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Abstract

Software evolution and its laws are essential for antifragile system design and development. In this paper we model early-stage

perfective and corrective changes to software system architecture in terms of logical operations of expansion and safe contraction

on a theory. As a result, we formulate an inference-based notion of property specification resilience for computational systems,

intended as resistance to change. The individuated resilient core of a software system is used to characterize adaptability properties.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Software change is a critical step in the life-cycle of computational systems. Modifying or re-defining system

specification properties is required by increasing architectural complexity or to improve software quality. In either

case, “software maintenance has been regarded as the most expensive phase of the software cycle”35p.32. A relevant

amount of research has already been dedicated to the understanding, planning and execution of software evolution,

in particular for requirements evolution, see e.g.16. Typically, this occurs as part of the late life-cycle of the system,

dictated by architectural degeneration (violation or deviation of the architecture, increasing with changes being made

to the original, see e.g.15,27) and flexibility requirements (the system property that defines the extent to which the

system allows for unplanned modifications32). In this context, resilience as functionality preservation under changes

is of paramount importance. The laws of software evolution for computational systems linked to the real environ-

ment24,25 express the importance of an appropriate understanding of software change. Change classification schemes,

assessing the impact and risk associated with software evolution, present challenges28 which include integration in

the conventional software development process model. This, in turn, means that a model of software change at design

and implementation stages is essential to assess and anticipate errors and to determine system’s reliability in view of

threats to functionalities.

Late life-cycle misfunctions, where the system produces negative side-effects absent in other systems of the same

type, require corrective changes, which include testing, with the exception of model-based testing. Early life-cycle
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change can be classified by disfunctions, where the system is less reliable or effective than one expects in perform-

ing its function, see17. At early design and implementation stages, perfective changes result from new or changed

requirements, see26,33. We explicitly ignore here the other two classifications, namely adaptive changes and preventa-
tive changes. A violation of the model specification in the implementation leads to a revision of the examined system.

Such process of software change can be modelled similarly to scientific theory change, to account for both perfective

and corrective changes in the implementation, when the latter is diverging from the model specification. We model

software change as operations on a model of a scientific theory, defined according to the formal operations of AGM

belief change, see2. We constrain the revision operation to finite bases, as we assume that requirements specification

of any however large software should be accounted for in terms of a finite representation. This area at the intersection

of software engineering and theory change has been only very little explored: the only approach explicitly based on

AGM is to be found in36, offering a framework to reason about requirements evolution in terms of belief change

operations. In10, belief revision used to deal with change propagation in model evolution. In30, Booth’s8 negotiation-

style for belief revision is used to model change from current to to-be system requirements, aiming at some form of

compromise based on prioritization. AGM belief revision has been investigated for logic programming under answer

set semantics in13,14. While notoriously a number of methods in software engineering have focused on developing

implementation from specifications34,1, our analysis concentrates on the modelling of both perfective and corrective

changes to design new specifications from early (incorrect) implementations. We formalize such changes in terms of

expansion and safe contraction operations. Most importantly, we use such operations to define property resilience and

generalise it to a definition of system adaptability. The latter connection, in particular, appears to be entirely missing

in the literature. The rest of this paper is structured as follows. In section 2 we offer an informal analysis of software

as a theory, using the distinction between model and implementation; in section 3 we offer the formal analysis of re-

quirements evolution as revision on such a theory; in section 5 we link this analysis to property resilience for software

systems.

2. Software Theory

A model of a computational system Sm is a representation of the system’s intended behaviour: as such, it naturally

offers a representation of its specification in terms of law-like expressions formulating requirements of valid input

states, and the result of (program) actions in output states. Identified preconditions guarantee safety of program exe-

cution, i.e. they include sufficient states for some program of type p to obtain a state that satisfies the postconditions.

Identifying preconditions that (may) lead to execution failure of an instance of program of type p allows to define

completeness. A complete description of Sm is akin to what in software testing research is known as an oracle, a

“procedure that determines what the correct behaviour of a system should be for all input stimuli with which we

wish to subject the system under test”20. A complete model Sm of a correctly functioning computational system can

be taken to mimic the notion of right theory for a software system. In this sense, Sm is understood as the perfect

description of design-for-test principles, which can be accompanied by a (possibly complete) formal specification of

the intended behaviour. Near-complete specifications refer to approximations to complete specifications through the

use of possible errors classification in weakened postconditions and an algebra on the possible program states, see23.

A similar sense of near-completeness is offered by approaches to requirements engineering where the relevant spec-

ification description can be marked up with refinements given by possible, admissible or acceptable malfunctioning.

Where completeness is not achieved, a partial or near-complete oracle is a description that offers postconditions for

some given inputs, and could offer alternative means for other inputs (metamorphic testing and derived information

from example executions).

An implementation of Sm is an actual realization of the model in some programming language. We assume that

such realization is for all purposes and intentions faithful to the spirit of Sm. We assume moreover the possibility

of abstracting (possibly automatically) from said implementation a set of law-like expressions of the same syntax as

those forming Sm. We currently abstract from the concrete syntax of such expressions. Let us call this new set of

specifications Si. We assume, finally, that Si is in fact comparable to Sm, in the sense of containing at least some

of the specification properties expressed by the latter. The comparison of requirements implemented in Si with Sm

can be performed in terms of log instances expressing observed truths of domain literals or task occurrences, where

successful execution of the latter ones in appropriate order leads to goal satisfaction. A working implementation,
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i.e. a piece of code which correctly translates the specification presented in Sm, can then be regarded as an artefact

whose every execution realises output states that do not diverge from those expressed by the corresponding law-like

idealizations in the model. For a malfunctioning implementation we require a faulty program execution:

Definition 2.1 (Faulty program execution). An execution of pi in an instance of Si is faulty when the actual post-
conditions obtained diverge from those expected according to Sm.

Definition 2.2 (Malfunctioning implementation). An implementation of Si is malfunctioning with respect to the
intended model Sm iff the former accommodates possibly faulty execution of a program pi.

Faulty execution as expressed by divergence from expected or intended postconditions can be seen as a figure of

drifting from fidelity, see12. Reasons for labelling an instance of a program as malfunctioning with respect to its model

can be reduced to either the requirement of stronger preconditions for running pi as intended by Sm, or the obtaining

of different postconditions. Software systems’ resistance to change in the environment as graceful degradation is a

research topic of its own6,7, including reference to hardware and material execution conditions, and we abstract from

it in the present contribution to model specifically the relation of change in specifications as induced from unexpected

postconditions. In the case of diverging descriptions of Si from Sm, perfective or corrective changes might be applied

to produce a new model S′m that either accommodates the divergences, or eliminates some of the current (undesired)

properties of the model Sm. This process, known as requirements evolution, formally corresponds to a mapping

Si �→ S′m. Informally, it can be associated with the restructuring of required properties in a model adapted to the

current implementation conditions, a typically antifragile process. Formally, we require a non-monotonic logic which,

in the case of perfective changes allows to add desired property-specifications and in the case of corrective changes

allows to remove undesired ones. Comparing Si to Sm, it is possible to identify which elements of the former should

be changed to have a better approximation to the latter, i.e. to reduce drifting and restore properties of the originally

intended model in the implementation (possibly with a higher level of resistance). The formal operations described in

the next section allow to establish which elements from Sm are safe, when contraction of Si is performed.

3. Requirements Evolution by Theory Change

Consider a finite set of formulae Sm = {φ1, . . . , φn}, where each φi expresses a specific behaviour that the intended

software system Sm should display. The intended meaning of a formula φi is an instance of the relation over the state

space represented by program actions defining Sm. We refer to Sm as a theory of the model, i.e. its closure under

logical implication Sm = Cn(Sm) := {φi | Sm � φi}. We say that Sm is consistent if Sm � ¬(φi ∧ ¬φi). We currently

abstract away from the definition of the consequence relation � for Sm, which can be thought of as any classical

consequence relation without completeness (which appears too strong in the context of real software specifications)

and compactness (which is trivial in the present finite setting):

1. Sm � �
2. Sm � (φi → φ j) and Sm � φi, implies Sm � φ j

3. Sm � φi implies Sm � ¬φi

� intuitively reflects property expressiveness: a formula φi � φ j says that a property specification φi holding for a

system Sm induces property specification φ j in the corresponding theory Sm.

Consider now a new language Si for the model abstracted from an implementation of Sm and so that for some φi,

either a theory Si = Cn(Si) is such that Si � φi and Sm � φi; or Si � φi and Sm � φi or Sm � ¬φi. Formal operations can

be defined on Si so that either the current input in the implementation becomes valid, or the specification that makes

our experimental result wrong is removed. In the former case, Si is expanded as to include φi, hence one handles

a form of requirement incompleteness: we indicate the result of this change as expansion. This formal operation

reflects the implementation of a new requirement and hence qualifies as a perfective change. In the second case, Si is

contracted as to remove φi (under a complete theory, which we do not assume, this induces satisfiability of ¬φi): the

divergence between the implementation and the oracle reflects here a form of inconsistency, while at each stage of the

implementation consistency is preserved; we indicate the result of this revision as contraction. This formal operation
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reflects the removal of an undesired requirement (error fixing) and hence qualifies as a corrective change. In both

cases, a new model S ′m is obtained, from which a new implementation can be formulated.

3.1. Expansion

The process of designing a piece of software can be seen as moving from an empty set of requirements (the

trivial system specification, i.e. one that implements no operations) to one that includes some property specifications.

This process is akin to an expansion of the software model abstracted from the trivial implementation Si = ∅ with

respect to a new specification requirement φi, denoted as S ′m = (Si)
+
φi

and defined by the logical closure of Si and φi,

(Si)
+
φ = Cn(Si ∪ {φ}). Theory creation has then a starting point Si � φi, for any φi. Any expansion operation after

the first one should preserve consistency in Si. Otherwise, each expansion by φi needs to be accompanied by the

implicit elimination of the contradictory ¬φi from the list of feasible property descriptions according to Si. Hence,

each expansion requires a minimal set of contraction operations.

3.2. Contraction

We now consider contracting Si in view of a specification requirement φi, inducing the removal of the minimal set

of specifications implying φi. We denote this by (Si)
−
φi
= Cn(Si/φi), where the latter indicates the result of Si once φi

has been removed. The contraction operator is then a mapping function:

Si �→ S ′m := {(Si, φi)} �→ (Si)
−
φi

from the set of theories of the current Si to a new model whose implementations have languages that do not imply φi.

In the context of software engineering, a contraction operation should aim at removing the least expressive properties

to induce a minimal loss of functionalities. We reflect this formally by an ordering ≤ on properties, similarly to what

is done with epistemic entrenchment18: φi ≤ φ j in our context says that φ j is at least as embedded as φi in the system

in view of its functionalities. Hence, in a contraction process, one would remove first the latter in order to preserve as

much as possible the operational properties of the system. ≤ satisfies the following postulates:

1. Transitivity: if φi ≤ φ j and φ j ≤ φk, then φi ≤ φk;

2. (Anti-)Dominance: if φi � φ j, then φ j ≤ φi;

3. Conjunctiveness: either φi ≤ φi ∧ φ j or φ j ≤ φi ∧ φ j;

4. Minimality: if Si is consistent, then φi � Si iff φi ≤ φ j for all φ j;

5. Maximality: if φ j ≤ φi for all φ j, then φi ∈ Cn(∅).

Standard Gärdenfors postulates are modified by (Anti-)Dominance, inverting the usual relation with �. Among the

different (although in some ways related, see4) contraction functions, safe contraction is a natural candidate for the

contraction on a finite set of property specifications under this ordering preserving system functionalities:

Definition 3.1 (Safe Contraction,3). Given a theory Si of an implementation of Sm, ordered by a transitive non-
circular relation < (or hierarchy); let φi ∈ Si express a property we wish to eliminate from the corresponding model
Si; then we say that a property φ j ∈ Sm is safe with respect to (Si)

−
φi

modulo <, if and only if φ j is not a minimal
element under < of any minimal S ′m that verifies φi.

Under such definition, φ j is never the first property inducing φi in any sub-model S ′m of Sm. Safe contraction satisfies

the following rationality postulates:

1. Closure: (Si)
−
φi
= Sm ∩Cn(Si/φi)

2. Inclusion: (Si)
−
φi
⊆ Si

3. Vacuity: (φi � Cn(Si))→ ((Si)
−
φi
= Si)

4. Success: (φi � Cn(∅))→ φi � Cn(Si/φi)

5. Recovery: (φi ∈ Cn(Si)→ Si ⊆ (S −φi
)+φi



992   Giuseppe Primiero and  Franco Raimondi  /  Procedia Computer Science   52  ( 2015 )  988 – 995 

6. Extensionality: (φi ≡ φ j)→ (Si)
−
φi
= (Si)

−
φ j

Along the lines of the interpretation of ≤ in terms of security and reliability in3, if the consequence relation � for

Si is intended to describe specification expressiveness, then the more it can be logically inferred from a property,

the more expressive that property is. In turn, our safe contraction module ≤ makes more expressive properties safer,

removing first those with the least inferential impact. This justifies our (Anti-)Dominance axiom; with Transitivity,

the following counter-continuing conditions hold3:

Proposition 3.1 (Counter-Continuing Down). If φi < φ j, and φk � φ j, then φi < φk, for all φi, j,k ∈ Si. In other
words, if φi is less safe for contraction than φ j (hence the former should be easier to remove than the latter) and φk is
more inferentially powerful than φ j (hence the former should be harder to remove than the latter), then φi is also less
safe for contraction than φk.

Proposition 3.2 (Counter-Continuing Up). If φi � φ j, and φi < φk, then φ j < φk, for all φi, j,k ∈ Si. This says that if
φi is inferentially more powerful than φ j (hence the former should be harder to remove than the latter), and φi is also
strictly less safe from contraction than φk, then φ j is strictly more safe from contraction than φk.

3.3. Revision

Safe contraction leads to the understanding of revision of a software model Si with respect to a new (possibly

inconsistent) specification requirement φi denoted as S ∗φi
as the accommodation of φi involving as little change as

possible. The revision operator is then a mapping function

Si �→ S ′m := {(Si, φi)} �→ (S i)
∗
φi

from the set of theories of Si to a new model S ′m whose implementations have languages that imply φi. Counterparts

to the above rationality postulates hold for revision. According to Levi identity, revision is equivalent to contraction

followed by expansion: S ∗φi
= (S −¬φi

)+φi
.

4. Example

It has been recently shown that most Mergesort algorithms are broken, including the Timsort hybrid algorithm19.

We present here briefly the specification evolution from the broken implementation to the fixed specification, with

remarks adapted to our analysis. The main loop of Timsort:

do {

int runLen = countRunAndMakeAscending(a, lo, hi, c);

if (runLen < minRun)

{

int force = nRemaining <= minRun ? nRemaining : minRun;

binarySort(a, lo, lo + force, lo + runLen, c);

runLen = force;

}

ts.pushRun(lo, runLen);

ts.mergeCollapse();

lo += runLen;

nRemaining = runLen;

}

while (nRemaining != 0);

assert lo == hi;

ts.mergeForceCollapse();

assert ts.stackSize == 1;

can be represented as a theory Sm, which among others satisfies a formula φi, which is an instance of the main loop

with stackSize= 4. A Java implementation Si shows that the algorithm is broken with respect to such φi after

violation of the invariant, ArrayIndexOutOfBoundsException in pushRun, see19:
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private void mergeCollapse() {

while (stackSize > 1) {

int n = stackSize - 2;

if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {

if (runLen[n - 1] < runLen[n + 1])

n--;

mergeAt(n);

} else if (runLen[n] <= runLen[n + 1]) {

mergeAt(n);

} else {

break; // Invariant is established

}

}

}

A new corrected model S ′m is obtained by contraction of the merging step at a too low entry in the stack and by

expansion to specify the right entry in the remaining stack where the merge happens. The new implementation

S ′i removes mergeAT(n) commands and <= predicates and adds OR clauses and mergeAT(n) commands in the

appropriate loops:

private void newMergeCollapse() {

while (stackSize > 1) {

int n = stackSize - 2;

if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||

n-1 > 0 && runLen[n-2] <= runLen[n] + runLen[n-1]) {

if (runLen[n - 1] < runLen[n + 1])

n--;

} else if (n<0 || runLen[n] > runLen[n + 1]) {

break; // Invariant is established

}

mergeAt(n);

}

}

Notice that merging of the last 3 elements of runLen is preserved, while the corresponding merging is not.

5. Inferential-based Resilience for System Adaptability

Resilience for a computational system reflects its (graded) ability to preserve a working implementation under

varied specifications. The above analysis of software theory change allows us to provide a precise definition of

resilience in the presence of failing components. In the literature on software change, this process corresponds to

preservation of behavioural safety by specification approximation, see e.g. the taxonomy offered in9. Various attempts

have been made to formalise perseverance of validity to change. The most common one encountered in this research

area is that of system robustness. One (older) interpretation is given in terms of the inability of the system to distinguish

between behaviours that are essentially the same, see31. More recently, the term resilience has been used to refer to the

ability of a system to retain functional and non-functional identity with the ability to perceive environmental changes;

to understand their implications and to plan and enact adjustments intended to improve the system-environment fit11.

In5, a value-based notion of resilience is presented, according to which a prompt in a design process is resilient

if it is a feature resisting all value-based relations of currently involved stakeholders and an Information System is

called strongly resilient if, in view of possibly conflicting value-based future configurations, the system admits of new

relations accommodating them. Resilience of software system specifications evaluated with respect to resistance to

contraction operations in the relevant model induces a relation between inferential power of specifications and stronger

system behaviour. Accordingly, their removal is more dangerous for system’s functionality. Then the following

inferential-based definition of resilience can be formulated:

Definition 5.1 (Property Resilience). Consider property specifications φi, j,k ∈ S m and a relevant implementation S i.
Then φk is more resilient than φ j with respect to S ′m = (S i)

−
φi

if it is not a maximally vulnerable element of some
minimal S ′m ⊆ S m implying φi.
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Accordingly, one can generalize to system resilience:

Definition 5.2 (System Resilience). A software system specification S m is said resilient with respect to a property
specification φi if the latter is not a maximally vulnerable element in any S ′m preserving minimal functionalities of S m.

System resilience as the resistance to change of property specifications (as in Definition 5.1) can be essential to deter-

mine system antifragility. Software antifragility has been characterized as self-healing (automatic run-time bug fixing)

and adaptive fault-tolerance (tested e.g. by fault-injection in production)29. An inferential notion of resilience helps

characterizing a certain degree of fault-tolerance; the latter is considered strictly intertwined with self-healing prop-

erties: while not all fault-tolerant systems are self-healing, one can argue that self-healing techniques are ultimately

dependable computing techniques21. Our resilient core, intended as the persistence of service delivery22, allows to

determine the adaptation required by changes in terms of valid and invalid properties of its contractions; and can

anticipate results of its expansions.

The first property establishes that, given the non-resilient part of the system, it is possible to establish which

properties will not be instantiated in any subsystem.

Proposition 5.1 (Accountability). For any maximally vulnerable φi of some S ′m ⊂ S m, if φi � φ j, then S ′m � φ j.

The second property establishes that, given the resilient core of the system, it is possible to establish which properties

will be instantiated by any subsystem.

Proposition 5.2 (Evolvability). For any non-maximally vulnerable φi of some S ′m ⊂ S m, if φi � φ j, then S ′m � φ j.

The third property establishes that, given the resilient core of the system, it is possible to know which properties will

be instantiated by any of its extensions.

Proposition 5.3 (Prevision). For any non-maximally vulnerable element φi of some S ′m ⊂ S m, if φi � φ j then there is
S ′′m ⊆ S m such that S ′′m � φ j.

6. Conclusions

In this paper we have considered software systems as theories, whose implementations show possibly diverging

postconditions from the intended specification, and modelled changes following the AGM paradigm. A definition of

dynamic resilience for such systems results from safe contraction operations that focus on preserving properties of

the originally intended model, while accommodating changes and make it possible to anticipate required adaptation.

In future research, we will consider the update operation from the AGM model to formulate adaptive changes as

responses to variations in the environment.
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