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Abstract

Languages that are used for Software Language Engineering (SLE) offer a range of fea-
tures that support the construction and deployment of new languages. SLE languages
offer features for constructing and processing syntax and defining the semantics of lan-
guage features. New languages may be embedded within an existing language (internal)
or may be stand-alone (external). Modularity is a desirable SLE property for which
there is no generally agreed approach. This article analyses the current tools for SLE
and identifies the key features that are common. It then proposes a language called XPL
that supports these features. XPL is higher-order and allows languages to be constructed
and manipulated as first-class elements and therefore can be used to represent a range of
approaches to modular language definition. This is validated by using XPL to define the
notion of a language module that supports modular language construction and language
transformation.

Keywords: domain specific languages, software language engineering, language
modules

1. Modular Software Language Engineering

1.1. Background
There is increasing interest in Software Language Engineering (SLE) where new lan-

guages are defined as part of the system engineering process. In particular Domain
Specific Language (DSL) Engineering [1, 2] is an approach whereby a new language is
defined or an existing language is extended; in both cases DSLs involve constructing
abstractions that directly support the elements of a single problem domain. This is to
be contrasted with General Purpose Languages (GPLs) that have features that can be
used to represent elements from multiple problem domains.

There are a large number of technologies that are currently used to engineer languages
used in Software Engineering. These include: grammarware that are traditionally used to
process syntax; macros that are used to extend a language with rewrite rules; language
IDEs such as XText [3] and MPS [4] that can be used to generate language-specific
tooling; TXL [5] and Stratego/XT [6] that are based on language rewriting.
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Some of these technologies have been available in languages that were designed many
years ago. For example Common Lisp, designed in the 1980’s contains a sophisticated
macro system. Some of the tools are very new such as MPS and Stratego/XT. Emerging
languages such as Fortress [7] include language extension mechanisms.

Although there are many different technologies that support SLE, they have many
similar features. Many provide mechanisms for transforming text to syntax structures
that are subsequently processed either in terms of evaluation or translation to other
languages. Furthermore, many of these technologies allow new language features to be
embedded in an existing language, effectively incrementally extending the host language.
This form of host language embedding is called homogeneous because the new language
features are sugar and do not require any new execution mechanisms compared to het-
erogeneous embedding that involves both new syntax and semantics.

This article aims to identify the key features of languages for SLE and to provide a
language, called XPL, that supports these features. Unlike existing technologies for SLE,
XPL is not concerned with pragmatic issues such as efficiency and tooling. Therefore,
XPL provides a simple basis for the definition of SLE approaches and for designing new
language features. To validate this claim, we use XPL to define a feature called language
modules that can be used to build, analyse and transform new languages.

This article is constructed as follows: Section 1.2 provides an overview of existing
SLE technologies and section 1.3 identifies common features. Section 1.4 reviews issues
relating to modular homogeneous SLE and 1.5 describes the problems addressed and
the contribution of this work. Section 2 introduces XPL and relates its features to
homogeneous language embedding. Section 3 identifies different types of SLE modularity
and shows how modularity can be encoded in XPL. Homogeneous language embedding
in XPL is described in section 4 and is extended to module templates in section 5 and
to module morphisms in section 6.

1.2. Technologies for Software Language Engineering
Languages can be defined using traditional compiler technologies such as Lex, Yacc,

ANTLR [8], JavaCC [9], and more recent technologies such as XText [3]. These tech-
nologies provide mechanisms for defining grammars. A grammar defines the syntax of
a language; grammar translations produce tools for language processing such as parsers
and editors. Whilst most are mature, these technologies focus on syntax processing (al-
though some provide technology for a limited form of static semantics). Pre-processor
languages such as Awk and A* [10] can be used to implement new language features,
however typically, a pre-processor has very limited knowledge of the underlying language
structure and cannot access contextual information.

MetaML [11] was one of the first languages to identify staging in language processing
where a multi-stage program involves the generation, compilation and execution of code,
all within the same process. MetaML introduced four staging annotations that construct
syntax, escape from quoted syntax, lift values to produce syntax, and run syntax values
within a context. Template Haskell [12] used a similar approach and introduced monads
to achieve hygiene.

Both MetaML and Haskell are statically typed so that compile-time meta-programming
involves two type-checking phases: (1) code construction and manipulation is checked;
(2) the resulting expression is spliced into the surrounding code before the entire program
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is type-checked. The limitations of the approach are that the concrete syntax of both
languages cannot be extended in any way and compile-time meta-programming cannot
be nested.

The approach described in [13] reviews a number of languages that provide macros:
the C pre-processor CPP; C++ templates; M4; Tex; Dylan; the Jakarta Tool Suite
JTS; Scheme; the Meta Syntactic Macros System MS2. Pre-processors, such as M4
and CPP, are described as being limited due to having no knowledge of the underlying
syntax structure. The authors make a distinction between languages with one-pass and
multi-pass macro systems and those with macro binding scopes. A distinction is made
between macro calls within a macro definition that lazily expand (on each invocation)
and those that eagerly expand (once at definition time). Macro systems differ in terms
of the amount of error handling they provide, particularly in terms of trailing back from
an error to the original syntax. The authors go on to define a macro language that
allows new language constructs to be added to the host language in terms of syntax and
metamorphism (syntax translation rule) definitions.

In [14] the authors propose a solution to what they term the 500 Language Problem
by which they mean the proliferation, and problems arising as a result, of the huge
number of languages, public and proprietary, used in commercial software systems. The
proposal is to base system engineering around a generic core and to use a grammar-
based approach to provide interoperable technology for language renovation. The term
grammarware is coined in [15] to describe an approach to Software Engineering in terms of
the construction, tooling and maintenance of grammars, and by implication of a language
driven approach to engineering software systems.

Language Oriented Programming [16] often involves extending an existing language
with a macro system. Maya [17] is a system that supports language extensions to Java.
New language constructs are added to the current Java language by definingMayans that
define grammar rules and how the rules synthesize language constructs. Each Mayan is
defined in terms of pattern matching over existing Java language constructs. Maya pro-
vides access to the Java abstract syntax so that each Mayan can return an abstract
syntax tree that is inserted into the surrounding tree. Maya supports hygiene by detect-
ing variable binding and generating new variable names for locally bound variables in
Mayans. OpenJava [18] is another example where meta-classes that inherit from OJClass
implement a translateDefinition() method to expand occurrences of their instances
(class definitions). OpenJava provides a limited form of syntax extension occurring at
pre-defined positions in the Java grammar. Nemerle1 is a language defined on the .NET
platform that includes a macro definition system. Nemerle macros use quasi-quotes and
drop-quotes, can be defined to be hygienic, can construct syntax and can extend the
base language by defining new constructs in terms of existing constructs interleaved with
newly defined keywords.

The Lisp family of languages provides macros for defining new language constructs.
Lisp has an advantage when defining new syntax constructs because of the conflation
of program and data into a single structure: the list. Common Lisp [19] macros are
top-level definitions that use backquote (‘), comma (,) and comma-at (,@) to construct
abstract syntax. The Scheme dialect of Lisp [20] provides similar features, however it
goes further by providing syntax pattern-matching, hygiene and local syntax definitions.

1http://nemerle.org
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Grammar composition can be used to define new languages in terms of old. The
AHEAD approach [21] allows grammars to be refined by viewing them as being defined
in terms of data members (tokens) and methods (syntax productions). Grammar com-
position in AHEAD produces the union of two grammars in terms of the sets of data
members and methods where overlapping productions are controlled via a run-super
mechanism. Grammar composition operators are described in [22] that allow an existing
grammar to be extended with new productions, updates existing productions with new
alternatives, and replaces an existing production so that all references are updated ac-
cordingly, and includes an early use of quasi-quotes for syntax construction. Attribute
grammars can also be used to define extensible languages as described in [23]. A number
of authors, including [24] and [25], describe formal properties of grammars that allow
grammars to be compiled separately and the resulting combination of the parse tables
do not lead to ambiguous languages.

New language constructs are often implemented in terms of a base language. Quasi-
quotes are often used for this, but term rewriting is also used in systems such as Phobos
[26] (which also uses inheritance between modular language definitions), Stratego/XT
and ASD/SDF. An approach to grammar composition and evolution is described in [27].

1.3. Language Engineering Technologies: Key Features and Challenges
The previous section provides an overview of technologies for SLE. There are clear

differences in approach and scope between the technologies. Our aim is to define a simple
language (XPL) that represents the key features of SLE, study patterns of usage, propose
extensions to them, and to devise new SLE features. In order to do this we identify the
following key features required by SLE:

syntax definition All technologies for SLE allow new language features to be defined
in terms of their concrete syntax. Typically this is achieved through the use of
grammarware, although some languages use pattern matching over a uniform syn-
tax, as in Lisp. Languages differ in terms of how the scope of the new feature is
controlled. Many languages for SLE support only global language scope, although
Scheme supports local definitions.

syntax synthesis Some languages for SLE allow syntax constructs to be explicitly syn-
thesized. This can be done directly through the use of syntax constructors or
indirectly through the use of quasi-quotes. When language features are embed-
ded, the issue of variable capture must be addressed. Languages that encapsulate
embedding are called hygienic [28].

syntax transformation Many languages for SLE allow syntax to be transformed. This
can be done through syntax rewrite rules, or less abstractly through syntax acces-
sors and constructors.

semantics New language features can be given a semantics by SLE technologies in two
ways: translation to a target language that is different to the host technology (het-
erogeneous); translation or interpretation by the host technology (homogeneous).
Heterogeneous language engineering is outside the scope of this article since it
involves a target technology that cannot easily be incorporated into XPL.
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embedding Homogeneous language embedding [29] involves a context switch when the
host language uses an embedded language feature. This must address the issue of
scope in terms of variables and flow of execution.

nesting Some SLE technologies allow language definition features to be nested. For ex-
ample, Common Lisp macros can be written so that macro-expansion of a language
feature produces a new macro.

expressivity Perhaps for practical reasons, SLE technologies are usually limited in
terms of how languages can be combined and processed. For example, few tech-
nologies support parameterization over language definitions that would support
language templates. As far as possible, XPL will impose few limitations on the
definition and processing of language elements.

precision A major challenge for most SLE technologies is that they are defined with
pragmatic considerations in mind. Therefore they are defined to integrate with
IDEs and to run efficiently. Few technologies are precisely defined. An exception is
PCFDP [30] which is a calculus that addresses homogeneous language embedding
in terms of quasi-quotes and embedding (referred to in PCFDP as unquote). The
language PCFDP is concerned with allowing a λ-calculus to manipulate its own
syntax in a type-safe way through lift and drop as defined in the rest of this article,
although it does not address modularity issues or embedding different languages
through syntax extension. This paper does not describe a formal semantics for
XPL; it has been implemented as an interpreter in Java and validated through a
series of examples.

1.4. Modular Homogeneous Language Embedding
As discussed in [31] language engineering can benefit from a modular approach in

terms of reuse and maintenance providing that the modules are self-contained. It is
also argued that the composition of languages must occur at both the syntax and the
semantics level. The authors go further: to realise self contained and reusable components
it is vital to decouple reusable semantics of a component and semantics interconnection.

There have been several attempts to develop approaches and technologies for mod-
ular language development. Many of the approaches are syntactic and therefore fall
exclusively into the category of grammarware [32]. These include mechanisms such as
Generalized-LR [33], Early parsing [34] and Packrat parsers [35] all of which aim to allow
languages to be composed at the syntax level.

Different types of language design pattern are defined in [36] and further developed
in [37] and [38]. These include:

piggybacking where a DSL uses features of a GPL in order to be a complete language.
An example of this type of language is a state-machine DSL that uses C-syntax for
an action language on transitions.

extension where a GPL is extended with features of a DSL in order to be tailored
to a specific domain. An example of this type of language is adding SQL as a
sub-language to Java.
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specialization where a language is restricted by removing certain features in order to
limit its use to the requirements of a particular domain. An example of this type of
pattern is the restrictions placed on Ada to become SPARK Ada for use in real-time
applications.

The MontiCore language [38] is designed to support the modular development of lan-
guages. This is achieved by having a language of grammars that can be composed in
terms of multiple-extension. The semantics of the languages are defined in terms of
the effects of the extension operators on class models of the synthesized abstract syntax
structures.

Few technologies have been developed that address the composition of languages in
terms of their semantics. Attribute grammars can encode the semantics of a language
as part of the syntax definition, but [39] argues that this approach does not lead to
a distinction between the component semantics and the composition semantics, and
therefore is not modular.

Software libraries are argued to be language components in [40] where each library is
given a DSL syntax front-end. This approach provides a useful mechanism for developing
existing libraries as embedded DSLs but does not address the issue of semantics or
composition. The authors do, however, raise an interesting issue of the scope of language
embedding and define a number of different categories of scope.

All aspects of language components are discussed in [41] including syntax, type-
checking, and operational features. The authors describe a system called Hive for ex-
pressing all these features which is similar to the Language Factories approach defined
in [42], however neither of these systems give a precise definition of the composition
mechanisms.

1.5. Problem and Contribution
The previous sections have reviewed tools for SLE and identified some common fea-

tures. The representative tools and features are summarised in figure 1. It is argued in
[39] that language engineering should be modular and that there are multiple ways in
which language modules can be extended and combined [36, 38, 37]. However, few tools
for SLE offer the precision and flexibility that would allow the design space of modular
SLE to be explored.

This article takes a standard λ-calculus and extends it with features for SLE to
produce a new language called XPL. In particular it provides support for syntax and
semantics definition, embedding and abstract syntax processing. By making all new
features first-class language concepts, XPL provides a flexible basis for exploring modular
SLE. Figure 1 shows XPL as the final column where we claim that it provides most,
but not all, of the key features. Those features not supported by XPL are argued as
being important, but secondary to supporting SLE, since they can be added as extended
features. Of course, the definition of many of these features is a research question and
therefore it can be a matter of interpretation whether or not a given tool supports a given
feature. Our claim is that XPL is more flexible than other tools; where we have claimed
that XPL supports features such as syntax extension we mean that XPL is a suitable
basis for constructing a range of approaches. The rest of this article defines XPL and
provides concrete examples of modular language definition as evidence supporting this
claim.
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Syntax Synthesis
The ability to create
abstract syntax trees X X X X X X X X X X × X X X X

Syntax Transformation
The ability to manipulate

abstract syntax trees × X X X X X X X X X X X X X X
Heterogeneity

Meta-language and defined
language are different X X X X × × × × X × × × X X X

Homogeneity
Meta-language and defined

language are the same × × × × X X X X × X X X × × X
External

Defined language is
independent X X X X X X X X X X × X X X X
Internal

Defined language is
assimilated × × × × X X X X × × X X × × X
Templates

Meta-language supports
quasi-quotes × X X X X X X X X × × × × × X
Hygiene

Meta-language natively
supports scoping × × × × X X × × X X × X × × ×
Typechecking

Target language typing
is supported × X × × × X X X X X X × × × ×
Tooling

Target language tooling is
supported X X × × × × × × × × × × × X ×

Syntax Composition
Multiple language syntaxes

can be mixed × X X X × × × × X X × × X X X
Nesting

Multiple languages can be
nested × X X X X X X X × X × X X X X

Parameterisation
Language definitions are
the result of functions × × × × X X X X × × × × × × X

Piggybacking
One language can be used

within another × X × X X X × × × X × × X X X
Extension

Language definitions can
be extended × X X X X × × × × × × X X X X

Specialization
Language definitions
can be constrained × X X X × × × × × × × × X X X

Semantics
The semantics of the defined

language is explicit × × × × X X X X × × × X X × X
Lift

Values can be lifted to
expressions × × × × × × X X × × × × × × X

Eval
Language expressions can
be transformed to values × × × × X × X X × × × × X × X

Figure 1: Representative SLE tools compared in terms of key features
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2. An Extensible Programming Language (XPL)

XPL has been designed by taking a standard call-by-value λ-calculus and adding
features that we hypothesize are characteristic of SLE technologies and are necessary
to support modular homogeneous language embedding. An interpreter and read-eval-
print-loop (REPL) for XPL has been implemented in Java. The implementation allows
XPL definitions to be read from a file and subsequently referenced as part of user REPL
interactions. All examples in this article have been implemented and are expressed as
file-based definitions of values, name = exp, and functions, name(args) = exp, that are
loaded before REPL interactions exp −→ value where an expression is entered, evaluated
and its value is printed.

The novelty in XPL is its execution mechanism and how that is used to encode
modular languages. There is no formally defined type system for XPL. However, types
can be useful in conveying the meaning of modular language semantics. Therefore, types
are used as annotations (equivalent to comments) on XPL definitions in this article.
Although the type language is used systematically, it lacks expressive power with regard
to key aspects of XPL and is the subject of further work. Since a type system for
XPL is not the main contribution, types are occasionally omitted when they are difficult
to express using standard type language features. A basic understanding of functional
programming and associated type systems is assumed.

This section introduces XPL by example. The basic features of XPL are described
in section 2.1. Syntax construction and transformation are described in sections 2.2 and
2.3. XPL provides a sub-language for defining grammars; their use to process strings
is described in section 2.4, and their use to define embedded languages is described in
section 2.5 together with a series of example languages. The section concludes with a
review of XPL as a basis for SLE in section 2.6.

2.1. Basic XPL
XPL is a λ-calculus with simple data structures: integer, string, bool, records and

lists. This section provides a series of examples showing basic features. XPL keywords
are in bold. The following shows the definition of a function that calculates the length of a
list and the definition of a function that adds two-dimensional points that are represented
using records:
length : ([t])->int
length(l) = i f l = [] then 0 else 1 + length(tail(l))
length ([0 ,1,2]) −→ 3
length(['zero ','one ','two ']) −→ 3
length ([true ,false ,true]) −→ 3

addvec : ({x:int;y:int},{x:int;y:int}) ->{x:int;y:int}
addvec(v1,v2) = { x = v1.x + v2.x; y = v1.y + v2.y }
addvec ({x=1;y=2},{x=3;y=4}) −→ {x=4;y=6}

Each example above shows a definition with a preceding type annotation followed by a
REPL evaluation. XPL provides three structured data types: lists and records (as shown
above) and syntax trees (as defined in section 2.2). For convenience, records can be used
as identifier bindings and placed in scope by the import expression, for example:
import {x=1} { x + 1} −→ 2
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The record bindings override any bindings that are currently in scope, for example:
let r = {x=1}

x = 2
in import r { x } −→ 1

2.2. Syntax Construction
XPL provides constructors for building syntax. Each XPL language construct has a

constructor that takes arguments corresponding to its sub-expressions. The constructors
have names that correspond to the expression type that they construct and all start
with a capital letter. To save space, the XPL language constructors are not all listed
in this article and assumed to be obvious from the context of their use. An AST is
decomposed using pattern matching in a case-expression. For example the constructors
for if-expressions, binary-expressions, variables, and lists are used to create an expression
that is then matched and decomposed using an if-pattern:
case If(BinExp(Var('l') ,'=',List ([])),Var('x'),Var('y')) {

If(t,c,a) -> c
} −→ Var('x')

Working with constructors can lead to highly nested expressions. Therefore, a special
syntax is provided called quasi-quotes ([| and |]) that are used to delimit concrete
syntax expressions that are to be processed as though they are constructed using the
AST constructors2. This is referred to as lifting the concrete expression to the syntax
level:
case [| i f l = [] then x else y |] { If(t,c,a) -> c } −→ [| x |]

As shown above, where possible, AST values are printed out using quasi-quotes by the
XPL interpreter. An AST can be translated to a value using the eval operation. Since
an AST might contain identifiers, the evaluation must be performed in the context of
some identifier bindings that are supplied to eval as a record:
[| 10 |]. eval ({}) −→ 10
[| x |]. eval({x=100}) −→ 100
[| i f l = [] then x else y |]. eval({l=[];x=1;y=2}) −→ 1
[| i f l = [] then x else y |]. eval({l=['dog '];x=1;y=2}) −→ 2

An AST is an expression that denotes an XPL value. If the AST e is evaluated to
produce a value of type t then e:[| t |]. A value v of type t can be lifted to produce
an expression v.lift():[| t |]. Lifting is a useful mechanism to move from the world
of values to the world of expressions.

Quasi-quotes provides a convenient way of constructing ASTs. The examples shown
above are ground in the sense that each AST expression has no variability. It is useful if
we can include holes in the AST so that they can act as patterns or templates. Holes can
be left in ASTs using drop-quotes (${ and }) to surround an expression or literal that
is referred to as being dropped into the surrounding AST. The following example shows
how a pattern can be constructed using a function that can be used to generate field

2Note that constructors cannot be eradicated altogether because concrete syntax used in quasi-quote
can only create literal atomic expressions such as identifiers and strings: [| x |] = Var(’x’).
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value accessors by mapping a field name to a function that references the value of the
named field (where t’ ≤ {n:t} denotes any record type t’ that has at least one field
named n whose type is t):
createAccessor : Fun(n:str) [| (t' ≤ {n:t}) -> t |]
createAccessor(name) = [| fun(record) record.${name} |]
createAccessor('x') −→ [| fun(record) record.x |]
createAccessor('y') −→ [| fun(record) record.y |]

XPL provides AST constructors for the entire language and provides quasi-quotes and
drop-quotes as a convenience. The ability to freely construct ASTs is the basis for defining
modular languages.

2.3. Syntax Transformation
Lift and drop can be used to transform expressions. The following are two simple

examples of syntax transformers:
add1Exp : ([| int |]) -> [| [int] |]
add1Exp(x) = [| [ ${ x } + 1 ] |]
appExps : ([| [t] |],[| [t] |]) -> [| [t] |]
appExps(e1 ,e2) = [| ${ e1 } + ${ e2 } |]

The construction and transformation of non-trivial ASTs will often involve arbitrary
collections of expressions. Lift and drop can be used to help. Consider the following
definition of foldr that is used to process a list of elements (note that + is overloaded
and used to append lists):
foldr : ((a)->b,(b,b)->c,b,[a]) ->[c]
foldr(f,g,b,l) =

case l {
[] -> b;
h:t -> g(f(h),foldr(f,g,b,t))

}
foldr(fun(x) [x+1], fun(l1 ,l2) l1 + l2 ,[] ,[100 ,200]) −→ [101 ,201]

Suppose that instead of a list of integers, we want to transform a list of expressions, each
of which denotes an integer, into a single expression that denotes a list of integers where
each integer has been incremented by 1:
consolidate : ([ [| int |] ]) -> [| [int] |]
consolidate(exps) = foldr(add1Exp ,appExps ,[| [] |],exps)
consolidate ([]) −→ [| [] |]
consolidate ([ [| a |], [| b |] ]) −→ [| [a + 1] + ([b + 1] + []) |]
consolidate ([ [| a |], [| b |] ] ).eval({a=100;b=200}) −→ [101 ,201]

The ability to define functions over ASTs is important for the modular construction
of language expressions and for language transformation. Language morphisms are an
important feature of SLE as described in section 6.

2.4. Grammars
XPL provides grammars that are essentially functions from strings to values. If a

grammar g translates a string s to a value v of type t then g is of type G(t) and
synthesizes v from s.

A grammar consists of a collection of rules, the first of which is designated the start
rule. A parse describes the result of using the rules of a grammar to map a string to a
value. The following is a very simple grammar:

10



g1 : G(int)
g1 = { start -> 'x' { 10 } }
g1.parse('x',[]) −→ 10
g1.parse('y',[]) −→ ERROR: expecting x

The grammar g1 consists of a single rule called start that is also the start rule for the
grammar. The body of the rule (after ->) consists of two rule elements. The first ’x’
must match the prefix of the parsed string. The second element { 10 } is an expression
that produces a value synthesized by the parse. The value synthesized by the start rule
of the grammar is the value returned by the parse.

A parse is performed by sending a grammar a parse message with two arguments.
The first argument is the string and the second is a list of arguments to the start rule.
In the example above, parsing ’x’ returns 10 and parsing ’y’ raises an error.

Rules may contain alternative elements separated by |. The following modification
maps ’y’ to 20:
g2 : G(int)
g2 = { start -> 'x' { 10 } | 'y' { 20 } }
g2.parse('x',[]) −→ 10
g2.parse('y',[]) −→ 20

Repetition is expressed by following a rule element with *. Since every rule element
synthesizes a value, the element e* synthesizes a list of values each of which is produced
by using e to consume 0 or more characters in the supplied string. For example, suppose
we want to allow any number of x or y:
g3 : G([int])
g3 = { start -> (getx | gety)*;

getx -> 'x' { 10 };
gety -> 'y' { 20 } }

g3.parse('xyxyxyxy ',[]) −→ [10 ,20 ,10 ,20 ,10 ,20 ,10 ,20]

The example above shows how multiple rules can be defined and how one rule can call
another. We might want to allow white-space characters in the input string:
g4 : G([int])
g4 = { start -> (getx | gety)*;

getx -> spaces 'x' { 10 };
gety -> spaces 'y' { 20 };
spaces -> (32 | 10 | 13 | 9)* }

g4.parse(' x yxy xy x y',[]) −→ [10 ,20 ,10 ,20 ,10 ,20 ,10 ,20]

Finally, intermediate values may be required during a parse. Rules may have arguments
that can be supplied in a rule element call as in start^(n+m) below. Identifiers may be
bound to the values synthesized by rule elements as in m=(getx | gety) below. The
following grammar adds up the values based on an initial value supplied as an argument:
g5 : G(int)
g5 = { start(n) -> m=(getx | gety) start ^(n+m) | { n };

getx -> spaces 'x' { 10 };
gety -> spaces 'y' { 20 };
spaces -> (32 | 10 | 13 | 9)* }

g5.parse('',[0]) −→ 0
g5.parse('x' ,[0]) −→ 10
g5.parse('x x y x y' ,[0]) −→ 70
g5.parse('x x y x y' ,[9]) −→ 79
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It can be useful to embed semantic tests during a parse. This is achieved using the ?
operator that constructs a rule element by applying a predicate to arguments. The argu-
ments are evaluated with respect to the identifiers that are currently in scope including
any bindings that have been constructed be preceding elements in the rule. The result
is used to determine whether the current parse-alternative can continue. For example a
range expression [n,m] is to synthesize a record {low=n;high=m} when n < m, is to just
return n when the two values are the same and return ’error’ when m < n:
less : (int ,int) -> bool
eql : (int ,int) -> bool
range : G({low:int;high:int} + int + str)

less(n,m) = n < m
eql(n,m) = n = m
range = {

start -> '[' low=num ',' high=num ']' range ^(low ,high);
range(n,m) -> ?less(n,m) { {low=n;high=m} } | ?eql(n,m) {n} | {'error '};
num -> i=[48 ,57]+ { asInt(i) }

}

range.parse ( '[100 ,200] ' ,[]) −→ {low =100; high =200}
range.parse ( '[100 ,100] ' ,[]) −→ 100
range.parse ('[100,20]' ,[]) −→ 'error '

Note that the rule range(n,m) above contains three alternatives. The first two are
guarded by mutually exclusive conditions. The third alternative just synthesizes a string
’error’. Alternatives in XPL grammar rules are tried in order left to right until one suc-
ceeds. XPL grammars are compositional. Given two grammars g1 and g2 the grammar
g1 + g2 contains all the rules from the component grammars and starts with the first
rule of g1. Where rule names overlap in g1 and g2 the rules are merged as alternatives
in the composite grammar with the g1 rule taking precedence in a parse:
g6 ,g7,g8,g9 : G(int)
g6 = { start1 -> 'x' { 10 } }
g7 = { start2 -> 'y' { 20 } }
g8 = { start -> 'x' { 10 } }
g9 = { start -> 'y' { 20 } }
(g6+g7).parse('x',[]) −→ 10
(g6+g7).parse('y',[]) −→ ERROR
(g7+g6).parse('x',[]) −→ ERROR
(g7+g6).parse('y',[]) −→ 20
(g8+g9).parse('x',[]) −→ 10
(g8+g9).parse('y',[]) −→ 20
(g9+g8).parse('x',[]) −→ 10
(g9+g8).parse('y',[]) −→ 20

The quasi-quotes described in section 2.2 assume that the syntax of the language con-
tained within the quotes is XPL by default. The default can be overridden by inserting
a grammar g as follows [ g | ... |] where the form [| ... |] is equivalent to [
XPL | ... |]. The evaluation of a quasi-quote expression is as follows: evaluate g,
use the resulting grammar to parse the text represented by ... and delimited by |], lift
the resulting value and then evaluate the result. Note that any XPL value can be lifted
to produce an expression. Since expressions are values, lifting an expression produces
another expression. Lift is an identity operation on expressions of the form ${...}. The
following is a very simple example:

12



let g = { start -> 'add(' x=start ')' { [| ${x} + 1 |] }
| '0' { [| 0 |] }
| '<' x=XPL '>' { Drop(x) } }

x = [| 2 + 3 |]
in [ g | add(add(<x>)) |]
−→ [| ((2 + 3) + 1) + 1 |]

where XPL is the XPL grammar and Drop is the syntax constructor for expressions of
the form ${...}. The rest of this article will not require the use of quasi-quotes with
non-default grammars.

XPL grammars map strings to values. Grammars themselves are first-class values
that can be passed to functions, returned as results, stored in structures and composed.
Both the synthesis of values and the tests performed during a parse can involve arbitrary
XPL expressions. These features are all key to being able to represent, compose and
transform language modules.

2.5. Languages
A grammar defines a language which is the set of strings that can be mapped to values

by the grammar when it is viewed as a partial function. If the set of values produced
by the grammar are ASTs then the grammar can be used to implement homogeneous
language embeddings. In this case the grammar has the type G([| t |]) for some type
t. A language type is defined as: L(t) = G([| t |]).

In order for internal languages to work, XPL must provide a mechanism that places
a grammar in-scope. This is done using intern:
xory : L(bool)
xory = { start -> 'x'* { [| true |] } | 'y'* { [| false |] } }
intern xory { xxxx } −→ true
intern xory { yyyyy } −→ false

The intern expression has two parts, the first is a grammar that defines a language and
the second is a sentence in the language surrounded by { and }. Since grammars are
values we can pass them to functions:
parse : (L(t))->t
parse(g) = intern g { xxx }
parse({ start -> 'x'* { [| true |] } }) −→ true
parse({ start -> 'x'* { [| false |] } }) −→ false

An intern expression supplies the text in its body as a string to the supplied grammar.
The grammar must have a type of the form L(t) for some type t. The value that is
synthesized by the grammar is therefore of type [| t |] and can be used as a replacement
for the intern expression. If the synthesized expression contains identifiers then they
will be resolved by the identifiers currently in scope3. Since the expression returns a
value of type t, the type of the intern expression is also t. The rest of this section
contains example language definitions.

3Note that we have placed hygiene out of scope for XPL taking the view that it is a restriction that
can be added as a separate layer. If interned expressions contain unbound identifiers then this will be a
run-time error.
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2.5.1. A Language for Libraries
Grammars can be used as rule elements in which case the parse will call the start rule

for the grammar. The value of the identifier XPL is the grammar for the XPL language
and can be used to embed XPL, or parts thereof, within new languages. Here is a simple
example that defines a library to be a header that describes what the library does, and
a collection of definitions:
intern library {

header
This library performs arithmetic.

end
add(n,m) = n + m;
sub(n,m) = n - m

} −→
{header='This library performs arithmetic .';
defs={add=<closure >;sub=<closure >}}

The grammar uses the XPL.fields rule to parse the definitions:
library : ∀rec:RecordType L({ header:str; defs:rec})
library = {

lib -> h=head f=XPL.fields {
[| { header = ${ h.lift() }; defs=${ Record(f) } } |]

};
head -> 'header ' s=nonWhitespaceChar* 'end ' { asString(s) }

}

2.5.2. An Expression Language
The following grammar defines a simple multiplicative expression language. The

grammar evaluates an expression as it is parsed and uses the XPL built-in operator
asInt to map a sequence of integer character codes to an integer. This is an example
of how XPL can be used to process external languages where the text is supplied as a
string (possibly read from an external file):
arithExternal : G(int)
arithExternal = {

start -> a=atom tail^(a);
atom -> int | '(' a=start ')' { a };
int -> n=(['0','9'])+ { asInt(n) };
tail(left) -> o=op right=start {

case o {
'*' -> left * right;
'/' -> left / right

}
};
tail(left) -> { left };
op -> ('/' | '*')

}
arithExternal.parse ('10*20' ,[]) −→ 200

This article describes how XPL can be used to represent internal languages that are
embedded within XPL. An internal language feature is defined by a grammar that syn-
thesizes XPL abstract syntax:
arithInternal : L(int)
arithInternal = {
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start -> a=atom tail^(a);
atom -> int | '(' a=start ')' { a };
int -> n=(['0','9'])+ { Int(asInt(n)) };
tail(left) -> o=op right=start {

case o {
'*' -> [| ${left} * ${right} |];
'/' -> [| ${left} / ${right} |]

}
};
tail(left) -> { left };
op -> ('/' | '*')

}
intern arithInternal {10*20} −→ 200

XPL grammars, like those used by Template Haskell or MetaML, are based on a standard
encoding using functional combinators [43] and cannot directly encode left recursion.
However, XPL relies on the first-class and embedded features of grammars and therefore,
providing these properties are preserved, the grammar language can be extended with
sophisticated mechanisms such as that described in [44] for left recursion.

2.5.3. Processing Input Streams
Consider a business situation that needs to process serialised data4. This might occur

when a company server must process a continuous data feed. Since the data is serialised,
it is received as a sequence of character codes. The company wants to impose some
structure on the data before it is processed. The following shows the required behaviour
represented in XPL:
customer : ([int]) -> {customer:str;address:str;account:str}
customer =

intern inflator {
customer :5
address :15
account :3

}
customer('fred 10 Main Road 501'. asList ()) −→
{customer='fred ';
address ='10 Main Road ';
account ='501'}

The language inflator is used to specify a string pattern. It is used to denote a function
that maps a string to a record whose fields have the specified names and whose field values
are the corresponding sub-strings.

The method asList() of a string returns the character codes in the string as a list.
The take and drop list operators are used to define the inflator grammar:
take : ([t],int) -> [t]
take ([1,2,3],2) −→ [1,2]
drop : ([t],int) -> [t]
drop ([1,2,3],2) −→ [3]

An extractor, e.g., extractor(’account’,3), is a function that maps a sequence of
character codes such as ’501xxx’.asList() and a continuation k by supplying k with
a record {account=’501’} and the rest of the list ’xxx’.asList():

4Based on a scenario described by Martin Fowler: http://www.infoq.com/presentations/
domain-specific-languages.
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extractor('account ',3)('501xxx '. asList (),k) −→ k({ account ='501'},'xxx '.
asList ())

The continuation k is used to process subsequent fields in the input and append {account=’501’}
to the subsequently constructed records. The definition of extractor is:
extractor : Fun(n:str) (int) -> [| ([int],({n:str},[int]) -> t) -> t |]
extractor(n,i) =

let record = [| { ${n} = asString(take(l,${i})) } |]
in [| fun(l,k) k(${record},drop(l,${i})) |]

Given a definition such as customer above, each field definition is translated into an
extractor resulting in a list of extractors that are combined using foldr defined in the
previous section together with the following operators:
combine(left ,right) = [| fun(l) ${left}(l,fun(r,l) r + ${right}(l)) |]
id(x) = x
empty = [| fun(l) {} |]

Given these operators, the grammar simply maps the field definitions to extractors and
combines them:
inflator : L(([int]) -> r)
inflator = {

fields -> fs=field* { foldr(id,combine ,empty ,fs) };
field -> n=name spaces ':' i=int { extractor(n,i) };
int -> spaces n=numeric+ { Int(asInt(n)) };
spaces -> (32 | 10 | 9 | 13)*;
name -> spaces l=alpha ls=alpha* { asString(l:ls) };
alpha -> ['a','z'];
numeric -> ['0','9']

}

2.5.4. A Guarded Command Language
Suppose that we want to implement a guarded command language (GCL) and embed

it within XPL. The embedding should allow XPL expressions to be referenced within the
GCL when they are prefixed by $ and to return values to XPL. The value types are to
be limited to booleans and integers. Here is an example of GCL used to implement the
greatest common divisor:
gcd : (int ,int)->int
gcd(n,m) :=

intern gcl {
a := $n
b := $m
do

a < b -> b := b - a
b < a -> a := a - b

od
abort a

}

The semantics of such a language can be defined using a collection of constructors for the
different types of language element. The GCL consists of language elements: programs;
commands such as update and do; expressions; guarded commands of the form e -> c.
The following types are used to annotate the element constructors:
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type State = [{name:str;value:int}]
type Cont = (State)->int
type Fail = () -> int
type Arm = (State ,Cont ,Fail) -> int
type Command = (State ,Cont) -> int
type Exp = (State)->int

A program is constructed using the begin operator. A program state is represented as
a list of records binding names to values. Since a command may modify the state, each
command takes a state and a continuation, where the continuation represents what to
do next and is supplied with the state once the command has completed. A program is
supplied with a command and supplies it with an initial state and a final continuation
(which by default returns 0 from the program):
begin : (Command)->State
begin(c) = c([], fun(state) 0)

Commands can be composed in sequence using the seq operator:
seq : (Command ,Command)->Command
seq(c1,c2) = fun(state ,cont) c1(state ,fun(state) c2(state ,cont))

The update operator constructs a command that changes the value of a variable. Since
variable lookup will always use the first binding record, update is performed by adding
a new record at the head of the state:
update : (str ,Exp) -> Command
update(n,e) = fun(state ,cont) cont({name=n;value=e(state)}:state)

Both conditional and loop commands are constructed from guarded commands (of type
Arm). A guarded command is supplied with three arguments: a state, a continuation
that is used if the guarded command is performed, and a fail that is used if the guard
fails. In the case of a conditional command, the supplied continuation cont is performed
whether the guard succeeds or not. In the case of the loop, if the guard succeeds the
loop tries again (with an updated state) and if the guard fails then the loop terminates:
cond : (Arm) -> Command
cond(arm) = fun(state ,cont) arm(state ,cont ,fun() cont(state))

do : (Arm) -> Command
do(arm) =

fun(state ,cont)
arm(state ,

fun(state) do(arm)(state ,cont),
fun() cont(state))

To abort with a value, the program ignores the current continuation and returns the
value of the supplied variable name (using ref defined below):
abort : (str) -> Command
abort(n) = fun(state ,cont) ref(n)(state)

A guarded command is constructed from a boolean expression and a command. If the
expression is true then the command is performed otherwise the fail continuation is called:
try : (Exp ,Command) -> Arm
try(exp ,command) = fun(state ,success ,fail)

i f exp(state)
then command(state ,success)
else fail()
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Two guarded commands are composed using alt. The second guarded command is
supplied as the fail continuation to the first:
alt : (Arm ,Arm) -> Arm
alt(a1,a2) =

fun(state ,success ,fail)
a1(state ,

success ,
fun() a2(state ,success ,fail))

Expressions are supplied with a state and return an integer. A variable reference finds
the first binding record with the required name and returns the associated value:
ref : (str) -> Exp
ref(n) =

fun(state)
case state {

r:s ->
i f r.name=n
then r.value
else ref(n)(s);

[] -> '?' }

Two expressions are combined using bin:
bin : (Exp ,str ,Exp) -> Exp
bin(left ,op,right) = fun(state)

case op {
'>' -> left(state) > right(state);
'<' -> left(state) < right(state);
'+' -> left(state) + right(state);
'-' -> left(state) - right(state)

}

A constant expression just returns the constant:
const : (int) -> Exp
const(k) = fun(state) k

The syntax of the language can be defined as an XPL grammar as follows:
gcl : L(int)
gcl := {

program -> cs=commands { [| begin(${cs}) |] };
commands -> c1=command (c2=commands { [| seq(${c1},${c2}) |] } | { c1 });
command -> update | abort | cond | do;
update -> n=name spaces ':=' e=exp { [| update(${n.lift()},${e}) |] };
abort -> spaces 'abort ' n=name { [| abort(${n.lift()}) |] };
cond -> spaces ' i f ' as=arms spaces 'fi ' { [| cond(${as}) |] };
do -> spaces 'do ' as=arms spaces 'od ' { [| do(${as}) |] };
arms -> a1=arm (a2=arms { [| alt(${a1},${a2}) |] } | { a1 });
arm -> g=exp spaces '->' c=command { [| try(${g},${c}) |] };
exp -> a=atom (o=op e=exp {[| bin(${a},${o.lift()},${e}) |]} | {a});
op -> '>' | '<' | '+' | '-';
atom -> int | var | extern;
var -> n=name { [| ref(${n.lift()}) |] };
int -> spaces n=numeric+ { [| fun(state) ${Int(asInt(n))} |] };
extern -> spaces '$' e=XPL { [| fun(state) ${e} |] };
spaces -> (32 | 10 | 9 | 13)*;
name -> spaces l=alpha ls=alpha* { asString(l:ls) };
alpha -> ['a','z'];
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numeric -> ['0','9']
}

GCL provides an example of a non-trivial executable language that is embedded in XPL.
It demonstrates a number of features that are foundational to SLE; this section concludes
with a review of this language in terms of these features.

In order for one language to be truly embedded in another, there must be some way
to link the grammars so that one is aware of the other. GCL achieves this to some
degree by referencing XPL in the extern rule. However this is not sufficient to achieve
true embedding since XPL does not really know about gcl. There should be some way
to achieve mutual dependence by allowing language definitions to be extensible and
somehow tying the knot in the same way that mutually recursive procedures are defined.

Languages consist of syntax and semantics. GCL is a good example of a separation of
syntax and semantics since it defines a collection of operators that represent the semantics
and then the grammar uses these operators to construct the various language elements.
However, to achieve composable, extensible language modules, the definition of syntax
and semantics must be disciplined.

The next section reviews XPL as a basis for SLE and the rest of the article shows
how XPL can be used in a disciplined way to achieve language modules consisting of
both syntax and semantics that can be composed, transformed and extended.

2.6. XPL as an SLE Language
XPL is designed to be a simple, flexible, precisely defined language for expressing

languages. Section 1.3 defines a list of features for any SLE technology that are reviewed
in terms of XPL:

syntax definition XPL provides first-class grammars that are implemented using parser
combinators as a record of higher-order functions that map text to XPL syntax.

syntax synthesis XPL provides syntax constructors, lift and drop. XPL is not hy-
gienic since this property can be defined as a restriction on free syntax construction,
but is not considered further in this article.

syntax transformation As noted above, XPL syntax is a first-class feature of the
language. Pattern matching in case expressions can be used to transform syntax.

semantics Section 3 provides many examples where the semantics of embedded lan-
guages can be defined in XPL.

embedding XPL provides an intern expression that allows new language features to
be embedded.

nesting In XPL, languages are first-class values and can be passed as arguments and
returned as results. The normal rules of λ-scoping apply.

expressivity XPL inherits its expressivity from functional notations. Therefore, lan-
guage features are not limited to the top-level of the language and can be paramet-
ric, transformed and composed.
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3. Language Modularity

XPL has been designed as a basis for modular homogeneous language embedding.
The previous section has introduced XPL. This section discusses a number of scenarios
that language modularity must support (3.1), defines a basic encoding for a language
module (3.2), defines a simple language module for expressions (3.3) and shows how
language modules can be extended (3.4).

3.1. Modularity Scenarios
A language module is a unit of definition that provides the syntax and semantics

for a language. Once it is defined, a language module can be used independently or
transformed and combined with other language modules. The key modularity scenarios
are as follows: (in each case we give references to language modules that are defined in
the rest of the article):

independent An independent language module contains the syntax and semantics of
a language, does not depend on the definition of any other language module and
can be directly embedded in XPL using intern. The module arithDirect is
independent.

substitution A language module contains separate definitions of syntax and semantics.
A new language can be defined by substituting for one or other of these components.
The modules arithCalc and rational are examples where the syntax of a base
module is reused and the semantics are replaced.

extension A new language module can be defined as an extension of another by adding
new language constructs. Section 5.2 provides a general pattern for defining exten-
sible language modules using fixed points. This encoding is similar to that used to
encode extension by inheritance in a functional language.

combination A new language module can be constructed by combining two independent
modules. Languages in XPL are records containing higher-order functions that can
be combined in various ways as described in section 5.1.

template A language can be defined in terms of one or more unknown features that
are to be supplied as parameter values. A language module template (or language
factory) is supplied with syntax or semantics features and returns a new language
module. The template arithOps is defined twice: firstly requiring a predicate to
define the names of infix operators; secondly requiring a grammar that defines the
syntax of infix operators. Other templates include arithExt, lambda, and bind.

morphisms A language module morphism is a mapping from language modules to lan-
guage modules. Generally, a morphism will require knowledge about the structure
of its domain as in addError. It is possible to define language modules against a
standard interface in which case morphisms are more general. Monads can be used
to standardize the interface as in arithM and rationalM in which case a standard
morphism such as ND can be applied.
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3.2. Basic Language Modules
A language module is a pattern of language definition that separates syntax from

semantics. In XPL this is done by constructing a record containing two fields. The first
field is called syntax whose value is a function mapping a package of semantics to a
grammar. The second field, called semantics, is a package of semantics definitions. A
language is created by supplying semantics to syntax:

lang = {
syntax(semantics) = {

start ...;
... grammar rules

};
semantics = {

syntaxCnstr(args ...) = ...;
... semantics for construct

}
}

Language modules allow the syntax to be dependent on the semantics whilst allowing
each to be independently transformed. In addition, language modules are a basic pattern
whose variations, as we shall see, can be used to express different types of language
definition.

3.3. An Independent External Language Module
The following XPL program code represents the arithmetic grammar from section

2.5.2 as a language module:
type ExpSemantics(t:Type) = { binExp :(t,str ,t) -> t; int:([ int]) -> t }
arithDirect : {

syntax :( ExpSemantics(t))->G(t);
semantics:ExpSemantics(int)

}
arithDirect = {

syntax(semantics) = {
arith -> a=atom tail^(a);
atom -> i=int | '(' a=arith ')' { a };
int -> n=(['0','9'])+ { semantics.int(n) };
tail(l) -> o=op r=arith { semantics.binExp(l,o,r) };
tail(l) -> { l };
op -> ('/' | '*')

};
semantics = {

binExp(left ,op ,right) =
case op {

'*' -> left * right;
'/' -> left / right

};
int(cs) = asInt(cs)

}
}

arithDirect.syntax(arithDirect.semantics).parse ( '10*20' ,[]) −→ 200

The grammar uses the semantics package to synthesize language values. Notice that the
syntax is therefore independent of how the language is implemented.
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3.4. Changing the Semantics: Substituting Calculations for Integers
Once a language has been expressed as a module, it is possible to change the meaning

of denoted values by modifying or replacing the semantics package. Note that the in-
terface provided by the semantics package must be preserved by any modifications since
the grammar relies on these operations being available.

Suppose that we want to modify arithDirect so that the grammar synthesizes arith-
metic calculations rather than integers. A calculation [45] is defined to be a tree that
records all of the steps taken to evaluate the expression. A calculation has the form
{calc=l;value=n;children=cs} where l is a label describing the step that was per-
formed (either ’int’ for an integer-producing leaf-calculation or an operator: ’*’; ’/’).
A new language module arithCalc is produced by reusing arithDirect as appropriate:
type Calc = { calc:str; children :[Calc]; value:int }
arithCalc : {

syntax :( ExpSemantics(t))->G(t);
semantics:ExpSemantics(Calc)

}
arithCalc = {

syntax = arithDirect.syntax;
semantics = {

binExp(l,op ,r) = {
calc = op;
children = [l,r];
value = arithDirect.semantics.binExp(l.value ,op,r.value)

};
int(cs) = {

calc = 'int ';
children = [];
value = arithDirect.semantics.int(cs)

}
}

}

arithCalc.syntax(arithCalc.semantics).parse ('10*20' ,[]) −→
{calc='*';
children =[

{calc='int '; children =[]; value =10},
{calc='int '; children =[]; value =20}

];
value =200}

The definitions of arithDirect and arithCalc show that by separating out the syntax
and semantics, language modules allow syntax to be reused when defining new languages.

4. Homogeneous Language Embedding

XPL grammars are intended to be used to define both external and internal languages.
An external language might use parse to transform a file containing the text of a language
defined using XPL. An internal language uses intern e1 { e2 } which replaces the
current grammar with the value of e1 and then processes e2. The result of processing
e2 must be abstract syntax that is used by the underlying XPL execution framework in
place of the intern expression.
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XPL provides support for working with syntax as described in 2.2 in order to sup-
port internal languages. The following module is a version of the arithmetic expression
language that uses syntax constructors.
arith : {

syntax :( ExpSemantics ([| t |]))->L(t);
semantics:ExpSemantics ([| int |])

}
arith = {

syntax(semantics) = {
arith -> a=atom tail^(a);
atom -> i=int | '(' a=arith ')' { a };
int -> n=(['0','9'])+ { semantics.int(n) };
tail(l) -> o=op r=arith { semantics.binExp(l,o,r) };
tail(l) -> { l };
op -> ('/' | '*')

};
semantics = {

binExp(left ,op ,right) = BinExp(left ,op ,right);
int(cs) = Int(cs)

}
}
intern arith.syntax(arith.semantics) {10*20} −→ 200

The embeddable language module above can be transformed into one that supports
rational numbers. A rational number is represented as a value {num=n; den=d} where
n and d are numerator and denominator respectively. The syntax definition remains the
same as given in arith and the semantics are changed to create appropriate rational
number expressions:
type Rational = { num:int; den:int }
rational : {

syntax :( ExpSemantics ([| t |]))->L(t);
semantics:ExpSemantics ([| Rational |])

}
rational = {

syntax = arith.syntax;
semantics = {

binExp(left ,op ,right) =
case op {

'*' -> [| { num=${left}.num * ${right }.num;
den=${left}.den * ${right }.den } |];

'/' -> rational.semantics.binExp(left ,'*',
[| { num=${right}.den; den=${right }.num } |])

};
int(cs) = [| { num=${Int(cs)}; den=1 } |]

}
}
intern rational.syntax(rational.semantics) {10/3} −→ {num =10; den=3}

This demonstrates that language modules can support reuse in terms of a language whose
syntax is of type L(t) and whose semantics is a package of functions that generate an
AST of type [| t |].
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5. Language Module Templates

A language module is a record that conforms to a pattern and as such is a value that
can be passed as an argument to a function and returned as a result. Together with
lexical scoping rules, this makes language modules a powerful abstraction mechanism
for engineering languages. Features of a language can be abstracted as arguments to
a function that returns a language module; this is an example of a language factory
[42] and a simple example is shown in section 5.1. Language modules can be used to
represent extensible languages by abstracting over an extension point. An extensible
language module of this kind is instantiated by finding its fixed point. Section 5.2 shows
how fixed points are constructed in XPL.

5.1. Parametric Languages
In the arithmetic language modules defined in previous sections we have fixed the

collection of operators: * and /. Suppose that we want to set up a language factory that
generates language modules where the languages differ in terms of the operators that can
be used. The following defines a function arithOps that receives a predicate isOp that
tests whether an operator is legal in the resulting language module:
arithOps : ((str)->bool)-> {

syntax : (ExpSemantics ([| t |]))->L(t);
semantics : ExpSemantics ([| int |])

}
arithOps(isOp) = {

syntax(semantics) = {
arith -> a=atom tail^(a);
atom -> i=int | '(' a=arith ')' { a };
int -> n=(['0','9'])+ { semantics.int(n) };
tail(left) -> o=. ?isOp(asString ([o])) right=arith {

semantics.binExp(left ,asString ([o]),right) };
tail(left) -> { left }

};
semantics = arith.semantics

}
module1 , module2 : {

syntax : (ExpSemantics ([| t |]))->L(t);
semantics : ExpSemantics ([| int |])

}
module1 = arithOps(fun(o) o = '*' or o = '/')
intern module1.syntax(module1.semantics) {10*20} −→ 200
module2 = arithOps(fun(o) o = '+' or o = '-')
intern module2.syntax(module2.semantics) {10+20} −→ 30

A more expressive way of achieving a similar result is to pass entire grammars as argu-
ments. Like intern, when a grammar is called, its starting non-terminal is taken to be
the first rule in its definition:
arithOps : (L(str)) -> {

syntax : (ExpSemantics ([| t |]))->L(t);
semantics : ExpSemantics ([| int |])

}
arithOps(op) = {

syntax(semantics) = {
arith -> a=atom tail^(a);
atom -> i=int | '(' a=arith ')' { a };
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int -> n=(['0','9'])+ { semantics.int(n) };
tail(l) -> o=op r=arith { semantics.binExp(l,o,r) };
tail(l) -> { l }

};
semantics = arith.semantics

}

op1 , op2 : G(int)
op1 = { op -> '*' | '/' }
op2 = { op -> '+' | '-' }

module3 , module4 : {
syntax : (ExpSemantics ([| t |]))->L(t);
semantics : ExpSemantics ([| int |])

}
module3 = arithOps(op1)
module4 = arithOps(op2)

lang1 , lang2 : L(int)
lang1 = module3.syntax(module3.semantics)
lang2 = module4.syntax(module4.semantics)
intern lang1 {10*20} −→ 200
intern lang2 {10+20} −→ 30

In the definition given above there are two grammars op1 and op2 defined as extension
points for the language factory arithOps. The factory is instantiated twice to produce
module3 and module4 that can then be transformed into languages lang1 and lang2.
These languages can be used independently or merged using +. A grammar that is
produced by combining two base grammars in this way contains all the base rules in
the same order that they are defined in the left and then the right grammars. Grammar
rules with the same names in each operand grammar are merged as alternative definitions.
This leads to the following:
intern lang1+lang2 { 10 * 20 } −→ 200
intern lang1+lang2 { 10 + 20 } −→ 30
intern lang1+lang2 { 10 * 20 + 30 } −→ Error!

Notice that in the last case we do not get the desired result. This is because the grammar
that is processing operators is passed as an argument and, in the case of lang1 we cannot
have + and in the case of lang2 we cannot have *, therefore they are mutually exclusive.
The grammars have been merged at the wrong level, we want to give rise to options over
the operators:
intern arithOps(op1 + op2).syntax(arithOps(op1 + op2).semantics) {

10 + 20 * 30
}−→ 610

This is the subject of the next section.

5.2. Extensible Languages
Often a language factory defines a basis for extension or variation. In the case of

arithOps in the previous section, the variation point is passed as an argument grammar
and does not need to know about any of the constructs in the base language. However, it
is more useful if a factory can be parameterized with respect to language constructs that,
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when they are supplied, can contain constructs from the base language without knowing
what they are in advance.

To achieve such incremental and mutually recursive extensions we can use fixed points
over language modules. The general structure is as follows:
lang = {

syntax(root ,extension ,semantics) = {
start -> ...;
... grammar rules defined in terms ...
... of root , extension and semantics ...

};
semantics = {

syntaxCnstr(args ...) = ...;
... syntax constructors

}
}

The root element is a grammar that can parse the extended language, extension is a
grammar that parses new language constructs, and semantics is a package of semantics
operators as before. The result of the syntax function is a grammar that processes a
basic language but which uses root and extension in specific ways: root used when
the grammar wishes to process a root-construct, it is used to allow the language to be
recursive; extension is used when the grammar wishes to grant an extension point. The
extension may fail if the language has not been extended.

In the case of arithmetic expressions, the root-element is any integer or binary ex-
pression. Therefore, assuming for convenience that arithmetic expressions are right as-
sociative, the root element exp is used to parse the right operand of a binary expression.
The extension point is used as an alternative type of expression:
spaces : G([int])
arithBase : {

syntax : (L(t),L(t),ExpSemantics ([| t |])) -> L(t);
semantics : ExpSemantics ([| int |])

}

spaces = { spaces -> (32 | 10 | 9 | 13)* }

arithBase = {
syntax(exp ,extension ,semantics) = {

arith -> spaces a=atom tail^(a);
arith -> spaces x=extension tail^(x);
atom -> i=int | '(' a=exp ')' { a };
int -> n=(['0','9'])+ { semantics.int(n) };
tail(l) -> spaces o=op r=exp { semantics.binExp(l,o,r) };
tail(l) -> { l };
op -> ('/' | '*')

};
semantics = arith.semantics

}

A recursive definition is created using letrec-expressions. The language module is in-
stantiated by supplying the root-language, some extensions and the semantics. A fixed
point is created that allows the language lang to be supplied and returned at the same
time. The following examples show an empty extension, an independent extension and
an extension that recursively refers to the extended language:
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letrec lang = arithBase.syntax(lang ,{}, arithBase.semantics)
in intern lang { 10 * 20 } −→ 200

letrec lang = arithBase.syntax(lang ,extension ,arithBase.semantics)
extension = {start -> 'two ' -> { [| 2 |] }}

in intern lang { 10 * two } −→ 20

letrec lang = arithBase.syntax(lang ,extension ,arithBase.semantics)
extension = {start -> 'double(' e=lang ')' -> { [| ${e} * 2 |] }}

in intern lang { 10 * double (2 * 2) } −→ 80

A typical use of extensible language modules occurs when new language constructs are
added that need to reference existing language constructs. For example, suppose we want
to extend the arithmetic language with lambda-functions and let-binding. Both of these
constructs are independently useful so we want language modules for them and we want
to mix them into arithBase. We can go further than this, because extensible language
modules provide control over the way that languages are composed so we will show
two variations where let-binding can be interleaved with lambda-functions and secondly
where it is limited to the top-level of an expression.

Firstly, we define a language module for lambda-functions. We will assume that there
are languages defined elsewhere for var and name that construct variable expressions and
legal program names respectively:
type LamSemantics(x:Type) = {

lambda : (str ,x) -> x;
app : (x,x) -> x

}
lambda : {

syntax : (L(t),L(t),LamSemantics ([| t |])) -> L(t);
semantics : LamSemantics ([| t |])

}
lambda = {

syntax(operator ,exp ,semantics) = {
start -> lam | app | var;
lam -> spaces 'lam ' arg=name dot body=exp {semantics.lambda(arg ,body)};
dot -> spaces '.';
app -> e=operator '(' a=exp ')' { semantics.app(e,a) }

};
semantics = {

lambda(arg ,exp) = Lambda ([arg],exp);
app(o,a) = Apply(o,[a])

}
}

There are now two language modules: arithBase which provides an extensible basis for
arithmetic expressions, and lambda that can be added to other base language modules.
To extend arithBase we need to tie the knot using a fixed point. The two languages are
composed so that each knows about the other:
letrec

extension = lambda.syntax(lang.atom ,lang ,lambda.semantics);
lang = arithBase.syntax(lang ,extension ,arithBase.semantics)
in let f = intern lang { lam x . x / 2 }

in f(100) −→ 50

Secondly, the language module for local-binding. Suppose that let does not exist in XPL,
it can be implemented in terms of function application as follows:
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type BindSemantics = Fun(x:Type) { bind : (str ,x,x) -> x }
bind : {

syntax : (L(t),BindSemantics ([| t |])) -> L(t);
semantics : BindSemantics ([| t |])

}
bind = {

syntax(value ,body ,semantics) = {
start -> local | var;
local -> bind n=name to v=value for b=body { semantics.bind(n,v,b) };
bind -> spaces 'bind ';
to -> spaces 'to ';
for -> spaces 'for '

};
semantics = {

bind(name ,value ,body) =
[| (fun(${name}) ${body})(${value}) |]

}
}

The language module bind is an extension that takes an argument exp that is the gram-
mar for the value and body of a local binding expression, for example:
letrec

extension = bind.syntax(lang ,lang ,bind.semantics);
lang = arithBase.syntax(lang ,extension ,arithBase.semantics)

in intern lang { bind x to 30 for x * 10 } −→ 300

Now we can mix the modules together to create a language that allows lambda-functions
and local-binding to be interleaved. Notice that, since we have left open an extension
point for the operator in an application expression, we can specify the range of variability
for operators:
letrec

letLang = bind.syntax(lang ,lang ,bind.semantics)
op = { start -> var | '(' o=lang ')' { o } }
funLang = lambda.syntax(op,lang ,lambda.semantics)
lang = letLang + funLang
k = 100

in intern lang { bind f to bind g to lam x.x for g for f(k) }
−→ 100

The modules can be mixed in a different way to produce a language where let-binding
is limited to the top-level of an expression. This is achieved by supplying a different
definition for the op language and a different extension point for letLang:
letrec

letLang = bind.syntax(funLang ,lang ,bind.semantics)
op = { start -> var | '(' o=funLang ')' { o } }
funLang=lambda.syntax(op,funLang ,lambda.semantics)
lang = letLang + funLang

in intern lang { bind f to bind g to lam x.x for g for f(k) } −→ ERROR

Finally, we can mix lambda-functions, local-binding and arithmetic expressions. There
are a number of possible value domains for arithmetic expressions so this is done as a
language factory where the arithmetic semantics is supplied:
complete(semantics) =

letrec
letLang = bind.syntax(lang ,lang ,bind.semantics)
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op = { start -> var | '(' o=lang ')' { o } }
funLang = lambda.syntax(op ,lang ,lambda.semantics)
lang = arithBase.syntax(lang ,letLang + funLang ,semantics)

in intern lang {
bind double to lam x. x * 2 for bind k to 100 for double(k)

}

complete(arith.semantics) −→ 200
complete(rational.semantics) −→ {num =200; den=1}

This section has shown a pattern for language modules that can be used to define ex-
tension points. An extension point in a language module is a parameter in the syntax
definition. When the extension point is instantiated, the parameter is supplied with a
grammar. Different instantiations can supply different grammars. Fixed points (created
via letrec) are used to compose multiple extensible language modules in order to create
a single recursive grammar.

Note that this is more expressive than exclusively using set-union to compose gram-
mars. Such a mechanism uses the names of productions within grammars as join-points:
composing two grammars, both with a rule called r will result in a new grammar with a
single rule called r such that references to r within the original grammars now all refer to
the composed rule. This is to be compared with composition via parameters and letrec
where grammars are first-class; as such there is no intrinsic relationship between the
name of a rule (used as a parameter) and the rule itself. Examples of this are shown
above where op, lang, letLang, etc., are passed as arguments without any requirement
that those names are used as join-points within the grammars.

Furthermore, composition is defined to be asymmetric in the sense that productions
from the left grammar take priority over those from the right. This being the case
set-union based composition alone would prevent the construction by composition of a
language that relies on a mixture of left-based and right-based prioritisation. The use
of parameters and fixed-points does not suffer from this restriction because component
grammars can be defined in terms of functions over extension points where left-right and
right-left prioritised grammars can be supplied as argument values as appropriate.

6. Language Module Morphisms

A language module morphism is a function that maps a language module to a new
language module. A morphism can be used to add new functionality, or change existing
functionality, in a general way. Section 6.1 shows how to add error handling to arithmetic
language modules. To do so, the morphism must know about the semantic interface of
the module. Section 6.2 uses monads to generalise this interface, and section 6.3 uses a
list monad to add non-determinism to an existing language module.

6.1. An Error Language Morphism
We want to add errors to arithmetic expressions so that execution captures division

by 0. If this situation occurs then execution of the complete expression is aborted.
This requires a non-local goto since the division by 0 may be buried within a larger
expression. A standard way to implement non-local goto is to introduce continuations in
the expression so that each expression evaluates and passes its result to a continuation.
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If division by 0 is encountered then execution is aborted simply by ignoring the current
continuation.

A morphism from arithmetic expressions to continuation based expressions does not
need to know anything about the semantics of the base language providing that the lan-
guage module being transformed provides standard semantic operators int and binExp.
The following language module morphism addError performs the necessary transforma-
tion for any arithmetic language module:
type Error(t:Type) = t + str
type ArithLang(t:Type) = {

syntax : (ExpSemantics ([| t |])) -> L(t);
semantics : ExpSemantics ([| int |])

}
type ErrorLang(t:Type) = {

syntax : (ExpSemantics ([| t |])) -> L(t);
semantics : ExpSemantics ([| ((int)->int) -> Error(int) |])

}
addError : (ArithLang(t)) -> ErrorLang(t)
addError(arithL) = {

syntax = arithL.syntax;
semantics = {

int(x) = [| fun(k) k(${arithL.semantics.int(x)}) |];
binExp(left ,op ,right) =

[| fun(k)
${left}( fun(x)
${right}( fun(y)
${ i f op = '/'

then [| i f y = 0 then 'division by 0'
else k(${arithL.semantics.binExp ([|x|],op ,[|y|])}) |]

else k(${arithL.semantics.binExp ([|x|],op ,[|y|])})})) |]
}

}

The morphism can be applied to the arith language module as follows (where the result
is the un-evaluated continuation passing expression):
let contArith = addError(arith)
in let f = intern contArith.syntax(contArith.semantics) {100/5}

in f(id) −→ 20

let contArith = addError(arith)
in let f = intern contArith.syntax(contArith.semantics) {100/0}

in f(id) −→ 'division by 0'

As it stands addError cannot be applied to the rational language module because the
definition of zero-hood is different. The morphism can be generalized slightly and then
used to transform both. The key change is to use a predicate isZero to check for 0. This
means that the types must be generalised so that the semantics does not require the use
of int as the value domain:
type ArithLang(t:Type) = {

syntax : (ExpSemantics ([| t |])) -> L(t);
semantics : ExpSemantics ([| t |])

}
type ErrorLang(t:Type) = {

syntax : (ExpSemantics ([| t |])) -> L(t);
semantics : ExpSemantics ([| ((t) -> t) -> Error(t) |])
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}
addError : (ArithLang(t),(t) -> bool) -> ErrorLang(t)
addError(arithL ,isZero) = {
syntax = arithL.syntax;
semantics = {
int(x) = [| fun(k) k(${arithL.semantics.int(x)}) |];
binExp(left ,op ,right) =

[| fun(k)
${left}( fun(x)
${right}( fun(y)
${ i f op = '/'

then [| i f ${isZero }(y) then 'division by 0'
else k(${arithL.semantics.binExp ([|x|],op ,[|y|])}) |]

else k(${arithL.semantics.binExp ([|x|],op ,[|y|])})})) |]
}

}

let contArith = addError(arith ,[| fun(n) n = 0 |])
in let f = intern contArith.syntax(contArith.semantics) {100/5}

in f(id) −→ 20

let contRational = addError2(rational ,[| fun(r) r.num = 0 |])
in let f = intern contRational.syntax(contRational.semantics) {100/5}

in f(id) −→ {num =100; den=5}

This section has shown that it is possible to define functions that map from one language
module to another. The ability to define all the constituent elements of a language
module as first-class values, as supported by XPL, is important as a basis for general
purpose morphisms. Clearly the ability to map a language module will depend on the
care with which it has been originally defined. Keeping syntax and semantics separate
helps this and a disciplined use of semantic constructor functions in the semantics record
makes it easier to define language module morphisms that can be applied to multiple
languages.

6.2. Language Modules and Monads
It is difficult to write very general morphisms because the semantics differ from mod-

ule to module. An aim of Software Language Engineering is to produce reusable language
modules where the syntax and the semantics can be reused by combining modules to
produce different languages. Unfortunately, in most cases combining different language
modules requires the semantics of the individual modules to be modified. Error handling
in the previous section is an example where the semantics must be changed to intro-
duce continuations. Other examples, of semantic modification are error values, jumps,
backtracking, roll-back and non-determinism.

In many cases changes to the execution of a language can be performed in a general
way providing that the language module conforms to a standard structure. Such a
general structure is a monad [46] [47]. This section extends the structure of an extensible
language module with a monad and shows how the arithmetic language modules can be
built using monads. It then shows that the execution semantics for the languages can be
modified by applying a general purpose monad transformer that has no specific knowledge
of arithmetic language modules.

A monad M is a package of two operations unit and bind. The unit operation takes
a value v from the language and transforms it into a value in the monad M(v). The bind
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operation takes a value in the monad M(v) and a function f, it supplies v to f and expects
f to return another value M(w) in the monad. The general structure of an extensible
language module including a monad is as follows:
lang = {

syntax(root ,extension ,semantics) = {
start -> ...;
... grammar rules

};
monad = {

unit(x) = ...
bind(x,f) = ...

};
semantics(monad) = {

syntaxCnstr(args ...) = ...;
... syntax constructors defined using monad

}
}

The identity monad makes no changes to the underlying semantic values:
idMonad : { unit : (a) -> a; bind : (a,(a)->b) -> b }
idMonad = { unit(x) = x; bind(x,f) = f(x) }

The arithmetic language where the underlying value type is integer can be expressed
using monads as follows:
arithM = {

syntax = arithBase.syntax;
monad = idMonad;
semantics(monad) = {

binExp(left ,op ,right) = [|
import ${monad} {

bind(${left},fun(x)
bind(${right},fun(y)

unit(${BinExp ([| x |],op ,[| y |])})))
}

|];
int(cs) = [| import ${monad} { unit(${Int(cs)}) } |]

}
}

Notice in the definition given above that the package of semantics operations is defined
in terms of the monad and that the monad is supplied to the package. This means that
we can change the language module by replacing the monad and therefore we can get
a different semantics with a minimal change. The following shows a use of the arith
language module:
letrec lang = arithM.syntax(lang ,{}, arithM.semantics ([| arithM.monad |]))

in intern lang {10*20}
−→ idMonad.bind(idMonad.unit (10),fun(x)

idMonad.bind(idMonad.unit (20),fun(y)
idMonad.unit(x * y))

−→ 200

The same upgrade can be applied to the rational language module:
rationalM = {

syntax = arithM.syntax;
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monad = idMonad;
semantics(monad) = {

binExp(left ,op ,right) =
case op {

'*' ->
[| import ${monad} {

bind(${left},fun(x)
bind(${right},fun(y)

unit({ num=x.num * y.num; den=x.den * y.den })))
} |];

'/' ->
[| import ${monad} {

bind(${left},fun(x)
bind(${right},fun(y)

${rationalM.semantics(monad).binExp ([| unit(x) |],'*',
[| unit({ num=y.den;den=y.num }) |])}))

} |]
};

int(cs) = [| import ${monad} { unit({ num=${Int(cs)}; den=1 }) } |]
}

}

letrec lang = rationalM.syntax(lang ,{}, rationalM.semantics ([| rationalM.
monad |]))

in intern lang {10/20} −→ {num =10; den =20}

This approach provides a systematic way of reifying control in the semantics component
of a language module. The control is supplied by the monad which itself has a standard
interface. This allows the monad to be replaced whilst leaving the rest of the language
module unmodified. As such this is a mechanism for hijacking the semantics of a language
module in a disciplined way.

6.3. The List Monad
The list-monad manages lists of elements. Its unit operator creates a singleton list from
a value and its bind operator maps a function over a list of values. The result of mapping
the function produces a list of lists that is then flattened to produce a single-level list.

Lists can be used to represent non-deterministic (ND) computations where the result
of an ND computation is any of the elements of the list selected at random. Given
any language module, it is possible to transform it into an ND-version by lifting each
basic value using unit and passing lists of values around. This is done by the following
language module morphism:
ND(L) = {

syntax(exp ,extension ,semantics) =
L.syntax(

exp ,
extension ,
semantics);

monad = {
bind(x,f) = flatten(map(fun(v) L.monad.bind(v,f),x));
unit(x) = [L.monad.unit(x)]

};
semantics(monad) = L.semantics(monad)

}

The morphism can be used on arithM as follows:
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letrec
syntax = ND(arithM).syntax
semantics = ND(arithM).semantics
monad = [| ND(arithM).monad |]
lang = syntax(lang ,{}, semantics(monad))

in intern lang {100*2*3}
−→ [600]

As it stands, arithM provides no way for the programmer to introduce non-determinism.
However, arith was defined as an extensible language module and therefore we can
introduce a ND language construct as follows:
ND(L) = {

syntax(exp ,extension ,semantics) =
L.syntax(

exp ,
{ start ->

'<' x=exp ',' y=exp '>'
{ semantics.values(x,y) }

} + extension ,
semantics);

monad = {
bind(x,f) = flatten(map(fun(v) L.monad.bind(v,f),x));
unit(x) = [L.monad.unit(x)]

};
semantics(monad) =

L.semantics(monad) +
{ values(x,y) = [| append(${x},${y}) |] }

}

Now it is possible to introduce non-deterministic values:
letrec

syntax = ND(arithM).syntax
semantics = ND(arithM).semantics
monad = [| ND(arithM).monad |]
lang = syntax(lang ,{}, semantics(monad))
in intern lang {<100,400>*2*<3,4>}

−→ [600 ,800 ,2400 ,3200]

The monad transformer can be used on a different language module:
letrec

syntax = ND(rationalM).syntax
semantics = ND(rationalM).semantics
monad = [| ND(rationalM).monad |]
lang = syntax(lang ,{}, semantics(monad))

in intern lang { <100,400> * 2 * <3,4> }
−→ [{num =600; den=1},{num =800; den=1},{num =2400; den=1},{num =3200; den =1}]

To show that ND does not rely on the structure of its argument we use it twice:
letrec

syntax = ND(ND(arithM)).syntax
semantics = ND(ND(arithM)).semantics
monad = [| ND(ND(arithM)).monad |]
lang = syntax(lang ,{}, semantics(monad))

in intern lang { <100,400> * 2 * <3,4> }
−→ [[600] ,[800] ,[2400] ,[3200]]
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Errors are still present in even though some of the results are valid. For example, the
following fails because of the 0 even though the other results are valid:
letrec

syntax = ND(arithM).syntax
semantics = ND(arithM).semantics
monad = [| ND(arithM).monad |]
lang = syntax(lang ,{}, semantics(monad))

in intern lang {(<100,400>/<2,4>)/<0,4>}
−→ ERROR!

The semantics can be extended to filter out the illegal values:
NDArith(L) = {

syntax = ND(L).syntax;
monad = ND(L).monad;
semantics(monad) =
let binExp = ND(L).semantics(monad).binExp
in { binExp(l,op,r) =

i f op='/'
then binExp(print(l),op ,[| remove(0,${r}) |])
else binExp(l,op ,r) } +

ND(L).semantics(monad)
}

Now the transformation preserves only legal values:
letrec

syntax = NDArith(arithM).syntax
semantics = NDArith(arithM).semantics
monad = [| NDArith(arithM).monad |]
lang = syntax(lang ,{}, semantics(monad))

in intern lang {(<100,400>/<2,4>)/<0,4>}
−→ [12 ,6 ,50 ,25]

The list monad is an example of something can be applied to a language module without
knowledge of its implementation. Not all monad transformations are so general, many
may require implementation knowledge to be effective. However, these encodings in XPL
have shown that given some basic features, it is possible to engineer languages in a way
that allows them to be extended and transformed.

7. Implementation

XPL is implemented in Java and consists of a parser and an expression interpreter.
The parser is implemented as a machine that manages a stack of choice points in order to
perform a parse using a similar mechanism to that of DCG in Prolog (XPL implements
a form of cut, !, in grammars although it is not used in this article). The expression
interpreter traverses ASTs with respect to a context containing identifier bindings. The
parser and interpreter are interleaved to support language embedding. XPL is boot-
strapped by creating an XPL grammar as an AST by instantiating the appropriate AST
Java classes and then by loading in a file that contains the XPL grammar as a concrete
syntax definition. The implementation provides a REPL that reads an XPL command
and evaluates it.

Each XPL file is a module that contains a collection of definitions. The names defined
in a module are private unless they are exported in which case they are available to
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anywhere the module is imported. The command import <path>; imports a module
into the REPL.

The implementation of XPL used to run all the examples in this article is available
at: http://www.eis.mdx.ac.uk/staffpages/tonyclark/Software/xpl.jar. The file
examples.xpl contains the 88 examples. The following transcript shows the installation
procedure on a Mac together with the instruction for loading the examples file followed
by invoking the first two examples. Input to a shell is shown after $ and commands typed
to XPL are shown after >:
$ mkdir src
$ mv xpl.jar src
$ cd src
$ jar -xvf xpl.jar
inflated: ...

$ cd ..
$ java -cp src xpl.Interpreter
[src/xpl/xpl.xpl 3231 ms ,197]
> import 'src/xpl/examples.xpl ';

[src/xpl/examples.xpl 5506 ms ,1569]
[src/xpl/exp.xpl 23 ms ,404]
[src/xpl/xpl.xpl 1731 ms ,170]
[src/xpl/lists.xpl 106 ms ,166]

> example1 ();
3
> example2 ();
{x=4;y=6}
>

The implementation is organised as a collection of Java packages. The package Exp
defines the AST classes each of which defines an eval method. Also of interest is the file
xpl/xpl.xpl that defines the concrete syntax of XPL as an XPL grammar.

8. Conclusion and Further Work

There are many tools that support Software Language Engineering. Whilst they are
all different, the tools have many features in common including the ability to define
syntax extensions, synthesize and transform syntax, and embed languages in a host.
Most SLE tools focus on defining syntax rather than semantics and few address the issue
of modularity.

XPL is a simple functional language extended with features necessary to support
SLE. In particular XPL has syntax construction and language embedding. This article
has advocated an approach to SLE modularity that treats language definitions as first-
class values and has identified the following categories of language module definition and
manipulation: independent; substitution; extension; combination; templates; morphisms.
The core features of XPL have been validated through a series of examples of increasing
abstraction leading to modular homogeneous language embeddings.

Figure 2 shows the key approaches of language definition that are used in this article
where the named components are given as XPL definitions in section 3.2 onwards. The
figure is divided into five horizontal language categories where the level of reuse increases
from top to bottom. Grammars are first-class values in XPL and are an essential part of
language modularization. The grammar arithExternal is shown with a dashed outline
because it is an example of an external language that cannot be embedded.
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Figure 2: Language Abstraction Levels

XPL defined languages are constructed by separating syntax and semantics. A lan-
guage cannot necessarily be embedded and the languages arithDirect and arithCalc
are highlighted as such. A dashed line between languages indicates that some part of the
target is used in the definition of the source. This shows that XPL supports language
reuse.

A language module is a language that can be embedded. The language module arith
is defined as the basis of a number of other languages. An arrow, such as that labelled
addError, designates a language module morphism, i.e., a mapping from one language
module to another. The language modules arithError and rationalError are both
produced by applying the morphism addError to different language modules.

A language module may be parametric as indicated by a dashed box on the right-
hand corner that contains the names of the arguments. The parametric module arithOps
takes a predicate that determines the syntax of integer binary operators.

Extensible language modules act like super-classes in object-oriented programs. They
can be extended with extra language features that add both syntax and semantics to
a base language. The language module arithBase is extended in two different ways to
produce a language of arithmetic expressions with local bindings (bind) and a language
with arithmetic expressions and higher-order functions (lambda). A form of multiple
inheritance is used to subsequently extend these two languages to produce a language
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with arithmetic expressions, local bindings and functions (fun).
Language monads are a slightly generalized form of extensible language module whereby

the semantics component follows a pattern. Since the semantics follows a standard pat-
tern, it is easier to define language morphisms. The languages arithM and rationalM are
both language monads whose standard structure is exploited by the morphism ND that
adds non-determinism features to a language. The monadic structure of the languages
is exploited to good effect since ND is applied to both languages and can even be applied
twice as shown in the case of rationalM.

There are several directions for this work to explore. Language modules are highly
expressive and can be packaged up in various ways. Patterns of usage can be given special
syntax that will allow the system to statically check well-formedness. For example, the
use of parameters and fixed points in language templates is very similar to the functional
encoding of object-oriented systems which leads to the possibility for a definition of
language module inheritance.

Monads have been used separately to define parsing combinators and to define lan-
guage execution mechanisms (see for example [48, 44, 49, 50]), however XPL integrates
these features in a single language. The use of monads as a basis for modular language
definition is a fruitful area for future research.

Grammar modularity and combination is another area whose research challenges are
currently open and being actively addressed as described in [51] where the authors extend
context-free grammars with modularity features including import and export of non-
terminals. The grammars in XPL are equivalent to the simple parser combinators used
as stand-alone libraries in functional languages and the combination of XPL grammars
is essentially the same as those of MontiCore [38], however the implementation is tightly
integrated with the XPL expression evaluator. Furthermore, grammars and grammar
productions are first-class values in XPL and can be called as though they are independent
functions. This ability makes it possible to link grammars together. XPL provides a cut
(!) operator whose semantics is the same as that of Prolog in terms of DCGs. This
provides a degree of control over the combination of grammars with overlapping rules,
although this is an area for further work. XPL does not provide mechanisms for renaming
or removing grammar rules and this is an omission that will be addressed in future work
in addition to notions of import and export [51].

XPL grammars are closed under combination and, as described above are closely
related to recursive descent scannerless parsing. The aim of the XPL implementation
has been to experiment with and verify the facilities for language definition and extension,
and therefore there has been no investigation of the efficiency of the parsing mechanism.
The approach is sufficiently close to Packrat Parsing [52] without being identical for this
to be an interesting area for investigation.

XPL is an untyped language. There are significant challenges to integrating static
type systems with homogeneous language embedding, not least because of polymorphism
and the dependent nature of the resulting types. For example, consider a function like
createAccessor in this article that maps a string to a definition of a record field accessor.
In such a situation, the type of the resulting expression depends on the value supplied at
a different level of processing. Even worse, if the meta-level processing introduces named
definitions then there is an implication that types can exist on more than one level. Our
motivation in this article is to establish the key properties and patterns of usage of a
language for the modular integration of syntax processing and program evaluation. As
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such, XPL is unrestricted and it is possible, as in the case of the untyped λ-calculus, to
introduce errors that would otherwise be forbidden by a type system. Clearly, this is an
important area for further work.

Although XPL has been implemented, it is not tool supported either in terms of itself
or in terms of the languages implemented in it. A number of SLE tools, for example
XText, provide tool support in the form of syntax highlighting, keyword completion and
type checking for the languages that they implement. Whilst this is a secondary concern
with respect to XPL, it is important since there may be patterns of language construction
that can be exemplified within XPL that have general use across multiple SLE platforms.
This is an area for future research.

XPL does not natively support hygiene which is the ability for an SLE technology
to provide control over where identifiers are bound and thereby to prevent accidental
capture of identifier scopes. The foundations of hygiene were developed in the transition
from Lisp macros to Scheme syntax processing and could be imported into XPL directly
as part of the intern construct. However, the aim of XPL is to provide the features of
SLE as first-class citizens. A possibility is to reify the notion of binding scope as part of
XPL and provide programmer control so that standard hygiene is one possible encoding
of first-class binding scopes.
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