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Abstract: The ability to identify virus particles is important for research and clinical 
applications. Because of the optical diffraction limit, conventional optical microscopes are 
generally not suitable for virus particle detection, and higher resolution instruments such as 
transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are required. 
In this paper, we propose a new method for identifying virus particles based on polarization 
parametric indirect microscopic imaging (PIMI) and deep learning techniques. By introducing 
an abrupt change of refractivity at the virus particle using antibody-conjugated gold 
nanoparticles (AuNPs), the strength of the photon scattering signal can be magnified. After 
acquiring the PIMI images, a deep learning method was applied to identify discriminating 
features and classify the virus particles, using electron microscopy (EM) images as the ground 
truth. Experimental results confirm that gold-virus particles can be identified in PIMI images 
with a high level of confidence.

© 2021 Optica Publishing Group 

1. Introduction

There is a need for techniques that can be widely deployed and used to identify virus rapidly, a 
need has been reinforced since 2020 by the COVID-19 pandemic [1]. Traditional chemical 
techniques [2-4] are slow and transmission electron microscopy (TEM) [5-8] is not suitable to 
widespread deployment outside laboratories. Optical sensing methods [9,10], however, can be 
more convenient and economical, which are promising to offer a fine solution.

In optical methods, the key challenge for virus detection is to develop an experimental 
configuration that can detect and isolate the smallest possible signal efficiently. This challenge 
is being solved through various efforts to reduce the imaging background or amplify the target 
signal. In terms of label-free virus detection, interferometric scattering microscopy (iSCAT) has 
proved to have capability to detect a single virus. Initial studies reported the label-free optical 
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detection of single virus particle bound to the supported membrane bilayer receptors [11,12]. 
Manoharan et al. also tracked the position and orientation of label-free bacteriophages and 
monitored the changes in iSCAT contrast as a function of viral DNA content [13]. The same 
group quantified the assembly kinetics of individual MS2 bacteriophage capsids around MS2 
RNA, and identified the characteristics of capsid growth [14]. In terms of amplifying viral signal, 
current optical methods are mainly based on measurements of the localized surface plasmon 
resonance (LSPR) spectrum from AuNP labeled virus. The AuNPs are used as functionalized 
labels to enhance the wavelength shift of the LSPR spectrum, so the sensitivity depends on the 
intensity of the plasmonic emission. Nonspecific binding of AuNPs to other components in the 
heterogeneous medium and the formation of aggregates remain a challenge, along with the 
instability of the fluorescent signal which depends on the size of the biological nanoparticle. 
However, images of plasmonic emission from virus-AuNPs complexes carry a wealth of 
information and can in principle be used for highly sensitive virus detection.

In our previous work, we have investigated the ability of polarization indirect microscopic 
imaging (PIMI) to resolve nano-features and molecular structures from the spatial polarization 
status distribution in the nano scattering field [15-18]. We also demonstrated that anisotropy in 
nanostructures can be identified from the scattered photon distribution [19,20]. Moreover, the 
PIMI scattering strength of viruses can be magnified by introducing an abrupt change of 
refractivity at the virus particle, enhancing the signal to the point where the presence of virus 
can be identified [21].

Accurate processing and analysis of PIMI spectra is an important part for obtaining 
information regarding the structural feature of viruses. There are many algorithms for 
identifying and analyzing small objects in optical microscopy images. Ronneberger et al. used 
the active contour method to segment pollen grains in a brightfield microscope image [22]. 
Ranzato et al. proposed a system that can actively recognize biological particles in microscopic 
images [23]. Oktay et al. utilized a convolutional neural network with multiple output to achieve 
automatic detection, localization and segmentation of nanoparticles [24].

Owing to the presence of noise, the manual identification of viral particles in PIMI images 
is very time-consuming and has high error rate. Systematic noise significantly degrades the 
image resolution and contrast, which is mainly due to mechanical and electrical disturbances 
associated with modulation of the illumination when acquiring raw images. Deep learning can 
eliminate noise interference, and has good robustness and generalization abilities, so it is widely 
used in particle recognition tasks. Ito et al. and Xiao et al. employed different neural network 
models to achieve virus particle recognition in TEM images [25, 26]. Kolenov et al. applied a 
convolutional neural network to classify nanoparticles by using coherent scatterometry data [27]. 
Okunev et al. proposed a nanoparticle recognition method for scanning probe microscopy 
images by combining computer vision and deep learning techniques [28]. In the wider field of 
object detection and recognition, deep learning methods have achieved detection results with 
high accuracy [29-31].

Because of the convenience and cost-effectiveness of optical methods for virus detection, in 
this paper we propose a method based on the combination of PIMI and deep learning. Our 
methodology is as follows: firstly, viruses are labeled with a AuNP-hexon complex (AuNP-hAb) 
probe to turn the virus into gold-viral particles. Then, all samples are imaged by the Scanning 
Electron Microscope (SEM), TEM and PIMI methods. The TEM and SEM images are taken as 
the ground truth, and by comparing the corresponding images of particles in the PIMI and 
SEM/TEM images we can teach the deep learning algorithm to identify different types and 
orientations of gold-viral complexes. The Faster R-CNN [32] is then used to identify the type 
of particles in the PIMI images. The experimental results demonstrated that our method can be 
used to identify gold-viral particle with high accuracy and therefore provides a new optical 
method for virus detection.

2. Materials and methods



2.1 Virus labeled by AuNP-hexon complex (AuNP-hAb) probe and EM data
In the experiments reported here, adenovirus was used as the virus sample for detection. 
Adenovirus is a type of icosahedral virus that can infect the respiratory tract, gastrointestinal 
tract, urethra, bladder, eyes and liver. Neutralizing antibody (Ab) responses to adenovirus are 
directed at components of the virion surface, primarily against fiber, penton base, and hexon 
proteins. Fiber and penton-based proteins present at the vertices of the capsid are involved in 
cell attachment and entry. Hexon, the major component of the icosahedral virus particle, 
comprises the facets of virion and constitutes the bulk of icosahedral capsid [33]. It was 
expected that the AuNP-hAb probes would attach to the virus in positions corresponding to the 
recognition site.

The adenovirus was purchased from Hanbio Biological Technology Co. Ltd. Rabbit anti-
Adenovirus hexon protein antibody (hAb) was purchased from Beijing Biosynthesis 
Biotechnology Co. Ltd. (catalog number: bs-12354R). HAuCl4·3H2O was purchased from 
Sigma-Aldrich Co. Ltd. Other reagents were purchased from Sinopharm Group Chemical 
Reagent Co. Ltd. All commercially available reagents were used directly without any further 
purification. In all experiments, deionized Millipore water (18.25 MΩ cm) was used.

To modify the surface of gold with antibodies, we prepared multilayer AuNP-
polyelectrolyte nanoparticles using a layer-by-layer assembly approach which involved 
sequentially coating negatively charged polystyrene sulfonate (PSS) onto the AuNP-CTAB 
(cetyltrimethylammonium bromide). The detailed process was described in [34]. Measurement 
of the particle size distribution showed that the synthesized AuNP-CTAB has a mean diameter 
of 84.7 ± 0.3 nm. It is worth noting that different polymers on the surface of the AuNPs did not 
cause any change in the macroscopic morphology (data not shown here). The zeta potential of 
AuNP-CTAB (+26.9 ± 0.9 mV) flipped from positive to negative, further confirming the 
successful surface passivation of AuNP-PSS (−45.4 ± 2.6 mV). The surface charge resulted in 
repulsion and ensured a homogenous dispersion of AuNPs. 

The antibodies were thought to be conjugated to the AuNP-PSS by a mechanism similar to 
the binding of antibodies to nanospheres, i.e., through an electrostatic physisorption interaction 
[35]. Next, the prepared AuNP-hAb probes were used to capture the adenovirus. Finally, three 
different particles were present in the same sample: single AuNPs (antibody-conjugated gold 
nanoparticle), double AuNPs and gold-virus (AuNP-virus).

The ground truth in our experiments was composed of TEM and SEM images. In order to 
associate these with particles in the PIMI image, each EM image was annotated as shown in 
Fig. 1. Each sample contained 10 to 30 gold-virus particles and was imaged using a TEM (JEM-
2100, Japan) with an acceleration voltage of 200 kV and an SEM, (JSM-IT500HR).

Fig. 1. Comparison of TEM images for different structures. (a) single AuNPs, (b) double 
AuNPs and (c) AuNP-virus. The images on the right are the enlarged images of the 

corresponding positions on the left.

2.2 PIMI data and pre-processing



The proposed system for identifying gold-virus particles is shown in Fig. 2. PIMI is a far-field 
indirect imaging technique that can resolve anisotropic features in samples with high resolution 
and contrast. PIMI obtains anisotropic nanoscale structural information about the sample by 
utilizing a polarization modulated illumination scheme and analyzing the far-field variation of 
polarization states of the scattered photons. By fitting and filtering the intensity variations of 
the image pixels, a set of parametric images, such as sin(δ) and Φ images, can be obtained in 
which the spatial resolution is greatly enhanced compared to conventional optical microscopy, 
enabling the collection of features smaller than 100 nm [18].

Fig. 2. System and process of obtaining the data set using the annotated EM data to classify 
each particle in the PIMI image.

As shown in Fig. 2, an Olympus reflection microscopic system (BX51M) was used to 
provide the basic optical path. A 532 nm filter with its FWHM of 10 nm and a polarizer were 
inserted after the light source, so that rotating polarized light could be produced. The light 
source is illuminated by a mercury lamp with a broad band. A quarter wave plate and a high 
extinction- ratio polarizer were inserted in the beam path between the objective lens and imaging 
sensor, and the fast axis is oriented at 45° and 90° respectively to the plane of the paper. The 
numerical aperture (NA) for the objective is 0.9, with magnification of 100X, and the working 
medium is air. The imaging sensor is a monochromatic visible light CCD camera manufactured 
by Basler (piA2400-17gm) with a pixel size of 3.45 μm × 3.45 μm. When coupled with 100X 
objective, the image pixel size will be 34.5 nm × 34.5 nm. The overall field-of-view is controlled 
by the CCD size of 1836 × 1537 pixels, which is about 63 μm × 53 μm under 100X objective. 

An unprocessed sin(δ) PIMI image is shown in Fig. 3, where the red circles represent 
single AuNPs, blue circles represent double AuNPs and yellow circles represent possible 
AuNP-virus doublets. The enlarged PIMI sin(δ) and SEM images for the aforementioned 
three kinds of particles are also shown in Fig. 3. The dataset in our experiments was composed 
of 6 PIMI images taken from six samples. The number of gold particles in each image ranged 
from 20 to 60 and each sample contained 10 to 30 gold-virus particles. The size of every PIMI 
image used in the experiments was 1836 × 1537 pixels. By taking the TEM images of all 
particles as a reference, we could label the particle at the corresponding position in the PIMI 
images. Each image was cropped to 320 × 320 pixels to reduce the computational time for 
image processing and training of the neural network model. 



2.3 Neural Network

The neural network used in our work was the Faster R-CNN [31]. The structure of the network 
is shown in Fig. 4. The network is divided into four parts: convolutional layers (VGG16), 
Region Proposal Network (RPN), Region of Interest (ROI) pooling and classifier. The pre-
trained VGG16 is used as the feature extractor of the network and generates 512 feature maps 
(20×20 in size) of input image. RPN first generates 9 anchor boxes for each point on the feature 
map and two branches appear. One of the branches reshapes and filters all the anchor boxes 
(20×20×9 in total) and predicts that the anchors belong to the foreground or the background 
through softmax; at the same time, the other branch modifies the position of anchor boxes to 
form a more accurate proposal. Next, through the threshold operation, three hundred optimal 
region proposal boxes are selected. The input of ROI pooling are the region proposal boxes 
generated by the RPN and the feature map generated by the last layer of VGG16. Through the 
mapping of the feature maps, a total of 300 × 512 regions can be obtained. Then these regions 
are divided into 7 × 7. For each block, we use the max pooling method to select the pixel with 
the maximum value as the output, so that a 7 × 7 feature map is formed. Finally, 300 × 512 
feature maps are used as the input of the fully connected layer, and accurate region box 
prediction and classification are calculated.

The network was fine-tuned for 60000 epochs with a learning rate of 0.001 in epochs 0–
53999 and 0.0001 in 54000–60000 epochs. The cropped 320 × 320 resolution PIMI images 
were used for training by adjusting the max_size parameter of the config file to the required 
image size. Training and identification were carried out on a NVIDIA Tesla V-100 32 GB GPU 
machine with the Tensorflow framework. The flow of our neural network method is described 
in Fig. 5. The training process is based on the original PIMI image. The annotated EM image 
acts as a ground truth to produce the annotated PIMI image. Based on the original PIMI image, 
the annotated PIMI image and the Faster R-CNN techniques, gold-viral particle identification 
from the tested PIMI image can be achieved with high accuracy.  

Fig. 3. Comparison of images of different structures. (a) single AuNPs, (b) double AuNPs and (c) AuNP-
virus. Left part is the PIMI sin(δ) image of the whole field (red circle represents single AuNPs, blue circle 

represents double AuNPs and yellow circle represents possible AuNP-virus doublet), top right are the 
correspondent SEM images of rectangular regions in the left PIMI image, bottom right are the enlarged PIMI 

sin(δ)  (left) and SEM (right) images of three kinds of structures. 



Fig. 4. Faster R-CNN architecture

Fig. 5. Experiment flow chart

3. Results and discussion

3.1 Detection of gold-viral particles by scattering spectrum

Under normal circumstances, we detected virus particles by analyzing the scattering spectrum 
of PIMI, as shown in Fig. 6. To compare the scattering spectra and characteristic curves, we 
used finite difference time domain (FDTD) software to simulate the PIMI images. The 
simulation was based on FDTD solutions of Maxwell’s equations. Here we simulated the 
electric field of AuNPs excited by polarized light. The structure comprised a 4 μm (length) 
×  4 μm (width) ×  30 nm (height) carbon film substrate and single or double AuNPs with 
a diameter of 80 nm lying at the center of the substrate surface. A conjugated structure 
consisting of a sphere, with its diameter and refractive index of 80 nm and 1.47, and a spherical 
AuNP with its diameter of 100 nm was used to model gold-virus doublet. A total-field scattered-
field (TFSF) source with a wavelength of 532 nm was placed above the AuNP and the virus 
samples. The polarization angle was increased in steps of 18° and the data for polarization 
angles (relative to the x-axis) from 0° to 162° at a particular height were collected. The initial 



data set therefore consisted of ten (162/18+1=10) images from which the PIMI images were 
then calculated.

A method based on self-similarity-encoded deep learning was applied to experimental PIMI 
images. We used 16 layers of random code Z as the input to a U-shaped generating network and 
the parametric images with noise were mapped directly through the network. The gradient 
descent algorithm was used to obtain the optimal network parameters without the need for a 
ground truth. After a certain number of learning epochs, we used the network's priori and self-
similarity of the parametric image to reduce the noise and improve the resolution of the 
experimental PIMI images.

The first column of (a), (b) and (c) display PIMI sin(δ) images of AuNPs, double AuNPs 
and AuNP-virus, respectively. The graphs in the second column are scans of position along the 
red dotted line in the images in the first column, and the blue line and red line indicate 
experimental data and FDTD data respectively. The value of the abscissa indicates the position 
on the dotted line in the figure (from left to right), and the range is from 0 to 1200 nm. The 
ordinate represents the value of sin(δ). The first row presents raw images that are almost 
overwhelmed by noise. Therefore, we denoised the original image to obtain much improved 
images, as shown in the second row. For comparison, we used FDTD to simulate the PIMI 
images of the recorded objects, as shown in the last row. 

Fig. 6. PIMI sin(δ)  images, denoised PIMI sin(δ) images, simulated PIMI sin(δ) images 
and their characteristic curves: (a) single AuNPs, (b) double AuNPs, (c) gold-virus. The blue 

line and red line indicate experimental data and simulated data, respectively.

By comparing the characteristic curves of the three particles, we can find that the scattering 
spectra of the three particles have different characteristics. In the denoised PIMI sin(δ) image, 
the symmetry of the scattering dipoles of the AuNPs are significantly modified by the 
combination of virus to the AuNPs, and the FDTD image confirms this. Using the symmetry, 
asymmetry and intensity of the scattering spectrum, it is possible to identify gold-viral particles. 
However, in many unexpected situations, the interference of noise seriously affects the process 
of identification; even after denoising, the detection accuracy cannot be improved. Because of 
such issue, we need to use a deep learning technique to enhance the detection accuracy of gold-
viral particle complexes.

3.2 Detection of gold-viral particles by deep learning

To analyze the reliability of the proposed method, we divided the data set into a training set and 
a test set. After 60000 iterations of learning, we used PIMI images as the test set to input into 
the network. The identification results are shown in Fig. 7. As we can see, the three different 
particle types have been detected and recognized. The pictures in the left column are the 
identification results for single AuNPs We find that the PIMI scattering state of single AuNPs 



is relatively consistent. The images in the middle and the right are the recognition results of 
double AuNPs and AuNP-virus respectively. Compared with single AuNPs, their scattering 
states take many forms which are very difficult to distinguish by the naked eye. We will report 
in-depth studies of these multiple scattering states in our future work.

Fig. 7. Gold-viral particle identification results: (a), (b) and (c) represent the PIMI images of 
single AuNPs, double AuNPs and AuNP-virus respectively. The first half of the text in the blue 

boxes represents the category, and the second half is the probability.

Fig. 8. Spectral analysis results of gold-virus identification: (a) Single AuNPs, (b) Double 
AuNPs, (c) gold-virus. The blue line and red line indicate experimental data and simulated data, 

respectively.

For comparison, we used the characteristic curve method to analyze regions in the deep 
learning results, as shown in the right part of Fig. 8. Figs. 8(a), 8(b) and 8(c) illustrate the 
extracted results from the corresponding areas in the left picture. The images in the first column 
and the third column represent the original sin(δ) image and the denoised result, respectively. 
Similarly, the graphs in the second column and fourth column are based on positions along the 
red dotted lines in the left column images. The blue and red solid lines indicate experimental 
data and FDTD data respectively. As we can see, the original PIMI image is severely degraded 
by noise, so the characteristic curve is also distorted. Even after denoising, the situation is not 
notably improved, as shown in the images in the third and fourth columns. The denoised curve 
does not match the simulated curve, so method of analysis is unable to distinguish the three 
types of particles. Therefore, for cases with high noise, the method of spectral analysis is 
ineffective in identifying the gold-virus complexes.

All the pictures in the test set were then analyzed using the deep learning algorithm and the 
results are summarized in Table 1. The positive identification of single AuNPs and gold-virus 
complexes show high accuracy. The overall accuracy rate reached 93.54%, and for AuNP-virus, 



the identification rate reached 94.44%. However, the identification accuracy for double AuNPs 
is comparatively low, only 81%. In order to see which particle the network struggles to 
distinguish and to what degree, we built the confusion matrix in Fig. 9. The horizontal axis 
represents the particle types predicted by the network, and the vertical axis represents the true 
particle labels. One can see that, single AuNPs and gold-virus are difficult to confuse with other 
particles. However, about one-fifth of double AuNPs is identified as single AuNPs and gold-
virus, and the number is nearly half by half. This is to be expected, because the quantity of 
double AuNPs in the sample is very small, making it difficult for the neural network to learn all 
the characteristics of the scattering spectrum from double AuNPs. On the other hand, in many 
scenarios, the scattering spectrum of double AuNPs is similar to that of gold-virus, which may 
lead to an erroneous increase in the identification rate of gold-virus. This is now the direction 
of our effort to improve the overall detection accuracy.

Table 1. Identification performance of different particles in PIMI images.

class Single AuNPs Double AuNPs AuNP-virus
Total 289 21 108

Positive sample 272 17 102
Accuracy 0.9412 0.8095 0.9444

Fig. 9. Prediction accuracy of three particles in confusion matrix

4. Conclusion

In this work, we propose a new optical method to identify viruses based on PIMI and deep 
learning. By introducing AuNPs-hAb, the scattering spectrum structure of AuNPs and 
adenovirus are changed. The PIMI system can capture scattered signals that cannot be captured 
by traditional microscopes. By examining differences in the scattering spectra, we can identify 
gold-viral particles to a certain extent. In order to reduce noise interference and improve the 
virus detection efficiency, we used a deep learning method to learn the scattering characteristics 
of three types of particles. Based on TEM and SEM data, we created a ground truth data set, 
using which the deep learning algorithm demonstrated 94% accuracy when identifying gold-
viral particle complexes. This technique has the potential to detect low concentrations of virus 
or even a single virus particle. 
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