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Abstract: Polarization parametric indirect microscopic imaging (PIMI) can obtain anisotropic 
nanoscale structural information of the sample by utilizing a polarization modulated 
illumination scheme and fitting the far-field variation of polarization states of the scattered 
photons. The rich scattering information of PIMI images can be exploited for identification of 
viral particles, aiming for early infection screening of viruses. Accurate processing and analysis 
of PIMI results is an important part of obtaining structural feature information of virus. Under 
noisy conditions, however, manually identifying viral particles in PIMI images is a very time-
consuming process with a high error rate. The systematic noise degrading the image resolution 
and contrast are mainly due to the mechanical or electrical disturbance from the modulation of 
the illumination when taking raw images. To achieve efficient noise suppressing and accurate 
virus identification in PIMI images, we developed a neural network-based framework of 
algorithms. Firstly, a fairly effective denoising method particularly for PIMI imaging was 
proposed based on a generative network. Both the numerical and experimental results show that 
the developed method has the best capability of noise removal for PIMI images compared with 
the traditional denoising algorithms. Secondly, we use a convolutional neural network to detect 
and recognize viral particles in PIMI images. The experimental results show that viral particles 
can be identified in PIMI images with high accuracy. 
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1. Introduction 

In the past few years, a far-field super-resolution imaging method called polarization parametric 
indirect microscope imaging (PIMI) has been developed [1], indicating the capability of 
perceiving the spatial scattering distribution beyond the diffraction limit and resolving the sub-
wavelength features of the sample [2]. PIMI provides a series of parametric images which 
reflects the detailed nanoscale properties of the sample which is unable to be uncovered in 
conventional microscopes. Therefore, it has been effectively applied for investigating the 
morphological and structural features of graphene layers[1], nano-particles [2] and 
nanopores[11]. PIMI system has been proved to be able to obtain information about 
nanostructures, making it possible to screen for the early infection by detection of viral particles 
with an optical system. 

Viruses pose a huge threat to public health and the ability to detect them rapidly is of great 
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importance for tracking and preventing pandemics such as COVID-19 []. Though much is now 
known about the biological and pathogenic properties of many viruses, their ability to mutate 
quickly and the emergence of new infection agents can make it difficult to detect them rapidly 
[]. Many virus detection methods have been developed. Indirect methods include: analysis of 
viral ribonucleic acid (RNA) based on the Reverse Transcription-Polymerase Chain Reaction 
(qRT-PCR), polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay 
(ELISA) []; Loop-mediated isothermal amplification (LAMP) []; the CRISPR/Cas System []. 
Direct detection of the intact viral particles is more straightforward and shows potential for fast 
virus-screening applications [].  

Compared with methods above, detection of intact viral particles with optical sensing 
methods is more convenient and cost-effective. The absorption spectrum of aggregated AuNPs 
around virus-like particles (VLPs) has been utilized to detect the viruses []. Recently, portable 
platforms based on Raman spectroscopy have been developed to identify viral particles by 
analyzing their sizes []. Due to the convenience and cost-effectiveness of optical methods, it 
make sense to utilize the nanoscale structural resolving ability of PIMI for virus detection. 
Accurate processing and analysis of PIMI images is an important part of obtaining structural 
feature information of virus. However, due to the presence of noise, manual recognition of PIMI 
images is time-consuming and the accuracy cannot be guaranteed. Hence, designing a powerful 
denoising method particularly for PIMI is urgent and valuable. 

In order to obtain a series of polarization parametric images, such as the phase retardance 𝛿𝛿 
of orthogonal components, the orientation angle 𝜑𝜑 of the polarization ellipticity, and Stokes 
parameters 𝑆𝑆0 , 𝑆𝑆1 , 𝑆𝑆2  and 𝑆𝑆3 , the PIMI system captures a set of raw images while 
modulating the illumination polarization, and the far-field pixel intensity variation were fitted 
and filtered to calculate the parametric images. In this procedure, the final calculation result is 
heavily dependent on the quality of raw images, which is usually inevitably degraded by the 
noise from the modulation module, especially when imaging nanoscale samples with large 
magnification objectives. The presence of noise in the PIMI intensity images not only degrades 
the image quality, but also leads to the reconstruction errors of the parametric images.  

Currently, many denoising algorithms [12-16] has been developed which are suitable to be 
used in conventional microscopy imaging but not fully appropriate for PIMI as the latter has its 
special way of data retrieving and calculation, which will be introduced in the following part. 
Actually, even if we perform denoising on all the raw images in PIMI, the residual noise will 
also be introduced into the polarization result and even magnified by the reconstruction 
procedure of the polarization parameters. This issue becomes even worse when imaging 
nanoscale samples below the diffraction limit, such as nano-particles or nanopores. In some 
polarization imaging methods, such as division of focal plane (DoFP) polarimeters, specialized 
denoising algorithms [17-19] are designed, which however cannot be directly applied to PIMI 
because of their notably different measuring and reconstruction procedures. Besides, deep 
learning methods [20-23] are also widely used for image denoising while they typically require 
a huge training data sets, and it is difficult and impractical to make a sufficient amount of ground 
truth data in PIMI.  

There are many image denoising algorithms such as NLM [] and bm3d [30] that use the self-
similarity of the image to denoise and have achieved good results. Lempitsky et al. [24] proved 
that neural networks also have the ability to learn the self-similarity of images. These methods 
show good potential to be utilized for denoising the PIMI images.  

In this paper, based on the generative network, we utilize self-similarity of image and 
propose a highly efficient denoising method specifically targeted at PIMI imaging for the first 
time. Firstly, we construct a convolutional neural network. Secondly, we use a random code 
vector as the input of network to learn the noisy PIMI image, and utilize Mean Squared Error 
(MSE) as cost function to train the network parameters. Finally, when the network iterates to a 
certain number of epoch, we can get the PIMI image with noise suppressed. Both simulated and 
real PIMI images are employed to evaluate the denoising performance. Results prove that we 



have combined deep learning and PIMI system well and the proposed method can effectively 
suppress noise and improve resolution while preserving the characteristics of the PIMI 
scattering distribution. Moreover, we try to use another convolutional neural network [] to detect 
and recognize viral particles in PIMI images and experimental results show that PIMI can be 
well applied to virus detection and identification. 

2. Method 

2.1 PIMI method 

PIMI system is built by modifying a conventional optical far field microscopy such that the 
variation of the polarization status of the incident light can be precisely controlled. When this 
linear polarized beam with different polarization angles impinges on sample under test (SUT), 
it collects different information depending on the atomic arrangement of the SUT.  

We rotate the linear polarization field from 0° to 360°, so, we can express the intensity of 
the complete modulation process as [25,26]: 

I = 𝐼𝐼0
2

[1 + sin 2(𝛼𝛼 − 𝜙𝜙) sin 𝛿𝛿 ].                       (1) 
Where 𝐼𝐼0  is the non-polarized intensity, α  is the input polarization angle, ϕ  is the angle 
along the slow vibration axis and δ is the optical retardation (the phase shift between the 𝐸𝐸𝑦𝑦 
and 𝐸𝐸𝑥𝑥). 

If we expand Eq. (1) trigonometrically, then we obtained 
I = 1

2
𝐼𝐼0 + 1

2
𝐼𝐼0  sin 𝛿𝛿  cos 2𝜙𝜙  sin 2𝛼𝛼 + 1

2
𝐼𝐼0  sin 𝛿𝛿  sin 2𝜙𝜙  cos 2𝛼𝛼 .        

(2)  
We can derive the required parameters after the fitting by the following equation: 

𝐼𝐼𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1 sin𝛼𝛼 + 𝑎𝑎2 cos𝛼𝛼.                         (3) 
Comparison of Eq. (2) and Eq. (3) give us 

𝑎𝑎0 = 1
2
𝐼𝐼0, 𝑎𝑎1 = 1

2
𝐼𝐼0 sin 𝛿𝛿  cos 2𝜙𝜙 , 𝑎𝑎2 = −1

2
𝐼𝐼0 sin 𝛿𝛿  sin 2𝜙𝜙.               (4) 

If we rotate the polarization to total 360°angles, then a total number of angles are N=360° 
and here, 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2 are calculated as below: 

𝑎𝑎0 = ∑ 1
𝑁𝑁
𝐼𝐼𝑖𝑖𝑁𝑁

𝑖𝑖=1 , 𝑎𝑎1 = ∑ 2
𝑁𝑁
𝐼𝐼𝑖𝑖  sin𝛼𝛼𝑖𝑖𝑁𝑁

𝑖𝑖=1 , 𝑎𝑎2 = ∑ 2
𝑁𝑁
𝐼𝐼𝑖𝑖  cos𝛼𝛼𝑖𝑖𝑁𝑁

𝑖𝑖=1 .              (5) 
Using these parameters, the desired quantities can be found as:  

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝑎𝑎0, sin 𝛿𝛿 =
�𝑎𝑎12+𝑎𝑎22

𝑎𝑎0
,ϕ = 1

2
cos−1（ 𝑎𝑎1

�𝑎𝑎1
2+𝑎𝑎2

2
）.                 (6) 

And then, Stokes parameters can be calculated by a mutual relationship between Jones and 
Muller model as follows: 

�

𝑆𝑆0=𝐼𝐼𝑑𝑑𝑑𝑑(1+sin 𝛿𝛿)=𝐸𝐸0𝑥𝑥
2 +𝐸𝐸0𝑦𝑦

2

𝑆𝑆1=𝐼𝐼𝑑𝑑𝑑𝑑(1+sin 𝛿𝛿) cos 2𝜙𝜙=𝐸𝐸0𝑥𝑥
2 −𝐸𝐸0𝑦𝑦

2

𝑆𝑆2==𝐸𝐸0𝑥𝑥𝐸𝐸0𝑦𝑦
∗ −𝐸𝐸0𝑦𝑦𝐸𝐸0𝑥𝑥

∗

𝑆𝑆3==𝑖𝑖（𝐸𝐸0𝑥𝑥𝐸𝐸0𝑦𝑦
∗ −𝐸𝐸0𝑦𝑦𝐸𝐸0𝑥𝑥

∗ ）

  .                       (7) 

These Stokes parameters are calculated from the 𝐼𝐼𝑑𝑑𝑑𝑑, sin 𝛿𝛿, and 𝜙𝜙, which are derived after 
the fitting and filtration process (Eq. (6)). 

However, there are many disturbances throughout the process, which leads to the noisy 𝐼𝐼𝑖𝑖  
and noisy fitted polarization parameters. Traditional denoising methods operate on a single 
picture, but the PIMI image is the result of calculation and fitting of multiple original images, 
which makes the noise more disordered. Obviously, traditional denoising methods can no longer 
suitable for PIMI images.  

2.2 Denoising for PIMI images 



 

Fig. 1. Network architecture. Each blue box corresponds to a multi-channel feature map. The 
number of channels is provided on top of the box. The x-y-size is denoted at the lower left edge 
of the box. White-dotted boxes represent copied feature maps. The arrows and symbol denote 

different operations. 

Assume that an observed noisy PIMI intensity image 𝐼𝐼𝑖𝑖𝑛𝑛 is generated by adding Gaussian noise 
𝑛𝑛𝑖𝑖 to the noise-free image 𝐼𝐼𝑖𝑖 , as formulated by Eq. (8): 

                           𝐼𝐼𝑖𝑖𝑛𝑛 = 𝐼𝐼𝑖𝑖 + 𝑛𝑛𝑖𝑖.                                (8) 
where 𝑛𝑛𝑖𝑖  ~ 𝑁𝑁(0,𝜎𝜎𝑖𝑖2) is a Gaussian noise with zero mean and the standard deviation 𝜎𝜎𝑖𝑖, for 
i  is 0° to 360°.  

Thus, the fitting process of PIMI can be written as follows: 
                           𝑥𝑥𝑛𝑛 = 𝐹𝐹(𝐼𝐼𝑖𝑖𝑛𝑛)                                 (9) 

where F() is fitting process and 𝑥𝑥𝑛𝑛 represent all PIMI polarization parameters with noise.  
In order to achieve denosing function, we construct a convolutional neural network. The 

architecture of neural network is inspired by U-Net [27], as shown in Fig. 1. It is comprised of 
a down-sampling path in the left side, an up-sampling path in the right side, and two bridge 
paths in the middle to connect the down- and up-sampling paths. The down-sampling path 
consists of five repeated stages of two 3×3 convolutions with stride 2, 1. The number of feature 
channels is increased by the first convolution in each stage of down-sampling path (the first 
stage is from 16 channels to 8 channels and the rest stages double the channels). The bridge path 
is gained by extracting the feature map through the convolution from the down sampling path. 
The up-sampling path consists of five repeated stages of an up-sample concatenating with 
corresponding feature map at the down-sampling path by skip connection and two 3×3 
convolutions with stride 1. The last convolutions in each stage of up-sampling path decrease the 
number of the feature channels (the last stage is from 8 channels to 1 channel and the rest stages 
halve the channels). All the convolutions in this neural network are followed by a BN and a 
ReLU for faster training speed and non-linear ability [28,29].  

The denoising process is shown in Fig. 2. We use a random code vector 𝒵𝒵 as the input of 
the network which is mapped to a polarization parameter 𝑥𝑥:  

                               𝑥𝑥 = 𝑓𝑓𝜃𝜃(𝒵𝒵)                                 
(10) where 𝑓𝑓𝜃𝜃() is parameterization of the network and 𝑥𝑥 ∈ ℝ1×𝐻𝐻×𝑊𝑊, 𝒵𝒵 ∈ ℝ3×𝐻𝐻×𝑊𝑊.  



 

Fig. 2. Network denoising flow diagram 

Noisy PIMI image 𝑥𝑥𝑛𝑛 is regarded as our ground truth and we aim to generate it through 𝒵𝒵, 
so mean squared error (MSE) is a suitable loss function: 
                           𝐸𝐸(𝑥𝑥; 𝑥𝑥𝑛𝑛) = ‖𝑥𝑥 − 𝑥𝑥𝑛𝑛‖2                           (11) 

Next, the loss function is back-propagated through the network and the ADAM-based 
optimization with a learning rate of 0.01 is adopted to update the network’s parameters: 
                         𝜃𝜃∗ = argmin

𝜃𝜃
‖𝑓𝑓𝜃𝜃(𝒵𝒵) − 𝑥𝑥𝑛𝑛‖2                       (12) 

It is worth noting that we always learn the original parameter 𝑥𝑥 instead of image of 𝑥𝑥 to 
reduce the error introduced by parameter visualization. We utilize the network's priori and 
self-similarity of the parametric image to reduce the noise and improve the resolution of 
the PIMI images. The generative network can learn the undamaged part of the image 𝑥𝑥𝑛𝑛 first, 
and then learn the damaged part. Generation of noisy PIMI parameter is undesired, thus we need 
to stop iteration process before the noisy points be learned by network. Finally, after an 
appropriate number of iterations, the denoised PIMI parameters can be gained. 

2.3 Viral particle detection and recognition in PIMI images 

Faster-RCNN is applied in this task which demonstrated excellent performance in the field of 
object detection and recognition. At this time, we employ it to identify viral particles in PIMI 
image. In our work, three different particles present in the same sample — single AuNPs 
(antibody-conjugated gold nanoparticles), double AuNPs and AuNPs-virus, which size is about 
100nm. In order to get the accurate position and category of all particles on the PIMI images, 
as we call ground truth, we collect scanning electron microscopic (SEM) images of all samples. 
By referring to the SEM images, the ground truth is obtained.  

3. Denoising experimental setup and results 

3.1 Experimental setup 

 

Fig. 3. Experiment flow diagram 

Experiment process is shown in Fig. 3. In order to get a series of noise-free PIMI intensity data 



in different polarization orientations, we apply finite difference time domain (FDTD) software 
to simulate. Three different objects are designed and the wavelength of incident light is set to 
532nm which is the same as real experimental conditions. By setting the incident light to linearly 
polarized light and rotating the polarization orientations from 0° to 180° offset by 18°, we 
generate 10 intensity images (320×320 pixel and one pixel represent 34.5nm×34.5nm). After 
performing inversion calculation on these 10 images as mentioned in section 2, we get noise-
free simulated PIMI polarization parameter. Next, we save the intensity data and original 
parameter data. Then, we add Gaussian white noise to the 10 simulated noise-free intensity data 
respectively and calculated noisy PIMI parameters. Finally, to evaluate the denoising 
performance, a comparison between our method and other effective ones are made, and the 
compared figures of merit are included. Real PIMI images are recorded by our self-developed 
PIMI microscope system. The sin 𝛿𝛿 and 𝜙𝜙 images are selected for visual comparison and the 
simulated data of the measured object is used as reference. 

3.2 Experimental results 
In this section, visual comparison and PSNR analysis are applied to the simulated PIMI images. 
Moreover, real PIMI images are used to illustrate differences visually. For implementing the 
network, Pytorch framework based on Python 3.7.4 is used. The proposed method is performed 
on a workstation with Intel(R) Xeon(R) Gold 6126 CPU @2.60GHz and 512GB of RAM, using 
NVIDIA Quadro P600 GPU. In order to ensure the integrity of denoising results, the size of the 
parameter data should be an integer multiple of 32. Our network has more than five hundred 
thousand parameters. With the help of GPU, the training process takes ～12s for 100 epochs. 
Notice that we only train on one parameter datum, so we don’t need a testing process. The 
number of training epoch we choose is 3000. 

3.2.1 Results on simulated PIMI images 

As shown in Fig. 4, three still intensity images (polarization angle is 0°) with spatial resolution 
of 320×320 and gray-level of 8 bit were simulated to evaluate the performance of the proposed 
method and compare with the traditional denoising algorithms, which include the average 
filtering, Wiener filtering, median filtering, bm3d [30] and ksvd [31].  

 

Fig. 4. Three intensity images: (a) Polystyrene ball; (b) Acetobacter xylinum; and (c) Nanopore. 



 
Fig. 5. Denoising results for simulated PIMI images:(a) Polystyrene ball’s sin𝛿𝛿 image; (b) 
Polystyrene ball’s 𝜙𝜙 image; (c) Acetobacter xylinum’s sin𝛿𝛿 image; and (d) Acetobacter 

xylinum’s 𝜙𝜙 image. 

Denoising result for simulated PIMI images are shown in Fig. 5. Different columns present 
sin 𝛿𝛿 and ϕ images of different objects. The original images in the first row are calculated 



from ten intensity images which were simulated by FDTD. The original images are used to 
visually compare the denosing results and as the noise-free images to calculate the PSNR. The 
second row presents noisy  sin 𝛿𝛿  and 𝜙𝜙  images. They are reconstructed as following: we 
firstly add Gaussian noise to ten intensity images separately with σ = 0.01  before the 
inversion calculation. Next, we perform inversion calculation on these 10 noisy images as 
mentioned in section 2. Finally, sin 𝛿𝛿 and 𝜙𝜙 images are reconstructed. Both the sin 𝛿𝛿 and 𝜙𝜙 
images are full of noise. Images from third row to seventh row show the images denoised by 
five different denoising methods respectively. The third through fifth rows are obtained by the 
traditional denoising methods, i.e. the average filtering, median filtering and Wiener filtering. 
From these three sets of images, it can be observed that the traditional denoising methods have 
no obvious effect on the polarization parameter image, even if the 𝜎𝜎 of Gaussian noise is only 
0.01. The sixth row is obtained by bm3d denoising method. As shown in the sixth row, although 
the noise is suppressed, the image is very fuzzy and the gray level of the image is different from 
the original image. Using the ksvd denoising method, we get the seventh row. It is obvious that 
the denoised images have not been greatly improved, and the edges are blurred. The results of 
using our proposed denoising method are shown in the last row. The noise is effectively 
suppressed. Meanwhile, these images closely resemble the original images. Thus, our proposed 
denoising method for PIMI images can effectively mitigate noise while preserving details. 

The PSNR is used as an objective evaluation criterion to analyze the denoising performance. 
As a result, the PSNR values of different denoising algorithms are calculated for all the test 
images and summarized in Table 1 and Table 2. For the test images of “Acetobacter xylinum,” 
the study is further extend to the Gaussian noise with various standard variances and other PIMI 
parameters image, which is shown in Table 3 and Table 4 respectively. Table 3 shows the PSNR 
values of the different denoising algorithms for eliminating Gaussian noise with different 
standard variances. Furthermore, the curves of PSNR versus Gaussian noise with different 
standard variances are presented in Fig. 6. And Table 4 presents the PSNR results for all PIMI 
parameter images. 

Based on the results in Table 1 and Table 2, when suppressing Gaussian noise with a standard 
variance σ equals to 0.01, the PSNR value of our proposed method outperforms the other five 
methods by 12.13% ~ 45.44% for 𝜙𝜙 image and 3.15% ~ 71.71% for sin 𝛿𝛿 image. In Fig. 6, it 
can be observed that the PSNR deceases with the increment of the Gaussian noise’s standard 
variances, and the PSNR of the proposed method still takes great advantages compared with the 
other methods. Based on the comparison results presented in Table 4, the PSNR results of the 
proposed method still outperform the other five methods for all the PIMI parameter images. 
There are two reasons that the proposed method can achieve the best performance in terms of 
PSNR: 1) PIMI images are different from natural images, and conventional denoising 
algorithms are not suitable. 2) More importantly, our proposed method directly denoises the 
parameters instead of the image of parameters. 

Table 1. Different test 𝛟𝛟 images’ PSNR values with Gaussian noise added (𝛔𝛔 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 

PSNR(dB) 
Noisy 

image 

Average 

filtering 

Median 

filtering 

Wiener 

filtering 
BM3D KSVD 

This 

work 

Polystyrene ball 22.41 28.61 27.90 29.32 31.09 32.18 39.51 

Acetobacter xylinum 19.31 23.29 23.01 23.45 24.47 28.94 32.45 

Nanopore 15.71 17.24 16.99 17.08 17.41 18.85 24.71 

 



Table 2. Different test 𝐬𝐬𝐬𝐬𝐬𝐬𝜹𝜹 images’ PSNR values with Gaussian noise added (𝛔𝛔 = 𝟎𝟎.𝟎𝟎𝟎𝟎) 

PSNR(dB) 
Noisy 

image 

Average 

filtering 

Median 

filtering 

Wiener 

filtering 
BM3D KSVD 

This 

work 

Polystyrene ball 25.45 27.47 28.23 28.79 29.19 29.00 36.47 

Acetobacter xylinum 22.09 23.73 23.80 23.98 24.18 24.53 31.38 

Nanopore 22.49 26.61 26.67 26.37 28.57 17.16 29.47 

Table 3. PSNR comparison of “Acetobacter xylinum” 𝐬𝐬𝐬𝐬𝐬𝐬𝜹𝜹 image corrupted by Gaussian noise with different 
standard variances 

PSNR(dB) 
Noisy 

image 

Average 

filtering 

Median 

filtering 

Wiener 

filtering 
BM3D KSVD 

This 

work 

σ = 0.01 22.09 23.73 23.80 23.98 24.18 24.53 31.38 

σ = 0.026 21.59 23.74 23.74 24.03 24.38 26.21 28.79 

σ = 0.041 19.98 22.29 22.27 22.44 22.79 23.86 28.89 

σ = 0.057 19.66 21.73 21.69 21.87 22.14 24.58 27.41 

σ = 0.072 19.08 20.90 20.87 20.98 21.19 24.75 28.42 

σ = 0.088 18.44 20.84 20.78 20.94 21.27 25.54 26.62 

σ = 0.1 17.72 19.60 19.57 19.64 19.84 23.93 24.99 

σ = 0.12 18.06 20.19 20.17 20.28 20.51 26.10 28.24 

σ = 0.13 17.90 20.20 20.17 20.30 20.57 25.65 25.77 

σ = 0.15 18.53 20.79 20.74 20.92 21.20 22.62 27.47 

Table 4. PSNR comparison of “Acetobacter xylinum” PIMI parameter image 

PSNR(dB) 
Noisy 

image 

Average 

filtering 

Median 

filtering 

Wiener 

filtering 
BM3D KSVD 

This 

work 

𝐼𝐼𝑑𝑑𝑑𝑑 35.83 36.48 41.41 43.35 45.35 11.22 46.41 

sin 𝛿𝛿 22.09 23.73 23.80 23.98 24.18 24.53 31.38 

ϕ 19.31 23.29 23.01 23.45 24.47 28.94 32.45 

𝑆𝑆0 22.54 24.23 24.34 24.65 24.81 26.31 28.71 

𝑆𝑆1 22.30 23.93 24.02 24.30 24.45 27.02 29.63 

𝑆𝑆2 21.79 30.17 28.96 31.68 36.99 21.01 37.59 

𝑆𝑆3 21.15 29.50 28.31 31.19 36.55 21.35 38.60 



 

Fig. 6. PSNR comparison of “Acetobacter xylinum” images corrupted by Gaussian noise with 
different standard variances. 

3.2.2 Results on real PIMI images 
Real PIMI images of 100nm single AuNPs are recorded by the PIMI system as shown in Fig. 7. 
The first and second columns present sin 𝛿𝛿 and ϕ images respectively. The first row presents 
raw images that are almost overwhelmed by noise because of the small size. The images in the 
second row are obtained by using our proposed method. For comparison, we use FDTD to 
simulate the PIMI images of the recorded object, as shown in the third row. It can be seen that 
although our denoising results are not completely equivalent to the simulation results, their 
scattering distributions are consistent in appearance, which will benefit in the field of 
microscopic polarization imaging in presenting better quality detailed images. 

4. Virual particles identifiction experimental setup and results 

4.1 Experimental setup 

Experiment process is shown in Fig. 8. First, we use the PIMI system to obtain the polarization 
parameter image of the virus particle. As mentioned in Section 2, there are three different types 
of particles in our samples. Secondly, in order to obtain the category information of each particle, 
we perform SEM imaging on all samples. Then, by referring to the SEM image, every particle 
on the sample can be identified. Next, we mark all particles on the PIMI images. All groundtruth 
is split into 320×320 pixel images, and divided into training set and test set. Finally, to evaluate 
network performance, the trained network is performed on the test set. 



 

Fig. 7. Denoising results for real PIMI image. 

 



 

Fig. 8. Experiment flow diagram 

4.2 Experimental results 
Viral particles detection and recognition results are shown in Fig. 9. As we can see, the three 
different particles have been detected and recognized. The picture on the left is the identification 
result of single AuNPs. We can see that the PIMI scattering state of single AuNPs is relatively 
consistent. The images in the middle and the right are the recognition results of double AuNPs 
and AuNPs-virus respectively. Compared with single AuNPs, their scattering states have many 
forms, and they are difficult to be distinguished by the human eye. Their multiple scattering 
states will be researched in future work. With reference to the SEM image, all the detection and 
recognition results shows high accuracy. The overall accuracy rate has reached 93.54%, and the 
AuNPs-virus identification rate has reached 94.44%. 

 

Fig. 9. Viral particles detection and recognition results 

 



5. Conclusion 

In this paper, we proposed a generative network-based denoising method specifically targeted 
at PIMI imaging for the first time which learn the original PIMI parameters instead of image of 
parameters. The priori of the generative network and the self-similarity of PIMI parameters are 
fully exploited during the denoising process. Both simulated and real PIMI images are used to 
evaluate the denoising performance. Experimental results show that PIMI image are different 
from natural image, and traditional denoising methods have no obvious benefit to PIMI imaging. 
The proposed denoising method for PIMI parameters can effectively mitigate noise and improve 
resolution while preserving scattering distribution characteristics. We use a convolutional neural 
network to detect and recognize virul particles in PIMI images and results demonstrate that viral 
particles can be recognized in PIMI images with high accuracy. The rich scattering information 
of PIMI images provides a new route for virus identification and other particle recognition 
applications. In denoising part, however, the optimal learning epoch for network denoising is 
not fixed, due to the variation of noise strength. At the same time, the parameters in PIMI such 
as S0, S1, the gray level will change greatly when noise is added, which may lead to possible 
degraded performance of the denoising methods. In future work, the denoising methods for 
PIMI images will be further improved for application in more general sceneries. 
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