ { trace := <trace ,event >; send event } //Send Statement; Update Trace
and send Event

}
traceBasedExecution(org)

}
}

}
traceBasedExecution(Org org) {
∀ action i ∈ Act of org {
ec = Evaluate event condition of action i with respect to trace of org
es = Evaluate state condition of ai with respect to state of org

i f (ec && es) { execute(behav of action i, org) }
}
∀ measure j ∈ Measure of org {

i f (event condition of measure j match trace) { display measure j }
}

}

Figure 6.10 Execution of OrgML specification

6.3 OrgViz Data Visualiser 136

Finally, a workflow is configured using MWE28 specification to synchronise workbench

related activities as shown in Figure 6.9. The edit and save of an OrgML specification (specified

in a file with file extension‘orgml’) triggers validation rules that include‘Syntactic Validation’,

‘Semantic Validation’ and ‘Structural Validation’. The detection of an error in any of the

validation step terminates the flow and triggers ‘Error Marking’ activity. The flow without

any error condition triggers ‘Syntax Highlighting’ action. Subsequently the workflow updates

‘Outline’ and invokes transformation rules (i.e., OrgML to ESL transformation module).

6.2.4 Execution of OrgML specification

A high-level execution schema of an OrgML specification is shown in Figure 6.10. An OrgML

specification that contains a set of OrgUnits and a Calendar is simulated for TimeEvent times

with or without a Lever leverp to understand the as-is behaviour of an organisation or the

consequence of Lever leverp over time unit times. To execute an OrgML specification, the

specification P is first transformed into a new specification by applying Lever specification

leverp. The Calendar and OrgUnits are then executed in parallel.

Semantically, the Calendar evaluates non-primitive TimeEvents and sends TimeEvents

to all subscribed OrgUnits. All OrgUnits concurrently processes events, which includes

TimeEvents, IncomingEvents and InternalEvents, from their respective inbox or event

queue. Each OrgUnit takes out an event from its inbox, updates trace information by appending

event to its trace information, assesses the applicability of Actions by evaluating the event

trace and state condition of Action specifications, and performs behavioural specification

for all valid Actions. While performing a behavioural specification, an OrgUnit perform a

sequence of Statements that may change its state, can trigger InternalEvents, may send

OutgoingEvents to other OrgUnits, and may produce new OrgUnits.

The execution semantics is realised by translating Calendar and OrgUnits into ESL actors

by applying the transformation rules described in section 5.5.

6.3 OrgViz Data Visualiser

OrgViz Data Visualiser is a customisable and extensible graphical display unit that visualises

simulation results using user-specified form. It visualises OrgML Data that includes the

8help.eclipse.org/kepler/topic/org.eclipse.xtext.doc/contents/118-mwe-in-depth.html

6.3 OrgViz Data Visualiser 137

numerical values of Measures, Traces and information about the occurrences of Event (i.e.,

OrgML EInfo).

The concept of temporal data model presented by Goralwall et al. in [83] and their visual-

isation techniques discussed in [179] are considered for realising the OrgViz Data Visualiser.

Principally, a linear order 2D display unit that conforms to relative temporal structure over

discrete time domain [179] is conceptualised and implemented to visualise OrgML Data. This

section presents an overview of the temporal data model, correlates the temporal data model

with OrgML concepts and presents the design considerations and implementation details of

OrgViz Data Visualiser.

6.3.1 Temporal data model and visualisation

A typical temporal data model [83, 179] is characterised along four dimensions: temporal

structure, temporal domain, temporal order and temporal history. Temporal structure introduces

a time domain using two types of time definitions: temporal primitives and derived definitions.

A temporal primitive indicates a single time instance. It can be of two types: absolute time

or relative time. An example of an absolute time is January 1, 2018, whereas the examples

of relative time are: first day of an academic session, first hour of a working

day, etc. A derived time definition is defined using time interval and time span. Every first

week of month and from January to July are the examples of time interval and time span

respectively.

The temporal domain is classified into two broad categories: discrete and continuous. The

discrete time domain is isomorphic to natural numbers, whereas the continuous domain is

isomorphic to real numbers. The temporal order can be linear or branching. A linear order

time is represented using an unidirectional time axis. In contrast, the future is not determined

and the time dimension divides into multiple paths for branching order. The temporal history

is a sequence of related temporal entities where each temporal entity contains a tuple <data,

time>. The data represents the numerical value and time indicates a time information. The

temporal history can be classified into three types based on the type of time information.

The types are: valid, transaction and event. In valid history, the data is augmented with a

absolute time information, transaction history uses transaction time (such as database entry) as

time information, and event history considers instantaneous facts or events to represent time

information.

6.3 OrgViz Data Visualiser 138

The visualisation of temporal data models is a well studied research area [4]. It focuses on

three aspects time, data and representation [4] where time is a quantifiable information that can

be mapped to an axis, data is a set of values that need to be analysed, and representation is a

format to display the data in a meaningful manner. The representation is largely dependent on

how the data is tied up with the time. For example, the Line graph is frequently used to represent

variables that change over time, whereas the changes of multiple variables can be effectively

represented using Bar chart, Stacked Bar chart, etc. The key factors to represent a temporal data

model (as presented in [4]) are discussed below:

• Time point vs. time interval: valid data at a (absolute or relative) time point can be

represented without concerning about time information, whereas time-interval and time-

span expect the time information to be represented in a visualisation.

• Linear vs. branching: the time information of a linear time data can be represented using

a single axis whereas the branching time requires complex graph structure to represent

time dimension.

• Univariate vs. multivariate: an univariate data (i.e., single data value) can be represented

as they exist whereas visualisation of multivariate data (i.e., multiple data values) needs

data preprocessing, composition and consolidation.

• Data vs. data abstraction: Visualisation of valid data may not be possible for all scenarios.

Data abstraction techniques, such as data aggregation, summation, and means, are useful

for such scenario.

• Dimensionality (2D vs. 3D): This characteristic simply distinguishes between 2D and 3D

representation. The 2D data visualisation is mostly used in numerical data representation.

An OrgML data visualisation specification describes: what Data needs to be captured

and visualised (i.e. selection of Variables, Traces and Measures), when they should cap-

tured/visualised (i.e., based on which TimeEvent and/or other Events) and how they should

be represented (e.g., ChartType). In addition, the specification captures additional information

about visualisation characteristics in the form of a meta-data. The meta-data captures infor-

mation such as: caption of a graph and data abstraction requirement (e.g. data aggregation,

summation, and means). Therefore, a Data visualisation specification describes data, time and

(user-defined) representation as suggested in [4].

6.3 OrgViz Data Visualiser 139

Figure 6.11 Implementation details of OrgViz Data Visualiser

Integration of temporal features with OrgML concepts define the scope and design con-

siderations of OrgViz Data Visualiser. The OrgML Calendar definition and set of Event

specifications introduce a temporal structure. In particular, they define a set of relative temporal

primitives, time-interval and time-span. The concept of periodic primitive TimeEvent and

discrete nature of OrgML Event definitions limit the visualisation scope to discrete time domain.

The numerical Values of OrgML Data defines the representation scope to 2D linear order

graphical representations. Moreover, the characteristics of Measures and Traces closely relate

to event history where they expect 2D linear order graphical representations. The comparative

analysis of multiple Measures expects multivariate visualisation (in addition to univariate

visualisation).

The next section presents implementation details of OrgViz Data Visualiser that realises the

aforementioned characteristics.

6.3.2 Implementation details of OrgViz Data Visualiser

The OrgViz Data Visualiser is a 2D linear order Display Unit that visualises the numerical

values of OrgML Data in a user-defined form. It supports two display modes: Dashboard

and Filmstrip where the Dashboard is an active display unit that synchronises with discrete

6.3 OrgViz Data Visualiser 140

Figure 6.12 Code fragments for OrgViz Data Visualiser

Events of a simulation. Filmstrip, in contrast, is a repository-centric slider-driven interactive

user interface that visualises and navigates simulation data of historical simulation runs. It

visualises a linear event history using 2D graphical representation.

The implementation details of the OrgViz Data Visualiser that includes Dashboard and

Filmstrip is shown Figure 6.11. As shown in the figure, both, Dashboard and Filmstrip, inherit

from a common Display Unit. The display unit is a container that contains multiple Panels.

Each Panel can display either a table or a chart to show numerical values of one or multiple

Variables, Traces and EInfo (i.e., univariate and multivariate display). The Display Unit unit

is capable of computing data composition, consolidation and other data abstraction techniques

(e.g, sum, average, means) to support multivariate data visualisation and data abstraction.

Technically, Display Unit is a Java JPanel9. It supports a configurable multi-tab multi-

panel layout to visalise one or multiple Variables, Traces and/or EInfo. The Panels are

realised using Jfreechart10 based visualisations, such as Line chart, Bar chart and Pie chart. The

specialised behaviour of Dashboard and Filmstrip are described below:

1. Dashboard: Dashboard concurrently operates with the ESL simulation engine, interacts

with ESL actors to collect relevant values at specific Events, and displays simulation

data using user-defined graphical form.

9https://docs.oracle.com/javase/7/docs/api/javax/swing/JPanel.html
10www.jfree.org/jfreechart

6.3 OrgViz Data Visualiser 141

Figure 6.13 An illustration of Dashboard

Dashboard uses a specialised Java actor, termed as DashboardActor, which runs con-

currently with ESL actors to collect information from ESL actors. Each ESL ‘Display’

statement triggers a ‘Display’ message from ESL actor to DashboardActor actor. Dash-

boardActor delegates ‘Display’ message to Display Unit for preprocessing (if required

for data consolidation and data abstraction) and data visualisation. In addition, Dashboar-

dActor stores message dataset along with chart-type, meta-data to Simulation Histories

repository for future use.

Operationally, each simulation run instantiates a singleton DashboardActor instance with a

static reference, termed as ‘dashboard’, and all ESL actors use the static reference to del-

egate their ‘Display’ messages to DashboardActor as shown in Figure 6.11. The OrgML

to ESL translation rules delegate ‘Display’ messages from ESL actor to DashboardActor.

A sample OrgML specification with ‘ComplaintsAndQueriesStatistics’ Measure, trans-

lated ESL code and visualisation of ‘ComplaintsAndQueriesStatistics’ Measure are shown

in Figure 6.12.

2. Filmstrip: Filmstrip fetches historical simulation data from Simulation Histories repository

and uses functionalities of Display Unit to visualise and navigate stored simulation data

as shown in Figure 6.11. It provides a slider to navigate the time axis of a simulation run.

A snapshot of a Dashboard is shown in Figure 6.13 as an illustration. The Dashboard

visalises a set of Measures and Traces of a Department of ABC University using six Panels.

6.3 OrgViz Data Visualiser 142

Figure 6.14 An illustration of Filmstrip

Panel ‘Department Status’ shows the key Measures of the Department (such as number of

academics, number of students, number of modules offered by the department) in a tabular form,

panel ‘Teaching Statistics’ shows a consolidated view of lecture status (i.e., how many lectures

are not taken by the academics, how many lectures are delivered with less preparation, etc.)

using a pie chart, panel ‘Work Schedule of Prof.X’ shows work schedules of an academic (i.e.,

an event history of work schedules) using a tabular form, panel ‘Work Distribution of Prof.X’

shows the work distribution of an academic, panel ‘Complaint and Query Statistics’ shows the

histories of complaints and queries, and panel ‘Teaching Statistics [Trace]’ shows the histories

of teaching statistics (trace of ‘Teaching Statistics’). The Dashboard is an active display unit

6.4 A decision making framework 143

Figure 6.15 OrgDM capabilities and workflows

that updates panel graphs as the simulation progresses. Whereas, the Filmstrip provides a slider

to navigate time axis as shown in Figure 6.14 where two different points in time are highlighted

using arrow for illustration.

6.4 A decision making framework

A configurable and extensible actor-based simulation framework, OrgDM, is comceptualised

to support organisational decision-making using the proposed technology aids. An OrgDM

framework supports eight core capabilities in an integrated manner as depicted in Figure 6.15

(a). The capabilities are: (i) GM-L editing, (ii) Organisation specification editing, (iii) Sim-

ulation specification editing, (iv) Simulation (v) Iterative Simulation, (vi) Visualisation, (vii)

Filmstripping and (viii) Data analytics.

An OrgDM framework uses OrgML workbench and OrgViz Data Visualiser. It supports

two extension points: simulation workbench and data analytics. The simulation workbench is

designed to plug-in a simulation language editor and a simulation engine. The ESL workbench

[54] provides the simulation workbench extension point in this research. The data analytics

extension point provides advanced data analysis on simulation results.

In this formation, OrgML workbench supports GM-L editing and Organisation specification

editing. OrgViz Data Visualiser supports visualisation and filmstripping capabilities. ESL

6.4 A decision making framework 144

Figure 6.16 Architecture of organisational decision-making framework

workbench supports Simulation specification editing (i.e., ESL editing) and Simulation. In

addition, OrgDM framework implements a workflow that realises Iterative Simulation. The

action iterative simulation (concurrently) simulates same specification multiple times and shows

the consolidated data as depicted in Figure 6.15 (b). The support for iterative simulation

establishes the statistical significance of simulation results11.

The proposed OrgDM framework is realised using a Java and Python based toolset on

Eclipse platform. The rest of this section discusses a high-level tool architecture of the proposed

OrgDM framework and the realisation of the proposed decision-making method using OrgDM

framework.

6.4.1 Tool architecture

A tool architecture of OrgDM framework is illustrated in Figure 6.16. As shown in the figure,

OrgDM framework contains an orchestrator, two file-based repositories (i.e., model repository

and simulation histories) and four functional building-blocks: (i) OrgML workbench, (ii) ESL

workbench, (iii) OrgViz Data Visualiser and (iv) a data analytics module. The orchestrator is a

11This is required as the organisation model contains several uncertainties and probabilistic behaviours. Moreover,
the overall macro-behaviour of an organisation emerges from multiple micro-behaviour.

6.4 A decision making framework 145

broker that establishes the interoperability among the plugged-in building blocks, communicates

with repositories, implements Iterative Simulation workflow and enables expected data- and

control-flow across components as shown in the figure. The orchestrator is realised using the

Eclipse plugin architecture12, a set of Java libraries to store and retrieve data to/from repositories,

and a Python13 module for data consolidation and data abstraction. The Python modules use

Python Pandas14 – an open source easy-to-use data structures and data analysis tools for the

Python programming. However, it can be extended with Python SciPy15 (a Python library for

scientific computing) to support advanced data abstractions.

The OrgDM framework uses Eclipse, Xtext and Xtend-based OrgML workbench implemen-

tation (as described in section 6.2), ESL technology as introduced in section 5.2.2 of Chapter 5,

and Java Jfreechart based OrgViz Data Visualiser (as presented in section 6.3). It considers two

file based repositories. The Model Repository contains the OrgML specifications as an Eclipse

project and Simulation Histories stores simulation results using JSON format16 in a dedicated

directory folder.

In addition, two advanced data analytics modules, Goal Evaluator and Lever Recommender,

are conceptualised (but not implemented) to interpret stored simulation results and provide

advanced insights to the decision-makers. The key objectives and possible implementation

techniques of these modules are discussed below:

• Goal Evaluator: The primary objective is to show the distance of a simulation result

from the desired goals.

• Lever Recommender: The key objectives is to help decision-makers along three dimen-

sions – (i) identify most sensitive Lever(s) so that they can be explored/refined further, (ii)

recommend variants of existing Levers that may have better potential to achieve desired

organisational Goals and (iii) recommend a large numbers of random Levers to avoid

being trapped in a local optimum.
12https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
13https://www.python.org
14https://pandas.pydata.org
15https://www.scipy.org
16https://www.w3schools.com/js/js_json_intro.asp

6.4 A decision making framework 146

6.4.2 Method realisation

Figure 6.16 highlights how the OrgDM framework helps to perform the organisational decision-

making method steps proposed in Chapter 5. As shown in the figure, GM-L editor helps to

capture decision problem in method step S1, the OrgML editor assists domain experts to capture

organisational aspects in S2, the OrgML-to-ESL translation rules helps to implement simulation

model in S3 (an automated transformation of OrgML to ESL is also conceptualised), and the

ESL simulator and the OrgViz Data Visualiser collectively help decision makers and domain

expert to simulate and observe simulation results in S4 step. In the current implementation,

decision makers evaluate simulation results (i.e., method step S5) and recommend levers (i.e.,

method step S6) based on observations of multiple simulations. The proposed Goal Evaluator

will compute and show the distance of observed Measures from the desired Goals and Lever

Recommender will help to navigate the decision space by recommending new set of Levers.

6.4.3 Summary

This chapter proposes a set of technology aids to support the organisational decision making

approach presented in Chapter 5. The key contributions of this chapter are three-fold – (i)

OrgML workbench that supports standard editing capabilities to author OrgML specifications

and OrgML-to-ESL translation to use ESL as a simulation engine, (ii) OrgViz Data Visualiser

that adopts established visualisation capabilities to display the simulation result using user-

defined form, and (iii) OrgDM framework that integrates the capabilities of OrgML workbench,

ESL technology and OrgViz data visualisation to provide a platform where decision makers

can specify their decision problems, domain expert can capture their organisational knowledge

using organisation model, and they can observe simulation results using their specified format.

Chapter 7

Research Validation

The value of an aid for organisational decision-making comes from its practical utility and

convenience to address large complex problems which are difficult to solve otherwise. The goal

of this chapter is to establish the usefulness of research hypotheses, demonstrate the efficacy and

utility of the research contributions, and applicability of the proposed approach and technology

aid, which are introduced in Chapter 3, 5 and 6. An Artificial and Ex-Post validation strategy,

as discussed in Chapter 2, is adopted to evaluate these research artifacts. Four synthetic yet

close to real life case studies with different characteristics are modelled using OrgML and the

necessary what-if analyses are performed (by translating OrgML specification into ESL) to

produce sufficient evidence for organisation decision-making. The case studies are analysed

to report the technological advances from the state-of-the-art technologies for organisational

decision-making and applicability of the proposed approach in a range of decision-making

problems. The limitations of the research artifacts and further improvements as the future

work on this research are ascertained from the critical evaluation. With respect to the research

methodology described in Chapter 2, this chapter presents an overview of Evaluate research

outcome research activity, describes the outcome of Demonstration and communication research

activity and focuses on Establishing rigour research activity.

The characteristics of the four case studies are discussed in Table 7.1. This chapter discusses

the overview of three case studies. Section 7.1 discusses a case study from a Software Service

Consulting domain where organisations target precise year-on-year profit margins by offering

software development services in a moderately mechanistic environment. A decision-making

problem for a complex, dynamic and uncertain environment is illustrated using Indian Demon-

7.1 Software Service Provisioning Organisation 148

Table 7.1 Characteristics of validation case studies

Case Study Characteristics
Software Service

Provisioning
Organisation

Hierarchical and vertical organisation structure (SSPO organisation), mechanistic
behaviour with minimal probabilistic distributions, stable environment (i.e. demand

and supply can be specified using mathematical formulae)
Business Process

Outsourcing
Organisation

Set of competing organisations (e.g., competitors), organisation definitions are
monolithic, environments for all competing organisations are nonlinear and uncertain

Demonetisation
An example of emergent behaviour (definition of Society), autonomous and adaptive

units (e.g, Citizens), significant uncertainty and nonlinearity

University
Hierarchical and vertical organisation structure (e.g. University and Department),

uncertain behaviours (e.g., Academics and Students), emergent behaviour (e.g.
University and Department)

etisation initiative1 in section 7.2. A decision-making scenario from ABC University (used

as the running example in this thesis) is described in section 7.3. A decision problem from

competitive Business Process Outsourcing (BPO) domain where multiple organisations compete

with each other to maximise their profits and market shares is presented in Appendix E.

The rest of the sections of this chapter focus on critical evaluation of the research artifacts.

Section 7.4 evaluates research artifacts by comparing them to the state-of-the-art technology

aids, highlights technological improvements and discusses the usage and applicability of the

proposed approach. The limitations, threat to validity and further improvements of the proposed

approach are discussed in section 7.5. The first three sections and Appendix E collectively

focus on Evaluate research outcome research activity. The outcome of the Demonstration and

communication research activity is presented in Section 7.4. Sections 7.4 and 7.5 illustrate

Establishing rigour research activity.

7.1 Software Service Provisioning Organisation

This section presents a case study that focuses on a Software Service Provisioning Organisation

(SSPO) that is aiming to secure a leadership position in software service consulting space by

improving its customer satisfaction, business volume and profit margin. The exploration of

decision alternatives is carried out by constructing an OrgML model of SSPO, translating con-

structed OrgML specification into ESL, simulating ESL specification and observing simulation

results using OrgViz Data Visualiser. The problem entity of SSPO, the key elements of OrgML

model that captures SSPO and simulation based decision space exploration are discussed in this

section.
1https://en.wikipedia.org/wiki/2016_Indian_banknote_demonetisation

7.1 Software Service Provisioning Organisation 149

Figure 7.1 A pictorial representation of Software Service Provisioning Organisation (SSPO)

7.1.1 Problem entity

Consider a SSPO that takes up software development projects for its customers. The organisation

bids for projects in response to Request for Proposals (RFPs) and wins based on its track

record, projected delivery time and price considerations. It then proceeds to staff the project

appropriately, executes the project using its tried-and-tested processes leading to successful

delivery, winds up the completed project and then releases resources to the free resource pool. In

managing this business as usual (BAU) operation, the organisation has to deal with operational

complexities such as maintaining the right number of people with the right skills on its payroll,

keeping enough workforce in reserve to handle incoming project demand, dealing with the

attrition, ensuring maximum utilisation of existing workforce, and accounting for various delays

such as hiring delay, training delay, assimilation delay etc., while ensuring its business targets

are met.

In order to achieve its goal of consolidating its position as leading software service provider

in the market, the software service provisioning organisation needs to decide upon strategies to

improve its BAU state. One strategy is simply bidding for a higher number of projects. This

would result in skill improvement of the workforce over time, leading to increased productivity

and quality, and thereby a good track record and improved chances of winning future bids.

An additional strategy for improving bid winning percentage could be to reduce project cost

7.1 Software Service Provisioning Organisation 150

Figure 7.2 OrgML specification of Software Service Provisioning Organisation

or delivery time or both. Increased bid wins might stretch the existing workforce to the limit

beyond which projects would get queued thus observing delay. A better trained workforce or

use of productivity tools or both are possible strategies for managing delays but both come at

some cost. Decision makers would like to know which strategy would be beneficial amongst the

various alternatives.

Figure 7.1 shows an operating environment of a typical software-provisioning organisation.

Demand of the software service provisioning business comprises of various kinds of software

development projects such as, low margin low risk (LMLR), medium margin low risk (MMLR),

medium margin high risk (MMHR) and high margin high risk (HMHR). The organisation bids

for these projects and may have different win-to-bid ratios for different kinds of projects. A

win-to-bid ratio signifies market perception of organisation’s ability to deliver the given kind of

project on time and with the desired quality. This is largely determined by track record of the

7.1 Software Service Provisioning Organisation 151

Figure 7.3 Internal structure of Software Service Provisioning Organisation

organisation. Supply is comprised of different kinds of workforce resources such as: junior (J),

skilled junior (SJ), senior (S) and expert (E). Different kinds of projects may need different mix

of resources. For instance, execution of HMHR project demands larger proportion of experts

than, say, LMLR project.

7.1.2 OrgML model

The SSPO problem entity is modelled using three interacting OrgUnits namely: Customer,

Supply, Organisation. The Supply OrgUnit is pools of junior, skilled junior, senior and expert

7.1 Software Service Provisioning Organisation 152

Resources which are also represented as OrgUnits as shown in Figure 7.2. The key interactions

between Customer and Organisation OrgUnits are:

• Customer sends ‘RFP’ Events for LMLR, MMLR, MMHR, HMHR kinds of software

project to Organisation.

• Organisation OrgUnit prepares ‘Bid’ and responds back to the sender Customer.

• Customer evaluates ‘Bid’ (or a set of ‘Bids’) and communicates ‘BidResponse’ to the

responded Organisations.

• Organisation executes a project and delivers ‘Software’ to the Customer if a ‘Bid’ is won

by the Organisation.

• Customer pays ‘Payment’ when ‘Software’ is delivered and quality criteria is met.

In order to continue BAU operation, an Organisation recruits junior, skilled junior, senior

and expert Resources from Supply pools through job ‘Offer’. Resources may ‘Join’ or ignore an

offer based on the joining rate of the Supply. The Resources can ‘Resign’ from an organisation

(conforming to the attrition rate of Supply).

The modelled SSPO Organisation is structured using five autonomous organisational units or

OrgUnits: SalesUnit, DeliveryUnit, ResourcesMgmtUnit, AccountsUnit and RecruitmentUnit

as shown in Figure 7.3. The SalesUnit is responsible for analysing customer ‘RFP’, preparing

‘Bid’ and sending ‘Bid’ to the Customers. Internally, the Organisation OrgUnit delegates ‘RFP’

to SalesUnit OrgUnit and SalesUnit OrgUnit sends ‘Bid’ to the Customer OrgUnit on behalf

of Organisation OrgUnit. Similarly, Organisation delegates ‘BidResponse’ to DeliveryUnit

OrgUnit to project initiation and execution when a project is won. DeliveryUnit initiates a

Project by instantiating and parameterising Project OrgUnit (i.e., LMLR, MMLR, MMHR,

HMHR kinds of project) and allocating appropriate Resources from ResourcesMgmtUnit based

on recommended resources distribution (i.e., J:SJ:S:E distribution). The instance of a Project

OrgUnit executes a project by following a standard software development process as depicted

using a state-machine in Figure 7.3 and delivers Software to the customers. A project execution

can be delayed if Resources ‘Resign’ from the Project and/or Resources work less than their

expected productivities. The DeliveryUnit may procure and use productivity tools, such as code

generator, to increase the change of timely delivery.

7.1 Software Service Provisioning Organisation 153

ResourcesMgmtUnit OrgUnit manages the internal Resource pools (i.e., J:SJ:S:E distribu-

tion). It allocates appropriate Resources to newly started Projects, tries to maintain a steady

Resource pools for upcoming projects, and provides recruitment requirements to the Recruitmen-

tUnit (using ‘Recruit’ event). RecruitmentUnit consolidates recruitment requirements and makes

offer to Supply resource pool by considering joining joining rate and attrition rate. The Ac-

countsUnit keeps track of the financial aspects. The Organisation OrgUnit delegates ‘Payment’

to AccountsUnit OrgUnit. The payment amount contributes to the ‘revenue’ of the organisation.

The expenditures come from the salary of the resources, tool procurement cost, tool licensing

cost, resource training cost, recruitment cost and other operational cost (such as project setup

cost) for which AccountsUnit maintains the record.

The goal, measures and levers (i.e. GM–L structure) of Organisation are also highlighted in

Figure 7.3. As shown in the figure, the Organisation has a goal to ‘Secure Leadership Position’

in software service provisioning space and it attempts to realise its goal using three sub-goals:

‘Increase Business Volume’, ‘Improve Customer Satisfaction’ and ‘Improve Profit Margin’. The

business volume of the Organisation can be measured by the number of bids won (i.e. the

value of ‘bidWon’ Variable of SalesUnit OrgUnit), the customer satisfaction can be measured

by two Measures: ‘Ontime Delivery’ and ‘Delayed Delivery’ where the Measure ‘Ontime

Delivery’ is associated with‘ontimeDelivery’ Variable of DeliveryUnit OrgUnit and Measure

‘Delayed Delivery’ is associated with‘delayedDelivery’ Variable of DeliveryUnit OrgUnit. In

this context, ‘Ontime Delivery’ and ‘DelayedDelivery’ respectively positively and negatively

influence the customer satisfaction. The goal ‘Improve Profit Margin’ can be measured using

’Profit’, i.e., the difference between ‘revenue’ and ‘expenditure’ of AccountsUnit OrgUnit.

This OrgML model can be configured for a specific software service provisioning organisa-

tion by specifying parametric variables that include:

• Customer configuration:

– Project arrival rate, i.e., arrival rate of LMLR, MMLR, MMHR, HMHR kinds of

project (number per month)

– Bid winning rate for LMLR, MMLR, MMHR, HMHR (in percentage)

• Supply Configuration:

– Joining probability for J, SJ, S, E (in percentage)

– Attrition rate of J, SJ, S, E (in percentage)

7.1 Software Service Provisioning Organisation 154

Figure 7.4 Input parameters of Software Service Provisioning Organisation case study

• Organisation Configuration:

– Productivity of J, SJ, S, E kinds of resources

– Productivity of J, SJ, S, E when productivity tool is used

– Operating cost of J, SJ, S, E (in USD/month)

– Recruitment cost of J, SJ, S, E (in USD/person)

– Tool procurement cost (in USD)

– Tool license cost (in USD/year)

– Bidding cost for LMLR, MMLR, MMHR, HMHR (in USD/bid)

– Project setup cost for LMLR, MMLR, MMHR, HMHR (in USD/project)

– Total number of current resources

– J:SJ:S:E distribution of current resources

– Desired bench strength (in percentage)

7.1.3 Instantiation, simulation and decision making

Figure 7.4 depicts the configuration parameters of a software service provisioning organisation

and its Customer and Supply. For instance, LMLR projects are charged at the rate of 100K

USD/KLOC (Kilo lines of code), 40% of LMLR project bids result in wins with 10 projects

arriving every month – and similarly for MMLR, MMHR and HMHR projects. From the Supply

side, 70% of the selected junior resources join and 10% of existing junior resources resign from

7.1 Software Service Provisioning Organisation 155

Figure 7.5 Simulation dashboard of Software Service Provisioning Organisation

organisation. Resignations do not necessarily happen in chunks, i.e. resources can resign any

stage of a project execution but overall resignation count of a year is 10% of the total juniors.

Initial resource strength is 1600. Within the organisation, 25% of available resource are juniors

whereas the percentages for skilled junior, senior and expert resources respectively are 35, 20

and 20. Junior resources deliver a productivity of 0.9 (with respect to COCOMO standard [41])

and incur training and recruitment cost of 10K USD – and similarly for other kinds of resources.

Figure 7.5 shows the measures of the current-state. The horizontal histograms depict the

number of RFP received, RFP responded, RFP won, projects completed on time, projects

completed with delay and project pipeline (from to bottom to top), where four colors of each

histogram (except project pipeline histogram) represent the metrics related to LMLR, MMLR,

MMHR and HMHR respectively. The vertical histograms depict the revenue, expenditure, profit

and saving due to productivity tool respectively (from left to right). The organisation is winning

about 30% of the submitted bids and all of which are being executed within the expected time.

Also, there is hardly any project that is not able to start due to non-availability of resources.

Clearly, the organisation seems to be operating in a comfort zone.

Considering the organisational goal that aims to secure a leadership position, the manage-

ment would like to explore possible options to improve the desired measures. The rest of this

section explores a set of decision alternatives that include:

• Exploration 1: What is the best the organisation can achieve by removing existing slack?

• Exploration 2: What is the best the organisation can achieve with existing workforce

distribution (J:SJ:S:ES)?

7.1 Software Service Provisioning Organisation 156

Figure 7.6 Effect of reducing price as well as delivery time

• Exploration 3: For these organisation settings, what is the best workforce distribution

possible?

Exploration 1

The existing slack can be eliminated by winning more bids so that there are more projects to

deliver. Delivery time and cost are the variables influencing bid winning percentage. Therefore,

the chargeable rates for LMLR, MMLR, MMHR and HMHR projects are changed from 100,

200, 250, 400 (all in KUSD per KLOC) to 90, 180, 225, 350 thus improving their bid winning

percentage from 40, 30, 30, 30 (all in percentage) to 60, 50, 50, 50. In addition, the promised

delivery time for all the four kinds of projects are shorten by 1 normalised time unit thus further

improving the bid winning percentage to 90, 70, 70, 70. Figure 7.6 shows the effect of this

ajdustment on the organisation (i.e. applying a lever). The bid winning percentage improves

to 65% from 30%. The number of projects completed on time remains more or less the same

but there is a significant increase in the number of projects delivered late. Also, a significant

number of projects witness delayed start due to non-availability of resources. Increase in bids

won results in significantly high revenues even when chargeable price is reduced. With expenses

7.1 Software Service Provisioning Organisation 157

Figure 7.7 Effect of resource training

remaining more or less the same (linked largely to number of resources on board) profit is

increased significantly.

Exploration 2

As seen from Figure 7.6, the delayed delivery and project kick-off queue build-up are critical

concerns. How can these concerns be effectively addressed keeping the resource distribution

unchanged i.e., J:SJ:S:E::25:35:20:20? Clearly there is a need to increase workforce productivity.

One can think of having a better-trained workforce or a better-tooled workforce or both. The

productivity of junior, skilled junior, senior and expert are changed from 0.9, 1, 1, 1 (all as

a factor of standard COCOMO productivity metric [41]) to 1, 1.1, 1.1, 1.1. This comes at

increased training costs for the four kinds of workforce from 10, 10, 10, 15 to 20, 20, 20, 25.

The improved measures are shown in Figure 7.7.

Productivity can be further increased by a factor of 1.25 by using productivity tools. This

too comes at tool license and training costs. Figure 7.8 shows the effect of these changes on the

measures. There is an increase in the number of projects delivered on time. More significantly,

no HMHR project (shown in beige in Figure 7.8) is delivered late thus saving on delayed delivery

penalties. Also, there is a significant increase in the proportion of HMHR projects delivered on

7.1 Software Service Provisioning Organisation 158

Figure 7.8 Effect of resource training as well as productivity tools

Figure 7.9 Allocation / deallocation trends of the four kinds of resources

time. The sum total of this is a significant increase in revenue as well as profits. However, the

delayed start for projects remains a cause for concern.

Exploration 3

Figure 7.8 depicts the measures achievable with workforce distribution of J:SJ:S:E::25:35:20:20.

But, is this the ideal workforce distribution for the prevailing demand and supply situation?

7.1 Software Service Provisioning Organisation 159

Figure 7.10 Effect of changed workforce distribution

Figure 7.9 shows allocation / deallocation behavior for the four kinds of resources over

a given time period. Line graphs for junior, senior and expert are more or less similar with

all ending above the desired bench strength level (at the termination of 24 Month simulation

period). This can also be seen as an indication of their availability levels in the market. On the

contrary, the line graph for skilled junior has a pronounced downward slope and ends up well

below the desired bench strength level thus clearly vindicating the shortage of supply.

It is also clear from Figure 7.9 that a skilled junior is a critical resource for timely execution

of projects and they are in short supply. Considering the resource availability, the best option

is to experiment with proportion of seniors and experts in the workforce distribution. The

workforce distribution of J:SJ:S:E::25:35:15:25 is considered. An increase in compensation of

skilled juniors from 8 KUSD/Month to 10 KUSD/Month is considered, which is reflected in

increase in joining probability (from 70% to 90%) and decrease in attrition rate (from 10% to

5%).

Figure 7.10 shows the effect of the changes. There is an increase in the number of projects

delivered on time –especially HMHR projects – thus leading to enhanced revenue. However, the

expenditure is increased due to the workforce distribution changed in favour of more expensive

resources and also due to increase in pay-package for skilled junior. Still, increase in revenue is

large enough to offset the increased expenditure thus resulting in increased profit.

7.2 Demonetisation 160

7.1.4 Summary

This case study shows an ability to specify an organisation (i.e., SSPO), organisational units

(e.g., sales unit, delivery units and accounts unit) that are hierarchically decomposed into finer

units and sub units (using top-down decomposition), and dynamic structure, such as varying

number of projects in a delivery unit, using OrgUnits. The case study also shows how the

activity delegation of an organisation can be realised using Events delegation, the environments

of an organisation (i.e. demand and supply) can be modelled using OrgUnit abstraction and

possible Levers can be specified using a set of Parameters. It also shows a GM–L structure

of SSPO, the Measures values, which are obtained from ESL simulation and visualised using

OrgViz data visualiser, a set of what-if scenario playing leading the informed decision making.

7.2 Demonetisation

The cash in circulation in the Indian economy has steadily been increasing over the years. The

total cash in circulation was 2.1 trillion rupees in 2001 and it reached 17.9 trillion rupees in

early November 20162. Uncontrolled cash flow in the system and a growing trend of cash-based

transactions has led to a shadow economy. As a course correction, the Indian government

demonetised the currency notes of 500 rupees and 1000 rupees3. Principally, 86% of the cash in

circulation was pulled out from the system in a sudden announcement on November 8, 2016.

The initiative was implemented with several precautionary measures to avoid a financial

crisis. For example, the ATM and Bank withdrawal limits were significantly reduced, and a

limitation was imposed on the exchange of old notes wherein the citizens were allowed to

exchange up to 4000 rupees with the remaining deposited to their bank account. In addition, the

cash-less payment modes, such as mobile wallet and card payments, were incentivised. Despite

all preventive measures, the demonetisation initiative resulted in prolonged cash shortages and

several unforeseen situations. The government tried to ease the emerging situations through

real-time monitoring and introduction of on-the-fly corrective measures. This reactive decision

making approach led to the criticism that it had been poorly thought through and inadequately

planned4.

2https://data.gov.in/resources/statistics-notes-circulation-india-2001-2015/download
3https://en.wikipedia.org/wiki/2016_Indian_banknote_demonetisation
4https://hbr.org/2017/03/early-lessons-from-indias-demonetization-experiment

7.2 Demonetisation 161

Figure 7.11 Pictorial representation of Indian Demonetisation scenario

7.2.1 Problem entity

The experiment considers a small but well-formed subset of demonetisation as a problem entity.

The primary focus is limited to Indian citizens, who are largely confined to a bounded set of

activities, as shown in Figure 7.11. Such citizens consume essential and/or luxury commodities

(e.g., food, medicines, cloths etc.), and use various services (e.g., medical assistance, hospitality

services, fitness related services etc.). A class of citizens may hold credit and/or debit cards – a

citizen who holds card may choose to pay by cash or by card for a purchase, and may withdraw

cash from ATM machine and/or bank counter. In contrast, a citizen without a card always

pays by cash and withdraws cash from bank counters. This experiment assumes all citizens are

able to satisfy their daily needs i.e., poverty related societal conditions are excluded from this

experiment.

The pre-demonetization stage is characterised by sufficient cash in ATMs and Banks to

service their customers (i.e., citizens), sufficient stock in shops, and no notable denial of service

from banks and ATM machines (i.e., citizens are able to withdraw cash when in need). This

condition is considered a normal situation. The demonetisation event disrupts this by the abrupt

elimination of 86% cash from the economy with a plan to slowly restore cash levels back

to 70% of pre-demonetisation stage. Banks adapted several restrictions on cash withdrawals

immediately after the demonetisation event to manage fair distribution of new currency notes

being introduced at a fixed rate – a mint-centric constraint. Notable restrictions were: ATM

withdrawal limit was reduced to rupees 2000 in a day for a citizen, bank withdrawal limit was

7.2 Demonetisation 162

Figure 7.12 OrgML specification of Demonetisation case study

reduced to rupees 10,000 in a day for a citizen, and a weekly withdrawal limit was imposed

to rupees 20000 per citizen. Shops adapted by accepting alternate payment options such as

mobile wallet and card payment whenever they observed a drop in sales records. A citizen, as an

individual, also adopted appropriate strategies to avoid undesired circumstances. The adaptation

7.2 Demonetisation 163

strategies that were observed during post-demonetisation phase can be visualised along two

dimensions:

• Payment Pattern: Citizens started using mobile wallet and/or card as a payment option

to save the trouble of standing in long queues to withdraw cash. However, not everyone

used alternate option, an individual’s decision were based on several factors such as

availability and familiarity with payment technology, and whether the citizen was an early

or late adopter to the new technology.

• Cash Withdrawal Pattern: Some citizens resorted to temporary hoarding of cash i.e.,

withdrawing cash in excess of their needs.

Given the above problem entity description, the experimental objectives are two-fold: (i) to

understand if the normal condition is likely to be disturbed as a result of the disruptive change

of demonetization, and to what extent, and (ii) to identify the courses of action to restore normal

operation.

7.2.2 OrgML model

The problem entity is modelled using five autonomous and adaptive OrgUnits and an Item

DataUnit where the OrgUnits are: Bank, Shop, Government, Citizen and Society as shown in

Figure 7.12. The Item DataUnit is a representative entity for all kinds of essential and luxury

commodities/merchandise/services; Bank OrgUnit represents a financial institution that stocks

cash and allows citizens to withdraw cash through cash counters and ATM machines; Shop

OrgUnit is an agent where Items can be purchased and services can be acquired; Government

OrgUnit is an identity that observes situations and tries to control other identities; and Citizen

OrgUnit represents common individual having a prototypical behaviour of which there could

be many variants. A Society is visualises as a composite identity that comprises government,

citizens, banks and shops. These OrgUnits are synchronised using a TimeEvent that represent

day.

All primitive OrgUnits, such as Bank, Shop, Government and Citizen, react to the events of

interest in a manner to help accomplish the goals as per a-priori known set of strategies as shown

in Figure 7.12. The specification overview of the modelled OrgUnits are described below:

• Citizen: Citizen is modelled using a hierarchy of OrgUnits. Two kinds of Citizens are

formed from the problem entity – a class of citizens hold card for financial transactions

7.2 Demonetisation 164

(i.e., CitizenWithCard OrgUnit), and other class of citizens are not having a card (i.e.,

CitizenWithoutCard OrgUnit). Both kinds of citizens are further classified into two

categories - (i) the citizens who can use wallet, and (ii) citizens who don’t use wallet.

In general, the citizens store essential and luxury commodities for daily consumption,

and they hold cash to purchase these commodities. The citizens typically have a cash

threshold value that decides when they should approach bank/ATM to withdraw cash.

These variables are modellled as ‘essentialCommodities’, ‘luxuryCommodities’, ‘cash-

InHand’ and ‘cashWithdrawalThreshold’. A citizen can withdraw cash from bank, buy

commodities from shops and pay for their purchases. These interactions are specified

using ‘BankWithdraw’, ‘Buy’ and ‘PayByCash’ OutgoingEvents. Similarly, the citizen

receives cash when they withdraw cash from bank (and also from ATM) and receives

commodities when they buy them from the shop. These interactions are modelled using

IncomingEvent: ‘Cash’, ‘EssentialCommodity’ and ‘LuxuryCommodity’. The citizens

who have a Debit/Credit card, which is represented as CitizenWithCard, may withdraw

cash from ATM using ‘ATMWithdraw’ and pay through card using ‘PayByCard’. Individ-

uals have their preferences to use a card as opposed to cash as payment option, which is

represented using ‘propensityOfCardPayment’, and preference to use ATM as opposed

to bank withdraw that is represented using ‘propensityOfATMWithdraw’. Similarly, the

citizens who are willing to use wallet payment (i.e., CashCardAndWalletDependentCitizen

and CashAndWalletDependentCitizen) can pay by wallet (i.e., ‘PayByWallet’ event) and

have their preference to pay by wallet as opposed to cash (and card), which is represented

as i.e., ‘propensityOfWalletPayment’ variable.

The citizens consume items/commodities every day, buy them from the shops and pay

to the shops, and withdraw cash from bank and ATM machines. The actions: item

consumption, buying behaviours, cash withdrawal behaviour with and without cards

are illustrated using the extended state machine notation in Figure 7.13 wherein the

transitions with a firm line represent standard behaviour, firm line with single underlined

label represent uncertain behaviour, firm line with double underlined label represent the

impact of external uncertainty (i.e., Demonetisation), dotted lines represent the behaviour

adapted after demonetisation, and dotted line with single underlined label represent

uncertain behaviour after adaptation respectively.

7.2 Demonetisation 165

Figure 7.13 Behaviours of key OrgUnits

Figure 7.13 (a) describes item consumption and buying behaviour of an individual Citizen.

A citizen can be in one of the three states: Less Item (item quantity dips below a threshold

value), Sufficient Item, and Starving for an Item state. A Citizen consumes item to cater

to daily needs; a consumption may change the state of a Citizen; Citizen attempts to buy

Item when Citizen reaches to Less Item state; and a Citizen moves to Starving for an Item

state from Less Item state if Citizen cannot buy an Item (due to Less Cash condition of

other state machine such as Figure 7.13 (b) and 7.13 (c)). A Citizen can consume multiple

Items as part of their daily life, thus a citizen may contain multiple state machines with

varying states information for commodities being consumed.

Figure 7.13 (b) and (c) describe the cash condition and withdrawal behaviour of Citizens

with and without cards. A Citizen with card may choose to pay by cash or by card for a

purchase (a uncertain behaviour), and may withdraw cash from ATM machine or bank

counter (another uncertain behaviour). In contrast, a Citizen without a card always pays

by cash and withdraws cash from bank counters. The adaptation strategies of citizens are

depicted using dotted lines in Figure 7.13 (b) and (c). A citizen, as an individual, may

adopt an appropriate strategy (with multiple options selected based on personal intuition

and experience – uncertain behaviours) to avoid entering an undesired state.

• Bank: Bank OrgUnit receives ‘ATMWithdraw’ and ‘BankWithdraw’ requests and dis-

pense ‘Cash’ (from bank counters or ATM machines) if cash is available i.e.,‘cashInBank’

or ‘cashInATM’ holds a positive number. Bank maintains the trace of transaction declined

statistics using ‘declinedATMTransaction’ and ‘declinedBankTransaction’ Variables.

7.2 Demonetisation 166

Banks, typically, have three states NoCash, LowCash, and WithCash; they try to replenish

cash when they are in LowCash state, and they refuse withdrawal requests when they are

in NoCash state.

• Shop: Shop OrgUnit receives ‘Buy’ request for essential and luxury commodities, deliv-

ers requested commodities using ‘EssentialCommodity’ and ‘LuxuryCommodity’ events,

and receives payments through ‘CashPayment’, ‘CardPayment’ and ‘WalletPayment’.

Shops maintain the records of cash, card and wallet payments using ‘cashPayment’,

‘cardPayment’ and ‘walletPayment’ Variables.

• Society: Society OrgUnit contains all OrgUnits and monitors the financial and commod-

ity related status of the citizens. In particular, it maintains a trace that shows how many

citizens are without any cash in hand (i.e., ‘citizensWithNoCash’), number of citizens who

are hording excessive cash (i.e., ‘citizensWithExcessiveCash’), number of citizens who

have no essential commodities (i.e., ‘citizensWithoutEssentialCommodity’), and number

of citizens who have no luxury commodities (i.e., ‘citizensWithoutLuxuryCommodity’).

• Government: Government OrgUnit is a controller that monitors cash flow, initiates

demonetisation, and observes payment distributions. The government has two goals - (i)

reduce the cash flow from society, which can be measured using consolidated payment dis-

tribution patterns, and (ii) less inconvenience to the citizens. The citizen’s inconvenience

can be measured along two dimensions: financial inconvenience (i.e., citizens without

cash) and commodity related inconvenience (i.e., citizens without essential commodities

and/or luxury commodities) as shown in the OrgML model depicted in Figure 7.12.

In this setting, a society progresses with the primitive TimeEvent that represents a ‘Day’.

Each day, citizen OrgUnits consume items, buy items from shops if any item is below a certain

threshold, pay for the purchases, and make an attempt to withdraw cash if needed. Similarly,

bank OrgUnits try to stock up cash to fulfill ATM and Bank withdrawal requests, and shop

OrgUnits stock up the items for their customers (i.e., citizens). The government OrgUnits

triggers ‘Demonetisation’ event at a specific day (an input parameter) of a simulation run.

Overall, the citizens exhibit significant individualistic, uncertain, and adaptive behaviour with

shops showing moderate dynamism whereas banks exhibiting largely deterministic behaviour.

7.2 Demonetisation 167

Figure 7.14 Simulation dashboard of Demonetisation case study

7.2.3 Instantiation, simulation and decision making

In this experiment, a simulation run is separated into three phases: setup, pre-demonetisation,

and post-demonetisation. Setup phase is an initial time span of a simulation run that derives

values of the input parameters, which are dependent on the formation of a society. For example,

the pre-demonetisation cash-flow rates and required cash stocks of the banks, required essential

and luxury commodities at a specific shops are examples of such parameters. Pre-demonetisation

phase is the time-span between setup phase and occurrence of demonetisation event. It is an

observation phase that validates normal operation of a society that includes: (i) Banks have

enough cash to service their customers; (ii) Shops have sufficient stock to cater to the needs of

their customers; and (iii) Citizens face no problems in buying items as well as withdrawing cash.

The post-demonetisation phase, in contrast, is an observation phase to understand the impacts of

the demonetisation event.

The OrgViz Data visualiser is configured to show specified Measures and Traces as shown

in Figure 7.14. Nine Measures are chosen to understand condition of a society at a specific time.

The ‘Citizen Type’ table describes citizens and their card/wallet usage capabilities. ‘Payment

Distribution’ pie chart shows distribution of Card (green), Wallet (blue) and Cash(red) payments.

‘Payment Transaction Volume’ chart describes the history of overall payment transactions where

card transactions are displayed in green, wallet transactions in blue, and cash transactions in red.

The ‘Cash Availability in Bank and ATM’ graph shows the history of cash availability at Banks

7.2 Demonetisation 168

and ATMs using red and blue colours respectively. Similarly, the ‘Transaction Declined Rate’

graph describes the denial of service at Banks and ATMs using red and blue colours. In addition,

‘Citizen with no Cash’ and ‘Citizen with excess Cash’ charts describe the financial condition of

the citizens: the former chart describes the number of citizens having considerably less cash,

and the latter represents the number of citizens hoarding cash. The cash dependent citizens are

displayed in red, cash and wallet dependent citizens in blue, cash and card dependent citizens

in green, and citizen with all facilities in yellow. The ‘Citizens without essential commodities’

and ‘Citizen facing inconvenience’ charts represent the number of citizens starving for essential

commodities and luxury commodities respectively.

For conducting experiments, a society with one government, one bank, 15 shops and 1710

citizen actors are simulated for 150 ‘Days’, where the first 15 days are considered for setup

phase, next 30 days are the pre-demonetisation phase, and 105 days are the phase to observe

post-demonetisation effects. A snapshot of simulation dashboard at the day of 115 (i.e., after

70 days of demonetisation) is depicted in Figure 7.14. As shown in the figure, the graphs

are unstable for first 15 days of simulation run as the OrgUnits are trying to set the values

based on the behaviours of other OrgUnits and their interactions. The simulation outcome for

pre-demonetisation phase is stable and normal: no bank withdrawal request is denied, no citizen

is facing any financial crisis, and citizens are not experiencing any deficiency for essential

or luxury commodities. The ‘Demonetisation’ event is triggered at day 45 causing a sudden

reduction of 86% of all cash from the bank, shops and individual citizens. Subsequently, the

withdrawals from bank and ATM decline whilst wallet payment and card payment increase

significantly: the citizens have started facing a financial crisis and the citizens who are solely

dependent on cash have started running short of essential and/or luxury commodities. The

adverse effects continue for almost 50 days and then the situation returns to normal.

The graph with title ‘Citizen with excess cash’ in Figure 7.14 shows 115 citizens are hoarding

cash when the situation is on the verge of returning back to normal. It is also observed that

cash dependent citizens are more prone to cash hoarding behaviour. The ‘Payment Transaction

Volume’ chart describing the history of overall payment transactions shows an interesting trend –

the card (green) and wallet (blue) usage have increased in first 30–40 days of post-demonetisation

phase, and then it slowly started reducing.

7.2 Demonetisation 169

Figure 7.15 Simulation summary of Demonetisation case study

The Measures are correlated with the information found in authentic press-releases5 and

newspapers6. The trends on cash conditions of different citizens (shown in ‘Citizen with no Cash’

and ‘Citizen with excess Cash’ charts in Figure 7.14), the inconvenience due to deficiencies of

essential commodities (shown in chart ‘Citizens without essential commodities’ in Figure 7.14)

and luxury commodities (shown in chart ‘Citizen facing inconvenience’ in Figure 7.14) for

cash dependent citizens, and service of denial at Bank and ATM withdrawal are in tune with

the reality. In reality, the cash conditions in ATMs and Banks at the end of January 2017

(after 3 and half months of demonetisation) were just sufficient to serve their customers – this

observation is consistent with the graph shown in ‘Cash Availability in Bank and ATM’ graph

of Figure 7.14. Alternative payment volume trend ‘Payment Transaction Volume’ chart also

matches with the Bloomberg report7. These observations and close correlations with reality

ensure operation validity of the experimental model and simulation. After ensuring the operation

validity, five what-if scenarios are developed either by modifying composition of society in

terms of its constituent elements and/or modifying the characteristics of the constituent elements

individually.

The scenarios and observed behaviours are summarised using a decision table in Figure 7.15.

The row 1 is the standard configuration of a society, which is described above. Other five

rows are the possible Levers that are explored as part of this experiment. The scenarios are:

(i) a society without cash-hoarder citizen (row 2), (ii) a society with more e-wallet users – a

case where citizens are convinced to use alternate payment options (row 3), (iii) reduced cash

withdrawal limits where cash withdrawal limits from banks and ATMs were respectively reduced

5https://rbi.org.in/Scripts/BS_PressReleaseDisplay.aspx?prid=38520
6https://www.livemint.com/Industry/nhnU8KQPxP6y9FHrm8paUN/100-days-of-demonetisation-A-Mint-

reading-list.html
7https://www.thequint.com/business/2017/02/17/demonetisation-100-days-indian-economy

7.2 Demonetisation 170

Figure 7.16 Payment transaction volumes of Demonetisation case study

to rupees 1000 and rupees 5000 per day per citizen (row 4), (iv) faster cash replenishment where

cash replenishment is 5 times faster than the standard configuration – a hypothetical case that is

considered to know the situation if the government was well-equipped with newly minted cash

(row 5), and (v) combination of the scenarios presented in rows 2, 3, and 4 of decision table

shown in Figure 7.15.

Detailed simulation results8 with operational graphics are not included in this section.

Instead the results are summarised in Figure 7.15. The column ‘No Denial of service at Bank

and ATM’ represents the day when denial of ATM and Bank withdrawal services are dipped

below 5% in ‘Transaction Declined Rate’ graph (see Figure 7.14 as reference); column ‘Citizen

with No Cash’ represents a tuple describing the peak value (i.e., maximum number) of cashless

citizens during post-demonetisation phase and time-span of ‘Citizen with no Cash’ graph (see

Figure 7.14); and column ‘Cash hoarder After 105 days’ describes the number of citizens who

are converted to cash hoarder at the end of simulation (captured from ‘Citizen with excess Cash’

graph). Similarly the columns ‘Citizens without essential item’ represents a tuple describing

maximum number of citizens who were lack of essential items (from ‘Citizens without essential

commodities’ chart) and time-span of such kind of inconvenience; and ‘Citizens without luxury

items’ represents tuple describing maximum number of citizens who were lack of luxury items

(from ’Citizen facing inconvenience’) and time-span.

A comparative analysis of rows 1-4 of Figure 7.15 shows that the hoarding behaviour is

one of the contributing factors for prolonged cash shortage – note row 2 is addressing the cash

shortage issue better than other options. However, ATM and Bank withdrawal limits, as shown

in row 4, are found as being critical to mitigate cash-less conditions and deficiencies of essential

and luxury items – significant contributors to citizen inconvenience. This observation is in tune

8https://www.dropbox.com/s/q6xtz9el3sa6qzs/Demonetisation%20Experiment.pdf?dl=0

7.2 Demonetisation 171

with the reality – the government had realized the importance of cash-limits after a week of

demonetisation, and tried to arrive at optimum value through multiple alterations9.

It was felt that faster introduction of new currency to banks and ATMs can lead to reduced

inconvenience to the citizens. A simulation run with faster cash-replenishment (5 times more

than standard configuration as shown in row 5) resulted in fewer cash shortages and less

inconvenience to the citizens compared to other options. However, this option does not help to

achieve less-cash society (as shown in column named as ’Transaction Distribution’ of row 5).

As cash was readily available in the desired quantity, citizens resorted to old habits i.e., falling

back on payments in cash at the exclusion of electronic payment options such as credit/debit

cards and wallet payments as shown in the trace analysis depicted in Figure 7.16 (a) and (b)

(where (a) is standard configuration and (b) is faster cash replenishment option respectively).

As part of exploring possible options that have the potential to reduce negative impacts

of demonetisation while moving towards the less-cash society, an option that combines the

options described in rows 2, 3 and 4 of Figure 7.15 is explored. The observed simulation

results are recorded in row 6 of Figure 7.15 and Figure 7.16 (c). The result indicates significant

improvement towards less-cash society as the alternate payment modes, i.e., card and wallet

transactions, in Figure 7.16 (c) are high as compare to Figure 7.16 (a) and 7.16 (b). The citizens

without essential commodities and citizens without luxury commodities are also less as compare

to the options depicted in rows 2, 3 and 4. Thus this experiment recommends a coordinated and

judicious usage of multiple alternatives to achieve the specified goals.

7.2.4 Summary

This case study demonstrates four principal capabilities – (i) ability to form a system using a

bottom-up approach. For instance, the society is formed by composing a set of citizens, banks

and shops, (ii) emerging behaviour: the behaviour of the society is not specified but emerges from

the micro-behaviours of the individual elements and their interactions, (iii) adaptability: citizens,

shops and banks adapt to a new set of behaviours based on their conditions (i.e. expression

of state variables) to represent post-demonetisation phase, and (iv) inheritance relationships

to capture only cash dependent citizens, cash and wallet dependent citizens, cash and card

dependent citizens and the citizens who use all options.

9https://en.wikipedia.org/wiki/2016_Indian_banknote_demonetisation

7.3 University case study 172

Table 7.2 Activities of Academics and Students

Key Element Activities
Research
Academic

Research, Paper Writing, Managerial Work, Unplanned Work (Query Resolution,
Complain Resolution)

Teaching
Academic

Prepare for Lecture, Deliver Lecture, Prepare for Student Assessment, Assess Student,
Unplanned Work (Query Resolution, Complain Resolution)

Research and
Teaching
Academic

The combination of the activities of Research Academic and Teaching Academic

Student Attend Lecture, Self Study, Appear for Assessment, Raise Query, Raise Complaint

Consistent with the other case studies, this case study also demonstrates modularity, com-

posability, reactiveness, autonomy, uncertainty and temporal behaviour. In addition, this case

shows an illustration to understand the impact of a disruptive event on a complex socio-technical

system using a synthetic environment. Precisely, a representative model is formed by mimicking

well-defined micro-behaviors of the system elements, the fidelity of the model is established

by correlating simulation results with real-life data collected from authentic sources, and the

experimentation is conducted using actor-based bottom-up simulation approach to understand

the impact of Indian demonetisation.

7.3 University case study

This case study considers a set of decision making scenarios of a department of ABC university

used throughout the thesis as a running example. Consistent with the university goals, the

department under consideration aims to improve its ranking by improving teaching quality and

research outcomes. As discussed earlier that there are several courses of action or levers that can

be explored to know which is the best suited for achieving departmental goals. This case study

limits the explorations to (i) research and teaching academics distribution, (ii) define appropriate

work preferences of the academics, and (iii) define suitable student/academic ratio.

7.3.1 Problem entity

Consider a department of ABC university that offers a set of courses to the undergraduate

students and focuses on research activities. Every year, the students get enrolled on to the

courses, teaching academics deliver a set of modules, and research academics make scholastic

impacts through research. The teaching academics prepare and deliver lectures, prepare student

assessments, evaluate students, and publish grades. The research academics undertake a range of

7.3 University case study 173

Figure 7.17 Behaviours of active elements of University

research activities that include conducting research work and publishing research papers. Some

academics do both teaching and research. All such academics are responsible for clarifying

student queries and resolving student complaints. These academics can work for a department

on a part time or full time basis. Students attend lectures for their enrolled modules and appear

for assessments to get grades. Students may raise queries in case of any doubt and they may

raise complaints for longstanding unanswered concerns/queries. The typical activities of these

individuals are highlighted in Table 7.2.

The generic behaviours of the academics and students are depicted using a simple state

machine in Figure 7.17 (a). As shown in the state machine, an individual may start performing

an activity from Table 7.2 for a specific time slot; from the Free state the individual moves to

Busy state while performing the started activity and returns back to Free state at the end of

it. In addition to this normal behaviour, an individual may suddenly interrupt an activity and

returns back to Free state to initiate a high priority activity as shown in the state machine.

Precise micro-behaviours of a research academic, teaching academic and student are il-

lustrated using non-deterministic state machines in Figure 7.17 (b), (c) and (d). As shown

in Figure 7.17 (b), a teaching academic starts preparing for a lecture and eventually reaches

7.3 University case study 174

the Prepared state from Not Prepared state. Ideally, the teaching academics should deliver

lectures when they are in Prepared state. However, they need to deliver lectures based on

the department timetable (schedule), which is independent of the state of a teaching academic.

Therefore a teaching academic may have to deliver a lecture either from Prepared state or

from Not Prepared state. The teaching academic becomes busy and moves to Delivering

Lecture state while delivering lecture, and they return to Prepared or Not Prepared state

for the next lecture after delivering a lecture. The non-determinism and temporal uncertainty in

the micro-behaviours presented in Figure 7.17 (b) are: (a) the transition from Not Prepared

to Prepared state, and (b) the transition from Deliver Lecture state to Prepared or Not

Prepared state.

The micro-behaviour presented in Figure 7.17 (c) describes the research and publication

behaviour of a research academic. A research academic typically starts with Inadequate

Research state when they are new to a research area. Eventually they move to Adequate

Research state after researching on a topic for a specific period. From Adequate Research

state, they may continue their research and stay at Adequate Research state, return back to

Inadequate Research state by changing research topic or start writing papers by moving to

Paper Writing state. From Paper Writing state, they have the following options - (i) stay

at Paper Writing state and continue paper writing, (ii) return back to Adequate Research

state and continue research work, or (iii) move to Inadequate Research when all research

ideas are communicated and need further research for new publication.

The illustrative micro-behaviour of a student is presented Figure 7.17 (d). A student attends

lectures and does self-study to prepare for modules. The evaluation of a module is conducted

based on its schedule; therefore a student may have to appear for an evaluation from any of the

two states: Not Prepared and Prepared. The propensity to reach Completed with good

grade is high for a student if an evaluation is conducted on Prepared state, and Completed

with moderate grade is high when the evaluation is conducted on Not Prepared state.

However, there is a probability to reach any of the two states irrespective of their originating

state as shown in the figure.

The overall behaviour of the department emerges from a set interacting micro-behaviours of

the academics and students. Therefore, it is not possible to know the overall behaviour a-priori.

The decision makers, such as a Dean and Head of Departments (HoD), judge the situations based

on their experiences to explore decision alternatives such as: Is there any better distribution

7.3 University case study 175

Figure 7.18 OrgML specification of University Department

of research and teaching academics that can improve the overall goal? Is the change in work

priority of the academics useful to improve teaching and research qualities? Is a change in

student/academic ratio useful for achieving goals? etc.

7.3.2 OrgML model

The above described problem entity is modelled using three primary OrgUnits: Department,

Academic and Student to represent department, academics and students. The key elements of

the OrgML model is depicted in Figure 7.18. The modelled OrgUnits are described below:

7.3 University case study 176

• Academic: Academic OrgUnit has a set of Parameters for characterisation and a set

of Variables to capture its State. For examples, Parameter ‘workingHours’ decides

whether an academic is a full-time/part-time member of staff and ‘workPriority’ describes

the work priority of an academic (i.e., preference to perform an activity from the list

described in Table 7.2). The Variable ‘currentActivity’ captures the state of an academic

(i.e. ‘Free’ or ‘Busy’ with an activity), ‘queryRaised’ captures the number of queries

raised for the academic, ‘complaintReceived’ describes the number of complaints received

by the academic and ‘workDistribution’ captures the activities performed by an academic

(i.e., hourly activities for working days/weeks/months). Academic OrgUnit receives

‘Complaint’ and ‘StudentQuery’ IncomingEvents and acts on them using ‘QueryResolu-

tion’ and ‘ComplaintResolution’ Actions respectively.

The Academic OrgUnit is specialised into three sub-OrgUnits to represent teaching

academics, research academics and the academics who focus both research and teach-

ing. The TeachingAcademic OrgUnit captures offered modules using ‘moduleOffered’

Parameter and keeps the records of teaching preparation hours, number of lectures de-

livered with adequate preparation, number of lectures delivered with less preparation and

number of lectures missed using ‘teachingPreparationInHours’, ‘lectureDeliveredWith-

Preparation’, ‘lectureDeliveredWithLessPreparation’ and ‘lectureMissed’ Variables.

From behavioural perspective, the TeachingAcademic subscribes TimeEvents specified

in Calendar. It delivers lectures by raising ‘DeliverLecture’ OutgoingEvent when they

receive a ‘LectureSlot’ and not busy with high priority activity. A TeachingAcademic

misses a lecture if the academic is busy with high priority activity. In addition, the Teachin-

gAcademic assesses students by raising the ‘AssessStudent’ OutgoingEvent. Internally,

TeachingAcademic prepares for lecture and student assessment using ‘PrepareForLecture’,

‘PrepareForAssessment’ Actions, which are triggered by internal events based on the

‘workPriority’ and current state (i.e., ‘currentActivity’) of a ResearchAcademic.

A ResearchAcademic keeps a record of research done (in hours), time spent on paper

writing, number of paper submitted, number of paper accepted and number of paper

rejected using ‘researchWorkCompleted’, ‘paperWritingWorkCompleted’, ‘paperSub-

mitted’, ‘paperAccepted’ and ‘paperRejected’ Variables. It receives paper deadlines

using ‘PaperDeadline’ IncomingEvent and may submit papers using ‘SubmitPaper’

OutgoingEvent. A ResearchAcademic researches on a specific topic using ‘Research’

7.3 University case study 177

Action and writes paper using ‘WritePaper’ Action. They are triggered by the inter-

nal events based on the ‘workPriority’ and ‘currentActivity’ of a ResearchAcademic.

The OrgUnit TeachingAndResearchAcademic is the composition of ResearchAcademic

OrgUnit and TeachingAcademic OrgUnit definitions and their ‘workPriority can be

defined based on the activities listed for TeachingAcademic and ResearchAcademic as

shown in Table 7.2.

• Conference: The Conference OrgUnit is an aggregated and simplified model of confer-

ences. It triggers ‘PaperDeadline’ (along with call for paper) at a time interval, receives

paper submissions (using ‘Submission’ IncomingEvent, reviews them using ‘Review

‘Action’ and sends ‘Notification ‘OutgoingEvent’.

• ResearchAgency: Similar to Conference OrgUnit, ResearcgAgancy OrgUnit is an

aggregated and simplified model of the research funding agencies. It raises Request for

Proposal (RFP), receives proposals, evaluates them and notifies evaluation outcome as

shown in Figure 7.18.

• Student: Student OrgUnit is characterised by a set of Parameters that include ‘propensi-

tyOfStudy’ (i.e., probability of study when a student is in ‘Free’ state), ‘moduleRegistered’,

‘propensityToRaiseQuery’ (i.e., probability of raising a query at a given time) and ‘propen-

sityToRaiseComplaint’ (i.e., probability of raising complaint at given time). The state

of a student is determined by a set of Variables such as ‘currentActivity’ (i.e., current

activity of a student – it includes ‘Free’ state as well), ‘preparation’ (i.e., number of hours

studied by a student), ‘activityDistribution’ (i.e., activities performed by a student) and

the ‘grades’ of a student.

Behaviourally, a student may attend lectures when they receive a ‘Lecture’ IncomingEvent.

They appear for assessments by performing ‘Assessment’ Action on an IncomingEvent

named as ‘Assessment’. A student performs ‘SelfStudy’ Action based on ‘propensi-

tyOfStudy’. Action ‘SelfStudy’ updates ‘preparation’ Variable. It may raise ‘Query’

and ‘Complaint’ OutgoingEvents based on ‘propensityToRaiseQuery’ and ‘propensity-

ToRaiseComplaint’ Parameters.

• Department: Department is a composite OrgUnit that contains Academics and Students

and consolidates individual Measures at the department level. As shown in Figure 7.18,

7.3 University case study 178

it contains a set of ‘fulltimeAcademics’, ‘parttimeAcademics’ and ‘students’. The distri-

bution of TeachingAcademic, ResearchAcademic and TeachingAndResearchAcademic

of the department is defined by ‘distributionOfAcademics’ Parameter. Department

specific consolidated values of the number of papers submitted, number of papers ac-

cepted, queries raised, complaints raised, classes/lectures not taken by the academics,

number of lectures with less preparation and number of lectures with adequate prepara-

tions are respectively captured using ‘paperAccepted’, ‘paperRejected’, ‘queryRaised’,

‘complaintRaised’, ‘classNotTaken’, ‘classTakenWithLessPreparation’ and ‘classTaken-

WithPreparation’ Variables.

The Goals, Goal decomposition structure and Measures of this case study are also shown

in Figure 7.18. As depicted, the high-level goal of the modelled department is ‘Improve

Departmental Ranking’. This top-level Goal is decomposed into two sub-goals: ‘Im-

prove Research Ranking’ and ‘Improve Teaching Ranking’. The goal ‘Improve Research

Ranking’ is a LeafGoal that maps to ‘Accepted Papers Measure wherein the Measure

‘Accepted Papers is linked to ‘paperAccepted’ Variable of Department OrgUnit. On

the other hand, Goal Improve Teaching Ranking’ is decomposed into two LeafGoals:

‘Improve Teaching Quality’ and ‘Improve Student Satisfaction’. The LeafGoal ‘Improve

Teaching Quality’ is mapped to Measure ‘Lectures With Adequate Preparation’, which

links to ‘classTakenWithPreparation’ Variable. Similarly LeafGoal ‘Improve Student

Satisfaction’ is mapped to Measure ‘Number of Complaints’ that links to ‘complain-

tRaised’ Variable of Department OrgUnit.

Five VariationPoints are specified to describe Levers. The VariationPoints are:

– Number of full time academics (i.e., ‘fulltimeAcademics’ Parameter of Department

OrgUnit)

– Number of part time academics (i.e., ‘parttimeAcademics’ Parameter of Depart-

ment OrgUnit)

– Distribution of the academics (i.e., ‘distributionOfAcademic’ – ratio of TeachingA-

cademics, ResearchAcademics and TeachingAndResearchAcademics of the Depart-

ment OrgUnit)

– Number of students (i.e., ‘students’ Parameter of Department OrgUnit)

– Work priority of the academics (i.e., ‘workPriority’ Parameter of Academic OrgUnit)

7.3 University case study 179

Figure 7.19 Input parameters of a Department

• Course and Module: Course and Module are modelled as DataUnits. Each Course

is comprised of multiple Modules where a Module contains information about module

credit, lecture slots, and typical preparation time for a well prepared lecture.

• Calendar: Calendar specifies five TimeEvents that represent: ‘Hour’ (a primitive time

event), ‘Day’ (eight hours), ‘Week’ (five days), ‘Month’ (4 weeks), ‘LectureSlot’ and

‘AssessmentSlot’. The ‘LectureSlot’ and ‘AssessmentSlot’ are a complex time expression

as discussed in Figure 5.13 of Chapter 5.

7.3.3 Instantiation, simulation and decision making

For experimentation, the above OrgML model is instantiated for a Department named as ‘CSE

Department’ as shown in Figure 7.19. As depicted, the ‘CSE Department’ is formed using 1200

7.3 University case study 180

Figure 7.20 Simulation dashboard of University case study

Students and 30 full time Academics with 20:60:20 percent distribution of TeachingAcademics,

TeachingAndResearchAcademics and ResearchAcademics. The work priorities of all three types

of academics are shown in the figure. Further, the ‘CSE Department’ is configured to offer six

Courses where each Course is comprised of four Modules. The course names, their modules, and

time slots of the modules are also shown using a set of tables in the figure. In this formulation,

the instances of TeachingAcademic offer one or more Modules and they consider unplanned

activities, such as addressing queries and complaint, as a high priority activity. The rest of the

activities are prioritised as: teaching work, preparation for teaching and then assessment. On the

other hand, the instances of ResearchAcademic prioritise their activities as: complaint resolution,

research work, writing paper, other unplanned activities.

The configured and instantiated OrgML model is translated to ESL (using OrgML to

ESL transformation rules), simulated for one ‘Year’ using ESL engine and Measures are

observed through OrgViz Data Visualiser. The simulation Dashboard showing an overview

of the departmental Measures are shown in Figure 7.20. It shows the formulation of ‘CSE

Department’, offered Modules of the TeachingAcademics and the specified Measures. The

Dashboard shows – 215 papers are submitted in a ‘Year’, 140 papers got accepted, 58 paper

got rejected, 321 queries are raised by the students, 55 complaints are raised by the students, a

total of 55 lectures are missed by the academics, 273 lectures are delivered with less preparation

7.3 University case study 181

Figure 7.21 Status of Academics

Figure 7.22 Status of Students

and 1545 lectures are delivered with adequate preparation. The overall teaching statistics of the

department is also shown using a pie-chart in the figure.

The trace and latest snapshot of the work distribution of four (random) academics are

shown using tables and pie-charts in Figure 7.21. Similarly, the trace and snapshot of activity

distribution of four (random) students are shown in Figure 7.22. These graphs together show an

indicative state of CSE department for the stated configuration.

7.3 University case study 182

Figure 7.23 Consolidated simulation results

Now the decision questions are what will be state of CSE department (after one year) if it

adopts different configurations, such as more research academics, more teaching academics,

different distributions of research and teaching academics, different priorities of the academics

or different students/academics ratio. These scenarios are explored by changing department

formulation and observing simulation results. The observations are captured using a decision

table as shown in Figure 7.23. The observations are: adding more research academics may not

lead to better research outcomes (row 2). The change in work priority of the teaching academics

(i.e. prioritising teaching activity as compared to assessment, query resolution and complain

resolution) helps in improving teaching quality but negatively impacts the students satisfaction

(row 3). Increase of teaching academics improves the student satisfaction but other goals are

remain unaddressed (row 4). A better student/academic ratio (row 5) may not be an useful lever

unless the additional academics are recruited appropriately as shown in Row 5. A distribution

of teaching, research and teaching, research academics = <35, 35, 30>, as shown in row 6,

produces most desirable outcome among the alternative experimented in this case study. This

experiment provides an indication for further explorations. For instance, the decision table

depicted in Figure 7.23 indicates a possibility to arrive at a better alternative by combining

better distribution (as shown in row 6) and better work preference (as shown in row 3). Multiple

such explorations help decision makers to arrive at a decision, which is backed by quantitative

evidences. Moreover, these simulation explorations provide an indication of the positive and

negative consequences of the alternatives before implementing them in reality.

7.4 Evaluation 183

7.3.4 Summary

This case study shows a scenario where a middle out modelling approach and combination of

individualistic and aggregated behaviors are a pragmatic consideration for system specification

and analysis. For example, the University can be decomposed into many departments and

departments can further be segmented into research and teaching units by observing a University

from a top-down perspective whereas the behaviour of a department or a research/teaching unit

of the department can only be specified using behaviours of the academics and their interactions.

Similarly, the individualistic behaviours of academics and students are necessary to describe and

understand a department but the entities such as conferences, which are not the key elements for

an analysis, can be aggregated for pragmatic realisation.

7.4 Evaluation

The previous three sections (and Appendix E) demonstrate the efficacy of the proposed OrgML

based approach to simulate a range of what-if analyses and utility of OrgViz Data Visualiser

to observe required measures for organisational decision making using four case studies with

varying characteristics. For instance, the case study on SSPO illustrates how hierarchically

decomposition structures (or a system of systems) of a fairly mechanistic organisation can be

modelled and analysed using proposed approach. The case study on BPO organisation models an

organisation as a monolithic OrgUnit. It demonstrates how an organisation and its competitors,

which are competing with each other to achieve their goals in an uncertain environment, can

be modelled and analysed. This case study shows a possible way to create an environment

to analyse competition, collaboration and Nash-equilibrium point of a competitive business

environment [18]. The case study on Demonetisation is a case where bottom-up modelling,

probabilistic behaviours, adaptation, and emergent behaviour of a system are demonstrated.

It also shows how a set of hypotheses can be evaluated using a simulation-based synthetic

environment. Finally, the case study on University is formulated to demonstrate how the

proposed approach supports autonomy and emergent behaviour, middle out modelling approach,

and combination of individualistic and aggregated behaviours in a simulation setting.

The rest of this section evaluates the proposed research contributions along three dimensions

– (i) the research artifacts are compared with respect to the state-of-the-practice and state-of-the-

art technology aids to report improvements (along the requirements discussed in Table 3.3 of

7.4 Evaluation 184

Chapter 3), (ii) the applications of the proposed approach in different styles of organisational

decision making (as highlighted in Chapter 3) are discussed, and (iii) the feedback received while

research publications, tutorial presentation and industrial interactions are briefly summarised.

7.4.1 Comparison and improvements

For the kinds of decision-making problem illustrated in this chapter, industry practice mostly

relies on spreadsheets, documents and diagrams. Such an approach captures the Measures

and Traces of an organisation and specifies how they influence organisational Goal in terms

of static algebraic equations. These equations are typically formulated based on the past

observations and the experiences of the decision makers. The lack of support in expressing

temporal behaviour, stochastic behaviours, adaptation and cyclic dependency over time limit

the use of spreadsheets as data computation aid as opposed to a decision making tool. For

example, the number of projects won in a month/quarter/year for given arrival rate of LMLR,

MMLR, MMHR and HMHR of a Software Service Provisioning Organisation can be computed;

the number of projects completed in a month/quarter/year can also be computed if number

of resources are fixed; but predicting number of projects completed or whether a project is

completed on time is not possible using spreadsheets when the number of resources changes in

a project execution (due to attrition) or the productivity of individual resources differ over time

(e.g., more productive when they stay in project for longer period).

The inferential approach is often considered to solve organisational decision-making prob-

lems. It mines relevant historical data using data analytics and Artificial Intelligence (AI)

techniques to identify the course of action that has resulted into best desirable outcome till date.

The key concern of such approach is data adequacy and veracity. For instance, no historical data

was available when Demonetisation initiative was implemented in India. Similarly, the data

available in various Software Service Provisioning Organisations, Business Process Outsourcing

orgaisations and Universities are often incomplete and fragmented. Moreover, the dynamic envi-

ronment where they operate also changes over time, which makes the existing data less relevant

for decision-making. For example, the bid evaluation strategies of Software Service Provisioning

Organisation and Business Process Outsourcing organisation have changed significantly over

time. They are much more competitive than the past. The cost arbitrage, quality of delivered

software/service, the recognition from independent agencies are more important contemporary

factors. Similarly the dynamics of the employee joining and leaving an organisation, their ability

7.4 Evaluation 185

to work as individual and with the productivity tools have also changed significantly over the

years. Therefore, the strategy that worked in the past may not be an effective solution at present

or in the future.

Another prominent approach is top-down modelling and simulation, such as Stock and

Flow (SnF) [78]. An experimentation using multi-modelling and co-simulation that uses three

prominent top-down EM techniques: i* [219], BPMN [209] and Stock and Flow (SnF) [78]

is conducted on SSPO. The detailed experiment, models and simulation results are described

in Appendix F. The goals of SSPO (as presented in Figure 7.3) is modelled using i* , the

business process (i.e. the state-machine depicted in Figure 7.3) is specified using BPMN and

overall dynamics of SSPO is specified using a SnF. In SnF model, the Measures are represented

as Stocks, the factors that influence Measures are represented using Flows, the aggregated

behaviour is encoded as equations over system variables that control the Stocks and Flows, and

Levers are represented using auxiliary variables. The uncertainty and stochastic behaviour are

specified using the probability distributions over stock variables and auxiliary variables of the

SnF model. The temporal behaviour is captured by introducing appropriate time events and

delays.

The experimentation is conducted using a tool-chain that includes OpenOME10, Bizagi11

and iThink12. As reported in [21], the what-if analyses exploring a set of Levers generate

quantitative data to understand the long-term and short term implications of a set of Levers so

that decision makers can take an informed decision. The issues which are observed from the

experiments are:

• Specifying Individualistic behaviour: In an aggregated model, the individual character-

istics get eliminated through averaging and the discrete events that may get triggered from

multiple individual interactions are converted into probabilistic occurrences of events.

Therefore, these models are somewhat removed from the reality and incapable of mim-

icking the emerging behaviour. For an instance, consider a junior resource of a software

service organisation becomes a senior resource after a number of years. It is possible to

capture this dynamism in a systems dynamic model but the impact of improved productiv-

ity and additional cost for this junior-to-senior transition in a specific project cannot be

detected in a model that uses aggregation. Similarly, it is possible to determine the number

10www.cs.toronto.edu/km/openome
11https://www.bizagi.com
12https://www.iseesystems.com/store/products/ithink.aspx

7.4 Evaluation 186

Table 7.3 Technology advances

Requirements EM
Specs

Actor
Lang. ESL OrgML OrgML Concepts

Why
√

⊥ ⊥
√

Goal
What

√ √ √ √
OrgUnit

How
√ √ √ √

Event and Behaviour
Who

√
⊥ ⊥

√
OrgUnit

Where
√

⊥ ⊥ ⊥ OrgUnit
When

√
⊥ ⊥ ⊥ TimeEvent and Calendar

Modular
√ √ √ √

OrgUnit
Compositional ⊥

√ √ √
Composition relationship

Reactive ⊥
√ √ √

IncomingEvent, OutgoingEvent
Autonomous ×

√ √ √
InternalEvent and TimeEvent

Intentional
√ √

⊥
√

Goal
Adaptive ⊥

√
⊥

√
Adaptive Behaviour

Uncertainty × ⊥
√ √

Stochastic Behaviour
Temporal ⊥ ×

√ √
Temporal Behaviour

Measure Spec × × ×
√

Measure
Lever Spec × × ×

√
Lever

Top-down/
Bottom-up

Top-
down

Bottom-
up

Hybrid Hybrid
Composition Relationship, Shared State

Variable√
: Supports adequately, ⊥: Can be specified with difficulties, ×: Not supported

of projects completed over time given a certain joining and resigning characteristics, but

determining the projects which are delayed due to attrition is not possible.

• Specifying specialised behaviour: Though a SnF model is not intended for specialised

behaviour, it is possible to argue that it can be specialised for detailed analyses. But

the effort required to specialise a SnF model at the level of types leads to model size

explosion e.g., specialisation of the notion of project into LMLR, MMLR, MMHR and

HMHR projects and of the notion of resource into Junior, Skilled Junior, Senior and

Expert resources in SSPO case study leads to 16 fold increase in model size. Similarly,

introducing a new competitor with different parametric values also need additional SnF

models.

• Specifying localised behaviour: SnF models offer poor support for modularity and

change isolation. For example, incorporating a change in the bidding strategy of a specific

kind of project (e.g., the decision not to bid HMHR projects when significant project

pipeline is built up) in SSPO case study may impact many flows and equations of SnF

model. Similarly, the Lever definitions that involve localised structural and behavioural

changes, such as different formulation of a Department or Academics with new set of

7.4 Evaluation 187

activities in University case study, require complete reformulation of the Stock-and-Flow

model.

In contrast, the OrgML based approach enables modelling of a system of systems using a set

of hierarchically composable autonomous OrgUnits each listening/responding/raising events of

interest. Each individual system or OrgUnit encapsulates state (i.e., a set of State variables),

trace (i.e., earlier states and events it has responded to and raised till now) and behaviour (i.e.,

encoding of individual reactions). The behaviours and reactions are largely dependent on the

state and trace of the OrgUnit. They interact with each other by sending messages resulting

into emergent behaviour (i.e., the behaviour of system of system emerges from interactions of

OrgUnits or systems). Therefore, this thesis claims the proposed approach provides primitives

for creating models that more closely mimic the reality.

The effectiveness of four approaches, i.e., EM based approach (as discussed in [21, 120]),

pure actor language based approach (such as [42]), ESL based approach (as presented in [121]),

and proposed OrgML based approach are summarised in Table 7.3. As shown in the table, an

EM based approach and an actor language based approach are complementary in nature. The

former one supports aspect (i.e., why, what, how, etc.) specification and a top-down simulation

approach, whereas an actor language based approach is more effective for representing socio-

technical characteristics and bottom-up simulation approach. But, it is not convenient for

aspect specification. ESL is an improvement over actor languages as it supports uncertainty,

temporal behaviour, and the bottom-up and top-down combination. However, ESL is a general

purpose actor based simulation language and it is not convenient to specify why, who and

where aspects and decision making constructs: Goal, Measure and Lever. Hence OrgML is

further improvement as a specification language for organisational decision-making. It helps

in expressing the most of the requirements in a convenient manner. Moreover, the proposed

method helps to convert OrgML specification into a machine interpretable form and OrgViz Data

Visualiser helps to visualise simulation data using user-specified visual forms for better sense

making. Therefore, these capabilities collectively help decision makers to address complex

dynamic organisational decision-making.

7.4.2 Applicability

The research artifacts produced in this thesis can be used as technology aids to address

programmed decision-making, nonprogrammed decision-making and all four organisational

7.4 Evaluation 188

decision-making method templates or styles, which are discussed in Chapter 3. The programmed

decision-making focuses on mechanistic organisations that are mostly governed by a fixed set of

rules, which can be specified using Action specification proposed in this thesis. The nonpro-

grammed decision making considers system behaviours with significant uncertainty as discussed

in all four case studies. Therefore, it is argued that both programmed and nonprogrammed

decision-making can be addressed using proposed approach.

It can be argued that this approach can address all four organisational decision making

styles – Management Science [8], Carnegie model [66], Incremental Process model [141] and

Garbage Can model [60] (discussed in Chapter 3). The Management Science style considers

precise Goals and explores finite and fixed set of Levers for mechanistic organisation. They

are typically addressed using OR techniques. However, this approach can also be used for

such problems as demonstrated in SSPO case study. In Carnegie model, the high level Goals

are known and Levers are partially known as highlighted in BPO case study. For example,

the primary goal of ‘We’ organisation (described in BPO case study) is to secure a leadership

position but expected quantitative values of the Measures to achieve its goals are not known

as it is a competition environment. The BPO case study shows how this approach can be

used for such kind of decision-making problems. Moreover, the Carnegie model recommends

discussion, negotiation, coalition and bargaining to resolve conflicting beliefs about the possible

consequences and arrive at a consensus decision [92]. It can be argued that such activities can

be supported though specific what-if simulation and simulation results. In the Incremental

process model, the decision-making starts with high-level Goals and fine-grained Levers. The

effective Levers are typically identified/defined while experimenting with known set of fine-

grained Levers in an incremental manner. In the Demonetisation case study, the less cash

transactions is considered as one of the goal and the known set of Levers are to change in the

micro behaviour of active elements, such as: citizen should not hoard cash and Bank should

reduce cash withdrawal limit. The case study started with such micro-level changes and ended

up with a Lever definition that combines multiple localised changes that need to be applied

in a specific order (e.g, row 6 of Figure 7.15). The Garbage Can model or anarchy style that

does not recommend a specific sequence, i.e., Goals and Levers evolve and are evaluated

simultaneously.

7.4 Evaluation 189

Table 7.4 Validation through Communications

Publications
Research
Activity Research Artifact Outcome Conference &Journal

Problem
Identification

Research Problem and its relevant
Model Driven Engineering

Languages and Systems (MoDELS)
2015, [RP12]

Literature
Review

Systematic Literature Review of
Enterprise Modelling (EM) techniques

Practice of Enterprise Modeling
(PoEM 2016) [PR10]

Experimentation

Experimentation with existing
modelling and multi-modelling

techniques

Enterprise Modelling and
Information Systems Architectures

(EMISA) 2018, [RP2]
Experimentation with various modelling

and meta-modelling approaches
European Simulation and Modelling

Conference (ESM) 2016, [PR9]

Conceptualisa-
tion

Hypotheses, conceptual model and
requirements of organisational decision

making

International Conference on Software
Engineering and Applications
(ICSOFT-EA) 2016, [RP11]

Research

OrgML meta model
European Simulation and Modelling

Conference (ESM) 2017, [RP4]
Model construction and decision

making method
Practice of Enterprise Modeling

(PoEM 2017) [PR5]
Contributions OrgML based approach MoDELSWARD 2017, [RP6],

OrgML based approach and method
Model-Driven Engineering and

Software Development – Spinger
Book Chapter, [RP1]

Evaluation

Software Service Provisioning
Organisation Case Study

European Simulation and Modelling
Conference (ESM) 2017, [RP4]

Business Process Outsourcing Case
Study

European Modeling and Simulation
Symposium (EMSS) 2017, [RP8]

Demonetisation Case Study
Winter Simulation Conference

(WSC) 2017, [RP3]

University

Tutorials Practical Applications of
Agents and Multi-Agent Systems
(PAAMS) 2016 , Model Driven

Engineering Languages and Systems
(MoDELS) 2017

Doctoral Consortia

1. Practical Applications of Agents and Multi-Agent Systems (PAAMS) 2017, [DC1]

2. Practice of Enterprise Modeling (PoEM) 2016, [DC2]

Tutorials and tech briefing

1. Practical Applications of Agents and Multi-Agent Systems (PAAMS) 2016

2. Model Driven Engineering Languages and Systems (MoDELS) 2017

3. Innovations in Software Engineering Conference (ISEC) 2018

4. Model Driven Engineering Languages and Systems (MoDELS) 2018

7.5 Limitations, threats and further improvements 190

7.4.3 Research artifact communications

Consistent with Design Science Research (DSR) guidelines (as highlighted in Table 2.2 of

Chapter 2), the research artifacts and approach are reported in top-tier conferences, introduced

as a new technological aid for organisational decision-making in multiple tutorial sessions

in top conferences, presented in two doctoral consortia and discussed with several industrial

practitioners. The research artifact validation through this list of publications, tutorials and

doctoral consortia are summarised in Table 7.4.

7.4.4 Evaluation summary

This evaluation conforms to the research methodology described in Chapter 2. The Artificial

and Ex-Post evaluations using four synthetic yet close to real life case studies and improve-

ment analysis demonstrate the efficacy and utility of the research hypothesis and the proposed

approach. Validations establish the usefulness of the research hypotheses that include the use

of actor-based modelling abstraction and bottom-up simulation technique to capture complex

organisation for decision-making. The case studies show the proposed concept model (presented

in Chapter 3) and the requirements (described in Table 3.3 of Chapter 3) appear to be necessary

and sufficient for organisational decision-making. OrgML meta-model (presented in Chapter 5)

and OrgML specification language (presented in Chapter 6) are capable of representing the

necessary information for organisational decision-making in an effective and integrated manner.

Model transformation rules to translate OrgML into ESL (presented in Chapter 5) can produce

specification for simulation-driven what-if analysis. Moreover, the proposed integrated and

iterative method is useful for constructing organisational models and performing required what-if

analyses in a systematic manner.

In addition to the efficacy, the proposed OrgUnit abstraction helps to improve the structural

clarity [161] (refer Figure 2.3) of the organisational model and simulation-aided decision-making

introduces an open-ended learning capability leading to organisational decision-making.

7.5 Limitations, threats and further improvements

While the proposed approach has been demonstrated to be an effective aid for a range of

organisational decision-making problems, it does have limitations and it is vulnerable to certain

threats. This section highlights the limitations of the proposed approach, discusses possible

7.5 Limitations, threats and further improvements 191

threats to validity of the proposed approach and presents some improvement ideas as future

work.

7.5.1 Limitations

The limitations of the proposed approach can be categorised into two broad classes – (i)

specification and simulation related limitations and (ii) implementation related limitations.

From specification and simulation perspective, the proposed OrgML meta-model and spec-

ification language are not suitable for representing (and therefore analysing) geographical

properties (i.e. spatial relationships). Secondly, the proposed approach is principally based on

discrete-event simulation. Therefore, it is difficult to represent and analyse a system that relies

on continuous-time. The other limitations, which can be addressed with less effort, are: (a)

lack of advanced algebraic operators in OrgML specification to express complex equations, (b)

inheritance and polymorphism in DataUnit, and and (c) support for absolute time.

As discussed in Chapter 6, the current proof-of-concept implementation realises a subset

of the proposed approach. An industry scale implementation of the proposed approach and

validation of the implementation using a real industrial scenario are considered as future work

of this thesis. Industry scale implementation expects more advanced graphs and visualisation

techniques in OrgViz Data Visualiser, the implementation of OrgML to ESL transformation

engine needs to be evaluated using large examples, the implementation of Goal Evaluator

and Lever Recommender modules are also critical to realise the full potential of the proposed

approach.

7.5.2 Threats to validity

A threat to validity may arise when a new artifact is produced as a scientific contribution or new

knowledge. This thesis proposes an approach to produce necessary quantitative information

for informed organisational decision-making. Essentially, it produces new knowledge along

two dimensions – (i) research contributions to address organisational decision-making (generic

contributions for organisational decision-making problems) and (ii) quantitative information

produced using the proposed approach to evaluate decision alternatives for a given decision

problem (problem specific contribution).

The artifacts along both the dimensions are information system related artifacts. Therefore,

they are vulnerable to four kinds of validities: internal, construct, conclusion and external as

7.5 Limitations, threats and further improvements 192

Table 7.5 Approaches to address threats to validity of research contributions

Contribution
DSR

Artifact
Category

Internal
Validity Construct Validity Conclusion

Validity
External
Validity

1. Conceptual
model

Constructs
SMS along
with DSR

methodology

Broad SMS exploring a
wide spectrum of
decision styles,

methods and techniques

Not relevant

Established
generalisation

from
organisational

theory to system
theories

2. OrgML
meta-model

Model
DSR

methodology

Correlation with
standard modelling,
meta-modelling and

conceptual modelling
techniques

Not relevant Not relevant

3. OrgML to
ESL transfor-

mation
Method

Standard
model to text
(M2T) trans-

formation
technique

Transformation rules
for all OrgML concepts

Not relevant Not relevant

4.
Overarching

method
Method

DSR
methodology

Established simulation
method and

state-of-the-practice
decision-making

methods

Not relevant Not relevant

discussed by Gregor et al. [86] and Wohlin et al. [213]. The rest of this section discusses the

threats to validity of two types of artifacts – (i) threats to validity of research contributions and

(ii) threats to validity of the quantitative information produced using the proposed approach

(and research contributions).

Threats to validity of research contributions

This research produces four primary contributions – Contribution 1: conceptual model to

describe organisational decision making, Contribution 2: OrgML meta-model to capture relevant

information for organisational decision-making, Contribution 3: a model to text transformation

technique to transform OrgML model into simulatable ESL specification, and Contribution

4: an overarching method for model constructions, model validation and what-if analysis.

The approaches adopted to address the threats to validity for the proposed contributions are

summarised in Table 7.5.

The internal validity for Constructs artifact (e.g., Contribution 1) is a concern when an

inappropriate protocol is adopted for defining Constructs of a domain. This research uses a

systematic mapping study (SMS) within an overarching and iterative DSR methodology for

developing Constructs for organisational decision-making. The SMS helps to identify the

7.5 Limitations, threats and further improvements 193

relevant concepts and their relationships. The overarching DSR methodology helps to validate

identified concepts using multiple case studies . Moreover, it adopts a meta-modelling technique

to represent identified constructs and their relationships in a structured form.

The threats due to construct validity may arise if Constructs artifact is produced based on

inadequate information. This research explores a broad spectrum of management literature

to define relevant concepts for organisational decision-making. The review includes – (i) all

types of decision-making styles (i.e., Management Science model, Carnegie Model, Incremental

Process model and Garbage Can model), (ii) decision-making methods (such as the methods

proposed by Richard Cyert [67], Herbert Simon [180, 182], and Richard Daft [69]), (iii) the

key contributions in management literature from the year 1956 [67] to recent date [70], and

(iv) industry reports such as McKinsey Quarterly [135] and Harvard Business Review [105]

as discussed in Chapter 3. The conclusion validity arise due to incorrect interpretation of the

available information, which is not relevant for this contribution as the management literature

uses a descriptive approach to introduce and illustrate concepts. The external validity is relevant

for Contribution 1 as the concept organisation is generalised to systems, complex system and

complex adaptive system to understand characteristics of a complex organisation (as described

in Section 3.1). However, the generalisations, which are considered in this thesis, are well

established fact in management literature as discussed in [7, 10, 69, 183].

For OrgML meta-model (i.e., Contribution 2), the internal validity is ascertained by adopting

rigorous DSR methodology for conceptualisation, development and validation. The construct

validity is ascertain by establishing correlation with conceptual modelling (as described in Sec-

tion 5.2.1) and established modelling and meta-modelling techniques as described in Table 5.1.

The conclusion validity is not relevant for OrgML meta-model as it is a novel contribution

and the concepts of OrgML meta-model are not derived from any literature. Similarly, the

external validity is not relevant for OrgML meta-model as it is a domain specific meta-model

for organisational decision-making and the proposed meta-model is validated using multiple

case studies from same domain, i.e., organisational decision-making .

The internal validity of the proposed OrgML to ESL transformation (i.e., Contribution 3) is

ascertained by adopting standard model to text (M2T) transformation technique as described

in Section 5.5. The construct validity is established by providing transformation rules for all

concepts of OrgML meta-model (as shown in Table 5.2 and Appendix C). The conclusion

validity is not relevant for this contribution as it is a novel contribution, which does not need

7.5 Limitations, threats and further improvements 194

any interpretation of existing knowledge. Similarly, the external validity for OrgML to ESL

transformation is not relevant as they are constructed for the proposed approach.

Finally, the internal validity of the proposed method (Contribution 4) is ascertained through

DSR methodology. The construct validity is addressed by adopting well established simulation

method proposed by Robert Sargent in [174] and the management viewpoint proposed by

Richard Daft in [70]. The conclusion validity is not relevant as adopted methods are well

documented and established methods in respective fields. Similarly the external validity is also

not relevant as the adopted method are not generalised rather they perform the same set of tasks

as recommended in respective methods.

Threats to validity of quantitative information produced using proposed approach

The validity analysis and threats to validity for quantitative artifacts in software engineering is

proposed by Wohlin et al. [213] and Cook et al. [64]. In quantitative research, the conclusion

validity aims to ensure the treatment or interpretation of an experiment is same as the actual

outcome of the experiment. For the proposed approach, the conclusion validity is to ensure the

simulation results are interpreted correctly by the decision makers. The OrgViz Data Visualiser

provides a visual aid to the decision makers such that they can rely on simple descriptive

statistics to interpret simulation results.

The internal validity is related to how well the experiment is done and the chance for

confounding in an experiment. The adoption of an established process of simulation research

suggested by Robert Sergent in [174] and conformance with the management guidelines dis-

cussed in Management literature, such as decision processes defined by Richard Daft [68] and

Langley et al. in [123], establish the internal validity of an iterative what-if scenario playing.

Construct validity defines how well an experiment measures up to its claims. In the proposed

approach, the construct validity is the closeness of the constructed model with the problem entity

or real organisation. The construct validity is ascertained through methodological support to

perform state-of-the-art simulation model validation techniques proposed in [174]. Principally,

the operational validity is adopted where the constructed model is simulated for known scenarios

and the obtained simulation results are manually compared against real data to ascertain the

model validity.

The external validity is necessary when a generalised inference from outside the scope of an

experiment is considered in the experiment. But this research is not considering such external

7.5 Limitations, threats and further improvements 195

Figure 7.24 Extended conceptual model for organisational decision making

inference in a decision making. It is expected that a decision making problem should start with

a problem entity. The construction of a purposive conceptual model, construction of simulation

model and required what-if analyses should be performed for each decision making problem.

Therefore, external validity is not relevant for quantitative information.

7.5.3 Further improvements and future work

Improvement opportunities are identified while evaluating research artifacts. The proposed

approach considers OrgML as the conceptual specification and ESL actor as the simulation

specification for OrgUnit. However, there can be some OrgUnits in an organisation, which can

be conveniently specified using algebraic equations, Stock-and-Flow model, linear programming

or Bayesian networks instead of the current form of OrgML specification. Moreover, they can be

analysed using suitable computing aids rather than ESL engine. Therefore, an OrgUnit centric

modular specification and an extension to OrgUnit specification to support multi-modelling

capability and enable a co-simulation environment to simulate them in a coordinated manner

(using event as a means for coordination) can be considered. For an instance, the conceptual

model of an organisation can extended by specialising the OrgUnit into a hierarchy of OrgUnit

7.5 Limitations, threats and further improvements 196

Figure 7.25 Integrated approach for organisational decision making

types as shown in Figure 7.24. Principally, the OrgUnit can be specialised into two kinds:

data-driven OrgUnit and behaviour-driven OrgUnit. The organisational units whose behaviour

is not precisely known but they behave/react/response based on their historical occurrences

can be represented as data-driven OrgUnit. AI techniques are useful formalism to specify such

OrgUnits. On other hand, the behaviour-driven OrgUnit can capture organisational units whose

behaviours are known. They can be further classified into three classes: mechanistic OrgUnit,

socio-technical OrgUnit and social OrgUnit. The mechanistic OrgUnit can be represented using

OrgML. The linear programming [48] and Stock-and-Flow model [134] can also be considered

to specify such OrgUnits if the aggregated analysis serve the purpose. The socio-technical

OrgUnits can be best specified using OrgML specification. The social OrgUnit, in contrast, can

be represented using specifications which are capable of representing spatial relations such as

cellular automata [214]. The extension of OrgML specification to support spatial relations is

another alternative to support all types of behaviour-driven OrgUnits.

Another way to improve the utility of the proposed approach is to use is in conjunction with

the inferencing technique as presented in Figure 7.25. As shown in the figure, the inferential

techniques use execution data to predict/select the best course of action or lever of an organisation.

The key issue of such approaches is insufficient data and lack of fidelity of the existing data.

The proposed approach can be used to produce missing data to make an inferential technique

effective. In addition, an identified lever using an inferential technique can be verified (i.e. the

7.6 Summary 197

consequences can analysed and risk can be estimated) prior to its implementation using an

OrgML based synthetic environment.

Several implementation specific improvements are identified in the research validation. For

example, a graphical representation as opposed to current text-based specification for OrgML

specification help to improve the usability13 [161] of the proposed approach. OrgML notations

(listed in Appendix B), which are used to represent four case studies, can be considered as an

initial step to realise the graphical representation for OrgML specification.

Other improvements are the implementation Goal Evaluator and Lever Recommender. The

statistical techniques for similarity analysis and distance measurements, such as multivariate

distance matrix regression analysis [9], is a prospective exploration direction to realise an

effective goal evaluator. Towards the Lever Recommender, the sensitivity analysis [171] of

parametric values of a lever measures could be an effective method to identify sensitive lever.

The use of machine learning techniques to extract meaningful patterns from simulation runs,

mutation and crossover techniques of genetic algorithms [71] might be useful to arrive at a

meaningful variant of an existing levers. The use of randomization techniques (e.g., Monte

Carlo simulation [144]) to derive manageable and meaningful set of random levers might be

useful for decision space exploration. These improvements further reduce the burden of the

decision makers. These opportunities along with the limitations associated with the proposed

approach are considered as the future work to this thesis.

7.6 Summary

In this chapter, the proposed approach and research artifacts are evaluated using an Artificial

and Ex-Post strategy. The evaluation demonstrates the efficacy of OrgML specification to

capture a range of complex organisations. The case studies show how OrgML based approach

helps decision makers to explore the decision space using quantitative evidences as opposed

to intuitions. The improvements and applicability of the proposed approach are justified. The

communications of the research artifacts are highlighted. The limitations of the proposed

approach and research artifacts are discussed. The scope for improvements are discussed to

widen the application scope of the proposed approach.

13(DSR Classification :: Environment):: Consistency with people:: Ease of use :: usability [161]

Chapter 8

Conclusion

This thesis has set out the key challenges facing organisational decision makers. It reported on

the issues of making an ineffective decision and its impact on opportunities in the future. The

practice of organisational decision making today, centres around intuitions and past experiences.

At best, the decision makers make use of computational tools, such as spreadsheets, to analyse

historical data for future prediction. This research has argued that an intuition-driven approach

is ineffective for modern organisations. Instead, organisational decision makers need advanced

technology support to understand inherent dynamism, uncertainty, nonlinearity and emergent

behaviour of the problem space.

The research conducted as part of this thesis, produced a series of rigourous literature

reviews that addressed organisational decision-making, state-of-the-art enterprise modelling and

analysis techniques, existing multi-modelling and co-simulation approaches, and actor/agent

technologies. Organisational decision making was reviewed to help formulate the core problem

statement and was done purely from the management and IS perspectives. Political, ethical,

psychological, and social perspectives were considered out of scope for this thesis.

The systematic literature reviews identified several shortcomings: (i) an inability to capture

necessary aspects of organisation and their inherent characteristics in an intuitive and domain

specific manner (considering organisational decision-making as a domain of interest), (ii)

inadequate analysis capabilities to precisely understand the socio-technical characteristics and

emergent behaviour of organisation, and (iii) lack of a method to effectively use technology

aids (as management view of organisation decision-making is ignorant of effective utilisation of

technology aids).

199

Figure 8.1 Research Overview – phases, methodology, artifacts and exploration space

The solution space for these problems raises further issues in that there are several explo-

ration paths along inferential approaches, Operational Research (OR) approaches, top-down

and bottom-up simulation approaches. Hence, the review on existing multi-modelling and

co-simulation approaches and actor/agent technologies identified further requirements.

This research proposes a new actor-based simulation aid to approach organisational decision

making in a systematic manner. The inadequacies identified by systematic literature reviews

are addressed by three novel research contributions that include – (i) OrgML meta-model and

specification language to capture necessary information for organisation decision-making in an

intuitive and domain specific manner, (ii) an analysis approach that uses OrgML as specification,

ESL as underlying simulation technology and OrgViz Data Visualiser as a visualisation aid

for required what-if analyses, and (iii) a method to capture required information, ascertain

model/specification validity and perform iterative what-if analyses. Figure 8.1 provides a

summary of methodology, research artifacts and the direction of research undertaken in this

thesis.

This concluding chapter highlights the research contributions made in this research, discusses

limitations and future work of this thesis. The research contributions and their significance are

discussed in section 8.1. The limitations and future work of this thesis are briefly revisited in

section 8.2 and section 8.4. The thesis is concluded with a concluding remark in section 8.5.

8.1 Research contributions and significance 200

Figure 8.2 Dimensions of research contributions

8.1 Research contributions and significance

Research contributions of this thesis span across three dimensions that include: (i) problem

space understanding, (ii) technology improvements for solutions space, and (iii) an effective

application of an actor-based simulation technology in organisational decision-making as shown

in Figure 8.2.

Problem understanding

The research questions pertaining to what information is necessary and what are the char-

acteristics of the information for effective organisational decision making lead to a precise

understanding of the problem space. The relevant aspects and concepts of organisational

decision-making are discerned from the management literature and expressed using a meta-

model as presented in Figure 3.6 of Chapter 3. The meta-model primarily captures structure,

behaviour, state, trace and environment aspects of an organisation. It also consider three

decision-making concepts that include: goal, measure and lever. In addition, a set of require-

ments that exhibit the characteristics of complex organisations are identified and enumerated

in tabular form (as presented in Table 3.3). The characteristics are: modularity, composability,

reactiveness, autonomy, intentionality, adaptiveness, uncertainty and temporal behaviour.

8.1 Research contributions and significance 201

This research argues that the proposed meta-model representing organisational decision-

making aspects/concepts and associated requirements collectively characterises the problem

space. In this research, these artifacts are used as the reference for literature review, development

of research contributions and research validation. Potentially these artifacts can also be used in

other organisational decision-making related research as they are validated using near real-life

case studies and received wide acceptance from scholastic communities (as conference/journal

publications, such as RP [4], RP [6], RP [9] and RP [11] – see publication section).

Solution space

Research questions that focus on how to capture necessary information, what kind of analysis is

needed and how the analyses can be performed for an effective organisational decision-making

leads to three research contributions:

• OrgML meta-model and specification language: The proposed OrgML meta-model

(and OrgML specification language) can capture necessary information of an organi-

sational decision-making in an intuitive and domain specific manner. The proposed

meta-model supports the specification that can sufficiently capture necessary organisa-

tional aspects, decision-making concepts and characteristics as defined as problem space

understanding. The OrgML meta-model is designed such a way that a complex organi-

sation can be used to faithfully represent a real-world complex organisation. Therefore,

the use of OrgML is not just limited to organisational decision-making but any business

problem which needs precise understanding of an organisation may use this specification.

• An approach to make captured information amenable for simulation: Proposed ap-

proach to transform OrgML specification into the ESL specification using a model-to-

model transformation technique help decision makers to perform desired what-if analysis.

• Method: An integrated and iterative method to construct a purposive simulation model

leading to organisational decision-making is proposed. It is a generic method – therefore

it can be used with other models and analysis techniques. For an instance, this method is

used to explore a multi-modelling and co-simulation approach that uses i* , BPMN, and

Stock-and-Flow as discussed in Appendix F and reported in [21] (i.e. RP [1] in research

publication list).

8.2 Limitations 202

Application space

The proposed approach and research artifacts are applied to decision space exploration of a

range of organisational decision-making problems, such as Management science, Carnegie

model, Incremental process model and Garbage Can model as discussed in Chapter 7.

In addition to the organisation decision-making space discussed in this thesis, the proposed

approach can be leveraged to design space exploration leading to enterprise transformation

initiative [169] and construct a digital twin [45] of business organisations. For instance, the

proposed approach can be adopted to explore design space of a to-be system. The design

alternatives can be captured using separate OrgML specifications that can be evaluated through

simulation to identify which design option is the best among available alternatives to define a

to-be organisation in an enterprise transformation initiative. Similarly, the OrgML model/specifi-

cation can be used for creating a digital twin of a business organisation as the OrgML is capable

of mimicking the real organisation, its units and sub-units as they exist in reality.

8.2 Limitations

The limitations identified while evaluating the proposed research artifacts can be broadly classi-

fied into three categories – specification related limitations, implementation related limitations

and scoping limitation. The specification limitations include the inadequacy to express spatial

relationship [214], absolute time and continuous time. Implementation related limitations are

mainly due to a partial proof-of-concept implementation of the proposed research artifacts as

opposed to the production quality. The key implementation limitations are: limited graph types

in the OrgViz Data visualiser, partial automation of OrgML-to-ESL transformation and the lack

of industry scale implementation of the presented approach and conceptualised framework.

The other limitations of the proposed approach is due to the scope of this research. The

socio-political aspects of the decision making are not considered, and use of the proposed

approach in a real context is not considered as they are out of scope of this thesis.

8.3 Reflection

While applying research contributions on different case studies, it is realised that the proposed

actor-based modelling abstraction can be utilised in a wider business context as it has a capability

to closely imitate complex business systems. For an example, the proposed modelling abstraction

8.4 Future research directions 203

can be effectively used as a foundational basis for various digital twin [45] initiatives. The use

of bottom-up simulation technique further improves its utilisation as it helps to understand the

emergent behaviour of the complex systems and uncertain environments where they operate.

Reflecting on the experiences of developing multiple case studies in research validation

phase, it is realised that this research chiefly focuses on technical efficacy of the research

contributions over the state-of-the-art modelling and analysis technologies. While efficacy is

an important validation criteria as suggested in Software Engineering and Information System

research [203, 160], the need for evaluating Environmental and Structural factors [160], such as

Ease of use and Simplicity (see Figure 2.2), are also found to be critical to effectively utilise a

technical solution in a business problem (e.g., organisational decision-making). Development of

intuitive graphical notations or hybrid (graphics + text) symbols to achieve cognitive effectiveness

while representing complex systems as described by Daniel Moody in [142] is a useful research

direction to make this research more amenable to the business stakeholders.

From the methodological perspective, this thesis refines the canonical DSR methodology

using SMS, SLR and experimentations. I found this refinement is useful for addressing critical

business problems where the problem space and solution space are not well-defined (such as

orgnisational decision-making and enterprise transformation). The SMS and SLR collectively

help to understand the problem space and solution space from the perspective of the existing

knowledge base. The SMS covers the breadth of a (problem or solution) domain, whereas the

SLR explores the depth of a domain. The experimentations with the existing tools from the

solution space help to identify precise gaps and establish the relevance of a research problem.

The use of multiple case studies as opposed to a single comprehensive case study is another

useful extension to the methodology. Multiple case studies focusing on different business cases

is a practical consideration for improving the rigour of the proposed solution and research

contributions as it is a difficult proposition to conceptualise (or identify) one comprehensive

case study that closely represents the reality and includes all validation scenarios.

8.4 Future research directions

This research has opened the door for research opportunities along two major dimensions –

technology development for organisational decision-making and application of the technology

aids in a range of organisational business problems. Foremost among the future work along

technology development is to provide more technology aids for decision makers. The technology

8.5 Concluding remark 204

aids to compute the distance of an organisation from its current state to a desired state, and

identify the ‘next’ possible course of action/lever that should be considered for decision space

exploration are useful contributions. The graphical representation of the OrgML specification

(as indicated in Appendix B) and an industry scale implementation of the proposed approach

are definite technology development activities. The other significant technology enhancement

activities are – (i) supporting multi-modelling specification in OrgML, (ii) support for co-

simulation to combine Enterprise Simulation Language (ESL), Stock and Flow (SnF) and

Operational Research (OR) techniques, and (iii) develop the necessary framework to combine

inferential technique and simulation technique for organisational decision making as discussed

in Chapter 7.

On the other hand, this thesis has demonstrated how a technology aid can be used in

organisational decision-making. The use of the proposed technology aid (along with the

extensions) in exploring the design space for an enterprise transformation, creating a suitable

environment to experiment with game theoretic aspects of business environment [18], and

realisation of the digital-twin [45] of the business organisations in business 4.0 initiative1 are

areas for future application of this work.

8.5 Concluding remark

The aim of this research was to conceptualise and develop a suitable technology aid to approach

organisational decision-making using quantitative what-if analysis as opposed to human intu-

itions. The exploration of the problem space from management lens bought forth the necessary

information for an effective organisational decision-making. The deeper analysis of the man-

agement and IS literature reestablishes the need for all six interrogative aspects: why, what,

how, when, where, and who as recommended in Zachman framework. The analysis also shows

the importance of socio-technical characteristics, such as modularity, compositional, reactive,

autonomous, intentional, adaptive, uncertainty and temporal behaviour, to comprehend modern

organisation.

The state-of-the-art modelling and analysis techniques that include enterprise modelling and

analysis techniques and actor/agent languages are found to be inadequate for the quantitative

analysis of the modern organisation. This research has developed a new and novel approach

to model complex organisations and quantitatively analyse various courses of action using the

1sites.tcs.com/insights/perspectives/category/business-4-0

8.5 Concluding remark 205

constructed model. While conceptualising, developing and validating, several hypotheses about

the expected technology aids for organisational decision-making are validated. For example, the

relevance of an actor-based bottom-up simulation approach to understand complex organisation

is established. The efficacy of OrgML based approach that advocates six interrogative aspects,

an extended form of actor, richer composability, uncertain and temporal behaviour, and a

machine-interpretable specification to overcome the limitations of the state-of-art and practice of

modelling and analysis techniques is demonstrated. The importance of an integrated approach

to utilise technology aids for model creation, model validation and perform what-if analyses are

demonstrated. How an approach that combines simulation research and management view of

decision making can serve the needs of quantitative, evidence-driven, informed organganisational

decision-making is also shown in this thesis.

The OrgML based modelling abstraction developed through this research establishes a

pragmatic conceptual modelling framework for a wide range of organisational decision-making

problems. The presented actor-based simulation approach and supported technology aid collec-

tively improve the state-of-the-art what-if analysis techniques, by utilising a proposed method

that combines the theory and practice of organisational decision-making. The proposed method

also demonstrates how technological aids can be effectively utilised in a variety of complex

organisational decision-making problems.

Bibliography

[1] Adebesin, F., Kotzé, P., and Gelderblom, H. (2011). Design research as a framework to
evaluate the usability and accessibility of the digital doorway. In Design, Development
Research Conference, Cape Peninsula University of Technology, pages 306–323. CSIR.

[2] Agha, G. (1986a). Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA.

[3] Agha, G. (1986b). An Overview of Actor Languages. SIGPLAN Not., 21(10):58–67.

[4] Aigner, W., Miksch, S., Müller, W., Schumann, H., and Tominski, C. (2007). Visualizing
time-oriented data – a systematic view. Computers & Graphics, 31(3):401–409.

[5] Allen, J. (2013). Effective Akka. O’Reilly Media, Inc.

[6] Altbach, P. (2007). The Dilemmas of Ranking in: International Higher Education. Journal
of Studies in International Education, 3(6):121–133.

[7] Amagoh, F. (2008). Perspectives on organizational change: systems and complexity theories.
The Innovation Journal: The public sector innovation journal, 13(3):1–14.

[8] Anderson, D., Sweeney, D., Williams, T., Camm, J., and Cochran, J. (2015). An introduction
to management science: quantitative approaches to decision making. Cengage Learning.

[9] Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance.
Austral ecology, 26(1):32–46.

[10] Anderson, P. (1999). Perspective: Complexity theory and organization science. Organiza-
tion science, 10(3):216–232.

[11] Arcangeli, S. R. J.-P., Migeon, F., and Rougemaille, S. (2008). Javact: a java middleware
for mobile adaptive agents. Lab. IRIT, University of Toulouse.

[12] Armstrong, J. (1996). Erlang - a Survey of the Language and its Industrial Applications.
In In Proceedings of the symposium on industrial applications of Prolog (INAP), page 8.

[13] Armstrong, J., Virding, R., Wikström, C., and Williams, M. (1993). Concurrent program-
ming in ERLANG. Prentice Hall.

[14] Ashby, W. R. (1981). Mechanisms of Intelligence: Ashbys Writings on Cybernetics.
Eipiphiny Society.

Bibliography 207

[15] Astley, M. (1998). The actor foundry: A java-based actor programming environment.
University of Illinois at Urbana-Champaign: Open Systems Laboratory.

[16] Ayres, J. and Eisenbach, S. (2009). Stage: Python with actors. In Proceedings of the 2009
ICSE Workshop on Multicore Software Engineering, pages 25–32. IEEE Computer Society.

[17] Bailey, I. (2008). Brief introduction to MODAF with v1. 2 updates. IET Seminar on
Enterprise Architecture Framework, London, pages 1–18.

[18] Bandyopadhyay, S. and Pathak, P. (2007). Knowledge sharing and cooperation in out-
sourcing projects – A game theoretic analysis. Decision support systems, 43(2):349–358.

[19] Barat, S. (2016). A simulation based aid for complex dynamic decision making. In PoEM
Doctoral Consortium, pages 22–31.

[20] Barat, S. (2017). An actor-based bottom-up Simulation aid for complex dynamic decision
making. In International Conference on Practical Applications of Agents and Multi-Agent
Systems, pages 275–278. Springer.

[21] Barat, S., Kulkarni, V., and Barn, B. (2018a). Towards Improved Organisational Decision-
Making–A Method and Tool-chain. Enterprise Modelling and Information Systems Architec-
tures, 13:6–31.

[22] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2016a). A conceptual model for organisa-
tional decision-making and its possible Realisations. In ESM 2016: 30th Annual European
Simulation and Modelling Conference, pages 174–176.

[23] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2016b). A simulation-based aid for
organisational decision-making. In ICSOFT-EA 2016: 11th International Conference on
Software Engineering and Applications, pages 109–116.

[24] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2016c). Enterprise modeling as a decision
making aid: A systematic mapping study. In IFIP Working Conference on The Practice of
Enterprise Modeling, pages 289–298. Springer.

[25] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017a). A domain specific language for
complex dynamic decision making. In ESM 2017: 31st Annual European Simulation and
Modelling Conference, pages 135–142.

[26] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017b). A method for effective use of
enterprise modelling techniques in complex dynamic decision making. In IFIP Working
Conference on The Practice of Enterprise Modeling, pages 319–330. Springer.

[27] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017c). A Model based Realisation of Actor
Model to Conceptualise an Aid for Complex Dynamic Decision-making. In MODELSWARD
2017, pages 605–616.

[28] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2017d). An actor-model based bottom-
up simulation—An experiment on Indian demonetisation initiative. In Winter Simulation
Conference (WSC), 2017, pages 860–871. IEEE.

Bibliography 208

[29] Barat, S., Kulkarni, V., Clark, T., and Barn, B. (2018b). A Model Based Approach for
Complex Dynamic Decision-Making. In Communications in Computer and Information
Science, volume 880, pages 94–118. Springer.

[30] Barat, S., Rajbhoj, A., Kumar, P., and Kulkarni, V. (2017e). A Case Study Exploring
Suitability of Bottom Up Modelling and Actor-based Simulation for Decision Making. In
Proceedings of Modeling Symposium, pages 1–6.

[31] Barjis, J. (2008). Enterprise, organization, modeling, simulation: Putting pieces together.
CEUR Workshop Proceedings, 338:1–5.

[32] Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., and Madelaine, E. (2009). Be-
havioural models for distributed Fractal components. annals of telecommunications-annales
des télécommunications, 64(1-2):25–43.

[33] Barua, N., Choudhury, M., and Borkakoty, A. (2009). Business process outsourcing. Daya
Publishing House.

[34] Beckermann, A., Flohr, H., and Kim, J. (1992). Emergence or reduction?: Essays on the
prospects of nonreductive physicalism. Walter de Gruyter.

[35] Bell, D. E., Raiffa, H., and Tversky, A. (1988). Decision making: Descriptive, normative,
and prescriptive interactions. Cambridge University Press.

[36] Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE–A FIPA-compliant agent
framework. In Proceedings of PAAM, volume 99, page 33. London.

[37] Bernus, P., Mertins, K., and Schmidt, G. J. (2013). Handbook on architectures of informa-
tion systems. Springer Science & Business Media.

[38] Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and Bertsekas, D. P. (1995). Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA.

[39] Bettini, L. (2016). Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd.

[40] Bock, A., Frank, U., Bergmann, A., and Strecker, S. (2016). Towards Support for Strategic
Decision Processes Using Enterprise Models: A Critical Reconstruction of Strategy Analysis
Tools. In IFIP Working Conference on The Practice of Enterprise Modeling, pages 41–56.
Springer.

[41] Boehm, B. W. (1984). Software engineering economics. IEEE transactions on Software
Engineering, (1):4–21.

[42] Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating
human systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–7287.

[43] Boon, M. and Knuuttila, T. (2009). Models as epistemic tools in engineering sciences: A
pragmatic approach. Handbook of the philosophy of technological sciences, 9:687–719.

Bibliography 209

[44] Borshchev, A. (2013). The big book of simulation modeling: multimethod modeling with
AnyLogic 6. AnyLogic North America Chicago.

[45] Boschert, S. and Rosen, R. (2016). Digital twin – the simulation aspect. In Mechatronic
Futures, pages 59–74. Springer.

[46] Briot, J.-P. (1999). Actalk: A framework for object-oriented concurrent programming-
design and experience. Object-Oriented Parallel and Distributed Programming, pages
209–231.

[47] Camus, B., Bourjot, C., and Chevrier, V. (2015). Combining DEVS with multi-agent
concepts to design and simulate multi-models of complex systems (WIP). In Proceedings of
the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
pages 85–90.

[48] Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215.

[49] Casti, J. L. (1994). Complexification explaining a paradoxical world through the science
of surprise. HarperPerennial - A Division of Harper Collins Publishers.

[50] Chen, D., Daclin, N., et al. (2006). Framework for enterprise interoperability. In Proc. of
IFAC Workshop EI2N, pages 77–88. Bordeaux.

[51] Chen, D., Vallespir, B., and Doumeingts, G. (1997). GRAI integrated methodology and
its mapping onto generic enterprise reference architecture and methodology. Computers in
industry, 33(2-3):387–394.

[52] Clark, T., Barn, B., Kulkarni, V., and Barat, S. (2017a). Querying histories of organisation
simulations. Information Systems Development (ISD) - Advances in Methods, Tools and
Management, 9:1–12.

[53] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017b). Actor monitors for adaptive
behaviour. In Proceedings of the 10th Innovations in Software Engineering Conference,
pages 85–95. ACM.

[54] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017c). ESL: An Actor-Based Platform
for Developing Emergent Behaviour Organisation Simulations. In International Conference
on Practical Applications of Agents and Multi-Agent Systems, pages 311–315. Springer.

[55] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017d). Generating Filmstrip Models from
Actor-Based Systems. In MODELS (Satellite Events) 2017, pages 576–582.

[56] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2017e). The Construction and Interrogation
of Actor Based Simulation Histories. In ER Forum/Demos 2017, pages 320–333.

[57] Clark, T., Kulkarni, V., Barat, S., and Barn, B. (2018). A homogeneous actor-based monitor
language for adaptive behaviour. In Programming with Actors, pages 216–244. Springer.

Bibliography 210

[58] Clark, T., Kulkarni, V., Barn, B., France, R., Frank, U., and Turk, D. (2014). Towards the
model driven organization. In 47th Hawaii International Conference on System Sciences
(HICSS), pages 4817–4826. IEEE.

[59] Clebsch, S. (2015). The pony programming language. The Pony Developers.
http://www.ponylang.org/.

[60] Cohen, M. D., March, J. G., and Olsen, J. P. (1972). A garbage can model of organizational
choice. Administrative science quarterly, pages 1–25.

[61] Collier, N. (2003). Repast: An extensible framework for agent simulation. The University
of Chicago’s Social Science Research, 36:2003.

[62] Conrath, D. W. (1967). Organizational decision making behavior under varying conditions
of uncertainty. Management Science, 13(8):B–487.

[63] Conway, J. (1970). The game of life. Scientific American, 223(4):4.

[64] Cook, T. D. and Campbell, D. T. (1979). Quasi-experimentation: Design and analysis for
field settings, volume 3. Rand McNally Chicago.

[65] Currall, S. C. and Towler, A. J. (2003). Research methods in management and orga-
nizational research: Toward integration of qualitative and quantitative techniques. Sage
Publications.

[66] Cyert, R. M., March, J. G., et al. (1963). A behavioral theory of the firm. Englewood Cliffs,
NJ, 2.

[67] Cyert, R. M., Simon, H. A., and Trow, D. B. (1956). Observation of a business decision.
The Journal of Business, 29(4):237–248.

[68] Daft, R. (2012). Organization theory and design. Nelson Education.

[69] Daft, R. L. and Lewin, A. Y. (1990). Can organization studies begin to break out of the
normal science straitjacket? An editorial essay. Organization Science, 1(1):1–9.

[70] Daft, R. L. and Marcic, D. (2016). Understanding management. Nelson Education.

[71] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2):182–197.

[72] Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., and De Meuter, W. (2006).
Ambient-oriented programming in ambienttalk. In European Conference on Object-Oriented
Programming, pages 230–254. Springer.

[73] Dietz, J. L. and Hoogervorst, J. A. (2008). Enterprise ontology in enterprise engineering.
In Proceedings of the 2008 ACM symposium on Applied computing, pages 572–579. ACM.

[74] Drazin, R. and Sandelands, L. (1992). Autogenesis: A perspective on the process of
organizing. Organization Science, 3(2):230–249.

Bibliography 211

[75] Eisenhardt, K. M. and Zbaracki, M. J. (1992). Strategic decision making. Strategic
management journal, 13(S2):17–37.

[76] Erdweg, S., Van Der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W. R.,
Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., et al. (2013). The state of the art in language
workbenches. In International Conference on Software Language Engineering, pages 197–
217. Springer.

[77] Euzenat, J. (2001). Towards a principled approach to semantic interoperability. In Proc.
IJCAI 2001 workshop on ontology and information sharing, pages 19–25.

[78] Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System dynamics
review, 10(2-3):245–256.

[79] Fowler, M. (2010). Domain-specific languages. Pearson Education.

[80] Frank, U. (2002). Multi-perspective Enterprise Modeling (MEMO) conceptual framework
and modeling languages. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on, pages 1258–1267. IEEE.

[81] Frank, U., Squazzoni, F., and Troitzsch, K. G. (2009). EPOS-Epistemological perspectives
on simulation: An introduction. In Epistemological Aspects of Computer Simulation in the
Social Sciences, pages 1–11. Springer.

[82] Goldsman, D., Nance, R. E., and Wilson, J. R. (2010). A brief history of simulation
revisited. In Proceedings of the winter simulation conference, pages 567–574.

[83] Goralwalla, I. A., Özsu, M. T., and Szafron, D. (1998). An object-oriented framework for
temporal data models. In Temporal Databases: Research and Practice, pages 1–35. Springer.

[84] Grangel, R., Chalmeta, R., and Campos, C. (2007). Using UML profiles for enterprise
knowledge modelling. In EDOC Conference Workshop, 2007. EDOC’07. Eleventh Interna-
tional IEEE, pages 125–132. IEEE.

[85] Gregor, S. (2006). The nature of theory in information systems. MIS quarterly, pages
611–642.

[86] Gregor, S. and Hevner, A. R. (2013). Positioning and presenting design science research
for maximum impact. MIS quarterly, 37(2).

[87] Gregor, S. and Jones, D. (2007). The anatomy of a design theory. Journal of the Association
for Information Systems, 8(5):312.

[88] Grignard, A., Taillandier, P., Gaudou, B., Vo, D. A., Huynh, N. Q., and Drogoul, A.
(2013). GAMA 1.6: Advancing the art of complex agent-based modeling and simulation. In
International Conference on Principles and Practice of Multi-Agent Systems, pages 117–131.
Springer.

[89] Guba, E. G. and Lincoln, Y. S. (1982). Epistemological and methodological bases of
naturalistic inquiry. Educational Technology Research and Development, 30(4):233–252.

Bibliography 212

[90] Haller, P. and Odersky, M. (2009). Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2):202–220.

[91] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
computer programming, 8(3):231–274.

[92] Harnett, T. (2011). Consensus-Oriented Decision-Making. Gabriola Island, BC: Canada
New Society Publishers.

[93] Harrison, R. (2007). TOGAF version 8.11 enterprise edition. Van Haren Publishing.

[94] Hevner, A. and Chatterjee, S. (2010). Design science research in information systems. In
Design research in information systems, pages 9–22. Springer.

[95] Hevner, A., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS quarterly, 28(1):75–105.

[96] Hewitt, C. (2010). Actor model of computation: scalable robust information systems.
arXiv preprint arXiv:1008.1459.

[97] Hewitt, C. and Smith, B. (1975). A plasma primer. Draft. Cambridge, Massachusetts:
MIT Artificial Intelligence Laboratory.

[98] Hindriks, K. V., De Boer, F. S., Van der Hoek, W., and Meyer, J.-J. C. (1999). Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401.

[99] Holland, J. H. (2006). Studying complex adaptive systems. Journal of Systems Science
and Complexity, 19(1):1–8.

[100] Iacob, M., Jonkers, D. H., Lankhorst, M., Proper, E., and Quartel, D. D. (2012). Archi-
Mate 2.0 Specification: The Open Group. Van Haren Publishing.

[101] IFIP-IFAC Task Force on Architectures for Enterprise Integration (2003). GERAM:
The Generalised Enterprise Reference Architecture and Methodology: Vesion 1.6. 3 (Final).
Handbook on enterprise architecture, pages 21–63.

[102] Iivari, J. (2007). A paradigmatic analysis of information systems as a design science.
Scandinavian journal of information systems, 19(2):5.

[103] Jang, M.-W. (2004). The actor architecture manual. Department of Computer Science,
University of Illinois at Urbana-Champaign.

[104] Kafura, D. G. and Lee, K. H. (1989). ACT++: building a concurrent C++ with actors.
Virginia Polytechnic Institute & State University.

[105] Kahneman, D., Lovallo, D., and Sibony, O. (2011). Before you make that big decision.
Harvard business review, 89(6):50–60.

[106] Kaplan, B. and Duchon, D. (1988). Combining qualitative and quantitative methods in
information systems research: a case study. MIS quarterly, pages 571–586.

Bibliography 213

[107] Keller, W. (1997). Mapping objects to tables. In Proc. of European Conference on Pattern
Languages of Programming and Computing, Kloster Irsee, Germany, volume 206, page 207.
Citeseer.

[108] Kickert, W. J. (1980). Organisation of decision-making: a systems-theoretical approach.
North-Holland Publishing Company.

[109] Kim, W. (1997). ThAL: An actor system for efficient and scalable concurrent computing.
PhD thesis, University of Illinois at Urbana-Champaign.

[110] Kinny, D., Georgeff, M., and Rao, A. (1996). A methodology and modelling technique
for systems of BDI agents. Agents breaking away, pages 56–71.

[111] Kitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process
research in software engineering. Information and software technology, 55(12):2049–2075.

[112] Kleppe, A. G., Warmer, J., Warmer, J. B., and Bast, W. (2003). MDA explained: the
model driven architecture: practice and promise. Addison-Wesley Professional.

[113] Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age
International.

[114] Kotusev, S., Singh, M., and Storey, I. (2015). Investigating the Usage of Enterprise
Architecture Artifacts. In ECIS, Research-in-Progress Papers. Paper 15.

[115] Krogstie, J. (2008). Using EEML for combined goal and process oriented modeling: A
case study. CEUR Workshop Proceedings, 337:112–129.

[116] Krogstie, J., Lindland, O. I., and Sindre, G. (1995). Defining quality aspects for concep-
tual models. In Information System Concepts, pages 216–231. Springer.

[117] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2014). Model Based Enterprise Simulation
and Analysis - A Pragmatic Approach Reducing the Burden on Experts. In ER Workshops
2014, pages 3–12.

[118] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015a). A wide-spectrum approach to
modelling and analysis of organisation for machine-assisted decision-making. In Workshop
on Enterprise and Organizational Modeling and Simulation, pages 87–101.

[119] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015b). Supporting organisational decision
making in presence of uncertainty. In European Modeling and Simulation Symposium, EMSS
2017, pages 87–101.

[120] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015c). Toward overcoming accidental
complexity in organisational decision-making. In Model Driven Engineering Languages and
Systems (MODELS), pages 368–377.

[121] Kulkarni, V., Barat, S., Clark, T., and Barn, B. (2015d). Using simulation to address
intrinsic complexity in multi-modelling of enterprises for decision making. In Proceedings
of the Conference on Summer Computer Simulation, pages 1–11. Society for Computer
Simulation International.

Bibliography 214

[122] Kulkarni, V., Barat, S., and Roychoudhury, S. (2012). Towards business application
product lines. In International Conference on Model Driven Engineering Languages and
Systems, pages 285–301. Springer.

[123] Langley, A., Mintzberg, H., Pitcher, P., Posada, E., and Saint-Macary, J. (1995). Opening
up decision making: The view from the black stool. organization Science, 6(3):260–279.

[124] Levitt, B. and March, J. G. (1988). Organizational learning. Annual review of sociology,
14(1):319–338.

[125] Lieberman, H. (1981). A preview of ACT 1. MIT Artificial Intelligence Laboratory, A.I.
Memo No. 625.

[126] Locke, E. (2011). Handbook of principles of organizational behavior: Indispensable
knowledge for evidence-based management. John Wiley & Sons.

[127] Loucopoulos, P., Stratigaki, C., Danesh, M. H., Bravos, G., Anagnostopoulos, D., and
Dimitrakopoulos, G. (2015). Enterprise capability modeling: concepts, method, and ap-
plication. In Enterprise Systems (ES), 2015 International Conference on, pages 66–77.
IEEE.

[128] Lukman, R., Krajnc, D., and Glavič, P. (2010). University ranking using research,
educational and environmental indicators. Journal of Cleaner Production, 18(7):619–628.

[129] Macal, C. M. and North, M. J. (2010). Tutorial on agent-based modelling and simulation.
Journal of simulation, 4(3):151–162.

[130] March, J. G. (1994). Primer on decision making: How decisions happen. Simon and
Schuster.

[131] March, S. T. and Smith, G. F. (1995). Design and natural science research on information
technology. Decision support systems, 15(4):251–266.

[132] McDermott, T., Rouse, W., Goodman, S., and Loper, M. (2013). Multi-level modeling of
complex socio-technical systems. Procedia Computer Science, 16:1132–1141.

[133] Mcmillan, C. J. (1980). Qualitative models of organisational decision-making. Journal
of General Management, 5(4):22–39.

[134] Meadows, D. H. and Wright, D. (2008). Thinking in systems: A primer. Chelsea Green
Publishing.

[135] Meissner, P., Sibony, O., and Wulf, T. (2015). Are you ready to decide? McKinsey
Quarterly, April, 8.

[136] Mendling, J. (2008). Event-driven Process Chains (EPC). In Metrics for Process Models,
pages 17–57. Springer.

[137] Menzel, C. and Mayer, R. J. (1998). The IDEF family of languages. In Handbook on
architectures of information systems, pages 209–241. Springer.

Bibliography 215

[138] Michalski, R. S. (1993). Inferential theory of learning as a conceptual basis for multi-
strategy learning. Machine Learning, 11(2-3):111–151.

[139] Michelson, B. M. (2006). Event-driven architecture overview. Patricia Seybold Group, 2.

[140] Miller, M. S., Tribble, E. D., and Shapiro, J. (2005). Concurrency among strangers. In
International Symposium on Trustworthy Global Computing, pages 195–229. Springer.

[141] Mintzberg, H., Raisinghani, D., and Theoret, A. (1976). The structure of unstructured
decision processes. Administrative science quarterly, pages 246–275.

[142] Moody, D. (2009). The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engineering,
35(6):756–779.

[143] Moody, D., Sindre, G., Brasethvik, T., and Sølvberg, A. (2003). Evaluating the quality
of information models: empirical testing of a conceptual model quality framework. In
Proceedings of the 25th international conference on software engineering, pages 295–305.
IEEE Computer Society.

[144] Mooney, C. Z. (1997). Monte carlo simulation, volume 116. Sage Publications.

[145] Myers, M. D. et al. (1997). Qualitative research in information systems. Management
Information Systems Quarterly, 21(2):241–242.

[146] Narayanan, K. and Ramaswamy, S. (2005). Specifications for mapping UML models to
XML schemas. In Proceedings of the 4th Workshop in Software Model Engineering (WiSME
2005), pages 1–10.

[147] Nelson, H. J., Poels, G., Genero, M., and Piattini, M. (2012). A conceptual modeling
quality framework. Software Quality Journal, 20(1):201–228.

[148] Nowak, A., Vallacher, R. R., Tesser, A., and Borkowski, W. (2000). Society of self: The
emergence of collective properties in self-structure. Psychological review, 107(1):39.

[149] Oates, B. J. (2005). Researching information systems and computing. Sage.

[150] O’Connor, T. and Wong, H. Y. (2002). Emergent properties. stan-
ford.library.sydney.edu.au.

[151] OMG (2004). 2.0 Superstructure Specification. OMG, Needham.

[152] Orlikowski, W. J. and Baroudi, J. J. (1991). Studying information technology in organi-
zations: Research approaches and assumptions. Information systems research, 2(1):1–28.

[153] Panetto, H. (2003). UML semantics representation of enterprise modelling constructs. In
Enterprise Inter-and Intra-Organizational Integration, pages 381–387. Springer.

[154] Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of management
information systems, 24(3):45–77.

Bibliography 216

[155] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies
in software engineering. In 12th international conference on evaluation and assessment in
software engineering, volume 17, pages 1–10.

[156] Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. PrenticeHall, inc,
Englewood Cliffst1, 981.

[157] Pettigrew, A. M. (2014). The politics of organizational decision-making. Routledge.

[158] Pnueli, A. (1977). The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57. IEEE.

[159] Pokahr, A., Braubach, L., and Lamersdorf, W. (2005). Jadex: A BDI reasoning engine.
In Multi-agent programming, pages 149–174. Springer.

[160] Prat, N., Comyn-Wattiau, I., and Akoka, J. (2014). Artifact Evaluation in Information
Systems Design-Science Research-a Holistic View. In PACIS, page 23. Citeseer.

[161] Pries-Heje, J., Baskerville, R., and Venable, J. (2008). Strategies for design science
research evaluation. ECIS 2008 proceedings, pages 1–12.

[162] Rao, A. S. (1996). AgentSpeak (L): BDI agents speak out in a logical computable
language. In European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
pages 42–55. Springer.

[163] Rao, A. S., Georgeff, M. P., et al. (1995). BDI agents: from theory to practice. In ICMAS,
volume 95, pages 312–319.

[164] Raymond, K. (1995). Reference model of open distributed processing (RM-ODP):
Introduction. In Open distributed processing, pages 3–14. Springer.

[165] Rettig, M. (2010). retlang: Message based concurrency in .NET.
https://www.findbestopensource.com/product/retlang.

[166] Robinson, S. (2008). Conceptual modelling for simulation Part I: definition and require-
ments. Journal of the operational research society, 59(3):278–290.

[167] Rodriguez, S., Gaud, N., and Galland, S. (2014). SARL: a general-purpose agent-oriented
programming language. In Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
2014 IEEE/WIC/ACM International Joint Conferences on, volume 3, pages 103–110. IEEE.

[168] Rolland, C., Nurcan, S., and Grosz, G. (1999). Enterprise knowledge development: the
process view. Information & management, 36(3):165–184.

[169] Rouse, W. B. and Baba, M. L. (2006). Enterprise transformation. Communications of the
ACM, 49(7):66–72.

[170] Rumsfeld, D. (2011). Known and unknown: A memoir. Penguin.

[171] Saltelli, A., Chan, K., Scott, E. M., et al. (2000). Sensitivity analysis, volume 1. Wiley
New York.

Bibliography 217

[172] Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S., Krogstie, J., Leue, A., Matthes, F.,
Opdahl, A. L., Schwabe, G., Uludag, Ö., and Winter, R. (2016). Enterprise modelling for the
masses – from elitist discipline to common practice. In IFIP Working Conference on The
Practice of Enterprise Modeling, pages 225–240. Springer.

[173] Sandkuhl, K., Stirna, J., Persson, A., and Wißotzki, M. (2014). Enterprise modeling.
Tackling Business Challenges with the 4EM Method. Springer, 309.

[174] Sargent, R. G. (2005). Verification and validation of simulation models. In Proceedings
of the 37th conference on Winter simulation, pages 130–143.

[175] Scheer, A.-W. and Nüttgens, M. (2000). ARIS architecture and reference models for
business process management. In Business process management, pages 376–389. Springer.

[176] Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.

[177] Shapira, Z. (2002). Organizational decision making. Cambridge University Press.

[178] Siebert, J., Ciarletta, L., and Chevrier, V. (2010). Agents and artefacts for multiple models
co-evolution: building complex system simulation as a set of interacting models. In 9th
International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume
1, pages 509–516. International Foundation for Autonomous Agents and Multiagent Systems.

[179] Silva, S. F. and Catarci, T. (2000). Visualization of linear time-oriented data: A survey.
In Web Information Systems Engineering, 2000. Proceedings of the First International
Conference on, volume 1, pages 310–319. IEEE.

[180] Simon, H. A. (1959). Theories of decision-making in economics and behavioral science.
The American economic review, 49(3):253–283.

[181] Simon, H. A. (1977). The New Science of Management Decision. Prentice Hall PTR.

[182] Simon, H. A. (1979). Rational decision making in business organizations. The American
economic review, 69(4):493–513.

[183] Simon, H. A. (1991). The architecture of complexity. In Facets of systems science, pages
457–476. Springer.

[184] Simon, H. A. (1996). The sciences of the artificial. MIT press.

[185] Sipp, C. M. and Elias, C. (2012). Real Options and Strategic Technology Venturing: A
New Paradigm in Decision Making, volume 31. Springer Science & Business Media.

[186] Sirjani, M., Movaghar, A., Shali, A., and De Boer, F. S. (2004). Modeling and verification
of reactive systems using Rebeca. Fundamenta Informaticae, 63(4):385–410.

[187] Srinivasan, S. and Mycroft, A. (2008). Kilim: Isolation-typed actors for java. In European
Conference on Object-Oriented Programming, pages 104–128. Springer.

[188] Sturman, D. C. and Agha, G. A. (1994). A protocol description language for customizing
failure semantics. In Reliable Distributed Systems, 1994. Proceedings., 13th Symposium on,
pages 148–157. IEEE.

Bibliography 218

[189] Team, B. (2006). Business Motivation Model (BMM) specification. Technical report,
Technical Report dtc/06–08–03, Object Management Group, Needham, Massachusetts.

[190] Team, S. et al. (2006). Semantics of business vocabulary and rules (SBVR). Technical re-
port, Technical Report dtc/06–03–02, Object Management Group, Needham, Massachusetts.

[191] Thietart, R.-A. and Forgues, B. (1995). Chaos theory and organization. Organization
science, 6(1):19–31.

[192] Thomas, M. and McGarry, F. (1994). Top-down vs. bottom-up process improvement.
IEEE Software, 11(4):12–13.

[193] Tismer, C. (2000). Continuations and stackless Python. In Proceedings of the 8th
International Python Conference, volume 1.

[194] Tisue, S. and Wilensky, U. (2004). Netlogo: A simple environment for modeling
complexity. In International conference on complex systems, volume 21, pages 16–21.
Boston, MA.

[195] Tolk, A., Heath, B. L., Ihrig, M., Padilla, J. J., Page, E. H., Suarez, E. D., Szabo, C.,
Weirich, P., and Yilmaz, L. (2013). Epistemology of modeling and simulation. In Proceedings
of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex
World, pages 1152–1166. IEEE Press.

[196] Tomlinson, C., Kim, W., Scheevel, M., Singh, V., Will, B., and Agha, G. (1988). Rosette:
An object-oriented concurrent systems architecture. In ACM Sigplan Notices, volume 24,
pages 91–93. ACM.

[197] Trevino, L. K. (1986). Ethical decision making in organizations: A person-situation
interactionist model. Academy of management Review, 11(3):601–617.

[198] Van Cutsem, T., Mostinckx, S., Boix, E. G., Dedecker, J., and De Meuter, W. (2007).
Ambienttalk: object-oriented event-driven programming in mobile ad hoc networks. In
Chilean Society of Computer Science, 2007. SCCC’07. XXVI International Conference of
the, pages 3–12. IEEE.

[199] Van Lamsweerde, A. (1991). The KAOS project: Knowledge acquisition in automated
specification of software. In Proc. of the AAAI Spring Symposium Series, Design of Composite
Systems, 1991, pages 59–62.

[200] Van Lamsweerde, A. and Letier, E. (2004). From object orientation to goal orientation: A
paradigm shift for requirements engineering. In Radical Innovations of Software and Systems
Engineering in the Future, pages 325–340. Springer.

[201] van Langevelde, I., Philipsen, A., and Treur, J. (1992). Formal specification of composi-
tional architectures. In 10th European conference on Artificial intelligence, pages 272–276.

[202] Varela, C. and Agha, G. (2001). Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices, 36(12):20–34.

Bibliography 219

[203] Venable, J., Pries-Heje, J., and Baskerville, R. (2012). A comprehensive framework
for evaluation in design science research. In International Conference on Design Science
Research in Information Systems, pages 423–438. Springer.

[204] Vernadat, F. (2002). UEML: Towards a unified enterprise modelling language. Interna-
tional Journal of Production Research, 40(17):4309–4321.

[205] Voelter, M. and Lisson, S. (2014). Supporting Diverse Notations in MPS’ Projectional
Editor. In GEMOC@ MoDELS, pages 7–16.

[206] Von Bertalanffy, L. (1968). General system theory. New York, 41973(1968):40.

[207] Wakita, K. (1995). First class continuation facilities in concurrent programming language
Harmony/2. In Theory and Practice of Parallel Programming, pages 300–319. Springer.

[208] Wegmann, A. (1987). Enterprise Architecture. IBM Systems Journal, 26(3):276.

[209] White, S. A. (2008). BPMN modeling and reference guide: understanding and using
BPMN. Future Strategies Inc.

[210] Williams, T. (1998). The Purdue enterprise reference architecture and methodology
(PERA). Handbook of life cycle engineering: concepts, models, and technologies, Springer
Berlin, 289.

[211] Wisnosky, D. E. and Vogel, J. (2004). DoDAF Wizdom: A Practical Guide to Planning.
Wisdom Systems, Inc.

[212] Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the 18th international conference on
evaluation and assessment in software engineering, page 38. ACM.

[213] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.

[214] Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311(5985):419.

[215] Wood, M. T. (1973). Power relationships and group decision making in organizations.
Psychological Bulletin, 79(5):280.

[216] Wooldridge, M. and Jennings, N. R. (1994). Agent theories, architectures, and languages:
a survey. In International Workshop on Agent Theories, Architectures, and Languages, pages
1–39. Springer.

[217] Yonezawa, A., Briot, J.-P., and Shibayama, E. (1988). Object-oriented concurrent
programming in ABCL/1. In Readings in Distributed Artificial Intelligence, pages 434–444.
Elsevier.

[218] Yu, E., Strohmaier, M., and Deng, X. (2006a). Exploring intentional modeling and
analysis for enterprise architecture. Enterprise Distributed Object Computing Conference
Workshops. doi=10.1109/EDOCW.2006.36.

Bibliography 220

[219] Yu, E., Strohmaier, M., and Deng, X. (2006b). Exploring intentional modeling and
analysis for enterprise architecture. In Enterprise Distributed Object Computing Conference
Workshops, 2006. EDOCW’06. 10th IEEE International, pages 32–32. IEEE.

[220] Zachman, J. et al. (1987). A framework for information systems architecture. IBM
systems journal, 26(3):276–292.

[221] Zwicky, W. R. (2008). AJ: A system for building actors with Java. PhD thesis, University
of Illinois at Urbana-Champaign, url: http://osl.cs.illinois.edu/publications/AJ.html.

Appendix A

Review of remaining EM techniques

This research reviews the existing EM techniques using a combination of SMS and SLR method-

ologies to evaluate their suitability as an aid for organisational decision-making. Chapter 4

presents adopted review methodology, review template, the list of EM techniques reviewed

(i.e. Table 4.2), review summary of a set of EM techniques (which are extensively referred in

this thesis) and the key review findings. The review outcome of the remaining EM techniques,

which are referred in IS domain, are discussed in this chapter. Each review outcome contains a

brief description of the EM technique and an instance model of the review template, which is

described as a meta-model described in Figure 4.5.

Unified Modeling Language (UML)

Unified Modelling Language (UML) [151] is a general purpose extensible modelling language

for representing, visualising and documenting the artifacts of software systems. In general, UML

supports the structural and behavioural specification of the systems. The structural aspects are

captured using seven diagram types: Class Diagram, Component Diagram, Composite Structure

Diagram, Deployment Diagram, Object Diagram, and Package Diagram. The behavioural

diagrams are - Activity Diagram, Communication Diagram, Interaction overview diagram,

Sequence Diagram, State diagram, Timing diagram and Use case diagram. In addition to these

predefined diagrams, UML supports the concepts of profile and stereotype for domain specific

extensions. The new semantics can be defined using stereotype. There are initiatives, such

as [153] and [84], where the UML is customised for defining the structural and behavioural

concepts of an enterprise using UML profiles and a set of stereotypes.

222

Figure A.1 Instance model of UML

Figure A.2 Instance model of BMM

The SLR on UML produces an instance model of EM Synthesis meta-model as depicted

in Figure A.1. The UML has two Viewpoints: Structural and Behavioural. The Structural

viewpoint supports six structural diagrams and Behavioural Viewpoint supports seven be-

havioural diagrams. The UML has a unified meta-model to establish the Views and ViewRelations,

the UML specification has precise semantics, and the UML centric tools offer a range of visuali-

sation, analysis, simulation and execution capabilities as shown in the figure.

Business Motivation Model (BMM)

Business Motivation Model (BMM) [189] is an OMG1 standard for specifying and commu-

nicating the business plans in an structured form. The Business Motivation Model (BMM)

1https://www.omg.org/

223

Figure A.3 Instance model of EKD

specification supports the semantics and notations to capture and visualise Business Goals and

Business Operations of enterprises. The model produced from SLR on BMM is depicted in

Figure A.2.

Enterprise Knowledge Development (EKD) & For Enterprise Modelling (4EM)

Enterprise Knowledge Development (EKD) [168] is an integrated method and technique to

design, analyse, and plan enterprise business. An EKD specification describes who does what,

how and why. The For Enterprise Modeling (4EM) [173] is the successor of the EKD technique.

It supports six different models: Goal model, Process model, Actors and resource model,

Concepts model, Business rules model, and Technical component model. The Goal model

describes what people want to achieve in their business, Process model describes the flow of

activities, Actors and resource model describes who is involved with the activities, Concepts

model defines the things and phenomena of a business, Business rules model describes rules that

triggers the activities, and Technical components model defines the information systems and

their use in the enterprise. In a 4EM model, the modelling constructs within a specific models

are related using intra-model relationships and the constructs across the models are related

using inter-model relationships. The SLR on EKD and 4EM is depicted in Figure A.3. As

shown in the figure, the EKD and 4EM has six Views, the ViewRelations (i.e., intra-model

relationships and inter-model relationships) are essentially the Concept Mapping kinds of

relationships, and the EKD/4EM meta-model is a Type2 specification.

224

Figure A.4 Instance model of Petri Net

Figure A.5 Instance model of MEMO

Petri Net

Petri Net [156] is a mathematics based modeling language that helps to describe distributed

systems using the concepts of Places, Transitions and Tokens. The Tokens are the resources that

flows, Places are the reservoirs of the resources, and the transitions consume and produce the

resources based on the firing rules. The complex workflow and behaviour of a system can be

specified using a Petri Net model. The instance model of Petri Net SLR is depicted in Figure A.4.

It supports Type1 EM Language. The EM Tools, such as Petri Net Toolbox2, help to visualise,

analyse and simulate the behavioural aspect of the systems.

Multi-Perspective Enterprise MOdelling (MEMO)

Multi-Perspective Enterprise Modelling (MEMO) [80] is a generic conceptual framework that

helps to capture the common abstractions of business firms. It recognises three distinct perspec-

tives - strategy, organization and information system wherein each perspective is structured

2https://www.mathworks.com/

225

Figure A.6 Instance model of DEMO

along four aspects: structure, process, resources, and goals. In addition to these four aspects,

the MEMO specification helps to capture the environmental aspect of an enterprise. The model

produced from the MEMO SLR is depicted in Figure A.5. As shown the figure, MEMO

supports two Viewpoints - Aspects and Perspective. The Aspect Viewpoint has five Views

and Perspective Viewpoint has three Views. The concepts of these Views are specified us-

ing a unified meta meta-model, which is known as the MEMO meta meta-model; the Views

and ViewRelations are specified using three EM Languages: MEMO-SML, MEMO-OrgML,

MEMO-OML. The language MEMO-SML is for strategy modeling; the MEMO-OrgML helps to

model the organisation that includes the business processes and resources; and the MEMO-OML

is an object oriented modeling language to specify information systems. The associated tools

are capable of supporting the visualisation, analysis and simulation as shown in Figure A.5.

Design and Engineering Methodology for Organisation (DEMO)

Design and Engineering Methodology for Organizations (DEMO) [73] is an enterprise modelling

technique for transaction and business process modelling. It assumes that an organisation

consists of three integrated layers: B-organization, I-organization, and D-organization. The

B-organization represents the business layer, I-organization represents the information layer, and

D-organization represents the data layer respectively. These three layers form three perspectives

or levels of abstraction: business system or B system, information system or I system and the data

system D system. These perspectives can be specified using four aspect models: Construction

model (CM), Process model (PM), Action model (AM), and Fact model (FM). The Construction

model is the ontological model that describes organisation, organisational units, their internal

structure, and the environment where the organisation operates; the Process model represents

226

Figure A.7 Instance model of EPC

the state space and the transition space of an organisation; the Action model consists of a set of

action rules; and the Fact model specifies the production rules for state transitions.

The instance model produced from SLR on DEMO is presented in Figure A.6. As shown

in the figure, it supports two Viewpoints: Aspects and Abstraction. The Aspects Viewpoint

has four Views: Construction, Process, Action and Facts. The Abstraction Viewpoint has

three Views: Business, Information, Data. There are two ways of representing these Views:

graphically (i.e., diagrams and tables) and textually. The graphical models, such as Organisation

Construction Diagram (OCD), Process Structure Diagram (PSD), Action Rule Specification

(ARS), and Object Fact Diagram (OFD), are Type2 category EM Language, whereas the textual

specification, DEMOSL, is a machine interpretable language thus it is a Type1 EM Language.

The EM Tools, such as Mphee3 and Xemod4, are primarily the model visualisation tools.

Event-driven Process Chain (EPC)

Event-driven Process Chain (EPC) [136] is a type of flowchart specification to specify and

visualise the business process and workflows. It is a simple and easy-to-understand specification

that supports the primitives process concepts that include – Event, Function, Information,

Organisational Unit, Process Owner, Control Flow (e.g., alternate, parallel, sequence), Logical

Connectors (e.g., AND, OR, XOR), and the Information Flow. The Event-driven Process Chain

(EPC) specification is primarily developed as part of ARIS but later it is extended to use as an

independent process modelling specification.

The model produced in SLR is shown in Figure A.7. It supports three Views: Process,

Organisational Unit and Data. The EM Language known as EPML is a Type1 specification

3http://www.mphee.nl/
4http://www.ee-institute.org/en/demo/tools

227

Figure A.8 Instance model of KAOS

Figure A.9 Instance model of EEML

and EM Tool, e.g., ARIS toolset, is capable of supporting visualisation, analysis and simulation

of business processes.

Knowledge Acquisition in Automate Specification (KAOS)

Knowledge Acquisition in automated specification or Keep All Objectives Satisfied (KAOS)

[199] is a formal goal modelling language developed for requirements engineering. The

constructs of KAOS language are capable of describing the objects, operations, responsibility

and goals. The objects represent the things of interest, such as entities, relationships, and events.

The operations are the input-output relations over objects, which are specified using the pre-,

post-, and trigger conditions. The responsibilities are the active elements such as humans,

devices, software, etc. The goals are prescriptive statement of the intents of a system and/or

responsibilities.

The instance model produced from SLR on KAOS is presented in Figure A.8. The model

shows that KAOS has four Views - Goal, Responsibility, Object and Operation. The KAOS

228

language is a Type1 EM Language and the associated tool, Objectiver5, is a visualisation and

analysis tool for goal modelling.

Extended Enterprise Modeling Language (EEML)

Extended Enterprise Modelling Language (EEML) [115] is a modelling language that combines

structural model, business process model, goal model and resource model. The structural model

describes the structure of an enterprise using UML class diagrams; the process modelling

describes the process logic through nested structures of tasks and decision points; the resource

model describes the roles, i.e., persons, organisations, material objects, software tools and

manual tools, in a process model form; and the goal model bridges with other models by

associating the intentions of the other model elements. The structural specification is capable

of specifying the complex structure, however, the process specification chiefly supports the

deterministic process flow.

The outcome of SLR on EEML is depicted in Figure A.9. As shown in the figure, EEML

supports four Views and those Views are related through a unified meta-model. The EEML

meta-model is a Type1 EM language, and associated tools, such as METIS6, offer visualisation

capability.

5www.objectiver.com/
6www.opengroup.org/architecture/0201anah/briefing/computas.pdf

Appendix B

OrgML Notations

OrgML models across this thesis are represented using a set of notations. Those OrgML

notations along with the brief descriptions of the OrgML concepts are listed below:

Table B.1 OrgML Notations

Concept Description Notation

U
ni

tD
efi

ni
tio

ns

OrgUnit
Modular, autonomous, reactive unit that

represents organisation, organisational units
and environment

DataUnit A data structure that represents a collection of
Variables

Calendar An entity that contains and specifies global
TimeEvents

D
ec

is
io

n
M

ak
in

g
C

on
ce

pt
s

Goal Intention or objective of organisational
decision-making or OrgUnit

Measure A Variables that indicate the key
performance indicators (of an OrgUnit)

Lever A course of action or change that can be
applied on an OrgUnit

B
eh

av
io

ur
al

E
le

m
en

ts

Action
A behavioural unit with a coherent set of
Statements that activates when an Event

specification is satisfied

Function A behaviour unit that contains a coherent set
of instruction Statements

230

Concept Description Notation

St
ru

ct
ur

al
E

le
m

en
ts Variable A typed entity that represents characteristic or

state variable of an OrgUnit

Parameter A specialised Variable that helps to
characterise an OrgUnit

Exposed
Variable

A Variable, which is exposed from an
OrgUnit

Trace

A sequence of Data that captures State,
Events produced internally, Events

communicated to other OrgUnits, and
Events received by an OrgUnit along with
the time information from a point in time in

the past till now.

E
ve

nt
Sp

ec
ifi

ca
tio

n

Incoming
Event Event received by an OrgUnit

Outgoing
Event Event triggered by an OrgUnit

Internal
Event Event internal to an OrgUnit

Time
Event Event that indicate relative time

R
el

at
io

ns
hi

ps

Contain-
ment Containment relationship of OrgUnit

Inheri-
tance OrgUnit Inheritance relationship

Associa-
tion OrgML Association

Event
communi-

cation
Message passing between two OrgUnits

L
ev

er
Sp

ec
.

Variation
Point Location where a Lever can be applied

Variation Alternative for describing Lever

Appendix C

OrgML to ESL translation rules

The transformation rules to transform the OrgML concepts to the ESL concepts are described

using Xtend model transformation template language [39]. This chapter introduces Xtend model

transformation template language and presents the key OrgML to ESL transformation rules.

C.1 Overview of Xtend model transformation language

Xtext is a text-based functional transformation language from Eclipse1. It can transform a

model, which is defined using a domain specific meta-model to a model or a textual specification

that conforms to a meta-model or grammar. The capabilities of the Xtend transformation

specification are described using a case that considers a subset of UML Class diagram to Java

class transformation as shown in Figure C.1.

A meta-model that captures Class with a set of typed Properties is considered as the source

meta-model. A transformation template that translates the concept of Class and Property to Java

class is shown in Figure C.1 (b). The transformation template iterates over all model elements in

line 2, filters Class instances in line 3, generates Java class declaration in line 4, iterates over all

Properties to generate attribute declarations (in line 5–7) and generate Java attributes declaration

in line 12–14. An instance of the source meta-model depicted in Figure C.1 (a) is shown in

Figure C.1 (c) and the translated Java code is shown in Figure C.1 (d).

The next section presents the OrgML to ESL transformation rules using Xtend model

transformation template language.

1http://www.eclipse.org/xtend/documentation/index.html

C.2 OrgML to ESL transformation rules 232

Figure C.1 Overview of Xtend transformation

C.2 OrgML to ESL transformation rules

A schematic representation of OrgML to ESL transformation template is shown using Xtend

language in Figure C.2. Template translateOrgMLToESL iterates over all OrgUnits of a

model (line 6) and generates ESL actor specification by navigating and transforming OrgML

elements, such as Parameters, Variables, Measures, Events, Functions, Actions and

Levers, to appropriate ESL constructs as described in Table 5.2.

The transformation rules of the constituent elements of a OrgUnit are highlighted in line 8 –

41 of Figure C.2. OrgUnit Parameters are translated into ESL actor variables as shown in line

8, 20 and 52–54; all exposed and encapsulated Variables are translated to ESL actor variables

as shown in line 11, 21, 22 and 63–66; and Traces are translated to ESL actor variables as

shown in line 65 of Figure C.2. The model navigation rules that are used to define transformation

rules are shown in Figure C.3.

The IncomingEvents, InternalEvents and TimeEvents are translated to ESL event

specification in line 32–35. OrgML Functions, Actions and Levers are also translated to

ESL specification in line 14, 37 and 40–42 respectively.

The transformation rules for OrgML Action, Event, Calendar and inherited OrgUnit are

described below.

C.2 OrgML to ESL transformation rules 233

1 /* Legends: Template Specification , ESL Keywords,
2 * Model Elements , Model Properties , Model Associations of OrgML meta -model
3 */
4
5 def translateOrgMLToESL(OrgM � orgml)“‘
6 «FOR unit:orgml.model»
7 «IF unit instanceof OrgUnit» // Transform OrgUnit as Actor
8 act «unit.name» («generateParameterList(getAllParameters(unit))») {
9

10 // Transform Exposed Variables as exported variable of an actor
11 export «getAllExposedVariables(unit).map[name].join(’,’)»
12
13 // Transform Function Specifications
14 «FOR behav:getAllFunctions(unit)» «transformFunctionSpec(behav)» «ENDFOR»
15
16 // Transform Measures and TraceExpressions
17 «FOR m:getAllMeasures(unit)» «createFunctionForMeasure(m)» «ENDFOR»
18
19 // Transform Variables and Traces
20 «FOR p:getAllParameters(unit)» «p.name» ::«p.vtype.name» := ’p_’«p.name» «ENDFOR»
21 «FOR v:getAllExposedVariables(unit)» «transformVariable(v)» «ENDFOR»
22 «FOR v:getAllEncapsulatedVariables(unit)» «transformVariable(v)» «ENDFOR»
23 «FOR v:getAllMeasures(unit)» «transformVariable(v)» «ENDFOR»
24
25 // Transform EInfo
26 eventTrace ::[Event] := []
27
28 // Register for subscribed TimeEvent
29 → { «FOR e:getAllSubscribedEvents(unit)» calendar ← RegieterFor«LectureSlot.name»(s e l f)» «ENDFOR» }
30
31 // Transform Event Specifications
32 «FOR e:getAllIncomingEvents(unit)» «transformEventSpec(e)» «ENDFOR»
33 «FOR e:getAllInternalEvents(unit)» «transformEventSpec(e)» «ENDFOR»
34 «FOR e:getAllSubscribedEvents(unit)» «transformEventSpec(e)» «ENDFOR»
35
36 // Transform Action Specification as Internal Actor and Events
37 «FOR behav:getAllActions(unit)» «transformActionSpec(behav)» «ENDFOR»
38
39 // Transform Lever Specification as IncomingEvent
40 «FOR lever:getAllLevers(unit)»
41 «lever.name» → { «transformLeverSpec(lever)» }
42 «ENDFOR»
43
44 // Support Human -in -the -loop Goal Evaluation by displaying the relevant measures
45 «FOR goal:unit.goal» «FOR leaf:getLeafLevelGoal(goal)» Display «leaf.gm.name» «ENDFOR» «ENDFOR»
46
47 }
48 «ENDIF»
49
50 «IF unit instanceof DataUnit» // Transform DataUnit as Actor
51 act «unit.name» («generateParameterList(variable:unit.contains)») {
52 «FOR v:unit.contains» «p.name» ::«v.vtype.name» := ’p_’«v.name» «ENDFOR» // Variables
53 }
54 «ENDIF»
55 «ENDFOR»
56 ”’
57
58 def generateParameterList(Parameter [] parameters)“‘
59 «parameters.map[’p_ ’+ name :: vtype.name].join(’,’)»
60 ”’
61 def transformFunctionSpec(Function function)“‘
62 «function.name»(«generateParameterList(function.params») ::«function.returns»
63 = «translateBSpec(function.spec)» // Function Specification
64 ”’
65 def createFunctionForMeasure(Measure measure) “‘
66 evaluate_«measure.name»() ::«measure.vtype.name»
67 = compute_measure_value(measure.value.uses)
68 ”’
69 def transformVariable(Variable variable)“‘
70 «variable.name» ::«variable.vtype.name»
71 trace_«variable.name» ::[«variable.vtype.name»] := []
72 ”’
73 def generateArgumentList(Data args) “‘
74 «args=args.contains.map[’p_ ’+ name vtype.name].join(’,’)»
75 ”’

Figure C.2 Overview of OrgML to ESL transformation rules

C.2.1 Transformation rule for OrgML Action, Event and BSpec

Transformation of event specification, transformEventSpec, is highlighted in line 9–26 of

Figure C.4. The IncomingEvents, InternalEvents and subscribed TimeEvents have a set

of Statements that can be translated to ESL statements by translating the syntactic differences

of OrgML BSpec and ESL statement. In addition, each event definition may display measure

values (shown in line 14) and capture trace information as shown in line 17 and 18.

C.2 OrgML to ESL transformation rules 234

1 /*
2 * Legends:Model Elements , Model Properties , Model Associations of OrgML
3 */
4 def Parameter [] getAllParameters(OrgUnit unit) { return unit.params }
5 def Measure [] getAllMeasures(OrgUnit unit) { return unit.measures}
6 def Variable [] getAllExposedVariables(OrgUnit unit) { return unit.exposes}
7 def Variable [] getAllEncapsulatedVariables(OrgUnit unit) { return unit.encapsulates}
8 def IncomingEvent [] getAllIncomingEvents(OrgUnit unit) {unit.receives}
9 def InternalEvent [] getAllInternalEvents(OrgUnit unit) {unit.internal}

10 def TimeEvent [] getAllTimeEvents(OrgUnit unit) { return unit.subscribes}
11 def Function [] getAllFunctions(OrgUnit unit) {
12 var ArrayList <Function > functions = new ArrayList <Function >()
13 for (element : org.behaviour(org))
14 i f (element instanceof Function)
15 functions.add(element)
16 return functions
17 }
18 def Action [] getAllActions(OrgUnit unit) {
19 var ArrayList <Action > actions = new ArrayList <Action >()
20 for (element : org.behaviour(org))
21 i f (element instanceof Action)
22 actions.add(element)
23 return actions
24 }
25 def Lever[] getAllLevers(OrgUnit unit) {unit.levers}

Figure C.3 OrgML model navigation rules

The translation rules for OrgML Action to ESL specification (as illustrated in Figure 5.23) is

shown in line 32–66 of Figure C.4). For each Action, the transformation specification generates

a new inner actor (line 32) with a set of actor elements that include – (i) ‘expectedEventTrace’

variable along with the event specification (as shown in Figure 5.23) (line 33), (ii) a variable to

capture ‘actualEventTrace’ (line 34), (iii) functions to evaluate the event trace (line 36), evaluate

state variables (line 37) and perform set of actions (line 43), and (iv) a set of event definitions

(line 45–55). The generated event specification stores event parameters so that they can be used

by the action statements (line 49), updates ‘actualEventTrace’ (line 51), evaluates event trace

condition and state variable conditions (line 53), and performs action statements if the event

conditions and trace conditions are true as shown in line 53.

C.2.2 Transformation rule for OrgML Calendar

OrgML Calendar is translated to ESL actor using the transformation rules shown in Figure C.5.

The transformation rules generate a set of variables to capture subscribers (line 7–8), a set of

event specifications for specified TimeEvents (line 9–12), and a specification of the primitive

TimeEvent, which is termed as Time, as shown in line 13–15. The Time event computes all

derived TimeEvents as illustrated in Figure 5.24.

C.2.3 Transformation rule for inherited OrgUnit

The OrgUnit inheritance is resolved by translating inherited OrgUnits to ESL actors such

that each inherited OrgUnit includes its own and inherited Variables, Parameters, Events,

Functions and Actions as discussed in section 5.5. The translation rules shown in Figure C.2

C.2 OrgML to ESL transformation rules 235

1 /* Legends: Template Specification , ESL Keywords,
2 * Model Elements , Model Properties , Model Associations of OrgML meta -model
3 */
4 def transformBSpec(BSpec bspec)“‘
5 «FOR stmt:bspec.stmt»
6 // Syntactic transformation of orgml statements
7 «ENDFOR»
8 ”’
9 def transformEventSpec(BehaviouralEvent event)“‘

10 var arguments = «generateArgumentList(event.carries»
11
12 «event.name»(«arguments») → {
13 // Display Measures
14 «FOR measure:event.maps» Display evaluate_«measure.name»() «ENDFOR»
15
16 // Capture trace information
17 «IF event instanceof TimeEvent» trace_«variable.name» :=
18 trace_«variable.name» + [«variable.holds»] «ENDIF»
19
20 «FOR action:event.used» //Send messages to all action actors
21 for n :: Int in 0..(length(variable_«action.name») -1) do
22 variable_«action.name»[n] ← event(«arguments»)
23 «ENDFOR»
24
25 «translateBSpec(event.attachedTo.spec)» //Event specification
26 }
27 ”’
28 def transformActionSpec(Action action)“‘
29 variable_«action.name» ::[«action.name»] :=[] // Variable to refer inner actors
30
31 //Add new inner actor to monitor a complex event
32 act act«action.name» () ::Act«action.name» {
33 expectedEventTrace :: Str = «generateExpectedTrace(action.spec)»
34 actualEventTrace ::[Str] = []
35
36 eventTraceEvaluator () ::Bool = evaluateTrace(expectedTrace ,eventTrace) // Standard trace evaluation logic
37 actionConditionEvaluator () ::Bool = «generateWhenConditionEvaluation(action.spec)»
38
39 eventArgs ::[Str][Data] // Variable to store event Data.
40
41
42 // Function to perform action
43 perform () ::void = «translateBSpec(action.spec)» // Action statements
44
45 «FOR event:action.uses»
46 variable_«event.name» :: Int := 0;
47 «event.name»(«generateArgumentList(event.carries») → {
48 // Add Event Arguments
49 eventArgs := eventArgs + [«event.name», «event.carries»]
50 // Add Event to the Event Trace
51 actualEventTrace := actualEventTrace + [«event.name»]
52
53 i f (eventTraceEvaluator () && actionConditionEvaluator ()) then perform () e l s e nothing
54 }
55 «ENDFOR»
56 }
57 ”’
58
59 def generateWhenConditionEvaluation(BSpec bspec) “‘
60 «FOR exp:bspec.state»
61 // Syntactic transformation of orgml expression
62 «ENDFOR»
63 ”’
64 def generateExpectedTrace(BSpec bspec) {
65 // Generate expected trace using recursive depth -first search of BSpec.events specification
66 }

Figure C.4 Transformation of Action, Event and BSpec

1 /* Legends: Template Specification , ESL Keywords,
2 * Model Elements , Model Properties , Model Associations of OrgML meta -model
3 */
4
5 //OrgML Calendar to ESL Actor translation rules
6 act calendar () :: Calendar {
7 «FOR time:Calender.contains» «time.name» :: Int := 0;
8 «time.name»Subscriber ::[T] = [] «ENDFOR»
9 «FOR time:Calender.contains» «time.name» → {

10 «time.name» := «time.name» + 1
11 for n :: Int in 0..(length(«time.name»Subscriber) -1) do nth(«time.name»Subscriber ,n) ← «time.name»
12 } «ENDFOR»
13 Time(primitive :: Int)→ {
14 «FOR time:Calender.contains» «transformTimeSpecification(time)» «ENDFOR»
15 }
16 }

Figure C.5 Transformation of Calendar

and the model navigation rules shown in Figure C.6 are used to generate ESL actor specification

C.2 OrgML to ESL transformation rules 236

1 /*
2 * Legends: Model Elements , Model Properties , Model Associations of OrgML meta -model
3 */
4
5 def OrgUnit [] traverseHierarchy(OrgUnit [] list , OrgUnit unit)
6 for (reln:unit.source)
7 i f (reln instanceof Inheritance)
8 traverseHierarchy(list.add(reln.target), reln.target)
9 return list

10
11 def Parameter [] getAllParameters(OrgUnit unit) {
12 var HashMap <String ,Parameter > map = new HashMap <String ,Parameter >()
13 for (org: traverseHierarchy ([unit],unit))
14 for (param : org.parameters(org))
15 i f (!map.containsKey(param.name))
16 map.put(param.name ,param)
17 e l s e {
18 Parameter p= map.get(param.name)
19 i f (p.type.name != param.type.name)
20 error(" Error: Parameter overriding is not supported ")
21 }
22 return map.values ()
23 }
24
25 // Below methods are same as Parameter , i.e., overriding is not supported
26 def String [] getAllExportedVariables(OurUnit unit) { . . . }
27 def Measure [] getAllMeasures(OrgUnit unit) { . . . }
28 def Variable [] getAllExposedVariables(OrgUnit unit) { . . . }
29 def Variable [] getAllEncapsulatedVariables(OrgUnit unit) { . . . }
30
31 // Collection of all subscribed TimeEvent
32 def TimeEvent [] getAllTimeEvents(OrgUnit unit) {
33 var ArrayList <TimeEvent > elements = new ArrayList <TimeEvent >()
34 for (org: traverseHierarchy ([unit],unit))
35 for (t :org.subscribes)
36 i f (! elements.contains(t))
37 elements.add(t)
38 return elements
39 }
40
41 def Function [] getAllFunctions(OrgUnit unit) {
42 var HashMap <String ,Function > map = new HashMap <String ,Function >()
43 for (org: traverseHierarchy ([unit],unit))
44 for (function : org.behaviour(org))
45 i f (function instanceof Function)
46 i f (!map.containsKey(function.name))
47 map.put(function.name ,function)
48 e l s e {
49 Function f= map.get(param.name)
50 i f (! sameFunctionParameter(f, function))
51 map.put(function.name ,function) // Overloading
52 e l s e { } // Overriding
53 }
54 return map.values ()
55 }
56
57 // Below methods are same as Function , i.e., overriding and overriding are supported
58 def IncomingEvent [] getAllIncomingEvents(OrgUnit unit) { . . . }
59 def InternalEvent [] getAllInternalEvents(OrgUnit unit) { . . . }
60
61 def Action [] getAllActions(OrgUnit unit) {
62 var HashMap <String ,Action > map = new HashMap <String ,Action >()
63 for (org: traverseHierarchy ([unit],unit))
64 for (action : org.behaviour(org))
65 i f (action instanceof Action)
66 i f (!map.containsKey(action.name))
67 map.put(action.name ,action)
68 e l s e {} // Always override the inherited action
69 return map.values ()
70 }
71 // Below method is same as Action , i.e., always override
72 def Lever[] getAllLevers(OrgUnit unit) { . . . }

Figure C.6 Navigation Rules for overriding and overloading

for an inherited OrgUnit. The model navigation rules shown in Figure C.6 conform to the

overriding and overloading rules described in section 5.5.

Appendix D

An experiment with Akka

This research adopts actor/agent technology as an underlying simulation engine for quantitative

what-if analysis. The proposed approach uses ESL [54] to benefit from ESL specific advance-

ments, i.e. uncertainty and notion of ‘time’. However, this research argues that any other actor

language, such as Akka [5] and Erlang [12], can be used with the proposed OrgML based

approach. In this context, one of the most prominent industry-scale actor language, Akka, is

evaluated using a subset of University case study (presented as a running example in this thesis).

The key objectives to evaluate Akka are two-fold – (i) justify the use of existing actor

language as underlying simulation specification in the proposed approach (which is presented

in Chapter 5), and (ii) establish a high-level transformation path from OrgML to Akka as a

validation of the claim.

This chapter presents an overview of Akka in section D.1. It introduces an OrgML model

for the experimentation, discusses experimentation steps and reports observations along with a

comparative analysis with respect to ESL in section D.2. A transformational path from OrgML

to Akka is presented in section D.3.

D.1 A brief overview of Akka

As discussed in Chapter 4, Akka [5] is an industry-scale actor library, which is developed

using Java and Scala platform and runs on one or multiple Java Virtual Machines (JVMs).

Akka supports actor [2, 96] abstraction for distributed and concurrent computing model and

uses non-blocking asynchronous messaging over a lightweight event-driven communication

D.1 A brief overview of Akka 238

Figure D.1 Illustration of Akka concepts and APIs

processes for interactions. The key abstractions and APIs supporting these capabilities are listed

below:

• ActorSystem: It is an environment that creates, manages and executes actors.

• UntypedActor: An abstract class that can be extended to realise an actor. Each

UntypedActor has a mailbox to store incoming messages and maintains a thread for

computation. Each class that extends UntypedActor needs to override onReceive(...)

method to consume messages from its internal mailbox, and it can send messages to other

actors using tell(...) method.

• Props: It helps to parameterise an actor though the ‘new’ construct.

• ActorRef: A reference to an actor.

These core capabilities are illustrated using a simple example that consider an asynchronous

conversation (lets consider through e-mail) between an academic and a student where the student

raises a query, academic responds and this conversation continues till student’s query is resolved.

The code fragments of Student class, Academic class and a Main that creates an actor

system are shown in Figure D.1. The Main class creates an ActorSystem termed as ‘Conver-

sation’ as shown in line 2 of Main class. It creates an Academic class in line 3 and a Student

class in line 4. The Student class and Academic class both extend the class UntypedActor,

implement Props method, and override OnReceive(Object message) method as shown in

the figure. The Student initiates a conversation with Academic by sending a query to academic

D.2 Experiment 239

Figure D.2 A subset of University case study

using tell(...) as shown in line 7 of Student class. Academic identifies student’s query by

a pattern matching (as shown in line 9 of Academic class) and responds back to the sender with

a specific response (shown in line 10 of Academic class). On the other hand, Student finds a

response (line 17 of Student class), checks if it resolves the query (in line 18 of Student class)

and raises further query (line no 20 of Student class) if query is not resolved. This conversation

shows the core capabilities of Akka that will be used in the experiment presented in the next

section.

D.2 Experiment

D.2.1 Experimental model

A subset of University case study as shown using an OrgML specification in Figure D.2 is

considered for this experiment. The subset includes Department, TeachingAcademic and Student

from the case study discussed in section 7.3. Department contains TeachingAcademics and

D.2 Experiment 240

Figure D.3 A schema and sample specification of ESL implementation

Students where TeachingAcademics offer a set of Modules and Students enroll Modules. Depart-

ment, TeachingAcademic and Student subscribe a Calendar that recognises ‘Hour’, ‘Day’

and ‘LectureSlot’ TimeEvents. The Parameters, Variables, Trace, IncomingEvents,

OutgoingEvents, InternalEvents and Actions of Department, TeachingAcademic and

Student are shown using OrgML notations in Figure D.2. The subset of the OrgUnit behaviours

that are considered are:

• Calendar notifies ‘LectureSlot’ TimeEvent to TeachingAcademics.

D.2 Experiment 241

• A TeachingAcademic may deliver a ‘Lecture’ on a specific ‘LectureSlot’. Delivering a

‘Lecture’ on scheduled ‘LectureSlot’ depends on a probability factor and the priorities for

other activities (i.e. ‘workPriority’), such as managerial work and unplanned work.

• Student may attend a ‘Lecture’ (based on a probability factor).

• Students may raise a ‘StudentQuery’ and/or a ‘Complaint’ after attending a ‘Lecture’

based on their characteristics, which are specified using parametric variables: ‘propensity-

ToRaiseQuery’ and ‘propensityToRaiseComplaint’.

Detailed description of the depicted OrgUnits and Module DataUnit can be found in

section 7.3.

D.2.2 Implementation using ESL and Akka

OrgML model shown in Figure D.2 is translated to ESL and Akka for the following purposes –

(i) compare ESL and Akka as a simulation specification for OrgML based approach, and (ii)

develop a transformation path from OrgML to Akka so that other researchers choose from ESL

and Akka for what-if analysis needed for organisational decision-making.

ESL Specification

Proposed OrgML to ESL translation rules translate OrgML specification into ESL specification

as shown using an extended form of class diagram in Figure D.3. The «ESL Actor» stereotype

represents ESL actors, associations represents ESL events or message passing and call-out boxes

show the high-level actor specification using ESL.

As shown in the figure, ESL specification contains five interacting ESL Actors to repre-

sent OrgUnits, DataUnits and Calendar. Precisely, Department, Academic and Student

OrgUnits are translated into ESL Actors where OrgUnit Parameters are translated into ESL

Actor parameters (as shown in ‘ESL specification 3’ and ‘ESL specification 4’ of Figure D.3),

Variables are mapped to Actor variables with equivalent ESL types, exposed variables are

‘exported’ from ESL Actors (as shown in line 2 of ‘ESL specification 4’ in Figure D.3), and the

behaviours of all IncomingEvents, InternalEvents and subscribed TimeEvents are trans-

lated into ESL event specification. The uncertainty and probabilistic behaviors are speciefied

using ESL ’probably’ construct (as shown in lines 10 and 11 of ‘ESL specification 3’ and line

9 of ‘ESL specification 4’). The OutgoingEvents are raised appropriately from the behavioural

D.2 Experiment 242

Figure D.4 A schema of Akka implementation

specification (as shown in lines 10 and 11 of ‘ESL specification 3’ and line 9 of ‘ESL specifica-

tion 4’). Department actor represents a composite OrgUnit that observes and controls Academic

and Student OrgUnits, therefore it has minimum behaviour as shown in ‘ESL specification

1’ of Figure D.3. It is expected that Department behaviour emerges from the interactions of

Academics and Students.

The Module DataUnit is translated to ESL Actor, which has no behaviour as shown in

‘ESL specification 2’. The Calendar is also translated to ESL Actor that senses primitive event

(i.e. a‘tick’ raised by ESL simulation engine), computes all composite TimeEvents and sends

TimeEvents to respective OrgUnits based on subscribe relationships.

Akka Specification

An equivalent Akka specification of OrgML model shown in Figure D.2 is depicted using a class

diagram in Figure D.4. Akka implementation classes and interfaces1, such as ActorSystem,

ActorRef and UntypedActor, as well as Java POJO classes are shown using stereotypes in

Figure D.4. As shown in the figure, the complete specification is realised as a ActorSystem

that contains the placeholders (i.e. ActorRef) for all actors. The OrgUnits and Calendar are

implemented by extending Akka UnitypedActor (they can also be represented by extending

Akka AbstractActor). The Events are represented as POJO classes that contains all event

parameters as attributes, and the event interactions are realised by overriding onReceive(...)

and invoking tell(...) methods.

1https://doc.akka.io/docs/akka/2.5/guide

D.2 Experiment 243

Figure D.5 Akka specification to represent Department OrgUnit

Figure D.6 Akka specification to represent Academic OrgUnit

Conceptually, the OrgML model is translated to an ActorSystem, which is termed as

University. It contains ActorRef of extended UntypedActors that represent Department,

Academic and Student OrgUnits and Calendar. Module DataUnit is realised as Java POJO

class. All TimeEvents of Calendar (i.e. ‘Hour’, ‘Day’ and ‘LectureSlot’), OutgoingEvent

of Academic (i.e.,‘Lecture’), and OutgoingEvents of Student (i.e., ‘StudentQuery’ and ‘Com-

plaints’) are represented using POJO classes as shown in Figure D.5. The Akka specification of

Department, Academic, Student and Calendar are respectively shown in Figure D.5, D.6, D.7

and D.8.

D.2 Experiment 244

Figure D.7 Akka specification to represent Student OrgUnit

Figure D.8 Akka specification for Calendar

As shown in Figure D.5, Department class extends Akka UntypedActor class (line 1). It

maintains a lists of ActorRef of all academic and student instances (as shown in lines 2 and

3) and contains all OrgUnit variables as class attributes (i.e. lines 4,5 and 6). The constructor

forms the department object by creating academic and student instances as shown in line 7–12.

D.2 Experiment 245

Figure D.9 Simulation results of ESL and Akka

The implementation of Academic class, shown in Figure D.6, contains all parameters, vari-

ables and traces as shown in line 2–7. It implements onReceive(Object message) message to

handle subscribed TimeEvents (i.e., ‘Hour’, ‘Day’ and ‘LectureSlot’) and all IncomingEvents,

such as ‘StudentQuery’ and ‘Complaint’ using pattern matching of incoming message as shown

in line 12–23.

The attribute access control (i.e. private or public) is set based on the OrgML variable

properties, i.e. encapsulated or exposed variable, as shown lines 2–6; the uncertainty in delivering

a lecture by an academician is implemented using a ‘random’ function as shown in line 17;

and an example of raising an event using tell(...) method is shown in line 18. The Student

class shown in Figure D.6 implements student OrgUnit. Similar to Academic class, the Student

class contains all attributes that represent OrgUnit parameters and variables, constructor and

implementation of onReceive(Object message) method.

Implementation of onReceive method pattern matches ‘Lecture’ event, processes its be-

haviour, and raises ‘StudentQuery’ and ‘Complaint’ based on their propensity as shown in

D.2 Experiment 246

lines in 17–20. An implementation class for Calendar as an extended UntypedActor class

as shown in Figure D.8. Implemented Calendar class contains a set of references to capture

subscriptions as shown in lines 2–4, provides an implementation of a primitive TimeEvent,

which is termed as ‘Tick’, as shown in line 6, exposes a method to subscribe TimeEvents and

provides an implementation to raise all TimeEvents by overriding createRecieve() method

as shown in lines 14–19.

D.2.3 Simulation using ESL and Akka

The translated ESL and Akka specifications of OrgML model (shown in Figure D.2) are

simulated for a department configuration that has two academics, fifty students and offers two

modules. The simulation results are visusalised using OrgViz Data visualiser by integrating

Akka implementation with OrgViz Data visualiser. As shown in Figure D.9, the outputs from

ESL and Akka implementation are nearly identical with minor deviations due to the probabilistic

nature of the OrgUnit or actor behaviours.

D.2.4 Synthesis

The experiment presented in this section considers an OrgML model, translates OrgML model

into Akka specification alongside ESL, and shows Akka and ESL based simulation results

to evaluate Akka as a simulation specification (and its JVM based execution as simulation

engine) in the proposed OrgML based approach (presented in Figure 5.7 of Chapter 5). This

experiment demonstrates the applicability of Akka as an alternate simulation specification as it

can express most of the requirements of organisational decision-making (i.e. requirements listed

in Table 3.3) excluding uncertainty, notion of ‘time’ , goal, measure and lever.

However, the comparison with ESL specification shows that ESL is better suited for organi-

sational decision-making as compared to Akka. The principal reasons are: (i) ESL explicitly

specifies uncertainties and supports the notion of primitive ‘time’, (ii) ESL event specifica-

tion is more expressive than the Akka specification as an Akka specification expects distinct

static Plain Old Java Object (POJO) class for each event as shown in Figure D.4, and (iii)

IncomingEvent and subscribed TimeEvents implementations expect pattern matching code

in overridden OnReceive method as shown in Figure D.6. Whereas the event specification in

ESL is better structured as follows:

<event name> (parameter list) → {event spec } (as shown in Figure D.3)

D.2 Experiment 247

Table D.1 Mapping from OrgML to Akka

Next section defines a transformation path from OrgML to Akka so that other research

can choose from two alternatives – (a) ESL, which is better suited for this research but not yet

accepted in industry and (ii) Akka, which is prominent in industry but involves significant effort

to develop/generate simulation code. It also requires suitable implementation for ‘time’ and

case specific uncertain behaviour.

D.3 OrgML to Akka transformation 248

D.3 OrgML to Akka transformation

This section presents an one-way model transformation strategy to transform OrgML model into

Akka specification. The conceptual mapping from the OrgML concepts to Akka specifications

alongside ESL mapping are shown in Table D.1. Conceptually, an OrgUnit, its specialisation

(i.e., Organisation and Environment) and Calendar can be realised using Java class that

extends UntypedActor or AbstractActor. DataUnit can be realised using Java class. The

interaction between OrgUnits can be specified using Java class and OnReceive(...) and

tell(...) methods. Each OrgML Event expects a static Java class that captures event

parameters as class attributes as shown in Figure D.4. These classes are instantiated and sent

to the destination using tell(...) method for an interaction as shown in Figure D.7 (see

‘StudentQuery’ specified in line 18 as an example). The Akka actors process these events using

OnRecieve(...) method as shown Figure D.6 (see ‘StudentQuery’ as shown in line 20).

As shown in the table, an OrgUnit Parameters can be translated to class attributes and

parameters to ‘new’ class. All exposed and encapsulated Variables can be translated in

public and private class attributes. An OrgML Trace requires a class attribute with list type.

Each OutgoingEvent requires a Java class to represent event and event parameters. An event

can be sent to the destination using tell(...) method. The IncomingEvents and subscribed

TimeEvents need to be mapped to pattern matching cases in OnReceive(...) method. All

InternalEvents can be realised using methods of Java classes. The OrgML Function and

Action specifications transform the OrgML variable assignment, conditional statement, loop,

instantiation of new objects syntax (as shown in Figure 5.14) into Java syntax.

D.4 Summary

The experiment presented in this chapter demonstrates that both, ESL and Akka, are suitable

for the proposed organisational decision-making approach. However, the use of Akka leads to

certain additional accidental complexities [120] as opposed to ESL. A strategy to overcome

those accidental complexities and use as a simulation specification in the proposed approach are

shown by defining a transformation path from OrgML to Akka. The other Actor/agent language,

such as Erlang, can also be evaluated to establish their suitability. The exploration of other

Actor/Agent languages is one of the areas for future work of this thesis.

Appendix E

Business Process Outsourcing case

study

Business Process Outsourcing (BPO) [33] is a method of subcontracting organisational business

process to a third-party organisation for specific purpose such as cost and efficiency. The case

study discussed in this chapter considers a decision making scenario from BPO business where

a third-party organisation would like to compete with its competitors by offering best in class,

value added and economical services to its customers.

Figure E.1 A pictorial representation of Business Process Outsourcing organisation

250

Figure E.2 Typical interactions and transitions in BPO environment

E.0.1 Problem entity

In BPO space, the organisations, termed as customers, outsource their business processes for a

variety of reasons such as reducing cost (C), increasing efficiency (E), bringing about a major

transformation or delightment (D). As shown in Figure E.1, the outsourced processes can be

further classified into three buckets based on maturity of the BPO business. For instance,

Transcript Entry process of Healthcare vertical was one of the first to take to BPO and has

derived almost all potential benefits gained from outsourcing (i.e., Sunset or SS). On the other

hand, IT Infrastructure Management process being a late adopter of BPO has a large unrealized

potential to be tapped (i.e., Sunrise or SR). And there are processes such as Help Desk, Account

Opening, Monthly Alerts etc., that fall somewhere in between the two extremes as regards

benefits accrued from BPO (i.e., Steady or ST). Thus, BPO demand space can be viewed as a 3

x 3 matrix as depicted in Figure E.1.

The customer of a BPO business invites bids from the vendors for a specific business process.

Typically, the factors such as quadrant (i.e., ranking as per independent agency such as analysts),

FTE count range (i.e., min-max count of full time employee (FTE) to be deployed on the

outsourced process), billing rate range (i.e., min-max range for per hour rate of FTE), market

influence (i.e., perception of the market as regards delivery certainty with acceptable quality)

251

etc. decide who wins the bid. Other soft issues such as familiarity with the processes being

outsourced, rapport with the vendor etc., also play a part in selection of the vendor. It is common

observation that BPO contracts come up for renewal after few years. Customer may renew the

contract with the existing vendor on modified terms (typically advantageous to the customer) or

may opt for rebidding. Factors influencing the renewal decision are reduction offered in FTE

count, billing rate, number of escalations during service period, etc. Contracts that fail to get

renewed become candidates for an open bidding. Figure E.2 shows the key interactions and

transitions between customers and vendors.

The demand exhibits temporal dynamism and stochasticity. For instance, new processes

emerge as candidates for outsourcing and some of the existing processes no longer need to

be outsourced as, say, technology advance eliminates the need for human intervention in the

process thus making it straight-through. While operating in this uncertain space, a BPO vendor

needs to make decisions of the following kind: Will continuation with the current strategy (e.g.,

with current FTE count, billing rate, market influence) keep a vendor viable for next ‘n’ years?

What alternative strategies are available? How effective will a given strategy be (e.g., different

FTE count and billing rate)? By when a given strategy will start showing positive impact? and

so on.

Answers to the above questions are primarily linked to the evaluation of portfolio basket,

i.e., 3 x 3 matrix of Figure E.1, of the organisation in terms of revenue and expenses. Therefore,

ability to predict portfolio basket of the organisation and its competitors after a given time period

becomes critical to support informed organisational decision making. The rest of this section

explores two decision questions as follows:

1. Will continuation with the current strategy keep a vendor viable ‘n’ years hence with

respect to its competitors?

2. What will be the situation if the vendor change required FTE count and billing rate?

E.0.2 OrgML model

The BPO problem entity is modelled as a set of autonomous and interacting OrgUnits. As

shown in Figure E.3, the customers, vendors, business processes and the resources of the vendors

are modelled as Customer, Vendor, BusinessProcess, Resource OrgUnits respectively. The

interactions shown in Figure E.2 are realised as IncomingEvents and OutgoingEvents of

252

Figure E.3 OrgML specification of Business Process Outsourcing organisation

Customer and Vendor OrgUnits. The classification shown in Figure E.1 are specified using

parametric Variables of BusinessProcess OrgUnit. The Customer and Vendor OrgUnits

subscribe to a primitive TimeEvent termed as ‘Day’ and two composite TimeEvents: ‘Month’

and ‘Year’. The key elements of OrgML model are described below:

• Customer: Customer OrgUnit comprises three buckets for sunrise (SR), steady (ST) and

sunset (SS) business processes where each bucket comprises a set of cost (C), efficiency

(E) and delight (D) kinds of business processes. These buckets of buckets of business

processes, i.e., the bucket to represent 3 x 3 matrix of Figure E.1, are specified using ‘sun-

rise’, ‘steady’, ‘sunset’ parametric Variables of ‘Customer’ OrgUnit and a DataUnit

termed as ‘ProcessInstances’. The increase and decrease in demand are specified using

pre-defined frequencies and probabilities.

253

A Customer OrgUnit raises ‘RFP’ events based on specified frequency and probability.

Each ‘RFP’ event is characterized by the kind of process being outsourced (i.e., SR or ST

or SS), the objective for outsourcing (i.e., C or E or D), required effort (in terms of FTE

count) to execute business process, and the expected billing rate.

As response to a ‘RFP’, the Customer receives multiple ‘Bids’ from Vendors and evaluates

those Bids using ‘BidEvaluation’ Function. The ‘BidEvaluation’ function is a weighted

aggregate of the various elements of RFP response and a random value to capture effect

of inherent uncertainty as shown in Figure E.2. The vendor with the lowest bid wins the

outsourcing deal which is communicated to specific vendor through ‘Outsource’ event.

Customers ‘Pay’ every ‘Month’ for their outsources business processes based on agreed

billing rate and number of FTE. A Customer receives ‘RenewRequest’, evaluates renew

request using ‘RenewEvaluation’ function and communicates decision through ‘Renew’

event.

• Vendor: Vendors are typically characterised by a set of parameters such as its quadrant,

typical billing rate (a range of min and max value), a trend of FTE count, market influence

and delivery excellence, etc. The Vendor OrgUnit captures these values using ‘cost’,

‘efficiency’, ‘delight’ parametric Variables and associated ‘BucketParameter’ DataUnit.

The resources of a Vendor is captured using ‘resource’ parameter and Resource OrgUnit.

The portfolio of the Vendor, i.e., buckets of nine kinds of business processes (each from

3 x 3 matrix of Figure E.1), are captured using ‘sunrise’, ‘steady’, ‘sunset’ parametric

Variables and ‘ProcessInstances’ DataUnit. In addition, Vendors OrgUnit captures

revenue, customer counts, realisation (i.e. revenue per hour per resources), their yearly

traces as shown in Figure E.3.

Vendors create a competitive environment in a BPO space as all Vendors aim to improve

their ranking with respect to their revenue, customer base and utilisation from their

competitors. The Goal, goal decomposition, and Measures are captured using GM–L

structure of Vendor OrgUnit as illustrated in Figure E.3.

As shown in the figure, the parameters such as quadrant, billing rate, FTE count, market

influence and delivery excellence are considered as Levers as they may help a Vendor to

win a bid.

254

Figure E.4 Input parameters for Business Process Outsourcing case study

• BucketParameters: BucketParameter is a DataUnit that holds a set of parametric

Variables to characterise Vendor OrgUnit. Variable ‘quadrant’ specify the ranking in a

magic quadrant as per independent agency such as Gartner1. In BPO space, the quadrants

are typically named as ‘Leader’, ‘Visionary’, ’Contender’ and ‘Niche player’. Variables

billing rate and FTE productivity both are ranges and a value is picked at random from the

specified range. The delivery excellence variable is a probability distribution of delivering

‘Excellent’, ‘Good’, ‘Normal’ and ‘Below Normal’ quality for a kind of BPO engagement.

BucketParameter DataUnit contains two negotiation parameters: ‘fteReduction’ (i.e.

what is the percent reduction possible in number of FTE billed against the outsourced

process) and ‘billRateReduction’ (i.e., what is the percent reduction possible in per hour

billing rate for FTE).

• Calendar: A Calendar element is configured by specifying three TimeEvents that

represent ‘Day’, ‘Month’ and ‘Year’ where ‘Day’ is associated with primitive TimeEvents

and rest are specified as composite TimeEvents.

1https://www.gartner.com/doc/3650017/magic-quadrant-customer-management-contact

255

Figure E.5 Simulation dashboard of Business Process Outsourcing case study

E.0.3 Instantiation, simulation and decision making

An instance of BPO space is created with one Customer OrgUnit instance having a pool of

various kinds of business processes, a Vendor termed as ‘We’ and two competitor Vendors:

‘Competitor1’ and ‘Competitor2’ as shown in Figure E.4. The parameters of the ‘We’ and

competitor Vendors are appropriately set to create a competitive BPO environment. As shown in

the figure, the ‘We’ vendor is best equipped to win BPO contracts aimed at cost reduction. The

vendor ‘We’ is positioned in ‘Leader’ quadrant. It charges 8–12 USD per hour, offers around

8% less FTE with respect to standard FTE deployment and has‘Excellent’ relationship with

influencer. The ‘We’ vendor is confident of delivering ‘Excellent’ quality on 60% of ‘cost’ kind

of BPO projects won. Similarly, the values for ‘Good’, ’Normal’ and ’Below Normal’ quality for

‘cost’ kind of BPO projects are respectively 30%, 10% and 0%. At the time of renew negotiation,

the ‘We’ vendor is equipped to offer 2% FTE reduction and 5% billing rate reduction. The

‘Competitor1’ and ‘Competitor2’ are also instantiated on the same lines as ‘We’ vendor. In this

case study two competitors are instantiated for simplicity. However, multiple competitors with

different characteristics can be instantiated to define a complex BPO environment.

The above configuration is manually translated into ESL specification by applying the

transformation rules defined in Chapter 5 and allowed to run for 10 ‘Years using ESL simulation

engine. Results of the simulation run produced by OrgViz Data Visualiser are shown in

Figure E.5. As can be seen, the current revenue of ‘We’ vendor is 446.54 MUSD from 90

256

Figure E.6 Quantitative comparison

customers with a realization of nearly 17 USD per hour per FTE. Corresponding numbers for

‘Competitor1’ and ‘Competitor2’ vendors respectively are: <307.11, 78, 12.74> and <362.14,

80, 15>. In short, at present ‘We’ vendor is doing much better than competition.

‘We’ vendor sets a goal to deliver <750, 200, 17> after 5 years and <1000, 290, 18> after 10

years. As can be seen, by continuing to operate the same way the ‘We’ vendor will be delivering

<621.81, 160, 13.5> after 5 years and <895.6, 215, 14> after 10 years thus missing both the

targets by a considerable margin. More importantly, ‘Competitor2’ vendor will be overtaking

‘We’ vendor after 5 years and both the competitors will be significantly ahead of ‘We’ vendor

after 10 years.

Clearly, the ‘We’ vendor cannot afford to continue with the current way of operation.

Therefore, ‘We’ vendor needs to bring about a change in its characteristics so as to be able to win

more bids in this environment. Figure E.6 (a) shows a Lever that modifies the characteristics

of ‘We’ vendor. The improved performance of ‘We’ vendor after applying Lever is shown in

Figure E.6 (b). As shown in the figure, the ‘We’ vendor is able to beat both revenue and customer

targets while failing to meet the realization target narrowly.

257

E.0.4 Summary

This case study models a competitive environment where a set of vendors (with same or similar

objective) compete to achieve their goals. The bid evaluation and renewal of an outsourcing

engagement are specified as functions over track record of the participating vendors (i.e., Traces,

which changes over time), adopted strategies (i.e., offered billing rates and FTE counts) and an

inherent uncertainty. An ability to specify such realistic scenarios (as opposed to a fixed winning

rate as a probability distribution) shows an advancement over the state-of-the-practice modelling

and analysis techniques, such as spreadsheet, algebraic equations and Stock-and-Flow.

The quantitative evaluation of the what-if scenarios demonstrate the effectiveness of the

proposed OrgML based approach for the organisations, which are competing with each other to

achieve their goals in an uncertain, complex and nonlinear environment.

Appendix F

Multi-modelling and co-simulation

using Enterprise Modelling techniques

Systematic literature review on Enterprise Modelling (EM) techniques presented in Chapter 4

identifies several inadequacies of EM techniques to use them as an aid for organisational

decision-making. Reviews show that the existing EM techniques that are capable of specifying

the necessary organisational aspects for organisational decision-making, such as ArchiMate

[100], lack support for required analyses, whereas the EM techniques that are amenable for

analysis can cater to specify only a subset of the aspects. For example, i* [218], BPMN [209],

ARIS [175] and Stock and Flow (SnF) [134] are machine interpretable specification and they

are amenable for a range of analyses. However, BPMN and ARIS are suitable for organisational

processes, i* is limited to analyse organisational goals and objectives, and SnF focuses on

business dynamics of the organisation. These observations leads to evaluate the efficacy of the

multi-modelling and co-simulation approach to address the analysis needs for organisational

decision-making.

This chapter presents an experiment on multi-modelling and co-simulation that combines i*,

BPMN and SnF for what-if analysis of a Software Service Provisioning Organisation (SSPO)

(which is presented in section 7.1 as a case study). The rest of this chapter is organised as

follows – a brief description of SSPO and its goals is presented in section F.1, the experimental

setup and adopted methodology are discussed in section F.2, what-if analyses of SSPO for a

decision-making scenario are highlighted in section F.3, and finally the chapter concludes with a

synthesis derived from this experiment in section F.4.

F.1 Software service provisioning organisation 259

Figure F.1 Business process for software provisioning

F.1 Software service provisioning organisation

Consistent with the case study presented in section 7.1, this experiment considers a SSPO aims

to secure leadership position in terms of business volume, profitability and customer satisfaction.

In order to achieve these goals, SSPO adopts an operational process as shown in Figure F.1.

The organisation explores several strategies or levers to maximise its goals. Some strategies

focus on introducing local fixes through improving operational efficiency while keeping struc-

tural as well as process aspects of the organisation unchanged. For instance, one can think of

increasing number and skill-level of the existing resources, reducing resource attrition, training

etc. Some strategies might be more disruptive as they introduce changes in the organisation

structure and/or operational processes. For example, one can think of developing productivity

improvement tools, which necessitates a change in project execution process as well in the

skill-set of project team.

This experiment evaluates some of these strategies using i*, BPMN and SnF. The i* model

specifies organisational goals, BPMN model specifies operational processes, SnF specifies

aggregated business dynamics of the SSPO. Precise experimental setup is discussed in the next

section.

F.2 Environment for multi-modelling and co-simulation 260

Figure F.2 Multi-modelling and co-simulation in organisational decision making

F.2 Environment for multi-modelling and co-simulation

The capabilities of a wide spectrum of enterprise modelling, analysis and simulation techniques

to represent and analyse complex systems and enterprises are discussed in Chapter 4. Table 4.2

highlights prominent EM techniques and Table 4.3 shows their capabilities with respect to the

modelling and analysis needs for an effective organistional decision-making. This experiment

chooses i*, BPMN and SnF as collectively they are capable of representing the required

organisational aspects as shown in Table 4.3. Moreover, i* tools, e.g. OpenOME1, support

qualitative and quantitative analysis of organisational goals, BPMN tools (e.g. Bizagi2) are

capable of quantitative analysis and simulation of business processes, and SnF tools, such as

iThink3 and Simantics4, come with a rich simulation machinery supporting what-if simulation.

This experiment adopts a reductionist view to visualises a decision-making problem into

multiple sub-problems (i.e., multiple what-if scenarios) as these tools can model and analyse

only a partial view of an organisation. In this experiment, the required what-if analyses are

divided into three categories such that each category of what-if analysis can be addressed using

1www.cs.toronto.edu/km/openome
2https://www.bizagi.com
3http://www.iseesystems.com/Softwares/Business/ithinkSoftware.aspx
4www.simantics.org

F.3 Multi-modelling, co-simulation and decision making 261

Figure F.3 Elaborated i* model

i*, BPMN or SnF as shown in Figure F.2. Precise categorisation, analyses and decision making

by judiciously integrating the partial solutions obtainable from various tools are discuss in the

next section.

F.3 Multi-modelling, co-simulation and decision making

The decision-making for SSPO starts with an i* model having a root goal ‘Secure Leadership

Position’. The root goal is then elaborated into sub-goals and their decompositions with several

alternate levers made explicit. Figure F.3 shows elaborated i* model where ‘Improve Customer

Satisfaction’, ‘Increase Business Volume’ and ‘Improve Profit Margin’ constitute first-level

elaboration of the root goal ‘Secure Leadership Position’ (which is marked with blue colour).

Lever ‘Increase Win Rate’ is identified as a means for realising elaborated goal ‘Increase

Business Volume’. ‘Increase Customer Satisfaction’ sub-goal is dependent on Softgoal ‘Project

Delivery’, which is further influenced by a Softgoal ‘Resource Demand’ where ‘Resource

Demand’ could be managed by two levers: ‘Increase Resource Strength’ and ‘Increase Resource

Skill’.

The goal ‘Improve Profit Margin’ is dependent on Softgoal ‘Profitability’, which is then

refined into two sub-goals: ‘Revenue’ and ‘Expenses’ along with identification of possible levers

for achieving the two. The model depicted in Figure F.3 is essentially a subset of GM-L structure

where goal, goal decomposition structure and levers are modelled using i* model.

F.3 Multi-modelling, co-simulation and decision making 262

Table F.1 Qualitative Analysis using i* model

Iterative analyses of constructed i* model provides a qualitative insight into the possible

impact of levers on various sub-goals that eventually percolate to the root goal. The decision

table shown in Table F.1 depicts the impact of three levers (i.e., ‘Increase Win Rate’, ‘Increase

Resource Strength’ and ‘Increase Resource Skill’) on selected sub-goals and goals. Table also

depicts the analysis results for applying levers ‘Increase Win Rate’ and ‘Increase Resource

Strength’ together. For instance, lever ‘Increase Win Rate’ will: i) positively impact ‘Improve

Business Volume’, ‘Revenue’, ‘Expense’ and ‘Late Delivery’ goals, ii) negatively impact ‘Im-

prove Customer Satisfaction’ goal, and iii) is inconclusive about ‘Profitability’ goal. Thus,

nothing conclusive can be said about the impact of this lever on the root goal. Table F.1 clearly

identifies which decision points are left unaddressed (i.e., decision-points marked as SF1, SF2

and BP). Moreover, decision maker would like to have a quantitative feel for some of the

qualitatively arrived decisions.

This constitutes the next step of decision-making. The next step uses either SnF or BPMN

for understanding the impact of specific lever(s) on goals. The SnF tool iThink and BPMN

tool Bizagi are used for next set of what-if explorations. Precisely, the decision points SnF1

and SnF2 of Table F.1 are addressed using SnF model as they require quantitative and temporal

analysis on aggregated business operations to understand when overall ‘Revenue’ may supersede

the overall ‘Expenses’. On the other hand, the decision point BP is addressed using business

process model as it requires simulation of operational processes to understand the percentage of

(individual) projects that may get delayed due to delays in ‘Project Setup’, multiple iterations

due to ‘Rework’ in ‘Project Execution’ business process (see Figure F.1), etc.

F.3 Multi-modelling, co-simulation and decision making 263

Figure F.4 Stock-and-Flow model of Software Service Provisioning Organisation

A necessary and sufficient SnF is constructed for what-if analyses formulated in SnF1

and SnF2 decision points as shown in Figure F.4 and the business process model depicted in

Figure F.1 is used for BP decision point. Constructed SnF model focuses on the ‘Profitability’

goal of i* model depicted in Figure F.3. The ‘Profitability’ goal is represented using ‘Profitability’

Auxiliary variable within Account Unit of SnF model. The ‘Revenue’ and ‘Expenses’ goals are

represented using ‘Revenue’ and ‘Expenses’ Stocks. The Tasks of i* model that contribute to

‘Revenue’ and ‘Expenses’ goals using means-ends links are represented using inflow Flows. For

example, ‘Payment’ is represented using ‘Payment’ Flow to ‘Revenue’ Stock. The rest of the

model is created by navigating back to the dependent goals and levers. For example, the impact

of ‘Increase Win Rate’ Task of i* model is represented using ‘Win Rate’ Auxiliary variable

and subsequent Stock, Flows and Connectors; the path ‘Increase Win Rate’ and ‘Increase

Business Volume’ are represented using ‘Win Rate’ Auxiliary variable, ‘Business Flow’ inflow

and ‘Business Volume’ Stock. The ‘Project Execution’ Task of i* model is a complex activity

and hence expanded further while constructing the SnF model. The expansion is illustrated

using Stock-and-Flow path ‘Project inflow’ Flow to ‘Completed Project’ Stock. The project

associated delays and the penalty due to late delivery are considered using ‘Delayed Project’

Flow, ‘Late delivery’ Stock and connectors.

F.3 Multi-modelling, co-simulation and decision making 264

Figure F.5 Quantitative analysis using Stock-and-Flow model for profitability

Table F.2 Results of what-if analysis using simulation model

Simulation results of the constructed SnF with suitable data are shown in Figure F.5 and

summarisation of the simulation data is recorded in a decision table as shown in Table F.2. The

quantitative and temporal analysis result of lever ‘Increase Win Rate’ on goal ‘Profitability’ (i.e.,

SnF1) is shown using a graph in Figure F.5 (a) and the impact of levers ‘Increase Win Rate’

and ‘Increase Resource Strength’ together on ‘Profitability’ goal is shown in Figure F.5 (b). As

can be seen from Figure F.5, the profitability drops initially but improves over time leading to

positive impact for both the alternatives. If unsatisfactory, one can keep on modifying value of

F.4 Synthesis 265

the Auxiliary variable ‘Resource Count’ to evaluate the impact of lever. ‘Increase Resource

Strength’ in this combination - Figure F.5 (c) and Figure F.5 (d) depict such iterations. On the

other hand the simulation of business process depicted in Figure F.1 provides an insight about

BP decision point. Simulation result shows ‘Late Delivery’ reduces to an extent with ‘Increase

Resource Strength’ with reduction in delays in ‘Project Initiate’ task and re-initiating tasks that

traverse through ‘Rework’ loop. Therefore, the goal ‘Improve Customer Satisfaction’ improves

with the combination of L1 and L2 of Table F.2. As shown in the table, the lever L1 and L2

together help to achieve ‘Secure Leadership Position‘ goal of SSPO. There could be many such

iterations over SnF and business process model simulations considering i* model as a navigation

aid for exploring options to reach a satisfactory answer.

F.4 Synthesis

The above experiment decomposes the decision-making problem of Software Service Provision-

ing Organisation into three sub-problems such that they can be addressed using <i*, OpenOME>,

<SnF, iThink>, and <BPMN, Bizagi>. First, the goal is qualitatively analysed using i* model

and a set of decision points are identified where the precise quantitative analyses are useful.

For each such decision point or a specific set of decision points, an appropriate and purposive

model is constructed using a specific formalism, and then the what-if analyses are carried out

for decision-making. For example, an SnF is constructed for decision point SF1 and SF2, and a

BPMN model is constructed and analysed for decision point BP. Finally, these partial solutions,

which are obtained from separate tools, are integrated into a consistent whole using decision

table as shown in Table F.2 for organisational decision-making.

This experiment demonstrates that a judicious and systematic use of a set of EM techniques

and tools can address a class of organisational decision-making problems where the organisation

is largely mechanistic, organisational behaviour is precisely known and it can be represented

using aggregated equations. However, this approach is prone to two kinds of complexities:

intrinsic complexity and accidental complexity, as discussed in [120]. Two major factors that

contribute to an intrinsic complexity are: (i) the need for decomposing an organisational decision-

making problem into parts such that they can be addressed using existing tools, and (ii) an

integration of the partial solutions obtained from disparate tools into a consistent whole for sense

making. The overlapping specifications, inability to set up relationships across specifications,

F.5 Summary 266

and non-interoperable nature of the existing tools are principal contributors to the accidental

complexity.

F.5 Summary

This experiment shows the benefits of multi-modelling and co-simulation approach over any

of the individual EM technique. However, the inability to express individualistic behaviours

and lack of analysis capability to understand emergentism of a complex system are remained an

open question for an EM technique based multi-modelling and co-simulation approach as none

of the EM technique is cognisant of such capabilities. Moreover, associated intrinsic complexity

and accidental complexity make this approach difficult to use in organisational decision-making.

F.5 Summary 267

	Contents
	Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Font Style Convention
	1 Introduction
	1.1 Research overview
	1.2 Problem statement and research objectives
	1.3 Research questions
	1.4 Hypotheses
	1.5 Research method, contributions and validation
	1.6 An illustrative example
	1.6.1 Description
	1.6.2 Decision space exploration scenarios

	1.7 Thesis structure
	1.8 Summary

	2 Research Methodology
	2.1 Philosophical grounding
	2.2 Design Science Research
	2.2.1 Design science artifacts
	2.2.2 Design science research cycles
	2.2.3 Research evaluation

	2.3 Synthesis and realisation of DSR methodology
	2.3.1 Research method and activities

	2.4 Summary

	3 Organisational Decision Making
	3.1 Characteristics of complex organisation
	3.1.1 Organisation as open, complex and socio-technical system
	3.1.2 Philosophical viewpoints for system understanding

	3.2 Characteristics of organisational decision making
	3.2.1 Core concepts of organisational decision-making
	3.2.2 Classification of organisational decision-making
	3.2.3 Organisational decision-making processes

	3.3 Review synthesis and requirements derivation
	3.3.1 Conceptual model
	3.3.2 Tenets of organisational decision-making
	3.3.3 Illustration of concepts and characteristics

	3.4 Summary

	4 Modelling and Analysis Techniques
	4.1 Broad spectrum of modelling and analysis techniques
	4.2 Literature review methodology
	4.3 Enterprise modelling and analysis techniques
	4.3.1 Literature identification and mapping
	4.3.2 Evaluation of EM techniques
	4.3.3 Review report of EM technologies

	4.4 Actor and agent technologies
	4.4.1 Literature identification and mapping
	4.4.2 Evaluation of actor and agent technologies
	4.4.3 Review report of actor and agent technologies

	4.5 Synthesis of literature reviews
	4.6 Summary

	5 An Actor-based Simulation Aid
	5.1 Solution considerations
	5.2 Background
	5.2.1 Modelling and simulation
	5.2.2 Enterprise Simulation Language (ESL)

	5.3 Overview of proposed solution
	5.4 OrgML meta-model
	5.5 Transformation of OrgML to simulation language
	5.6 Method
	5.7 Summary

	6 Proof of Concept Technology Aids
	6.1 Core activities and expected technology aids
	6.2 OrgML Workbench
	6.2.1 Language definitions
	6.2.2 Language features
	6.2.3 Implementation details
	6.2.4 Execution of OrgML specification

	6.3 OrgViz Data Visualiser
	6.3.1 Temporal data model and visualisation
	6.3.2 Implementation details of OrgViz Data Visualiser

	6.4 A decision making framework
	6.4.1 Tool architecture
	6.4.2 Method realisation
	6.4.3 Summary

	7 Research Validation
	7.1 Software Service Provisioning Organisation
	7.1.1 Problem entity
	7.1.2 OrgML model
	7.1.3 Instantiation, simulation and decision making
	7.1.4 Summary

	7.2 Demonetisation
	7.2.1 Problem entity
	7.2.2 OrgML model
	7.2.3 Instantiation, simulation and decision making
	7.2.4 Summary

	7.3 University case study
	7.3.1 Problem entity
	7.3.2 OrgML model
	7.3.3 Instantiation, simulation and decision making
	7.3.4 Summary

	7.4 Evaluation
	7.4.1 Comparison and improvements
	7.4.2 Applicability
	7.4.3 Research artifact communications
	7.4.4 Evaluation summary

	7.5 Limitations, threats and further improvements
	7.5.1 Limitations
	7.5.2 Threats to validity
	7.5.3 Further improvements and future work

	7.6 Summary

	8 Conclusion
	8.1 Research contributions and significance
	8.2 Limitations
	8.3 Reflection
	8.4 Future research directions
	8.5 Concluding remark

	Bibliography
	Appendix A Review of remaining EM techniques
	Appendix B OrgML Notations
	Appendix C OrgML to ESL translation rules
	C.1 Overview of Xtend model transformation language
	C.2 OrgML to ESL transformation rules
	C.2.1 Transformation rule for OrgML Action, Event and BSpec
	C.2.2 Transformation rule for OrgML Calendar
	C.2.3 Transformation rule for inherited OrgUnit

	Appendix D An experiment with Akka
	D.1 A brief overview of Akka
	D.2 Experiment
	D.2.1 Experimental model
	D.2.2 Implementation using ESL and Akka
	D.2.3 Simulation using ESL and Akka
	D.2.4 Synthesis

	D.3 OrgML to Akka transformation
	D.4 Summary

	Appendix E Business Process Outsourcing case study
	E.0.1 Problem entity
	E.0.2 OrgML model
	E.0.3 Instantiation, simulation and decision making
	E.0.4 Summary

	Appendix F Multi-modelling and co-simulation using Enterprise Modelling techniques
	F.1 Software service provisioning organisation
	F.2 Environment for multi-modelling and co-simulation
	F.3 Multi-modelling, co-simulation and decision making
	F.4 Synthesis
	F.5 Summary

