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Abstract 

Silvestre François Lacroix (Paris. 1765 - ibid., 1843) was not a prominent mathematical 

researcher, but he was certainly a most influential mathematical book author. His most 

famous book is a monumental Traité du calcul différentiel et du calcul intégral (three 

large volumes, 1797-1800; a second édition appeared in 1810-1819) - an encyclopédie 

appraisal of 18th-century calculus. He also published many textbooks, one of which is 

closely associated to this large Traité: the Traité élémentaire du calcul différentiel et 

du calcul intégral (first édition in 1802; four more éditions in Lacroix's lifetime; four 

posthumous éditions). 

Although most historians acknowledge the great influence of Lacroix's large Traité 

in early 19th-century mathematics. it has not been thoroughly studied. This thesis is 

a contribution for correcting this omission. The focus is on its first édition, but the 

second édition, and the Traité élémentaire, are also addressed. 

The thesis starts with a short biography of Lacroix, followed by an overview of the 

first édition of the large Traité. Next corne five chapters where particular aspects are 

analyzed in détail: the foundations of the calculus, analytic and differential geonietry, 

approximate intégration and conceptions of the intégral, types of solutions of differ

ential équations (singular/complete/general intégrais, geometrical interprétations, and 

generality of arbitrary functions), and three aspects related to finite différences and 

séries (the use of subscript indices, types of solutions of finite différence équations, and 

mixed différence équations); for ail thèse aspects Lacroix's treatment is compared to 

the 18th-century background, and to his likely sources. Then we examine how the 

large Traité was adapted to a textbook - the Traité élémentaire, we take a look at the 

second édition of the large Traité, and conclude the body of the thesis with some final 

remarks. 
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Chapter 0 

Introduction 

SILVESTRE FRANÇOIS LACROIX (Paris, 1765 - ibid., 1843) was not a prominent math-

ematician, in the sensé of someone who créâtes (or discovers) new mat hématies, but he 

was certainly a rnost influenti&l mathematical book author. The revolutionary times he 

lived in, changing political and social structures, changed also the social rôle of mathe-

maticians and mathernatics, through a great expansion of éducation. Lacroix dedicated 

his career to the teaching of mathernatics, both in person (he taught at numerous in

stitutions, froin the Ecole des Gardes de La Marine to the Ecole Polytechnique and the 

Collège de France) and as a prolific (and much read) textbook writer. He also showed 

much concern for the history of mathernatics, namely writing biographies of several 

mathematicians for Michaud's Biographie Universelle. 

One of the most successful of his textbooks was the Traité élémentaire du calcul 

différentiel et du calcul intégral [1802a]. It had several éditions throughout the 19th 

century, being widely used in teaching even after Cauchy's radical transformation of 

the subject: its first édition was in 1802; the last édition during Lacroix's lifetime (the 

5th) was in 1837; in 1861-1862 a 6th one was published with notes added by Charles 

Hermite and Joseph Alfred Serret; in 1881 the 9th édition was reached. Translations 

were published in Portuguese (in 1812. in Rio de Janeiro), English (in 1816, as part of 

an effort to introduce Continental analysis into Britain), German (twice, in 1817 and 

1830-1831), Polish (in 1824, in Vilnius), and Italian (in 1829). 

Prior to [1802a], Lacroix had published a monumental Traité du calcul différentiel 

et du calcul intégral (three large volumes, 1797-1800: a second édition appeared in 1810-

1819) [Lacroix Traité]. This is not a textbook; in the préface to the first volume of the 

second édition Lacroix, comparing it to elementary books, says that "such a voluminous 

treatise as this one, can hardly be consulted but by people to whom the subject is not 

entirely new, or that have an unwavering taste for this kind of study ! ' [Lacroix Traité, 

2nd ed, I, xx]. It is actually a référence work - an encyclopedia of 18th-century calculus. 

In an encyclopédiste style, Lacroix wishes to présent a comprehensive account of the 

differential and intégral calculus, but not as a simple compilation of methods: it is 

necessary to choose between différent but équivalent methods or to show how they 
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relate to one another, as well as give ail of them a "uniform hue" that will not allow 

to trace the respective authors. It is a major appraisal of the calculus just before this 

subject was radically transformed by Cauchy in the 1820's. 

Throughout this work I will often refer to [Lacroix 1802a] as "Lacroix's Traité 

élémentaire", and to [Lacroix Traité] as "Lacroix's Traite"''' or (to better distinguish 

from the former) as his "large Traité'. 

0.1 Lacroix and his Traité in the literature 

Tn spite of the great influence of Lacroix in early 19th-century mathematics, "no major 

study has been written of [him]" [Grattan-Guinness 1990, I. 112]. Grattan-Guinness 

adds that "the most useful studies" are [Taton 1953a], [Taton 1953b) and [Taton 1959); 

but even thèse are mainly biographical, focusing on Lacroix's career but not studying 

his works (and yet. they do not constìtute a complete biography of Lacroix, which is 

still lacking). 

Meanwhile, Lacroix's textbooks have received some more attention. In [1987) 

Schubring presented Lacroix as a very good example of a textbook author to be ana-

lyzed. due to the extension and influence of his textbook œuvre (however, he hardly 

touched on the mathematical content of any of Lacroix's books). Pierre Lamandé has 

written several papers where he addresses Lacroix's textbooks; the most important for 

us here are [1988] 1998), where he compares the Traité élémentaire with the older 

texts on the calculus by l'Hôpital and Bézout. 

But the large Traité has not been studied thoroughly. which is a serious omission, 

both in itself and as a necessary step before a global study of Lacroix can be achieved. 

True, a considérable number of références to [Lacroix JYaité] can be found in the 

historical literature: when studying the history of some aspect of the calculus in some 

time period that includes the turn of the I8th to the I9th Century, it is not uncom-

mon to briefly address Lacroix's account of it, taking it as typical of the period. For 

instance, [Gilain 1981) uses the second édition of Lacroix's Traité to highlight the 

novelties in Cauchy's treatment of differential équations. But each of those référ

ences concerns only one or other particular aspect, and most of them are extremely 

small: [Grabiner 1981] gives several examples of influence on Cauchy (in détails and 

terminology), but Lacroix's Taité is still quite secondary; [Boyer 1956] attributes to 

[Lacroix Traité] a very important place in the history of analytic geometry, but this is 

only a very particular aspect of the Traité. 

0.2 This thesis 

The main purpose of this thesis is to study Lacroix's large Traité, focusing on the 

first édition and on the process of its composition (much more than on its aftermath). 
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There is also a chapter on the second edition (chapter 9), but it plays a secondary role 
here. The chapter on the Traité élémentaire is more important - but that is mainly 
because it offers a good comparison with another text, by the same author, on the 
same subject, actually based on the large Traité, but with a very different intended 
audience. 

0 . 2 . 1 Comparisons 

If every historical research must be set in a context, the more so when the object of 
research is a scientific text that did not intend to be original but rather an appraisal 
of an existing subject. Thus, a great part of this thesis consists of comparisons: 

1. The obvious model for Lacroix's larger Traité was Euler's six-volume set of works 
[Introductio; Differentialis] Integralis], published between 1748 and 1770. Lacroix 
himself admitted to have taken passages from there [Traité, I, xxiv]. But he was 
following different foundations and he wanted to incorporate recent developments 
as well as alternative methods. How did this affect the structure of the Traité? 
We will see in chapter 2 that the difference in foundations did not affect it at 
all: Lacroix kept much of the structure of Euler's set of works. He departed 
mostly in his systematic inclusion of geometrical applications, and in the inclusion 
of a final volume on "differences and series"; these departures are related to 
the incorporation of recent developments (namely Monge's differential geometry, 
finite difference equations, and several studies involving definite integrals, mostly 
by Euler himself and by Laplace). 

2. One of the choices Lacroix actually made between methods was that the foun
dational approach would be the one suggested by Lagrange in [1772a], based on 
the power-series expansion of arbitrary functions. Lagrange used this method in 
his lectures at the Ecole Polytechnique from 1794, but only published it in detail 
in [Fonctions], in 1797 - the same year in which the first volume of Lacroix' 
Traité appeared. Lacroix attended Lagrange's lectures at least in 1795, but he 
was working on the Traité since 1787. and therefore he probably had already 
written its first chapters. The question of Lacroix's relatively independent devel
opment of details for the Lagrangian foundations of the calculus (a comparison 
with [Lagrange Fonctions}) is addressed in chapter 3. 

3. In the 1790's two other books were published in France with similar titles: 
Cousin's Traité de Calcul Différentiel et de Calcul Intégral [1796] and Bossut's 
Traités de Calcul Différentiel et de Calcul Intégral [1798]. The latter was more a 
textbook, but Cousin's was truly a treatise. Both (and, up to a certain point, also 
the section on the calculus in [Bézout 1796, IV]) offer points of comparison with 
[Lacroix Traité], representing more traditional and/or less advanced accounts. 
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4. A more gênerai comparison is that between Lacroix's text and his sonrc.es, which 

is facilitated by the inclusion of a wonderful bibliographe We will see that 

in most cases Lacroix simply summarizes those sources, adapting terminology 

and notation so as to give the Traité the "uniform hue" required. But there 

are also several instances of originality - in some cases in content (for instance, 

total differential équations in three variables that do not satisfy the conditions of 

integrability). in other cases in systematization (for instance, analytic geoinetry). 

Besides thèse, there are two more comparisons that must be made, and that have 

already been mentioned: 

5. We will see in chapter 8 how Lacroix reduced and adapted his large Traité for 

teaching, and how this resulted in the Traité élémentaire. 

6. In chapter 9 we will take a brief look at the second édition. There were no major 

différences, but Lacroix improved the organization of the material, and included 

many new developments by Lagrange, Poisson, and others. 

0.2.2 Structure 

This thesis starts with a short biography of Lacroix (chapter 1). followed by an overview 

of the first édition of the Traité (chapter 2). Next corne five chapters where particular 

aspects are analyzed in détail. Then we examine the Traité élémentaire (chapter 8), 

we take a look at the second édition of the large Traité (chapter 9), and conclude the 

body of the thesis with some final remarks (chapter 10). 

The five chapters 3-7 constitute the bulk of the thesis. Their subjects were chosen 

taking several issues in considération. First of ail, Lacroix's possible originalities would 

have to be addressed, but this could not be reduced to a study of possible originalities. 

The topics chosen should allow to form a prospect of the whole Traité: they should cover 

both Lagrangean and Mongean topics (Lagrange being an acknowledged influence, and 

Monge being a mentor of Lacroix), and the three volumes should be présent (even if 

not with the same weights). There was an attempt at having topics dealing more 

with concepts than with methods; of course, in several situations methods have to 

be addressed, because they have interesting conceptual conséquences (as in the case 

of Euler's approximate intégration) or underpinnings (as in the case of the several 

methods for calculating tangents to curves). But this is the main reason for the lesser 

weight of volume III in thèse chapters - that volume consisting almost exclusively in a 

collection of methods; the other reason, actually related to the former, is that volume 

III does not ofïer much opportunity of studying possible originalities by Lacroix - its 

great originality residing in its existence and structure (for which see section 2.5). 

Chapter 3 analyzes the foundations of differential calculus - the most classical topic 

here; it has already been mentioned (item 2 above). After this Lagrange-related topic, 
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chapter 4 deals with analytic and differential geometry - the most direct influences 

froin Monge; analytic geometry is included because of the important rôle of Lacroix's 

TYaité in its history. 

Chapter 5 addresses two subjects that seem to be more closely related in Lacroix's 

Traité than before: approximate integration, and conceptions of the integral - Lacroix 

used Euler's method of approximation (the one Cauchy would later use to defìne the 

definite integral) to explore '"the nature of intégrais". Chapter 6 combines several 

issues on what types of objects can be solutions of differential équations - the dis

tinctions between complete, general, particular. and Singular intégrais/solutions, the 

geometrical interprétations of ail thèse, what types of arbitrary functions (and how 

many) may occur in intégrais of partial differential équations, the special case of total 

differential équations in three variables that do not satisfy the conditions of integrabile 

ity, and finally Fontaine's conception of formation of (ordinary) differential équations 

by élimination of arbitrary constants (with différent adaptations to partial differential 

équations). Lacroix regarded Fontaine's conception as the basis of the theory of dif

ferential équations, and used it to build his own analytical theory for total differential 

équations in three variables that do not satisfy the conditions of integrability. 

Chapter 7 explores three aspects of "différences and séries". The first is the sub

script index notation, whose introduction has been misattributed to Lacroix. The other 

two are partly a follow-up of chapter 6: studies of the solutions of (finite) différence 

équations and of mixed différence équations. 

0.2.3 Notations 

An effort has been made to be as faithful as possible to original notations. There is only 

one notable exception: it was common in late 18th-century to print the d of differential 

as d (particularly in publications of the Paris Academy of Science, for instance the 

ordinary differential équation dy - pdx in [Laplace 1772a, 343]); since this would now 

be easily and systematically confused with notation for partial differentiation, I have 

substituted d for d. 
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Chapter 1 

A short biography of 
Silvestre-François Lacroix 

A detailed biography of Lacroix is still lacking, despite the articles by René Taton 
[1953a; 1953b] 1959]. In this chapter the main focus is on his education (in a broad 
sense) and career until the publication of the large Traité. 

1.1 Youth and early career (1765-1793) 

Silvestre François de Lacroix1 was born on April 28th, 1765, in Paris. His parents were 
Jean François De la Croix (a "bourgeois", that is, a burgher - an urban member of the 
third estate) and his wife Marie Jeanne Antoinette Tarlay. They lived in the rue de la 
Lune, parish of Notre Dame de Bonne Nouvelle, nowadays in the 2nd arrondissement. 
There is no mention of Lacroix's father later than the baptism certificate (while his 
mother is mentioned in a letter by Monge from 1783 [Lacroix IF, ms2396]); it is likely 
that he died when Lacroix was still young. We know that Lacroix was protected by 
a nobleman, the chevalier de Champigny (1712-1787).2 In a letter written in 1783, 

l In his Procés-verbal d'individualité for the Legion d'Honneur (probably the most official document 
one may hope for), dating of 1837. Lacroix's surname appears as "Lacroix (de)", and the christian 
names as "Silvestre François'1. In a transcript of his baptism certificate the christian names are 
written "Silvestre françois", and the family name is "De la Croix" [Lacroix LH]. According to his 
own statement, Lacroix stopped using the particle "de" when addressing a petition to a court in 
Besançon in 1793 (a time when any hint at aristocracy would not be favourable); having published 
several works afterwards without the particle, he never retook it (Lacroix IF, ms2399]. Variations in 
capitalization and word splitting in names like Lacroix/La Croix/Ia Croix (or Lagrange/La Grange/la 
Grange) were common in the 18th and early 19th centuries. As for whether his first name was 
"Silvestre" or "Sylvestre" (most modern authors refer to him as "Sylvestre"): late 18th/early 19th 
century Frenchmen had the annoying habit of almost never using their christian names in public, at 
least not in full - nearly all of Lacroix's books appeared under the name "S. F. Lacroix" ; in manuscript 
sources there are some (not many) occurrences of his christian names in full, and both "Sylvestre" and 
"Silvestre" occur (even within his Légion d'Honneur file [Lacroix LH]), but the more official documents 
tend to have "Silvestre" ; this is also how the name appears in its two contemporary printed occurrences 
that I know of - [Anonymous 1818] and the title page of the first edition of [Lacroix 1795] (see fig. 
1.1). I have decided to stick with "Silvestre". Of course, this is not a very important issue - but one 
must acknowledge it in an era of computerized searches. 

2 On Champigny, see [Grison 1996, 24]. 
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Lacroix goes as far as addressing him as "mon cher papa" [Lacroix IF, ms2397] 3; and 

Lacroix's close friend (and also Champigny's protégé) Jean-Henri Hassenfratz (1755-

1827), in a letter written to Lacroix in 1785 speaks of the "bon papa Mr le Ch. de 

Champigni" [Lacroix IF, ms2396; Grison 1996, 51-52]. But we do not know when this 

protection started. 

The only information available on Lacroix's earfy studies corne from a speech read 

by Libri at Lacroix's funeral - a source open to anecdotes and exaggeratioris (and 

which does not mention Champigny), but with the advantage of the author having 

known Lacroix personally. According to Libri [ISAS, 5-6], Lacroix often recalled the 

humble conditions in which he spent his childhood, living with his poor mother. But 

"cet enfant, qui avait à peine de quoi se nourrir, était dominé par le besoin de lire 

et d'apprendre" 4. Having read Robinson Crusoe, he wished to became a sailor. So, 

he tried to read a treatise on navigation. But in order to understand it he needed to 

know geometry, and so he started attending Mauduit's course at the Collège Royal5. 

Antoine-René Mauduit (1731-1815) occupied two chairs there. From 1775 to 1779 he 

taught, in the chair of mathematics, on conic sections (1775), integral calculus (1776), 

nature and construction of équations and éléments of differential calculus (1778) and 

spherical trigonometry (1779); and in the Ramus Chair 6 he taught on "éléments of the 

art of analysis" (1775-1778) and "éléments of curves" (1779) [Torlais 1964, 283, 285]. 

Lacroix may also have attended lectures by other professors at the Collège Royal, like 

Lalande (astronomy), Le Monnier and Cousin (both professors of "universal physics") 

[Torlais 196Ą, 283]; we know that Le Monnier transmitted astronomical observations 
to Lacroix not later than 1779 (see below). 

Thanks to a letter from the abbé Joseph-François Marie (1738-1801), kept in [Lacroix 
7F, ms2396], we know that Lacroix also followed lectures by him. Marie was professor 
of mathematics at the Collège Mazarin of the University of Paris. He had published 

a much revised and enlarged édition of a one-volume course of pure mathematics by 

his predecessor La Caille, which went from arithmetic to the éléments of differential 

and integral calculus [La Caille & Marie 1772]. But we do not know what he taught 

Lacroix. 

Mauduit, Le Monnier, and Marie notwithstanding, Lacroix's great educational in

fluence was Gaspard Monge. Since the late 1760:s Monge had been teaching at the 

Ecole Royale du Génie (Royal Engineering School) at Mézières. where he developed 

Descriptive Geometry. But in January 1780 Monge was elected adjoint to the Geom

etry section of the Académie des Sciences of Paris; this meant that he had to live in 

3 Ail or nearly all the letters kept in [Lacroix IF, ms 2397] are in fact drafts of letters. It will be 
assumed that there were not significant changes in the versions posted. 

4 "this child, who had barely anything to eat. was dominated by a need to read and learn" 
5 The courses of the Collège Royal were open to anyone, and had traditionally been free. It appears 

that fces were introduced precisely around this time [Torlais 1964, 267]; but presumably thèse newly 
iutroduced fees were not very high. 

6Named after the 16th Century mathematician Petrus Ramus (Pierre de La Ramée). 
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the capital for at least fîve months per year, and Bossut, who had been Monge's prede-

cessor at Mézières and who was in charge of a chair of hydrodynamics at the Louvre, 

arranged for Monge an assistant post there. During lus half-year stays in Paris Monge 

did much more than attend Academy meetings and help teaching hydrodynamics. In 

particular, in 1780 he gave some sort of extraordinary lectures in mathematics to a 

group of students that included Lacroix.7 Lacroix became a disciple and lifelong ad

mirer of Monge, who was an excellent teacher. As for the contents of Monge's lectures, 

a letter written by Lacroix to Monge in 1789 [Lacroix IF, ms2397; Belhoste 1992, 

565] indicates that they covered geometry in space - certainly analytic and differential 

geornetry. One of the indications of their high level is given by Lacroix [Traité, II, 487], 

recollecting that Monge had integrated a partial differential équation using an early 

version of what was to be his method of characteristics. Descriptive geometry was 

excluded, since Monge was not authorized by the Ecole du Génie (a military school) 

to divulge it [Taton 1951, 14-15]; he could only allude to the fact that he was ab!e to 

solve graphically the problems that he was solving analytically [Belhoste 1992, 565]. 

Lacroix's first attempts at research predate his acquaintance with Monge. Pierre-

Charles Le Monnier (1715-1799), astronomer and professor of "universal physics" at 

the Collège Royal, had given him a notebook with lunar observations that led Lacroix 

to conduct long calculations during the years of 1779 to 1781. Lacroix would later tell 

Le Monnier that he was diverted from this labour because of his application to pure 

mathematics [Lacroix IF, ms2397; Taton 1959, 129]. 

In a letter to Marie dated 4 August 1781 [IF, ms2397], Lacroix still declared that 

"je me destine entièrement a l'astronomie étant a présent très difficile de 

devenir géomètre. Je veux pourtant apprendre autant de géométrie que je 

pourrai car les ouvrages de M r Euler [et] Clairaut m'ont bien persuadé de 

ce qu'on peut faire en astronomie lorsqu'on posse[de] bien la géométrie." 8 

This letter accompanied a work by Lacroix on ballistics (now lost). where (if I under-

stand correctly his summary) he used approximation techniques inspired by Clairaut's 

treatment of the three-body problem. It is worth quoting his own contextualization, 

as it shows some of his strong early influences: 

"J'étais plein des méthodes de M r Monge et sur-tout de sa géométrie dans 

l'espace. Je venais d'étudier la théorie de la Lune de M r Clairaut que 

j'avais assez bien entendu. Je voulais simple[ment] m exercer sur cette 

matière et faire usage des principes que j'avais tirez de cet excellent ou

vrage. Je m'avisai de transporter tout d'un coup la question dans l'espace 

7Taton [1951, 24] indicates the years 1781-1782, but Lacroix [Traité, II, 487] spoke clearly of 1780. 
Since Monge spent the winters in Paris and summers in Mézières, the antumn-winter of 1780-1781 is 
the most likely. But they certainly contacted again in 1781-1782. 

8 "I fully intend to pursue astronomy. as it is very difficult nowadays to become a geometer. Nev-
ertheless, I wish to learn as much geometry as I can, since the works of Mr Euler and Clairaut have 
convinced me of how much one can do in astronomy if one really dominâtes geometry." 
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et de soumettre mes [?] a des coordonnées rectangulaires comme étant plus 

faciles et plus simetriques que les angles." 9 

Remember; Lacroix was only 16 years old. 

Reaching what in the 18th Century was adulthood, and not being rich. Lacroix 

needed to obtain a source of income. On the Ist December 1782, under recommenda-

tion of Monge and/or Champigny, 1 0 Lacroix was appointed for his first job: teaching 

mathematics at the École des Gardes de la Marine in Rochefort. 1 1 

Lacroix stayed in Rochefort until the end of 1785. Düring thèse three years he 

maintained continued correspondent with Monge 1 2 - who also becaine his superior in 

October 1783, being appointed examiner of the navy students. This correspondence 

dealt mainly with scientific issues, but occasionally it included also more personal 

advice from Monge. Lacroix was not happy in Rochefort. Later he would recali the 

lack of authority that the teachers had over their pupìls (due to social différences - the 

pupils were young noblemen [Hahn 1964, 547]. while the teachers, like Lacroix, were 

not), and the poor methods of teaching, based on memory alone [Lacroix 1805, 128, 

217-220]. The only positive comment on his location is in one of his earlier letters, 

dated 28 Aprii 1783, where he says that "l'analogie que ma situation a avec la votre 

de Mezieres m'encourage" 1 3 . 

Throughout 1783 Lacroix studied nonlinear partial differential équations, following 

Monge's methods - including viewing them as resulting from the élimination of arbi-

trary funetions. and interpreting them geometrically (see sections 6.1.3.4 and 6.1.4.2). 

By the end of the year Lacroix asked Monge whether his results would make a mem-

oir worthy of being submitted to the Académie des Sciences. Monge (in his letter 

of January 1784) was not too encouraging: "ces matières ne sont pas très accueillies 

aujourd'hui, à cause de leur peu d'utilité prochain" 1 4 . Instead, Monge suggested, now 

9 "I was engrossed with M c Monge's methods. especially with his space geometry. I had just studied 
M r Clairaut's Lunar theory and had understood it quite well. I sìmply wished to train myself on that 
matter and to use the principies that I had acquired from that excellent work. I dared to transfer ali 
at once the question to space, and to bring my [?] into rectangular coordinates, as they are easier and 
more symmetrical than angles." 

1 0According to Libri [1843, 6] it was Monge who recommended him for the post. Grison [1996, 
27] has attributed that recommendation to Champigny, citing a letter from the minister of navy to 
Champigny, dated 8 October 1782 [Lacroix IF, ms2398]. This letter shows that Lacroix's protector 
was intercedrng in his favour, although with a différent place in view, and unsuccessfully: Champigny 
tried to secure Lacroix a place as "aspirant élève ingénieur constructeur" - somethìng like cadet 
Student of (ship-)building engineering. The minister was sympathetic, but there were no vacancies at 
the moment. 

uRochefort is a port town on the river Charente, only a few kilometers inland from the Atlantic 
océan, in southwestern France. 

1 2 From this perîod, four letters from Monge to Lacroix survive, dated: 27 .January 1783 [Lacroix IF, 
ms2396], c. 12 January 1784 [Éc. Pol. Arch, IX GM 1.19], end of August 1785 [Éc Pol. Arch, IX GM 
1.20-21] (partly transcribed in [Taton 1959, 130], wrongly cited as being kept in the Institut), and 
end of 1785 [Lacroix IF, ms2396; Tatou 1959, 138-142]; while five drafts of letters from Lacroix to 
Monge are kept in [Lacroix IF, ms2397j, dated: 10 March 1783, 28 April 1783, 5 August 1783, IL 
July 1785, and 9 October 1785 (extract). Their content makes it clear that there were more. 

1 3 "the analogy between my situation and yours in Mézières encourages me" 
1 4"those matters are not very well received. nowadays. because of their little immediate utility" 
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that Lacroix knew enough geometry, he should study mechanics. 

Lacroix did not follow this advice. Instead, he returned temporarily to astronomy. 

During 1784 he constructed solar tables, using observations by Le Monnier and La 

Caille [Taton 1959: Wilson 1994, 280]. By the end of the year he sent them to the 

Académie des Sciences;15 they were presented in the meeting of 15 January 1785. 1 6 

This was a good move: that same day an élection was held for a place of "adjoint 

astronome" and Lacroix ran fifth - that he was considered at ail was excellent. Now 

the members of the Académie had heard of him. 

A very prominent member of the Académie - its perpetuai secretary, the marquis 

de Condorcet - took an interest in Lacroix. Monge spoke him well of Lacroix's talents, 

and Condorcet asked for works by Lacroix. In July Lacroix sent to Monge a new 

version of the research on partial differential équations that he had conducted in 1783 

(much revised, according to his letter of 11 July 1785). This memoir (transcribed in 

appendix A.l) was presented to the Académie in December. In February 1786 Monge 

and Condorcet reported favourably on it, recommending that it be published in the 

Savans Étrangers séries. However, this did not happen, because the publication of the 

Savans Étrangers stopped. 

But the other goal of this memoir was accomplished: Condorcet (who must have 

seen the memoir before its présentation to the Académie) was convinced of Lacroix's 

capabilities. This had very good conséquences for Lacroix. The first was that Con

dorcet employed Lacroix as his substitute at the newly founded Lycée. This Lycée is 

not to be confused with the later secondary éducation institutions; it was a private 

school for gentlemen who wished to acquire a general culture; it had renowned p r o 

fessors who in fact nominated their substitutes to give ail lectures under their general 

direction; Condorcet was in charge of mathematics. 

Thus, Lacroix returned to Paris in January 1786 to teach at the Lycée. He stayed 

in Paris until August 1788. During this time Condorcet became another great influence 

for him. Scientifically, this influence resulted mainly in Lacroix gaining an interest for 

probability (which does not concern us much here); the influence of Condorcet's work 

on intégral calculus is ambiguous - Lacroix used a few détails from Condorcet in his 

TVaité, namely on considérations about the number of arbitrary functions in intégrais of 

higher-order partial differential équations, but he expressly omitted Condorcet's "gen

eral method of integration" (see sections 6.1.4.1 and 6.2.2.3). But the most important 

aspect of this influence is probably philosophical: Lacroix always adrnired in Condorcet 

the encyclopédiste and the educationalist, probably more than the mathematician. 

The course of mathematics at the Lycée was far from successali, because of the 

naturai diffìculty of teaching mathematics to an audience who wished only to ac

quire a "general culture"; it was cancelled at the end of the second year of the Lycée 

1 5 Through a complicateci path: Lacroix-Champigny-Hassenfratz-Monge-Le Monnier [Grison 1996, 
52]. 

1 6 Not 15 July, as Wilson [1994, 280] has it. 

10 



[Tatori 1959, 143-153]. As a supporting text, Condorcet and Lacroix prepared a new 

édition of Eulers popularization book Lettres à une princesse d'Allemagne - cutting 

out most of Euler's theological considérations [Taton 1959, 153-155]. 

In February 1787 Lacroix accumulated his post at the Lycée with another at the 

Ecole Royale Militaire de Paris (to which he was appointed also by recommendation 

of Condorcet). This proved fortunate when the course at the Lycée was cancelled in 

August. 

One of the main topics in the course of mathematics at the Lycée was the calculus 

of probabilities. There is no indication that Lacroix had ever taken an interest in this. 

But he taught it according to Condorcet's instructions, in the following years kept 

a correspondence with Condorcet on the subject, and even later (1815) published an 

influential textbook. Still in 1786, he submitted an entry for a prize compétition on the 

theory of marine insurance proposed by the Académie des Sciences, and he received 

the best classification.1 7 Taton [1959, 245] suggests that it was Condorcet who pressed 

Lacroix to write his entry (as well as probably giving some guidance). 

Düring this period in Paris, besides Monge and Condorcet Lacroix met other math-

ernaticians and astronomers: Laplace, Legendre, Cassini and Lalande [Taton 1959. 

248]. 1 8 It was an active period. According to his later statements, it was in 1787 that 

he started collecting material for writing his Traité (see section 2.1). In the same year, 

he submitted to the Académie des Sciences a memoir containing corrections to his solar 

tables [Wilson 1994 , 280]. 

Besides ali this working activity, Lacroix married in 1787, 1 9 to Marie Nicole Sophie 

Arcambal, one year older than him. She outlived her husband, dying in 1846. There 

is no indication of any children. 

In 1788 the École Militaire of Paris was closed. This time, it was under Laplace's 

recommendation that Lacroix obtained a new appointment. teaching mathematics, 

physics and chemistry at the École Royale d'Artillerie in Besançon 2 0 (Laplace was 

examiner of the artillery students, and thus became Lacroix's superior). Lacroix was 

forced to go once again into exile. He stayed in Besançon until 1793. 

In Besançon Lacroix feit isolated from the scientific community. He complained 

in letters to Laplace and Monge about the lack of good libraries and the difficulty 

in having access to recent books when away from Paris [Lacroix IF, ms2397; Taton 

1953b, 352-353]. In 1792 he told Laplace that he had not been able to advance much 

on his Traité, because of the difficulty in accessing the sources he needed. 

But he kept postai contact with Monge, Condorcet, Cassini. Lalande. Legendre and 

Laplace (often asking them for books or off-prints of memoirs). The correspondence 

1 7 There was no absolute winner. Oiily half of the prize was conferred - Lacroix received 30%, and 
another contestant received 20%. 

1 8 W e have seen above that Lacroix may have known Lalande from his period at the Collège Royal 
1 9 The marriage contract was signed on 5 June 1787 [Lacroix LH}. 
2 0 Besaçon is a city in eastern France, close to Switzerland and to Alsace. 
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with Condorcet (namely on statistics of the population of Besançon) earned him in 

August 1789 the officiai title of correspondent of Condorcet by the Académie des Sci

ences - this gave him access to the meetings when he might be in Paris (namely during 

Summer holidays), and was of course a nice encouragement. 

However, Lacroix !s next submission to the Académie des Sciences was not Con-

dorcetian, but rather Mongean: a memoir on developable surfaces and total differen-

tial équations in three variables (transcribed in appendix A.2), which he read himself 

at the meeting of 1 September 1790. Lagrange, Condorcet and Monge were charged 

with reporting on it, but apparently they never did. Lacroix himself may be to blame: 

some months later he wrote to Monge telling him that he had not yet done a fair 

copy of the memoir ("mis au net le memoire"), because he wanted to redo the second 

part; he had found out that he could use the theory of particular (i.e., singular) in

tégrais to study the total differential équations that do not satisfy the conditions of 

integrability [Lacroix IF, ms 2397). 2 1 He probably took too much time to complete 

this, and in August 1793 the Académie des Sciences was dissolved (together with the 

other académies). But we will sœ that he carried on with this idea. 

Through other letters, we know that in Besançon Lacroix occupied himself also with 

descriptive geometry: he already knew the basic principles, and which problems Monge 

solved with it; now he tried to reconstitute the solutions [Lacroix IF, ms 2396-2397; 

Belhoste 1992]. He had some help from Monge (who was not allowed to say much 

about it), as well as from two of Monge's former pupils at Mézières, Girod-Chantrans 

and Charles Tinseau, who were stationed near Besançon. Finally, he studied the "new 

chemistry" of Lavoisier (a favorite subject of Monge also), with the help of his friend 

Hassenfratz (who had worked in Lavoisier's laboratory). 2 2 

From November 1792 to early 1793 Lacroix was in Paris to acquire books and 

scientific equipment for the Ecote of Besançon; during that stay (22 December) he was 

elected a corresponding member of the Société Philomatique de Paris [Taton 1959, 

258; 1990]. This was a scientific society that was about to become quite important, 

because of the closure of the Académie des Sciences. The only work we know to nave 

been submitted from Besançon is a chemical analysis of confervae (a kind of algae) -

a joint work with Chantrans [Soc. Phil. Rapy, II, 58-59). 

1.2 The most productive years (1793-1806) 

Lacroix returned definitively to Paris in October 1793. This was the period of Terror -

the most radical in the French Revolution, dominated by Robespierre and the Jacobins. 

Laplace did not feel safe and withdrew from Paris to the countryside at an uncertain 

2 1 This draft does not have a precise date, but it carries the indication "90-91". and the text speaks 
of the memoir that he had read "last summer". 

2 2 Later, Hassenfratz taught "general physics" at the École Polytechnique, and mineralogy and met-
allurgy at the Ecole des Mines. 
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date in 1793, until mid 1794 (after the fall of Robespierre in July) [Gillispie 1997, 

154-155]. On the lst October 1793 Lacroix was chosen to replace Laplace as examiner 

of the artillery students [Lacroix IF, ms2398]. According to Libri [1843, 4], Lacroix 

took the noble and dangerous attitude of remsing the place and making an effort for its 

restitution to Laplace. There is no évidence supporting this story. It is possible that 

Lacroix offered this post back to Laplace after the latter had returned to Paris and the 

political situation had changed (Laplace was reinstated in July 1795 [Lamandé 2004, 

51]); but in October 1793 he took the chance to move hack to Paris, and in January 1794 

he was fulfilling his duties, examining artillery students and candidates in Chalons-sur-

Marne [Lacroix IF, ms2399]. 

This does not mean that Lacroix was a Jacobin. Quite the contrary: he held mod-

erate, progressive opinions, in line with the tradition of 18th-century enlightenment. 

His philosophical mentor. Condorcet, was persecuted in this period, and committed 

suicide while imprisoned, in March 1794. But his other mentor, Monge, was a Jacobin, 

as well as his friend Hassenfratz. It was probably due to thèse two friendships, as well 

as to his modération, that Lacroix traversed safely through the Terror. But he was 

certainly much more at home with the moderate republican régimes of the Thermido-

rian Convention (July 1794 - October 1785) and of the Executive Directory (October 

1795 - November 1799). 

In thèse final years of the I8th century, and in the beginning of the 19th, Lacroix 

held several posts related to éducation (ail in Paris), often accumulating. 2 3 On 18 

Vendémiaire of year 3 of the French Republic (9 October 1794), he was appointed 

chef de bureau at the Executive Commission for Public Instruction; there he played an 

important rôle in the educational reforms, namely on the establishment of the École 

Normale (of year 3), and of programmes for the Ecoles Centrales (secondary schools) 

[Taton 1953a, 589; Belhoste 1992, 564]. In the École Normale that functioned in year 

3 (1794-1795). he assisted Monge in the teaching of descriptive geometry, together 

with Hachette. On 6 Prairial year 3 (25 May 1795) he was appointed a teacher at the 

Ecoles Centrales; this was conflrmed the next year, when thèse schools were regulated, 

and he taught mathematics at the École Centrale des Quatre-Nations; when the Écoles 

Centrales were replaced by the Lycées, Lacroix was appointed teacher of transcendental 

mathematics at the Lycée Bonaparte (3 Vendémiaire year 13 = 25 September 1804). 

He was an admission examiner for the École Polytechnique in the years 3 to 6 (1794-

1795 to 1797-1798). Finally, on 24 Brumaire year 8 (15 October 1799) he was appointed 

professor of analysis at the École Polytechnique. 

A conséquence of thèse pedagogical activities was the writing of a séries of remark-

ably successful textbooks (besides what follows, see section 8.1). The first of thèse ap-

peared in 1795, and resulted from his teaching at the Ecole Normale: it was the Essais 

de Géométrie sur les plans et les surfaces courbes, also called Élémens de Géométrie 

2 3 A list of his public posts (omitting private jobs, namely at the Lycée), is kept at [Lacroix LH). 
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M. D C C . X C V. 

Figure 1.1: Title page of Lacroix's first textbook. 

descriptive (fig. 1.1); this was the first textbook on descriptive geometry to be pub-

lished, and the only one dìrected to secondary schools until the 1820's [Belhoste 1992, 

568]; from the second édition (1802) onwards it was included in Lacroix's Cours de 

Mathématiques, with a new subtitle - Complément des Élémens de Géométrie. Most 

of the others resulted from the need of good textbooks to be used in the École Centrale 

des Quatre-Nations, and appeared between 1797 and 1800: textbooks on arithmetic, 

algebra (both an elementary textbook and a volume of compléments), geometry, and 

trigonometry and analytic geometry [Schubring 1981 \ Lamandé 2004]. When the 

last of those directed to the École Centrale des Quatre-Nations (the Complément des 

Élémens d'Algèbre) appeared in 1800, some of the others already had two éditions, and 

they ail ran to many more. 2 4 Another textbook was published in 1802. mainly directed 

to the students of the Ecole Polytechnique: the Traité élémentaire de Calcul différentiel 

et de Calcul intégral, which will be the subject of chapter 8. This textbook activity 

culminated with [Lacroix 1805], a complementary book addressed not to students, but 

to teachers, containing pedagogical reflections and an analysis of his textbook séries. 

Besides ail those textbooks, being in Paris allowed Lacroix to finally complete his 

2 > 1 The most impressive figures are those of the Arithmétique, which reached the 20th édition in 1846, 
the Eléments d'algèbre, which reached the 23rd in 1871. and the Éléments de géométrie, which reached 
the 22nd in 1884. 
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great project: the Traité du Calcul différentiel et du Calcul intégral Printing started 
in 1795, although the first volume only appeared in 1797: the second appeared in 1798 
and the third in 1800. 

During this period Lacroix still carried out some mathematical research, but not 
much - and all of it in the context of the Société Philoniathique. Not later than 
1797 he communicated some "elucidations about a passage in Lagrange's méchanique 
analytique, related to rotation of bodies", and "observations on the number of arbitrary 
functions in the integrals of partial differential equations" [Soc. Phil. Rapp, II, 25]; 
I do not know of any trace of the elucidations about Lagrange's passage, but the 
observations on integrals of partial differential equations were certainly those included 
in the second volume of the Traité (see section 6.2.2.3). In 1798 he submitted a memoir 
on total differential equations resulting from the idea that he had communicated to 
Monge in 1790 or 1791 [Soc. Phil. Rapp, III, 9-10]; a slightly abridged version was 
published in the Bulletin of the Société Philornatkique [Lacroix 1198a\, and a fuller 
version in the second volume of the Traité (see section 6.2.4). In 1799 he read two 
memoirs: one on geographical maps, 2 3 and another about curves traced on developable 
surfaces [Soc. Phil. Rapp, IV, 13]; the latter was the first part of the one he had read 
to the Académie des Sciences in 1790, or a new version of it; in 1810 he published a 
second or third version as the final section in the first volume of the second edition of 
the Traité. Although classified as "physics" in the Bulletin, we may also mention a 
"note on fluid resistance" [Lacroix 1802b]. 

These seem to have been his last attempts at original research. As Taton said 
in [1953a, 590], writing his large Traité and his textbooks, Lacroix realized "que son 
érudition si étendue et son talent si remarquable de mise au point et de présentation 
lui permettrait de faire là une oeuvre plus utile que celle qu'il aurait réalisée en se 
confinant dans des recherches de détail" 2 6 . Yet, we should stress that he did some 
research, and that he included in the Traité most of that that was related to analysis. 

In spite of his reduced research career, Lacroix gained the respect of the mathemat
ical community. His Traité was probably a major factor in this. On 16 Germinal year 
7 (5 April 1799) he was elected a member of the first class ( "mathematical and physical 
sciences") of the Institut National (founded in 1795 in replacement of the Académie des 
Sciences). As we have seen, he did not present any mathematical research to the Insti
tut; but he was an active member - mostly participating in commissions for reporting 
on works submitted by non-members; in addition, he was secretaire of the mathemat
ical section between 1 Germinal year 10 (22 March 1802) and 11 Pluviôse year 11 (31 
January 1803). It was probably in that capacity that he wrote a "Compte rendu à 

2 5 I n 1804 Lacroix published an introduction to mathematical and physical geography, as a first 
volume of a larger geographical work directed by J. Pinkerton and C. Walkenaer [Lainandé 2004-, 
105]. 

2 6 "that his so wide erudition and his so remarkable talent for clarification and presentation would 
allow him to make there a work more useful than that he would have achieved had he confined himself 
to researches on details" 
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la section de Géométrie de l'Institut national, des progrès que les mathématiques ont 

faits depuis 1789 jusqu'au l . e r Vendémiaire an 10" (that is. a "report to the Geome

try section of the Institut National, on the progress made in mathematics from 1789 

to Vendémiaire 1st. year 10 [= September 23rd, 1801]"); most of it was eventually 

incorporated in [Delambre 1810\ (see appendix B). 

Speaking of this "Compte rendu..." is a good cue to mention Lacroix's historical 

activities. The reading programme that he must have carried out to write his Traité, 

and the impressive bibliography that he included in it. indicate that he acquired a very 

good knowledge of the history of the calculus in the process of its composition. And 

this should have been obvious for everyone at the time. When Lalande set to complete 

the second, enlarged edition of Montucla's Histoire des Mathématiques, after Montu-

cla's death in 1799, he asked Lacroix to revise the article on partial differential equa

tions [Montucla& Lalande 1802, 342-352], as this was "un des plus difficiles de tout 

l 'ouvrage" 2 7 [Montucla & Lalande 1802, 342); Lacroix added a couple of footnotes with 

his name (one of which is quite substantial and interesting [Montucla h Lalande 1802, 

344]), and he may also have changed a few details in the main text - the article uses 

Lacroix's terminology, speaking of "differential coefficients" and "partial differential 

equations" (rather than "partial difference equations" as was usual at the t ime). 2 8 

But Lacroix's historical output was not restricted to the calculus. Sometime be

tween 1792 and 1797 he read to the Société Philomathique a "historical summary" 

("précis historique") of physical astronomy (that is, celestial mechanics) [Soc. Phil. 

Rapp, II, 34-35]; unfortunately, this seems to be lost. We have already mentioned his 

"Compte rendu..." on the recent progress of mathematics, which covered all branches 

of pure mathematics. He also wrote a historical eulogy of the applied mathematician 

Jean-Charles Borda (1733-1799), whose vacancy in the Institut he had occupied; this 

succession was the obvious motivation for the eulogy but, oddly, it was again published 

by the Société Philomathique [Soc. Phil. Rapp, IV, 92-135], rather than the Institut.29 

1.3 Second editions and prestige (1806-1820) 

After 1805 Lacroix's productivity clearly dropped. Most of his publications until 1820 

were second (or third, or fourth,...) editions of his books. And in most cases the changes 

were not very significant; for instance, the relevant changes in his algebra textbook had 

all been introduced in the second (1800) and third (1802) editions [Lamandé 2004 , 68]. 

The second and third editions of the Traité élémentaire de calcul... (1806, 1820) and 

2 7 "one of the most difficult in the whole work" 
2 8Grattan-Guinness [1990, I, 143] suggests that Lacroix's participation in the third volume of Mon

tucla's Histoire was more extensive. However, I have not seen any other traces of it. 
2 9 Taton [1953a, 593] mentioned an Essai sur l'Histoire des Mathématiques written by Lacroix, 

unpublished and whose manuscript had apparently vanished. Itard [1973, 550] repeated this. I do 
not know Taton's source, but I find it likely that this Essai was simply the Compte rendu... (see page 
393). 
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the second édition of the large Traité (1810-1819) clearly stand out (those of the former 

demarcate this period). But even the long period between the publication of the first 

and the third volumes of the latter suggests a decrease in productivity. 

The only new book published by Lacroix in this period was lus textbook on prob-

ability: the Traité élémentaire du Calcul des Probabilités (1816). 

On the other hand, in this period Lacroix participated in a huge historical en-

terprise: the 52-volume biographical dictionary published by Louis-Gabriel Michaud 

[Michaud Biographie]. Actually, Lacroix's participation was limited to volumes 1 to 

13 (published between 1811 and 1815); he authored the entries for d'Alembert, Apol

lonius, Arbogast, Archimedes, Barrow, de Beaune, the Bernoullis, Bézout, Bombelli, 

Cardano, Cavalieri, Clairaut, John Craig. Diophantos, Euclid, Euler, and Eutocios of 

Ascalon. 3 0 The reason for the interruption of his participation must have been the re-

jection of his entry on Condorcet: it was too favourable to the philosopher, and risked 

causing problems with the censorship; it was replaced by an anonymous and much 

more neutral text [Taton 1959, 259-261].31 Lacroix published his own text elsewhere 

[Lacroix 1813]. 

In contrast to the decrease in productivity, we notice an increase in prestige of 

Lacroix's appoint ment s. In 1809 he exchanged the position as professor at the Ecole 

Polytechnique for that of permanent examiner - which was more prestigious and meant 

an increase in salary [Grattan-Guinness 1990,1, 97]; he kept this post until 1815. Also 

in 1809 he was appointed professor of differential and intégral calculus at the newly-

founded Faculté des Sciences de Paris - with this appointment came an automatic 

degree of doctor 3 2 . The Faculté des Sciences was actually less prestigious than the 

Ecole Polytechnique, but Lacroix was also made its first dean. Finalfy, in 1815 he was 

twice appointed to replace Mauduit in the school where he had studied in the 1770's: 

on 31 March, in the Collège Impérial de France, by emperor Napoléon; on 4 August, 

in the Collège Royal de France, by king Louis XVIII. 

1.4 Declining years (1820-1843) 

After 1820 Lacroix's activities decreased even more. In 1821 he quit the post of dean 

of the Faculté des Sciences, although he remained a few more years as a professor. The 

only teaching post he kept until his death was that of the Collège de France - although 

he was often replaced, as in 1828 by Francceur [Lamandé 2004, 54]. 

In 1826 Abel, then visiting Paris, wrote to his former teacher Holmboe describing 

the mathematical scene in the French capital. Lacroix was only 61 years old, but 

appeared "terribly bald and extremely old" [Grattan-Guinness 1990, II, 1275]. Itard 

3 0 I cannot guarantee that this list is exhaustive. 
3 1 Itard [1973 , 550] wrongly gives Borda and Condorcet as examples of Lacroix's contributions to 

[Michaud Biographie}. Borda's entry is in fact by Biot and De Rossel. 
3 2 T h e diploma is kept at [Lacroix IF, ms2398] 
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[1973, 550] interprets this as indicating that "his astonishing activity since adolescence 

had affected his health". 

He stili published in 1826 a book on surveying and in 1828 an introduction to the 

"knowledge of the sphère" [Lamandé 2004, 54]. None of thèse are among Lacroix's 

most famous books. 

In addition, of course, he kept publishing new éditions of his older textbooks. Those 

of the Traité élémentaire de calcul différentiel et de calcul intégral stili brought a few 

changes, particularly through the inclusion of new endnotes on some special topics. 

As for historical work. in 1831 he published a new édition of Montucla's history of 

the squaring of the circle, with several additions of his own; according to Sarton [1936, 

533], "Lacroix's édition superseded completely the original one". 

Lacroix died on the 24th May 1843, at his home in Paris. 

Figure 1.2: A medallion by David d'Angers, the only known portrait of Lacroix, made 
two years prior to his death. (Photograph kept at [Lacroix AS].) 
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Chapter 2 

An overview of Lacroix's Traite 

2.1 The project of the Traite 

According to his own statement. Lacroix started collecting material for his Traité in 

1787, while employed at the Ecole Royale Militaire in Paris [Tratte, I, xxiv). This is 

confirmed by his correspondence: during his stay in Besançon (1788-1793) he wrote to 

mathematicians in Paris asking them to send him material or information on how to find 

it. In October 1789 Lacroix thanked Legendre for information on a work by Landen, 

and explained that he wished to use the tables of integrals included there for a project 

"dans lequel j 'a i pour objet de rassembler dans un corps d'ouvrage les matériaux sur le 

calcul integral qui se trouvent dans les mémoires des sociétés savantes" 1 [Lacroix IF, 

ms2397j: in 1792 he communicated the same intent to Laplace [Taton 1953b, 353]. 2 

In both these letters, as well as in the Preface to the first edition of the Traité, 

Lacroix indicated as the trigger for this project his reading of Lagrange's "Sur une 

nouvelle espèce de calcul relatif à la differentiation et à la intégration des quantités 

variables" [1772a] - the memoir where Lagrange first suggested a power-series founda

tion for the calculus. Thus, he intended to write a complete treatise under this unifying 

principle. 

However, it is clear that the purpose was not simply to apply Lagrange's suggestion. 

The reason for assembling the material dispersed in the volumes of memoirs of learned 

societies was that this had not been done, at least not recently. In the 1789 letter 

to Legendre, Lacroix declared: "les livres élémentaires les plus complets, le Calcul 

Integral d'Euler, celui de M. Cousin ont besoin d'adition" 3. In the Preface to the second 

edition, he stressed this motivation [Traité, 2nd ed, I, xviii-xix]: in the 1780's there 

was an enormous gap between elementary books and research memoirs on "analysis 

and transcendental geometry", and this made their (advanced) study very difficult. 

1 "in which my goal is to assemble in a single work the materials on integral calculus that are found 
in the memoirs of learned societies" 

Presumably "calcul integral" is to be read here as short for "differential and integral calculus'1. 
3 "the most complete elementary books, the integral calculus of Euler, that of M. Cousin, need to 

be supplemented" 
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This was especially true for those not living in Paris, because those research memoirs 

were available only in academic collections and books with low print runs; in his 1792 

letter to Laplace, Lacroix had complained about the scientific indigence of Besançon 

- the only public library did not have even the memoirs of the Paris Academy of 

Sciences. One might suspect that this was the main motivation only a posteriori (and 

invoked especially in the second edition, when Lacroix's enthusiasm for the power-series 

foundation had cooled off); but it is easy to imagine how his bad experiences far from 

Paris would have led to this plan. 

The "livres élémentaires les plus complets" mentioned by Lacroix were [Euler Intro

duction Differentialis-, Integralis] and [Cousin 7777], 4 Euler's set, six volumes in total, 

published between 1748 and 1770, was hard to reproach. But in 1792 Laplace would 

agree with Lacroix that it was beginning to grow old [Taton 1953b, 355]. Moreover, 

there were topics that Euler had never included there, such as differential geometry, 

or finite difference equations. As for Cousin's Leçons de Calcul Différentiel et de Cal

cul Intégral [Ì777], it was probably the most comprehensive survey of the calculus 

(apart from Euler's), but it still lacked some topics, and the order of subjects is con

fusing, making it difficult to use as a reference work. Lacroix was fair when assessing 

it thus; "L'ouvrage, remarquable d'abord par le grand nombre de choses que l'auteur 

avoit réunies dans un petit espace, laissoit à désirer un ordre plus sévère et quelques 

développemens indispensables à la clarté de l'exposition" 5 [Delambre 1810, 95] 6. He 

was more critical in a letter to Prony dated 1791 [Lacroix IF, rns2396], accusing Cousin 

of slavishly copying everything in his "compilations" (to the point of employing a par

ticular notation only once, just because it was used in the article he was copying). A 

second, enlarged edition appeared under the title Traité de Calcul Différentiel et de 

Calcul Intégral [Cousin 1796], but these shortcomings persisted. 

Lacroix's plan was different from Cousin's: not only to compile all the major meth

ods, but also to choose between different but equivalent ones or to show how they relate 

to one another, as well as to give all of them a uniform hue that would not allow to 

trace the respective authors [Traité, I, iii-iv]. 

His model was clearly Euler's six-volume set, except that it should include geomet

rical applications 7. Physical applications, on the other hand, were entirely omitted. 

An important point, made in the Preface of the second edition but likely to be 

4 "Elementary" here must be understood in the sense that they start from the first notions, the 
"elements" of the calculus, rather than assuming them and addressing original research straight away. 
After the educational reforms of the 1790 !s and 1800's, "elementary" would mean simple, or intro
ductory - see for example [Lacroix Traité, 2nd ed, I, xx], where the Traité is specifically opposed to 
"elementary books"; see also section 8.1. 

5 "This work, remarkable above all for the great number of topics assembled in a small space, 
wanted a stricter order and some developments essential for the clarity of the exposition" 

6 This sentence can be found in fl. 19v of Lacroix's "Compte rendu [...] des progrès que les 
mathématiques ont faits depuis 1789 [...1". See appendix B For the relation between the "Compte 
rendu" and [Delambre 1810). 

7[Euler Introducilo) does include geometrical applications (analytic geometry); but they are missing 
from [Euler Differentialis] and [Euler Integrals}. 
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applicable also to the first édition, is that this Traité was not intended to be a first 

introduction to the calculus: "un Traité aussi volumineux que celui-ci, ne peut guère 

être consulté que par des personnes auxquelles le sujet n'est pas tout-à-fait étranger, 

ou qui ont un goût décidé pour ce genre d'étude" 8 [Traité-, 2nd ed. I, xx]. In fact, the 

three volumes of the first édition add up to around 1800 quarto pages. 

A remarkable feature is the subject index included at the end of the third volume. 

It is not cornpletely unprecedented: La Caille's book on astronomy [1764] also has 

one. But this was certainly uncommon. Moreover, it is a substantial index: 34 pages 

long [Lacroix Traité, III, 545-578]! In the Préface of the second édition Lacroix ex-

plained that with this index ne hoped to inake the whole book "a sort of dictionary of 

analysis and transcendental geometry" [Traité, 2nd ed, I, xlviii] - we would call it an 

encyclopedia. 

T R A I T É 
DU CALCUL DIFFÉRENTIEL 

E T 

DU C A L C U L I N T É G R A L » 

P A R S, F. L A C R O I X 

T*wton m » jaactartque poDa, 
HO BAT, 

T O M E P R E M I E R . 

A P A R I S , 

C W I. », M, DU P R A T , Libraire pom 1« MathémariqDes, 
quai des Angattins. 

AN V, » J 7 9 7 > 

Figure 2.1: Title page of volume I 

8"such a voluminous treatise as this one can hardly be consulted but by persons to whoin the 
subject is not entirely new. or that have an unwavering taste for this kind of study" 
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Speaking of encyclopedia: the title pages of the three volumes bear the motto 

"Tantum series juncturaque pollet. Ho RAT." (see figure 2.1). This is a quotation 

from Horatio's De Arte Poetica, and translates as "Such power has a just arrange

ment and connection of the parts". This is an interesting clue on Lacroix's views. 

But it becomes even more interesting when we notice that the motto of Diderot and 

d'Alembert's [Encyclopédie] was "Tantum series juncturaque pollet, Tantum de medio 

sumptis accedit honoris! HORAT." - "Such power has a just arrangement and connec

tion of the parts: such grace may be added to subjects merely common" 9. In 1797-1800 

probably any reader would understand the allusion. 

The result of this grand plan was a monumental reference work: an encyclopedic 

appraisal of the calculus at the turn of the century. 

2.2 The bibliography 

Another remarkable feature in Lacroix's Traité, one that does seem to be unprecedented 

in mathematical books, is the bibliography attached to the table of contents: for each 

chapter and section, Lacroix gives a list of the main works related to its subject. 

All the major 18th-century works on the calculus are included there, as well as many 

minor and even some obscure ones. Typically, in the list for a given chapter/section 

one will find the corresponding chapters in one of Euler's three books, some other 

relevant books (say, Lagrange's Théorie des Fonctions Analytiques, Jacob Bernoulli's 

Opera or Stirling's Srd-order lines) and memoirs drawn from the volumes published 

by the Académie des Sciences de Paris, by the Berlin Academy, by the St. Petersburg 

Academy, by the Turin Academy, and so on. The most cited authors are those that 

one would expect: Euler, Lagrange, Laplace, d'Alembert, Monge; but it is also possi

ble to find references to such authors as Fagnano [Lacroix Traité, II, v] or Oechlitius 

[Lacroix Traité, III, viii]. 

An interesting issue is that of the languages of the works included. Memoirs are cited 

only as, say, "Nouv. Mém de Petersbourg, T. XV et XVI. (Lexell)" [Lacroix Traité, I, 

xxx] - thus not indicating in which language they were written. Therefore, it would 

be impracticable to give precise quantitative data. But it is safe to say that French is 

the most common language, followed by Latin. Of course, this only reflects the weight 

of these languages in the scientific community at the time (the memoirs of the Berlin 

Academy for instance, were usually in French). At a long distance come English and 

Italian, languages that Lacroix clearly could read. 1 0 No other languages appear. In 

particular, no work in German - the few works of the German Combinatorial School 

9This translation, and of course the previous one, were taken from Perseus 
<http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Hor.+Ars+220> (accessed 21 February 
2007). 

1 0 As an aside, it is curious to know that in 1818-1819 Lacroix took a course in Chinese by Rémusat 
(the first professor of Chinese at the Collège de France) [Lacroix IF, ms2402, fis 380-465]. 
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included are in Latin [Traité, III, vi]. 
This bibliography shows how incredibly well-read Lacroix was. But note that not 

ali of the works appearing there are used in the main text. As an extrême example, take 
tłie section on "application of the calculus of différences to summation of séquences", 
in chapter 1 of the third volume: it is 29 pages long, and has about 40 bibliographical 
entries! As Lacroix explains, the titles indicated are of the works used in writing the 
text or of works somehow related to it [Traité, I, xxix]. Some works appear to be 
included in the bibliography solely for their "classic" nature: for example, l'Hôpital's 
Analyse des Infiniment Petits [1696] for chapter 1 of the first volume; being the first 
textbook ever written on the differential calculus it had to be included. but by the late 
18th century it was utterly out-dated; Lacroix does not include it for chapter 2, which 
is where "l'Hôpital's rule" is given (however. it had aged rnuch better as a référence 
for differential geometry of plane curves, and it appears again in the bibliography for 
chapter 4). 

We should also note that the bibliography is restricted to printed works. There are 
a few cases in which Lacroix made use of manuscripts (for instance, Biot's memoirs 
on différence and mixed différence équations, that were stili unpublished - see sections 
7.2.2 and 7.3.2); but, although Lacroix acknowledges them in the main text, they do 
not appear in the bibliography. 

2.3 Volume I: differential calculus (1797) 

Tables 2.1 and 2.2 show the contents of the first volume, dedicated to differential 
calculus. It must be noticed that in the text we will usually follow the division of 
chapters into sections, but that thèse are not shown exactly in the tables; the horizontal 
Unes often correspond to them, but sometimes to "subsections" (inspired by the rather 
better divided sections in the second édition). 

The first volume starts with a general Preface to the whole Traité. It includes an 
explanation of the aims of the work and the plan for the three volumes, but is mostly 
taken with a long account of the hìstory of the calculus [Traité, I, iv-xxiii]. Having 

a historical introduction is consistent with Lacroix's encyclopédisme, but it is hardly 

original: both Cousin [1777, xiv-xxx; 1796, I, x-xvi] and Bossut [1798,1, iii-lxxviij do 

the same. 

After the table of contents (with bibliography) cornes an Introduction. Its purpose 

is to give séries expansions of algebraic, exponential, logarithrnic and trigonometrie 

l'unctions. The idea was to make the Traité accessible to readers who knewr algebra 

only as it was treated in the textbooks of Bézout and Bossut [Lacroix Traité, I, xxiv]; 

that is, elementary algebra - mainfy équation solving. Thus the Introduction plays a 

role broadly équivalent to the first volume of Euler's Introductio in Analysin Infinitorum 

[Euler Introducilo, I]. But with an important différence; Euler had used infinite and 
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infinitesimal quantities extensively; while Lacroix wished to avoid them. 
This Introduction stars with a section about "general notions on functions and 

series" [Traite, I, 1-18], which includes definitions for function, implicit and explicit 
functions, and also, apropos of series, a fairly extensive treatment of limits. But this 
does not mean that limits are to be used as the foundational concept for what follows: 
Lacroix believes that if the expansion of a function results in a nonconvergent series, 
this series can still be used to represent that function - just not its "value" [Traite, I, 7] 
(see section 3.2.6). The section on series expansion of algebraic functions [Traite, I. 19-
32] is dedicated to the binomial theorem, for the case of rational exponent (the case of 
irrational "or even imaginary" n appears later as an application of the expansion of the 
logarithm 1 1). The section on series expansion of exponential and logarithmic functions 
[Traite, I, 33-52] is more interesting, because it was more challenging: Lacroix expands 
ax using the functional equation ax x au — ax+u and the method of indeterminate 
coefficients; he was quite proud of how he had avoided the notions of infinite and 
of limits in this expansion (see section 7.1.2). Similar procedures are used for the 
logarithm, and for the sine and cosine in the section on expansion of "circular" functions 
[Traite, I, 52-80]. This latter section also addresses several trigonometric formulas 
(including sinnx = &nx^ ^j-™^ a n c ^ similar ones), and the important method of 
reversion oj series. 

Chapter 1 is entitled "analytical exposition of the principles of differential calculus". 
In the Preface Lacroix announces that he will give this "purely analytical exposition", 
"complete" and "d'un seul j e t " 1 2 [Tratte, I, xxiv]. He likens this comprehensiveness to 
what Euler had done (obviously in [Differentialis]). The alternative would be to include 
some applications in between - that is what Lacroix would later do in [1802a], where 
both analytical and geometrical applications of differential calculus of functions of one 
variable precede the analytical exposition of the differential calculus of functions of two 
variables. The separation between theory and applications is one of the characteristics 
that marks this as a treatise, rather than a textbook. 

As for the exposition being "purely analytical", it may partly be an allusion to 
the separation from geometrical applications. But it is most likely a reference to the 
foundation followed, which does not appeal to geometrical or mechanical notions. In 
fact, Lacroix builds the differential calculus on the basis suggested by Lagrange in 
[1772a] - power series. This will be treated in section 3.2: let us only summarize the 

1 1 I n [Domingues 2005, 281] I said that "a 'weak' version of the binomial theorem, stating (1 + x)n = 
1 -f- nxn~v + etc. is proven (for 'any n ; ; the full expansion is given for integer n)". Apart, from the 
fact that one should read "rational" instead of "integer", this is misleading because Lacroix shows the 
recursive relation between the coefficients independently of n being integer or not [Traite, I, 19-22]. 
My mistake resulted from the physical separation between this and the general proof that the first 
two terms in the expansion of (1 + x)n are 1 + nx [Traite, I, 49]. 

1 2 "at one stroke" 
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Volume I 
topica chapter pages 

History of the calculus; overview of the Traité Preface ïii-xxix 
Table of contents and bibliography Table xxx-xxxii 
General notions on functions, séries and limits 

Introduction 

1-19 
Séries expansion of algebraic functions 

Introduction 
19-32 

Séries expansion of exponential and logarithmic functions Introduction 33-52 
Séries expansion of trigonometrie functions 

Introduction 
52-61 
78-80 

Relationships between trigonometrie and logarithmic functions 

Introduction 

61-75 
Reversion of séries 

Introduction 

75-78 
Changes on a function of x when x becornes x 4- k 

Chapter 1: 
Principles of 
differential 
calculus 

82-87 
Recursion between the coefficients of f(x 4- k) (dérivation) 

Chapter 1: 
Principles of 
differential 
calculus 

87-94 
Differentials and differential coefficients; 
differentiation of algebraic functions Chapter 1: 

Principles of 
differential 
calculus 

94-107 

Differentiation of logarithmic, exponential and trigonometrie 
functions 

Chapter 1: 
Principles of 
differential 
calculus 

107-114 

Differentiation of explicit functions of two variables 

Chapter 1: 
Principles of 
differential 
calculus 114-131 

Differentiation of explicit functions of any number of variables 

Chapter 1: 
Principles of 
differential 
calculus 

131-134 
Differentiation of équations; change of independent variable; 
élimination of constants, irrational exponents, and functions 

Chapter 1: 
Principles of 
differential 
calculus 

134-178 

Condition équations for a formula to be an exact differential 

Chapter 1: 
Principles of 
differential 
calculus 

178-189 
Method of limits; infinitesimals 

Chapter 1: 
Principles of 
differential 
calculus 

189-194 
Expansion of functions of one variable in séries Chapter 2: 

Main 
analytical 
uses of the 
differential 
calculus 

195-232 
Particular cases in the expansion of f(x + k) 
(infinite values of the differential coefficients) 

Chapter 2: 
Main 
analytical 
uses of the 
differential 
calculus 

232-240 

Indeterminacies (^,0 X oo, etc.) 

Chapter 2: 
Main 
analytical 
uses of the 
differential 
calculus 

241-255 
Expansion of functions of two variables in séries 

Chapter 2: 
Main 
analytical 
uses of the 
differential 
calculus 

255-264 
Maxima and minima of functions of one or severa! variables 

Chapter 2: 
Main 
analytical 
uses of the 
differential 
calculus 264-276 

Symmetrie functions of the roots of an équation Chapter 3: 
Digression 
on équations 

277-286 
"Imaginary expressions" (i.e., complex numbers); inc. the 
fundamental theorem of algebra and Cotes's theorem 

Chapter 3: 
Digression 
on équations 

286-326 

Table 2.1: Volume I of Lacroix's Traité (continued in table 2.2) 

chapter here. First cornes the expansion 

î(x + fc) - f(x) = Xik + X2k
2 + X3k

3 + etc. (2.1) 

Then, after establishing the iterative relation between the coefficients and thus renam-

ing them to 
f"(r) f"f(r) 

Î{X + k)- Î(X) = î'(x)k + Hpfc2 + ^~kk"+ etc-
the first term i'(x)k is christened differential "because it is only a portion of the 

différence" and is given the symbol rff(x). "For uniformity of symbols [...] dx will be 

written instead of fc", so that 

dx 

is an immediate conclusion. Sometimes f'(a;), f"(a;), etc. are cailed "derived functions" 
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(as in [Lagrange 1772a, § 1-4; Fonctions]), because of the derivation process that relates 
each of them to the previous one; but the name that they gain in page 98 (and which 
will be used throughout the three volumes) is differential coefficients. The differential 
notation will also be much more frequent. Overall this foundation for the calculus is 
Lagrangian, but much closer to [Lagrange 1772a] than to [Lagrange Fonctions], where 
differentials have no place. The results obtained in the Introduction allow easy de
ductions of the differentials of algebraic, logarithmic, exponential and trigonometric 
functions of one variable: it is only necessary to expand f(.T 4- dx) and extract the term 
with the first power of dx. Differentiation of functions of two variables is also inspired 
by [Lagrange 1772a], but without resorting to the cumbersome notation that Lagrange 
had employed (?/'" for our gfg^a). i{x + h,y + k) is expanded in two steps and in two 
ways (via f(x+h, y) and via f(x, y+k)), whence the conclusion that == The de
finition of differential as the first-order term in the series expansion of the incremented 
function is extended to u — f(x, y) giving 

df(x, y) = du = ^-dx + —dy 
dx dy 

(the d notation is still absent). The largest section in this chapter is dedicated to 
"differentiation of equations" [Traité, I, 134-178]. It covers several topics, namely: dif
ferentiation of implicit functions; change of independent variable - Lacroix was proud 
of the way he had treated this without infinitesimals (see section 3.2.4); and use of dif
ferentiation to eliminate constants, irrational exponents, transcendental functions, and 
unknown functions. Elimination of constants and unknown (i.e., arbitrary) functions 
will play a relatively important part in the second volume, as they furnish a theory 
for the formation of differential equations (see sections 6.2.1.1 and 6.2.2.1). The next 
section, on condition equations for a formula to be an exact differential, proceeds in 
the direction of preparing the way for the treatment of differential equations in volume 
II. Chapter 1 ends with a section about alternative foundations for the calculus. Both 
d'Alembert's limit approach and Leibniz's infinitesimals are treated. This is typical 
of Lacroix's encyclopédiste approach: to expound all relevant alternative methods or 
theories. It is also an essential instance of that approach because in future chapters 
Lacroix will sometimes need to resort to one or other of those alternative foundations 
in order to explain some particular method. 

Chapter 2 is dedicated to some analytic applications of the differential calculus. 
First, its use in expanding functions in series, for which of course Taylor's theorem 
(or rather Maclaurin's) is central. But this section has a lot more to offer, including 
Lagrange's formula for expanding tp(y) in powers of x, where a — y + xtp{y) = 0. 
Oddly, the section finishes with a non-differential, approximation method by Lagrange 
[1776] for expanding implicit functions in continued fractions, adapted to give also 
power-series expansions. After this comes an examination of certain cases in which 
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the differential coefficient "becomes infinite" (as with î(x) = \/x — a for x = a) and 

why the expansion (2.1), "although true in general", is not valid in such cases. The 

explanation for this rests on the irrationality of the function involved disappearing for 

certain values of the variable, dragging a collapse of multiple values of the function. 

Lacroix attributes this to Lagrange and in fact it appears in his Théorie des jonctions 

analytiques: it may be one of the few remarks drawn from Lagrange's lectures at the 

École Polytechnique that Lacroix was able to include in the first volume (see section 

3.2.5). This is followed by a section on indeterminacies (-.0 x co,...) and how to raise 

them. After this we have a section on series expansion of functions of two variables 

(much shorter than the one for functions of one variable). And the chapter finishes 

with the investigation of maxima and minima of functions of one or several variables. 

After analytical applications, we would expect to see geometrical applications. And 

they eventually appear. But chapter 3 is a "digression on algebraic equations" -- an 

interlude in the natural sequence of topics. Lacroix justifies this chapter by the "im

perfection" of the available textbooks on algebra, and by the want for these methods 

in integral calculus [Truite, I, xxv]. But why not include them in the Introduction? 

There are a couple of uses of differential calculus, but they could have been avoided 

(if this were a chapter on applications of differential calculus to algebraic equations, it 

could have been merged into chapter 2). In the Preface to the second edition Lacroix 

explains the arrangement in the first as being due to his fear that the Introduction 

might become too long and retard too much the entry of the main subject - differen

tial calculus [Traité, 2nd ed, I, xx] (this changed in the second edition: Lacroix omitted 

several of these topics, because meanwhile he had included them in his Complément 

des élémens d'algèbre [1800]; while the rest was moved precisely to the Introduction). 

This explanation is quite unsatisfactory; Lacroix should not be too worried with the 

length of the Introduction in this kind of treatise. One must consider the possibility 

of chapter 3 not being in the original plans, and having been included only after the 

Introduction was printed. 

Chapter 3 has two sections. The first, on "similar functions of the roots of equa

tions" (i.e., all the roots appear in a similar form) is about symmetric functions (in

cidentally, Lacroix appears to introduce the expression "symmetric functions" [ Traité, 

277]). Here Lacroix gives a proof, which he claims to be original, of Newton's the

orem on the sums of powers of the roots of an equation; 1 3 Lacroix :s proof does not 

use differential calculus or infinite series, and he thought it worthy of mention in his 

Compte rendu [...J des progrès que les mathématiques ont faits depuis 1789 (see appen

dix B, under "algèbre", or [Delambre 1810, 90]). In the second section, on "imaginary 

expressions" (i.e., complex numbers), Lacroix gives, among other things, a proof by 

Laplace of the fundamental theorem of algebra, Cotes' theorem, Descartes\s sign rule, 

and Euler's solution to the problem of logarithms of negative numbers. 

1 3Nowadays often tailed Newton-Girard formulas (not by Lacroix, who ignores Girard). 
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Volume I 
topics chapter pages 

Analytic geometry: coordinates and fundamental formulas for 
points and straight Unes 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

327-332 

Analytic geometry: curves 
Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

332-341 
Analytic geometry: change of coordinates Chapter 4: 

Theory of 
curved lines 
(plane 
curves) 

341-362 
Applications of séries expansion to the theory of curves 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

362-369 
Use of differential calculus to find tangents 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

369-377 
Use of differential calculus to find Singular points 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

377-388 
Contact and osculation 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 388-394 

Properties of the osculating circle; evolutes 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

394-401 
Transcendent al curves (logarithmic. cycloid. spirals); polar 
coordinates; diff. of arc-length and of the area under a curve 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

401-419 

Method of limits applied to curves 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

419-422 
Curves as polygons: roulettes 

Chapter 4: 
Theory of 
curved lines 
(plane 
curves) 

422-434 
Analytic geometry: coordinates and fundamental formulas 
for points, planes and straight lines Chapter 5: 

Curved 
surfaces and 
curves of 
double 
curvature 

435-448 

Analytic geometry: "curved surfaces of second order" 
(quadrics); change of coordinates 

Chapter 5: 
Curved 
surfaces and 
curves of 
double 
curvature 

448-465 

Application of differential calculus to the theory of contact of 
surfaces 

Chapter 5: 
Curved 
surfaces and 
curves of 
double 
curvature 

465-471 

Theory of curvature of surfaces 

Chapter 5: 
Curved 
surfaces and 
curves of 
double 
curvature 471-482 

Generation of surfaces (envelopes; developable surfaces: etc.) 

Chapter 5: 
Curved 
surfaces and 
curves of 
double 
curvature 

482-504 
Curves of double curvature 

Chapter 5: 
Curved 
surfaces and 
curves of 
double 
curvature 

504-519 

Table 2.2; Volume I of Lacroix's Traité (continued from table 2.1) 

The two final chapters are devoted to analytic and differential geometry: chapter 
4 on the plane; chapter 5 in the Space. They will be treated at length in chapter 
4 below (sections 4.1.2, 4.2.1.2, 4.2.2.2, and 4.2.2.3). The détermination in including 
geometrical applications (which also serve as illustrations of the analytical theory), and 
at the same time in keeping them separate (trying not to dérive any analytical result 
from geometry), are important char acter istics of Lacroix's Traité. 

Here the influence from Monge is most marked. What was still generally known as 
'"application of algebra to geometry" was then being transformed into analytic geom
etry. Monge was the main architect of this change (with an important suggestion by 
Lagrange in a 1773 memoir on tetrahedra), but Lacroix played an important role in 
its systématisation, precisely in the Traité [Taton 1951, ch. 3]. As he explains in the 
Préface, he tried to keep apart all géométrie constructions and synthetic reasonings, 
and to deduce all geometry by purely analytic methods [Traité, I, xxv], That is why 
chapter 4 starts with an extensive study of fundamental formulas for points, straight 
lines and distances, to be used in what follows, instead of "géométrie constructions". 
These elementary subjects were usually regarded as belonging to the realm of syn
thetic geometry. After these prelirninaries, Lacroix develops the analytic geometry of 
plane curves, including plotting, classification of Singular points and changes of coor
dinates. Changes of coordinates have several applications, including finding tangents 
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and multiple points. 

Before differential geometry properly speaking, cornes the application of séries ex

pansions (which because of their approximative nature supply a way of finding tangents 

and asymptotes). But the central part of chapter 4 is the application of differential 

calculus (that is. the use of differential coefficients) to find properties of the curves: 

their tangents, normals, singular points, the differentials of their arc-length and of the 

area under them; and to develop a theory of osculatìon, and hence of curvature via the 

osculating circle. The chapter concludes in a manner very typical of Lacroix: present-

ing alternative points of view. namely an application of the method of limits to find 

tangents and osculating curves and the Leibnizian considération of curves as polygons. 

It is significant that in total this chapter bas five approaches to the détermination of 

tangents, fn this last section is included a study of envelopes of one-parameter families 

of curves, the language alternating between limit-oriented and infinitesimal. A very 

important special case is that of the evolute of a given curve, formed by the consecutive 

intersections of its normals. 

The matter of chapter 5. a theory of surfaces and space curves, is mostly due to 

Monge, according to Lacroix [Traité, I, 435]. In fact, in spite of some isolated studies 

by Euler and others, it was Monge who set spatial differential geometry going, and 

made it a discipline [Struik 1933, 105-113; Taton 1951, ch. 4]; and for this he needed 

to develop also three-dimensional analytic geometry. 

The fundamental formulas for planes and points, straight fines and distances in 

space are followed by more traditional subjects: second-order surfaces (that is, quadrics), 

and changes of coordinates. 

There is some discussion of contact of surfaces using their séries expansions, but as 

the chapter proceeds power séries lose ground to limits and infinites i m als. Alternatively 

to comparison of coefficients in séries expansions, the tangent plane through a point 

with coordinates x',y',z' is determined by the tangents to the sections parallel to the 

vertical coordinate planes (thèse tangents have slopes ^-^i- so that 

is the équation of the plane). Not surprisingly, curvature of a surface on a point is 

studied through the radii of curvature of plane sections through that point: thèse have 

a maximum and a minimum, which allow to calculate the curvature of any other plane 

section. There is no discussion yet of kinds of curvature or of the possibilities of the 

centers of curvature being on the same or on différent sides of the surface. Envelopes 

of one-parameter families of surfaces are studied as the "limits" of their consecutive 

intersections (thèse intersections are called, following Monge, "characteristics"). A 

special case is that in which the generating surfaces are planes: the envelope is then 

called a "developable surface". 
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Three approaches are given to study curves in space ("curves of double curvature"). 

But two of them only briefly (through their projections on the coordinate planes; 

and through the series expansions of two coordinates as functions of the third). The 

bulk of the section foUows Monge in regarding space curves as polygons where three 

consecutive sides are not coplanar. This allows not only to study tangents, osculating 

planes, and differentials of arc-length, but also the developable surface generated by a 

curve's normal planes, and evolutes. 

2.4 Volume II: integral calculus (1798) 

Although the second volume of Lacroix's Traité is the largest of the three, it is the one 

that receives the least attention in the general Preface at the beginning of volume I . 1 4 

The integral calculus, being just the inverse of the differential calculus, did not offer 

much occasion for reflection: it consisted only of a "collection de procédés analytiques, 

qu'il suffit d'ordonner de manière à en faire appercevoir les rapports" 1 5 [Lacroix Traité. 

I, xxvii]. Lacroix proposes then to follow the ordering of [Euler Integralis}. adding new 

developments and replacing some methods by more recent and general ones. In the 

second édition Lacroix would be a little more explicit in the characterization of Euler's 

order: the methods are classified according to the form of the functions to which they 

apply [Lacroix Traité, 2nd ed, I, xxxix]. 

There are however two significant différences in structure from Euler's integral 

calculus. One is the inclusion of a chapter on calculation of areas, lengths, and volumes 

(chapter 2); [Euler Integralis] does not include geometrica! applications. 

The other différence lies in the way the material is divided, in particular the struc

tural relevance of integration of explicit functions versus integration of differential équa

tions. [Euler Integralis) is divided into two "books", the first (volumes 1 and 2) on 

Problems involving functions of one variable and the second (volume 3) on problems 

involving functions of two or more variables; the first "book" is then divided into two 

parts (corresponding to volumes 1 and 2), the first on first-order problems and the 

second on higher-order problems; thus, integration of explicit functions does not have 

- at least in the table of contents - the prominence that a modem reader might expect, 

being the subject only of the first section of the first part of the first book and of both 

chapters 1 of the first and second sections of the second part of the first book. In 

[Lacroix Traité, II], on the other hand, integration of explicit functions is awarded the 

entire first chapter out of 5, ranking at the same level that integration of ordinary dif

ferential équations (chapter 3) and integration of partial differential équations (chapter 

1 4 This would change in the second édition, where the coverage of the second volume increases from 
one smali paragraph [Lacroix Traité, I, xxvii] to about six pages [Lacroix Traité, 2nd ed. T , xxxviii-
xliv], This is more than the threc pages For the third volume (one page in the first édition), but still 
much less than the nineteen pages for the first volume (about three pages in the first édition). 

1 5"collection of analytical procédures, which is enough to order so as to make perceive their con
nections1' 
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Volume II 
topics chapter pages 

Table of contents and bibliography Table iii-viii 
Integration of polynornial functions 

Chapter 1: 
Integration of 
functions of 
one variable 

2-5 
Integration of rational functions 

Chapter 1: 
Integration of 
functions of 
one variable 

5-29 
Integration of irrational functions 

Chapter 1: 
Integration of 
functions of 
one variable 

29-33 
Integration of binomial differentials 

Chapter 1: 
Integration of 
functions of 
one variable 

33-48 
Irrational polynornial differentials (inc. elliptic intégrais) Chapter 1: 

Integration of 
functions of 
one variable 

48-66 
Integration by séries 

Chapter 1: 
Integration of 
functions of 
one variable 

66-88 
Integration of logaxithmic and exponential functions 

Chapter 1: 
Integration of 
functions of 
one variable 

89-100 
Integration of trigonométrie functions 

Chapter 1: 
Integration of 
functions of 
one variable 100-118 

Expansion of (o + bcosz)"1 

Chapter 1: 
Integration of 
functions of 
one variable 

118-135 
General method to approxîmate intégrais; intégrais as limits 
of sums: definite and indefinite intégrais: Bernoulli séries 

Chapter 1: 
Integration of 
functions of 
one variable 

135-156 

Integration of higher-order differentials 

Chapter 1: 
Integration of 
functions of 
one variable 

156-160 
Quadrature of curves (calculation of areas under curves) Chapter 2: 

Quadratures, 
eubatures and 
rectifications 

161-176 
Rectification of curves (arc lengths) 

Chapter 2: 
Quadratures, 
eubatures and 
rectifications 

176-188 
Volumes of solids and areas of surfaces; rectification of curves 
of double curvature; double and triple intégration 

Chapter 2: 
Quadratures, 
eubatures and 
rectifications 

189-206 

Functions with algebraic intégrais - squarable curves, etc. 

Chapter 2: 
Quadratures, 
eubatures and 
rectifications 

20&-220 
Separation of variables 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

221-230 
Integrating factors for lst-order differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

230-251 
lst-order eqs. with differentials raised to powers higher than 1 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

251-262 
Particular solutions of lst-order differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

262-284 
Approximate solutions of lst-order differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

284-296 
Geometrical construction of lst-order differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

296-307 
Integration of 2nd-order diff. eqs. through transformations 
(the simplest differential équations of Order higher than 1) 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

307-332 
364-365 

Integrating factors for 2nd-order differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

332-349 
Approximate solutions of 2nd-order differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

349-364 

lst-degree differential équations of any order 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 365-378 

389-394 
Systems of first-degree differential équations 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

378-389 
Use of lst-degree diff. équations for approximate intégration 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

394-407 
Particular solutions of diff. équations of order higher than 1 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

408-418 
Diff. eqs. that are easier to integrate after being diffèrentiated 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

418-423 
On logarithmic and trigon. functions (from their diff. eqs.) 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

423-427 
On elliptic transcendents 

Chapter 3: 
Integration of 
differential 
équations in 
two variables 

427-452 

Table 2.3: Volume II of Lacroix's Traité (continued in table 2.4) 

4). 

Apart from the ordering, Lacroix also admitted taking his examples from Euler -

in an explicit référence to chapters 2 and 3 (which should rather be to chapters 1 and 

3) of the second volume [Lacroix Traité, 2nd ed, I, xli]. 

Most of Chapter 1 is dedicated to finding antiderivatives of functions of one vari

able: algebraic. rational, irrational, and transcendental (exponential, logarithmic and 

trigonométrie). On the formalistic character of thèse procédures, see sections 5.1.1 and 
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5.2.3. It is in the section on integration of irrational functions that the elliptic intégrais 

first appear (with no particular name here; in chapter 2 they gain the naine elliptic 

transcenderas, after Legendre); Lacroix remarks that they are new transcendental func

tions that must be introduced in the calculus [Lacroix Traité, II, 59). The subject of 

elliptic intégrais is resumed several times later, most importantly in chapter 3. 

There is also a section on "integration by séries" (see section 5.2.1); and another, 

on a "general method" by Euler for approximating intégrais, which includes some very 

interesting remarks on the "nature of intégrais" and the définitions of definite and 

indefinite intégrais (see sections 5.2.2 and 5.2.3). 

Chapter 2 is dedicated to calculation of areas under curves, arc-lengths, and volumes 

and areas of surfaces. Since the methods of integration had been studied in the previous 

chapter, and the differentials of the area under a curve and of the arc-length had already 

been found in the first volume, a large part of this chapter consists of examples. But 

it still remained to derive the differentials of the volume of a surface of revolution, of 

the volume under a surface, and of the area of a surface. 

It is in this context that double integration is introduced, as repeated integration 

[Lacroix Traité, II, 192-193].16 Geometrica! meaning is lost when Lacroix analogously 

introduces also triple integration (because of its fréquent occurrence in mechanics) 

[Lacroix Traité, II, 204-205]. Change of variables is discussed for both double and 

triple intégrais, arriving at the expressions nowadays called jacobians [Lacroix Traité, 

II, 203-206]. 

This chapter ends with a small section on squarable curves (that is, functions with 

algebraic intégrais), rectifiable curves (algebraic arc-length), and spatial counterparts. 

Chapter 3, dedicated to integration of differential équations in two variables, is the 

largest in volume II. This is not surprising, as it corresponds to about half of [Euler 

Integralis] (second and third sections of volume 1 and the whole volume 2). Like Euler's 

work. this chapter is broadly organized by the order of the differential équations: first 

order first; then higher, mostly second; and finally methods unrelated to order (but 

rnostly related to degree, namely "first degree"). Stili, the présence, location and 

relative weight of the latter methods are noteworthy departures from the more strictly 

order-based Eulerian Organization. Naturally, it is in connection to thèse methods that 

we notice the most significant novelties relative to Euler's work. 

A certain peculiarity in terrninology must be mentioned at once: Lacroix [Traité, II, 

225] rejects the application of the adjective "linear" to differential équations, since that 

word refers to straight Unes (as in algebraic "linear équations"), and of course linear 

1 6Multiple integration of functions of only one variable had already appeared at the end of chapter 
1, but that is a very special case. 
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differential equations usually belong to transcendental curves. Instead, he uses the 
expression "first-degree differential equations". This may be particularly confusing to 
the modern reader, because Lacroix [Traité, II, 365-366] even restricts this expression 
to equations that are of first degree in regard to the dependent variable and all its 
differentials (and thus, in modern terms, strictly "linear", as opposed to "quasi-linear" 
or "first-degree", which need only be linear in regard to the highest-order derivative). 
However, it is a quite fitting stand for someone so concerned as Lacroix with geometrical 
interpretations of analytical concepts. 

Naturally this chapter starts with the most classic methods: separation of variables 
and integrating factors, applied to first-order and first-degree equations. But even in 
regard to these simpler cases, Lacroix complains about the imperfection of analysis, 
which does not provide a better algorithm than groping for an integrating factor [Traité, 
II, 251]. He alludes to general methods proposed by Fontaine and Condorcet, 1 7 but 
justifies not saying anything about them with their unpracticality; still, their references 
appear in the table of contents [Lacroix Traité, II, vij. 

After some considerations on "first-order equations where the differentials are raised 
to powers higher than one" (either solving them algebraically for & first, or using 
"analytical artifices", particularly for homogeneous equations), come three sections 
on special topics of first-order equations: singular solutions are examined following 
mainly [Lagrange 1774], but using Laplace's name "particular solutions", instead of 
Lagrange's "particular integrals" (see section 6.2.1.2); a section on approximate inte
gration includes the use of Taylor series, Euler's "general method" (which also serves to 
show that all first-order equations "are possible"), and a method of expansion in con
tinued fractions (see section 5.2.4); a section on "geometrical constructions" includes 
some historical remarks, trajectory problems, and the geometrical interpretation of 
"particular integrals" as envelopes of the families of curves given by the "complete 
integrals" (see section 6.2.3). 

As for second-order equations, Lacroix starts by addressing several particular cases 
that are easier to treat (for instance, by considering a new variable p = ^ ) . This 
is followed by integrating factors. To finish come approximation methods (mostly by 
expansion in series, but also including a brief mention to Euler's "general method", and 
hence a "general construction" of second-order equations, that shows their possibility 
and that they represent an infinity of curves - see section 5.2.4). 

A section on "integration of differential equations of order higher than two" [Lacroix 
Traité, IL 364-394] is in fact almost entirely dedicated to "first-degree" equations of 
any order - both isolated and systems of such equations (including what Gilain [2004', 
to appear] calls "d'Alembert's theory" 1 8 ) . 

1 7 Very briefly, these methods relied on obtaining all possible forms for the solutions (or integrating 
factors) of differential equations, and then trying to adequate one of those to the equation to be solved 
(using the method of indeterminate coefficients) [Gilain 1988, 91-97J. 

I 8Consisting essentially in a method to solve systems of lst-order linear equations using multipliers, 
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The next section is stili on "fìrst-degree équations", more precisely their use for 

approximate integration. This refers to a method much used in astronomy. Unfortu-

nately. several mistakes occur here (see section 5.2.4, pages 173ff.). 

The final section in chapter 3 ("general reflections on differential équations and on 

transcendents" ) is a medley. First, particular (i.e., singular) solutions of differential 

équations of order higher than one (section 6.2.1.3). followed by certain équations that 

are easier to integrate after being differentiated. Tò finish, Lacroix studies some tran-

scendental functions from differential équations that characterize them (particularly 

elliptic intégrais). For motivation, he expresses the opinion that the most useful re-

sult in integrai calculus would be the exact classification of the distinct transcendental 

functions [Lacroix Traité, II, 423]. 

Volume II 
topics chapter pages 

Integration of explicit differential functions of several variables 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 

453-456 

Integration of total differential équations in three variables 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 

456-466 

Total differential équations in more than three variables 
Chapter 4: 
Integration of 
functions of 
two or more 
variables 

466-471 

Total differential équations of higher orders Chapter 4: 
Integration of 
functions of 
two or more 
variables 

471-476 

lst-order partial diff. eqs. (of lst degree rei. to diff. coeffs.) 
Chapter 4: 
Integration of 
functions of 
two or more 
variables 

476-496 

Integration of lst-order part. diff. eqs. (with raised diff. coeffs.) 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 

496-520 

Integration of higher-order partial differential équations 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 

520-608 

Geometrical construction of partial diff. eqs.; détermination 
of the arbitrary functions contained in their intégrais 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 608-624 

Total diff. eqs. not satisfying the conditions of integrability 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 

624-643 

Geometrical remarks on the previous section 

Chapter 4: 
Integration of 
functions of 
two or more 
variables 

643-654 

Prmciples of the calculus of variations Chapter 5: 
Method of 
variations 

655-689 

Application to problems of maxima and minima 
Chapter 5: 
Method of 
variations 

689-718 

Distinguishing maxima from minima 

Chapter 5: 
Method of 
variations 718-724 

Additions (on total and partial differential équations) Additions 725-727 

Corrections to volumes I and II Errata 728-732 

Table 2.4: Volume II of Lacroix's Traité (continued from table 2.3) 

The second largest chapter in the second volume, chapter 4, is mostly dedicated to 

differential équations in more than two variables (both partial and total). It is named 

"integration of functions of two or more variables", probably because of about two pages 

in the beginning, addressing the case in which the (first-order) differential coefficients 

of the function are given explicitly - that is, the integration of exact differentials like 

pdx + qdy or ndu -\-pdx + qdy. But it turns out to be a misnomer, because of 

its last section, on "total differential équations that do not satisfy the conditions of 

integrability" - in the case of three variables (the most common) thèse correspond to 

and in the réduction of systeras of higher-order équations to first order, considering new variables 
P = Hx,(7 = 5 i ' e ^ c - Gilain stresses Lacroix's role in the transmission of dAlembert's theory, which 
was not particularly well known by his contemporaries (stili, it appears in [Cousin 1796, I, 234-238]). 
Gilain focuscs especially on the transmission through [Lacroix 1802a\, and especially to Lacroix's 
student Cauchy, who would give it in [1981] an importance much greater than the marginai place it 
occupies in [Lacroix 1802a] (and, it may be added, in [Lacroix Traité]). 
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two functions of one independent variable. 
Just after explicit functions, Lacroix addresses at some length the conditions of 

integrability for total differential equations and the integration of those that satisfy 
them (that is, those in which one variable may be taken as a function of the others). 
Another issue of terminology: Lacroix never explains nor introduces the expression 
"total differential equations", and he does not even use it at this point, although in the 
index he refers to these articles as being about "total differential equations" [Traité, 
ILL 555-556]; and he uses it without further ado in page 492 and in the title of the last 
section of the chapter. In spite of such a familiar use, this may be the first appearance 
of the adjective "total" in this context - at least a contemporary author, the Belgian 
Nieuport [Mélanges, II, xiii], attributed it to Lacroix. It certainly was not at all 
common at the time - for instance Monge [1784c] spoke of "équations aux différences 
ordinaires à trois variables" 1 9. Perhaps Lacroix was just using "total" as the natural 
opposite of "partial". 

But of course most of the chapter is dedicated to partial differential equations. 
There are three sections on these: first order, higher orders, and a much smaller one 
on geometrical constructions and determination of the arbitrary functions that ap
pear in integrals. For the most simple first-order equations. Lacroix uses Enler and 
d'Alembert's early method of reducing to a total differential equation, to which is then 
applied an integrating factor [Dernidov 1982, 329] 2 0 . This works for all linear ("first-
degree") equations, but not for all quasi-linear ones, and naturally Lacroix [Traité, 
II, 482-484] expounds Lagrange's method for quasi-linear first-order partial differen
tial equations (reducing them to a system of total differential equations), minding to 
remark that Monge had also independently obtained it [Lacroix Traité, II, 487]. 

As for nonlinear equations, we find one of the most directly influential passages of 
Lacroix's Traité. In [1772b] Lagrange had reduced the integration of a general first-
order partial differential equation to that of a quasi-linear first-order partial differential 
equation; but strangely, he did not combine this with the method mentioned above. 
This was done by the young mathematician Paul Charpit in a memoir presented to 
the Académie des Sciences of Paris in 1784. Unfortunately, Charpit died soon after, 
and his memoir was never published. His name might have been entirely forgotten, if 
Lacroix had not reported his work, citing his name, in [Traité, II, 496-520 (esp. 496-497, 
513-516)]; instead, this combination became known as the "Lagrange-Charpit method" 
[Demidov 1982, 332; Grattan-Guinness & Engelsman I982]21. 

Thus, Lacroix was fortunate enough to have at hand a theory of first-order partial 
differential equations. Higher-order equations were a different matter altogether, but 

1 9 "equations of ordinary- differences in three variables" 
2 0 For an example see equation (6.27), page 233 below. 
2 l K h n e [1972, II, 535] also tells this story but, ignoring the existence of two manuscript copies 

of Charpit's memoir [Grattan-Guinness & Engelsman 1982], he still relies exclusively on Lacroix's 
information (carefully adding not to "know whether Lacroix's statement is correct"). 
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in the long section (88 pages) dedicated to them Lacroix still tries to have as much of 

a structure as possible, focusing on what we call linear and quasi-linear second-order 

equations. What is perhaps most striking is the neglect of physical motivations. 

After considering a few cases in which the order may be lowered. Lacroix addresses 

second-order equations in three variables, of first degree in regard to the second-order 

differential coefficients (in modern terms, quasi-linear) [Traité, II, 524-535]. For these, 

he uses Monge's method [Î784b, 126-155], which is analogous to Lagrange's (and 

Monge's) method for first-order quasi-linear equations, and which gives (when it works) 

one or two first-order integrals. 2 2 But Lacroix [Traité, II, 526] admits that this second-

order version is less general than the first-order one (it fails when a certain auxiliary 

differential equation in three variables does not satisfy the integrability condition). This 

method is also extended to third-order equations in three variables and to second-order 

ones in four variables [Lacroix Traité, II, 535-546). 

The failures of this method motivate a discussion about why sometimes there are 

no first-order integrals of second-order differential equations (or less integrals than 

expected), even if there are finite integrals. The way this is discussed leads to the 

distinction between "complete" and "general" integrals, and to the consideration of 

"particular" (i.e., singular) solutions (see sections 6.2.2.3 and 6.2.2.4). 

After this theoretical interlude, Lacroix turns his attention to "first-degree" second-

order equations. He had already applied Monge's method to them [Traité, II, 531-535]; 

but now [Traité, II, 565-590] he reports at length Laplace's cascade method [1773c] 

(with a few complements by Legendre [1787]), based on a reduction to a simpler form 

~Êi> + P% Q% + = M via an appropriate change of variables, which facilitates 

the use of indeterminate coefficients to find a solution in the form of a finite series 

z = A + B(p(u) + C<p'{u) + D<p"(u) + etc. 4- B^(v) + Cif{v) + Dxi>"{v) + etc. 

The situation is more complicated for "first-degree" third-order equations, but 

Lacroix still presents attempts at analogous finite series solutions [Traité, II, 590-594], 

and wider uses for Laplace's change of variables [Traité, II, 595-596]. The section fin

ishes with miscellaneous integrations of particular equations, especially of degree above 

one [Traité, II, 596-608]. 

After this comes a small section with the long title "on the geometrical construction 

of partial differential equations, and on the determination of the arbitrary functions 

that appear in their integrals". This deals mostly with Monge's constructions of sur

faces corresponding to partial differential equations, subjecting them to pass through 

given curves. An offshoot is the argument that these curves, and the arbitrary functions 

appearing in the integrals, need not be "continuous". (See section 6.2.3.3.) 

2 2Lacrobc's basic version [Traité, II, 524-526] is as usual much clearer and/or easier to follow than 
Monge's. Kline's account [1972, II, 538-539], who claims to follow [Monge Feuilles] rather than 
[Monge 1784b], in fact seems to draw on Lacroix. I also do not understand why Kline calls "nonlinear" 
these equations which are "linear only in the second derivatives", while a few pages earlier he had 
used "linear" for first-order equations which are linear only in the derivatives. 
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The final section in chapter 4 is on "total differential equations that do not satisfy 
the conditions of integrability". Once again, this is based on Monge's work: in total 
differential equations in three variables that do not satisfy those conditions, it is not 
possible to consider one of the variables as a function of the other two (or, in Mongean 
fashion, these equations do not represent surfaces); but Monge had shown that they 
represent families of curves in space. Lacroix gives his own analytical theory of these 
equations (of which he was rather proud), followed by the geometrical interpretations. 
(See section 6.2.4.) 

Chapter 5, the last in the second volume, is dedicated to the "method of variations", 
an obligatory subject in an}' treatise of integral calculus at this time. It is divided into 
two sections, the first [Traite, II, 656-688] on calculating variations (interchangeability 
of d and <5, formulas for dJVdx, Euler-Lagrange equations), and the second [Traite, 
II. 689-724] on applications to problems of maxima and minima. It must be remarked 
that (in this first edition) Lacroix makes no attempt to suit the calculus of variations 
to the Lagrangian power-series foundation of the calculus. Accordingly, he presents 
Lagrange's 5 algorithm (which Lagrange was abandoning by then [Eraser 1985]), in 
Leibnizian shape: Sdy = d5y is justified using infinitesimal considerations; the rules 
of ^-differentiation come from those of ^-differentiation by plain analogy. Todhunter 
[1861, 11-27] examined at length the version of this chapter in the second edition, 
concluding that "on the whole the calculus of variations does not seem to have been 
very successfully expounded by Lacroix, and this is perhaps one of the least satisfactory 
parts of his great work"; he also seemed to agree with another author, Richard Abbatt, 
who had called Lacroix's treatment of this subject "prolix and inelegant". These 
negative opinions may have been somewhat influenced by the fact that in the second 
edition Lacroix added a section to conform with Lagrange's new foundation, but also 
maintained the old treatment; but this is not a full justification - it does seem to be 
one of the less clear parts of Lacroix's Traite. 

2.5 Volume III: différences and séries (1800) 

The third volume of Lacroix's Traité bears, in thefirst édition, a separate title - "Traité 
des Différences et des Séries" 2 3, followed by the indication "faisant suite au Traité 
du Calcul différentiel et du Calcul intégral" 2 4. Tins has given rise to bibliographical 
descriptions in which it appears as a separate work. For example: Taton [1953a, 
589] mentions the Traité du calcul différentiel et du calcul intégral, composed of two 
volumes, 1797-1798, the Traité des Différences et des Séries, one volume, 1800, and then 
a "nouvelle édition de l'ensemble" 2 5, three volumes. 1800-1814-1819: somewhat more 
radically, Jean Itard, in his list of works by Lacroix, has ^Traité du calcul différentiel et 

2 3 "Treatise on Differences and Series" 
2 4 "being a continuation of the Treatise on differential and integral calculus" 
2 5 "new edition of whole set" 
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du calcul intégral, 2 vols. (Paris, 1797-1798); 2nd éd., 3 vols. (Paris, 1810-1819); Traité 

des différences et des séries (Paris. 1800)" [1973 , 551] - the relationship between the 

Traité des différences et des séries and the Traité du calcul... is only explained in the 

main text [1973 , 550]. Although thèse bibliographical séparations make sensé, they 

are misleading. It is elear enough that Lacroix viewed the Traité des différences et des 

séries as part of the Traité du calcul...: its summary is included in the general Preface 

in the first volume (calling it an "Appendix") [Traité, I, xxvii-xxviii]; the numbering 

of its articles follows directly that of the second volume; the subject index at its end is 

for the entire set of three volumes; in the "corrections and additions" it is referred to 

as "tome III" [Traité, III, 581]. Thus, it is called throughout this work sìmply as the 

third volume of Lacroix's Traité, or [Lacroix Traité, III]. 

The reason for the particular title of the third volume is probably that Lacroix 

wished to cali attention to its greatest originality. namely its very subject - a com

plete treatise on séries (studied for themselves, rather than regarded as expansions 

of functions) and finite différences. He remarked in the general Preface that no one 

had assembled the whole "theory of séquences" in a single "corps de doctrine" af

ter Jacob Bernoulli and James Stirling (an obvious référence to [Jac. Bernoulli Séries] 

and [Stirling 1730]), in spite of the "prodigious" growth of the area through later 

work by Euler, Lagrange, Laplace, and more recently Prony [Lacroix Traité, I, xxvii]; 

Lacroix repeated this claim for originality in his Compte rendu /..._/ des progrès que les 

mathématiques ont faits depuis 1789 (see appendix B, page 396, or [Delambre 1810, 

109]). 

In fact, finite différences were a topic sometimes found in books on differential 

calculus, but not as an autonomous subject with one dedicated section. The most 

typical appearances happened in early chapters, preparing the way for differentials, 

which might be introduced as infinitely small différences or as the terms in the limit 

^ of a ratio of decreasing finite différences ^ (see sections 3.1.1 and 3.1.2). In ad-

vanced works we may find some other, scattered, occurrences: in [Euler Differentialis], 

chapters 1 and 2 of the first part address finite différences (in that typical introductory 

manner), while several chapters of the second part address applications of the differen

tial calculus to finite différences or to closely related topics (such as interpolation, or 

summation of séries), interspersed with applications to unrelated issues (such as max

ima and minima, or indeterminacies) ; in [Cousin 1777: 1796] we find an introductory 

chapter on the "calculus of différences in general" [1777, ch. 1; 1796, I, Intr., ch. 3], a 

section on finite différence équations in the chapter on "intégral calculus in general" 

[1777, 313-321: 1796, I, 271-277], and finally, near the end, a chapter wholly dedicated 

to thèse équations [1777, ch. 11: 1796, II, ch. 7]. Lacroix, on the other hand, thought it 

was "convenient" to separate the calculus of différences from the first principles of the 

differential calculus, and not to eut up ("morceler") the former (see again appendix B, 

page 396, or [Delambre 1810, 109]). 
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[Prony 1795a] is a different case, and quite unique. It is almost entirely dedicated 
to the calculus of finite differences; but, perhaps because it was intended as an intro
ductory course in analysis 2 6, there are several subjects absent - such as "second-order 
powers" (i.e., factorials), Bernoulli numbers, Laplace's generating functions, mixed dif
ference equations - so that Lacroix apparently did not count it as containing "the 
whole theory of sequences". 

Before entering in the contents of [Lacroix Traité, III], we must address an issue of 
terminology: Lacroix keeps the I8th-century tradition of not distinguishing between 
the words "series" and "sequence". using both interchangeably (here I will try to make 
a modern distinction, except when referring to the whole subject, usually the "theory 
of series". and of course in quotations). More confusingly still, both words were applied 
not only to infinite series or sequences, but also to finite sums or progressions. Thus, 
the "theory of series" was a theory of summations, both finite and infinite - and closely 
linked to the inverse calculus of differences. 

The main chapter in (Lacroix Traité, III] is by very far chapter one, "on the cal
culus of differences". It occupies more than half of the volume, and contains a full 
account of the calculus of differences. In the second edition it was divided into three 
chapters, and even in the first edition we can see clearly the three parts corresponding 
to those future chapters: direct calculus of differences; inverse calculus of differences 
of explicit functions; and difference equations. This organization, of course, reflects 
the perspective of the difference calculus as a discrete analogue of the differential and 
integral calculus. 

The first section [Lacroix Traité, III, 2-26] is dedicated to the pure direct calculus 
of differences: the definition of differences of first and higher orders, and several for
mulas for calculating them, and relations between the differential and difference calculi 
(namely a new deduction of Taylor series). These relations lead to formal expressions 
such as 

where, after expanding the right-hand binomial, the powers duk of du must be replaced 
by higher differentials dku. This formula, and this kind of analogy between powers and 
differences, had been introduced by Lagrange [1772a]: Lacroix acknowledges this, but 
gives also a demonstration by Laplace [1773b, 534-540]. The next, longer section 
[Lacroix Traité, III, 26-64] addresses the main application of the direct calculus of 
differences - that is, its application to interpolation of sequences. We can find here 
the most familiar formulas - the Gregory-Newton formula (without any specific name) 
[Traité, III, 28], Newton's and Lagrange's interpolation polynomials (with these at
tributions) [Traité, III, 32, 34], the Newton-Stirling formula (attributed to Stirling) 

2 6 T h e differential calculus is introduced at the end as the infinitesimal case [Prony 1795a, IV, 
543-551]. 
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Volume III 
topics chapter pages 

Table of contents and bibliography Table iii-viii 
Direct calculus of differences - basic notions and analogy 
between differences and powers 

Chapter 1: 
Calculus of 
differences 

1-26 

Interpolation of sequences of one variable 

Chapter 1: 
Calculus of 
differences 

26-60 
Differences and interpolation of functs. of several variables 

Chapter 1: 
Calculus of 
differences 

60-64 

Integration of rational functions 

Chapter 1: 
Calculus of 
differences 

65-74 
83-84 

Digression on 2nd-order powers or factorials 

Chapter 1: 
Calculus of 
differences 

74-82 
Integration of transcendental functions 

Chapter 1: 
Calculus of 
differences 

84-92 
Expansions of S integrals by differences and differentials Chapter 1: 

Calculus of 
differences 

92-122 
Applic. of difference calculus to summation of "sequences" 

Chapter 1: 
Calculus of 
differences 

122-151 
Application of siunmation of series to interpolation 

Chapter 1: 
Calculus of 
differences 151-175 

Digression on elimination in algebraic equations 

Chapter 1: 
Calculus of 
differences 

175-183 
Integration of lst-degree difference eqs. in two variables 

Chapter 1: 
Calculus of 
differences 

184-210 
Equations where the difference of the independent variable 
is not constant 

Chapter 1: 
Calculus of 
differences 

210-215 

Determination of the arbitrary functions in integrals of 
partial differential equations 

Chapter 1: 
Calculus of 
differences 

215-225 

Systems of first-degree equations 

Chapter 1: 
Calculus of 
differences 

225-229 
Integrating factors for first-degree difference equations 

Chapter 1: 
Calculus of 
differences 

229-231 
On the nature of the arbitrary quantities introduced by the 
integration of difference eqs., and on their construction 

Chapter 1: 
Calculus of 
differences 

231-237 

The different types of integrals of difference equations 

Chapter 1: 
Calculus of 
differences 

237-247 
Integration of difference eqs. in three or more variables 

Chapter 1: 
Calculus of 
differences 

247-288 
Condition eqs. for integrability of functions of differences 

Chapter 1: 
Calculus of 
differences 

289-300 
Functions of one variable Chapter 2: 

Th. of sequences 
from generating 
functions 

301-326 
Transformation of series 

Chapter 2: 
Th. of sequences 
from generating 
functions 

326-333 
Expansions of differences, differentials, and integrals 

Chapter 2: 
Th. of sequences 
from generating 
functions 

333-338 
Functions of two variables 

Chapter 2: 
Th. of sequences 
from generating 
functions 338-355 

Summation of series 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

356-385 
Interpolation of series 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

385-392 
Investigation of values of definite integrals Chapter 3; 

Application 
of integral 
calculus to 
the theory 
of sequences 

392-418 
Digression on infinite products for sines and cosines 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

418-445 
Continuation of the investig. of values of definite integrals 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

445-461 
Series for evaluat. integrals that are functs. of large numbers 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

461-475 
Examination of the transcendent f ~ ^ 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

475-483 
Use of definite integrals to express functions given by 
differential eqiiations 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 483-519 

Application of the formulas / e~uxv du, f uxv du, etc. 
to integrate difference and differential equations 

Chapter 3; 
Application 
of integral 
calculus to 
the theory 
of sequences 

519-529 

Analytical theory of mixed difference equations Chapter 4; 
Mixed 

530-534 
Application of mixed difference eqs. to geometr. questions 

Chapter 4; 
Mixed 535-543 

Partial and mixed difference equations and conclusion difference eqs. 543-544 
Subject index for the three-volvune set Subject table 545-578 
Corrections and additions to vols. II and III Corr. and addit. 579-582 

Table 2.5: Volume III of Lacroix's Traité 

[Traité, III, 39] - as well as less familiar work - like an account of Mouton's method, 
with developments by Prony [Traité, III, 55-60]. 
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Next comes the inverse calculus of differences, for differences given explicitly. Again, 

Lacroix starts by a section dedicated to the pure calculus [Traité, III, 65-122], followed 

by sections on applications. There are two operators here: the "integral" S is the 

inverse of the difference operator A, i.e. an analogue of the indefinite integral - if 

Au = î{x, h) (where h ~ Ax) then u = S f(x, h) + const,21 the "summatory term" S 

is closer to the definite integral - Si(x,h) is the sum Au 4- Au\ + . . . 4- Aun,2S where 

again the generic difference Au is given by f(x,h)-29 they are related by the equality 

S((x,h) = Ef(x. h) 4- f(x.h) — const?0 Naturally, in the section on the pure inverse 

calculus, the integral receives almost exclusive attention. Integration of polynomials 

leads to a detailed study of "second-order powers", that is, generalized factorials -

products of equally spaced factors x(x 4- Ax) + nAx): Lacroix focuses mostly on 

the falling factorial 

p ( p - l ) ( p - 2 ) . . . ( p - n + l ) , 

using Vandermonde's notation [p] - which is quite convenient for enhancing analogies 

between falling factorials in difference calculus and (common) powers in differential 

calculus. 3 1 After reporting the integration of the trigonometric functions and integra

tion by parts (giving formulas by Taylor and Condorcet), Lacroix addresses ways to 

express Su through the differences and the differentials of u - including Lagrange's 

— î 

r -1) 
with similar provisions as above, for changing positive powers ~ into ^ and negative 

powers into Jpudxp. The search for the coefficients in the series expansion of T,u 

leads, through the particular case of £ x m , to the Bernoulli numbers. 

In the section on the application of difference calculus to summation of series [Traité, 

III, 122-151], the 5 operator comes to the foreground. This application consists essen

tially in substituting the expressions obtained in the previous section for Eî(x,h) in 

the equation Si(x, h) = S f(a;, k) 4-f(z, h) — const (one of the most important results is 

the Euler-Maclaurin summation formula [Traité, III, 125] 3 2). It must be reminded that 

the "series" (or "sequences") to be summed are usually finite. Occasionally x is made 

infinite, so that the number of terms in the sum S i(x, h) is infinite; but infinite series 

occur mainly because the integration process introduces them, that is, because the ex-
2 7Jordan [1947, 100-101] calls it "indefinite sum". 
2 8 That is, Auo + Ait t + . . . + A u a . 
2 9 B u t in Sf(x,h), x is presumably at its last value, that is such that f(x,h) = At^ . 
3 0 Thus , we do not find here the true analogue of the definite integral, namely the modern definite 

sum SbJ{x) = f(a) + / ( f l + 1) + . . . + / ( & - 1) [Jordan 1947, 116; Goldstine 1977, 99]. 
3 1 B u t he also gives the notation [x, A] (his own?) for x(x 4 Ax)... (x + (n — l )Ax) . 
3 2 W i t h a typo, not mentioned in the errata: the coefficient of ^ is written Bi[ l ] . that is instead 

of the correct Bi[ 1] = - J T > . 
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pression for £ f(x, h) is an infinite series. Thus, the finite sum S~ = l + § + | + | - -- + ^ 

is obtained as the infinite series lx -}- ^ — — â + e * c - + ^ being what 

is nowadays called the Euler, or Euler-Mascheroni, constant). 3 3 As in volume 1, con

vergence of series is a practical matter: convergent series are preferable because they 

provide approximate values. 

is an example of what Euler had called "inexplicable functions": not possessing 

a determinate expreasion or equation; in practice they corresponded to sums and prod

ucts of a variable number of terms not expressible algebraically [Euler Differentialis, 

II, §367; Ferraro 1998, 311]. In a section called "application of summation of series 

to interpolation" [Traité, III, 151-175], Lacroix reports some of Euler's work on those 

sums such that the general term, or its differences of some order, tend to a constant, 

and on their interpolation. The last section before difference equations, a "digression 

on elimination in algebraic equations" [Traité, III, 175-183], may seem out of place, at 

first; but it is still an application of the calculus of differences, making ample use of 

"second-order powers" - it gives a short account of Bézout's elimination method, and 

a proof of Bézout's theorem, both of which had been announced in [Lacroix Traité, I, 

324] but needed preliminary notions of difference calculus. 3 4 

As has already been mentioned, the third, and larger, part of this chapter is ded

icated to difference equations [Lacroix Traité, III, 184-300]. In the treatises of Euler 

there is nothing on difference equations, which is not so surprising, as the subject was 

inaugurated not much prior to the publication of [Euler Integralis]: it was Lagrange, in 

[J7556], who started applying to difference equations (namely linear equations) meth

ods originally intended for differential equations [Cousin 1796, I. 272]. 3 5 Through the 

rest of the 18th century, most of the work done on difference equations consisted in 

transferring methods and concepts of differential equations [Wallner 1 9 0 8 , 1052]. 

This does not mean that Lacroix follows the same order as for differential equations 

- there is a significant difference, caused by the much greater importance of linearity (or 

"first degree" 3 6). The section entitled "on the integration of difference equations in two 

variables" [Lacroix Traité, III, 184-231] is almost entirely devoted precisely to "first-

degree" difference equations. It starts with a few preliminaries, and then Lagrange's 

integration of Ay + Py = Q (the historical beginning of the subject) and his later 

treatment of the general first-degree equation yx+n + PxVx+n-i + QxVx+n-2 - - - + Uxyx = 

14, reduced to zx+n + Pxzx+n-i + QxZx+n-2 • • • + Uxzx = 0, and especially of the 

equation with constant coefficients zx+n + Pzx+n~i 4- Qzx+n-2. •. + Uzx = 0 (the one 

most effectively treated by Lagrange) [Grattan-Guinness 1 9 9 0 , I, 172-175]. Special 

3 3 I n modern notation, this series is written l o g ^ + ^ - ^ - ^ r - ^ — ...+7. 
3 4 Notice that the Introduction of [Bézout 1779} is a short account of the direct and inverse calculus 

of differences. 
3 5 Much earlier, Moivre had determined the general term of recurrent sequences, which is equivalent 

to solving linear finite difference equations with constant coefficients. But apparently it was Lagrange 
who first made the connection, and treated them as difference equations [Laplace 1773a, 38]. 

i 6NaturaIly. Lacroix had not changed his mind about the use of the word "linear". 
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attention is then given to Laplace's research on equations with variable coefficients 
[1773a], as it had been him who had gone farther in that direction [Lacroix Traité, 
III, 195). Equations where the increment of the independent variable is not constant 
are reduced to equations where it is constant, again using a procedure by Laplace. 
The main situation in which nonconstant increments of the independent variable occur 
is also one of the most important analytical applications of difference equations: the 
determination of the arbitrary functions in integrals of partial differential equations; 
naturally, Lacroix reports Monge's work on this. Systems of first-degree difference 
equations are also treated using procedures analogous to those for differential equations 
(including d'Alembert's method [Traité, III, 227-229]). The section ends with a short 
account of a method by Paoli, using a sort of integrating factor. 

The next two sections (quite short) address special topics where the analogies with 
differential equations are weaker or less straightforward. One is "on the nature of the ar-
bitraries introduced by the integration of difference equations, and on the construction 
of those quantities" [Traité, III. 231-237]: Euler had remarked that difference equations 
are not "completed" by arbitrary constants, but rather by arbitrary periodic functions 
^(sin ~ , cos ^ ) , in the case of constant Ax = h (and rather more complicated expres
sions in the case of nonconstant Ax); the determination of these functions requires data 
about an interval of length Ax; likewise, the construction of a difference equation uses 
not just an arbitrary first point, but rather an arbitrary first curve (whose projection 
onto the x axis has length Ax). The other section is "on the multiplicity of integrals of 
which difference equations are capable" [Lacroix Traitéf III, 237-247]: Jacques Charles 
had discovered the existence of new complete integrals of difference equations whose 
formation was analogous to that of singular integrals of differential equations; but he 
had taken the analogies too far and had fallen into paradoxes; Lacroix's protege Jean-
Baptiste Biot clarified them, and Lacroix reported his work (before its publication in 
full) - see section 7.2. 

The section "on integration of difference equations in three or more variables" 
[Traité, III, 247-288] addresses extensions of methods already exposed for equations 
in two variables. Firstly, Lacroix reports the extension of Lagrange's integration of 
first-degree difference equations with constant coefficients. Then, the extension of 
Laplace's method for equations with variable coefficients. Lacroix remarks that al
though Laplace's method is more complicated, it is not only more general, as it "offers 
a real procedure of integration", while the success of Lagrange's rests on a particular 
substitution [Traité, III, 279]. The rest of the section is dedicated to a method by Paoli 
which comprises Lagrange's. 

Chapter 1 finally finishes with a section "on condition equations relative to the 
integration of functions of differences" [Tmité, III, 289-300]. These equations are the 
work of Condorcet - for whom integrability conditions was a favorite topic. Lacroix 
explains having left them to last because they are "more curious than useful". But 
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the connection between equations of integrability and those for maxima and minima 

of integrals [Fraser 1985, 177-180] justifies that most of this short section is in fact on 

the calculus of variations applied to integrals of differences. It is a proper ending -

volume II had ended with the common calculus of variations. 

The much shorter chapter 2 - "Theory of sequences, derived from the consideration 

of their generating functions" [Traité, III, 301-355] - is yet another example of the 

encyclopedic character of Lacroix's Tratte: it consists in readdressing matter from 

chapter 1. this time using an approach by Laplace [1779], namely generating functions 

[Goldstine 1977, 185-209]: u is the generating function of yx if 

u = y0 + yit + y2t
2 4-... -f yxt

x 4- yx+it
x+l + etc. 

The connection with differences and series comes easily: if u is the generating func

tion of yx, then u (j — l ) p is the generating function of Avyx and u [\ — l ) ~ P is the 

generating function of Tlpyx [Lacroix Truite, III, 302-305]. In the preface to the second 

edition, Lacroix explained that the "state of science" did not recommend to make a 

choice between generating functions and the calculus of differences: one did not know 

which one would permit to remove the difficulties posed to science; that is why he 

exposed both, the second chapter being "for a great part an abridgment of the first" 

[Lacroix Traité, 2nd ed, I, xlvi]. 

Chapter 3 [Lacroix Traité, III, 356-529] is an odd piece. It mixes the "theory of 

series" with the integral calculus, in several ways, but often with little connection to 

series or differences, making its title, "application of integral calculus to the theory 

of sequences", too restrictive and not quite correct. Lacroix explained later that he 

had included here "quelques méthodes pour ainsi dire anomales, qu'on ne pouvait 

rapporter que difficilement aux procédés d'intégration déduits du renversement de la 

differentiation" 3 7 (see appendix B, page 396, or [Delambre 1810, 109]) - an allusion to 

the large role played by definite integrals in this chapter. In the preface to the second 

edition, he confirmed that the inclusion of these "anomalous methods" would not only 

make a treatise on integral calculus (i.e., his second volume) too large, as it would 

cause "une espèce de désordre, par le mélange continuel de procédés trop différens de 

ceux de l'intégration proprement d i te" 3 8 [Traité, 2nd ed, I, xlvi]. The best way to try 

to understand the structure and contents of this chapter is to divide it into three parts, 

corresponding to the three chapters into which Lacroix split it in the second edition. 

The first of these parts kept the title "application of integral calculus to the theory 

of sequences"; it consists of the two sections that best fit under that name. The first of 

these sections [ Traité, III, 356-385] is "on summation of series" - with the aid of integral 

3 7 "some anomalous methods, so to speak, which could only hardly be reported to the procedures 
of integration derived from the reversal of differentiation" 

3 8 "a kind of disorder, by the continued mixture of procedures too different from those of integration 
in the strict sense" 
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calculus, of course. Lacroix reports some methods by Euler, consisting in manipulations 

of sums and series so as to transform them into others known to be expansions of 

certain intégrais. He also gives here Parseval's formula (in its pre-Fourier sensé, of 

course) [Grattan-Guinness 1990, I, 204,206]. an "analogous but less general" formula 

by Euler, and the remainder of the Taylor series, in both "integrai" and "Lagrange" 

forms (not using these names, of course). The second section [Lacroix Traité. III, 356-

385], even more Eulerian. is "on interpolation of series" - using definite intégrais that 

represent those series: we find here for example the integral J dx(\^)p (to be taken 

between 0 and 1) for the "second-order power" [p], which provides the Euler Gamma 

function. We also find here Euler's interpolation of differentials, often misattributed 

to Lacroix (see section 10.1.2). 

The second part of this chapter [Traite, III, 392-483] corresponds to the chapter 

"investigation on the valúes of definite integráis" of the second edition. Its first sec

tion has that same title, and the third is a "continuation". These two sections give 

an abridged account of a favorite subject of Euler: the evaluation of certain definite 

integráis of functions whose indefinite integráis cannot be obtained in finite form. The 

last example studied is Euler's gamma function (without this ñame) [Traite. III, 453-

460]. The intermedíate section is a "digression on the expressions of sines and cosines 

as indefinite products"; it deals with various applications of the expressions for the 

functions sine and cosine as infinite products. It is still Eulerian but, interés ti ngly, 

Lacroix substitutes some of PHuilier's limit considerations [1795] for Euler's uses of 

infinity. The fourth section is "on series appropriate to evalúate integráis that are 

functions of large numbers": this is a method by Laplace for approximating functions 

given by definite integráis where some terms are raised to very high powers, making 

exact calculations impracticable [Gillispie 1997, 81, 89-91]. The final section in this 

part is an "exarnination of the transcendent J ^ " . This examination is done through 

several determinations of limits of integration (the allocation of a sepárate section for 

this may be due to the fact that it reports work by Mascheroni rather than Euler). 

The third part of the chapter [Traite, III, 483-529] corresponds to the chapter "on 

definite integráis applied to solving differential and difference equations" of the second 

edition. It contains two sections. The first is on the "use of definite integráis to express 

functions given by differential equations"; Lacroix reports a method by Laplace [1779] 

for finding solutions to second-order linear (and some quasi-linear) partial differential 

equations as definite integráis, antecedents by Euler, and some developments by Parse-

val. The second section (the last in this chapter) is on the "application of the formulas 

j e~uxvdu, J uxvdu, etc. to the integration of difference and differential equations" 

- once again Laplace's work [1782], namely the ancestors of the Laplace transfonn 

[Grattan-Guinness 1997, 261-262]. 

It is interesting to rernark that although so much of chapter 3 is dedicated to definite 

integráis, only in two articles [Traite, III, 446-447, 475] (both in wbat was called here 
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the second part) does Lacroix use Euler's notation 

dx 
1 -f-a; n 

x = 0 
x = inf 

(that is. the integral taken from 0 to -fco). Elsewhere, the limits of integration - and 
the piain fact that there are limits of integration - is only indicated in the main text. 

Chapter 4, the last one, is also the shortest [Traité, III, 530-544]. It is "on mixed 
différence équations", that is. équations involving both differentials and différences: 
an analytical theory followed by some geometrica! applications. Lacroix acknowledges 
that most of the chapter is taken from a memoir by Jean-Baptiste Biot that had not 
yet been published (see section 7.3.2) - a very similar situation to the one above on 
multiple intégrais of différence équations. 

2.6 (Partial) translations of the Traité 
Several of Lacroix's textbooks were translated into other languages. We will see in 
section 8.10 that his Traité élémentaire de Calcul... was translated into six languages. 
But translating his large Traité would have been quite a différent task, given the 
différence in size. Moreover, not being a textbook, the public for such a translation 
would be small. It is not a wonder that no complete translation is known. Still, there 
were attempts, in Germany and Greece. 

2.6.1 One or two German partial translations 

2.6.1.1 J.P. Grüson's translation of volume I 

A German translation of the first volume of Lacroix's Traité was published in Berlin 
with remarkable rapidity: 1799-1800. 

The translator was Johann Philipp Grüson (Neustadt-Magdeburg, 1768 - Berlin, 
1857). Grüson moved to Berlin in 1794 to teach mathematics, first at the Cadet 
School, from 1799 at the Bauakademie (Architecture/Construction Academy), later 
at the University (1816) and at the French Gymnasium (1817). In 1798 he became a 
member of the Berlin Academy of Sciences. He was a prolific mathematician, but not 
a very good one: Moritz Cantor said in [1879] that his original writings had justly 
fallen into oblivion. Neither was he very honest: in 1813 he plagiarized two papers by 
Parseval [Grattan-Guinness 1990, I, 208]. 

Apart from his original (and pseudo-original) works, Grüson published several trans
lations from the French. Among them are a translation of [Lagrange Fonctions] in two 
volumes (1798 and 1799), and that of [Lacroix Traité, I]. This translation, under the 
title Lehrbegriff des Differential- und Integralcalculs was published in Berlin by F . T . 
Lagarde, also in two volumes [Lacroix 1799-1800]. The first volume (1799) goes up to 
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chapter 2 of [Lacroix Traité, I], while the second volume (1800) contains chapters 3, 4 
and 5 . 3 9 Their format is octavo - half of the original edition's quarto. 

Griison made an explicit connection between the translations of Lagrange's and 
Lacroix's book: the latter was to function as an introduction and elucidation ("Erläu
terung") of the former [Lacroix 1799-1800, I, xlviii]. 

It is clear that Griison planned to publish the translation of the whole Traité, or 
at least of the second volume also (not in the least because of the title used). I do 
not know why he did not accomplish it (possibly, as I have suggested above, it was 
not very successful; or he may have lost courage when the third volume appeared in 
1800). He also promised a translation of Lacroix's textbook on descriptive geometry 
[Lacroix 1799-1800, II, 256-257], but I have not found any trace of it. 

The title pages of both volumes promise some additions and notes ("mit einigen 
Zusätzen und Anmerkungen"). But in the second volume the only addition or note 
that 1 have found is the promise mentioned in the previous paragraph. In the first there 
are some, not many, notes by Griison - always signed "G". In the table of contents he 
indicates some German translations of books cited by Lacroix. An interesting short 
note appears at the end of chapter 1. Lacroix finishes that chapter by explaining that he 
will not speak of Newton's theory of fluxions because of its use of movement, a concept 
alien to analysis and geometry. Griison disagrees: movement without consideration of 
forces belongs in geometry - as in the formation of the circle, sphere, cone, Archimedes' 
spirals and Dinostratus' quadratrix; but he does not proceed to explain Newton's 
fluxions [Lacroix 1799-1800, I, 329]. 

2.6.1.2 A possible partial translation by F. Funck 

Both the German national bibliographical catalogue [GV, LXXXIII, 198] and a col
lective online catalogue Gemeinsamer Verbundkatalogi0 mention an Einleitung in die 
Differential- und Integralrechnung (i.e., Introduction to differential and integral calcu
lus) by Lacroix, translated into German by Franz Funck, and published in Berlin by 
Reimer in 1833. I have not seen this book, so I can only make some conjectures, based 
on the information given in these catalogues. 

The word Einleitung in the title suggests that this might be a translation of 
Lacroix's Traité élémentaire du calcul... [Lacroix 1802a], rather than of the large 
Traité. But there are several details that do not fit well with that possibility. First 
of all. both catalogues also indicate that this translation was made from the second 
edition (of whatever the original book was), and that the same publisher Reimer had 
published a translation of [Lacroix 1802a] in 1830-1831, made from the fourth edition 
(see section 8.10.3). In addition, the Gemeinsamer Verbundkatalog informs that the 

3 9 B o t h me [Domingues 2005, 277] and Grattan-Guinness [1990, I. 140] have been trieked by the 
fact that the translation has two volumes into thinking that it was a translation of the first and second 
volumes of Lacroix's Traité. 

4 0 <http:/ /gso.gbv.de> (accessed on 22 January 2007). 
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book has iv+167 pages and one folding plate; this is far too small to be a translation 

of [Lacroix 1802a] (whose second edition has xii+606 pages and five folding plates). 

But it fits very well with the possibility of being a translation of the Introduction in 

[Lacroix Traité, 2nd ed. I] - which has 138 pages, and three figures in the first folding 

p l a t e 4 1 

Franz Funck (1803-1886) had studied at the University of Bonn from 1821 to 

1823, and was a teacher of mathematics in the towns of Recklinghausen and Kulm 

[Schubring 2005, 518]. 

2.6.2 The Greek partial and unpublished translation 

Volume I and part of volume II of Lacroix's Traité were translated by loannis Carandi

nos, "l'initiateur des mathématiques modernes en Grèce" 4 2 , who coined the Greek 

words in use for such concepts as function and series [Phili 1996, 305] - this section is 

based on this paper. 

loannis Carandinos ('/waywnç Kapavrivôç)^ was born in the Ionian island of 

Cephalonia in 1784. From 1807 to 1814 the Ionian islands were occupied by the 

French, who instituted in the chief island of Corfu an Ionian Academy. Teaching 

at this academy was Charles Dupin (1784-1873), a graduate of the École Polytechnique 

and admirer of Monge. Carandinos had started his studies of mathematics in Corfu 

before the French period, but under Dupin he acquired contemporary mathematics. In 

the 1810's Carandinos taught at a public school in Corfu, following Lacroix, Laplace, 

and other French authors. In 1815 the British replaced the French as occupiers of the 

islands. The new governor, Lord Guilford, instituted a new Ionian Academy, and he 

appointed Carandinos as rector and professor of mathematics. The academy started 

functioning in 1823; but before that Guilford sponsored periods of study abroad for 

the future professors. In spite of being British, the place where he sent Carandinos 

was Paris. In 1820 Carandinos was at the Ecole Polytechnique. Returning to Corfu 

he taught higher mathematics at the Academy from 1824 to 1832. In 1833 he suffered 

some mental problem, and was sent to a psychiatric hospital in Naples-, where he died 

in 1834. 

In the 1820's Carandinos published a few original works (namely, on the "nature" 

of differential calculus, on combinations, on polygonometry, and on equations of degree 

higher than 4), and translations of textbooks: Bourdon's arithmetic, Legendre's geom

etry and trigonometry, and John Leslie's geometrical analysis. Phili [1996, 314-316] 

4 1 Chapters 1, 2 and 3 have no figures, which excludes the possibility of this being a translation of 
chapter 1, or chapters 1 and 2, for instance. 

4 2 "the initiator of modern mathematics in Greece" 
4 3 Phi l i [1996, 305] also gives the alternative spelling KapavôCvoç. The online library Helli-

nomnimon <http://www.lib,uoa.gr/hellinoinnimon/main.htm> (accessed on 23 January 2007) uses 
KapavTi]vôç. The title pages of his books available there seem to alternate between Kapauôiuoç, 
KapaisTLVOc, and KapauOrji/oc. 
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has noteci Carandinos gênerai préférence for Lacroix's textbooks, but also his dislike of 

Lacroix's Essais sur l'enseignement... [1805], and his choice of the authors above for 

several reasons. 

Still, starting in 1824 he translated several of Lacroix's textbooks, as well as the 

first volume of the Traité, and started translating the second volume [Phili 1996, 318]. 

Unfortunately, this remained unpublished, along with his translations of [Lagrange 

Fonctions], Poisson's mechanics, and others. The manuscripts appear to have been 

destroyed during the German bombardment of Corfu in World War IL 
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Chapter 3 

The principles of the calculus 

3.1 The principles of the calculus in the late 18th 
century 

In the late 18th century there were various competing foundational approaches for 
the differential calculus. In this section I will try to present them, drawing mainly 
upon works that were published (not necessarily for the first time) while Lacroix was 
preparing the first edition of his TYaité, or that were then still widely used. 

As for the integral calculus, it will not be mentioned here, since there were no 
fundamental differences in opinion about it - integration was generally viewed simply 
as the opposite operation of differentiation (or derivation) and no discussions arose 
about this. The few relevant issues on the conception of the integral will be discussed 
in chapter 5. 

3.1.1 Infinitesimals 

The approach that was most widely followedj at least at the educational level, was still 
that of the Leibnizian infinitesimals.1 It was well represented by Bezout's hugely suc
cessful Cours de Mathématiques [1796], on the section covering the calculus (opening 
the fourth volume). Bezout's Cours was a multi-volume textbook (4 to 6 volumes, 
depending on the edition), which had multiple editions 2 in the second half of the 18th 
century and even in the 19th. The section on the calculus was translated into English 
in the United States as late as 1824 [Bézout 1824]-

The main tool for Bézout is the consideration of infinitely great or infinitely small 
quantities: 

1 "Leibnizian" here does not refer necessarily to adherence to Leibniz's personal views, but rather to 
the "Leibnizian tradition", which had other authors, among whom Jacob (I) and Johann (I) Bernoulli. 
Leibniz's personal views on infinitesimals are a quite complicated subject [Bos 1974, 52-66]. 

2 With variants: there was one version to be used by the Gardes du Pavillon et de la Marine, another 
by the Artillery, and there were separate editions and translations of some volumes or sections. 
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"Nous disons qu'une quantité est infinie ou infiniment petite à l'égard d'une 

autre, lorsqu'il n'est pas possible d'assigner aucune quantité assez grande ou 

assez petite pour exprimer le rapport de ces deux-là, c'est-à-dire, le nombre 

de fois que l'une contient l 'autre." 3 [Bézout 1796. IV. 3] 

Of course, if x is infinitely great with regard to a, then ^ is infinitely great with 

regard to x, since o : x :: x : and ~r is infinitely small with regard to o, since 
2 

x : a a : This entails the considération of infinitely great or infinitely small 

quantities of différent orders. In order to express thèse relations it is necessary to 

neglect, in algebraic expressions, the infinite quantities of the inferior orders, that is. 

if a is infinitely small with regard to x, then x should be taken for x + a. Bézout tries 

to convince the reader that this neglect is in fact necessary to reflect the supposition 

of infinitely smallness, but he does not seem to nave any doubts about the validity of 

the supposition îtself. 

Bézout then considère "a variable quantity as increasing by infinitely small degrees", 

and, wishing to know its incréments, he simply calculâtes its values for any one instant 

and the "instant immediately following"; their différence is the incrément or décrément 

of the quantity and it is called its differenticd [Bézout 1796, IV, 11-12; 1824, 13]. For 

example, the differential of xy, d(xy), is xdy + ydx, because the différence between 

two successive states of xy is (x + dx)(y 4- dy) — xy = xdy + y dx + dy dx, and dy dx is 

infinitely small with regard to both xdy and ydx. 

When applying the calculus to calculate tangents, Bézout conceives a "curve to be 

a polygon of an infinite number of infinitely small sides". A tangent is a prolongation 

(to finite size) of one of thèse sides [Bézout 1796, IV, 34; 1824 , 28]. 

The differential of a variable, being itself a variable, can be differentiated: the 

differential of dx is ddx, that of ddx is dddx, or d5x, and so on; ddx is infinitely small 

with regard to dx, so that ddx, dx2 (which means (dx)'2), and dxdx are ail infinitely 

small of the second order [Bézout 1796, IV, 20-21; 1824, 18-19]. When several variables 

are involved, it is customary to suppose that one of the first differentials — say, dx 

— is constant, so that ddx = d?x = ... = 0. This is possible because "on peut 

toujours prendre une des différences premières, pour terme fixe de comparaison des 

autres différences premières" 4 [Bézout 1796, IV, 22]. What this means is that one 

can assume that the successive values of one the variables are equally spaced, or in 

other words, that that variable varies uniformly; this can be done because a priori the 

progression of any variable (the spacing between its successive values) is arbitrary. 

Of course this entails a fundamental indeterminacy, since différent results occur 

according to the choice made about the progression of the variables. [Bézout 1796, 

3"We say that a quantity is infinitely great or infinitely srnall with regard to another, when it is 
not possible to assign any quantity sufficiently large or sufficiently small to express the ratio of the 
two, that is, the number of times that one contains the other" [Bézout 1824, 8]. 

4"we may always take one of the first differentials as a fixed term of comparison for the other first 
differentials" [Bézout 1824, 20] 
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IV, 22-23; 1824, 20] gives an example: the differential of g is if dx is taken 

as constant; but it is ^ if dy is taken as constant. There is a more serious aspect of 

this indeterminacy that Bézout does not mention: when faced with an expression like 

in order to know its meaning, one needs to know whether it is dy that is taken 

as constant, or some other differential (certainly not dx, because ddx occurs in the 

formula; but it could well be ds = \Jdx2 + dy2, a common case when studying curves; 

or it could be that no differential is taken as constant). Of course usually one will know 

by the context which choice has been made about the progression of the variables. 

Bézout's version of the differential calculus is essentially the same that had been 

published in the first textbook on this subject: [l'Hospital 1696}. 

A variant on this approach is presented in [Euler Differentialis]. For Euler, those 

quantities usually called infinitely small were in fact equal to zero; however, this did not 

mean that one could not reckon with them, since what really mattered in the calculus 

was not the values of diffèrentials, but rather those of their ratios. For example, if 

dy = 2dx, although both dy and dx are nuli, dy : dx = 2 : 1. From the fact that they 

are zéros cornes the neglect of in finit esimals of higher orders: the ratio of dx + dx2 to 

dx is dx'^c2 = 1 + dx = 1 [Euler Differentialis, I, § 88], therefore dx may be taken for 

dx + dx2. In fact Euler only used thèse arguments involving zéros in order to justify the 

validity of the rules for reckoning wifch infinitely great and infinitely small quantities. 

His differential calculus is presented as a particular case of the method of (usually 

finite) différences, the case in which these are infinitely small. 5 

The most important aspect of his discussion is his assumption of the prominent 

role of ratios of différent i ais, as opposed to differentials themselves. There is a subtle 

distinction to be made here between ratios of differentials and quotients of differentials. 

In spite of the dx'^f1 example above, Euler's ratios are usually not the resuit of division 

between differentials; his point is that there is always a finite P such that dy : dx = P : 1 

[Euler Differentialis, I, § 120]; and this P is usually introduced as the finite quantity 

such that dy = Pdx.Q 

These differential ratios were especially useful for dealing with higher-order dif-

ferentiation; or perhaps we should say for dispensing with higher-order differentials. 

Euler faced the fact that the meaning of a formula involving higher-order differentials 

dépends on the underlying choice made about the progression of the variables, and 

concluded that because of this, higher-order differentials were undesirable in analysis. 

°In the preface to [Euler Differentialis], Euler referred also to limits to explain the differential 
calculus: the ratio of 2xdx + dx2 to dx is exactly lx + dx, but the smaller dx becomes the more 
this ratio approaches 2x, and when dx finally vanishes the ratio effectively arrives at the value 2x. 
However, not only is this very vague aud a very naïve version of limits, but also Euler does not use 
limits at ali in the development of the calculus, so that his adhérence to them seems to be entirely 
rhetorical. 

6Euler did not use any particular name for the differential ratios. In [Bos 1974] they are called 
differential coefficients (opposed to differential quotients). But it seems that it was Lacroix who 
introduced the expression differential coefficients (see page 71 below). Therefore, here 1 will use the 
expression differential ratios when referring to Euler. 
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He did not exclude them completely — and in fact their consideration was indispens
able for some problems, such as changing independent variable (see page 75 below) — 
but he gave a method for removing them and tried to avoid them as much as possible. 
This method used the differential ratios: if p is a finite quantity such that dy ~ pdx, 
then it can be differentiated giving something as dp = q dx, where q is once again finite 
and can be differentiated giving something as dq ~ r dx, and so on; if x is taken as the 
independent variable, so that ddx = 0, then ddy = dpdx = qdx2, d?y = dqdx2 = rete 3 , 
and so on... [Euler Differentialis, § 126-133. 264]. In this way the differential calculus 
can be seen as being not so much about infinitesimal differentials as about the finite 
quantities p,q,r,..., which are functions of x. This was a major step in the evolution 
of the calculus towards a subject about functions, rather than variable quantities, and 
a first step in setting as its main concept what would later be known as the derivative 
[Bos 1974]. 

Lacroix was quite aware of this, as is clear from the preface to [Lacroix Traité] where 
he claims that it was Euler "qui le premier sépara ce Calcul de son application aux 
courbes, et qui, en exprimant par des lettres les rapports des différentielles, avoit délivré 
des quantités infiniment petites, les équations que en contenoient" 7 [Lacroix Traité, I, 
xxiii]. 

Because of what was explained above, it is natural to identify independent vari
able and variable with constant differential. This identification helps modern readers 
in making sense of many calculations in Leibnizian calculus. It is very useful and it 
is essentially correct. Correct, that is, insofar as we are talking about one-variable 
calculus. Unfortunately the situation in multivariate calculus is much more compli
cated, as so often is the case. Euler was aware of that, as can be seen from a passage in 
[Euler Differentialis, I, § 246]: when an expression involves two variables, presumed in
dependent of each other, we can only take the differential of one of them to be constant, 
not both, 

"hoc ipso enim relatio inter variabiles x et y assumeretur, quae tamen 
vel nulla est, vel incognita ponitur. Si enim. dum x aequabiliter crescere 
ponimus, y quoque aequalia incrementa capere statueretur, tum eo ipso 
indicaretur fore y = ax + b; sicque y ab x penderet, quod tamen assumere 
non licet.' 1 8 

Euler's reasoning seems to be more or less the following: if dx = c\ and dy = ci (where 
C i , c 2 are constants), then ^ = a is also a constant and therefore y = ^x + b. 

1 : "the first who separated this calculus from its application to curves, and who, using letters 
to denote the ratios of differentials, delivered the equations containing them from infinitely small 
quantities" 

8 "since this would assume some relationship between the variables x and y, [a relationship,] how
ever, which either does not exist or was set as unknown. In fact, if at the same time that we set x to 
increase equally, y were assigned to also take equal increments, then that would show to be y = ax + b; 
and hence y would depend on x, which is something we may not assume." 
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This does not really mean that y is completely determined by x, since cL and 
c 2 and arbitrary and thus so is ^ = a, which ranges over all the slopes of straight 
lines in the plane (thus covering the whole tangent vector space). But neither are x 
and y completely independent. Of course in modern-day analysis we define a second-
order total differential as T>2F = (S.Q ) - involving only second-order partial 

\ x X3 / ij 

derivatives, which are directional derivatives (that is, taken along straight lines), so 
that it might appear that we are assuming the differentials of all the Xi to be constant 
(in 18th-century terms). But that is because we want total differentials to be linear 
maps. After defining them that way we must know how to use them — namely, when 
to compensate for an excessive linearization (I hope an example presented below will 
make this clear). 

Many subtleties of modern-day multivariate calculus were not available to Euler, 
including certain differences between uses of second-order differentials in univariate 
and multivariate calculus.9 Therefore his caution was justified. To see why. we must 
remember that it is important to be able to establish any particular relation between 
two independent variables. That is, if we do computations with x and y as independent 
variables, we must be able to adapt later those computations to any particular relation 
between them. If the computations are not adaptable to some particular relation, then 
we must conclude that another condition was implicitly assumed — the variables were 
not independent enough. 

Let us look at an example: consider F(x, y) = xy2. If we differentiate F(x, y) twice, 
assuming that both dx and dy are constant, that is, if we do (using Euler's notation 
for partial differential ratios) 

"-(£)*••'(£)'•*•(£)* 
we arrive at 

d2F = 4y dxdy + 2xdy2. (3.2) 

Now, let us establish a relation between x and y: for instance, y = x2] substituting in 
(3.2) we get 

d2F = 4x2dx2xdx + 2x(2xdx)2 = l6x'Adx2. 

But this result is wrong: if we substitute y = x2 in F(x,y) = xy2 we have f(x) = 
F{x,x2) = x 5 and, assuming dx constant, 

d 2 / = 20x3dx2. 
9For instance, in [Euler Differential-is, II, § 290] he gave as a sufficient condition for a singular 

point of V(x,y) to be an extreme, that and be both positive or both negative. Lagrange 

later corrected this to 0 - 0 - {0^) > 0-
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The reason for the mistake is of course that y = x2 is not compatible with both dx 

and dy constant. The correct result would nave been obtained by not assuming any of 

dx,dy as constant. 1 0 that is. by doing 

or by taking only one of them. for instance dx, as constant: 

(both these formulas, and the one for dy constant, appear in [Euler Differentialis, I, § 

247]). 

In modern terms, establishing a relation between x and y amounts to considcr a path 

on the plañe: consider an open set U C IR2, a path A ; ] a - £ , a + e[—* U, differentiable 

in a, and a function F : U —> IR, differentiable in A (a). Then, by the chain rule, 

(FoA) ' (o) = DF(A(a))-A'(fl) 

and therefore 

(F o A ) » = D 2 F(A(a)) - A'(a) 2 4- Df(A(a)) • \"(a). (3.5) 

What we did in (3.1) was to take only 

f)2 F f)2F r)2 F 
d2F = ^ d x 2 + 2~dxdy +-^dy2 = D 2 F • (dx.. dyf 

ox¿ oxdy dy2 

which, after the substitution of the path, amounts to T)2F(\(a)) • A'(a) 2. But what 

about the second term DF(A(o)) • A"(a) in (3.5)? If the path is a straight line, of 

course A"(a) = 0 and it disappears. Otherwise it must be taken in account. It clearly 

corresponds to (g) <Px + (f) <fy in (3.3) or (f) <fy in (3.4). 

Euler's caution does not seem to have had much acceptance. Four years later 

Lagrange, differentiating twice a function Z of t, u, x, y,-.., assumed, "ce qui est permis, 

dt,du,dx,dy,... constantes" 1 1 , arriving in the case of only two variables at d2Z = 

Adt2 ±2Bdtdu + Cdu2 [Lagrange 1759a, 4-5] 1 2 . 

Euler's versión of the infinitesimal approach (reckoning with zeros) was not often 

followed by other authors, but one of those that did follow him was Charles Bossut 

(1730-1814), in a treatise published almost at the same time as Lacroix's [Bossut 1798}. 

1 0 In which case to compare with d2f it would be necessary to recalculate this without dx constant 
— the result would then be 2Qx3dx2 + hxAd'2x. 

1 1 "as is allowed, dt,du,dx,dy,... constant" 
1 2 T h e same paper where he corrected Euler :s criterion for extremes of functions of several variables 

(see footnote 9). 
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Like Euler, Bossut starts by expounding the calculus of finite differences, supposing 

later that those differences become infinitely small, and then "peuvent être regardées 

ou traitées comme de véritables zéros, qui ont entr'eux des rapports déterrninables par 

l'état d'une question" 1 3 [1798, I. 94]. However, the insistence on the finite quantities 

p,q,r,... as the true object of the calculus is entirely absent, perhaps due to Bossut's 

less theoretical exposition, based essentially on examples. 

3.1.2 Limits 

For most of the 18th century the most serious competitor to infinitesimals was the 

method of limits. These had been propounded in 1754 by d'Alembert as the basis 

for the true metaphysics of the differential calculus, in the article "Différentiel" of the 

[Encyclopédie]. D'Alembert retraced this metaphysics to Newton, "quoiqu'il se soit 

contenté de la faire entre-voir" 1 4, referring to the theory of "ultimate ratios" of "van

ishing quantities" in Quadratura curvarum and Principia Mathematica [Boyer 1939, 

195-201]. D'Alembert may have given a larger glimpse than Newton of this meta

physics, but still only a glimpse: he proved the uniqueness of the limit and gave an 

example of how limits could be used to calculate the tangent to a parabola, but gave 

only an intuitive argument for the limit of being ^ , and was satisfied to conclude, 

from that single example, that the differential calculus (with infinitesimals) reached 

the same results as the method of limits. 

D'Alembert's suggestion was taken up by a few mathematicians, among whom was 

Cousin, in both [1777] and [1796] - the sections on the metaphysics of the calculus are 

essentially the same. 

The first chapter in [Cousin Ì777] 1 5 is, just like that of [Euler Differentialis], ded

icated to the calculus of differences "in general". The second is then devoted to the 

method of limits. It starts by a definition of limit that is essentially the same that the 

Abbé de la Chapelle had given in the article ''Limite" of the [Encyclopédie] : 

"On dit d'une grandeur qu'elle a pour limite une autre grandeur, quand 

on conçoit qu'elle peut en approcher jusqu'à n'en différer que d'une quan

tité aussi petite qu'on voudra, sans pouvoir jamais coïncider avec elle." 1 6 

[Cousin Ì777, 17: 1796, L 84] 

Cousin concludes very quickly that the limit of a given magnitude is unique and 

that if two magnitudes have a constant ratio, then their limits have the same ratio. 

1 3 "can be viewed or treated as true zeros, which have between them ratios determinable by the 
state of a question'1. 

1 4 "although he was satisfied to give only a glimpse of it ;'. 
1 ; iThird in [Cousin 1796], after two introductory chapters on analytic geometry and undetermined 

coefficients. 
1 6 "It is said of a magnitude that it has another as limit, when it is regarded as being able to approach 

the latter until they differ by a quantity as little as wished, without ever being able to coincide with 
it. 
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In spite of these being "the two propositions on which the whole method of limits 

is founded", for the first only a slim argumentation is given and for the second not 

even that: it is piain evident. He proceeds to give geometrical examples, in which the 

handling of limits is extremely naïve: in a given formula he simply replaces magnitudes 

with their limits, to calcitiate the lirnit of that formula. A cone with base ABDE is 

simply stated. without any argumentation, to be the limit of the pyramids with same 

vertex and having as bases polygons inscribed in ABDE [Cousin 1777, 19; 1796, I, 

85]. 

Much of the chapter on limits is heavily based on geometrical considérations. Mov-

ing towards the "transcendental geometry of the Modems", Cousin proposes to find 

the subtangent of a curve, and is led to consider the limit of the ratio between the 

ordinate and the abscissa, He takes ^ as a special symbol ("signe") to represent 

the limit of the ratio between the différences of the variables x and y [Cousin 1777, 

32] 1 7. "The terms dy, dx of the lirnit g " [Cousin 1777, 73; 1796,1, 151] are then called 

differenti als and are used throughout the rest of the book, in spite of not having more 

than this vague définition (if it can be called a définition at all). 

This kind of naïve considération of limits did not usually lead to mistakes, because 

the examples were very simple. But in section 7.2 we will see serious mistakes being 

committed by a somewhat obscure member of the Academy of Sciences of Paris, Jacques 

Charles. Of course, his examples were much less simple - he dealt with the finite 

équivalent of singular solutions of differential équations, and tried to take their limits. 

A quite différent limit-based approach, and less naïve, was that of the Swiss math-

ematician Simon l'Huilier (1750-1840), in [l'Huilier 1786}. The Mathematics Section 

of the Academy of Berlin, of which Lagrange was the director, had proposed a com

pétition for 1786 on the subject of establishing a "clear and precise theory of what 

is called Infinite in Mathematics", namely an explanation for the stränge fact that so 

many correct theorems had been deduced from the contradictory supposition of the 

existence of infinite magnitudes. L'Huilier won this compétition 1 8 and his entry. Exposi

tion élémentaire des principes des calculs supérieurs, was published as [l'Huilier 1786}. 

An expanded Latin translation was later published as [l'Huilier 1795}. 

L'Huilier proposed to cstablish the "superior calculi" on the basis of the Greek 

method of exhaustion [l'Huilier 1786, 6: 1795, ii], developing the ideas that d'Alembert 

had only sketched [l'Huilier 1786, 167]. L'Huilier is much more careful than Cousin, 

and his work is thus much more rigore us. However, his views on rigour and on the 

method of limits are too much based on the ancient Greeks and on the method of 

exhaustion. L'Huilier insists on a distinction between quantities and ratios of quantifies 

(focusing his attention mainly on the latter). Instead of a single définition of limit, he 

1 7 In [1796] Cousin uses | in the chapter on the method of limits, aud changes to ^ later on, when 
explicitly addressing the differential calculus. 

1 8 Although the judges spoke in their report of his text not as the best, but as the least, unsatisfactory 
of the entries to the prize [Acad. Berlin 1786]. 
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has two, for limit of a variable quantity and for limit of a variable ratio, which in 

fact turn into four, since each is split into two cases: limit in greatness and limit in 

smallnessP To give an example: 

"Soit un rapport variable toujours plus petit qu'un rapport donné, mais 

qui puisse être rendu plus grand qu'aucun rapport assigné plus petit que 

ce dernier: le rapport donné est appelé la limite en grandeur du rapport 

variable." 2 0 [l'Huilier 1786, 7] 

In the Latin versions of these definitions [l'Huilier 1795, 1] it is even more obvious 

that L'Huilier was assuming that the approaching quantity or ratio was monotonie: 

apparently he viewed any limiting process as similar to those of either inscribed or 

circumscribed polygons. He was certainly not the only one at the time, as is suggested 

by the assumption of la Chapelle in the article "Limite" in the [Encyclopédie], that the 

approaching magnitude can never surpass its limit, But it was in fact l'Huilier who, 

apparently for the first time, remarked that the approaching ratio or variable need not 

be monotonie. He did so precisely in the Latin edition, where he supplied a separate 

definition for the limit of an alternating rat io 2 1 , remarking that a similar definition 

could be given for the limit of an alternating quantity [l'Huilier 1795, 16-18]. 

L'Huilier introduced, very casually, the abbreviation 'lim.' (or 'Lim.') for 'limit' 

[l'Huilier 1786, 24], which would later be turned into the standard symbol for limit 

(namely after its use by Cauchy in the 1820's). 

Contrary to what was common practice at the time, l'Huilier did use his definitions 

of limits to prove theorems about them. That is, to prove that lim. A : X = A : B 

(A : X increasing, say) he would propose an arbitrary ratio A : Y < A : B and prove 

that it was possible to take X such that A ; X > A : B. The problem is that these 

demonstrations needed to be split into several different cases and were too fastidious 

for any supporter of the modern mathematics. 

Like Cousin, l'Huilier defined ^ as the limit of ^ but, unlike Cousin, he saw ^ as 

a "single and non decomposable" symbol [l'Huilier 1786, 31-32; 1795, 36], avoiding the 

use of dy and dx. He did call ^ a differential ratio, but that was probably motivated 

by concerns on homogeneity: the limit of a ratio could not be anything else; and a 

ratio could be treated as a single entity. 

1 9L'Huiher took these definitions from a small tract by Robert Simson {De Limitions Quantitation 
et Ratiorium Pragmentum), published posthumously in [Simson 1776]. 

2 0 "Let a variable ratio be always smaller than a given ratio, but capable of heing rendered greater 
than any assigned ratio that is smaller than the latter: the given ratio is called the limit in greatness 
of the variable ratio." 

2 1 T h i s was prompted from the study of the ratio of two decreasing quantities AX, CY, with limits 
AB, CD; AX : CY may be made as close as wished to AB : CD, but it is not necessarily always 
greater or always smaller [l'Huilier 1795, 16-17], 
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3.1.3 Carnot on the compensation of errors 

Lazare-Nicolas-Marguerite Carnot (1753-1823), a French mathematician, engineer, and 

politician. was another competitor for the Berlin Acaderny prize of 1786. His entry, 

defeated. would stay forgotten in the Academy :s archives; but in 1797, while Carnot 

was a member of the Executive Directory (then the governing body of the French 

Republic), it was published in a revised version as Réflexions sur la Métaphysique du 

Calcul Infinitésimal [Carnot 1797}. The original version was published in fac-similé in 

[Gillispie 1971; 171-262], 

Carnot adhered to the idea that the differential calculus worked by compensation 

of errors: in the tradicional process of infinitesimal calculus. we start by regarding a 

curve as a polygonal line; here an error is being committed; afterwards, during the 

calculations, the neglect of infinitesimals introduces a second error that caneéis the 

first. This justification had been proposed by the idealist philosopher George Berkeley 

(1685-1753), Anglican bishop of Cloyne. Ireland, in The Analyst (London, 1734), a 

sharp critique on the logicai inconsistencies of the method of fluxions or differential 

calculus. Around 1760 Lagrange agreed that compensation of errors was the true 

"metaphysics of the calculus with infinitely small [quantities]" [Lagrange 1760-ôlb. 

598]. But Carnot decided to prove that it worked. 

Carnot's argumentation ran around what he called imperfect équations. The mem-

bers of one of thèse were in fact not equal, but had the same limit, which means 

that they had to involve variables, or as Carnot said, "auxiliary quantities"; imper

fect équations were operated upon by replacing quantities with other, infinitely close, 

quantities; once ali the auxiliary quantities had disappeared, an exact équation would 

remain. Apparently Carnot did not truly convince his readers, judging from the fact 

that he had no followers. Moreover, in 1797 (and still in 1813, when Carnot's work 

was widely known) Lagrange reasserted his opinion that the compensation of errors 

explained the infinitesimal calculus, but adding that "it would perhaps be difficult to 

give a general démonstration of that" [Lagrange Fonctions, Ist ed, 3; 2nd ed, 17] -

implying that Carnot had not given one. 

Nevertheless, Carnot's book was quite successful, judging from the facts that it 

had a second and enlarged édition in 1813 that was reprinted a few times until 1921, 

and that it was translated into Portuguese, German, English, Italian and Russian 

[Youschkevitch 1971, 149]. It was also praised by Lacroix, who had read a manuscript 

version (possibly the 1786 prize entry) and urged it to be published 2 2 [Lacroix Traité, 

I, xxi-xxii]. But what Lacroix probably liked most in Carnot's work (and possibly what 

made it popular) was its discussion and comparison of the several points of view then 

available for the calculus, not so much the compensation of errors. 

2 2Carnot's book appeared in print that same year of 1797 as [Lacroix Traité, I] and 
[Lagrange Fonctions}. 
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3.1.4 Power séries 

Joseph-Louis Lagrange had a spécial interest for the principles of the calculus, and. 

being the most important mathematician at this time (or, at least, one of the two most 

important, with Laplace), he was very influential in making the issue fashionable, as 

it were, in the late I8th century. 

As we have seen above, around 1760 Lagrange thought of compensation of errors 

as the true metaphysics (that is, the reason why it works) of the Leibnizian infini

tésimal calculus; while the Newtonian method (that of ultimate ratios) was perfectly 

rigorous, but entailed long and complicated démonstrations, which was a reason to use 

infinités i mais instead [Lagrange 1760-61b\. 

Later, Lagrange showed himself dissatisfied with thèse explanations. Compensation 

of errors did not seem capable of démonstration [Lagrange Fonctions, lst ed, 3] and, 

for the method of limits, it was not elear enough what happened to | when both a and 

b became null [Lagrange Fonctions, 3-4]. 

In 1772 Lagrange published in the Nouveaux Mémoires de l'Académie de Berlin 

a memoir that would be central to this story. Its title was "Sur une nouvelle espèce 

de calcul relatif à la différent i at ion et à l'intégration des quantités variables". Its 

subject was not the principles. or metaphysics, of the calculus, rather results taken 

from analogies between power-raising and differentiation (and between root-extracting 

and intégration). But Lagrange thought best to start by establishing "quelques no

tions générales et préliminaires sur la nature des fonctions d'une ou de plusiers vari

ables, lesquelles pourraient servir d'introduction à une théorie générale des fonctions" 2 3 

[Lagrange 1772a, 442]. 

This was the first appearance of his power-series version of the differential calculus. 

Lagrange knew from the theory of séries that if u is a function of x and we substitute 

x 4- £ for x, it will become 

u + pi + p'F2 + p"? + p"'fĄ + ... (3.6) 

"où p,p',p",... seront de nouvelles fonctions de x, dérivées d'une certaine manière de la 

fonction w" 2 4 [Lagrange 1772a, § 1]. He then characterized the differential calculus as 

concerned with finding the functions p. p'',p"',... derived from u. He saw this as the clear-

est and simplest conception of the calculus ever given, being "indépendante de toute 

métaphysique et de toute théorie des quantités infiniment petites ou évanouissantes" 2 5 

[Lagrange 1772a, §3]. 

Lagrange then proceeded ta simultaneously explain how corne this was a définition 

of the calculus and arrive at Taylor's formula: substituting x + £ -I- to for x in the 

2 3 "some gênerai preliminary notions on the nature of functions of one or more variables, which 
migkt serve as an introduction to a gênerai theory of funct\ons , :. 

2 4"where p,p',p",... will be new functions of x, derived in a certain way from the function u" 
2 5 "indepeudent of ail metaphysics and of any theory of ùifinitely small or vaiiisliiiig quantities". 
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function u and expanding the result in two different ways - namely substituting X + UJ 

for x and substituting £ + w for £ in (3.6) - and equating the resulting power-series, 

comes 

w, VJ', w",... had appeared in the expansions: w was derived from p, ro' from p'. w" 

from p", and so on, in the same manner that p was derived from u. This prompted 

a change in notation that would be remarkably enduring: u' instead of p, the prime 

signifying this one-step derivation (and u" signifying (v.')'), so that the p' of (3.6) 

became p" became ~ , and so on. giving 

for the result of substituting x -I- £ for x in the function u . 2 6 Now, taking £ to be 

infinitesimal and neglecting its powers £ 2 , £ 3 , ( 3 . 7 ) gives only w'£ for the increment 

of u; using the traditional notations of du, dx, we get 

du = u'dx and u' = ~: 
dx 

"ainsi, pour avoir la fonction u', il n'y aura qu'à chercher la différentielle du par les 

règles du calcul des infiniment petits, et la diviser ensuite par la différentielle do:" 2 7 

[Lagrange 1172a, §6]. Notice how u' = ^ had to be proved, and how Lagrange resorts 

to the infinitesimal calculus, including a differential quotient. 

At this point it is clear enough that 

dx drc 2 ' dx da; 3 ' 

so that (3.7) becomes 

du d^Ç 2 d 3 u g 3 

U + d z Ç + d o : 2 T + d x 3 2 - 3 + " 

Lagrange remarks that this seemed to him one of the simplest demonstrations of Tay

lor's theorem. 

All of the above have multivariate equivalents, with the notation u':" for modern 

df£y2- This allows a proof of = that relies heavily on the ambiguity of u'!'. 

From then onwards the memoir proceeds on its true subject, ignoring these foun

dational digressions and using only occasionally the prime notation u'. 

26Change of notation within this memoir. The prime notation had already been used by Lagrange 
in 1770 and possibly 1759 [Cajori 1928-1929,II, 208]. And also, very' clearly, by Euler [Integrate, III, 
§ 138]: "in designandis functionibus hac lege utemur, ut sit d.iw = dvï'w, sicque porro d.i'.v = dvf": 
v et d.ï":v — dvi"':v etc." ("we will use this rule in designating functions, so that d.i.v = dvi':v, 
and so forth d.i':v = dvl":v et dS":v = dvï"':v etc."). But most often Euler used p.q, etc.; and of 
course it was [Lagrange Fonctions] that made the prime notation popular. 

2 7"therefore, to find the function u', it is enough to find the differential du using the rules of the 
infinitesimal calculus, and then divide it bv the differential dx" 
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It must be noted that the assumption that the increment of any function may be 
expanded into a power series, or the use of such power series in the development of 
the principles of differential calculus, are not exclusive of works following a power-
series foundation. We can see that assumption and uses of it for fundamental results, 
for instance in [Euler Differentialis, I], and in [Cousin i777; 1796}. The distinction 
between a technical use of power series and a foundation of the calculus based on power 
series may sometimes be subtle; we will see borderline examples in sections 8.2 (Fourier 
and Gamier) and 8.5 (Lacroix). The cases of Lagrange and Arbogast, treated below, 
are more clear-cut. 

A few years after publishing [1772a], Lagrange took a major part in proposing 
the 1786 competition of the Berlin Academy on a "clear and precise theory of what 
is called Infinité in Mathematics" and in judging the entries. It has been suggested 
that this indicates that Lagrange was not entirely satisfied with his own suggestion of 
basing the calculus on power series. 2 8 It is possible that this interpretation is correct, 
but it should be taken into account that, for Lagrange, a "theory of the Infinite in 
Mathematics" and a sound foundation of the calculus were not the same thing: his 
power-series version of the principles of the calculus was, in his own words, "reduced to 
the algebraic analysis of finite quantities" 2 9 (my emphasis) and, as we have seen above, 
even after he had published it, he still thought the infinitesimal calculus worked because 
of compensation of errors. His power-series approach could not be the basis for an entry 
for the competition, because, as he saw it, it had nothing to do with the infinite. 

The first person to develop Lagrange's suggestion of founding the calculus on power 
series was L. F. A. Arbogast, in a memoir entitled "Essai sur de nouveaux principes 
de Calcul différentiel et intégral, indépendans de la théorie des infiniment-petits et 
de celle des limites", presented to the Académie des Sciences of Paris in 1789. 3 0 This 
memoir was never published, although a book by Arbogast, Du Calcul des Dérivations, 
in which he expanded and generalized his thoughts on the subject, appeared in 1800. 3 1 

2 8 For instance, in [Grabiner 1966, 40-46] or in [Grattan-Guinness 1980, 101]. 
2 9 From the full title of [Lagrange Fonctions]: Théorie des Fontions Analytiques, contenant les 

Principes du Calcul Différentiel, dégagés de toute considération d'Infiniment Petits ou d'Evanouissans, 
de Limites ou de Fluxions, et réduits à l'Analyse Algébrique des Quantités Finies. 

3 0 O r possibly the marquis de Condorcet, in a Traité du Calcul intégral, unpublished but partially 
printed - and which I have not seen. In 1810 Lacroix attributed to this work by Condorcet the 
priority in a purely analytical exposition of the principles of the differential calculus, apparently 
through power-series expansions [Traité, 2nd ed, I, xxii-xiii]. Youschkevitch [1976 , 76] confirms that 
in this treatise "Condorcet attempts to derive a Taylor series formally for an arbitrary function, almost 
in the way Lagrange had done". But Gilain [1988, 135], while acknowledging Condorcct's use of series 
expansions for differentiation, thinks that there was not a foundational concern involved. A different 
issue is whether Lacroix read the printed pages of Condorcet's treatise before the publication of the 
first edition of his Traité. Given his close association to Condorcet, this is very much possible. But 
the fact that he docs not mention it in the first edition casts serious doubts on this possibility. 

3 1 There are two surviving manuscripts of the 1789 memoir, one kept at the Biblioteca Medicea 
Laurenziana in Florence, and the other at the Ecole des Ponts et Chaussées of Paris, Accounts of 
the memoir can be found in [Grabiner 1966, 47-59], [Panza 1985} and [Friedekneyer 1993, 69-131]. 1 
have used them to write this passage and another in section 4.2.1.1 on contact of curves. Later, I was 
able to make some improvements thanks to photocopies of the Florence manuscript, kindly supplied 
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In his 1789 memoir, Arbogast tried to effectively improve on [Lagrange 1772a}: he 

tried, for instance, to prove that (3.6) was valìd. whatever the function IL, something 

that in [Lagrange ^772a] was simpiy assumed. However, Arbogasts attempt of proof 

rested on a general validity of the binomial formula and on the assumption that any 

function y of x could be written as 

y = Axa + Bxß + Cx1 + Dx5 + kc. (3.8) 

where a, / ? , 7 ,6, kc. are any (real) numbers, in ascending or descending order [Frie

delmeyer 1993, 78]. As is well known, Euler had taken for granted the possibility of 

expanding an arbitrary function y of 3 ; as 

y = A + Bx + Cx2 + Dx3 + kc. 

and had given (3.8) as an alternative for sceptics, so to speak [Euler Introductio, I. 

§59; Youschkevitch 1976, 62-63]. 

After concluding that the différence Ay of y could be expanded into 

Ay = pAx + QAx2 + YTyrś r A x 3 + i ^ ^ ^ ^ + & C ' ^ 

Arbogast called each of the terms in (3.9) — disregarding the numerical coefficients — 
differentials: pAx the first differential, qAx2 the second differential, and so on. They 
were given the predictable notation (dy = pAx, dy2 = qAx2, kc.) and then Ax was 
identified with dx (because pAx, qAx2, kc. are differentials, not whole différences), so 
that it was immediate to conclude that 

dx ^' dx2 ^' dx3 ' 

p, q, r, kc. being functions of x, caLled differential ratios ("rapports différentiels") [Frie

delmeyer 1993, 80-81]. 
An interesting aspect in Arbogaste memoir was his exposition and use of a principle 

which I will call in this wrork Arbogasts principle: given a séries as 

we eau give Ax a value small enough for any of the terms in the séries to exceed (in 
absolute value) the sum of all that follow [Friedelmeyer 1993. 81]. Arbogast argued 
for this principle, trying to determine how small Ax had to be. But of course his 
arguments were flawed (the fundamental flaws arnount to using the largest of the terms 
rüÖ' ï^ê'^-0: °f which there may be an infinite number) [Friedelmeyer 1993, 81-

to me by Marco Panza. 
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84]. 

64 

A similar principle (but with a flavour of infinitesimal-neglecting) had already been 
stated and used by Euler [Differentialis, § 122]: in a series Pu 4- Qui2 + Ru;s + &c, if 
u is given a value so small that the terms QUJ2, Rw3, etc. become much smaller than 
Pu, than this first term may be taken for the whole series - this in computations that 
do not require "the highest rigour". Grabiner calls this "Euler's criterion" [1981, 117]. 
Euler used this to establish the necessarv condition ^ = 0 for a local extreme, without 

ax 
recurring to geometrical considerations [Differentialis, II, §253-254]. 

It is not surprising that similarly to what Euler had done (or better, according to 
Friedelmeyer [1993, 99]), Arbogast used his principle to study local extremes. Appar
ently he regarded it as one of the most important points in his memoir: in 1800 he 
made a summary of the unpublished memoir, listing six principles on which it rested, 
and this was one of them [Grabiner 1966, 48-49, 54-55]. Arbogast's principle was later 
used in two developments of the calculus based on power series: those by Lagrange and 
by Lacroix. 3 2 

Lagrange, living in Paris and attending the sessions of the Académie des Sci
ences since 1787, knew Arbogast's memoir. Apparently he was very pleased with 
it, and in 1797 the only fault he could find in it was that it remained unpublished 
[Lagrange Fonctions, 5]. 

In 1795 Lagrange was charged with teaching the calculus at the École Polytechnique. 
This was the turning point in which he found the need (and the will) to develop his 
suggestion of 1772 in detail. A book resulting from these lectures was published in 
1797 as Théorie des Fonctions Analytiques [Lagrange Fonctions]. 

After some introductory paragraphs (converted into an "Introduction" in the 1813 
edition) this book proceeds with a study of the series expansion of / ( x + i), where fx 
is an arbitrary function of x . 3 3 Lagrange starts by proving that such a series cannot 
include a fractional power of i, unless x is given certain particular values. 3 4 The argu
ment is the following: a term of the form ui^ will have n different values; since f(x + i) 
and fx must have the same number of values, a series involving the terms fx and ui^ 

3 2 I t is likely, but not certain, that Lacroix had direct access to the 1789 memoir. He does not 
mention Arbogast at all while treating the principles of the calculus; he does allude to his memoir 
in passing in chapter 4 [Lacroix Traité, I, 370], but only referring to the similarity between the 
ways in which Arbogast and Lagrange treated curves - he might know this from elsewhere, namely 
from Lagrange; while it is very clear that he had read another unpublished memoir by Arbogast, on 
"arbitrary functions" [Lacroix Traité, II, viii, 619], and that he was in contact with Arbogast already 
in 1794 [Traité, III, 543]. It is of course possible that Lacroix read Arbogast's memoir but only in or 
after 1795, making that reading irrelevant for his development of the principles of the calculus, but in 
time for the reference in a later chapter. 

3 3 Like many 18th-century authors, Lagrange only used parentheses around the argument when it 
involved more than one letter. 

3 4Lagrange claims to be the first, as far as he knows, to try to prove this a priori 
[Lagrange Fonctions, 7]. This claim is odd, because Arbogast, as we have seen, did try to prove 
it, and Lagrange was well aware of this. Unless the fact that Arbogast assumed the binomial expan
sion prevented his attempt from being a prion, to Lagrange's eyes. Be as it may, Lagrange's "proof" 
is quite different, and much more interesting, than Arbogast's. 



will have more values than / ( x + i) and therefore cannot represent it. The conclusion 

must be that only integrai powers of i may appear in the expansion of / ( x + 1 ) . No 

référence is made to the possibility of irrational powers of i. [Lagrange Fonctions, 7-8] 

Now, since f(x + 0) = fx, f(x 4- i) must be equal to fx plus a function of x and i 

that is zero when 2 = 0. Because of the argument above, tins new function must be an 

intégral multiple of i. In other words, 

f(x + i) = fx + iP (3.10) 

where P is a function of x and i. But then P is in the same situation as / ( x - f i ) , so 

that calling p to the value P assumes when i = 0 and repeating the reasonings above, 

P = p + iQ (3.11) 

where Q is a new function of x and i. This can be repeated, so that 

Q = iq-\-R, R = ir + S, etc., (3.12) 

and, substituting, 

/ ( x -I- i) = fx -f- ip + i2q + i3r 4- kc. 

where p, q, r, &c. are certain new functions of x. [Lagrange Fonctions, 8-9] 

The way in which the functions f,p, q,r,... relate to each other is explained in the 

same manner as in [Lagrange 1772a]: developing / ( x + i + o) as / ( ( x + o) + 1 ) and as 

/ ( x + (i 4- o)) and equating the resufting séries, arriving at 

en fin fiv 

f(x + t) = fx + f'xi + ^ + + J-^jï + ko. 

where fx is the first derived function of fx, f"x the first derived function of fx, and so 

on. fx earns the name primitive function, while the derived functions fx, fx, f"x,... 

are respectively its first ("prime"), second ("seconde"), third ("tierce"), ... functions. 

Lagrange gave a proof of Arbogast's principle, assuming several properties of the 

function and its power séries. In this proof he used, rather untypically, geometrical 

language. and considérations close to a limit approach. Given (3.10), (3.11) and (3.12) 

above, it is enough to prove that i can be given a value small enough that iP < fx, or 

iQ < p, or... Now, considering the curve expressed by iP (with i as abscissa), it must 

of course pass through the origin. Also, unless x assumes one of those particular values 

mentioned above, the curve must be continuons near the origin. so that it approaches 

the x'-axis little by little ("peu à peu") before meeting it, and therefore approaches it 

by less than any given quantity; it is then enough to take fx as this given quantity; 

the same argument applies with the curve given by iQ and the quantity p, and so on. 3° 

3 5Grabiner [1966, 142] argues that this proof. and particularly the "characterization of the continuity 
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Lagrange then comments that this is "one of the fundamental principles of the theory 
we propose to develop" and that it is tacitly assumed in the differential and fluxional 
calculi [Lagrange Fonctions, 12]. This suggests that he thought of this principle as a 
substitute for the neglect of higher-order infinitesimals. 

Lagrange did not use Arbogast's principle extensively in [Lagrange Fonctions], at 
least not in a direct way. But he used it to establish that if fz is positive from z = a. 
to z = b, b > a, then fb > fa [Fonctions, 45-46], and then used this result to derive 
what is now called the Lagrange form of the remainder for Taylor's series; 

f{z + x) = fz + xf(z + u) 

= fz + xf'z+*4f"(z + u) ( 3 i 3 ) 

= fz + xf<z + £f»z + &fm{z + u) 

&c 

where in each case u is an indeterminate quantity between 0 and x [Fonctions, 49]. 
This he used often, especially in applications to geometry and mechanics; and also, 
naturally, in the study of maxima and minima [Fonctions, 151-154]. 

The most marked difference from [Lagrange 1772a] is the complete absence of any 
rapport to differentials or to anything that might remind of them: no correspondence 
between fx and ^ is established, because the latter is not even mentioned. This is 
an important novelty relative to all other alternative foundations in the 18th century: 
Lagrange is not trying to justify the differential calculus, but rather to build afresh a 
calculus (he would use the expression calculus of functions) that he knows, or hopes, 
will be equivalent to the differential calculus. 

In [Lagrange Fonctions] we can see the culmination of a tendency for algebraic 
formalism that comes from Euler [Fraser 1989]. While in Euler one can still notice 
some remnants of the view that the calculus was concerned with quantities, in Lagrange 
the calculus is entirely concerned with expressions (even if he is often forced to call 
some of them "quantities" for lack of better words). It is clear, for instance, that he 
struggles (not always successfully) to avoid calling i (in f(x 4- i)) the increment or 
increase of x, so that instead of Euler's "quantitas variabilis x accipiat augmenturn 
= w" 3 6 , we have "a la place de x on met x 4- z" 3 7 . 

Moreover, Euler had focused the calculus on functions (which were regarded as 
expressions) and had noticed that differential ratios were much more relevant than 
differentials themselves; Lagrange took this one step further, abolishing differentials 

of iP" that Lagrange gives here, can be easily translated into algebra. But then, why did not Lagrange, 
the algebraist par excellence, do so? The fact is that Lagrange does not really characterize continuity 
here: he only uses a property of continuity. He did not have an algebraic characterization of continuity 
— continuity was a fundamentally geometrical property — and when he needed to appeal to continuity 
he had to resort to geometrical language. 

3 6"variable quantity x receives an increase = uf' [Euler Differentiate, 1, § 112], 
3 7 "instead of x is put x 4 i" [Lagrange Fonctions, 2]. 
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and putting derivatives (derived functions) in the central place of the calculus. 

3.2 The principles of the calculus in Lacroix's Traité 

We have seen in section 2.1 that Lacroix presented [Lagrange 1772a] as one of the 

main motivations for writing the Traité. From the start, it was to be a development of 

Lagrange's suggestion. 

3.2.1 Dating the Introduction and first two chapters of volume 

I 

Lagrange taught the calculus using the power-series foundation at the École Polytech

nique in 1795 and 1796. but he only published it in detail (in [Lagrange Fonctions]) in 

1797, 3 8 the same year that Lacroix published the first volume of his Traité (apparently 

Lacroix's book appeared a little earlier that year than Lagrange's [Lacroix Traité, I, 

xxx]). Lacroix seems to have attended Lagrange's lectures, but since he was working 

on the Traité at least since 1787, he probably had already written its first chapters. 

This is what he had to say on this in the Preface to the first volume: 

"L'impression de mon Livre fut commencée en frimaire an 4 (novembre 

1795) et suspendue par des raisons particulières pendant quelques mois; 

depuis cette époque Lagrange est revenu sur ses premières idées, à l'occasion 

d'un Cours qu'il a fait à l'Ecole Polytechnique. J'ai suivi ses leçons avec 

tout l'intérêt qu'elles dévoient inspirer; mais l'état où étoit mon ouvrage 

et la marche de l'impression me n'ont permis de profiter que d'un petit 

nombre de ses remarques que j 'ai eu soin de rapporter à leur Auteur." 3 9 

[Lacroix Traité, I, xxiv] 

In his Compte rendu [...} des progrès que les mathématiques ont faits depuis 1789 

(see appendix B, page 395), Lacroix was even more incisive. Speaking of a passage of 

chapter 1 with similarities to [Lagrange Fonctions], he said 

"mais on observera que Particle du traité dont on parle ci dessus était 

composé, imprimé, et entre les mains de plusieurs personnes, entr'autres 

3 8Lagrange taught it again in 1799, from which originated [Lagrange Calcul], but that is irrelevant 
here. 

3 9 "The printing of my book was started in Frimaire of year 4 (November 1795) et was suspended for 
personal reasons for a few months; after that time Lagrange returned to his early ideas, with, regard 
to a course that he gave at the École Polytechnique. I followed his lectures with all the attention that 
they should inspire; but the state in which my work was and the progress of its printing only allowed 
me to profit from a few of his observations, which I took care in ascribing to their author. 
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du C Prony, avant que le C. Lagrange fit à l'école polytechnique les leçons 

qui ont donné naissance à la théorie des fonctions" 4 0. 

There is a problem here. Lagrage gave those lectures for the first time in year 

3 [Prony 1795b}. If the printing of Lacroix's Traité started in Frimaire year 4. then 

Lacroix's claim for priority is false. There are several possibilities; 

1 - Lacroix may have just lied, trying to pass off his Traité as more original than it 

really was; 

2 - he may have attended Lagrange's lectures on the calculus only in the second year 

of the École Polytechnique, and assumed that in the first year Lagrange had not really 

taught that subject (according to [Prony 1795a] Lagrange's course of analysis in 1795 

started with arithmetic and covered several topics before finally arriving at the calcu

lus); 

3 - Lacroix may have incorrectly remembered the date when the printing started, and 

correctly remembered that it was before Lagrange's course. 

Be as it may, we can add some évidence corroborating Lacroix's claim of early 

circulation of part of volume I. Prony indeed had access to it, and cited it in [1795a, 

IV, 548]: 

"J'ai donné une règle générale fort simple pour étendre le théorème de 

Taylor à un nombre quelconque de variables; cette matière sera discutée 

dans l'ouvrage de Lagrange, et se trouve aussi exposée avec beaucoup de 

clarté et de détail dans le traité du calcul différentiel et intégral de Lacroix 

(tome 1, page 131 et suiv.)."Ai 

[Prony 1795a, IV] is in the fourth cahier of the Journal de l'École Polytechnique, re-

ferring to the autumn of 1795 but published only in September-October 1796; but this 

passage can also be found, with precisely the same words, in the version of lecture 

notes 4 2 distributed to students in the first year (lecture n.° 30). So we can say that 

by the end of the first school year of the Ecole Polytechnique (late summer or autumn 

1795) the first volume of Lacroix's Traité was printed at least until page 133 (Taylor's 

theorem for functions of three or more variables is in pages 131-133). 

Considering this, of the possibilities above number 3 seems the least unlikely. 

In the following sections we will analyse Lacroix's development of the Lagrangian 

foundations of the calculus, and we will see internai évidence for its independence 

4 0 "but it should be noted that the article of the Traité mentioned above was coinposed, printed, 
and in the hands of several people, among whom citi7en Prony, before citizen Lagrange had given at 
the École Polytechnique the lectures that gave rise to the Théorie des Fonctions''1 

4 1 "I have given a very simple gênerai rule to extcnd Taylor's theorem to any number of variables; 
this topic will be discussed in Lagrange's work, and is also exposed with plenty of clarity and détail 
in the traité du calcul différentiel et intégral by Lacroix (vol 1, pages 131 and jallowmg)." 

A2Leçons d'Analyse données à l'Ëcole Centrale des Travaux Publics, par R. Prony. Première Par
tie - Introduction à la Mécanique. Première Section - Méthode directe et inverse des différences. 
[Éc. Pol. Arch}. 
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from [Lagrange Fonctions] (section 3.2.4). A deeper, more philosophical, divergence 
will be referred in section 3.2.8. But it is possible to locate at least some of the few 
"remarques" of Lagrange from which Lacroix profited, as will be seen in section 3.2.5. 
The conclusion is that the Introduction and chapter 1 predate Lagrange's lectures (or 
at least Lacroix's attendance of Lagrange's lectures), and chapter 2, in its final form, 
is posterior. 

3.2.2 Functions of one variable 

Lacroix starts chapter 1 of the first volume by showing that f (x 4- k) can be expanded in 
a power series of fc, provided that the function f(x) be rational, exponential, logarithmic 
or trigonometric. "By analogy", this should happen for all functions; Lacroix promises 
us that we will see in the following that this analogy is correct [Traite, I, 85]. 

In fact, what he concludes some pages afterwards is somewhat weaker: that we can 
always expand f (x 4- k) into a series like X 0 4- Xjfc + X2k2+ etc., "si on sait trouver le 
coefficient de la premiere puissance de k [that is, how to find the derivative of f], quelque 
soit la fonction f"43 [Traite, I, 92-93] - which sounds to us like "if every function were 
differentiable, then every function would be analytic"; but this is not what Lacroix had 
in mind. 

Lacroix's point is that each of these functions Xi , X 2 , X 3 , etc. can be derived from 
the previous one (and X 0 from f) by the same procedure, and this procedure is that of 
deriving X 0 from f. He shows this by comparing f ((x 4- k) 4- k') with f (x 4- (k 4- k')), 
just like Lagrange had done in [1772a] (and as he did in [Fonctions]). A power series 
for the former is obtained from 

f (x 4- k) = f (x) 4- Xifc 4- X2k2 + etc. 

expanding each term in the right side, so that the first becomes 

f(x) + X ^ ' + ;C2A; /2-f-etc., 

the second becomes 
(Xi + X ^ ' + X ^ + e t c . ) * ; 

(where X[, X'{, etc. are the functions derived from Xi as X 1 ; X 2 , X 3 , etc. are derived 
from f (x)) , the third becomes 

(X 2 + X'2k' 4- X'ik'2 + etc.) k2, 

4 3 "if we know how to find the coefficient of the first power of k [that is, how to find the derivative 
of f], whatever the function f" 
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and so on. Now, of course 

f (x 4- (fe + k')) = f (x) -f Xl (k 4- A:') 4- X2 (k 4- A/)2 4- etc. 

Expanding each power of (fe + k') and comparing thèse two power séries. Lacroix con-

cludes that 

He then adopts the notation f ' (x) for the coefficient of k in f (x -f- fe) (that is 

f " (x) for the coefficient of k in f (x 4- fe) (that is X[): f "' (x) for the coefficient of fe in 

f " (x 4- fe), etc., obtaining 

f (x 4- fe) = f (x) + —pfe 4- ~~k2 + Y^75^ + ETC-
Thus the development into power séries is reduced to this recursive process of dériva

tion: knowing how to go from f(x) to f'(x) (whatever f), is enough to get ail the 

coefficients. 

This also gives us a idea of the calculus that is "clear and independent of the vague 

and paradoxical notions of infinity": the object of the differential calculus is precisely 

this process of "descending from the generating function to the derived functions" and 

that of the intégral calculus is the inverse process of "reascending from any one of the 

derived functions to the generating function" [Lacroix Traité, I, 94]. 

The first term f'(x)fe of the différence f(x -f fe) — f(x) is christened differential "be-

cause it is only a portion of the différence" and is given the syrnbol dî(x). This carries 

the introduction of the concept of "differentiation" : the search for the differentials of 

quantities [Lacroix Traité, 94-96]. 

Now, for the full introduction of the Leibnizian notation, dx is also required: 

"Pour mettre de l'uniformité dans les signes et faire de l'expression un 

type général qui puisse s'employer quelle que soit la lettre par laquelle on 

représent la variable d'où dépend la fonction proposée, on écrira dx au lieu 

de fe"44 [Lacroix Traité, I, 95] 

is then an immediate conclusion. 

This means that to obtain the differential di(x) one expands f(x 4- dx) — dx into a 

power séries and then takes the first term. But is this définition any better than the 

one by Cousin cited in page 57 above? What kind of object is dx? Trying to explain 

4 4 "To introduce uniformity in the symbols and to turn the expression into a general form that 
may be employed whatever the letter that represents the variable on which the proposed function 
dépends, dx wïll be written instcad of fc" 
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this, Lacroix uses the expression "hypothetical incrément" once, and soon after he 

élaborâtes: 

"dx n'est, à proprement parler, qu'un signe destiné à retracer la marche 

qu'on a suivie pour arriver à l'expression de î'(x), et à rappeller qu'on n'a 

considéré que le premier terme du développement de la différence indiquée; 

car d'ailleurs on fait toujours abstraction de la valeur de l'accroissement 

qu'il représente.'"1^ [Lacroix Traité, I, 95-96) 

There are some inconsistencies nere: dx is just a sign, subordinate to f '(x) = , but it 

also represents an incrément (although a "hypothetical" one, the value of which is never 

taken into account). I think that Lacroix is struggling here with a lack of appropriate 

language (or of more sophisticated mathematical concepts). Unlike Lagrange, he wishes 

to keep differentials, but like Lagrange, he rejects infinitesimals (at least in this section), 

and wishes to develop a calculus based on functions, not variable quantities. What 

could then dx be? A later mathematician could tell him that dx could be the identity 

function dx : k k and df(x) the linear function dî(x) : k \—> îf(x)k, so that in fact 

dî{x)(k) = î'(x) • dx(k). But you would really need a later mathematician for this. 

A slightly later mathematician, Cauchy, in [Cauchy Î823, 13], moved a little in 

that direction, identifying dx with the differential of the identity function x \—> x (by a 

certain confusion between a function and its value). But Cauchy did not yet have an 

appropriate language to deal with a functional concept of differential (as opposed to 

the variable-oriented, Leibnizian one): he defined df(x) as the liinit. when a tends to 

zero, of 

f{x + ah)-f{x) ^f(x + i)-f{z)h 

a i ' 

wherc h is a constant finite quantity and i = ah, and therefore his differential of f(x) 

always involved this constant h (which turned out to be equal to dx). Presumably 

because h was a constant he did not explicitly draw the conclusion that df{x) was a 

function of h (or of dx) — df(x) was apparently a function only of x.4tì 

As has been seen above, f'(x), î"(x), etc. are sometimes called "derived func

tions" 4 7 , because of the dérivation process, but the ñame that they gain in page 98 (and 

which will be used throughout the three volumes) is differential coefficients ("coefficiens 

différentiels"). In fact, "dérivation" is not a common word at ail in [Lacroix Traité], 

but "differentiation" is. After ail, this is a treatise on differential and integral calculus. 

It should be noted that this is the first occurrence in print of the name "differential 

coefficient", which would become very popular in the 19th century, being "adopted 

4Blldx is only, properly speaking, a sign intended to retrace the course followed to arrive at the 
expression of î'{x), and to remind that only the first terni of the development of the indicated différence 
was considered: besides, abstraction is always made of the value of the incrément that it represents." 

4 6 This was useful later in establishing higher-order differentials: the differential of dy = y'h was of 
course dy' • h = y"h'2 = y"'dx2, since h was a constant [Cauchy 1823, 45). The alternation between 
dx constant/variable according to x as independent/dependent variable followed [Cauchy 1823, 48]. 

4 7 A n expression taken from [Lagrange 1772a]. 
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in ali languages" [Anonymous 1900] Cajori 1919, 272]. Lacroix had already used ifc 
in 1785, but only for partial derivatives (that is. the coefficients in a différential like 
^z = P \\ + 1 %) ) a n c ^ m a niemoir that remained unpublished (see footnote 1 in page 
351 below). This name was probably "on the air"; Bossut used it in [1798, II, 351], 
again only for partial derivatives. 

In Lacroix's Traité the differential notation 

du (Pu dhi 
dx'dx^'dx^''' 

and even the Eulerian 

p,q,r,... 

will also be much more fréquent than 

u',u",u'",... 

Often, particularly in differential équations, the differentials dx.dy^x^y,... will 
occur without explicit référence to differential coefficients. Overall this foundation for 
the calculus is Lagrangian, but much closer to [Lagrange 1772a] than to [Lagrange 
Fonctions], where differentials have no place. 

The resutts obtained in the Introduction allow easy déductions of the differentials 
of one-variable algebraic, logarithmic, exponential and trigonometrie functions: as has 
already been noted, it is only necessary to expand î{x + dx) and extract the term with 
the first power of dx. 

3.2.3 Functions of two or more variables 

Differentiation of functions of two variables is also inspired by [Lagrange 1772a], but 
without resorting to the cumbersorne notation employed by Lagrange there (ur',r for 
modem ^ ^ ) . f{x-\- h,y-\-k) is expanded in two steps and in two ways (via f(x + /i, y) 
and via i[x,y + k)), whence the conclusion is drawn that -jg^ = ^ l s w o r t h 

mentioning that the notation is introduced as an abbreviation for so that 
this is to be understood as a differential coefficient, not as a quotient. 

The définition of differential as the first order term in the expanded séries of the 
incremented function is extended to the first order terms of u = f(x, y) giving 

du du , 
dî{x,y) = du = —dx + —dy (3.14) 

The d notation, which had been used occasionally by Legendre [Cajori 1928-1929, 
II, 225] is absent, but proper warning is given about the fact that ~dx is the differential 
of u regarding only x as variable and not to be confused with du [Lacroix Traité, I, 121, 
122-123]. Lacroix was well aware of the existence of notations for partial derivatives: 
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in volume III he mentions severa! of them, including Euler's ( and (j^ - but 

not Legendre's d [Lacroix Traité-, III, 10-11]. However, he believed that ^ and f~ are 

equally clear. 

Lacroix used a différent kind of parenthèses and only for a very special case: if 

both x and y appear in the expression for u, and at the same time y is regarded as a 

function of x, then ^ is the differential coefficient of u taken regarding y as a constant 

(notwithstanding the supposition that it is a function of x) - a sort of partial derivative; 

while 

d{u) 

dx 

is the differential coefficient of u taking in account the supposition that y is a function 

of x. In such a situation, u' = ^ [Traité, I, 163]; if z is an implicit function of x and 

y given by an équation u = 0, then [Traité, I. 174] 

d(u) du du dz 

dx dx dz dx 

In page 123 Lacroix criticizes the habit of calling the first-order partial 

différences of u . 4 8 The real partial différences of u are f(x -f h,y) - j{x,y) and 

f(x,y + k) — i(x,y), while f^dx and ~dy should be called its first-order partial dif-

ferentials and ~ and ~ its first-order differential coefficients. 

To fînd the higher-order differentials of u = i{x,y), Lacroix différentiates (3.14) 

twice (assuming dx and dy as constant), notices a similarity to the binomial formula 

and confirms this similarity by an impeccable proof by mathematical induction 4 9: he 

looks for "the law that reigns between two consecutive differentials"5 0 and confirms the 

resuit for the case n = 1. The final resuit was that 

_ dnu , „ n dP-u , . , n (n - 1) d^u , , 
(Tu = —dxn 4- — — dxn dx + -—dxn 2dyl + etc. 

dxn ldxn~ldy 1 2 dxn~2dy2 y 

that is, d^u can be obtained by expanding (dx 4- dy)n and introducing into each terni 

the corresponding differential coefficient. 

A careful argument involving the general terni of ï(x 4- h, y + k) allows Lacroix to 

4 8 T h i s habit can be seen for instance in [Bossut 1798, II, 351]. Partial differential équations were 
usually called "équations in partial différences" [Condorcet 1770; Lagrauge 1772b; Laplace 1773c; 
Monge 1771). 

4 9 B u t without using the word induction: for him it stili had the tneaning of a généralisation drawn 
by analogy from a number of exarnples. 

5 0 "la loi qui règne entre deux différentielles consécutives'' [Lacroix Traité, I, 125] 
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prove the two-variable version of Taylor's theorem: 

f(x -\-h,y-ì-k) = u 

+ è { 0 ^ + 2£|tó + 0fc2} (3.15) 

etc. 

Functions of more than two variables bring no surprises, and (3.15) is generalized 

to 
. . . du cru dzu 

f(x 4- h, y 4- k, etc.) = u 4- y 4- — 4- I ^ + etc. 

3.2.4 Differentiation of équations 

After the sections on differentiation of (explicit) functions of one ; two, and more than 

two, variables, Lacroix bas a large section on differentiation of équations [Traité, I, 

134-178]. As in [Euler Differentialis, I, ch. 9], this is both a manner of dealing with 

implicit functions and of preparing the way for the treatment of differential équations 

in the integral calculus. 

Here occur two passages that seern independent from Lagrange. The first is about 

the differentiation of an équation in two variables u = î(x,y) = 0 (from which y is to 

be regarded as an implicit function of x). 

In the first édition of the Traité, it takes Lacroix almost three and a half pages 

[Traité, 134-138] to arrive at the process to calculate ^ : calling h the incrément of x, 

he concludes from the fact that the corresponding incrément A; of y is 

i/h , y"h> , y'"h* , 

T T~2 r^rä ( 3 1 6 ) 

that f (x + h, y 4- k) must have the form 

f (x, y) 4- P,h 4- P2h
2 + P3h

3 + etc. (3.17) 

and since f (x 4- h, y -h k) = f (x, y) = 0 and h is indeterminate, Pi = 0, P2 = 0, P 3 = 0, 

etc. He then proceeds to show that each of the coefficients in the séries (3.17) is derived 

from the previous one just as in the Taylor séries of an explicit function of one variable 

(invoking arguments analogous to those he had used before). so that Pi = u', P2 = 

Px = etc. and therefore u' == 0, u" = 0, u'" = 0, etc. 

To evaluate u', Lacroix uses the fact that 

f (* + Ä, V + = « + - A + - f c + - ^ + etc.j + etc.; (3.18) 
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substituting (3.16) for k and disregarding all powers of h other than the first, he gets 

, du du . , 

"=sW=0; ( 3 1 9 ) 

and he still occupies a few more lines arguing that y' in (3.19) is precisely ^ (although 

that is how he had introduced y' for (3.16). three pages earlier), so that naturally ^ is 

obtained by differentiating u as if x and y were independent, putting the result equal 

to zero, and then solving for ^ . 

By the second edition [Traité, 2nd ed, I, 188-90], Lacroix had realized that he did 

not need to establish the recursive relation between the coefficients in (3.17). It was 

enough to substitute (3.16) for k in (3.18) to conclude that ~ + ^y' = 0, since that 

is the coefficient of h in the resulting series and all the coefficients should be zero to 

allow f (x + h, y + k) = 0 , h being indeterminate. 

The way in which Lagrange handles this in [Fonctions, 31-32] is a little different 

(and much simpler than Lacroix's first edition): firstly he notices that f {x,y) may 

be regarded as a function <px of x only (since y is itself being regarded as a function 

of x); then, since tp(x + i) = 0 and i is indeterminate, yfx must also be zero (this 

is quite similar to Lacroix's second edition); finally, to evaluate ip'x, Lagrange uses 

a previously established result to the effect that the derivative of a function of two 

variables is the sum of the partial derivatives, as well as the chain rule; therefore (p'x, 

being the derivative of / (x, y), is equal to / ' (x) + y'f (y) (this is Lagrange's way of 

writing §£ + |£§£). The conclusion is that 

v f {y) 

In the same section there is another passage that represents a small original con

tribution by Lacroix, if we take his word for it [Traité, 2nd ed, I, xxi], although he 

recognizes that similar reasonings appear in [Lagrange Fonctions]. 

In modern terms it would have to do with the inverse function theorem, although 

for Lacroix (and for Lagrange) it only amounts to know what to do to a differential 

equation on x and y if we want to revert from considering y as a function of x to 

consider x as a function of y. 

In [Euler Differcnttalts] this problem is related to the question of which first differ

ential is set as constant. After giving the method for removing higher-order differentials 

that was seen in page 53 above, Euler taught how to revert the process, and recover 

a formula where no first differential is supposed to be constant from another formula 

with 

_ dy _ dp dq 

^ dx}^ dx ' dx ' 
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where dx is set constant. This is not very difficult: if no differential is constant, then 

so that 

similarly 

T = 

^ dxddy — dyddx 
dx2 

dxddy - dyddx 
^ dx3 

dx2o9y ~ Zdxddyddy -t- 'Sdyddx2 - dxdyd?x 
dxb 

and so forth; it is then enough to substitute these expressions for p,q,r,... [Differ-
entialis, I, §271-278]. Now, if we want to have dy constant, we just have to put 
ddx = d3x = ... = 0 [Differentiate, I, §279-280]. 

A process based on constant differentials was not suitable for [Lagrange Fonctions]. 
Lagrange had to give an alternative approach. But there is a parallelism between 
this alternative and Euler's process: just as Euler's was a natural consequence of a 
process to derive a formula where no differential was constant, Lagrange's was a natural 
consequence of a process to start regarding both variables x and y as functions of a 
third variable £. It is easy to see how this relates to Euler's approach: if x and y are 
functions of t, then neither is regarded as an independent variable. Lagrange deduced 
his process in two different ways. The first is the following (Lagrange Fonctions, 60]: 
if V — and x and y are functions of t, then by the chain rule y' = x ' / ' (x) ; but if 
y were simply a function of x, we would have y' = f'(x); so the difference is that ]j£ 
should replace jf. Similarly, 

'£) y" y'x" 
x' x2 x ' 3 

should replace y"; 5 1 and so forth. 
Lagrange deduced these formulas in a second way, in the section on applications 

to mechanics (where he explicitly referred that t was time). Although this second 
deduction is in a chapter on applications, it is in fact closer to the basic principles of 
the Lagrangian calculus. 5 2 If t becomes t + 9, then x and y become respectively 

x + dx' + %x" + ^-x'" kc. (3.20) 

and 

y + Qy + jv" + he. (3.2i) 
5 1Lagrange does not explain this second part, but presumably its justification is that from 7̂ — f'(x) 

comes \ h\ = x'f'(x) and from y' = f'(x) comes y" — f"(x), so that we have ^r- instead of y". 
5 2 This second deduction is the only one used in [Lagrange Calcul] (which does not have sections on 

applications) [Lagrange Calcul, 62-68]. 
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However, if we regard y as a function of x, and x becomes i, then y becomes 

y + itf) + ^{y") + (ÏT) + &c. (3.22) 

where (y'), (y"), (y'"),... represent the derivatives of y function of x, as opposed to 

y',y",y'"• ••• the derivatives of y function of t. Now. we have here two expressions 

for the increment of x, namely i, in (3.22), and Qx' + Çx" + &c. : in (3.20); and we 

have two expressions for the development of y, namely (3.21) and (3.22): putting 

i — 6x' + y x " + kc. in (3.22), comparing with (3.21), and ordering the terms by the 

powers of 9, we get 

W +
 6T!J" + + = WW 

+ ( ( y ^ + ^ 2 ) * 2 

+... 

whence we can take 

y' , y"-{y')x" y" y'x' 
(y') = -r. [y") = 

X' X* X* X 

and so on [Lagrange Fonctions, 239-241]. 

Of course, no matter how these formulas are deduced, to change from x to y as 

independent variable it is enough to take y = t, so that y' = 1 and y" = y'" = ... = 0 

and they become 

{y,) = h' {y") = -i- etc-
Lacroix, the encyclopédiste, managed to give three processes. Later, in his Compte 

rendu [...] des progrès que les mathématiques ont faits depuis 1789 (see appendix B, 

page 395) and in [Traité, 2nd ED, I, xxi], he claimed that he had felt that Euler's 

approach was not compatible with the foundation he was trying to implement, so that 

he decided to substitute new considerations, and that he DID this independently from 

Lagrange. Indeed it seems that the first two processes that he gives are his own. One 

obvious difference between them and Lagrange's is that these are direct methods, not 

consequences of methods for introducing a third variable. Lacroix's third process is 

not so original, but IT comes from Euler, not Lagrange. 

For the first process [Lacroix Traité, I, 149-150], Lacroix reminds the reader that 

dy ~ y'dx dx = x'dy 

dy' = y"dx dx' = x"dy Y WND< y (3.23) 
dy" = y"'dx I I dx" = x"'dy V 

etc. etc. 
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Also, from (3.19) (in page 75 above) 5 3 there exist M and N such that M 4- = 0, 

or Mdx 4- Ndy = 0, which means that 

iVf + Ny' = 0 and M i ' 4- N = 0 

From this it is immediate that 

y' 

(Would not it nave been more immediate to conclude this from the first line in (3.23)?) 

Differentiating this comes 

and using the second line in (3.23), 

y" dx y" 
x" = -

y/2 fly y/3 

Similarly he arrives at 

x"' = 
~y'y"' + ^y"2 

v'5 

And so on. 

The second way to derive this results is closer to the first principles of the foundation 

Lacroix is following: if h is the incrément of x and k is the associated incrément of y, 

then 
, y'h y"h2 y"fh3 , , 

and 
t'Ic v"k2 >r'"lc3 

' l = - + i T 2 + r ^ + e t c ' ( 3 - 2 5 ) 

Now, using the method of reversion of séries (a purely combinatorial method which 

had been reported in the Introduction) to obtain a séries for h from (3.24), the resuit 

is 
t 1 , y" k2 fSy'^-y'y"^ k* 

which, being compared with (3.25), confirms the previous results for x',x",x"', etc. 

[Traité, I, 150-151] 

After reporting thèse two processes, Lacroix gives a summary of Euler's consid

érations on difïerentiation without taking any first differential as constant (and on 

recovering this situation, that is, given a second-order differential équation in which, 

say dx is constant, to obtain an équivalent équation in which no first differential is 

Constant). The advantage of doing this is that afterwards we can regard indifferently y 

as function of x or x as function of y. And it is then possible to make the corresponding 

o 3 T h e context of this passage is stili the differenti at ion of an équation i(x, y) = 0. Of course in such 
a situation y is an implicit function of x and x is an implieit function of y. 
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first differential constant [Traité, I, 151-154]. 

3.2.5 Particular cases where the Taylor series does not apply 

From what has been discussed in the paragraphs above, it is apparent that chapter 

1 of the first volume of Lacroix's Traité was not influenced by Lagrange's lectures at 

the École Polytechnique. Rather it presents an independent development of Lagrange's 

suggestion of 1772. 

However, Lacroix recognized that he had profitted somewhat (if not much) from 

those lectures (see above, page 67). There must be some influence from Lagrange's 

lectures in [Lacroix Traité, I]. And in fact there is. but in chapter 2 (devoted to "the 

main analytical uses of the differential calculus" 5 4 — mainly the use of the calculus to 

develop functions into series, to raise indeterminacies like °j, and to find maxima and 

minima). 

We have seen above (page 64) that Lagrange gave a proof, in [Fonctions, 7-8] and 

probably in his 1795 lectures at the Ecole Polytechnique, that the series for f(x + i) 

cannot include a fractional power of *, unless x is given certain particular values. He 

also explored those particular cases: if the expression of fx includes a radical that 

disappears for some particular value of x, then the argument quoted above in page 64 

does not apply to that value. For instance, let fx = (x — a)\/x — 6. This function has 

two values, except when x = a or x = b, in which cases it has only one. Because, in 

general, it has two values, so must its development 

z 2 

f(x + i) = fx + if'x + -fx + kc. (3.26) 

where i is indeterminate, have two values. This happens for x = a because the radical 

VX — b, which disappears in fx, reappears in fx, f"x,... But it does not happen for 

x = b. In the latter case, (3.26) is faulty ("fautif") - and in fact f'b - f'b = . . . = co 

(more generally, in such cases fnx = fn+1x = ... = oo, for some integer n). The 

correct development of f(x + i) for x = 6 is (6 - a)\fi + ¿3. The fractional powers 

of i are necessary to give back to the function its double value. [Lagrange Fonctions, 

32-39] 

Lacroix [Traité, I, 232-236] reports this latter case, but not the former, where the 

irrationality disappears only because it is multiplied by an expression that becomes 

null. In fact, Lacroix even finds it obvious that "toutes les fois que la fonction qu'on 

voudra développer sera irrationelle en général et que par la substitution d'une valeur 

particulière de x elle cessera de l'être, alors l'irrationalité tombera nécessairement sur 

Facroissement" 3 5 (i for Lagrange, k for Lacroix). His example, instead of (x~a)^fx — b, 

5 4 "Des principaux usages analytiques du Calcul différentiel". 
o 5[Lacroix Traité, I. 233): "Every time the function we want to expand is irrational in general, but 

ceases to be so by the substitution of a particular value of x, the irrationality must then fall upon the 
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is b + y/x — a. 
He takes the chance also to report Lagrange's argument for the impossibility of a 

irrational exponent in the expansion of f(x + k). However, he does not call it a "proof", 
rather a "more solid foundation than the induction" used in chapter l . 5 6 

Lacroix acknowledges Lagrange's authorship of these considerations [Lacroix Traité, 
I. 235], but the one paper by Lagrange [1776] associated to this section in the table 
of contents for [Lacroix Traité] is there by mistake: it relates in fact to the previ-
ous section. Lacroix almost certainly got this from Lagrange's lectures at the Ecole 
Polytechnique in 1795 or 1796. 

It is tempting to wonder if in those lectures Lagrange was not yet aware of the 
possibility of the case in which it is a multiplier of the irrationality that disappears 
(or maybe he was aware but for some reason, say lack of time, chose not to address 
it in class). For the second edition of the Traité Lacroix had of course access to 
[Lagrange Fonctions] and he addressed both cases [Traité, 2nd ed, I, 333]. 

3.2.6 Foundations for algebraic analysis 

Before the chapter on the principles of the calculus, [Lacroix Traité, I] includes an 
"Introduction". Its purpose is to give "series expansions of algebraic, exponential, 
logarithmic and trigonometric functions" by algebraic means, without recourse to the 
notion of infinity [Lacroix Traité, I, xxiv]. The goal of studying functions by expanding 
them in series (before presenting the differential calculus) makes clear the intended 
equivalence to the first volume of [Euler Introductio]. But Euler had used infinite 
quantities quite freely, and Lacroix explicitly avoids them. 

Together with chapter 3 (a "digression on algebraic equations"), the Introduction 
also corresponds to what was known for some time as algebraic analysis ("analyse 
algébrique"). Nowadays this expression is often used by historians to refer to an al
gebraic conception of analysis, particularly Lagrange's [Fraser 1989], but also that of 
the German Combinatorial School [Jahnke 1993]. However, around 1800 the expres
sion was somewhat ambiguous. It could have that meaning, as in the full title of 
[Lagrange Fonctions], where the principles of differential calculus are declared to be 
"reduced to the algebraic analysis of finite quantities" (see footnote 29 above). But in 
the Ecole Polytechnique it was used to refer to a section in the syllabus of analysis, 
composed of aspects of higher algebra that did not use differential or integral calculus: 
the fundamental theorem of algebra, series expansions of particular functions, algo
rithms for third- and fourth-degree equations, etc. (see appendices C.2.2 and C.3.1 for 
details). It is in this latter sense of a subject, not a point of view, that this expression 

increment". 
5 6[Lacroix Traité, I, 234]: "Nous offre [...] le moyen de l'établir sur des fondemens plus solides que 

l'induction dont nous l'avons déduite". "Induction", of course, is here used in the non mathematical 
sense - see footnote 49. 
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is used here. Lacroix, who did not use this expression much (and may not have been 

very fond of it) would describe the subject as "l'analyse intermédiaire entre les Elémens 

d'Algèbre proprement dits, et le Calcul différentiel"5 7 [Traité, 2nd ed. I, xx]. Cauchy's 

Analyse algébrique [1821] transformed radically the meaning of the expression, turn

ing the subject into a pre-calculus study of functions based on a theory of limits, and 

explicitly rejecting the "generality of algebra". 

This Introduction contains material that the modern reader regards as related to 

the foundations of the calculus, but it must be stressed that in Lacroix's arrangement it 

comes before the differential calculus and of course before the principles of the calculus 

are addressed. 

The first issue addressed in the Introduction is one of those with a "foundational" 

character: the concept of function. For Lacroix the content of this word had been going 

through a progressive enlargement, until at that time it could be defined as follows. 

"Toute quantité dont la valeur dépend d'une ou plusieurs autres quantités, 

est dite fonction de ces dernières, soit qu'on sache ou qu'on ignore par 

quelles opérations il faut passer pour remonter de celles-ci à la première." 5 8 

Grattan-Guinness [1990, I, 141] compares this definition with the general concep

tion of function Dirichlet used in 1829 (when he introduced the characteristic function 

of the rationals). But he also notes that the functions with which Lacroix worked were 

not that arbitrary: he "often stayed in or around power series in his introduction". 

In fact, the example given by Lacroix of a function for which it is not known which 

operations are necessary to go from the argument to the corresponding value of the 

function, is the root of a 5th degree equation: "in the present state of algebra" it was 

not possible to assign an expression to it. It is doubtful that Lacroix would recognize 

the characteristic of the rationals as a function. Be as it may, no function so strange 

ever occurs in Lacroix's Traité. 

The introduction of series 5 9 is justified by two observations: first, that some alge

braic functions give rise to them, when one tries to express one such function by an 
2 3 

"assembly" ("assemblage") of monomials (it is the case of = 14- ~ 4- ^ 4- ^ 4-etc.); 

second, that some functions, as is the case of the logarithms, sine, and cosine, are not 

expressible by a limited number of algebraic terms (these functions are called transcen

dental). 

This means that series are not studied here for their own sake, rather as develop

ments of functions, and therefore it is mainly power series that appear. 
5 7 "the intermediary analysis between the elements of algebra in the strict sense, and the differential 

calculus" 
5 8 [Lacroix Traité, I, lj: "Any quantity the value of which depends on one or more other quantities 

is said to be a function of these latter, whether or not it is known which operations are necessary to 
go from them to the former." 

5 9Lacroix uses the "series" and "sequence'' ("suite") interchangeably, but "series" occurs more often 
and since he is almost always referring to what we call series. I will use only this word. 
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This use of séries as developments of functions makes it necessary for Lacroix to 

warn that a séries does not always have the value of the corresponding function [Traité. 

I, 4]. This entails a discussion on convergence, illustrated by the example of = 
2 3 

l + ^ - l - | i - r - ^ 3 - + etc., divided into the cases x < a, x > a and even x = a. It is a 

careful discussion, making use of the remainder „ _ f , " — ? o f l + ï + £ ï - f - . . . + ~j. 
° A" 1 (A—x) a az an~' 

It is here that Lacroix introduces a définition of limit: 

"Dorénavant nous appellerons limite, toute quantité qu'une grandeur ne 

sauroit passer dans son accroissement ou son décroissement, ou même 

qu'elle ne sauroit atteindre, mais dont elle peut approcher aussi près qu'on 

le voudra.®0 

So, if a given séries has a limit, its value is that limit. But even if the séries does not 

converge, as long as it is the development of some known function it can be used for 

some purposes as a représentation of that function: 

"Si une question nous conduisoit à une série telle que 

X x2 x3 

l + - + ^ + - r + e t c . 
a az a6 

nous serions en droit de conclure que la fonction cherchée, n'est autre que 

ou si nous découvrions quelques propriétés relatives à une suite de 

termes tels que 1 + | + ^ + etc., nous pourrions affirmer qu'elle appar

tient à la fonction Mais toutes les fois que qu'il s'agira de la valeur 

absolue de cette quantité, nous ne saurions employer la suite trouvée par 

son développement, qu'en ayant égard au reste." 6 1 

Lacroix duly reports the well-known fact that it is necessary, but not sufficient, for 

a séries to have a limit, that its terms be eventually decreasing [Lacroix Traité, I, 9]. 

He thus seems to use the modem concept of convergent (équivalent to "having a 

limit") not the one that d'Alembert had used in the articles "Convergent" and "Di

vergent" of the [Encyclopédie]: there d'Alembert had called convergent a séries the 

C 0[Lacroix Traité, lst ed, I. 6]."Henceforth. we will cali limit, every quantity which a magnitude 
cannot surpass as it increases or decreases, or even that it cannot achieve, but which it can approach 
as close as one might wisk." 

6 1 [Lacroix Traité, I. 7]: "If, while addressmg some question, we were ted to the séries 

x x"2 x3 

L H 1—H—^ +ETC 
a a2 aA 

we would be allowcd to conclude that the function we were looking for is none other than or 

if we discovered some properties relative to a séries of terms such as 1 + ^ 4- ^ + etc., we would be 
able to state that they belong to the function But whenever the subject is the absolute value of 
that quantity, we cannot employ the séries found by developing it, withont taking the remainder into 
account/' 
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ternis of which are always decreasing and divergent one with increasing terms. 6 2 This 

is in spite of Lacroix citing in the table of contents, associated to the Introduction, 

a memoir where d'Alembert uses those concepts of convergence/divergence (and gives 

two famous examples of a séries that is convergent until the 299th term and divergent 

from then on and of another that is divergent until the 99th term and convergent from 

the lOOth onwards [d'Alembert 1768, 175-176]). 

But in fact Lacroix never defines convergent nor divergent explicitly, and in those 

cases where a séries might have decreasing terms but not hâve a limit, he seems to 

avoid the words convergence and divergence: for instance, when stating the necessary 

condition mentioned above, his wording is "pour qu'une série qui est le développement 

d'une fonction finie, approche continuellement de la vraie valeur, il faut que les termes 

qui la composent aillent en décroissant" 6 3. But at least in one occasion Lacroix proves 

that a séries (ex = 1 4- f 4- e ^ c ) ^ convergent just by arguing that its terms must 

be eventually decreasing [Lacroix Traité, I, 37]. 

It is also worth mentioning that Lacroix often speaks of one séries being "more 

convergent" than another, meaning that it converges more rapidly (as, for example, in 

[Lacroix Traité, I, 42-47], on séries for calculating logarithms): convergence is appar-

ently a yracticai issue: it concerns the usefulness of the séries as a means to calculate 

an approximate value of a function; convergence/divergence is about whether it can be 

used at ail for that purpose and the degree of convergence is about how good it is for 

that purpose. But the status of the séries as a représentation of the function of which 

it is a development is not affected by such questions. 

There seems to be an odd mixture of rigour and carelessness. This can be seen 

when Lacroix addresses what I have called in page 3.1.4 Arbogast's principle; Lacroix 

gives a more general version: given a séries of terms like Axa 4- Bx@ 4- Gx?4- etc., where 

a > (3 > 7 > etc. or a < ¡3 < 7 < etc., it is possible to find some value m to substitute 

for x such that Am.a > Bm13 4- Cm* 4- etc. 

The proposition is stated in this way (and is therefore wrong); it is proven (in the 

first case; the second is analogous) by writing the différence between Ama and the rest 

of the séries as 

which shows that it increases with m, and therefore that "it is clear" that m can be 

chosen so as to ensure Bm0 + C m 7 4- etc. < Ama [Lacroix Traité, I, 10-12]. 

However, Lacroix décides to show how such a number m can be found. He uses 

the geometrie séries (with ratio 2) as a starting point, so that he wants an rn that will 

6 2 B y the article "Série", d'Alembert's ideas seem to have changed a little: a séries was then con
vergent if it approached more and more a finite quantity and, continued to infinity, it would finally 
become equal to that quantity. That its terms would be decreasing was by then a conséquence, not 
the définition. 

6 3[Lacroix Traité, I, 9]: "for a séries that is the development of a finite function to approach con-
tinnously its true value, it is necessary that the terms that compose it decrease progressives" 
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ensure that each term of the séries will be larger than twice the next. Analysing the 

case of a séries, A + Bx 4- Cx2 + Dx3 + he arrives at the condition m > ^ß, where 

P. Q are the consecutive coefficients out of A, B, C, D,... with the largest ratio. 

Of course the existence of such a pair P. Q is not assured for every power séries, and 

at the end of the argument just described Lacroix introduces the extra condition that 

the ratios between consecutive coefficients must have an upper bound [Lacroix Traité, 

I, 13). He even gives a counter-example(l): 

1-2 1 -2 -3 1 - 2 - 3 - 4 
1 + + r— + r — etc. 

X X£ X6 

Lacroix used Arbogasts principle in chapter 2 (on analytical applications of the dif-

ferential calculus), to study maxima and minima, like Euler and Arbogast had done be-

fore him and Lagrange was doing more or less at the same time in [Lagrange Fonctions]; 

and later in chapter 4 to apply the differential calculus to the theory of plane curves 

(tangents, oscillation, areas and arc-lengths), like Arbogast and Lagrange — see section 

4.2.1.2. But after the Introduction he does not seem to worry about avoiding situations 

like (3.27). 6 4 

Lacroix handles limits still very intuitively, in a way similar to d'Alembert or Cousin 

(see subsection 3.1.2). Thus, in page 189, adapting the differential calculus to the 

method of limits, the limit of p-\-qh-r-rh2 + etc., when h vanishes, is p, without further 

ado. In particular, he does not feel the need for prévention against a counter-example 

similar to (3.27). 

Infinity ( | ) is introduced as a "negative" concept: an exclusive limit, a limit that 

quantities can never reach [Lacroix Traité, I, 7, 9-10]. This is the "true metaphysics" 

that should replace the actual infinity usually employed by mathematicians. But in 

fact the actual infinite appears every once in a while throughout the three volumes, 

when Lacroix feels the need or the usefulness of resorting to the Leibnizian calculus. 

He does think that the way Leibniz presented the calculus was less rigorous than limits 

or power-series [Lacroix Traité, I, 193]. But rigour, for Lacroix, seems to be a matter 

of more or less, rather than yes or no, just like convergence. 

3.2.7 Alternative principles for the differential calculus 

Chapter 1 ends with a section about alternative foundations for the calculus: d'Alem-

bert's limit approach and Leibniz's infmitesirnals. Lacroix does not address New

tons theory, "parce qu'elle tient à la considération du mouvement qui est étrangère à 

l'analyse et à la géométrie" 6 5. 

6 4 I u the Introduction there is a situation in which he does verify that the extra condition holds and 
thus he can use Arbogasts principle [Lacroix Traité, 58-59]. This is in a déduction of a power séries 
for the sine. 

6 5[Lacroix Traité, I, 194]: "because it draws on the considération of motion which is foreign to 
analysis and geometry" 

3.27) 
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Because he has already addressed the theory of limits in the Introduction (see 

subsection 3.2.6 above), Lacroix only needs to apply it to give limit-based definitions 

of differential and differential coefficient. But his power-series considerations also play 

a role here (although a technical one). Given a function u of x, when x becomes x + h, 

u will become u + ph + qh2 + rh? + etc.; therefore, calling k to the increment of u, we 

have 

k 

h 

Letting the two increments k and h vanish, the limit of £ is then p, which is the first 

differential coefficient of u. 

It is clear that Lacroix's purpose in this section is to show that the same results are 

achieved with the method of limits as with the power-series definition of the differential 

coefficients. He gives a few examples of how some particular differential coefficients can 

be deduced using limits, including deducing those of logarithmic and trigonometric 

functions, without resorting to series expansions. 

Leibnizian infinitesimal differentials are also briefly introduced [Traité, I, 193-194], 

in spite of being less rigorous than both limits and power-series, because they are "plus 

commode dans les applications" 6 6. Perhaps Lacroix should have included here a foot

note that appears only in chapter 4, when explaining the application of infinitesimals 

to the study of curves: in that footnote, he quotes Leibniz to the effect that the consid

eration of a curve as a polygon is an approximation, whose error can be made as small 

as possible - so that the use of infinitesimals is simply an abbreviation of "Archimedes' 

style" (i.e., the method of exhaustion), or of the method of limits [Traité, I, 423-424]. 

This section is typical of Lacroix's encyclopédiste approach: to expound all relevant 

alternative methods or theories (and trying to conciliate them). It is also an essential 

instance of that approach because in future chapters Lacroix will sometimes need to re

sort to one or other of those alternative foundations in order to explain some particular 

method. 

This is most marked in chapter 5 of volume I and chapter 5 of volume II. Chapter 

5 of volume I is dedicated to analytic and differential geometry in the space, and it 

is essentially based on work by Gaspard Monge. Lacroix had no choice but to follow 

Monge in speaking, for instance, of envelopes of one-parameter families of surfaces as 

the limits of their consecutive intersections (where "consecutive" suggests infinitesimal 

considerations, mixed here with limits). Space curves are regarded mainly as polygons 

in which three consecutive sides are not coplanar. 

Chapter 5 of volume II is dedicated to the method of variations. Lacroix makes no 

attempt to suit the calculus of variations to the Lagrangian power-series foundation of 

the calculus, so he presents Lagrange's ^-algorithm in its Leibnizian shape (the rules of 

^-differentiation come from those of d- different! at ion by plain analogy and Sdy = day 

6 6 "more convenient for applications" 
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is justified using infinitesimal considerations). 

3.2.8 A criticism of Lagrange 

Lacroix's approach to the principles of the calculus, although technically drawn from 

Lagrange's work, has a fundamental difference in relation to the latter's view on this 

issue, Lacroix saw in [Lagrange 1772a] a more rigorous and more elegant way to justify 

the differential calculus than the other ways available, but he did not seek to exclude 

these other views, as they wrere often useful. 

They were useful not only for technical reasons, but also for the insights they 

allowed. In the preface to the first volume he quoted a letter he had received from 

Laplace in January 1792, while he was gathering material for the Traité: 

"Le rapprochement des Méthodes que vous comptez faire, sert à les éclaicir 

mutuellement, et ce qu'elles ont de commun renferme le plus souvent leur 

vraie métaphysique: voila pourquoi cette métaphysique est presque toujours 

la dernière chose que l'on découvre." 6 7 

These words from Laplace certainly mirror the way Lacroix felt about the principles 

of the calculus. 

Lagrange, on the other hand, sought to establish a coherent and comprehensive 

foundation for the calculus, excluding all alternative views. This included renaming 

the subject as calculus of functions, and abandoning notations that were evocative of 

infinitesimals. 

Lacroix did not comment explicitly on the fundamentalism, as it were, of Lagrange; 

but in volume 3, which appeared in 1800 (three years after [Lagrange Fonctions]), he 

did comment, rather disapprovingly, on Lagrange's exclusion of the traditional nota

tions. 

In a very lengthy footnote {[Traité, III, 10-12]: almost two and a half pages!), 

Lacroix argues that a change in metaphysics does not necessarily entail a change in 

notation; that the first two volumes of his Traité are proof enough that the traditional 

notations are compatible with the power-series approach; that Lagrange's '-notation 

is not at all convenient for functions of more than two variables; that Lagrange's 

contributions to analysis using the calculus of functions could be equally obtained 

using the differential calculus; that the passage from algebra to the differential calculus, 

as presented in his own Traité or in [Lagrange 1772a], was as simple as the passage 

from algebra to the calculus of functions; that everyone who had already studied the 

calculus, reading [Lagrange Fonctions] was forced to translate (at least mentally) its 

results into the usual symbols; and finally, that original notations embarrass students. 

6 7 [Lacroix Traité, I, xxiv]: "The reconciliation of the Methods which you are planning to make, 
serves to clarify them mutually; and what they have in common contains very often their true meta
physics: this is why that metaphysics is almost always the last thing that one discovers". This 
translation is taken from [Grattan-Guinness 1990, I, 139] 
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The comparison between [Lagrange Fonctions] on one side, and [Lacroix Traité] and 
[Lagrange Î772a\ on the other, is particularly suggestive of Lacroix's disappointment 
with (Lagrange Fonctions]. Not a mathematical disappointment, of course: he is very 
clear about the worth of [Lagrange Fonctions], and about the fact that he profited 
from it; more of a philosophical disappointment. as well as pedagogical. 
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Chapter 4 

Analytic and differential geometry 

The two final chapters in volume I comprise a "complete theory of curves and curved 

surfaces"; that is, not only the "application of the differential calculus to the theory of 

curves" (and of curved surfaces) — what we now call differential geometry - but also 

the "purely algébrate part of that theory" — analytic geometry [Lacroix Traité, l, xxv, 

327]. Lacroix explained the inclusion of analytic geometry by his désire to offer a fuli 

set ("ensemble complet") and to relate notions that were usually presented from very 

différent points of view [Lacroix Traité, I, 327], 

Lacroix, a good teacher. divided thèse chapters by dimensions: chapter 4 is devoted 

to both analytic and differential geometry on the plane; chapter 5 in space. In this 

study the main division will be by subject: first analytic geometry, then differential 

geometry. 

The boundaries between analytic geometry and differential geometry are sometimes 

a little artificial, particularly when talking about the 18th century, an age in which the 

study of infinite series could be regarded as "purely algebraic". In thèse two chapters it 

is often not elear into which of the two subjects a particular passage should be classified. 

Nevertheless, there is an interesting story to be told about analytic geometry, in which 

Lacroix plays an important role, and that was décisive in the choice for this division. 

In thèse two chapters the influence from Monge is most marked: he was one of the 

chief authors of the version of analytic geometry that emerged in the late 18th century; 

and as for chapter 5, the "theory of curved surfaces and curves of double curvature" 

presented there "is almost entirely due to Monge" [Lacroix Traité, I, 435]. 

Another influence from Monge is in the parallelisrn that Lacroix tries to draw be

tween analysis and geometry. The purpose of thèse two chapters is perhaps most 

fully explained in a draft letter dated 22 Nivose year 3 (11 December 1794), kept at 

[Lacroix IF, rns.2397] 1: 

"Ne croyez pas que les chapitres d'application queje veux intercaler puissent 

déranger la marche analytique car ils seront isoles du reste, ils ne serviront 

^ h e addressee is not identified, but was probably Regnard, possibly a private pupil, to whom 
Lacroix had been writing, at least since 1789, explaining several issues of mathematics. 
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pas à découvrir ou à démontrer aucun résultat de calcul. Mais ils seront 

l'image des chapitres precedens. On les passera si on veut sans nuire à 

la lecture du reste mais aussi ils reposeront et amuseront l'imagination de 

l'eleve par des peintures sensibles des procédés de calcul donnés dans les 

chapitres precedens. 

Ainsi l'analyse et la géométrie ne seront point mêlées mais cet ouvrage 

séparé que j'avais commencé avec soin 2 sur l'application de 1 analyse, se 

trouvera intercalé par chapitres dans l'autre. Ainsi après les principes du 

calcul différentiel, on trouvera un traite des propriétés générales des courbes, 

des courbes a double courbure et des surfaces courbes qu'on lira ou qu'on 

passera a volonté. On y verra la peinture bien complette et bien intéressante 

de ce que c'est que différences partielles." 3 

4.1 Analytic geometry 

4.1.1 From "the application of algebra to geometry" to "an

alytic geometry" 

This subsection is based mainly on [Boyer 1956} and [Taton 1951, 101-124]. It is an 

attempt to explain how in a certain sensé analytic geometry was a novel subject in 

1797. Lacroix's présentation of it was one of the very first to take a certain new point 

of view. 

An explanation on terminology is in order here: the expression "application of al

gebra to geometry" (very much common in the 18th century) will be used for any 

application of techniques of symbolic algebra in geometry; the much less common ex

pressions "coordinate geometry" and "coordinate methods" will refer to the kind(s) of 

application of algebra to geometry that used coordinates (not necessarily orthogonal, 

2Belhoste [1992, 568] reads here "avec vous"; but given the teacher-pupil tone of the rest of the 
letter, this does not sound very convincing (unless of course Lacroix was writing that separate work 
as lectures for this student). Belhoste also interprets this whole passage as meaning that Lacroix 
intended to interpose his "descriptive geometry" {Lacroix 1795] in the Traité. I disagree: Lacroix 
certainly made many références to [Lacroix 1795] in chapter 5, but what he says here is that a 
work he had been writing on the application of analysis (to geometry, presumably) was going to be 
interposed in the Traité - that separate work must correspond to chapters 4 and 5. 

3 "Do not think that the chapters of application which l wish to interpose might dîsturb the ana-
lytical course: they will be isolated from the rest, they will not be used to discover or demonstrate 
any resuit of calculus. But they will be the image of the preceding chapters. One may pass over 
them, if one wishes, without hindering the reading of the rest, but they will also rest and amuse 
the imagination of the student through sensible depictions of the procédures of calculus given in the 
preceding chapters. 

Thus analysis and geometry will not be mixed, but that separate work which I had begun with care 
on the application of analysis will be found inserted by chapter in the other. Thus after the principles 
of the différentiel calculus. one will find a treatise of the gênerai properties of curves, of curves of 
double curvature and of curved surfaces, which may be read or passed over as one may wish. One will 
see there a quite complète and quite interesting depiction of what are partial differentials." 
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not necessarily with explicit x~ and y-axes), which allowed to represent the geomet-

rical objects involved by means of equations; "analytic geometry" will be used for 

a refinement of "coordinate geometry" that sought to be as independent as possible 

from synthetic (i.e.. non-algebraic) geometry. A very simple example of "application 

of algebra to geometry" which is not "coordinate geometry" is the following, taken 

from [Bézout 1796, III): given the sides of a triangle ABC, to find its height and 

the lengths of the segments it forms on the basis. That is, we know AB, BC, AC. 

and wish to know BD, AD, DC. Following the usuai conventtons of algebra, we put 

B 

BC = a, AB = b, AC = c, and CD = x, BD = y: of course AD = c - x. The theorem 

of Pythagoras gives 

xx + yy = aa and ce — 2cx + xx + yy = bb 

whence 
l ( q + ò ) ( o - 6 ) 1 

2 c + 2C-

"Application of algebra to geometry" was an umbrella term for ali uses of algebra 

in geometry, but we can say that its non-coordinate section (which by the 18th century 

was purely a school subject, not a research topic) focused on the same objects as 

elementary synthetic geometry: triangles, squares, circles, and so on. "Coordinate 

geometry", on the other hand, focused on curves and surfaces. In its common form, 

straight lines and planes werc not included in those "curves and surfaces". "Analytic 

geometry" changed this. 

4.1.1.1 From Descartes to Euler 

One of the best known faets of the history of mathematics is that analytic geometry was 

invented (or discovered) by the French philosopher and mathematician René Descartes, 

and that he published this invention (or discovery) in 1637 in [Descartes Géométrie]. 

What is somewhat less well known is that analytic geometry as we know it from school 

is only a distant relative from what we can find in Descartes' famous book. The 

object of [Descartes Geometrie] was the solution of problems from classical (Greek) 

geometry.4 François Viète (1540-1603), in 1591, had already used symbolic algebra in 

those problems (by reducing problems to equations). But Descartes went much further 

4 In the 16th century the possibility of access to ancient Greek mathematical works had inercased 
considerably because of the printing of both original versions and (usually Latin) translations, This 
(particularly the publication in 1588 of Commandino :s Latin translation of Pappos' Mathematical 
Collection) had given origin to what Bos calls "the early modem tradition of geometrical problem 
solving" [Bos 2001, ch. 4]. 
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in that direction and introduced new algebraic techniques, namely - in a somewhat 

casual way - the use of coordinates, which allowed to deal algebraically with curves. 

Seeking an équation for a curve EC drawn by a certain device, he wrote: 

"Je choisis une ligne droite, comme AB, pour rapporter a ses divers poins 

tous ceux de cette ligne courbe EC, et en cette ligne AB je choisis un point, 

comme A, pour commencer par luy ce calcul. [..,] Apres cela prenant un 

point a discrétion dans la courbe, comme C, sur lequel je suppose que 

l'instrument qui sert a la descrire est appliqué, je tire de ce point C la 

ligne CB parallèle a GA, et pourceque CB et BA sont deux quantités 

indéterminées et inconnues, je les nomme Tune y et l'autre x. [...] l'équation 

qu'il falloit trouver est yy zO cy — ^fy + ay — ac." 5 [Descartes Géométrie, 

However. this was just a new technique: his starting point (geometrie problems) and 

his goal (the geometrie construction of the solutions) were two thousand years old. 

Moreover, in Descartes' Géométrie no curve is defined by an équation; équations are 

just convenient means to handle curves that are already known; and those curves are 

not the object of study; they are only auxiliary objects or solutions to loci problems. 

When the solution to a problem appeared as an équation, it stili had to be reverted 

to geometry. This led to the rise of a mathematical theory: the "construction of 

équations" [Bos 1984]- A process had to be found to construct geometrically the 

roots of the équation. This construction was performed by intersecting simpler curves. 

According to Bos [1984 - 355], "after 1750 the construction of équations quickly fell 

into oblivion". It did disappear as a subject of research, but it survived a little longer, 

although weakened, in school curricula, or at least in textbooks (as for instance in 

[Lacroix 1798b, 250-260]). 

5 "I choose a straight line, as AB, to which to refer ail its points [i.e. those of the curve EC], 
and in AB 1 choose a point A at which to begin the investigation. [.,.] Then I take on the curve an 
arbitrary point, as C, at which we will suppose the instrument applied to describe the curve. Then 
I draw through C the line CB parallel to GA. Since CB and BA arc unknown and indeterminate 
qnantities. I shall cal) one of thern y and the other x. [...] the required équation is y2 = cy — ^-y + 
ay — ac." [Descartes Géométrie, 51-52] 

320-322] 
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The next two centuries would witness the gradual transformation of Descartes' 

coordinate techniques into analytic geometry. The first step was the use of those 

techniques for the study of curves for their own sake, not as auxiliary objects. 1679 

saw the posthumous publication of Varia Opera Mathematica by the French lawyer 

Pierre de Fermat (c. 1608-1665). These included an Ad Locos Pianos et Solidos Isagoge, 

composed before the publication of [Descartes Géométrie], revealing that Fermat had 

independently created (or discovered) essentially the same techniques. There were 

some important differences, and Fermat was more interested in the analytic study of 

curves than Descartes; unlike Descartes, he introduced them through their equations. 

However, making use of a more cumbersome algebraic notation than Descartes, and 

being published when Cartesian geometry* was already quite popular, Fermat's work 

on coordinate geometry went largely unnoticed. 6 

Mathematicians in the 17th century who used coordinate methods used them to 

study old curves; new curves (such as the cycloid) were usually defined by non-algebraic 

means, which parted them from the "application of algebra to geometry". 

According to Boyer, "Fermatian" geometry came into its own only in Newton's 

Enumeratio linearum tertii ordinis, written not later than 1676,7 revised in 1695 and 

finally published in 1704 as an appendix to his Opticks. Being a study of curves defined 

by cubic equations in two unknowns, it is "the first instance of a work devoted to the 

theory of curves as such" [Boyer 1956, 139]. 

However, in spite of his contributions to the subject, Newton complained in his 

Arithmetica Universalis (1707) about the mixture of algebra and geometry: "The 

Ancients did so industriously distinguish them from one another, that they never in

troduced Arithmetical Terms into Geometry. And the Moderns, by confounding both, 

have lost the Simplicity in which all the Elegancy of Geometry consists" 8. Boyer [1956, 

148] suggests as a solution to the apparent contradiction that Newton recognized the 

power of algebraic methods in geometry but did not allow them in elementary geome

try. The view would remain throughout most of the 18th century that the circle and 

straight line belonged exclusively to the realm of synthetic geometry (the conic sections 

were perhaps a debatable land): they only appeared as auxiliary lines in coordinate 

geometry; this had consequences: 

"La faiblesse essentielle d'une telle conception était de négliger ainsi les 

problèmes élémentaires sur les points et les droites qui, en dehors de leur 

intérêt propre, permettent de simplifier considérablement la solution de la 

plupart des problèmes plus complexes." 9 [Taton 1951, 102] 

6 But it should be mentioned that several of Format's works, including the Isagoge, had circulated 
much before, in manuscript form, among the Parisian mathematicians [Boyer 1956 . 82; Bos 2001, 
205-206], 

7Hence before the publication of Fermat's Opera. But see previous footnote. 
8Quoted in [Boyer 1956, 148]. 
9 "The essential weakness in such a conception was the neglect of the elementary problems on points 
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The fact that the circle and the straight line were not thoroughly studied in algebraic 
form made it necessary for propositions from elementary synthetic geometry to be 
invoked once and again. Reliance on diagrams was much stronger than it would later 
become. 

Meanwhile the appearance of the differential and integral calculus had provided 
mathematicians with a much more powerful tool for the study of curves than mere 
algebra. It is only natural that the field known as application of algebra to geometry 
had a much slower evolution than the calculus. 

"In formalization, infinitesimal analysis had [by the first half of the 18th 
century] far outstripped Cartesian geometry [...]. Formulae had been a 
natural outgrowth of the algorithms of Newton and Leibniz, but the coor
dinate geometry of Descartes and Fermat still leaned heavily upon auxiliary 
diagrams" [Boyer 1956, 170]. 

This is the explanation for the surprising claim by Boyer that the oldest known ap
pearance of the formula for the distance between two points dates only from 1731, 
almost a century after the publication of [Descartes Geometrie]. This appearance is 
to be found in the Recherches sur les courbes a double courbure by the French math
ematician Alexis Claude Clairaut (1731-1765).1 0 This does not mean, of course, that 
previous mathematicians did not use that formula in some way: it is implicit for exam
ple in the equations for a circle or a sphere; and it is a close relative of the formula for 
the differential of the arc length ds = ^Jdx2 + dy2. But apparently whenever someone 
needed to calculate a distance, or to write an expression involving one, the basis for 
the result was the pythagorean theorem, not an established formula. 

In fact even the passage that Boyer claims to contain the distance formula for the 
first time is not explicitly about distance. It concerns the deduction of the equation of a 
sphere whose centre is not the origin of the coordinates, making use of the pythagorean 

/ 2 2 2 

theorem. The expression for the radius of such a sphere is y # =f a + y =F 6 + z^f c 
[Clairaut 1731, 98] (the symbol =F is due to some uneasiness with the use of signs). 
Earlier in the same book Clairaut had given the equation of a sphere with the origin 
as center, using quite casually y/xx + yy -4- zz as an expression for its radius [Clairaut 
1731, 8]. Boyer apparently saw a significant difference between yjxx + yy -\- zz and 

/ n — -2 2 

y x=fa -\-yzfb + z =F c . Perhaps more interesting is the plain fact that in neither 
occasion is a distance formula deduced for its own sake - it is only equations of spheres 
that are sought. We will see below that the formula for the distance from a point to 
the origin appeared in [Euler Introduction], but the general distance formula would not 
appear explicitly until the late 18th century. 
and straight lines which, besides their own interest, allow one to simplify considerably the resolution 
of most of the more complex problems.1' 

l 0 For this claim, see [Boyer 1956, 168-170]. 
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The publication of [Euler Introducilo] in 1748 was a big step in the direction towards 

analytic geometry. The purpose of this book was to develop those parts of algebra 

necessary for the study of calculus, and its second volume was devoted to coordinate 

geometry. It is very much relevant that the usefulness of coordinate methods was now 

related to the calculus; quite a différent situation from that when Descartes used them 

to solve problerns from classical geometry. It is also quite telling that [Euler Introductio, 

II] has only one chapter (out of 28) dedicated to the "construction of équations". 

Moreover the principal object of study in [Euler Introductìo] is the functìon, some-

thing which happens for the first time. Thus, in its second volume coordinate geometry 

is a method for the study of functions. Each curve is associated with a function but, 

more importantly, each function can be represented by a curve. The functional ap-

proach allows Euler to start by giving a short general theory of curves, instead of 

starting by the conic sections, as was usuai (although conics play a fundamentaì role 

in the introduction of several aspects of curves); it also allows him to include a chapter 

on transcendental curves. He also strives to give a thoroughly analytic treatment of 

conic sections: they are called "second order lines", and their study is based upon the 

general second-order équation on two unknowns; they are defined by their équations, 

not as sections of cônes, nor as planar geometrical loci (as was often the case: we will 

see two examples below, in section 4.1.1.2). 

However, Euler's coordinate geometry stili relied heavily (according to later stan

dards) on diagrams and elementary synthetic geometry. An example of this is his 

déduction of the équation of a circle of centre C and radius AC = a, AB being the axis 

and A the origin of the abscissas; the abscissa is AP = x and the ordinate is PM = y. 

Then PM2 = AP • PB and PB = 2a - x, so that the équation is y2 = 2ax - x2 

[Euler Introductio, II, §64], The main resuit used here is a well known property of the 

circle given in Euclid's Eléments, VI, 13. 

It may be worth mentioning that the above déduction of the équation of the circle 

appears as a détail in an example about "complex lines": Euler finds the équations of 

the circle and the straight line in the figure and multiplies them. obtaining a "third-

degree complex équation". The chapter is on the "classification of algebraic curves by 

order". 

R 
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A general équation for the straight line had been obtained previously [Introduc-

tio, II, §39], in a chapter on "change of coordinates", also in an incidental manner. 

Boyer [1956, 182] says of Euler's treatment of the straight line équation that it "is 

characteristic for its generality, but it is startingly abbreviated". 

The length of a straight line from a point in space to the origin of coordinates is given 

as y/xx -r-yy + zz, without any justification (geometrical or otherwise), but apparently 

the only use for this formula is to provide the équation of the sphère [Euler Introducilo, 

II, Appendix § 10,14]. On the plane, at least in three occasions [Euler întroductio, II, 

§ 127,139,396] y/xx -f yy appears as the distance to the origin (also without an explicit 

justification); but they aie somewhat incidental: in the first two of thèse occasions its 

sole use lies in recognizing ellipses with equal axes as circles; and the third is related 

to conversion of polar to rectangle coordinates. 

In the decade after the publication of [Euler Introductio]. appeared two important 

treatises on algebraic curves, pointing in the same analytic direction: [Cramer 1750} 

and [Goudin k du Séjour 1750] . They have a common characteristic, that makes 

their treatments of curves seem even more general than Euler's: while in the latter's 

work there are separate chapters for second, third and fourth-order lines, and many 

properties of general curves are only studied afterwards, in [Cramer 1750] and [Goudin 

& du Séjour 1750] those lines are not more than interesting examples. 

However analytic thèse three works are, each of them is a "study of higher plane 

curves, rather than an analytic geometry in the modem sensé"[Boyer 1956, 198]. But 

they represented what for some time seemed the definitive aspect of the subject of 

coordinate geometry; until Lagrange made an important suggestion for a somewhat 

new approach in 1773 (see section 4.1.1.3). 

4.1.1.2 Two traditional elementary accounts: Bézout and Cousin 

[Euler Introductio, II], [Cramer 1750], or [Goudin k du Séjour 1756] do not seem to 

represent accuratefy the version of coordinate geometry dominant in the second half 

of the 18th century for educational purposes. A good example of the standard, not-

too-difficult, educational version of the subject at that time is more likely fco be found 

in the third part of Bézout's Cours de Mathématiques [Bézout 1796, III], which is 

dedicated to algebra and contains a section on the application of algebra to geometry, 

pages 289-488 (almost half of the volume, in fact) 1 1 . 

It was translated into English in the United States in 1820 instead of the corre-

sponding section in one of Lacroix's textbooks. 1 2 The reasons for this choice were 

^According to [Boyer 1956, 272] its "treatment of analytic geometry is typical of the time about 
1775". 

1 2Lacroix had published a textbook Traité élémentaire de trigonométie et d'application de l'algèbre 
à la géométrie [1798b], combining in one volume thèse two subjects; [Lacroix & Bézout 1826] was a 
combined translation of Lacroix's trigonometry and Bézout's application of algebra to geometry. 
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that "analytical geometry 1 3 [had tjhitherto made no part of the mathematics taught 

in the public seminarles of the United States", and was to h ave little time allotted 

and to be taught "in many instances [to students] at an age not sufficiently mature 

for inquines of an abstract nature" (although this book was intended "for the use of 

the students of the University at Cambridge, New England'M); so "it was thought best 

to make the experiment with a treatise distinguished for its simplicity and plainness" 

[Lacroix &¿ Bézout 1826, iii]. 

Simple and plain it is. It is also much more old fashioned than [Euler Introducilo, 

II] (and incredibly more elementary). Because the results of opérations on geometrical 

magnitudes can be given either in numbers or in Unes, the first few pages are dedicated 

to the "geometrical construction of algebraic quantities" : from the construction of ~ 

(a fourth proportional) to that of [Bézout 1196, III, 289-303]. Then cornes a long 

section [Bézout 1796, III, 304-360] on the use of équations to solve geometrie problems. 

without using coordinates. These problems range from inscribing a square in a given 

triangle to questions about volumes of simple solids. An example of this was seen in 

page 90. 

Coordinates are finally introduced for the study of "curved lines in general, and 

conic sections in particular". The first example [Bézout 1796, III, 361-372] is that of 

a curve defined by the property that its ordinate is a mean proportional between its 

abscissa and the complément of the abscissa in a given segment; after plotting the 

curve, Bézout deduces that it is a circle (using the defining property and, of course, 

Pythagoras' theorem) and proves a couple of properties about it. The only change of 

coordinates considered is a change of origin, from an end point of a diameter to the 

centre of the circle. 

But the example of the circle is just an introduction. Apparently the main (or sole) 

purpose of coordinate geometry is the study of the conic sections [Bézout 1796, III. 

372-456]. Each one is defined by the respective property of the distances between its 

points and its foci (to express algebraically those distance properties, right triangles 

are always invoked, of course). Various properties are found or stated and proven 

(including ways of drawing the curves and équations for their tangents). Some changes 

of coordinates are given, but each is particular to a conic section, and their purpose is to 

be able to reduce any second-degree équation (in two unknowns) to a conic section (and 

thus to construct that équation, a deployment referred to in the preface [Bézout 1796, 

III, ix]). 1 4 

After some examples [Bézout 1796, III. 456-482], the déduction of a few trigono

metrie formulae [Bézout 1796, III, 482-488] closes the volume. 

1 3 B y the 1820's the expression i ;analytic(al) geometry" had already become popular enough to be 
used in the "advertisement" to this American translation. Its author seems to use it as synonymous 
of "application of algebra to geometry" 

1 4[Lacroix & Bézout 1826] closes just after the study of the conic sections, so that it does not 
include the construction of équations. It is unlìkely that this is due to the obsolescence of the subject, 
since an 1829 Frenen édition of Bézout's Cours (Paris: Bachelier) stili includes that section. 
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Of course a comparison between [Euler Introductio, II] and [Bézout ¿796, III. 289-

488] is unfair for several reasons. One of them is that the former was part of an intro

duction to the calculus, while the latter was part of a gênerai mathematical éducation 

for naval personnel. 

Closer in airn to [Euler Introductio, II] (and to [Lacroix Traité, I, ch. 4]) was the 

first chapter of the introduction to [Cousin 1796}. This chapter. entitled "Application 

de l'Algèbre à la Géométrie", is one of the main additions in [Cousin 1796], when 

compared to [Cousin 1777]. It is much less elementary than [Bézout 1796, III, 289-

488], but not more modem in tone. This can be seen froin the start, in the following 

sentence, characterizing the way to solve probleins by applying algebra to geometry: 

"Tout se réduit à se procurer des équations: & comme la Géométrie ne nous 

offre pour cela que des triangles semblables ou des triangles rectangles; il 

ne s'agit que de former triangles semblables ou des triangles rectangles, au 

moyen de quelque construction simple que la nature du problême indique." 1 5 

[Cousin 1796, I, 1] 

As in [Bézout 1796, III], the first examples have little or nothing to do with coordi-

nate geometry. However, here the pre-coordinate section is much shorter [Cousin 1796, 

I, 1-6]. Two équations for the circle are deduced (from the radius as hypothenuse of a 

right triangle): y = ±\fr2 — x2 and hence, if r = 1, s i nm 2 + cosm 2 = 1; but this is 

done without explicit référence to coordinates, and its purpose is not to study the circle, 

but rather to develop several trigonométrie formulas. In the second example Cousin, 

without any recourse to coordinates, arrives at various formulas relating angles, sides, 

and area in a generic triangle. 

Once again as in [Bézout 1796, III], coordinates are introduced for the study of 

conic sections. Thèse have définitions équivalent to those in [Bézout 1796, III], but in 

an even more geometrical language: instead of speaking of distances, their points are 

the intersections of circles, or of circles and straight lines (in the case of the parabola) 

[Cousin 1796, I, 6-9], 

The properties of the conic sections are then studied [Cousin 1796, I, 9-20] (in-

cluding tangents, asymptotes, and infinité branches). Formulas are given for a gênerai 

change of coordinates (in a very unclear way). and they are used to prove that any 

second order curve is a conic section [Cousin 1796, I, 10-12]. 

Unlike Bézout, Cousin considers curves of any order (although in practice he does 

not go beyond the third order) [Cousin 1796,I, 20-27]. The questions asked about them 

have to do with their centres, diameters, and infinité branches. He also considers curved 

surfaces in a short section (dealing mainly with solids of révolution) [Cousin 1796, I, 

27-30]. 

l 0 "It ail cornes down to search for équations: & since Geometry does not offer for that but shrùlar 
triangles or right triangles; it amounts to form similar triangles or right triangles, by means of some 
simple construction indicated by the nature of the problem." 
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The chapter closes with a tiny and very awkwardly placed section on geometrical 

loci [Cousin 1796, I, 30-31] and another on "construction of determinate equations" 

[Cousin 1796, I, 31-36]. It is somewhat mysterious what possible use could this last 

section have in a treatise on differential and integral calculus published in 1796. 

4.1.1.3 The analytic program for elementary geometry: Lagrange and 

Monge 

Three-dimensional coordinate geometry had a much slower development than its pla

nar counterpart. The first major accounts of it [Clairaut 1731; Euler Introducilo, IL 

appendix] date from the 18th century, about a century after the appearance of the sub

ject. This was partly due to the facts that the space is much harder to visualize than 

the plane, and therefore space synthetic geometry is much more difficult than plane 

synthetic geometry. Coordinate geometry as it was before the end of the 18th century, 

relying heavily on diagrams and on frequent use of elementary synthetic geometry, was 

also much more well adapted to the plane than to space. 

It should be no surprise, then, that it was in relation to three-dimensional geometry 

that further algebrization took place. Nor is it surprising that Lagrange was involved 

in that. 

[Lagrange 1773b] was the first published suggestion for a really algebrized geome

try. In that memoir Lagrange studied several properties of a generic tetrahedron: the 

areas of its faces, its height, volume, inscribed and circumscribed spheres, centre of 

gravity, etc. He regarded tetrahedra as the equivalent in solid geometry of triangles 

in plane geometry; but he had noticed that while triangles had always been object of 

the geometers' closest attention, on tetrahedra only a handful of the many possible 

problems had been solved [Lagrange 1773b, 661]. However, this was not really the 

motivation behind this memoir: however useful the results obtained might be 

"elles serviront principalement à montrer avec combien de facilité et de 

succès la méthode algébrique peut être employée dans les questions qui 

paraissent être le plus du ressort de la Géométrie proprement dite, et les 

moins propres à être traitées par le calcul." 1 6 [Lagrange 1773b, 662] 

We can see that there is a sense of novelty here. Lagrange feels the need to explain 

the spirit and the method of the memoir: "Ces solutions sont purement analytiques et 

peuvent même être entendues sans figures" 1 7 [Lagrange 1773b, 661]. The memoir is in 

fact devoid of diagrams. Using rectangular coordinates for the significant points of the 

tetrahedron, 

1 6 "they will serve mainly to show how easily and how successfully the algebraic method can be 
employed in those questions that most seem to fall within the scope of Geometry proper, and appear 
the least suitable to be dealt with by calculation/' 

1 7 "These solutions are purely analytic and can even be understood without figures." 
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"tout se réduit à une affaire de pur calcul, et il est très-facile de déterminer 

la valeur des lignes qu'on veut connaître, puisqu'il ne faut que prendre la 

somme des carrés des différences des coordonnées qui répondent aux deux 

extrémités de chaque ligne proposée." 1 8 [Lagrange 1773b, 662] 

This is a much more explicit statement of the distance formula than Clairaut's (see 

above page 93) and more gênerai than Euler's (see above page 95). But the main 

innovation is that here it is a fundamental tool throughout. 

A typically analytic passage in this memoir is that in which Lagrange seeks the 

height of the tetrahedron. Its summit being the origin of the coordinates, he takes a 

generic point in the base plane, with coordinates s,t,u, so that the distance between 

the point and the summit is y/s2 + t2 + u2; he then miniinizes it, making its differential 

equal to zéro, and combines the équation u = l + ms + ni of the base plane, arriving at 

the resuit , 1 = [Lagrange 1773b, 670-672]. There is little geometrical reasoning 

involved here. But there is another interesting aspect in this passage: Lagrange has 

to resort to differential calculus, probably because perpendicularity had not yet been 

properly expressed in algebraic form. 

An algebraic treatment of perpendicularity in space would be published by Monge 

[1785a]. This is a memoir on evolutes that contains important aspects of analytic 

geometry, pointing in a direction very similar to the one suggested in [Lagrange 1773b]. 

A version of Monge's memoir was presented to the Paris Academy of Sciences in 1771 

(thus before the publication of [Lagrange 1773b]), but it is not clear whether that 

version already included those aspects of analytic geometry — a preliminary manuscript 

of 1770 did not [Taton 1951. 114]. On the paternity of this conception of analytic 

geometry, Lacroix would later say: 

"Lagrange a donné, dans les Mémoires de l'Académie de Berlin (année 

1773), une Théorie des Pyramides, qui est un chef-d'œuvre dans ce genre; 

mais Monge est, je crois, le premier qui ait pensé à présenter sous cette 

forme l'application de l'Algèbre à la Géométrie." 1 9 [Lacroix Traité, I, xxvi] 

In [1785a, 524-527] Monge seeks the équation of the normal plane to a space curve; 

for this he needs the équation of the plane perpendicular to a given straight line that 

passes through a given point on that straight line. Starting from two équations defining 

the straight line, he projects it on the three coordinate planes (by eliminating each of 

the variables in turn); removes the constant terms so as to have a parallel through 

the origin; détermines the cosines of the angles between this parallel and the three 

1 8 "it ail amounts to an affair of pure calculation. and it is very easy to détermine the value of the 
lines we wish to know, since it is enough to take the sum of the squares of the différences between the 
coordinates that correspond to the extremities of each proposed line.:' 

1 9"Lagrange gave, in the Memoirs of the Berlin Academy (year 1773). a Theory of Pyramids which 
is a masterpiece in this genre; but it was Monge, I believe, the first who thought of presenting under 
this form the application of Algebra to Geometry." 
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coordinate axes; using thèse and a little trigonometry he arrives at the relation between 

the distances from the origin to the point where the piane intersects the parallel and the 

points where the piane intersects the axes; this relation gives a proportion between the 

coefficients in the plane's équation (which is the sanie as that between the coefficients 

q,/?,7 of y,x, z in the équations of the projections); it only remains to force it to pass 

through the point with coordinates x',y',z', which is easily done putting its équation 

in the form 

a[z - z'} + ß[y - y'} 4- 7 ( 1 - x'\ = 0. 

Next, to determine the distance from a point to a straight line, Monge just has 

to determine the (équation of the) piane that is perpendicular to the straight line and 

passes through the point, intersect this piane with the straight line (which gives a point 

of coordinates x, y, z), and take the distance between this and the original point (which 

had coordinates x',y',z'): yj{x - x')2 + (y - y')2 + (z - z')2 [Monge 1785a, 527-528], 

This is later applied in finding the radius of curvature of a space curve in a given 

point. 2 0 

What is interesting here is that these results are in a research paper. They are only 

auxiliary tools, not the subject of the paper; but their explanation makes it clear that 

the reader was not supposed to have seen them (or similar ones) before. 

In the next few years Monge published a few more memoirs on differential geometry. 

where he kept using eleinentary geometry in this analytic fashion. 2 1 

This new algebrized version of elementary solid geometry would be systematized by 

Monge in 1795, in his lectures at the newly founded Ecole Polytechnique. Monge was 

quite influenzai in the setting up of the curriculum of the École, and he managed to 

include a course in "analysis applied to geometry" that addressed differential geometry 

("a branch of science which only Monge could teach" [Taton 1951, 40]), and also 

those purely algebraic solutions for elementary geometrical problerns that he had been 

using in his research memoirs (as well as the algebra and calculus necessary for these 

applications) 2 2. 

Monge supplied notes with the applications of analysis to geometry given in these 

lectures for Iiis students (Feuilles d'Analyse appliqué à la Géométrie). The first édition 

of these, printed in 1795, was never published as a volume and is very rare, I have only 

consulted the second édition, published in 1801, but according to Taton [1951, 121] 

the différences regarding analytic geometry between the first and the second édition 

2 0 A s the distance between that point and its corresponding straight line in the developable surface. 
2 1 This included what according to Boyer [1956, 205-206] was perhaps the first explicit appearance 

of the point-slope équation of the straight line: y — y' = a{x — x'), where a is the tangent of the angle 
between the straight line and the abscissa axis and x',y' are the coordinates of a given point on it 
[Monge 1781, 669]. 

2 2 A n abridged syllabus of this course is in [Langins 1987a, 130-131]. Of course, there is no guarantee 
that Monge really followed this syllabus. One serious possibility is that he may have taught only the 
geometrical applications, while others (Hachette, Malus, Dupuis) taught the algebra and calculus 
[Langins 1987a, 78]. See also section 8.2. 
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amount only to insignificant détails (that is. différences in text\ information provided 

in [Belhoste S¿ Tatou 1992, 292-301] iinplies a stronger association of the first édition 

to the contemporary course on descriptive geometry, which in teaching practice may 

have been a significare différence - see below). 

The introduction on analytic geometry in [Monge Feuilles] is composed by its first 

14 pages (leaves n0*3 1 — Zbis). It opens with a short paragraph on the équation of the 

straight line on the plane. The coordinates involved are x and z, and that is for a good 

reason: the object of study in the introduction are planes and straight lines in space, 

but the for mer's traces and the lat ters projections on the coordinate planes (especially 

the vertical ones) are fundamental tools (in fact the coordinate planes are called "plans 

rectangulaires des projections" [Monge Feuilles, n° 1-iii]). 

The style is very concise. Immediately after that opening paragraph Monge attacks 

several problems. such as finding équations for a straight line parallel to a given straight 

line, or perpendicular to a given straight line, a given plane, or two given straight Unes; 

and the calculation of angles between planes and/or straight lines of distances between 

points, a point and a plane, or the shortest distance between skew straight lines. 

On two occasions differential calculus is used [Monge Feuilles, nœ 1-iii; 2-i]. In 

both passages the purpose of this use is to minimize distances in order to express 

perpendicularity (the first is very similar to [Lagrange 1773b, 671] — see above page 

99). But an algebraic alternative is given, based on the "known fact" that if a plane 

is perpendicular to a straight line, then their respective traces and projections are also 

perpendicular 2 3 [Monge Feuilles, n° 2-i]. 

This geometry is very much algebraized, but it is not easy to understand how 

purely algebraic it was in practice. In 1795 Monge taught descriptive geometry to 

the same students and he tried to associate the two courses [Belhoste & Taton 1992, 

295]. This association is well illustrated by the fact that the problems solved alge-

braically in [Monge Feuilles, n o s 1-3 bis] are precisely the same (and almost in the 

same order) that were treated in lectures 1-5 and 8 of his course of descriptive geom

etry [Monge Stéréotomie, 11-12; Belhoste & Taton 1992, 292-293]; in fact, each of 

the leaves of that preliminary section in the first édition of [Monge Feuilles] has an 

indication for the corresponding diagram in the lecture notes of descriptive geometry 

[Belhoste le Taton 1992, 295-297]. Moreover, on several occasions the reader was re-

quired to supply some basic geometrical reasoning (or to have some previous knowledge 

of space geometry), particularly on how to operate with projections: one example is the 

known fact ("on sait que...") about perpendicularity quoted in the paragraph above. 

But of course it would have been impossible to dispense with ail geometrical reason

ing in the setting up of analytic geometry. Its purpose was to derive algebraic formulas 

to be used subseąuently instead of synthetic geometry; in the déduction of those for-
2 3Perpendicularity on the plane had been swiftly taken care of in the opening paragraph, using the 

fact that, in x — az + b, a is the tangent of the angle between the straight line and the z-axis. 
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mulas, formulas previously obtained might be preferred to geometrical reasonings, but 

the occasional recourse to the latter was unavoidable. 

It must also be noticed that in the second édition (whose text, as has already been 

mentioned, seems to be almost unaltered) the association with descriptive geometry 

is no longer apparent: at least, there is no indication for external diagrams, and no 

internai diagrams replacing them - which means zéro diagrams for this introduction 

on analytic geometry (the whole [Monge Feuilles, 2nd ed] has only 10 figures). Thus, 

diagrams were not regardée! as indispensable to the reader. 

The reason for this entanglement is that Monge did never see analytic geometry 

as a replacement for synthetic (or descriptive) geometry; rather, he saw thèse two 

as distinct ways of expressing the same objects. Each had its own advantages (the 

"évidence" of descriptive geometry, the "generality" of analysis) and they should be 

cultivated simultaneously and in parallel [Monge 1795, 317]. In later years Monge 

(quoted by Olivier [1843, vi]) would go as far as claim that if he were to rewrite 

[Monge Feuilles], it would have two columns with the same results: one in analysis, 

and the other in descriptive geometry. 

4.1.2 Lacroix and analytic geometry 

Lacroix was certainly familiar with Monge's algebraic approach to geometry much 

before the latter's lectures at the École Polytechnique (and more than the common 

reader of Monge's memoirs on differential geometry). Taton [1951, 119-120] cites a 

letter from Monge to Lacroix, dated 1789, where he answers a problem proposed to 

him by Lacroix, about the minimum distance between two straight lines. 2 4 We have 

seen above (page 99) a référence in the préface to Lacroix's Traité to his belief on 

Monge's priority on "analytic geometry". 

In the préface to the first volume of his Traité, Lacroix gave a statement of his 

adhérence to the analytic program for geometry: 

"En écartant avec soin toutes les constructions géométriques, j 'ai voulu faire 

sentir au Lecteur qu'il existoit une manière d'envisager la Géométrie, qu'on 

pourroit appeler Géométrie analytique, et qui consisterait à déduire les pro

priétés de l'étendue du plus petit nombre possible de principes, par des mé

thodes purement analytiques, comme Lagrange l'a fait dans sa Méchanique 

à l'égard des propriétés de l'équilibre et du mouvement." 2 3 [Lacroix Traité, 

I, xx v] 

2 4According to Taton, this letter is at the Biblithèque de l'Institut, ms 2396. I saw three letters 
from Monge in that file, but I did not locate this one. 

2 5 "In carefully avoiding ail géométrie constructions, I would have the reader realize that there exists 
a way of looking at geometry which one might call analytic geometry, and which consists in deducing 
the properties of extension from the smallest possible number of principles by purely analytic methods, 
as Lagrange has donc in his mechanics with regard to the properties of equilibrium and movement". 
This translation is taken from [Boyer 1956, 211]. 
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Apparently, in this passage Lacroix is even introducing the new name "analytic geome

try", inspired by Lagrange's "analytic(al) mechanics" 2 6, instead of the old "application 

of algebra to geometry". The expression "analytic geometry" had occurred before: it 

seems to have been used for the first time, in 1709, by the French mathematician Michel 

Rolle (1632-1719); there were a few other occurrences in the 1770s and 1780s, but not 

associated to the "analytic program" of Lagrange and Monge [Boyer 1956, 155, 215-

216]. However, these were isolated occurrences. Lacroix may not have been aware of 

them or, if he was aware, he did not feel they were enough to have given a definite 

meaning to the expression: it was available to be used for the new kind of coordinate 

geometry. 

Lacroix never wrote a work bearing the expression "analytic geometry" in the ti

tle. The textbook [Lacroix 1798b] in which he included the subject was called "Traité 

élémentaire de trigonométrie rectiligne et sphérique, et d'application de l'algèbre à la 

géométrie": the old name surviving. But the chapter on "application of algebra to 

geometry" contains more than what Lacroix had proposed to call "analytic geome

try" . 2 7 Its first sections are concerned with the use of "algebraic operations to combine 

several theorems of geometry so as to deduce their consequences" [Lacroix 1798b, 83]; 

this is non-coordinate algebraic geometry, similar to that seen in the works of Bézout 

and Cousin (4,1.1.2), and in the style of the example given in page 90. There are also 

a few small sections on the construction of equations. It is true that the bulk of it is 

in fact analytic geometry; but it seems that conceptually, analytic geometry was only 

a part (although the major part) of the application of algebra to geometry. 

There is another possible explanation, given by Boyer [1956, 217], for the absence 

of the phrase "analytic geometry" in the title of [Lacroix 1798b]: Lacroix might have 

avoided it because of the confusion that existed at the time as to the distinction(s) 

between analysis and synthesis. In fact, on a later text about that distinction, he 

wrote that 

"L'exactitude du langage semblerait demander qu'on prévint l'équivoque 

occasionnée par les divers sens dans lesquels se prend le mot analyse, et 

que pour cela on désignât autrement l'emploi du signe arbitraire [i.e., of 

algebraic symbolism]." 2 8 [Lacroix 1805, 2nd ed, 232] 

But what other designation could be adopted? After discussing briefly the possibilities 

of logistics and calculus-"calcul" ("too vulgar" — especially as it would bring along the 

word "calculators", easily confused with "arithmeticians"), Lacroix concludes that 

2 6 That Lagrange's méchanique analytique has been translated as analytics mechanics while analytic 
geometry is more common in English than analytical geometry is just an unfortunate miscoincidence. 

2 7 T h a t chapter, together with an appendix on analytic geometry in space, comprise more than two 
thirds of the book. 

2 8 "Exactitude in language would seem to demand that the ambiguity which is caused by the different 
meanings in which the word analysis is taken be avoided, and that therefore the use of arbitrary signs 
[i.e., of algebraic symbolism] be designated differently.'' 
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"le changement de dénomination est peu important en lui-même dès que 

Ton conçoit nettement la différence des procédés; et par cette différence on 

saura toujours bien quand une analyse méritera véritablement ce nom, ou 

ne sera qu'une synthèse réduite en calcul." 2 9 [Lacroix 1805, 2nd ed, 233] 

It is worth noticing that Lacroix repeated in 1810 (in the préface to the second édition) 

his suggestion for the name "analytic geometry" [Lacroix Traité, 2nd ed. I, xxxvii]. He 

had not changed his mind. 

The phrase "analytic geometry" would be used for the first time in the title of a 

work in 1804, in the second édition of a textbook by Frédéric-Louis Lefrançois; that 

title was Essais de géométrie analytique; the title of the first édition (1801) had been 

Essais sur la ligne droite et les courbes du second degré?0 

It is important to examine the relationship that Lacroix proposed between analytic 

geometry and synthetic geometry. In the préface to the Traité, still referring to the 

chapters on geometry, Lacroix stated very clearly that his insistence on the "advan-

tages of algebraic analysis" did not mean a criticism of either synthesis or geometrical 

analysis. He just thought that geometrical considérations and algebraic calculations 

should be kept apart as much as possible; and that its respective results "s'éclairassent 

mutuellement, en se correspondant, pour ainsi dire, comme le texte d'un livre et sa 

traduction" 3 1 . This is remarkably similar to Monge's views mentioned above, and to 

Monge's practice when teaching at the Ecole Polytechnique. The letter quoted in the 

beginning of this chapter shows that in 1794 Lacroix already had this conception. It 

certainly is a very important conception in Lacroix's Traité, not only in the two final 

chapters of volume 1, but also in several passages in volume 2. 

4.1.2.1 Analytic geometry on the plane in Lacroix's Traité 

In 1797 analytic geometry (in the new sensé) had not yet been applied to the plane 

— with the sole exception of the short opening paragraph of [Monge Feuilles]. It was 

up to Lacroix to do this, systematically, for the first time. As Boyer [1956, 211] 

puts it (speaking of both [Lacroix Traité] and [Lacroix 1798b]: "Hère Lacroix did for 

two dimensions what Lagrange and Monge had doue for three-space" ; he even finds 

it "probably fair to speak of the new program as 'analytic geometry in the sensé of 

Lagrange, Monge and Lacroix'", At least some of their contemporaries had a similar 

2 S i ( t h c change in dénomination is not very important in itself, as long as the différence between the 
processes is clearly understood; and by that différence it will always be known when an analysis is 
really worthy of that name, or is just a synthesis reduced to calculus". 

3 0 B o t h Taton [1951, 135] and Boyer [1956, 220] wrongly ascribe this little priority to Jean-Baptiste 
Biot. Biot published in 1802 a Traité analytique des courbes et des surfaces du second degré; he 
changed the title of this work in the second édition (1805) to Essai de géométrie analytique, appliqué 
aux courbes et aux surfaces du second degré. Boyer had the excuse that he apparently did not sec the 
first édition and assumed it had the saine title as the second [Boyer 1956. 273]; but Taton [1951, 132] 
gave ail thèse (and more) bibliographie détails. 

3 1 "shonld serve for mutual clarification, corresponding, so to speak, to the text of a book and its 
translation". This translation is taken from [Boyer 1956, 212). 
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perspective, as can be seen by the title of a book published in 1801 by Louis Puissant: 

Recueil de diverses propositions de géométrie résolues ou démontrées par l'analyse 

algébrique, suivant les principes de Monge et de Lacroix32 [Taton 1951, 132]. 

Lacroix did include several diagrams. but usually their rôle is purely illustrative. 

Apart from a few exceptions (particularly those related to graphical représentation), 

they could be omitted with only a pedagogica! loss. not a logicai one. 

The first few pages of chapter 4 are taken up by a short introduction to rectangular 

coordinates and an extensive study of fundamental formulae for straight lines and 

distances [Lacroix Traité, I, 327-332]. 

The usuai form of the équation for a straight line will be y = ax -f 6; this form is 

thoroughly explored: a is the tangent of the angle between the line and the abscissa 

axis, 6 the ordinate at the origìn, — ~ the abscissa at the origin. Much attention is 

given to negative coordinates. The équation of a straight line that passes through 

the points that have coordinates a,ß and a',ß' is easily found combining ß = aa -f- 6 

with ß' = aa' 4- b; the équation of the straight line that passes through the point 

with coordinates a,ß and is parallel to y = a'x + b' is almost immediately given as 

y — ß = af(x — a) because y — ß = a(x — a) is the general équation of the lines satisfying 

the first condition and the coefficient a' gives the second. 

A slightly unnecessary geometrical intrusion occurs apropos of perpendicularity: 

similar triangles are invoked to justify that — £ is the slope coefficient of a straight line 

perpendicular to y = ax + b; it would have been more algebraic to say that that is the 

cotangent of the angle which bas a as tangent, as in [Monge Feuilles, n° 1-i]. 
/ 2 2 

A right triangle is invoked to justify the distance formula yj(af — a) + (/?' — ß) . 

It could not have been otherwise. But once thèse formulas have been established, it 

takes Lacroix only six lines (and no diagram) to deduce a formula for the distance of 

a point to a straight line (Lacroix Truite, I, 332]. 

The équation of the circle is explicitly derived from the distance formula, much 

further along, in the section on osculation of curves [Lacroix Traité, I, 392]. 

Of course ail of thèse preliminary results are quite elementary. Also its substance 

was not really new. But this form of exposition was. Boyer [1956, 213-214] stresses 

as novel the "continued emphasis upon the almost automatic application of formulasi, 

making] the subject resemble an algorithm, in which independent référence to the 

geometrical properties of figures is dispensed with". 

Afterwards, Lacroix included those preliminary considérations in [Lacroix 1798b] 

and subsequently several textbooks were published that also contained them: Taton 

[1951,132-133] lists six books on the new analytic geometry between 1801 and 1809. not 

including Monge and Hachette's Application d'algèbre à la géométrie of 1802. Because 

of this, in 1810 Lacroix was able to remove this preliminary section from the second 
3 2 Collection of several propositions of geometry solved or demonstrated by algebraic anulysis, fol-

lounng the principles of Monge and Lacroix. 
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édition [Traité, 2nd ed, I. xxxvii]. 

The rest of the plane analytic geometry is not so original: [Euler Introductio, II]. 

[Cramer 1750] and [Goudin h du Séjour 1756] provided versions of coordinate geom

etry of algebraic curves beyond the straight line and circle that would fit well in an 

analytic geometry (thèse three works are cited in the Traitées table of contents for 

chapter 4). 

Right after the preliminaries on the straight line cornes a section in which Lacroix 

addresses the graphical représentation of algebraic curves, in the case where it is pos

sible to solve the équation in y (that is, to turn it into several expressions such as 

y = f(x) — the roots of the équation). There is one instance in which plotting by 

joining points is recommended [Lacroix Traité, I, 336-337]; but the main tool is the 

study of the roots f{x): they show the number of branches of the curve, which of them 

are infinite, etc. Points of the curve with remarkable characteristics ("particularités re

marquables") are called singular points (including cases in which the partial derivatives 

at the point are not nuli). Several kinds of singular points are introduced: multiple 

points, inflexion points, conjugate (i.e. isolated) points, nodes and cusps ("points de 

rebroussement"). Lacroix strives to give analytical characterizations of thèse singular 

points (speaking of multiple values, situations in which certain coefficients are nuli, 

etc.); but that is not always feasible. as when introducing inflexion points, where he 

appeals to the graph of an example curve [Lacroix Traité, I, 339]. 

Next cornes transformation of coordinates. This is a very powerful tool. It allows 

Lacroix to give a short study of second-order curves (without any diagram), and briefly 

indicate how the same could be done for third-order curves [Lacroix Traité, I, 345-351]. 

It also gives a means to find centres and diameters of curves [Lacroix Traité, I, 351-353]. 

Transformation of coordinates also provides a "very elegant means" to determine 

the tangent to a curve in a given point M: M being the origin of the new coordinates 

u,t (which will be oblique), and the u axis being parallel to the x axis, one tries to 

get a t axis that will be tangent to the curve. Imagining first that it cuts the curve 

in some point m besides the origin, one approaches m and M until they are the same; 

since there will be two nuli values of t at the same tìme, the new équation of the curve 

will be divisible by t2 when u = 0 [Lacroix Truite, I, 353-355].3 3 

Similar considérations on divisibility of a transformed équation by powers of t give 

algebraic characterizations of multiple points and inflexion points. 

This section finishes with a few considérations on the number of possible intersec

tions between two algebraic curves of given degrees, and the number of points necessary 

to determine a curve of a given degree (and, in a footnote, a statement of Cramer's 

paradox). 

3 3 T o be more precise, it will be divisible by £ n + l , where n is the largest integer by which it would 
be divisible in general (that is, the multiplicity of that point). This procedure can be found in 
[Cramer 1750, 460-464] and [Goudin & du Séjour 1156, 77-78]. Transformation of coordinates are 
fundamenta! tools in thèse books. 
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Next cornes a section on the "application of the expansion of functions into séries 

to the theory of curves'\ It might seem that such a section should be classified as 

differential, rather than analytic, geometry, since it involves power-series expansions; 

but in the context of late 18th-century mathematics it is an application of algebraic 

analysis. Therefore we will examine it here, although an important passage on tangents 

will be postponed to the section on differential geometry (4.2.1.2). 

Lacroix takes up again an example he had given in chapter 2. to illustrate a (non-

differential) rnethod by Lagrange [1776, §2-5] for obtaining "convergent" séries. From 

the équation 

ax3 4 x3y - ay3 = 0 

he had obtained [Lacroix Traité, I, 229-230] four power séries: 

V = X+'Ta" 8 Ï ^ + 2 4 3 ^ e t C - ( 4 1 ) 

is "ali the more convergent as a: is smali" ; while 

y = - a - a4x~3 - 3aV5 - 12ai0x~9 - bbal3x~12 etc., (4.2) 

y = a~^x% 4- Ira - ~a^x~^ + \aąx~3 etc., and (4.3) 
2 8 2 

_ i 3 1 3 5 _ 3 1 A o / , , \ 
y = —a

 2x2 4- -a + ~a2x 2 -f- - a i etc. (4.4) 
2 8 2 

are convergent for large values of x. (4.1) gives y = x as tangent to the curve at the 
origin (we will see how in section 4.2.1.2); (4.2)-(4.4) give the asymptotes y = —a, 
y = a~ïx* and y = —a~ïx*. Asymptotes correspond to infinite branches of the 

curve, and this is explored by Lacroix, including a classification in hyperbolic and 

parabolic branches: the former have straight Unes as asymptotes, as in the hyperbola; 

the asymptotes of the latter are (generalized) parabolic curves. But Lacroix does not 

spend an awful lot of time on this. He mentions that Euler and Cramer had used the 

number and nature of infinite branches to classify third- and fourth-order curves into 

genera, but "ces détails, plus curieux qu'utiles, sortent entièrement du plan que je me 

suis proposé" 3 4 [Lacroix Traité, I, 368]. 

Analytic geometry seems to be concerned almost exclusively with algebraic curves. 

Lacroix includes a section on transcendental curves, but only after having introduced 

differential geometry (it is the penultimate section of chapter 4), and it mixes analytic 

and differential considérations. He favours differential équations over (non-differential) 

transcendental ones: for instance, he gives a differential équation between the coordi-

nates of the cycloid, but not a non-differential one. because it would involve an inverse 

sine. 

Besides the cycloid, only the logarithmic and the spirals are dealt with. The study of 

3 4 "those détails, more curious that useful, entirely départ from the plan I have proposed myself". 
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spirals brings the only really relevant aspect for analytic geometry in this section: polar 
coordinates, with formulas for transformation of polar into rectangular coordinates and 
vice-vers a. 

4.1.2.2 Analytic geometry in space in Lacroix's Traité 

The three-dimensionai version of the neu> analytic geometry had already been pre-
sented, in [Monge Feuilles] (see section 4.1.1.3). But Lacroix's présentation has signif-
icant différences in exposition. Lacroix explains the basics of coordinate geometry7 in 
space carefully, not assuming a previous knowledge of descriptive geometry. as Monge 
apparently had done. It is true that Lacroix refers occasionally to his own textbook 
on descriptive geometry [1795] to justify certain reasonings; but overall his exposition 
is much more self-contained than Monge's - Lacroix's références to [1795] seem some-
times superfluous. And when both he and Monge explain the same thing, Lacroix is 
more detailed and clearer. 

Lacroix starts by introducing projections in space, the three coordinate planes, and 
their intersections (the three coordinate axes). 

Then corne two pages on how a first-degree équation corresponds to a plane (culmi-
nating on the équations of its intersections with the coordinate planes) — the closest 
to this one can find in [Monge Feuilles] is contained in problem II. which occupies half 
a page. The équation of any plane will be presented as 

Ax + By + Cz + D = 0 

for reasons of symmetry. It must always be kept in mind that any one of the constants 
rnay be regarded as equal to one, or deterrnined by particular conditions [Lacroix Traité, 
I, 438]. Monge [Feuilles, n° l-ii,iii] had given similar considérations. 

A straight line is characterized by the intersection of any two planes that contain it, 
but a clear préférence is given to those that are perpendicular to the coordinate planes, 
so that none of their équations contains ali the three coordinates (and of course, such 
that they represent the projections of the line). 

Having established the équations of the plane and the straight line, Lacroix proceeds 
to solve several problems, rnost of them similar to those found in [Monge Feuilles]: for 
example, to determine the plane that passes through three given points; or to find the 
équation of a plane perpendicular to a given straight line. In this second exarnple, the 
known fact to which Monge had appealed to, and that was quoted in page 101 above, 
is also invoked, but here a clear référence is given to [Lacroix 1795, 24]. 

Although the problems are very similar. the solutions are not always the saine. For 
example, to détermine the angle between two planes, Monge [Feuilles, n o s 2-iv, 3-i] asks 
to conceive a perpendicular to one of the planes lowered from any point on the other, 
and a perpendicular to this other plane lowered from the foot of the first perpendicular; 
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it is obvious ("il est évident") that the quotient of the second perpendicular divided 

by the first ìs the cosine of the angle between the planes (of course Monge is thinking 

fiere of the lengths of the segments of the lines determined by the planes). In the next 

problem. to determine the angle between two straight lines, he applies the formula just 

obtained to two planes perpendicular to the given lines [Monge Feuilles, n° 3-i,ii], 

Lacroix's solution is simpler to follow, requiring less geometrical reasoning: he 

had just deduced the distance formula and the équation of the sphère; to determine 

the angle between two straight lines he intersects them with a sphère; the distance 

between (two of) the intersections will be the chord of the angle, from which the cosine 

is easily derived. Next. to determine the angle between two planes he only has to 

calcúlate the cosine of the angle between two straight lines perpendicular to the planes 

[Lacroix Traité, l, 444-446]. The cosine of this later angle is 

(where the planes are given by the equations Ax + By + Cz + D = 0 and A'x + B'y + 

C'z + D' = 0), so that it is immediate to conclude that if the planes are perpendicular 

we will have 

(naturally this is to be found also in [Monge Feuilles}). 

The preliminary section on planes and straight lines finishes with two formulas 

derived using difïerential calculus: one on the minimum distance between two straight 

lines and other on a straight line perpendicular to a given plane and through a give 

point (which of course also amounts to a minimum distance). It is interesting to note 

that Lacroix decided not to use the purely algebraic solution to the former problem 

that Monge had given to him in 1789 (see page 102 above). 

The second (and final) section on analytic geometry in space is entitled "On second-

order curved surfaces" [Lacroix Traité, I, 448-465]. But it contains a little more than 

that, since to study properly those surfaces it is convenient to simplify their general 

équation 

This is done by transformation of coordinates, which of course has to be discussed 

previously. 

This approach to the study of quadric surfaces came from. chapter 5 in the appendix 

to [Euler Introductio, II], "the first unifìed treatment of thesubject" [Boyer 1956, 189]. 

That chapter is the sole item cited in the table of contents of Lacroix's Traité for this 

section. But is must be noted that the formulas given by Lacroix for the transformation 

A'A + BB' + CO 

^/(A2 + B2 + C2){A'2 + B12 + C"2) 

AA! + BB' + CC = 0 (4.5) 

(4.6) 
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of coordinates are not those given by Euler (which were non-symmetric and involved 

the sines and cosines of the angles between the old and the new axes); instead he 

uses formulas given for the first time in a paper by Lagrange "sur l'attraction des 

sphéroïdes elliptiques" [Lagrange 1773a, 646-648). He reports Lagrange's derivation of 

those formulas: if the origin remains the same (it is easy to translate it afterwards), 

the most general form for the old coordinates in terms of the new is 

x = at -f- Pu + iv 

y = a't 4- P'u 4 iv 

z = a"t + P"u 4 i'v 

But of course the distance to the origin remains the same, that is, t2 4 u2 4- v2 = 

x2 + y2 + z2 = (at + pa + -yv)2 + (a't 4- p'u + j'v)2 4 (a"t 4- P"u 4- i'v)2, whatever the 

values of t, u, v, whence 

a2 4- a'2 4 a"2 = 1 

p2 + p'2A-p"2 = l >and< 

7 2 4 - 7 ' a + y / 2 = l 

' aP 4- a'p' 4- a"P" = 0 

a 7 4 a'i 4- a"i' = 0 (4.7) 

k Pi + Pfi + P"Y = Q 

These conditions allow to determine six of the nine constants involved. The other three 

are dependent on the particular transformation. [Lacroix Traité, I, 451-452] 

But just prior to this Lacroix [Traité, I, 450-451] also presents a different derivation 

for a set of similar formulas: given 

At + Bu + Cv = 0 

A't + B'u 4- C'v = 0 (4.8) 

A't 4- B"u 4- C"v = 0 

as the equations in the new coordinates for the old coordinate planes (y,z, x,z, and 

x,y, respectively) and since the coordinates of a point are equal to its distances to the 

coordinate planes, it follows from a formula obtained previously that 

_ At+Bu+Cv 

A't+B'u+C'v (AQ\ 

= A"t+B"v+C"v 
y/A'n+B'n+C"* 

Now, in each of the equations (4.8) there is one superfìuous Constant; therefore it 

is possible to put 

A2 4 B2 4 C2 = 1 

A^ + B^ + C2 = 1 (4.10) 

A"2 + B'a + C"2 = 1 
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so that (4.9) become 
x = - At - Bu~ Cv 
y= -A't-B'u-C'v 
z = -A"t - B"u - C"v 

Also, because the coordinate planes are perpendicular, from (4.5) we have 

AA' + BB' + CC = 0 
AA" + BB" + CC" = 0 
A'A" + B'B" + C'C" = 0. 

These formulas had been deduced by Monge [1784-1785, 28; 1784a, 112-114], although 
without any reference to (4.9): (4.10) had been chosen "to simplify the expressions" 
(but which expressions?). 

Lacroix then combines both sets of formulas, arriving at several results, including 
that a, /?, 7, a', 0',taken with opposite signs, give the cosines of the angles between 
the old and the new coordinate planes. 

Although Lacroix does not cite either of the memoirs by Lagrange or Monge in the 
table of contents for this section, he does cite their names in the text, apropos of further 
calculations for the determination of the constants in particular transformations. He 
refers the reader to Lagrange's Mechanique analitique and quotes (and praises) a few 
formulas that can be found in [Monge 1784a]-

Of these two procedures, Lagrange's is certainly shorter. But Monge's, at least in 
Lacroix's version, seems clearer and it is a fine example of analytic geometry: it is 
algebraic, but the calculations, while not requiring diagrams to be understood, can be 
given geometrical meanings (perpendicularity, distance of a point to a plane) — like 
"the text of a book and its translation" (see pages 88 and 104 above). Lagrange does 
use a distance formula at the start, but apart from that he — typically — compares 
coefficients. 

Returning to (4.6), using a translation of the origin followed by a rotation of the 
axes, Lacroix reduces it to 

A't2 + B'u2 + CV - L'2 = 0 

which gives the second-degree surfaces that have a centre. Lacroix then studies them 
by giving particular signs — or eliminating — each coefficient, and then cutting plane 
sections and analyzing the resulting second-degree curves. Recognizing that the trans
formation of coordinates he had done is not always possible, Lacroix returns to (4.6) 
for a second, more general one, in order to study the second-degree surfaces that do 
not have a centre. The result is 

Ax12 + Bya + Cza + 2K'z' = 0 
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and a similar study follows. 

Lacroix does not report Euler's taxonomy (elliptic hyperboloid, etc.): he seems more 

concerned with recognizing conic. cylindric, and revolution surfaces. 

He also dedicates only one short article to asymptotes of second-degree surfaces, 

something to which Euler had given considérable more attention, connected as it was 

with the question of part(s) of the surface going to infinity. Similarly, while Euler had 

dedicated his whole final chapter to intersections of surfaces, Lacroix has one article 

(half a page) on tins. 

This section - and analytic geometry - finishes with another short article, on 

"polar coordinates" in space. Only a few formulas are presented, but Lacroix manages 

to introduce two différent Systems: the first corresponds to what we call spherical 

coordinates, while the other, "more symmetrical", uses the three angles TT, tp, <p between 

the radius vector and the coordinate axes, so that 

x = r cos 7T, y = r COSÌ/), Z = r cos<p 

(where, of course, r is the distance of the point to the origin); clearly there is one 

unnecessary coordinate: as it happens, 

COS2 7T + COS2 V1 + COS2 (fi ~ 1 -

Both Systems had been introduced by Lagrange: the first in [1773a, 626-627]; the 

second in his Méchanique analitique [Taton 1951, 127]. 

4.2 Differential geometry 

4.2.1 Differential geometry of piane curves 

4.2.1.1 Differential geometry of piane curves in the 18th Century 

Differential calculus developed in part from techniques used in the 17th Century to study 

certain properties of curves [Pedersen 1980\. It is only naturai that the most prominent 

of its applications in its initial period was precisely the study of those properties of 

curves. 

The first textbook on the differential calculus [l'Hospital 1696} is also a textbook 

on differential geometry of plane curves. as can be seen from its full title: Analyse 

des infiniment petits pour l'intelligence des lignes courbes35. It can also be seen from 

its table of contents, where the titles of seven chapters, out of ten, refer explicitly to 

curves. L'Hôpital teaches how to use the differential calculus to find the tangents of 

curves, their points of inflexion and cusps, their evolutes and radii of curvature (called 

35Analysis of the infinitely small, for the understanding of curved Unes. 
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"radii of the evolute"), the caustic curves generated by reflection, those generated by 

refraction, envelopes of families of curves, and a few more things. 

L'Hôpital [1696, 3] puts as a postulate that a curve be considered as a polygon 

with an infinite number of sides, each of them infinitely small. To fìnd a tangent it 

is enough to prolong one of these infinitely small sides (this is in fact his définition of 

tangent (l'Hospital 1696, 11]). Given a curve AM by an équation between x {AP) and 

y (PM), if we wish to draw the tangent MT, we should conceive another ordinate, 

mp, infinitely close to PM, so that Pp = MR — dx and Rrn = dy\ the triangles mRM 

and MPT are similar, so that dy.dx :: MP.PT, and therefore the subtangent PT is 

equal to The subtangent is information enough to draw ("mener") the tangent. 

i 

I 3. 
A — 

The treatment of curvature in [l'Hospital 1696, eh. 5] is attached to the theory of 

evolutes and involutes: given a curve BDF, one is asked to conceive a string ABDF 

wrapped against it, fixed in F and extended to A; keeping the string taut and unwrap-

ping it, the point A describes a new curve AHK; BDF is then the evolute of AHK;36 

the straight portions of the string AB, HD, KF are the radii of the evolute. 

Regarding the curve BDF as a polygon with infinitely small sides (BC, CD, DE, 

EF), AHK can be seen as composed of infinitely small arcs of circle (AG, GH, HI, IK), 

the centers of those circles being the points of the evolute (C, D, E, F).37 This means 

that the radii of the evolute are tangent to the evolute and normal to the involute. It 

also means that curvature can be measured, since "la courbure des cercles augmente à 

proportion que leurs rayons diminuent" 3 8 [l'Hospital 1696, 73]. 

mAHK is usually called an involute (in French: développante) of BDF, but l'Hôpital does not 
seem to give it any particular name. 

3 7 A n interesting remark is that between the curve and any of these circles it is impossible to pass 
another circle [l'Hospital 1696, 73]. It is interesting because Lagrange will use this property as a 
définition of contact. 

3 8 "the curvature of the circles increases proportionally to the decrease of their radii" 
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[l'Hospital 1696] soon became the standard account of the application of differential 
calculus to the theory of curves. It remained standard for a long time. The correspond
ing sections in [Bér/out 1796, IV] follow l'Hôpital closely, and the table of contents for 
the section on the "use of differential calculus to find the tangents of Curves, their in
flexions and their retrogressions" in [Lacroix Traité, I, xxxii] contains one single item: 
precisely [l'Hospital 1696]. As we will see below. Lacroix did have two more sources 
for this section — and he mentions them in the text — but they were then very recent 
and not yet published. 

However, there were competing approaches to calculate these curve-related quan
tities. One of them, of course, was the method of limits. D'Alembert, in the article 
"Différentiel" of the [Encyclopédie], gave a famous example of the calculation of the 
ratio between the ordinate and the subtangent of a parabola as the limit of the ratios 
between the ordinate and the subsecants. Cousin [1796] calculates tangents, inflexion 
points, cusps, evolutes and radii of curvature in a chapter dedicated to the method of 
limits, even before introducing the differential calculus. 

There were also algebraic approaches, regarded as belonging to the application of 
algebra to geometry, rather than the application of differential calculus to geometry. 
Algebraic methods were sometimes regarded as more appropriate for the study of al
gebraic curves. That is the point of view in a book entitled Usages de l'Analyse de 
Descartes, Pour découvrir, sans le secours du Calcul Différentiel, les Propriétés, ou Af
fections principales des Lignes Géométriques de tous les Ordres3^ [Gua de Malves 1740] 
- "lignes géométriques" referring in fact to algebraic curves; a similar stand is found in 
[Cramer 1750] and [Goudin & du Séjour 1756]. We saw above (page 106) Lacroix use 
one of those algebraic methods, taken from those books: an application of transforma
tion of coordinates. But those methods could only be justified with recourse to either 
infinitesimal or limit-oriented arguments. In the case of the tangent method used by 
Lacroix, its justification involves a point approaching another until both are the same, 
so that in fact this is not very distant from the method of limits. 

An interesting case, as usual, is that of Euler. [Euler Differentiahs] does not include 
any applications to geometry. But some of the problems that could be treated as such 
are studied in [Euler Introductio, II]; in an algebraic fashion, of course. The process 
to find tangents is the following: given a curve nMm, its equation in x and y, and a 
point M in it with abscissa AP = p and ordinate PM = q, we translate the origin of 
the coordinates to M, and call t,u the new coordinates; the new equation for the curve 
is found simply by substituting p + t for x and q 4- u for y; but since the curve passes 
through the new origin, the new equation cannot have an independent term, so that it 
is of the form 

0 = At + Bu + Ct2 + Dtu + Eu2 + Ft3 + Gt2u + Htu2 + &c. 

'iQ Uses of Descartes ' Analysis, To find, without the aid of the Differential Calculus, the main Prop
erties, or Affections of the Geometrical Lines of all Orders. 
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Now, taking "very small" values of t, u will be also very small. but t2, tu and u2 will be 

even smaller, t3,t2u.tu2,u3, etc. much smaller even, and so on. Thus, all these terms 

caii be omitted, and 

"remanebit ista aequatio 0 = At + Bu, quaa est aequatio pro Linea recta 

Mfi per punctum M transeunte, atque indicat hanc rectam, si punctum m 

ad M proxime accédât, cum Curva congruere." 4 0 [Euler Introductio, II, § 

288) 

We recognize here the use of Arbogaste pńnciple, or rather of "Euler's criterion : : (see 

page 63 above). 

Later in the same book, Euler neglects only the terms of third and higher Orders to 

obtain an osculating parabola, the vertex of which coincides with the infinitely small arc 

Mm. Because he wants to measure the curvature of a curve, he décides that it is equal 

to the curvature of the osculating parabola at its vertex. But a parabola is not the 

ideal figure to help measure curvature: the circle is, because it has the same curvature 

at every point and because this curvature is inversely proportional to its radius. So 

what he wants is an osculating circle. The way to defìne this is through the parabola: 

the osculating circle is the circle that shares its osculating parabola with the curve at 

the given point. The radius of this circle is the osculating radius or radius of curvature 

of the curve [Euler Introductio, II, § 304-310]. 

So, Euler's algebraic method rests on a mixture of naïve limits ("m approaches M") 

and the neglect of higher-order infìnitesimals. But it contains a fruitful idea, typical of 

him: to take advantage of a power-series form of the équation of the curve. 

This idea was expanded by Arbogast in his 1789 memoir on the principles of the 

calculas (see section 3.1.4), where he developed a theory of osculation. Arbogast con-

sidered two curves with one common point M: one of the curves was given, while on 

the other certain conditions were to be determined according to how "intimately" it 

should touch the former. Their expressions should be put in power-series form, so that 

we would have as équation for the given curve 

and for the one to be specified 

, du . dzu A r, o9u A ~ „ 
u' = u + — Ai + -—r—r-r A£ + ^ T ^ A t 3 + & C . 4 1 

di ì-2dt2 l-2-Sdt3 

4 0 "it will remaki this équation 0 = At + Bu. which is an équation of a straight line Mß passing 
through the point M, and that îndicates that if m approaches M this straight Une will coincide with 
the curve." 

4 1 Two remarks on notation: y' and u' are not derivatives, of course — y' stands for y(x + Ax) and 
u' for u(t + At); also, the différence in coordinates (x, y for one curve aud u, t. for the other) is related 
to the usuai 18th-century conflation between Symbols for variables and for their values: x,y represent 
the coordinates of one fixed point (M) and x',y' represent the (values of) coordinates assumed by the 
first curve — and could not be iised for a différent curve. 
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Now, in order to have them meet at the point M with coordinates x,y, we make 

the first terms equal, that is, we put u = y and t = x; and in order to have y' 

and u' correspond to the same ordinate, we also put At = Ax. So now we have 

u' = y + f Ax + ï l ^ A x 2 + ^ A x 3 + &c [Arbogast 1789, §47-48], Putting in 

addition ^ = ^ , this curve is tangent to the other one [1789, §50]. 

Why is it so? Arbogast argued that the two curves do not intersect other than in M, 

at least not in the range of abscissas from x — Ax to x + Ax; this for a small Ax - small 

enough for ^Ax2 and ^Ax2 to be greater than the sums of the remaining terms 

in the series. That is. he used "Arbogaste principle" where Euler had used "Euler's 

criterion"; but notice that Arbogast's argument is much more algebraic - instead of 

having the two curves "coincide" infinitesimally (or in the limit), he argued that y' 

is greater or smaller than u' according to whether ^ is greater or smaller than ^ 

[i7S9,§50]. 

There are other advantages in Arbogast's theory One is that the touching curve 

does not need to be a straight line. Another is its adaptation to osculation. Tangency 

is called first-order contact. If in addition we put = we get a more intimate 

contact, called second-order contact; and so on. Of course this gives a much more ele

gant way of defining the osculating circle than Euler's resort to the osculating parabola: 

it is just a circle with a second-order contact. In this way tangency and curvature are 

united under the same theory. 

However, this union was not so novel: the idea of orders of contact, and the names 

"first-order", "second-order", etc., had already been presented in [Lagrange 1779, 

art. Ill]: given a curve with equation V = 0, for another curve to have a first-order 

contact with it, it would have to satisfy (at the point of contact) the equations V = 0 

and dV = 0; for a second-order contact, it should satisfy in addition SV = 0; and 

so on. But Lagrange had defined first-order contact by the meeting of two points 

of intersection, second-order contact by the meeting of three points of intersection, 

third-order contact by the meeting of four points of intersection, and so on. Moreover, 

these definitions were perfunctory; he had not given a justification based on them for 

the equations that the contacting curve had to satisfy (nor any other justification). 

Arbogast's theory of osculation can thus be seen as a justification of Lagrange's. 

A justification of his theory of the contact of curves by comparison of coefficients in 

power-series expansions was ideal for Lagrange, and he adopted it and improved upon 

it in [Lagrange Fonctions}. Lagrange starts the chapter on applications to geometry 

by adopting a definition of tangent line inspired by the ancient (Greek) geometers: 

"une ligne droite est tangente d'une courbe, lorsqu'ayant un point commun avec la 

courbe, on ne peut mener par ce point aucune autre droite entre elle et la courbe" 4 2 . 

He contrasts this definition with those used in the 17th and 18th century: secants of 

4 2 "a straight line is tangent to a curve when, having a point in common with the curve, it is not 
possible to draw any other straight line between them" 
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which the two points of intersection are united, prolongation of a infinitely small side 
of the curve seen an a polygon with infinite sides, and the direction of the movement 
by which the curve is described. 4 3 The methods based on these definitions were general 
and simple, but lacked the evidence and rigour of the ancient proofs. Fortunately there 
was now his theory of analytic functions. [Lagrange Fonctions, 117-118] 

To apply his definition of tangency, Lagrange considers a curve with equation y = 
f(x), a different one — supposed to be tangent to the first — with equation y = F(x), 
and a third one — the one that will be proved not capable of being drawn between 
the first two - with equation y = ip(x).AA These curves are supposed to intersect at a 
point of coordinates x and f(x) = F(x) = <p(x). He then examines what happens close 
to that point, that is, when the abscissa is x + i. For this he considers the differences 
between the ordinates of the first curve and the other two curves: 

D = f{x + i) - F(x-ri) 

A = / ( x - H ) -<p{x + i) 

Expanding the functions using the Lagrange remainder (3.13). these differences become 

D = i{f{x) - F'(x)) + ~\f"(x + F"(x + h)} 

A = i(f(x) - + + J ) - + k)] 

(where h,j and k are indeterminate quantities between 0 and ż) 4 5 . Now, if f'(x) = 

F'(x), D reduces to 

and as long as f'[x) <f'(x), D will be less than A for values of i small enough: 
it is sufficient to take values of i small enough for f'(x) — <pf(x) to be larger than 
%[<p"(x + j) — F"(x + / i )] . 4 6 This means that if two curves have the same derivative 

4 3 T h e first of these definitions is the one used by himself in [Lagrange 1779]. We have also seen it 
being used by Lacroix (following Cramer and Goudin and du Séjour) in a context of analytic geometry 
(page 106 above): it is also used by Euler in the passage above, and it is implicit in the limit-oriented 
works, like those by d'Alembert and Cousin referred to above. The second definition was the one 
commonly used in differential calculus; its use by l'Hôpital was mentioned above. The third definition 
had fallen somewhat in disuse after the end of the 17th century, except possibly in the English method 
of fluxions. 

4 4 I n fact the equations are y = fx, q = Fp, and s = <pr, although the coordinate axes are the same. 
That is because Lagrange also conflates variables and their values; taking the same abscissa for the 
three curves is done by taking r = p = x, and the curves intersect at that point if s — q ~ y. 

4 5 I n fact Lagrange calls all three of them j . but he remarks that; j may take different values in 
f"(x + 3),F"(x+j)and<f"(x+j). 

4 6 0 f course some regularity is needed for this argument, namely that <pu and F" be bounded in a 
neighbourhood of x. On a different note, there is a printing error here: ^ [f"(x+j)— F"(x+j)] instead of 
^[f"{x + j) — F"(x+j)]; this was later corrected (at least in the Œuvres printing [Lagrange Fonctions, 
2nd ed, 187]). 
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at a common point, then no curve with a different derivative can pass between them 
[Lagrange Fonctions, 118-120]. In other words, they are tangent. 

Likewise, if two curves have the same first and second derivatives at a common 
point, then no curve with a different first or second derivative can pass between them; 
and so on. Thus we have different degrees of contact or osculation [Lagrange Fonctions, 
120-122; 127-128]. 

Lagrange applies this theory to tangent circles: in the general equation of the circle 
(x — a)2 + (y — b)2 ~ c2, which can be written as F(x) = y = b+ *Jc2 - (x — a)2 there 
are three indeterminate constants, a, b, c. Two of them (say, a and 6) can be determined 
by putting F(x) = f(x) and F'(x) = f'(x); this leaves one indeterminate constant (c), 
which means that for each value of c there is a circle of radius c tangent to the curve 
y = J(x). But if in addition we put F"(x) = f"(x), c is determined and there will be no 
other circle between (x — a)2 -f- (y — b)2 = c? and the curve. This is the osculating circle, 
or circle of curvature, and c is the radius of curvature [Lagrange Fonctions, 124-127]. 

It is interesting to remember here that Lagrange had used Arbogast's principle 
to derive Lagrange's remainder (page 66 above), so that his theory of osculation not 
only seems to owe something in Arbogast's, but is also an indirect use of Arbogast's 
principle. 

There is more in the section on plane differential geometry in [Lagrange Fonctions] 
than just a theory of contact of curves, but this theory is one of the main driving 
forces there, along with the connection between envelopes ("courbes enveloppantes") 
and singular solutions (a connection that had been revealed in [Lagrange 1774]; see 
section 6.1.3.3). 

4.2.1.2 Differential geometry of plane curves in Lacroix's Traité 

We saw in page 107 that Lacroix, in order to study the curve ax3 + x3y — ay3 = 0, 
expands it into the series 

x2 X4 X5 

V = X + 3 a ~ 81a 3 + 24304 e t ° ' ' 

"convergent" for small values of x. The discussion on how Lacroix concluded from 
that series that y = x is tangent to the curve was then postponed. We will see it now, 
because it is an introduction to his plane differential geometry. 

Lacroix invokes his version of Arbogast's principle (which we saw in section 3.2.6): 
we can take values of x small enough to make the rest of the series ( ̂  — ~ ^ + etc.) 
even smaller than x. This means that the curve differs as little as we may wish from 
the straight line y = x, and a very small portion of it around the origin will become 
undistinguishable ("se confondra sensiblement") of that straight line. 

But Lacroix also presents another (and more interesting) argument in favour of 
y = x being tangent to the curve at the origin: it is impossible to draw another 
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straight line through the origin passing between them. The argument is very similar to 

Lagrange's but it uses Arbogast's principle directly: denoting now by y' the ordinate of 

the straight line, so that y' = x is its equation, 4 7 the difference between that ordinate 

and the ordinate of the curve is 

, x2 x4 

He then considers another straight line through the origin, with equation y" — Ax, so 

that the difference between the ordinates of the two straight lines is 

y"-y' = (A-\)x 

which can be made larger than — etc. by taking a value of x small enough 

[Lacroix Traité, I, 363]. 

Lacroix then comments that "il est facile de voir qu'on peut prendre pour le car

actère de la tangente, l'impossibilité de faire passer une autre droite entr'elle et la 

courbe" 4 8 to conclude that in fact y = x is the tangent at the origin (Lacroix Traité, 

I, 364]. Having already used the "two intersection points becoming one" characteriza

tion of the tangent (page 106 above), he could not adopt, like Lagrange did, the "no 

straight line between..." property as the definition. But he could use it as a working 

definition (a "caractère"). He did not attempt to prove the equivalence between the 

two characterizations. 

When finally addressing directly the use of the differential calculus to study curves 

[Lacroix Traité, I. 369], Lacroix returns to the considerations he had made apropos of 

ax3 + xzy — ay3 =- 0, but this time in a general form, introducing local coordinates (in 

that example he had only studied the tangent at the origin). 

It is necessary here to remark some notational peculiarities that Lacroix introduces 

at this point; he decides to distinguish the coordinates x',y' from x,y, the former 

referring to points of the curve under study, and the latter to any points on the plane. 

We have seen Arbogast and Lagrange make similar distinctions, but Lacroix seems 

clearer and more systematic. 

If x', y' are the coordinates of the point M through which we want to pass a tangent, 

when x' becomes x' 4- h, y' becomes y' + k. h,k will be regarded as new coordinates, 

the origin being M. By Taylor's theorem 

, dy'h (fy' h2 d3y' h3 

t- — _ i_ ° I _ i_ p t - p 

dx> 1 dx'2 1 • 2 ^ da;13 1 • 2 • 
47Apparently this is once again the conflation between symbols for variables and for their values. 

But Lacroix only makes the distinction that is useful (and in fact necessary), that of the ordinates: 
he is aware that he is comparing different ordinates for the same abscissas, so that the latter remain 
plainly x. 

4 8 "it is easy to see that we can take as the character of the tangent, the impossibility of passing 
another straight line between it and the curve" 
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or more simply, 
fc = ph + qh2 + rh3 + etc. (4.11) 

The argument given above (more precisely the "no straight line between..." version) is 
repeated to conclude thafc k' = ph is tangent to the curve at M 49 It remains to return 
to the originai coordinatesi this is done by substituting x — x' for h and y — y' for k', 
so that the tangent at M is given by 

dy' 
y-y' = p{x- x') or y - y' = -—(x - x') 

dx' 

The sign of the second terni of k = p/i + gfc2 + r / i 3 + etc. can be used to study the 
concavity of the curve at M: the différence between the ordinates of the curve and of 
the tangent is k — k' = qh2 + rh3 + etc.; h can be given values small enough for qh2 to 
surpass rh3 -f- etc. and therefore for the sign of k - k' to be the same as the sign of q\ if q 
(or ^ ) is positive, the curve is above the tangent "immediately before and after M", 
so that its convexity is turned to the abscissa axis; if q is negative, the opposite is the 
case [Lacroix Traité, I. 368]. A similar discussion had already occurred in the previous 
section about ax3 + x3y — ay3 = 0, and there the association between inflexion point 
and ç = 0 had been noted (as it is noted further ahead, in more detail, when Lacroix 
studies singular points). 

Lacroix observes that the rôle of the differential calculus here is auxiliary: it could 
be replaced by any other process that would give the development of fc (as in fact had 
been the case in the previous section). 

He also remarks that Arbogast was the first who presented under this point of view 
the application of the differential calculus to the theory of curves; Lagrange was also 
led to it by his way of viewing the calculus [Lacroix Traité, I, 370]. 

Lacroix then spends a few pages exploring this: for instance, he teaches how to 
determine a tangent to a given curve with the condition that it passes through a given 
point not on the curve, or parallel to a given straight line; and how to calculate the 
subtangent, the normal and the subnormal. 

Asymptotes are treated as limits of the tangent (as the point of tangency moves 
away from the origin). 

The study of cases in which certain terms of (4.11) are nuli or infinite permits to 
characterize singular points: for instance, there is an inflexion point when the first non-
nuli terni (after ph) is of odd degree (or in certain situations in which ^ is infinite) 
[Lacroix Traité, I, 377-378]. 

Naturally, Lacroix présents the theory of oscillation of Lagrange and Arbogast, 
and it deserves its own section (under the title 'Théorie des oscillations des courbes") 
[Lacroix Traité, II, 388-401], which also includes a treatment of curvature. Lacroix 

i9k' instead of k presumably bccausc it is an ordinate not belonging to the curve, but this Ls not 
very consistent with y' for the curve. 
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starts his presentation, however, by considering only the simplest osculating curves for 

each degree, that is. the parabolic curves 

k' = ph, k"=ph-rqh2, k'" = ph + qh2 + r/ i 3 , etc. 

The second of these curves passes between the given curve and the first of these; the 

third passes between the given curve and the second of these; and so on (this, of 

course, is proved using Arbogast :s principle). Clearly, the first of these curves is the 

tangent straight line; the second is called the osculating parabola (in the singular) and 

has a second-order contact with the given curve (unless r = 0. in which case it has 

at least a third-order one); but all these curves (except apparently the tangent) are 

called osculating parabolas (first osculating parabola: k" = ph + qh2; second osculating 

parabola: k'" = ph + qh2 + rlv\ etc.). 

Probably the only reason for this introduction to osculation is pedagogical. 5 0 What 

is important, mathematically, is the general concept of osculating curves: adopting 

the same local coordinate system as in the study of tangents, an arbitrary curve that 

passes by M, having its ordinate named K, has an equation of the form 

K = Ph+ Qh2 + R/i 3 + ShA + etc. 

Putting P = p, this curve will have the same tangent as the given curve, and a first-

order contact with it; if in addition Q = q, the contact is of second order; and so 

forth. 

The most obvious (and useful) example is the circle. Lacroix considers a circle 

(x — a)2 + (y — 0)2 = a 2 , and determines the three arbitrary constants a,¡3, a by the 

conditions of passing by M and having a second-order contact. This is the osculating 

circle and no other circle can pass between this and the given curve. Since the circle 

has an uniform curvature, and this curvature is inversely proportional to its radius, the 

osculating circle is used to esteem the curvature of the given curve: for this "on compare 

la courbe à son cercle osculateur. de même qu'on la compare à sa tangente, pour 

connoître la direction vers laquelle tendroit à chaque instant le point qui la décriroit" 3 1 

[Lacroix Traité, I, 396]. Because of this the radius of the osculating circle is also called 

radius of curvature. 

Lacroix defines the evolute of the curve as the curve formed by the centres of 

all the osculating curves (and having, thus, coordinates ci,/3). He then proves that 

the radii of the osculating circles are tangent to the evolute. He also alludes to the 

relations between the behaviour of the evolute and singular points of the involute (a 

o 0Lagrange had also given these simplest osculating curves, but only as a comment, after having 
dealt with the general theory [Lagrange Fonctions, 129-130]. 

5 1 "the curve is compared to its osculating circle, in the same way that it is compared to its tangent 
to get to know the direction towards which would tend in each instant the point that would describe 
it ' 
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topic favoured by l'Hôpital), but does not dwell long on them. 
The next section is on transcendental curves, and it has already been mentioned 

briefly in the section on analytic geometry (page 107 above), since Lacroix mixes ana
lytic and differential considerations there. 

For some reason, it is in this section that Lacroix calculates the differentials of the 
arc-length of a curve and of the area under a curve, For this, he uses a consequence 
of Arbogast's principle that he had given in the Introduction and which amounts to a 
pinching theorem: given three "expressions" 

such that the values of the second are always between those of the first and those of 
the third, if A = A", then also A = A'. 

To prove this, he gives x a value small enough for A, A'. A" to be larger than the 
rest of the respective series, and thus represents those series by A + Ô, A' + 5', A" + a". 
Now, the differences between the second and the first, and between the third and the 
second are A! - A + 6' - S and A" - A' + 5" - S', respectively, and \ÎA = A", the latter 
is A — A' -f- <5" — ô'; these differences must have the same sign. Now, if A' ~ A + d or 
A' = A — d, with positive d, then those differences reduce to d + ô' — Ô and — d+6" — ô'\ 
but it is possible to take 6,S',Ô" smaller than d (presumably by taking x even smaller 
than before) so that the signs of the differences are those of d, —dt and thus not the 
same. The conclusion is that A = A' [Lacroix Traité, I, 58-60]. 

The applications of this to area and arc-length are almost obvious. Lacroix considers 
a curve DM, with abscissa x = AP and ordinate y = PM, and a increment of the 
abscissa, h = PP', small enough for the curve not to have any inflexion between 
its ordinates PM and P'M' (that is, for the function y of a; to be monotonie in the 
interval PP').^2 If the area ADMP, which is a function of x, is represented by s, then 

o 2 I t was common belief in the 18th century that all functions were piecewise monotonie. 
[Lagrange Fonctions. 155-156] for instance, has a similar assumption (also in a proof that the or
dinate is the derivative of the area). 

A + Bx + Cx2 

A' + B'x + Ox2 

A" + B"x + C"x2 + 

+ Da;3 + etc. 
D'xz + etc. 
D"x 3 + etc. 
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its incrément PM M'P' (corresponding to h) is 

s'h s"h2 s"'ks 

1-2 -3 1-2 + -f- etc. 

But "it is easy to see" that this incrément is comprised between the rectangles PP' x 

PM and PP' x P'M', that is 

so that s' = y, or ds = ydx [Lacroix Traité, I, 416-417], 

As for the arc-length z, Lacroix inserts its incrément between the segment of straight 

line MM' and the sum MN + NM' (where MN is tangent to the curve DM), to arrive 

This section finishes with an interesting article [Traité, I, 418-419] on the char-

acterization of curves using équations other than those between rectangular or polar 

coordinates; for instance, using an équation between the radius of curvature and the 

arc length. Struik [1933, 114-115] locates hère the origin of discussions on intrinsic 

coordinates, soon to be taken up by Ampère and Carnot . 5 3 

The last section of chapter 4 has a purpose very typical of Lacroix: to présent al

ternative points of view, namely an application of the method of lirnits to find tangents 

and osculating Unes and the Leibnizian considération of curves as polygons. 

Consider an équation between x,y and three arbitrary constants, so that it repre-

sents a family of curves; we can specify the curves by subjecting them to pass through 

three particular points. Now imagine thèse three points are in a curve of which we 

have an équation on x' and y', and that their abscissas are equally distanced: they 

are, say, x', x' 4- h, x' 4- 2h. After having obtained the respective conditions on the 

arbitrary constants (as power séries on h), we make the three points approach each 

other (that is, h tend to 0) until they are only one and we have a second-order contact 

[Lacroix Traité, l, 419-421]. 

Adopting the Leibnizian approach, and interpreting curves as polygons with infi-

nitely small sides, then two curves have a contact if they have a certain number of 

common sides (say n), and therefore they must have the same differentials, up to order 

n (and of course that is a contact of order n) [Lacroix Traité, I, 425]. 

But there is a différent way. stili in Leibnizian terms, to characterize the osculating 

circle, and that Lacroix thinks is "trop élégante et trop féconde" 5 4 to be omitted. 

This alternative way amounts to characterize the centre of the osculating circle as the 

5 3Actually, Struik only locates it there tentatively: he uses the second édition of Lacroix's Traité, 
posterior to Ampère and Carnot's works; he recognizes the origin in Lacroix because of Ampère's 
acknowledgment. The change in this article introduced in the second édition amounts to only one 
sentence, where Lacroix cites Ampère and Carnot. 

° 4 "too elegant and too fruitful" 

yh and 4- etc. 

at z' = (1 4-y'2)2, or dz = yjdx2 + dy2 [Traité, L 414-416]. 
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intersection of two infinitely near normáis to the curve [Lacroix Traite, I. 426]. 

It is "féconde" indeed because, giving also a characterization of the evolute as 

formed by all such intersections. and the evolute being tangent to the radii of curva-

ture, it entails the more general consideration of envelopes of one-parameter families 

of curves. Lacroix does not use the word envelope, but the concept is there; his word-

ing of the problem is: "trouver Téquation de la courbe qui en touche une infinité 

d'autres d'une nature donnée et assujetties á se succéder suivant une certaine loi" 5 5 

[Lacroix Traite, I, 427]. 

Lacroix's treatment of envelopes, as the wording above suggests, is the tradicional 

Leibnizian one. with just a little amount of very naíve limit-oriented íanguage: for two 

intersecting curves in the family (Lacroix has an example with circles). "it is evident" 

that the point of intersection will be the closer to the envelope as the two curves are 

closer to each other (that is, as the parameter varíes less from one to the other); and 

if those two curves are made to coincide, their point of intersection will coincide with 

the points where they touch the envelope. This means that the envelope is formed by 

the successive intersections of the curves in the family. 5 6 

ThuSj if the family is given by an equation V = 0 in x,y, and a parameter a, we 

should differentiate this equation relative to a, assuming that as a becomes ct + da. (as 

we pass from one curve to the next) the coordinates x, y remain unchanged (because 

we want the common point between the two curves). Since we want an equation of 

the envelope (where y should be a function of x) we take V as a function of x and a; 

differentiating V = 0 relative to a gives ^ + = 0 , but as we had assumed that 

^ = 0. this becomes 

da 

Eliminating a between this and V = 0 gives the equation of the envelope [Lacroix Traite, 

I. 427-429]. 

But Lacroix also gives another justification for this procedure, without resorting to 

"successive intersections": at each point the envelope is tangent to one of the curves in 

the family, and therefore has the same coordinates and the same differential that that 

curve; it must therefore satisfy 

dV dV 
V = 0 and — d x + -r-dy = 0 

dx dy 

once the corresponding valué of a has been substituted. Now, since x and y in fact 

vary with a, they are functions of a: differentiating V = 0 under this assumption gives 

£ Í + % t + % = 0> °r %dx + %dy + %da = 0; but since £ dx + %dy = 0, we 
have ^ = 0 [Lacroix Traite, I, 429]. 

0 5 "to find the equation of the curve that is tangent to an ¡nfinity of other [curves] of a given nature 
and subject to follow one another according to some law" 

56 This charactcrization of envelopes can be seen for instance in [l'Hospital 1096, eh. 8], 
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Lacroix then remarks that the process of variation of constants is a very important 

one in analysis, and very' fruitful in geometry, and he ends the chapter by applying it 

to the study of roulettes: the curves produced by the movement of a determinate point 

on a curve that rolls over the perimeter of another (the cycioid is the most important 

example of a roulette). 

4.2,2 Differential geometry of surfaces and "curves of double 

curvature" 

4.2.2.1 Differential geometry of surfaces and "curves of double curvature" 

in the 18th Century 

It was mentioned in section 4.1.1.3 that the development of three-dimensional coordi

nate geometry was slower than that of planar coordinate geometry. Differential geom

etry needs a background of coordinate geometry, so that state of affairs reflected on 

spatial differential geometry [Taton 1951, 148]. It is revealing that the origins of par

tial differentiation are related to the study of parameterized families of (piane) curves, 

instead of the study of surfaces [Engelsman 1984\- The only problem in spatial differ

ential geometry that appears to have been seriously studied in the early stages of the 

differential calculus is that of geodesics 5 7 on a surface. In 1698 Johann Bernoulli gave 

a geometrical solution: the osculating planes to the curve should be perpendicular to 

the tangent planes to the surface [Coolidge 1940, 324]; in 1728-1729 he and Euler gave 

solutions in the form of differential équations [Enestròm 1899}. But apparently this 

did not lead into further studies on spatial differential geometry. 

The first major analytic (both algebraic and differential) study of space geometry 

was [Clairaut 1731 ]. Its second chapter is dedicated to the application of the differential 

calculus to curves of double curvature 0 8 , but does not go beyond tangents and normals. 

A tangent to a curve can be found prolonging an infinìtely small side of the polygon-

curve, or intersecting two planes perpendicular to the vertical coordinate planes and 

passing through the tangents of the corresponding projections of the curve. Either 

way, Clairaut's goal is not to determine the équations of the tangent, but rather to 

calculate the subtangent (the length of the projection into the horizontal coordinate 

plane of the segment of tangent between that same plane and the point of tangency). 

The tangent plane to a surface in a given point is determined by two of its straight 

Unes, namely the tangents to the sections of the surface through the given point that 

are parallel to the vertical coordinate planes [Clairaut 1731, 49]. Curiously, this is 

only a lemma, and it does not occur to Clairaut to calculate the équation of a tangent 

a 7 I n the sensé of "shortest path between two points". 
o 8Henri Pitot had used the name "curves of double curvature" for space curves in 1724, but it was 

Clairaut [i 731] who established it as standard. It was used throughout the 18th Century. Neither Pitot 
nor Clairaut seemed to have in mind first curvature and torsion when usîng the name [Struik 1933, 
100-101]. 
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plane. The use for this lemma is to deduce geometrica! properties of the normal line 

to a surface at a point, so that it is possible later to détermine the équation of the 

curve generated by the intersections of the horizontal coordinate plane with ail those 

normals through the points of a curve in the surface [Clairaut 1731, 57-58]. The third 

chapter of [Clairaut 1731], dedicated to applications of the integrai calculus, consists 

in calculations of arc lengths, areas of surfaces, and volumes. 

[Euler Differentialis, II] contains an appendix on surfaces, but it is very uninterest-

ing as far as differential geometry is concerned: the only problem tackled there that 

might be regarded as part of the subject is tangency between surfaces, and it is dealt 

with algebraically. Tangency is interpreted as a coïncidence of two intersections, so 

that enquiring whether two surfaces are tangent (and where, in case they are) involves 

searching for double roots of équations expressing intersection [Euler Differentialis, II, 

appendix, § 139-142]. There is no attempt to adapt directly the power-series method 

for plane curves (page 114 above). There is a distinct process for the search of tangent 

planes that uses it, but in a planar way: the tangent plane to a point in a surface can 

be defined in the same way that in [Clairaut 1731]] this involves calculating tangents to 

two planar curves, so that that method can be used. In neither process is the équation 

of a tangent plane actually written. 

Euler's great contributions to differential geometry in space came later. In [1760] 

he addresses for the first time the problem of curvature of surfaces. He calculâtes the 

osculating radius for an arbitrary plane section through a given point, then concentrâtes 

on normal sections; taking one as the "principal section", he shows how to determine 

the osculating radius of any section using that of the principal and the angle between 

them. He then notices that the normal sections that give the largest and smallest radii 

make a right angle and arrives at the formula 

/' + (/-Q) cos 2c/; 

for an osculating radius r, where / is the largest osculating radius, g the smallest, and 

(p the angle between the sections that give r and / . 

In 1771 Euler wrrote another important article, where he studied developable sur

faces (surfaces that can be unfolded onto a plane). There Euler tried to show that every 

developable surface is a ruled surface (that is, composed of straight lines) but. accord-

ing to [Coolidge 19Ą0, 331], without much success. In that article Euler did show that 
the tangents to a space curve form a developable surface [Struik 1933, 104]. He also 
gave a set of conditions for a surface to be developable, for which he represented the 
coordinates x, y, 2 of a point on the surface as functions of two variables t, u. However, 
this idea was not followed before Gauss, in the 19th century. 

As we can see, in mid 18th century the differential geometry of surfaces and space 
curves was not a very dynamie subject: but then appeared Gaspard Monge, and it was 
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set in motion. In an analytical âge, Monge combinée! a knowledge of analysis with 

a deep geometrical intuition. Speaking of a memoir in which Monge took up Eulers 

theory of developable surfaces, Struik [1933, 106] said that 

"the formulas always follow the dynamics of geometrical development, so 

that the integration of a partial differential équation becomes the graduai 

building up of a geometrical system in space. Nobody except Lie ever 

equalled Monge in that direction". 

Monge's first article on this was a "Mémoire sur les développées, les rayons de 

courbure, et les différens genres d'inflexions des courbes à double courbure" 0 9 [Monge 

1785a], presented to the Paris Academy of Sciences in 31 August 1771, and which has 

already been mentioned in section 4.1.1.3. In that memoir Monge expands the theory 

of evolutes to the space. 

The first third of the memoir contains the geometrical exposition of bis study (with 

many infinitésimal considérations). If at each point of a curve (piane or of double 

curvature) we take its normal plane, the normal planes through two infinitely close 

points will meet along a straight line. Thèse straight Unes form a developable surface, 

nowadays called the polar developable60. There is an infinity of envelopes of straight 

Unes normal to the given curve, they are ali in the polar developable, and he calls 

them the evolutes of the curve. In the case that the given curve is piane (and only in 

that case), one of its evolutes is piane (it is the usuai evolute). The polar developable 

of a piane curve is a cylinder erected upon the piane evolute. Unfortunately, unless 

the given curve is plane, its centres of curvature do not form one of its evolutes. 6 1 

He also characterizes developable surfaces as composed by a system of straight Unes 6 2 

and introduces the concept of edge of régression of a developable surface (other than 

cylinders and cones): the curve formed by the intersections of consecutive generating 

Unes. 6 3 The edge of régression of the polar developable of a curve is composed of the 

centres of curvature of the curve (and therefore is not an evolute 6 4). 

5 9 "Memoir on the evolutes, the radii of curvature, and the différent kinds of inflexion of curves of 
double curvature" 

6 0 Monge occasionally refers to it as the "surface des pôles [de la courbe]", because those straight 
Unes are seen as axes through the centres of the osculatìng circles. and their points are poles of those 
circles; but he usually calls it "surface of the evolutes", rather than "surface of the poles". 

6 1 For each point in a curve, the radius of curvature is the radius of an evolute, but for two consecutive 
points in a space curve, the radii of curvature are radii of différent evolutes. In fact, there is an 
important exception to this rule: when the curve is a line of least or greatest curvature of a surface, 
its centres of curvature do form an evolute. Monge implicitly reported this in [1781, 690], stating 
that the normals are tangent to that curve, but apparently he never recognized explicitly that it is an 
evolute. Lagrange [Fonctions, 183], on the other band, was quite explicit, and Hachette cited Inni in 
a footnote in [Monge & Hachette 1799, 357]. 

6 2 That is, they are ruled surfaces. But he does not attempt to prove this in general. The case of 
polar developables is immediate from the définition. 

6 3 I n the case of cones it can be said that the edge of régression is the vertex. In the case of cylinders. 
the generating Unes are ali parallel. 

6 4 I n fact, the edge of régression is such that none of its tangents meet the curve. There is. however, 
the exception mentioned in footnote 61. 
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Monge then "applies analysis" to thèse considérations. After some preliminaries of 

analytic geometry, he calculâtes the équations of the normal plane to a given curve 

through a given point, of its polar developable, of the edge of régression of this polar 

developable (and the radii of curvature of the curve), of a curve formed by folding a 

straight line on a surface, and of an arbitrary evolute. 

He then addresses points of inflexion. There are two types of inflexion: in a simple 

inflexion, the curve is locally planar, that is, three consecutive "éléments"' (sides of 

the polygon-curve) are in the same plane; in a double inflexion, the curve is locally 

linear, that is, two consecutive éléments are in a straight line. A simple inflexion can 

be recognized because the polar developable behaves locally like a cylinder 6 5; a double 

inflexion happens when the radius of curvature is 0 or oo. 

In 1775 Monge presented to the Paris Academy a memoir on developable surfaces 

[Monge 1780], where he proposed to simplify and amplify Euler's work on thc subject, 

and where, naturally, he reworked some ideas from [Monge 1785a]. A developable 

surface is one that, supposed flexible and inextensible, can be applied on a plane, so as 

to touch it without gaps nor duplication. The obvious examples are those of cônes and 

cylinders. The application process can be thought of the other way around — a plane 

being wrapped on the surface — and that is the path that Monge follows. He imagines 

the wrapping as consisting of an infinity of rotations along straight lines tangent to the 

surface. These tangent straight lines must belong to the surface, and two consecutive 

ones must be coplanar. If they are all parallel, we have a cylinder; if they all meet in 

one point, we bave a cone; but in the general case they will meet along a curve (that 

is, they have an envelope) which is the edge of régression. 

This gives two characterizations of any developable surface: first, it is formed by the 

tangents to some space curve; second, at each point it contains one of its tangents, and 

two consecutive tangents are coplanar [Monge 1780, 383-385]. Using this he arrives in 

three différent ways at the differential équation for a developable surface 

ôôz - Mz = (Sdz)2 

(where ö stands for partial differentiation relative to x and d relative to y). The second 

of those characterizations also gives a distinction between developable surfaces and 

general ruled surfaces: a surface may be composed of straight lines, but such that two 

consecutive ones are not coplanar (which is the case of skew surfaces). 

In the second section of the memoir, Monge applies this to the theory of shadows 

and penumbrae: if a light source and an opaque body are given as surfaces, then both 

the shadow and penumbra are delimited by developable surfaces. 6 6 

Monge then gives a few analytical applications [Monge 1780, 423-426], and finishes 

6 5 T w o consecutive generating lines are parallel. 
6 6 I n the special case that the light source is a point, the penumbra does not exist and the shadow 

is delimited by a cone. circumscribed to the opaque body and with vertex at the light source. 
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the memoir with a study of ruled surfaces [Monge 1780, 427-440).6 7 He gives the 

third-order partial differential équation for ruled surfaces and shows that developable 

surfaces are a particular case of them. 

Monge's work on differential geometry soon generated disciples, and the first two of 

them had been students of his at Mézières. Charles Tinseau (1749-1822) presented two 

memoirs to the Paris Academy shortly after leaving Mézières in 1771 [Tinseau 1780a\ 

1780b].68 The first is a collection of problems revolving around Monge's differential 

geometry. the kind of simple problems that the creatore of théories often do not bother 

to solve. In [Tinseau 1780a, 593-594] we find, apparently for the first time [Taton 1951, 

119], the détermination of an équation for the tangent plane to a surface. Unfortunately, 

Tinseau was not a master of notation, and choosing x,y,z for the coordinates of the 

point of tangency (and of the surface) and 7r, <p, LJ for the coordinates of the plane, the 

équation obtained is 

The second memoir deals with quadratures and cubatures of ruled surfaces. 

Jean-Baptiste Meusnier (1754-1793) was also a student of Monge at Mézières, from 

1774 to 1775. In 1776 he presented to the Paris Academy his only work on mathematics, 

a memoir on the curvature of surfaces [Meusnier 1785}. There he dérives Euler's results 

in a différent way and improves upon them. Meusnier takes as élément of curvature a 

small portion of torus: he rotâtes a small arc of circle, tangent to the tangent plane, 

around an axis that is parallel to the tangent plane; this is done under such conditions 

that the resulting torus will nave the same first and second differentials that the surface 

at the touching point. The radius of the arc of circle r, and the distance from the 

touching point to the axis p are called the radii of curvature. He then proves that 

T and p correspond to Euler's maximum and minimum osculating radii, and Euler's 

results follow. But he also addresses the curvature of non-normal sections, arriving at 

what is stili called Meusnier's theorem70 [Meusnier 1785, 490-491]. 

Meusnier also interprets the signs of r and p in terms of convexity and concavity, 

noting for instance that when those signs are différent some sections are concave and 

others convex [Meusnier 1785 , 490-500]. He also proves that the only (presurnably 

6 7 H e does not, use the expression ruled surface ("surface regtfP:). This last section of the memoir 
is ostensibly only about skew surfaces ("surfaces gauches"): surfaces composed of straight Unes, but 
such that no two consecutive of thèse lines are coplanar. 

6 8 [Tinseau 1780a, 593] has an indication of having been presented in 1774, but according to Taton 
[1951, 76] the correct date is 7 Deceinber 1771. [Tinseau 1780b] has no date but, also according to 
Taton [1951, 76], appears to be contemporary of the former memoir. 

6 9 Which is algebraic: it is possible to divide each terni by dxdy; apparently Tinseau admitted only 

the partial differentials ( ^ ) dx, ( ^ J dy, not the partial differential ratios (j^) , (^ ) • 

The curvature of a non-normal section that intersects the tangent plane in a straight line a is the 
same that of the section made by the same plane in a sphère tangent to the surface and having as 
radius the radius of curvature of the normal section through a. 
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cuTved) surface that lias both equal radii of curvature everywhere is the sphère; and 

détermines a condition for minimal surfaces: that the radii of curvature are "equal" 

with opposite signs [Meusnier 1785, 500-504]. This allows him to find two examples, 

the twisted helicoid and the catenoid. the only minimal surfaces that were known for 

a long time [Struik 1933, 107]. [Meusnier 1785} is a remarkable piece, especially being 

the single mathematical work of its author. 

Meanwhile., Monge kept working on differential geometry. and including considér

ations of differential geometry in memoirs on other subjects. In fact, one of the main 

thèmes of lus mathematical work (since its beginning) was the association of differen

tial équations in three variables with families of surfaces sharing a common form of 

"generation" (usually they are generated by the movement of a curve; sometimes as 

envelopes of other surfaces). This is perhaps explained best in [Monge 1784a, 85-86]: 

a "finite" équation in three variables may refer to a family of surfaces by including ar-

bitrary éléments (particular values of which give rise to specific surfaces in the family). 

which may be constants or (more commonly) functions (as is the case with the family 

of surfaces of revolution around a fixed axis - the arbitrary functions represent the co-

ordinates of the revolving curve); we can eliminate those arbitrary éléments (constants 

or functions) between the "finite" équation and its differentials, so that such a family of 

surfaces can be represented by a differential équation, which expresses only the mode 

of generation. For more on this see sections 6.1.3.2 (pages 200 ff.) and 6.1.3.4. 

Monge managed to include a section on differential geometry of surfaces [1781, 685-

699] even in a memoir on the problem of minimizing the work done in the transport of 

rubble (he studies the problem on the plane and in space, the latter case essentialia- as 

a theoretical exercise [Taton 1951, 297]). In that memoir Monge addresses the issue of 

curvature, not followiiig precisely either Euler or Meusnier. Instead, he considers the 

normal straight lines to the surface, and asks when do two consecutive such normals 

intersect. The answer is that for each point the normal only intersects the consecutive 

normals in two directions, and thèse directions are orthogonal. Of course thèse corre

spond to the principal directions of curvature, and the curvature of the surface along 

one of them is established as the curvature of the sphère with centre in the correspond-

ing intersection of the normals. Following thèse directions from point to point in the 

surface, lines of least, or greatest, curvature are formed. 

As has already been mentioned (page 100 above), Monge taught differential geom-

etry at the Ecole Polytechnique from 1795, and from (or rather. for) that teachmg 

resulted [Monge Feuilles], the first textbook on differential geometry. 

Most of [Monge Feuilles] is composed of studies of particular families of surfaces. 7 1 

For each family Monge seeks a differential équation and an équation "in finite quan-

tities". Naturally. as the text proceeds other aspects are introduced and studied from 

7 1 As Tàton {1951, 210] puts it, thèse studies take up a score (''une vingtaine") of chapters out of 
about twenty-five ("quelque vingt-cinq") in the differential part of [Monge Feuilles]. 
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these equations. Those families are ordered by the complexity of the differential equa
tions that arise: first-order linear, first-order non-linear, second-order, and third-order. 
But he manages to introduce them naturally through other means: for instance those 
that have first-order linear equations are the cylindrical and conical surfaces, surfaces 
of revolution and those generated by the movement of a horizontal straight line that 
stays horizontal and always intersects a given (static) vertical line. 

Interspersed are a few chapters dealing with more general aspects: tangent planes 
and normal straight lines [Monge Feuilles, n° 4-i,ii]; envelopes of families of surfaces 
[Monge Feuilles, n° 7); developable surfaces [Monge Feuilles, n o s 13-iv - 15-iii]; curva
ture of surfaces [Monge Feuilles, n o s 17-iv - 19-i; and evolutes, radii of curvature and 
inflexions of curves of double curvature [Monge Feuilles, n0*5 32-34]. 7 2 

[Monge Feuilles] is then a reformulation and systematization of previous work, con
taining also a few new results. 

[Lagrange Fonctions] also includes a section on spatial differential geometry. It es
sentially attempts to address the same questions as its planar counterpart (contact and 
curvature of curves, evolutes, contact and curvature of surfaces). For more advanced 
studies Lagrange refers the reader to Monge's works [Lagrange Fonctions, 168, 184, 
187]. Occasionally it is apparent that Lagrange's fundamentalist approach was not 
very well suited for advanced differential geometry. For instance, he briefly mentions 
developable surfaces, giving their equation and characterizing each of them as the "in
tersection continuelle" 7 3 of a family of planes, so that we can conceive that any of these 
planes "suppose flexible et inextensible, s'applique et se plie sur la surface" 7 4 . 

4.2.2.2 Differential geometry of surfaces in Lacroix's Traite 

Apart from a few considerations on tangency and contact, closer to Lagrange, we will 
see that Lacroix essentially follows Monge in his account of the differential geometry 
of surfaces. 

In the first few pages Lacroix relates vertical sections with partial series expansions: 

cteh (Pz k2 d3z h3 

2 + r f x l + rfx2l-2 + ^ 3 l - 2 - 3 + e t C " 

for a section parallel to the x, z plane, and 

dzk flJf_ d3z k3 

Z J r dyl + dy2T^2 + ^ F 2 ~ 3 + e t ° -

for a section parallel to the y, z plane. Other vertical sections are obtained by making 
7 2 This last chapter was absent from the first édition [Taton 1951, 219]. 
7 3"continued intersection" 
7 4"supposcd flexible and inextensible, is applicd and folded onto the surface" 
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the ratio jj constant in 

dz , dz . 1 / d 2 ? . •} q ? 2 . . d' 
z 4 4- -j-k 4- ^ ( - ^ / i 2 + - f ^AA; + 4̂fc2

 ) 4 etc. 
dx dy 2 \dx2 dxdy dyi J 

Of course this séries is (3.15); the equality of mixed differential coefficients expresses 

the fact that to go from a point of coordinates x, y to a point of coordinates x 4- h, y + k 

one may use the first séries first (to go to x 4- h, y, along the section parafici to the x, z 

piane) and then the second (to to go to x 4- h, y 4- k, along the section parallel to the 

y, z piane), or the second séries first (to go to x,y 4-k, along the section parallel to the 

yy z plane) and then the first (to to go to x 4 h, y 4- k, along the section parallel to the 

x-, z plane), and that the two results must coincide - as Lacroix [Traité, I, 467] puts it, 

it expresses "la continuité de la surface" 7 5. 

There is some discussion of the contact of two surfaces using thèse séries expansions. 

If they have a common point with coordinates x', y', z' and séries expansions 

z' + ph + qk 4- ~{rh2 4- 2shk 4- tk2) 4- etc. 

and 

z' 4- Ph 4- Qk 4- ~(Rh2 4- 2Shk 4- Tk2) + etc., 

a first-order contact will happen when p = P and q = Q; a second-order contact when 

in addition r = R,s = S and t = T; and so on. This easily gives the équation 

2 - z' = p (x - x') + q [y - y') 

for the tangent plane [Lacroix Traité, I, 467-468]. 

But an alternative way is given for finding this équation - a "translation into analy-

sis" of a construction from [Lacroix 1795}: the tangent plane through a point with 

coordinates x',y',z' eau be determined by the tangents to the sections parallel to the 

vertical coordinate planes; thèse tangents have équations 

dz' 

z ~ z ' = dx' ^ ~ y-y' = o 
and t 

z - z' = ~(y~y'), x~x' = 0; 

representing the équation of the tangent plane by z — z' = A(x - x') + B(y — y'), it 

follows that 
A DZ>

 , D dz' 
A = — =p and B = - = q. 

Interestingly, Lacroix feels the need to argue that this plane is in fact tangent to the 

'"the continuity of the surface" 
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surface, and not only to the two sections. This is so not only because the result is the 
same as in the power-series argument above (and therefore, by transitivity, because of 
Arbogast's principle); but also because it carries a coincidence between the first-order 
differentials of the surface and the plane, and consequently a coincidence of their points 
"immediately around" the point of tangency [Lacroix Traité, I, 470-471]. As we move 
into this section, the power-series foundation gives way to infinitesimal considerations. 

Lacroix addresses osculating spheres next [Lacroix Traité, I, 471-472]. Using the 
conditions for first-order contact, he finds that all spheres tangent at a point M have 
their centres in the normal line through M. Trying next to use the conditions for 
second-order contact poses a problem: he has three more equations to satisfy and 
only one constant left to determine, so instead of r = R, s = S and t = T, he takes 
Rh2 •\-2Shk-\-Tk2 = rh2 4-2s/ifc + tfc2; putting this as an equation in j[, he manages to 
find an osculating sphere (for each value of | ) . However, this osculation only happens 
along one direction indicated by | , that is along one normal section to the surface. 

Having an expression for the radii of curvature of normal sections through a given 
point, Lacroix determines their maximum and minimum. Conceiving a transformation 
of coordinates such that the new horizontal coordinate plane is the tangent plane and 
the tangency point is the new origin, Lacroix shows that the directions of maximum 
and minimum curvature are perpendicular. It remains to establish Euler's relation 
between the radius of curvature of an arbitrary normal section, the maximum and 
minimum values of those radii and the angles between the arbitrary section and those 
of maximum and minimum radii [Lacroix Traité, I, 473-478]. 

Naturally, Lacroix reports also Monge's consideration of intersection of normals: 
the two directions in which this can happen, how they correspond to directions of 
maximum and minimum curvature, and the formation of lines of curvature. This is 
done briefly [Lacroix Traité, I, 478-480] and referring to equations obtained previously. 
Even briefer is an argumentation for the possibility of obtaining the conditions for 
surface contact from the "coincidence of their consecutive points" [Lacroix Traité, I, 
480-481]. 

Also very brief is the reference to a surface with a complete second-order contact: 
it is Meusnier's torus [Lacroix Traité, I, 482]. However. Meusniers results are mostly 
absent. Meusnier's theorem is not given, and the only mention of concavity and inflex
ion of surfaces (and their relation to the signs of radii of curvature) appears in a short 
footnote in the section on space curves [Lacroix Traité, I, 519]. 

The rest of the section on surfaces [Lacroix Traité, I, 482-504] appears in the subject 
index under the general heading 11 Surfaces courbes, leur génération" 7 6 (but there are 
also particular headings for many articles included there) [Lacroix Traité, III, 575]. Of 
course this reflects Monge's views on the study of families of surfaces - with a nuance: 
Monge seemed to prefer generation by movement of a (usually straight) line - at least 

7 6 "Curved surfaces, their generation'' 
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for the simpler familles - , while Lacroix gives préférence to envelopes. 

In the text Lacroix does not announce that he is to address the génération of 

surfaces: instead he says that he wishes to follow the same order here as in the chapter 

on plane curves, so that after having dealt with tangency, second-order contact and 

curvature, he should address envelopes. Lacroix speaks of a "surface formée par les 

intersections successives d'une infinité d'autres d'une nature donnée" 7 7 - thèse other 

surfaces sharing a gênerai équation with an arbitrary constant m [Lacroix Traité, I. 

482]. Maybe this language is too infinitésimal, so he tries to précise: for two very 

close values of m, the resulting surfaces must intersect along a line; imagining thèse 

intersections to become doser, they "détermineront un espace dont la surface que nous 

cherchons sera la limité"19' [Lacroix Traité, I, 482]. He décides to use the name limit 

for the envelope: like in the planar case, the word envelope is absent 7 9 . 

This is presented through examples. If the generating surfaces are planes, ail of 

them with a common point, we get of course a conical surface; if they are planes, ail 

perpendicular to a given one, theri the resuit is a cylindrical surface; a séquence of 

sphères with colinear centres gives a surface of révolution; a more complicated case 

is that of an "annular surface" : generated by a séquence of sphères (first of constant 

radius and such that their centres form a plane curve [Lacroix Traité, I, 488-489]; later 

the gênerai case, but only briefly [Lacroix Traité, I, 497, 501]). 

Let us look at an example: conical surfaces [Lacroix Traité, I, 483-486]. Lacroix 

starts with the équation 

of the generating planes (a, ß,^ are the coordinates of the common point to ail thèse 

planes - that is, the vertex; the équations of two of thèse planes must differ only by 

two parameters, but we can put one as function of the other): différentiation (on the 

surface, so to speak, so that x,y,z remain constant as they represent the common 

points between one plane and the next) gives 

so that n = ^ ( ^ ) , for some function and therefore 

7 7 "surface formed by the successive intersections of an infinity of others of a given nature" 
7 8 "will détermine a space, the limit of which is the surface that we seek" 
7 9 Although Monge [Feuilles, n° 7-i| had already used it in this sensé, applied to surfaces. Lagrange 

[Fonctions] spoke of "courbes enveloppantes" and "surfaces enveloppantes". 

f(n) (x - a) + n {y - ß) 4- (z - 7 ) = 0 
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Z ' 7 (4-12) 

which can be simplifled to 

x — a \x — a 

where <p is an undetermined function. This is the general non-differenti al équation of 

conical surfaces. Eliminating (p' between the first-order differentials of this équation 

yields 

z - 7 - P (x ~ û) + Q {y ~ ß) 

(where p, q are such that dz = pdx + q dy). 

The function (p can also be determined, particularizing the conical surface: for 

instance by forcing it to pass through a given curve, or by imposing it to circumscribe 

a given surface. This had been a favorite thème of Monge in his early work (see below 

pages 200 ff.). 

Addressing the general case: given an équation V = 0 in x,y,z and m Lo represent 

a family of surfaces, the équation of the limit surface cornes from the élimination of 

the parameter m between V = 0 and jj-j = 0. If, instead of eliminating, one assigns a 

particular value to m, thèse two équations give a curve, along which the corresponding 

generating surface and the limit surface are tangent. These curves, which are also 

the intersections of the successive generating surfaces, are called, following Monge, 

characteristics [Lacroix Traité, I, 490-491]. 

A special case is that in which the generating surfaces are planes: the limit surface 

is then called a developable surface. The general équation of developable surfaces cornes 

from the élimination of m between 

z — m = xtp{m) + yip{m) and — 1 = xipf(m) + ytjjr(m). 

Eliminating tp and il) by différent iati on gives 

rt - s2 = 0 

(where r,s,t are the second-order differential coefficients: dp = r dx 4- sdy and dq = 

sdx + t dy) .The characteristics of a developable surface also produce a curve by succes

sive intersections, and that curve is the edge of régression [Lacroix Traité, I, 494-495]. 

Lacroix [Traité, I. 496-497] also pays some attention to the détermination of <p and ip, 

given particular conditions (partly because of the problem of shadows and penumbrae). 

In the final pages of the section [Lacroix Traité, l, 498-504] surfaces are studied 

as composed by Unes (that is, generated by the movement of Unes - straight lines or 

curves in space), instead of as envelopes of other surfaces. The simplest example is 

once again that of conical surfaces: if a,ß,j are the coordinates of the vertex, the 

équations of the straight lines that compose the surface are 

y — ß = a (x — a), z — 7 = b (x — a) 
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Putting b = (p(a) gives once again the équation (4.12). 

This point of view allows Lacroix to characterize developable surfaces as formed by 

straight Unes with consecutive intersections, and skew surfaces as formed by straight 

Unes that do not intersect consecutively.8 0 

4.2.2.3 Differential geometry of "curves of double curvature" in Lacroix's 

Traité 

As everyone else in the 18th century, Lacroix takes any space curve to be the intersec

tion between two surfaces. 8 1 This seems particularly adequate for a geometry based on 

projection planes. Given the équations F(x, y,z) = 0 and f(x, y.z) = 0 of the two sur

faces that intersect in the curve, by eliminating for instance x between them we get the 

projection of the curve in the horizontal coordinate plane; but this équation is also that 

of the cylinder erected upon that projection; if we eliminate one of the other variables, 

we get another projection and another cylinder. The curve can be studied using two 

of those projections, and it is the intersection between those cylinders [Lacroix Traité, 

I, 504]. 8 2 

This idea can be found already in [Clairaut 1131, 1-3], but it is easy to see how 

appealing it should be to Lacroix (and Monge), who appreciated a parallelism (as it 

were) between descriptive geometry on one side and analytic and difïerential geometry 

on the other. 

However, besides being incorrect (which Lacroix does not seem to have been aware 

of) it is not a very fruitful idea, and Lacroix does not insist much on it. He uses it to 

give the équations of the tangent to a curve at a given point: the projections of the 

tangent must also be tangent to the projections of the curve; combining them, 

Aïf dz' 
y-y' = ^~(x - x') and z - z' = ^-{x - x') (4.13) 

dx dx 

are the équations of the tangent at the point with coordinates x', y', z'. 

But he quickly moves on to another approach, that of power séries: given a curve 

with coordinates x',y', z', we can take two of them, for instance y' and z', as functions 

of the third (in this case x'). Then, when x' becomes x' -f- h, y' and z' become 

, dy'h a?y' h2 , dz'h Sz' h2 

V + tel + + etC" a n d Z + dx-'l + a^T~2 + e t c -

8 0 O f course one has to allow here for some sloppiness in language: cylinders are developable surfaces, 
despite the fact that their straight lines do not intersect; instead, they are parallel, which should be 
mentioned by Lacroix as an alternative to intersection. 

8 1 Which is not correct in general. [Coolidge 1940, 136] gives the example of any non-planar curve 
with prime order. 

8 2 A very simple example can be given to show that this is not always so: take the hélix x — cos z,y — 
srnz; its vertical projection générâtes the cylinder x 2 + y2 = 1, aud its projection onto the plane x,z 
générâtes the cylinder x = cosz: however, the intersection of those two cylinders is the double hélix 
x = cos z, y = ± sin z. 
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while for an osculating line with coordinates x,y, 2 , when x becomes x 4- h. y and 2 

become 

dy h o9y h2

 x dzh (fiz h2 

For a first-order contact it is enough to put y — y', z ~ z', & = ^ and ^ = ~ when 

x = x'. In the case of a straight line, this gives the same équations as in (4.13). 

This approach can also be followed to study the contact between a curve and a 

surface. If x,y,z are the coordinates of the surface, when x becomes x 4- h and y 

becomes y 4- k. z becomes 

dx dy 

+ etc. 

But because we want to study the contact of this surface with a curve (with similar 

conventions as above). not only we should put x ~ x', y = y', and z = z', but also the 

incrément k of y' must be equal to + + etc. Substituting will give a séries of 

the form 2 ' 4- Ph 4- Qh2 + Rh3 4- etc. Then P = ~ gives a first-order contact; this and 

Q = ^¡§5 gives a second-order contact; and so on. An obvious example is the osculating 

plane to a curve. 

But this is enough as a démonstration of the power-series theory of contact. Lacroix 

intends to présent Monge's results about space curves, and so in the rest of the section 

lie regards curves of double curvature as polygons where three consecutive sides are 

not coplanar. 

This infinitésimal approach gives very easily the équations of tangents and osculat

ing planes, and the expression y/dx12 4- dy12 4- dz12 for the differential of arc-length. 

The bulk of the section is dedicated to what is essentially an account of Monge's 

work on evolutes of space curves and polar developables [Monge 1785a] (see page 127 

above). There are only a few différences in the présentation: Lacroix had already 

introduced developable surfaces (and their edges of régression) in the previous section; 

he chooses to study the evolutes of a plane curve in space, and then those of curves 

of double curvature, instead of taking the former as a particular case of the latter; he 

adopts the unfortunate narae radii of curvature for the radii of the evolutes, and calls 

absolute radius of curvature the shortest one (which Monge had called simply radius 

of curvature) [Lacroix Traité, I, 512-513]. 

Lacroix repeats Monge's mistake of stating that the centres of curvature only form 

an evolute in the case of a plane curve, forgetting the case of the lines of curvature of 

a surface (see footnote 61). 

This section (and the chapter, and the volume) finishes somewhat abruptly with a 

short comment on inflexions. Lacroix mentions two kinds of inflexions of space curves: 
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the first happens when the radius of curvature of the polar developable changes sign; 

and the second when the absolute radius of curvature changes sign. But 

"Cette matière demanderoit pour être traité avec exactitude et clarté, quel

ques détails, dans lesquels je ne puis entrer maintenant; il me suffit d'avoir 

mis le lecteur sur la voie de ces recherches, dont l'application d'ailleurs n'est 

pas fréquente. 1 ' 8 3 [Lacroix Traité, I, 519] 

Why could he not enter in those détails? They do not require intégral calculus, so 

the reason is not one of order. One possible reason (but this is pure conjecture) is that 

Lacroix, knowing that [Lagrange Fonctions] was about to appear, hurried to print his 

first volume: having already failed to publish it in 1795, he might wish to secure his 

proper place in the chronology of calculus books authors. Or perhaps he really did not 

see those détails as too important; in the second édition he did not add much, and what 

he did add was motivated by a work by Lancret that had appeared in the meantime. 

On the whole, the two sections on spatial differential geometry in [Lacroix Traité] 

seem to have offered around 1800 a more accessible introduction to the subject than 

the more specialized [Monge Feuilles], and a far more suitable one for contemporary re-

search than the corresponding sections in [Lagrange Fonctions] (which were somewhat 

marred by the author's fundamentalist approach to the calculus). 

8 3 "To address this matter with exactitude and clarity would demand certain détails in which I cannot 
enter at this point; I am content with having shown to the reader the path for thèse researches, which 
anyway do not often have applications." 
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Chapter 5 

Approximate integration and 
conceptions of the integral 

5.1 Conceptions of the integral and approximate 
integration in the 18th century 

5.1.1 Conceptions of the integral 

It is well known that one of the first innovations introduced by the Bernoulli brothers 
on the Leibnizian differential calculus was the answer to "what is jydxV. Leibniz 
originally meant this to be the Jum of the infinites im ally narrow rectangles of sides y 
and dx (and therefore the area under the curve represented by y). However, he later 
adopted the name integral, coined by Johann I Bernoulli but first proposed in print by 
his brother Jakob, suggestive of a different definition for the operation represented by 
/ : simply the inverse operation of differentiation [Bos 1974, 20-22; Boyer 1939. 205]. 

This was the definition adopted in the first account of the integral calculus, the 
Lectiones Mathematica? de Methodo Integralium (Mathematical Lectures on the Method 
of Integrals), written by Johann Bernoulli in 1691-1692 for the use of the Marquis de 
l'Hôpital, but published only in 1742: 

"Vidimus in praecedentibus quomodo quantitatum Differentiates invenien-
dag sunt: nunc vice versa quomodo differentialiurn Integrales, id est. ese 
quantitates quarum sunt differentiales. inveniantur, monstrabimus." 1 [Joh. 
Bernoulli Integralium, 387] 

At least on one occasion this difference in approaches gave Leibniz an advantage 
over Johann Bernoulli, namely when the issue of differentiating an integral relative to 
a different variable occurred to the latter in 1697: trying to solve a problem involving 
a one-parameter family of ellipses, he was not able to advance when faced with the 

1"We have seen before how to find the Differentials of quantities: now, reversely, we will show how 
to find the Integrals of the differentials, ie, those quantities of which they are the differentials-11 
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need to differentiate, relatively to the parameter a, an integrai of the form JX(x, a) dx. 

Returning to the original view of the integrai as a sum, and remembering that "the 

sum of the différences of the parts is equal to the différence of the sums of the parts", 

Leibniz provided the answer: 2 JdaX(x,a) dx [Engelsman 1984, 41-46]. 

But Bernoulli's définition gained ground and was widely adopterì throughout the 

18th century [Boyer 1939, 239, 278]. consistently with an increasing formalism in math-

ematics. In the 1710's, Nicolaus I Bernoulli, nephew of Johann and Jakob, discovered 

the equality of mixed second-order differentials. and derived from that Leibniz's resuit 

on differentiation under the integrai sign [Engelsman 1984, 105-107].3 This dériva

tion made sensé under Bernoulli's définition of intégral and was adopted by Euler 

[Engelsman 1984, 128-131]. 

Another situation in which the conception of the integrai as a sum was useful at 

first occurred in the calculus of variations. In 1744 Euler published Methodus inve-

niendi lineas curvas maximi minimive proprietate gaudentes4, the first book on that 

subject. There, in order to study conditions under which the curve amnz would ex-

tremize fZdx (Z being a function of the abscissa x = AH, AI,.... AZ, the ordinate 

y = Aa, H h,..., Zz and p = Euler regarded JZ dx as an infinite sum of terms 

Z dx corresponding to the infinitely close abscissas AH, AI,.... AZ.° Introducing an 

infinitésimal incrément nv to the ordinate Nn and putting dZ = M dx + N dy + P dp, 

he derived the "Euler-Lagrange équation" N — ~ = 0, a fundamental resuit [Fraser 

1985, 156-158; 1994, 104-105]. 

7 J 

A! H i K L M N o P O_ K S 

But in 1755 the nineteen-year old Lagrange discovered another approach for the 

calculus of variations, based on the introduction of a new operator S. Using this he 

was able to derive the "Euler-Lagrange équation" without having to regard the integrai 

as a sum and avoiding any appeal to geometry [Fraser 1985, 155, 160-162]. This new 

approach was adopted by Euler and "quickly became standard" [Fraser 1994, 103].6 

2Here in an anachronistic notation, where da represents differentiation relative to a. 
3 A simple (although perhaps not very faithful) rendition of that dérivation could be: put y = 

jX(x, a) dx, so that dxy = X{x,a)dx\ from dxday = dad^y cornes dxda jX{x,a)dx = daX(x, a) dx; 
integration (on x) gives da jX(x, a) dx = jdaX(x, a) dx. The original is in a very gcometrical language 
[Engelsman 1984, 202-203]. 

AMethod to find the curved Unes which enjoy a property of maximum or minimum 
5 The figure from Euler's Methodus reproduced below may be a little misleading: it is a représenta

tion only of x and y, and particularly of thc succession of their values; the integra) under considération 
does not correspond to the area under the curve amnz, nor to anything pictured there. 

6 A more serious challenge was posed by Euler's "isoperimetric rule"; Lagrange was able to derive 
it freely of integral-as-sum considérations only in 1806. It is almost certainly not a coïncidence that 
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Naturally, when Euler wrote his very influential treatise on the integral calculus, 
he used Bernoulli's definition: 

"functio, cuius differentiale est = Xdx, huius vocatur integrale, et praefixo 
signo J indicari solet: ita ut JXdx earn denotet quantitatem variabilem, 
cuius differentiale est = Xdx"7 [Euler Integralis, I, § 7] 

In this book Euler referred to the conception of "integrale tanquam summa omnium 
differentialium" ("integral as the sum of all the differentials") as "parurn idoneo" ("too 
little appropriate"), no more reasonable than considering a line as composed of points 8 

[Euler Integralis, I, § 11) (but see also page 150 for some compromise on these prin
ciples). The idea of P = J Xdx as a solution to the differential equation dP = Xdx 
introduced fewer complications (or at least confined them to the principles of the dif
ferential calculus).9 

It was also more elegant, because it gave a unified definition for integration of 
functions and integration of equations: 

"Calculus integralis est methodus, ex data differentialium relatione inue-
niendi relationem ipsarum quantitatum: et operatio, qua hoc praestatur, 
integratio vocari solet." 1 0 [Euler integralis, I, § 1] 

Whether the given relation was in the form dP = Xdx or in a more complicated form 
(say, a third-degree, second-order differential equation) was, from the conceptual point 
of view, irrelevant. Thus, when Euler divided the integral calculus in two parts, and 
[Euler Integralis] in two "books", the first referred to functions of only one variable 
and the second to functions of two or more variables [Euler Integralis, I, § 13-14, p. 16]; 
moreover, the further division of the first book was between a first part for first-order 
and a second part for higher-order problems; only then was the first part of the first 
book (corresponding to the first volume) divided between a first section for "integration 
of differential formulas" and a second section for "integration of differential equations" 
[Euler Integrahs, I, § 17-20, pp. 16-17, 251]. 

The extent to which the conception of integration as inverse of differentiation was 
successful in the 18th century can be assessed by looking at works based on limits. 

The method of limits was naturally related to the Greek method of exhaustion; the 
first example given by Cousin in his chapter on the method of limits is precisely that of 
the area of the circle as the limit of the areas of inscribed regular polygons [Cousin 1777, 

isoperimetric problems were neglected in the meantime [Fraser ig9S\. 
7 "the function, whose differential is = Xdx, is called its integral, and is usually indicated by the 

sign J in front of it: that is JXdx denotes the variable quantity whose differential is = Xdx.,: 

sArguably, this is an incorrect analogy, since the rectangles X x dx, while infinitesimal, have as 
many dimensions as J Xdx; points, however, have one dimension less than lines. 

9 T h e conception of the integral as sum also carried — in theory at least — the danger of more 
frequent appearances of infinitely large quantities of the form / y , where y is finite [Bos 1974, 22]. 

1 0 "The integral calculus is the method for finding the relation between quantities, from a given 
relation between their differentials: and the operation thus manifested is usually called integration.1' 
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17-19; 1796,1, 84-85]; Newton had proved that the area under a curve abcdE is the limit 

of the sum of the areas of the inscribed parallelograms AKbB, BLcC, CMdD, etc., or 

of the circumscribed ones AalB, BbmC, CcnD, etc. (lemmas II and III, section I. book 

I of [Newton Principia}); l'Huilier gives this same resuit (with the saine argument) as 

an example of a limit situation [l'Huilier 1786, 9-10]. 

However, Cousin and l'Huilier's examples were just that - introductory examples, 

and explicitly about areas. 1 1 The intégral calculus proper is introduced by Cousin as the 

"inverse method of limits": "remonter des limites des rapports entre les différences, au 

rapport même des quantités" 1 2 [Cousin 1777, 56, 72; 1796,1, 128, 150]. L'Huilier gives 

a similar définition and explicitly rejects the association between sums and intégrais 

(the idea of intégral as limit of sums simply does not seem to have occurred to him) 

[l'Huilier 1786, 32, 142-144]. 

Of course, the association between intégrais and sums, even if nearly always rejected, 

was never forgotten. Bézout gave the same définition of intégral calculus as everyone 

else; 

"Il s'agit ici de revenir des quantités différentielles, aux quantités finies dont 

la différentiation a produit celles-là: la méthode qui enseigne comment se 

fait ce retour, s'appelle le Calcul intégral'''13 [Bézout 1796, IV, 97] 

Nevertheless, being an orthodox Leibnizian (see section 3.1.1), lie accepted also the 

infinite-sum interprétation of the intégral: 

"Pour indiquer l'intégrale d'une différentielle, nous nous servirons de la 

lettre J que nous mettrons devant cette quantité: cette lettre équivaudra à 

ces mots somme de, parce que intégrer, ou prendre l'intégrale, n'est autre 

chose que sommer tous les accroissements infiniment petits que la quantité 

1 1 As for Newton's Principia, they were a very explicit attempt at writing in a synthetic and géomét
rie style - soon very old fashioned; in his other writings it is the inverse relationship between fluxions 
and fluents that we see [Bos 1980, 54-60; Boyer 1939,190-202, 206; Guicciardini 2003, 78-84, 100-102). 

1 2 "to reascend from the limits of the ratios of the différences to the ratio itself of the quantities" 
l 3 T h e American translation of this passage is not quite literal: "The method known by the name 

of Intégral Calculas is the reverse of the Differential Calculus. It has for its object to ascend from 
differential quantities to the functions from which they are derived" [Bézout 1824. 74]. Note that the 
word "function" is only defiued theee paragraphs below. 

1 / 

A I F C 
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a dû prendre pour arriver à un état fini déterminé." 1 4 [Bézout 1796, IV, 

98-99] 

However, by the end of the 18th century the association between intégrais and sums 

seems to only occur either by pedagogical reasons (as to motivate the symbol / ) or to 

be rejected. 1 5 

5.1.2 Constants of integration, particular integráis, and defi

nite integráis 

An aspect that is important in conceptions of the integral is the treatment of arbitrary 

constants, and how they relate to definite intégrais. This aspect becomes more relevant 

as the concept of function becomes centrai in analysis: the definite integrai, in the 

sense of the integral "evaluated from x = a to x = 6" (suggesting symmetrical roles for 

botti endpoints), is a kind of quantity not particularly well-suited to be expressed as a 

function. 1 6 

Let us see how the issue is addressed in [Euler Integralis}. 

Let X be a function of x. Its integrai (or rather the integrai of Xdx) is also a function 

of x; but of course it must contain an arbitrary constant: if Xdx is the differential of 

P then it is also the differential of P + C, whatever the constant C; the "complete 

integrai" of Xdx, JXdx = P + C is thus an indeterminate function of x; however, if C 

is somehow determined, we nave a "particular integral" [Euler Integralis, I, § 31-39]. 

C (and therefore P + C) can be determined "from the nature of the question" (but 

since the purpose of [Euler Integralis] is to treat integration in genere, Euler warns 

that those constants will generally remain indeterminate). A condition of the form 

"pósito x = a fiat y = 6" 1 7 is quite enough for such a détermination. The "simplest" 

détermination, and in fact the one that Euler apparently prefers in the few examples 

he gives, amounts to ask that the integral "euanescat, pósito x = O" 1 8 [Euler Integralis, 

I, § 35, § 64, § 128]. 1 9 

1 4 "To indicate the integrai of a differential, the letter f is written before this quantity; this letter 
is équivalent to the words sum of beca-use, to integrate, or take the integrai, is nothing but to suin up 
ali the infinitely small incréments which the quantity must have received, to arrive at a determinate, 
finite state. , ; [Bézout 182Ą, 75] 

1 5 Except in the few situations in which it was technically unavoidablc (see footnote 6). 
1 6 T h e différence F(b) — F(a) is obviousiy not a function, nor even a value of the function F. It could 

be argued that it is a value of the two-variable function F(u) — F(v), but in the 18th century that 
would go against the obvious idea that the integrai - definite or indefinite - of a function of x must 
also be a function of x. Anyway, it will be seen below that, contrary to intuition, definite intégrais 
(or their équivalent) were not commonly (especially before the 1770's?) evaluated automatically as 
the différence between two values of the antiderivative - although, of course, their calculations can be 
easily interpreted in that way. 

l 7 "let x = a make y — b,: 

l s"vanish, when x is set = 0" 
l 9 Often Euler forgets to include the constant of integration. Sometimes this is because C was 

previously set — 0 for the same or a similar integral. When that is not the case it might be interpreted 
as an implicit setting of C = 0 , particularly if that would make the integrai vanisti for x = 0; this 

143 



What we would cali a definite integral corresponds to the situation in which we 

have a particular integral and then compute it for a specific value of x. Chapter VIII 

(of the first section of the first part of "book" I), "de valoribus integralium quos certis 

tantum casibus recipiunt" 2 0 is precisely dedicated to such situations. Euler calculâtes 

specific values of (particular) intégrais which are not expressible in terms of elementary 

functions: the first problem addressed in that chapter is: 

"Integralis Jvalorem, quem pósito x — 1 recipit, assignare. integrali 

scilicet ita determinato, ut evanescat pósito x = 0." 2 1 [Euler integralis, I, 

§ 330] 

which amounts to / q 1 ^ ™ ^ , for integer m (in fact, separately for even and odd m). 

Notice the asymmetry between the équivalent to limits of integration. It does not 

seem completely obvious that an integral, supposed to vanish at x = a and calculated 

at x = b, differs only in sign from the same integral calculated at x ~ a and supposed 

to vanish at x = b. 

We would expect definite intégrais to appear in a form closer to that of an évaluation 

"from x = a to x = 6" in a différent situation: calculation of areas under curves 

or calculation of other geometrical magnitudes expressible by intégrais and having 

naturally two endpoints. There also definite intégrais would more naturally appear as 

objects (rather than as particular values of other objects). Such calculations do not 

occur in [Euler Integralis], which addresses no applications of integral calculus other 

than purely analytical ones. We then turn our attention to [Bézout 1796, IV]. 

To calcúlate the area coiitained between the curve ALMm and the abscissa axis 

AP. Bézout considere the curve as a polygon with infinitely small sides Mm; then the 

differential of the area is the trapezium PjrniM = PM+PTN x Pp = y ^ d y ) x è = 

ydx + = ydx (because dydx is infinitely smaller than ydx) [Bézout 1796, IV, 

114-116; 1824, 85-86]. 

But Bézout remarks that PpmM is the differential both of the area APM reckoned 

from A and of any other area such as KPML reckoned from a point K. The solution 

to distinguish thèse cases is to determine the constant C accordingly: if Jy dx = Y+C, 

we must calcúlate Y for x = AK and set C so that Y + C = 0 at that point [Bézout 

1796, IV, 115-118; 1824, 85-87]. In other words, the definite integral "from K to F " 

is notoriously absent. Instead. what we see here is something very similar to what we 

saw above in Euler: the détermination of a "particular integral" (although Bézout does 

not use this expression). 

interprétation is weakened before a list of intégrais such as in [Euler Integralis, I, § 77-78], ail lacking 
a constant of integration, and having différent values for x = 0. Whatever the case, often the integral 
is afterwards calculated for a specific value of the variable; this is what happens, for instance, in the 
title of [Euler 1774a], which includes the expression "casu quo post integratJoneni ponitur z = l" 
("when after the integration z is set — 1"). 

2 0 "on the values that intégrais receive in certain cases': 

2 1 "To assign the value that the integrai j-^M= takes when x = l, naturally this integrai being 
determined so that it vanishes when x = 0." 
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Curiously, soon after the publication of the third and last volume of the first édi

tion of [Euler Integralis] (1770) Euler started(?) to speak of integration "from x = a 

to x = 6". The "fourth volume" in the second édition of [Euler Integralis] is in fact 

a posthumous collection of memoirs on the integral calculus (mostly reprints. but in-

cluding a few unpublished memoirs that had been presented to the St. Petersburg 

Academy). Some are about or at least contain what we cali calculations of definite inté

grais. In those memoirs we watch an interesting oscillation in language. [Euler 1774.a] 

has terminology similar to what we have already seen: "post integrationem ponitur 

z = l " 2 2 ; "integrale euanescat pósito z = 0" [Euler 1774a, 122-123). An apparently 

previous memoir, [Euler 1771], seems to be the first (at least in order of présentation 

to the Academy) to speak of a situation in which "integratio a valore x = 0 vsque ad 

x = 1 extendatur" 2 3 (Euler 1771, 78]. 

But it is another memoir, presented only in 1774 [Euler 1774b], that seems to most 

clearly show the évolution in language. It addresses calculation of definite intégrais, 

with substitution of variables. Euler starts by speaking of an integral vanishing for 

z = 0, and then setting z = 1; however, he quickly introduces a geometrical argument 

for J ( g - i ) r f z (under those conditions) to be not much larger than ^, that is the area 

between the curve y = ^ "a termino z = 0 vsque ad terminum z = 1 extensa" 2 4 to 

be only slightly larger than the triangle with vértices on the origin, on the abscissa 

axis for z = 1 and on the curve for z — 1 (for which y = 1); by the third page he is 

introducing (for another integrai) a change of variable z = x^ (i an infinite number!). 

calculating the new limits of integration 2 0 and speaking of integration "a termino x = 0 

vsque x = 1" [Euler 1774b, 260-262].2 6 Notice how integration between two endpoints 

appears associated to a geometrical visualization of the integral. 

The next step was the introduction of a notation for this. The earliest occurrences 

of such a notation seem to be associated with changes in direction of integration: in 

2 2 "after the integration z is set = 1" 
2 3 "integration extends from x = 0 till x = 1" 
2 4"extending from the limit z = 0 till the limit z = 1" 
2 5 Which happen to bc the same numer ically: w hen z = 0 —» x = 0 and z = 1 —» x = 1. 
2 B There is at least one précèdent for this sort of thing: in [Euler Integralis, I, §304] Euler speaks of 

the formula j , ^ - , in the interval x — 1 - u to x = 1; he introduces the change x — 1 — 2 , so that the 

new bounds are z = 0 and z = ui. The context is that of approximating intégrais (see section 5.1.3). 
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[Euler 1775, 387), a couple of changes of variables lead from J 

vanishing for x = 0, and being set x = co after the integration) to 

= TJT\ (the intégral 

/ y/—lz ad 2 = 0 

dz a 2 = 1 

whence, permutating the limits of integration, 

/ y/—lz ad 2 = 1 

dz a 2 = 0 

[Euler 1776, 298] has a similar argument to prove that J -^^==—} "extended from 

x = 0 till x = 1", being equal to - Jyq'ldy(l - y 7 1 ) 2 ^ "from y = 1 till y = 0", is also 

equal to 

Finally, the naine definite intégral was introduced by Laplace [1779, 209]: 

"je nomme intégrale définie, une intégrale prise depuis une valeur déterminée 

de la variable jusqu'à une autre valeur déterminée." 2 7 

The context is that of a method to reduce the solution of a Hnear finite différence équa

tion to that of a linear differential équation; for that Laplace uses definite intégrais on a 

new variable. In that memoir Laplace also used occasionally the expression "indefinite 

intégral", without feeling the need for a définition [Laplace 1779 , 275]. 

By the end of the 18th century tins spécial concept of a definite intégral was not 

yet standard enough to appear in every major treatise of intégral calculus. It is absent, 

for instance, from [Cousin 1796]. 

It is also absent from [Lagrange Fonctions], but that is hardly surprising. In fact, 

it would not fit very well in Lagrange's scherne: Lagrange spoke not of intégrais, but of 

primitive fonctions, that is, antiderivatives; he naturally was much more comfortable 

with the conception described above (on [Euler Integralis, I]) of determining the ar-

bitrary constant when necessary (as for the calculation of areas [Lagrange Fonctions, 

156]), thus obtaining a particular primitive function which then might be calculated 

for spécifie values of the variable. 2 8 Moreover, Lagrange tried to base the calculus upon 

2 7 "I call definite intégral, an intégral taken from a determinate value of the variable until another 
determinate value." 

2 8 This could be particularly cumbersome in the calculus of variations, where one tries to fïnd the 
function y of x for which "la fonction primitive de f(x. y, y', y" ...), fût un maximum ou un minimum, 
en supposant que cette fonction soit nulle lorsque x aura une valeur donnée a, et qu'elle devienne 
un maximum or a minimum lorsque x aura une autre valeur donnée 6" ("the primitive function of 
ï(x,y,y',y" • • •) is a maximum ou un minimum, supposing that that function is null when x has a 
given value a, and that it becomes a maximum or a minimum when x has a différent given value 6") 
[Lagrange Fonctions, 201]. 

ab y = 0 

ad y = 1 
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a small set of concepts; the definite integral was an unnecessary object, which would 

[Bossut 1798] does contain a chapter on definite integráis (entitled "Intégration 

entre des limites données: Comparaison de certaines intégrales pour des intervalles 

aussi determines" 2 9 [Bossut 1798, I, 415-431]). However. Bossut is only interested in 

giving an introduction to Euler's works on the subject. 

We will see in section 5.2.3 that definite integráis did appear in Lacroix's Traite 

and that they seem to fit well in Lacroix's conceptions of intégration. 

5.1.3 Series intégration and approximate intégration 

5.1.3.1 Series intégration 

Intégration by means of series was a fundamental procedure since the earliest times of 

the integral calculus. It was particularly important in the development of the New-

tonian "inverse method of fluxions", and remained a traditional practice in the "English 

school" [Chabert 1999, 434]. Its relevance lay at least as much in the fact that a power 

series gave a very convenient representaron of a quantity (for instance, being easily 

integrable terrn by term), as in its approximative qualitíes [Bos 1980, 54-56; Boyer 

1939, 190, 192]. 

The first section of [Euler Integralis, I] includes two chapters dedicated to series 

intégration: chapter III addresses power series and chapter VI addresses trigonometric 

series. In both chapters the basic idea is to intégrate term by term. There is not an 

openly declared purpose in these integrations, so that it all seems like a puré exploration 

of the infinite-series form. Often Euler already has a finite expression for the integral, 

so that this looks as a means to obtain a series expansión for such an expression. Only 

occasionally does the issue of practical usefulness openly arise: an example occurs when 

Euler addresses the formula dy = : he already knows that then y = ¿1"^I~3:x, 

but he integrates it by series, arriving at 

the problem is that for the series to converge it is necessary to have "a; > 1" (that 

is, \x\ > 1), and in that case \Jl ~ x2 is imaginary, so that the series is useless 

[Euler Integralis, I, § 168-169]. 

Similarly. in the section dedicated to second-order ordinary differential équations 

(first section of the second part of "book I 1 ' 3 0 ) there are two chapters (VII and VIII) 

devoted to solutions by infinite series. 3 1 It is essentially the method of undetermined 

2 9 "Intégration between given limits: Comparison of certain integráis for intervais also determined" 
3 0 T h e second part of "book I' 1 corresponds to volume II. 
3 1 For some reason, there is no such chapter in the section on first-order ordinary differential équa

tions. 

spoil the economy of [Lagrange Fonctions]. 
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coefficients that is used there, along with many particular tricks and strategies. The 

limitations in generality of these methods can be seen by the fact that chapter VII 

is only about integration by series of the equation ddy + axnydx2 = 0; chapter VIII 

is about integration by series of "other" second-order ordinary differential equations, 

but to avoid too much complicated calculations Euler sticks to linear equations ddy 4-

M dx dy 4 Ny dx2 = Xdx2 (actually, he sticks to xx(a + b xn)ddy 4- x(c 4 e xn)dx dy 4-

(/ + gxn)ydx2 = 0). Again, the relation between this and approximations is not 

made explicit. On the contrary, the title of chapter XII, "De aequationum differentio-

differentialium integratione per approximationes" 3 2 (where series only appear as a last 

resource - see below) suggests a distinct subject. 

A different situation can be seen in [Bézout 1 7 9 6 , IV]. There series integration is 

addressed in a section entitled "De la manière d'intégrer par approximation, & quelques 

usages de cette Méthode" 3 3 (Bézout 1 7 9 6 , IV, 145-164]: 

"L'art d'intégrer par approximation, consiste à convertir la quantité pro

posée, en une suite de monômes dont la valeur aille continuellement en 

diminuant; chaque terme s'intégre alors aisément, & il suffit d'en pren

dre un certain nombre, pour avoir une valeur suffisante de l'intégrale." 3 4 

[Bézout 1 7 9 6 , IV, 145] 

Bézout's discussion revolves around finding series expansions that, once integrated, 

converge quickly enough. This is accompanied by an ad hoc evaluation of errors: 

calculating the length of an arc of a circle of diameter 1 "by means of its versed sine 

AP[= x\\ i.e. calculating J 2yfe~xi7 a r r i v e s a t x^ 0- + 6^ + A6x2 + m 3 ' 3 ^ c - ) i t n e 

fact that x is always smaller than 1 (the diameter) guarantees that the terms of the 

series decrease, and that the smaller x is, the faster they decrease; for x = 0.01 each 

term is more than a hundred times less than the preceding, so that Bézout is happy in 

taking the hundredth part of ^ (O-Ol ) 3 to judge the error committed by confining to 

the first four terms [Bézout 1796, IV, 146-148; 1824, 106-108]. 

5.1.3.2 Euler's "general method" for explicit functions 

[Euler Integralis, I] also addresses approximation of integrals — only not, at least not 

explicitly, in the chapter dedicated to series integration. He does so in chapter VII 

(of the first section), entitled "Methodus generalis integralia quaecunque proxime inu-

eniendi" 3 5 . 
3 2 "On the integration of differentio-differential equations by approximation" 
3 3 "On the mode of integrating by approximation and some uses of that method" [Bézout 1824, 

106-119] 
3 4 "The art of integrating by approximation, consists in converting the proposed quantity into a 

series of simple quantities whose value continually diminishes; each term is then easily integrated and 
it is sufficient to take a certain number of them, in order to obtain an approximate value for the 
integral" [Bézout 1824, 106]. 

3 5 "[A] general method to find all integrals approximately" 
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The general met ho d given by Euler is (in its simpler form) an approximation by 

rectangles, but introduced in a quite un-geometrical way [Euler Integralis, I, § 297]: 

we want to approximate y = jXdx, knowing in some way that y takes the value b 

for x = a; 3 6 if x increases by an extremely small ("valde parva") quantity a, X will 

increase very little, so that it may be regarded as constant; X being constant, we 

(would) nave y = Xx 4- Const.; because of the initial conditions, b = Xa 4- Const., so 

that Const. = b — Xa and consequently 

y = 6 + X(x - a) 

(a convoluted argument to introduce the first rectangle without appealing to geomet

rica! intuition): now, dropping the assumption of constant X, when x = a 4 a it will 

be y = b 4 (3; thèse values serve as new initial conditions, from which we arrive at 

y = b-rP + X(x-a-a), 

X being again assumed as constant (in fact a new one, its value for x ~ a + a ) ; repeating 

this process, and calling A, A', A", A'", etc., and 6, ò'. b", b'", etc. the values of X and y, 

respectively, for x = a, a!, a", a'", etc. (where the différences a' — a, a" — a', a'" — a", etc. 

are extremely small), we will have 

b' = 6 + A{a' - a) 

b" = b' 4 A'(a" - a') 
y» = b" + A»<a»> _ a") 

etc. 

or, substituting, 

b' = 6 + A(a' -a) 

b" = 6 + A(a' - a) + A'(a" - a') 

V" = b + A{a! - a) + Af(a" - a') + A"{o!" - a") 

etc.; 

this process is supposed to be continued until x is reached, that is, until the value for 

which we wish to calcúlate the integrai is reached; but in two out of three examples 

given this value remains undetermined (that is, x remains a variable), unlike the initial 

values a. ó, which are always given in the usual form "euanescat pósito x = a" (6 is 

always 0) [Euler Integralis, I, § 305-316]. 

For formula's sake, the penultimate value for x is represented by 'x. and the corre-

3 6 Not ice the initial conditions, and how Euler seems to have in raind more a particular integral than 
a definite integrai. 
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sponding value of X by 'X, so that the integra) is approximated by 

6 + A(a' - a) 4 A'{a" - a') 4- A!'(a'" - a")... 4 'X(x - 'x) (5.1) 

[Euler ïntegralis, I. § 301]. 

This is followed by a few interesting considérations. Firstly, Euler revisits the idea 

of integrai as a sum (and even that of a line as an aggregate of points). What in the 

beginning of the book had been qualified as "little appropriate" (see page 141) is now 

tolerable. as long as it is well explained: integration can be attained by summation 

approximately. but not exactly, unless the différences a' — a,a" — a',a'" — a",etc. are 

infinitely small, that is, nuli; hence the elongated S (in fact a typical 18th-century 

italic s) as the symbol for integration, and even the alternative name summation, are 

acceptable [Euler ïntegralis, I, § 302]. 

The other considérations have to do with the errors committed in the approxima

tion. Since at the beginning of the first interval X = A and at its end X = A', it seems 

more convenient to use some value between A and A',37 instead of A as above; this 

might suggest taking the (arithmetical) mean between A and A', but Euler does not 

do that yet — he will later take the arithmetic mean between two estimâtes of y given 

by an improved version of the method (see below); in the meantime he finds useful to 

give an estimate of y by excess and another by defect: the true value of y should be 

contained between two "limites" ("bounds") given by an estimate that takes the initial 

value of X for each interval, that is, as before, 

b 4 A(a' - a) + A'(a" - a') 4 A"(a"' - a")... 4 'X(x - 'x) (5.1) 

and another taking the final value of X for each interval, 

b 4- A'(a' - a) 4- A" (a" - a') + A'" (a'" - a")... 4 X(x - 'x). (5.2) 

This is not accompanied by any explicit imposition of monotonicity. 3 8 Euler just seems 

to assume that, for each interval, taking the initial value of X gives an estimate by 

defect and taking the final value gives an estimate by excess, or vice-versa — or at least 

that this happens most frequently ( "plerumque" ) ; and that in some way the sums of the 

interval estimâtes will maintain their excess or defect characteristio 3 9 [Euler ïntegralis, 

I, § 303]. 

The last of thèse remarks is a warning about the importance of the rate of change 

of the integrand function. The rate of change of increases and tends to infinity 

3 7 "Medium quaddam inter A et A'v : "some mean between A and A'", as in arithmetical, geometrical 
or some other mean? 

3 8According to [Grabiner igSÎ, 149], Euler did impose monotonicity; "first, he [Euler] said, assume 
that the function is always increasing or always decreasing on the given interval". I cannot locate any 
such passage in Euler's text. 

3 9 Because the initial values will (almost) always give excesses or (almost) always defects? 
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as x approaches 1, so that putting a' - a = a" — a' = a'" — a" = . . . will not be 

appropriate; the length of the intervais must decrease as the rate of change of X 

increases [Euler Integralis, I, § 304]. 

Euler later gives an improved version of this method: it is not really true in general 

that JXdx = X(x - a), as was assumed for each interval, but an integration by parts 

gives / X d x = X(x — a) — J P(x — a)dx, where dX = Pdx: assuming P to be constant 

in the first interval. we get b -f- A(a' - a) — \B(a' — a)2 (where B is the value of P for 

x = a), which is a better approximation than the one used above, namely 6+ A(a' — a): 

this can be continued, as it is not really true in general that fP(x — a)dx = \P(x — a)2 

(P is not constant), but rather JP{x — a)dx = \P(x — a)2 — \ jQ(x — a)2dx (where 

dP = Qdx); and so on. This leads to the formula 

y = b + X(x - a) - ~P(x - a)2 + \Q(X - af - ~R{x - a)4 + etc. (5.3) 
z o 24 

that is, to the Bernoulli séries for y ~ J Xdx around x (équivalent to the Taylor séries 

for b around x). The improvement cornes from substituting (5.3) for the above linear 

approximations; that is, the term A'(a' — a) in (5.2) is replaced by A'(a' — a) — \B'(a' — 

a)2 + \C'(a' - af - etc., A"{a" - a') is replaced by A"(a" - a') - \B"(a" - a')2 + 

\C"(a"-a'f - e t c . , and so on, where B'^B",... are the values of P = ~ for a', a", . . . , 

C",C" S . - - are the corresponding values of Q = and so on [Euler Integralis, I, § 

317]. 

A similar improvement can be made of (5.1) using the Taylor séries for y around a 

y = b + A(x-a) + \B(X - af + \c(x - af + ~D(x - af + etc. (5.4) 
2 6 24 

The final formula in this chapter is the arithmetic mean between thèse two improved 

"bounds" for y, in the case that the différences a' ~ a, a" — a',... are ali equal (to some 

a) [Euler Integralis, II, § 322]: 

y = b + a(A + A' + A" + ... + X) - \a(A + X) + \a2(B ~ P) 

+ | q 3 ( C + C' + C" + ... + Q) - ±a3(C + Q) + ±aA(D - R) (5.5) 

etc. 

Apparently both this method and the whole first section of [Euler Integralis] were 

outside the mainstream developrnent of nurnerical analysis. A récent "history of al-

gorithms" [Chabert î 999] mentions four methods for approximate quadratures up to 

Euler's times: Gregory's formula. Newton's three-eighth rule, Newton-Cotes formulas 

(including Simpson's rule), and Stirling's correction formulas (for Newton-Cotes formu

las) [Chabert 1999, 353-363]. None of thèse methods are mentioned in [Euler Integralis] 

and Euler's "general method" is absent from [Chabert 1999]. Similar remarks can be 

made for the older (and less clearly organized) [Goldstine 1977]. Euler's "general 
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method" seems to have been more influential in the development of pure mathematica; 

partly via [Lacroix Traité]. 

5.1.3.3 Euler's "general method" for differential équations 

What has just been said about the influence of Euler's "general method" applies only 

to its first version, on integration of functions. Euler returns to this method in the 

second section of [Euler Integralis, I ] , to find approxirnate solutions of fìrst-order ordì-

nary differential équations. This second appearance of the method is the subject of a 

section in [Chabert 1999, 374-378] (the only one about differential équations prior to 

the 19th Century), and according to Goldstine [1977, 285] it "is basically responsible 

for the present-day methods". However, neither [Chabert 1999] nor [Goldstine 1977] 

acknowledge the fact that Euler's method for approximation of solutions of differen

tial équations is merely an adaptation of his "general method" for approximation of 

intégrais. 4 0 

The differential équation whose solution is to be approximated is of the form ^ = V, 

where V is a function of both x and y, subject to the initial condition that y = b when 

x = a (that is, the only différence from the situation above is the substitution of V(x, y) 

for X(x)). Now, we can calculate the value A of V for x = a and y = b; if w is very 

small, we can assume V to be constant between x = a and x = a' = a -I- co, for which 

we will have y = b' = b 4- A(x — a); with thèse new conditions we can calculate a new 

value A' for V; proceeding like this we will generate, as above, three (finite) séquences, 

the middle one giving the desired approxirnate solution [Euler Integralis, I, §650]. 

Of course there are différences between this and the corresponding method for 

intégrais of functions. Although the solution is here still made up of producta such as 

A'(a" — a'), we cannot associate them to rectangles, since the constant A' no longer 

represents an ordinate (a side of a rectangle), but rather a slope. 

Much more importantly, in the former case we had a polygonal approximation which 

had (at least) as many points in common with the true function X as the number of 

éléments in the séquence a, a', a",... x. Here, on the other hand, the only point in which 

it is guaranteed that the slope V is accurately evaluated is the initial point. This is 

so because the calculation of e ach of A', A", A'" ... ìnvolves the previous approximated 

value of y (b', b", b'",...). And of course the errors accumulate from one interval to the 

next. as Euler admits [Integralis, I. §652]. 

4 0Tournes [8003, 458-463] indicates scveral geometrìcal antécédents of this method in its version for 
differential équations. 

y 
v 

x a, a', a", a'", a1 

6, b', b", b'", b1 

A, A', A", A'", A 
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For the same reason ìt would seem pointless to give a différent approximation using 

the (estimated) final values of V for each interval, that is, something équivalent to 

(5.2). 4 1 

However, the relationship between the two methods is undeniable, and the fact that 

the former was more developed (and developable) than the latter may be a good sign 

of which one was prior. 

In fact, Euler [Integralis, I. §656] expressly invokes the appropriate articles in sec

tion I to justify the use of the Taylor séries (5.4) also for differential équations (the 

Bernoulli séries (5.3) is not applicable since in this case X, P, Q, R,... cannot be cal-

culated without knowing the final value of y). It is (5.4) that is then used in the two 

examples of this chapter [Euler Integralis, § 661-662]. 

In the second volume of [Euler Integratisi2 a similar method is developed for 

second-order differential équations (in chapter XII of the first section, entitìed "De 

aequationurn differentio-differentialium integratone per approxirnationes" 4 3). How

ever, in this case Euler pays very little attention to the intervais beyond the first 

one. Given an équation in x,y,v.q, where dy = pdx and dp = qdx, q may be seen 

as a function V of x,y,p; if the initial conditions are that y = b and p = c when 

x = a, and if V is taken as constant (= F) between x = a and x = a + w (w being 

very small), then at x = a 4 w Euler concludes that p = c 4- Fu and y = b 4 cw; 

Euler remarks that this can be repeated for further small intervais as in the meth

ods above, but does not do it [Euler Integralis, II. § 1082]. What he does do is 

to improve upon the method by regarding not V as constant, but rather sim-

ilarly to what he had done for integration of functions: integration by parts gives 

p = c+V(x-a)-J(x-a)dV; putting dV = Pdx + Qdy + Rdp = (P + Qp + FLV)dx, 

and taking P + Qp + RV as constant, gives p = c + F(x — a) — \(P 4 Qc + RF)(x — a)2 

and y = 6 + c(x - a) 4- \F(x - a)2 - \(P 4 Qc 4- RF)(x - af (where P, Q, R are 

calculated at x = a) [Euler Integralis, II, § 1094]. 

It must be mentioned that in this chapter the word "séries" occurs, albeit quite 

timidly: in case a power of x — a. appears in F 4 Qp + RV, this cannot be taken 

as constant; in that case a truncated séries 4 4 approximation is used, of the form p = 

c 4 A(x - a)x; y = b + c{x~a) + ^{x - a ) x + l [Euler Integralis, II, § 1094, 1098]. 

In the third volume of [Euler Integralis], dedicated to partial differential équations, 

there is no chapter devoted to séries integration or approximate integration. 

4 1 Although the arithmetic mean between thèse upper and lower estimâtes was used, namely by 
Cari Runge (1856-1927), to obtain an improved method [Chabert 1999, 381-387], 

4 2 This second volume constitutes the second part of the first "book", dedicated to higher-order 
ordinary differential équations. It is divided into two sections: the first on second-order équations and 
the second on third- and higher-order équations. 

4 3 "On the integration of differentio-differential équations by approximation1'. 
4 4"Seriei initiurn" ( ;'beginning of a séries"). 
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5.1.3.4 Other methods for differential equations 

In spite of Goldstine's quote above about Euler's "general method" being the ancestor 

of (nearly all?) the modern methods, other methods can be found in the 18th century. 

An important motivation for approximation of differential equations was astronomy; 

the motion of celestial bodies is too complicated for rigorous solutions to be achiev

able (because of multiple-body gravitational influences). But approximate values are 

easily accessible, and can be improved using an adaptation of Newton's approximation 

method for numerical equations: one takes the initial approximate value plus an un

determined quantity, which should be very small; then the terms involving the square 

and higher powers of this undetermined quantity are neglected, resulting in a linear 

differential equation; by integrating this linear equation (which is much easier), a new 

approximate value is obtained; and the procedure is repeated with this new approxi

mate value. Versions of this method are found in works by d'Alembert on lunar theory 

[d'Alembert 1754-1756, I, 31-34; Tisserand 1894, 60-62], by Euler on the three-body 

problem and by Lagrange [1766, 110] on the satellites of Jupiter [Wilson 1994, 1049]; 

at least hints at this method were also present in Clairaut's earlier work on lunar theory 

[Tisserand 1894, 51-56]. Gillispie [1997, 48] says that Laplace attributed this method 

to d'Alembert, but in fact what Laplace [1772b, 267] attributes to d'Alembert is the 

use of indeterminate coefficients for the integration of the linear differential equations 

involved in the method. The method itself "se presenta naturellement aux Géomètres, 

qui résolurent les premiers le Problème des Trois-corps" 4 5 [Laplace 1772b, 268], which 

would include not only d'Alembert but also Clairaut and Euler (d'Alembert [1754-

1756, I, xxxv] himself referred to this as "Méthodes connues" 4 6). 

This method had problems, particularly in the case of the Moon (where it intro

duced undesirable "arcs of circle" - terms containing integer powers of angles instead 

of sines and cosines of angles, which are incompatible with the fact that the Moon or

bits the Earth and therefore its distance remains bounded) and in the case of a planet 

with more than one satellite (where it mixed first-order terms in the second-order so

lutions). D'Alembert [1754-1756, I, 34-37] noticed the former difficulty and gave a 

means to avoid it, and Lagrange overcame the latter difficulty by "an elaborate alge

braic process" [Wilson 1994, 1049]; nevertheless, Laplace proposed a new method -

also of successive approximations - consisting "à faire varier les constantes arbitraires 

dans les intégrales approchées, et à trouver ensuite par l'intégration, leurs valeurs pour 

un temps quelconque" 4 7 [Laplace 1772b, 268]. Later Laplace [1777] simplified this 

method of variation of arbitrary constants [Gillispie 1997, 70]; there he summarized it 

in a rule: one should solve approximately the differential equation in the traditional 

way, and then erase the terms containing "arcs of circle" and at the same time replace 

4 5 "[had] appeared naturally to the Geometers who first solved the three-body problem" 
4 6 "known methods" 
4 7 "in varying the arbitrary constants in the approximate integrals and then determining their values 

for a given time by integration." [Gillispie 1997, 48] 
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the arbitrary constants with variables subject to certain differential condition equations 

(Laplace 1777, 381]. 

Lagrange was naturally quite sympathetic to techniques of variation of constants 

(see sections 6.1.2.3, 6.1.4.1 and 6.1.4.2), but in this particular case he thought that 

Laplace's method rested on a "metaphysics" that was not satisfying; besides, it failed 

in cases in which an arbitrary constant occurred within the argument of a sine, cosine, 

or exponential [Lagrange 1783 , 227]. He thus presented his own method of variation 

of constants [Lagrange 1781, § 25-27: 1783], introducing corrections to Laplace's con

dition equations [Lagrange 1783, § 3-5]. 

An entirely different method for approximating solutions of differential equations, 

using continued fractions, was also proposed by Lagrange [1776]. Given a differential 

equation in x and y, Lagrange's method consisted in finding a first approximation £ 

of y for very small x (£ should be of the form axa)\ substitute y = ^ 7 in the given 

equation, resulting in a new equation in x and y'\ and repeat these steps, so that 

The method of series had "the inconvenient of giving infinite series even when such 

series can be represented by finite rational expressions" ; a continued fraction, on the 

other hand, would stop whenever the solution was finite and rational [Lagrange 1776, 

301]. This method, however, was not much pursued in the 18th century [Chabert 1999, 

5-1.3.5 Two accounts in the 1790's: Cousin and Bossut 

To conclude this section on series and approximate integration, it remains to look at 

how this subject is treated in important treatises at the end of the 18th century. 

[Bézout 1796, IV] (not really an important treatise, but rather a standard elemen

tary textbook) has been seen above to conflate approximate integration with series 

integration, but also to be more practical than [Euler Integralis]. Naturally for its 

level, it does not address approximations of solutions of differential equations. 

Cousin [1777 446-455; 1796 II. 30-40] uses two methods to approximate integrals: 

undetermined coefficients to find a series for the integral; and what is probably a version 

of Euler's "general method". Starting from Taylor's theorem around two different 

points, corresponding to Bernoulli series (5.3) and Taylor series (5.4), Cousin decides 

to divide the interval between x and a into several small subintervals, all of the same 

4 8[Lagrange 1776] is nevertheless an important work, namely for the (pre-)history of Padé approx-
imants [Brezinski 1991, 137-139). Also from that memoir Lacroix extracted a method for expanding 
functions into series, which he reported in chapter 2 and used in chapter 4 of [Lacroix Traité, I] (see 
page 107). 

1 + 

373]. 48 
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length Aa; then apply both formulas to each subinterval, so that he gets two estimâtes 

for the integral y = JXdx, corresponding to (5.1) and (5.2) but with full séries for each 

subinterval instead of just a linear polinomial; and fìnally take the arithmetic mean 

between thèse two estimâtes (which Euler, as we nave seen, preferred not to do). 

A little afterwards Cousin [7777, 484-508; 1796. II, 59-77] returns to the application 

of infinite séries to differential équations, namely to separate variables, but this seems 

to be équivalent to chapters VII and VIII of the first section of [Euler Integralis, II], 

and approximation appears far from the point. 

[Bossut 1798, I] includes three chapters on approximation of intégrais, in the first 

part of the integral calculus. In chapter XII, "Méthodes pour intégrer par approxima

tion les Formules qui ne peuvent l'être en rigueur" 4 9 [Bossut 1798,1. 432-456], the goal 

is to express intégrais as infinite séries. Bossut uses continued division, the binomial 

formula, the method of undetermined coefficients, and Bernoulli séries. Although there 

is no attempt at évaluation of errors, there is much more concern with the practical 

issues of convergence than in [Euler Integralis]. 

Chapter XIII, "Suite: Autres méthodes pour l'approximation des Intégrales" 5 0 

[Bossut 1798, I, 457-471] is more geometrical. Firstly, Bossut présents a version of 

Euler's "general method", in a geometrical guise: his idea is to consider the integral 

as the area under a curve, and to approximate it by trapezia; the result is thus the 

average between (5.1) and (5.2) that Euler did not calculate (but Bossut's reasoning is 

closer to Bézout's calculation of areas — see page 144 above). In the rest of the chapter 

Bossut interpolâtes curves and intégrâtes the resulting polynomials. 

Chapter XIV [Bossut 1798,1, 472-484] treats only of applications of previous meth-

ods to the calculation of the arc-length of ellipses. 

Volume 2 of [Bossut 1798] contains two small chapters on approximate solutions 

of differential équations, one for first-order and another for higher-order équations 

[Bossut 1798, II, 197-205, 282-293]. Both deal in fact with finding séries solutions 

(namely using undetermined coefficients), the latter being a sumiriary of chapters VII 

and VIII in the first section of [Euler Integralis, II]. A scholion at the end of the former 

suggests that approximate solutions be calculated along small subintervals and then 

added together, but this is the only vague référence to Euler's "general method" within 

the context of differential équations. 

4 9"Methods to integrate by approximation those formulas that cannot be [integrated] exactly". 
5 0 "Continuation: Other methods for the approximation of intégrais" 
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5.2 Approximate integration and conceptions of the 
integral in Lacroix's Traite 

5.2.1 Integration (of explicit functions) by series 

In the chapter on integration of functions of one variable. Lacroix dedicates a section 
to "integration par les series" o I [Lacroix Traite, II, 66-88]. 

Its beginning is very typical, with a remark that, if a function has been expanded 
into series, then it is easy to intégrate it, because it is enough to intégrate each of 
the monomials that compose the series. Lacroix explores this, giving several examples 
taken from [Eider Integralis]. But slightly more than half of the section [Lacroix Traite, 
II, 77-88] is taken up with a summary of a memoir by Lagrange on series expansión 
of elliptic integráis [Lagrange 1784-1785]. There are also references to integration by 
series in the section on integration of logarithmic and exponential functions and espe-
cially in the section on integration of trigonometric functions (namely a long passage 
on fdz(l + ncosz)m [Lacroix Traite, II, 118-133]). 

Glearly there can be two different purposes in integration by series, as in fact is the 
case for any use of infinite series (see also section 3.2.6): it can be used to facilitate 
(or to enable) the operation of integration, 5 2 which is but a useful instance of the 
use of a series as a re prese ntat ion of a function; or it can be used to "parvenir á des 
valeurs approchées des intégrales dont on ne peut obtenir Pexpression algébrique" ° 3 

[Lacroix Traite, II, 73]. 

This latter purpose, however, only appears in the eighth page of this section, and 
it is never deeply explored. It brings along the issue of convergence, 5 4 which Lacroix 
addresses in his down-to-earth manner: he suggests the importance of having several 
series expansions for the same integral, so that it may be possible to use the one that 
is convergent for the relevant valué of x. 

In fact, Lacroix remarks the inconvenience that integration by series does not always 
give (any) convergent series, and that divergent series do not give approximations 
[Lacroix Traite, II, 135]. This motivates a distinct section, on a "méthode genérale 
pour obtenir les valeurs approchées des intégrales" 5 5 [Lacroix Traite, II, 135-160] — 
Euler's "general method". 

a L "integration by series" 
o 2 Reducing it either to the integration of expressions of the form axn or to their differentiation, in 

the case of the method of undetermined coefficients. 
5 3"arrive at approximate valúes of integráis whose algébrale expression is not obtainable" 
M T h i s issue had already appeared, apropos of an expansión for J^,+^, [Lacroix Traite, II, 68-69]. 

Apparently Lacroix always preferred convergent series. 
5 a "general method to obtain approximate valúes of integráis" 
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5.2.2 Euler's "general method" 

Lacroix's dérivation of the method is not the sanie as Eulers but it is not terribly 

original either. The main différence is that Lacroix takes full advantage of Taylor 

séries as a well-established tool. In this context this might be evocative of Cousin, 

were it not for the overall importance of Taylor séries in Lacroix's Traité. Lacroix 

starts by considering the Taylor séries 

r [ = r + r , ( ^ + r „ ( ç ^ + y / „ ( o L - ^ + e t c ( 5 6 ) 

Y2 = Y l + + y / ' ^ £ + Yf^f + etc. (5.7) 

and so on, 

where Y, Y', Y",etc. are the values of y = JXdx, g = X., 0 = etc. at x = a\ 

Yx,Y{,Y{', etc. are the values of the saine expressions at x = a\\ Y2, Y2, Y2 , etc. 

the same at x = a 2; and so on. But unlike Cousin he follows Euler in taking only 

linear polynomials: supposing that the quantities ai , a 2 ; a3, etc. are chosen so that the 

second and higher powers of ai — a, — ai, a3 — a 2 , etc. may be neglected "sans erreur 

sensible" 5 6, the following approximations resuit 

Y^Y + Y'iai-a) 

Y2 = Yl + Y{(a2-a1) 

y 3 = y 2 + y 2 ' ( a 3 - a 2 ) 

etc.; 

thèse may be combined, giving 

Yn = Y + Y'(a, - a) + Y[{a2 - ftl) + Y2\a3 - a2)... + Y^a* - an-,) (5.8) 

as an approximation for the value Yn of JXdx for x = an. This approximation 

will be "the more exact" as the quantities a, ax,a2i etc. are closer to one another 

[Lacroix Traité, II, 136-137]. 

Now for a second estimate. If the process were to start from an instead of a, that 

is, to follow the séquence an, an-\,an-2,..., a l ; a instead of a, a,\, a2,.... a n _ i , an, the 

first step would consist in the Taylor séries 

Y _ y _ v / ( O n - f l n - l ) y „ fan ~ Q n - l ) 2 

Proceeding with séries for Yn^2, V^_3. etc., neglecting higher powers of an — a n - t . a n _i — 

5 G"without noticeable error" 
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fln_2) etc., and combining the results gives 

Y - Yn- Y'n(an - an-i) - Y^^a^i - a n _ 2 )...-Yl(al-a) (5.9) 

vvhich of course ìs the saine thing as 

Yn = Y + v ; ( a , - a ) -h y 2 ' (a 2 - a i ) . . . + V ^ K - i - a „ _ 2 ) + V ^ a , , - a n _ i ) . (5.10) 

That is. (5.8) uses the initial value of the functiori at each in ter val. and (5.10) uses the fi

nal value (they are precisely the sarne that. respectively, (5.1) and (5.2)) [Lacroix Traité, 

IL 138-139]. 

Further aheacl in the same section Lacroix gives a geometrical interprétation of 

thèse approximations (Lacroix Traité, IL 143-144]: if the curve BMZ represents the 

function X (AP being the abscissa axis) and AP, AP', AP", AP'", etc. are respectively 

equal to a, a\. a 2 : a 3 , etc., then y ' (a i — a) + y / (a 2 — a v ) -f-K/(a3 — a 2 ) -t-etc. is represented 

by the polygon P M RM' R' M" R", etc. and Y[{ai - a) + Y±(a2 - a i ) + y 3 ' ( a 3 - a 2 ) 4- etc. 

is represented by the polygon PSM'S'M"S"M'", etc. To have an approximation of the 

value of the integral since the origin of the abscissas one must add a first term Y, equal 

to the area ACM P. It must be stressed that Lacroix gives this simply as a geometrical 

illustration of results already obtained "from analysis" (cf. pages 88 and 104). 

The rest of Lacroix's account of the method itself (how best to use it; examples) 

follows Euler closely (although somewhat shortened). For instance, Lacroix reports 

Euler's ad vices against taking the différences ai — a, a 2 — ai, 0,3 — a 2 . etc. ail equal; 

insteacl, they should be smaller where X varies most [Lacroix Traité, IL 145]. 

Lacroix also reports Euler's improved method. and in fact it occurs more naturally 

here: it is enough not to neglect the second and higher powers of ai —a, a 2 — ai, a 3 — a 2 ; 

etc. Taking thèse différences to be ail equal (to some a) gives the estimâtes 

Yn = y +(y" + yL' + y 2 ' . . 

+(Y" + Y{, + Yi' 

+{Y"' + Y;" + y2' 

+ y,;_,)? 

• y fit \ c« 3 

• • • ~r ' 1 1 - 1 Ì 1 2 . 3 

(5.11) 

+ctc. 
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and 
Yn = Y +{Yi + Yi + Yi + 

_ ( y « + y » + y 3 » + Y « ) ^ 

+ y » + YÇ»< +Y?)-gs 

- e t c . 

According to Lacroix, in case "none of the coefficients ^ : ^ ) ~ r ^ f j etc. changes sign 

in the interval from x = a til x — 6" 5 7 , the true value of Yn is between thèse 

two estimâtes 5 8 , and a better approximation is given by their arithmetic mean (5.5) 

[Lacroix Traité., II, 147-148). 

But Lacroix does much more than just report Euler's method, and lus additions 

and remarks make this one of the most interesting sections in his Traité. We will look 

at that additional work by Lacroix in the next paragraphes and in section 5.2.3. 

We saw above that Euler was not very clear about the monotonicity of the function 

whose intégral was to be approximated: he did not explicitly assume it, yet his argu

ment for (5.1) and (5.2) to be bounds for the true value of the intégral makes sensé 

only if the function is monotonie. 

Lacroix, on the contrary, was very clear about that. Included in his geometrical 

interprétations of the method is a sort of counter-example: 

TTTT T7T7T 

There is no reason to assume that either of the polygons PMRM'R!M"S"M"'S"'P"" or 

PSM'S'M"R"M"'R'"M""P"" is smaller (or larger) than the curvilinear area PMM'M" 

M"'M""P"" [Lacroix Traité, II, 144]. 

He also gives a sufficient condition: j Xdx is included between the values given 

by (5.8) and (5.10) if X "conserve le même signe et varie dans le même sens" 5 9 

[Lacroix Traité, II, 139]. 

5 7 S e e below a discussion about this condition. 
o 8 T h i s is not always true. For a very simple example, take X = consider only one subinterval, 

from £ = 0 = a t o x = l = a i ! and truncate after the terni with a 2 : (5.11) will give 0-f 0 • j + 0 • -y = 0 

and (5.12) will give 0 + -y ' T — 1 ' V = u » i o I T ^ ~ è ^ D e x a m p l e with less simple calculations, 
but where the truncation is less artifìcial, is X = smx, with a = 0 and ai = -|; truncation is 
indispensable, because otherwise both (5.11) and (5.12) will give infinite séries; truncating after a 2 , 
(5.11) gives ^ 7 T 2 w .30843, and (5.12) gives ±y/2w - ^ v ^ t t 2 w .33727; however, fj sïnxdx 
-h/2 + 1 ss .29289. 

"keeps the same sign and varies in the same direction" 
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Lacroix proves this by examining one of the subintervals, namely the first, between 

a and ax. Dividing it further with a "great number" of intermediary values a i , c t 2 , 

a 3 . . . am of x, (5.8) and (5.10). which in this case are Y + Y'(a\ — a) and Y + Y{(a\ — a) 

respectively, become 

Y + Y'ict! - a) + Y'{a2 - e n ) + Y'(ai ~ am) (5.13) 

and 

Y + Y{(ai -a) + Y{{a2 - a i ) + Y{(ax - a m ) . (5.14) 

But if we consider the values y[,y'2, •. - y'm of X corresponding to the values «i , a2,... a m 

of x, then we can have better approximations of Y\, one of which is 

Y + y ' ( û i - a ) +3/i(û!2 - Û l̂) + ïm- l (ûm ~ »m- l ) + ^ ( û l ~ C t m ) . (5.15) 

Now, if X is, for instance, always increasing between a and ai, then Y', y[, y'2,... y'm, Y[ 

is an increasing progression, and it is clear that (5.15) is between (5.13) and (5.14). 

Finally (using a very interesting argument on which we will comment below), "comme 

on peut concevoir que la [série (5.15)] soit aussi près qu'on voudra de la vTaie valeur de 

Yi, en imaginant un nombre suffisant de termes intermédiaires" 6 0, the conclusion must 

be drawn that that true value of Y\ is in fact between Y + y ' (a i — a) and Y+Y{(ai — a) 

[Lacroix Traité, II, 140]. 

Apparently mysterious is the condition that X should keep the same sign (always 

positive or always négative): this condition does not seem to be used at ail in the proof. 

An explanation may lie in the concept of "increasing" : there are plenty of examples in 

Lacroix's Traité where expressions like x < a clearly mean, in modéra terms, |a:| < \a\ 

(see for instance section 3.2.6); in this very section there is a passage which reinforces 

this view of "greater" and "less" referring to the absolute size of magnitudes (see 

footnote 64 below); this would entail that, say, - 2 , - 1 , 0 , 1 , 2 was not an increasing 

progression, since 0 , 1 , 2 was increasing but —2, —1,0 was decreasing. 6 1 

As we have already seen. when later on Lacroix reports Euler's improved method 

he gives as a sufficient condition that none of the coefficients X, ^f-, etc. change 

sign for the true value of Yn to be included between (5.11) and (5.12). This is clearly 

a généralisation of the simpler proposition whose proof we have just examined. but 

the proof is not generalizable (the minus signs in (5.12) and the fact that, say, ~ 

may be always positive and always négative thwarts argumentation involving the 

monotonicities — which may be in opposing directions — of séquences appearing in the 

formulas). In fact, this latter proposition is wrong — see footnote 58 above. Lacroix's 

6 0 "since it is possible to conceive the [séries (5.15)] as close as one may wish to the true value of Y\ 
by imagining enough intermediary terms" 

6 1Lagrange, on the other hand, in a passage équivalent to that referred to in footnote 64, decided 
to have —1 > —2, but he had to state this explicitly [Lagrange Fonctions, 46]. 
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correction of Euler thus fails for the improved method. 

But Lacroix did not just impose extra conditions for (5.8) and (5.10) (and (5.11) 

and (5.12). albeit wrongly) to be upper and lower bounds. He felt the need for bounds 

that would be general, that would not require conditions of monotonicity. This was 

possibly his motivation for remarking that one can divide the interval into portions 

where the function is increasing and portions where it is decreasing 6 2, and treat them 

separately [Lacroix Traité, II, 140]. This might have given something like 

Y + Y'{ai - a) + Y[(a2 - a,) +... + Y[_Y (a* - cn-i) + Y(+l (a* + 1 - a{) +... + Y^(an - a„_i) 

as a lower bound, in case the function is increasing from x = a till x = at and de

creasing thenceforward; however, Lacroix did not derive any explicit result from that 

remark. Instead, he found much simpler (but also quite un informative) expressions for 

bounds that do not require monotonicity in a passage from Lagrange's derivation of the 

remainder for Taylor series [Lagrange Fonctions, 46]: calling M the greatest value 6 3 

that X takes between x = a and x ~ b and m the smallest value of X in the same 

interval, 6 4 the difference Y& - Ya between the values of fXdx for x = a and x = b is 

contained between M(b — a) and m(b — a). 

These bounds are a straightforward result from a lemma which will be discussed 

below: if X is always positive between x = a and x = b, then Y\, — Ya is also positive. 

This means that, since M — X and X — m are by definition positive, the differences 

between the values of J(M — X)dx and j(X — m)dx for x = b and x = a, are also 

positive; that is, Mb - Yj, — (Ma — Ya) and Yb — mb ~ (Ya — ma) are positive, whence 

mb — ma <Yb~Ya < Mb - Ma (Lacroix Traité, II, 141]. 

This result for itself has of course very little use, but Lacroix also gives an im

provement: if X = PQ, M and m are the greatest and smallest values of P, and it is 

possible to calculate Z = JQdx, then mZb — mZa < Yb — Ya < MZb ~ MZa. He later 

uses this to prove that J^==p < / jr+jï^l+ru2 < I ( a l l the integrals taken 

from u = 0 till u = 1) [Lacroix Traite', II, 152-153]. 

5.2.3 "On the nature of integrals, and on the constants that 

must be added to them" 

When Lacroix published the first edition of his Traité élémentaire du calcul... he 

kept this section on the "general method to obtain approximate values of integrals" 

virtually unchanged [Lacroix 1802a, 284-309]. A very interesting detail is that in the 

5 2 H e assumed, as usual at the time, that every function is piecewise monotonie. 
6 3 A s usual at the time, Lacroix did not distinguish between a maximum and a least upper bound. 

Similarly, there was no distinction between positive and nonnegative, and the symbol < might some
times be interpreted as meaning <. 

6 4 In case X takes negative values somewhere in the interval, m must be the "greatest" of these — 
that is, the greatest in absolute value, what we would still call the smallest. Similarly, if X only takes 
negative values, then M must be the "smallest", not the "greatest" value [Lacroix Traité, II, 142]. 
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table of contents of [Lacroix 1802a] - whìch unlike that of [Lacroix Traite] contains 

titles of suòsections - we find the following subsection of this section: "De la nature 

des intégrales, et des constantes qu'il faut y ajouter" 6 5 [Lacroix 1802a, xxxviii]. Indeed 

Lacroix had included, in a section supposedly devoted to approximate integration, some 

conceptual remarks about that object called integrai 

But should not such remarks appear before, at the start of the integrai calculus, 

that is at the beginning of the second volume? In that apparently more suitable 

context Lacroix pays remarkably little attention to foundational or conceptual issues: 

the integrai calculus is simply the inverse of the differential calculus, so that its purpose 

is, given X, to find y such that ^ = X, and this is done by reversing the rules of 

differentiation (Lacroix Traite, II, 1-2]. 

A certain lack of care in writing this passage (as if it was not terribly important?) 

can be seen in the fact that the names primitive or integrai for the function y are 

introduced only in a footnote: a not very large footnote (by Lacroix's standards) 

whose purpose is to explain the origin of the notation / X d x for y — J for the infinite 

Jum of the infinitely small increments Xdx, according to Leibniz's views. The name 

integrai is then predominantly used throughout the volume, without further ado. 

Not even the issue of arbitrary constants receives much attention. It is only intro

duced when dealing with the first example of a rational function ( Jaxndx = Q^^1 + B 

because d(Axm + B) = mAxm~ldx), not when speaking of integráis in general. For its 

arbitrariness, the reader is referred to the first volume. 

This almost exclusive referrai to the principies of the differential calculus is con-

sistent with what Lacroix had said in the general preface at the beginning of the first 

volume: 

"Lorsque les principes du Calcul différentiel sont bien établis, le Calcul 

integrai, qui en est l'inverse, n'offre plus qu'une collection de procedes an-

alytiques, qu'il suffit d'ordonner de manière à en faire appercevoir les rap-

ports ." 6 6 [Lacroix Traite, I, xxvii] 

It is also consistent with the usuai approach to the integrai calculus at the end of the 

18th century (see section 5.1.1). 

After the small and perfunctory introduction to the integrai calculus which we nave 

just discussed, Lacroix occupies over a hundred pages with "procedes analytiques", 

that is, the integration of rational and irrational functions, series, and logarìthmic, 

exponential, and trigonometrical functions. And then, in the section dedicated to 

approximate integration, he returns to conceptual issues. 

First, Lacroix timidly introduces what we may interpret as limìt considerations, 

6 5 "On the nature of integrala, and on the constants that must be added to them" 
6 6 "Once the principies of the differential calculus are well established, the integrai calculus, which 

is its inverse, offers but a collection of analytical procedures, which is enough to order so as to make 
perceive their connections." 
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and without pausing he substantiates Leibniz's original concept of the intégral as an 

infinité sura of infinitesimals: 

"Ces valeurs [approchées de JXdx] seront d'autant plus exactes que les 

quantités a,ai,a2 seront plus voisines les unes des autres. En regardant les 

différences ai ~ a, a2 — ai , a 3 — a 2 . comme infiniment petites, les quantités 

K'(ai — a), Yl(a2 — ai), Y2(az — a2), etc. seront ce que devient la différentielle 

Xdx, lorsqu'on fait successivement x = a, x = ai, x = a 2 , etc. C'est sous 

ce point de vue que l'on conçoit l'intégrale comme la somme d'un nombre 

infini d'élémens, égaux aux valeurs consécutives que prend la différentielle 

par les divers changemens qu'éprouve la variable a;."67 [Lacroix Traité, II, 

137] 

This is followed by a référence to the footnote on the notation JXdx at the beginning 

of the volume. 

But what Lacroix subsequently uses from this passage is the naïve limit approach, 

not the infinitésimal one. In the chapter dedicated to the calculus of variations he 

would remark that 

"il faut se rappeler qu'une intégrale peut être envisagée (n°. 470 [the ar

ticle quoted above]), comme la limite des sommes d'un nombre indéfini 

d'élémens" 6 8 [Lacroix Traité, 686]. 

We have seen already (page 161) that Lacroix uses the property of the intégral Yi 

being the limit of the approximating sum (5.15) to prove that (5.13) and (5.14) are 

bounds for its true value. A naïve limit argument is also used to prove that, if X 

is always positive between x = a and x — an, then Yn — Y is also positive: for this 

différence we may give the approximate équation 

Y7l - Y = Y'{a, - a) + Y[(a2 - a i ) . . . + Y ^ x ( a n - a ^ ) , 

the right side of which is clearly positive if ail the coefficients Y',Y[, etc. are positive 

(which is an obvious conséquence of X being positive); but it is possible to take the 

éléments of the séquence a, a 1 ; a 2 , . . . ,an as close together as necessary to "porter ainsi 

le degré d'exactitude de l'équation ci-dessus, aussi loin qu'on le jugera à propos" 6 9 ; the 

conclusion follows. 

6 7 "Thèse [approximate] values [of j Xdx] will be the more exact as the quantities a , a i , a 2 arc closer 
to one another. Regarding the différences ai — a, — ai , 0.3 — 0,2, as infinitely small, the quantities 
Y ' ( a i — a), Y{(a.2 ~ ai), Y 2 ' ( Û 3 — 0 3 ) , etc. will be the resuit of putting successively x = a, x = ai, 
x = etc. in the differential Xdx. It is from this point of view that the intégral is conceived as the 
sum of an infinité number of éléments, equal to the consécutive values which the differential receives 
through the varying changes experienced by the variable x? 

6 8 "one must remember that an intégral may be viewed (n°. 470 [the article quoted above]), as the 
limit of the sums of an indefinite number of éléments" 

6 9 "thus carry the degree of exaetness of the above équation as far as deemed fit" 
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This same lemma can be found in [Lagrange Fonctions, 45-46), but in a different 
context (an important step in the derivation of the remainder for Taylor series) ; and 
with a different proof: Lagrange invokes Arbogast's principle to say that one can take 
i small enough for f(a + i) - / ( a ) = if'(a) + ~/"(a) -I- etc. to be positive, provided 
that / ' (a) is positive; dividing the interval from a to 6 into subintervals of length i and 
applying this argument also to f(a + 2i) — f(a + 1), f(a + 3i) - f(a + 2i), etc., he 
concludes that /(&)-f{a) = f(a+i)—f(a)+f(a+2i) — f(a+l)+etc. is positive, if f'(z) 
is always positive from z = a till z = b. It is interesting to notice that Lacroix could 
have used Lagrange's proof, or at least a close adaptation — he had used Arbogast's 
principle before (see sections 3.2.6 and 4.2.1.2) and we have seen that this section starts 
with Taylor series; but instead he gave the above limit argument. 

Of course these two proofs are of results ostensibly related to approximations — a 
subject which suggests the issue of convergence and hence of limits. What then has 
this to do with general conceptions of the integral? Well, first of all. whatever the 
subject of the section, these are proofs in which the integral — the true value of the 
integral — is represented as the limit of a sum. 

Perhaps more importantly, in this section there are three articles, which have not 
yet been discussed, whose relation to the subject of approximations is, to say the least, 
not at all obvious. Those three articles address arbitrary constants of integration, the 
distinction between primitive functions and integrals, the distinction between definite 
and indefinite integrals - issues notoriously overlooked in the beginning of the volume 
- and a geometrical illustration of these considerations. 

The first of those articles [Lacroix Traité, 137-138] is the one which, as mentioned 
above, was reproduced in [1802a, 287-288] with the title "On the nature of integrals, 
and on the constants that must be added to them' 1. It occurs immediately after the pas
sage quoted above suggesting limit- and infinitesimal-based approaches. Lacroix pro
poses to explain how the integral f Xdx differs from a "given primitive function" (what 
Euler called a "particular integral"): if we assign a value to x, that of a "given primitive 
function" becomes perfectly determined (ie, it is a function only of x)\ according to 
Lacroix, the same does not happen to the integral, because the same operation (the 
assignment of a value to x) only determines where the series Y, Y'(a\ — a), Y{(o2 - » i ) , 
Y2\az — 02), etc. should end, not where it should start: "la somme de cette série restera 
encore indéterminée tant qu'on n'aura rien statué sur la valeur de x, à laquelle doit 
répondre son premier terme et sur celle de ce premier terme" 7 0 [Lacroix Traité, II, 138]. 
Although this is not the clearest explanation one could wish for, 7 1 it shows that for 
Lacroix the sum (or limit of sums) approach is not limited to approximation of definite 
integrals or of particular integrals; it also refers to indefinite integrals, by allowing the 

7 0 "the sum of this series will retnain indeterminate while one has not pronounced about the value 
of x to which corresponds its first term nor about the value of this first tenu" 

7 1 I t must have been clear enough for the textbook writer Jean-Guillaume Gamier, who reproduced 
it almost word for word in [Garnier 1812, 108], 
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first term in the séries to remain indeterminate. 

Lacroix's conclusion from this (also not exposed too clearly) is that the integrai 

/Xdx "est une fonction de x, dont la valeur se trouve renfermée entre deux limites qui 

sont indéterminées"' 2. Thèse limits are independent of the constant of integration: if 

JXdx = P + const. and A and B are the values of P for x = a and x = b respectively. 

then the différence between the respective values of jXdx, that ,4 + const. and B -f 

const., is A — B.73 According to Lacroix, this différence is nothing else than the sum 

of some of the terrns in the séries (5.8), namely those from the one corresponding to 

x = a till the one corresponding to x = b (notice once agaìn the in determi nacy of the 

first tenu in the global séries, which mìght start before x = a). 

The détermination of the constant of integration (by forcing the integrai to take a 

certain value for a specified value of x) corresponds to the détermination of one term in 

the séries, aY, par exemple", from which one proceeds to form the other terms. 7 4 After 

this the integrai becomes a primitive function, which only requires the spécification of 

x for its complete détermination. 

The second of the three articles mentioned above occurs. strangely enough, four 

pages afterwards [Lacroix Traité, II, 142-143]. It addresses mainly issues of terminol-

ogy, introducing the terms indefinite integrai (what he had been calling simply intégral, 

the general value of / X d x , which must contain an arbitrary constant to be complete) 

and definite integrai (the resuit of giving a determined value to the variable, after hav-

ing determined the constant of integration), and the expression "to take the integrai 

/Xdx from x = a till x = b" (to calcolate the différence between the corresponding 

values of the integrai). 

Lacroix attributes thèse names, rather vaguely, to "the Analysts"; presumably this 

is a référence to [Laplace 1779}. The names definite integrai and indefinite integrai 

were by then rare enough for Cajori [1919, 272] to attribute their introduction to 

Lacroix himself.75 

It must be said that thèse names do not occur often in the rest of the second volume 

(and not at ail in this section; apparently the next occurrence is in the chapter on the 

calculus of variations [Lacroix Traité, II, 685]); they, or rather "definite integrai", only 

becomes fréquent in the third volume, where Lacroix reports the works of Euler and 

Laplace that bear on definite intégrais [Lacroix Traité, III. 392-418, 445-529]. In two 

articles there Lacroix uses Euler's notation for the limits of integration ("lefthand" 

7 2 "îs a function of x whose value is euclosed between two indeterminate limits" 
73Sic: not only this is not corrected in the errata as it is repeated in [Lacroix 1802a. 288] and 

[Lacroix Traité, 2nd ed, II, 134] (but. curiously, it appears as B - A in [Lacroix 1802a, 2nd ed. 303] 
and subséquent éditions). One can only assume that Lacroix is only concerned here with the absolute 
différence. Nevertheless, as we have seen above, he speaks further ahead of this différence as Yb - Ya. 

, 4Lacroix is quite clear about Y being completely independent from the other ternis, so that what 
this rncans must be that one proceeds from the corresponding specified value of x. 

7 5 I n this sanie year (an VI « 1798) "indefinite integrai" made a fleeting appearance in [Bossut 1798, 
I, 415], but "definite integrai" does not seem to have accompanied it there. 
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lirait at the top) [Lacroix Traité, III. 446-447, 475]: 

'xm~^ -\- xn~~m~1 

1 + xn 
dx 

x = 0 

x = 1 

But naturally the concept of definite integral occurs without need for mention of 

the narae. It is clearly présent, for instance, still in the section on approximation, in 

"the integral / from x = 0 until x = 1 - Ó"" [Lacroix Traité, II, 145]. Similar 

expressions appear in the chapter on areas, volumes, etc., particularly when using 

double (repeated) intégrais to calculate volumes [Lacroix Traité, II, 195-197]. Integral 

Splitting occurs very casually (for instance in [Lacroix Traité, II, 152]); it may have 

been a motivation for one the few uses of Euler's notation [Lacroix Traité, III, 447]: 

x 
m - l 

1 + XN 
dx 

x = 0 

x = inf 
x rrt-l 

1 +XN 
dx 

:t = 0 

x = 1 
XM-\ 

1+X" 
dx 

x = 1 

x = inf 

Of course this would not be as obvious in a context of particular intégrais/primitive 

functions. 

Finally, the third of the certainly non-approximative articles [Lacroix Traité, II, 

143] gives a geometrical illustration (it is followed by the geometrical interprétation of 

the approximation method mentioned above): if the curve BCZ represents the function 

X, the integral j'Xdx may be regarded as representing "a variable portion" of the area 

under it. This portion may be indeterminate - doubly indeterminate, in fact - while 

its limits are arbitrary; but once the outmost abscissas are fìxed - for instance AD and 

AP - it is deterrnined - DEM P. 

J s 

.A. D p7 

What can we make of Lacroix's section on the "general method" for approximation 

of intégrais? Is it really just about approximation of intégrais? I hope the preceding 

paragraphs will convince the reader that that section has another subject: the "nature 

of intégrais". 

Judith Grabiner [1981, 150-152] has concluded that that section was an important 

source of inspiration for Cauchy's theory of the integral: not only it was the most prob

able means through which Cauchy knew Euler's "general method", but also "Lacroix 

had picked out the key property of the definite integral - the integral is the limit of 

sums - and used it in a proof" (two proofs, in fact), a.nd had implied, "though not 

saying explicitly, that for any piecewise monotonie function approximating sums can 
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be found that are arbitrarily close to the function's integrai" (a référence to his remark 

about treating separately the portions where the function is increasing and those where 

it is decreasing), But she adds that 

"the techiiical similarities in their treatments of the definite integrai cannot 

dispel the différences in points of view between Cauchy and his predeces-

sors. For Euler and Lacroix, approximation by surns is just one property 

of the integrai, related to little else in the theory of the integrai calculus. 

For Cauchy, it became the defining property. For Euler and Lacroix, the 

integrai is the antiderivative, whose value can be approximated by sums." 

[Grabiner 1981, 152) 

Also, "as usuai, Lacroix had not intended to do anything new; in elaborating Euler's 

work, his goal was to présent, explain, and clarify" [Grabiner 1981, 150]. 

Lacroix's intentions regarding origìnality are not completely clear. In the general 

Preface of the Traité he does suggest that there are some détails that belong to him 

[Traité, I, xxviii]; in later writings he claimed priority for some of those détails (see 

section 10.1.1). But this détail is not among them. Apparently he did not see it as 

important enough. Perhaps because it stili went against the prevailing tendencies in 

analysis? 

Clearly, the différences between Lacroix's remarks on the "nature of intégrais" and 

Cauchy's theory of the integrai are huge. Lacroix did not give the limit of sums as 

the définition of definite integrai; he did not question the existence of intégrais; he 

did not prove that the limit of the approximating sums is independent of the mode of 

partition of the interval; and, more importantly, hìs remarks occupy a modest place 

in the structure of his integrai calculus. It could not be otherwise: the purpose of 

Lacroix's Traité is to report the calculus as it was in the end of the 18th century and 

to prepare its readers to understand the research done in that area; and the integrai 

calculus at that time was almost exclusively based on the conception of the integrai as 

antiderivative. 

However, there is enough évidence to say that for Lacroix, approximation by sums 

was not just another property of the integrai, "related to little else in the theory of 

the integrai calculus". It is true that it was not its defining property, but it was a 

property that allowed him to explore "the nature of intégrais", and to explain the 

concepts of indefinite integrai, primitive function, and definite integrai This may be 

regarded as "related to little else" in the integrai calculus, in the sense that it had few 

technical conséquences (if any), but such conceptual considérations would certainly 

be quite relevant for the intended readers - training mathematicians. It is also quite 

interesting to notice how Lacroix used this material in his first course of analysis at 

the Ecole Polytechnique: of the 5 articles from tins section mentioned in the summary 

of that course (see page 402), only two are about the approximation method (and one 

of thèse two is the geometrical illustration of the method and the other also includes 
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the interprétation of the integrai as a sum of infinitesimals or limit of sums); the 
other three are concernée! with the distinctions between integrai and primitive fonction 
and between definite and indefinite integrai, with the détermination of constants of 
integration and with the geometrical interprétation of intégrais. 

I believe that in the passage quoted above Grabiner fails to take full account of a 
fondamental distinction between Cauchy's and Lacroix's approaches. Cauchy wanted 
one définition for each concept from which ali the results concerning that concept had 
to stem; Lacroix, on the other hand, thought that a concept could be seen from several 
perspectives, and that différent aspects of that concept might be better illuminated 
from différent perspectives. 7 6 

Thus for Lacroix the integrai is the antiderivative and it is a limit of sums. 
Another aspect of this that must be mentioned is its Leibnizian genealogy. It was 

remarked in section 5.1.1 that the Leibnizian idea of the integrai as a sum of infinites
imals had never completely disappeared in the 18th century. Euler had established a 
connection between his "general method" of approximation and that idea, by allow-
ing the différences between the abscissas used to be infinitelly small (see page 150). 
However, he left that connection as an unconsequential remark. 

What Lacroix did nere, apart from improving on Euler's method itself, was to 
seriously pursue that connection, and give it a more solid ground. Believing that the 
correct interprétation of the infinitésimal method lies in taking it as an abbreviation for 
the method of limits [Lacroix Traité, I, 423-424], it should not be difficult for Lacroix to 
make the leap to the integrai as "limit of sums", in order to provide a good explanation, 
an acceptable interprétation, of the Leibnizian infinite sum of infinitesimals. 

Why did he do it? Probably for twro reasons: firstly, because the encyclopédie 
character of his Traité demanded some acknowledgernent of the originai Leibnizian 
approach to the integrai; but also because it seemed a worthwhile perspective: it made 
the integrai a more concrete object, a better understandable one. 

This concreteness helps us also to explain the puzzling location of Lacroix's remarks 
on the "nature of intégrais". If we look at chapter 1 of [Lacroix Traité, II], we see 
135 pages of formaliste, algebraic integration, based on the integrai as antiderivative, 
followed by 21 pages of approximation and conceptual remarks. 7 ' For those first 135 
pages, and indeed for most of the integrai calculus, the quick définition of integrai 
as antiderivative and the matter-of-fact référence to arbitrary constants were quite 
enough. The perspective of the integrai as a limit of sums appears in a section which 

7 6Grabiner is of course well aware of Lacroix's "eclectic view'1 of the concepts of the calculus, but 
explains it on purely techriical grounds: "Lacroix, like most matheinaticians of the time, wanted to 
show how to solve problems; therefore his Traité încluded whatever techniques were applicable to this 
end" [Grabiner 1981, 79-80]. This interprétation of Lacroix's motivations, while not at ali wrong, is 
in my view too restrictive. 

7 7 A n d then 5 final pages on integration of higher-order differentials, which in the second édition of 
the Traité constitute a section, but in the first édition are inchided in this section on the "general 
method" of approximation. 
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has a différent fîavour: an intégral whose value is approximated is something more 

concrete than an antiderivative; and, very importantly, the dérivation of formulas (5.8) 

and (5.10) is quite distinct from the formai manipulation of séries and other expressions 

that can be seen in those 135 initial pages. 

In fact, what may be surprising is the occurrence at ail of thèse conceptual remarks, 

and the fact that they appear so early: it would be conceivable for them (particularly 

the définition of definite integrai) to appear in the chapter on calculation of lengths, 

areas, and volumes, or in the chapter on calculus of variations (a subject naturally 

related to definite intégrais), or yet in the third volume, which is where definite intégrais 

are effectively used. 7 8 Their occurrence in the first chapter is of course a conséquence 

of their connection to the method of approximation, but this is not a full explanation: 

what dépends on that method may appear at any time after the method. The location 

of thèse remarks in the chapter on integration of functions also reflects, in my opinion, 

a more general signifìcance than they would have if they appeared only where they are 

more directly relevant. 

To summarize: Euler's "general method" for approximation of intégrais provided 

Lacroix with the chance of exploring the "nature of intégrais" in an original way: 

referring back to the Leibnizian conception of the integrai as a sum of differentials, but 

reinterpreting this in terms of limits. Given that the dominant approach at the time 

was that of the integrai as antiderivative, the encyclopédie character of Lacroix's TYaité 

would not allow this to be more than a détail (at least if evaluated lengthwise); but it 

was also this encyclopédie character that allowed this détail to appear at ail. And how 

irrelevant could be to a training mathematician a détail which explained the "nature 

of intégrais" ? 

5.2.4 Approximation of solutions of differential équations 

Approximation of solutions of differential équations does not provide such interesting 

conceptual reflections. Or rather, it does, but in an incredibly fleeting way (see below). 

Lacroix mainly reports several methods, divided into first-order differential équations, 

second-order differential équations, and a combination of successive substitutions with 

integration of "first-degree" differential équations. Ali of this is in the chapter on 

ordinary differential équations: in section 5.1.3 we saw no attempts to approximate 

partial differential équations in the 18th century (apparently there were none), and we 

do not see them in Lacroix's Traité. 

In the section on approximate solutions of first-order differential équations [Traité, 

II, 284-296], Lacroix is more inclined than in the chapter on integration of explicit 

functions to match séries integration with approximate integration: 

7 8 I t is true that in the examples of the use of the approximation method Lacroix uses, if not the 
narne definite integrai, at least the idea of integration "from x = a till x = b". But of course he did 
not have to: in the same context Euler had stuck to particular intégrais. 

170 



"Après avoir épuisé les moyens connus pour intégrer une équation différentielle, 

il faut chercher à la résoudre par approximation, c'est-à-dire, à en tirer la 

valeur de y en x, au moyen d'une série." 7 9 [Lacroix Traité, IL 284] 

Naturally, he starts by undetermined coefficients [Lacroix Traité, II, 284]: if we 

know that y = b when x = a (a and b constants), we can put x = a + t. y = b + u, 

and u = Ata + Bta+1 + Cta+2 + etc., substitute in the differential équation (choosing 

a appropriately) and solve for .4, B, C, etc. 

Next Lacroix consider Taylor séries expansions. He uses thern in deriving the séries 

y , = y + r ( ^ + y « ( £ ! ^ + y » ( ï L = ^ + e t c . ( 5 . 1 6 ) 

équivalent to (5.6), except in that now the coefficients Y', Y", Y'",... dépend not only 

on a but also on Y (since ^ dépends on x and y). Euler's "gênerai method" is a natural 

conséquence, but Lacroix is extremely brief about it: he mainly remarks that what had 

been said in the articles leading to (5.8), (5.9), and (5.11-5.12) also applies here - in the 

latter case minding that the coefficients also dépend on ^ and its differentials; and it 

also seems that he has in mind formulas more complicated than (5.11-5.12), involving 

différences a± — a, a 2 — Û I : • • • not ail equal, and in the second case probably with Y, not 

Yn, on the left side. It is not completely clear whether Lacroix excludes from this the 

use of the average between (5.11) and (5.12) (or rather between its correspondents), 

which had appeared in the case of explicit functions [Lacroix Traité, II, 148]; but his 

implicit référence to (5.9) instead of (5.10) ("revenir de cette valeur [Yn] à celle de y 8 0 

[Lacroix Traité, II, 286]) suggests that what Lacroix had in mind for the differential-

equation équivalents of (5.9) and (5.12) was situations in which the initial conditions 

refer to a^, Y n and it is a left-hand value of y that is approximated. 

Here occurs a very curious remark, although also very casual (it is the fleeting 

conceptual remark announced above): 

"Ce qui précède fait voir que les équations différentielles du premier ordre 

à deux variables sont toujours possibles, c'est-à-dire, qu'on peut toujours 

assigner des valeurs soit rigoureuses, soit approchées de la fonction qu'elles 

déterminent" 8 1 [Lacroix Traité, II, 287]. 

(This opens a article which is somewhat out of place: Lacroix argues that the "possibil

i t é of first-order differential équations may also be shown by geometrical considérations 

- by presenting a construction for those équations: détails of the construction will be 

given in section 6.2.3.2.) Is this not a (very crude) attempt at an existence theorem? 

7 9"After having exhausted ail known means of integrating a differential équation, we must try to 
solve it by approximation, that is, to extract from it the value of y as a séries in x.v' 

8 0 "to return from this value [Yn] to that of V" 
8 1 "The precedîng shows that the differential équations of first order are atways possible, that is, that 

one can always assign values, cither rigorous or approximate, to the function which they détermine" 
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Of course, one must not exaggerate its relevance: it is very far from Cauchy's results 

of the 1820's [Cauchy 1981\\ and it is even much less developed than Lacroix's consid

erations on integrals of explicit functions using similar approximations (section 5.2.3). 

But Lacroix's concern with showing an existence that most people around 1800 took 

for granted is noteworthy. 8 2 Lacroix may have been inspired by a similar remark by 

Leibniz: having constructed a polygon approximating a certain transcendental curve 

starting at an arbitrary point iC , Leibniz concluded 

"Et sic habebitur polygonum 1C2C3C $¿0. lineae quaesitae succedaneum. 

seu linea Mechanica Geometricae vicaria; simulque manifeste cognoscimus, 

possibilem esse Geometricam per datum punctum 1C transeuntem, cum 

sit limes, in quern tandem polygona continue advergentia evanescunt"83 

[Leibniz 1694, 374] 

Still, Lacroix does not mention Leibniz in connection to this subject (either possibil

ity/existence or approximation in general), nor does he cite this memoir in the table 

of contents. A probable indirect influence, motivating the concern with possibility, is 

Clairaut's claim for the impossibility of some differential equations in three variables 

(see section 6.1.3.1), as well as Monge's denial of that impossibility; in fact, this denial 

opens with a short remark [Monge 1784c, 502] on the possibility of every first-order 

differential equation in two variables, based on the argument that using the equation 

one can always find the slope of the tangent to the (integral) curve - Lacroix's remark 

is very likely an elaboration of Monge's. 

Next Lacroix shows his awareness of insufficiencies in the Taylor series (5.6) and 

(5.7) and in the formulas derived from them. But he reduces them to situations in which 

some differential coefficient of the function y of x becomes infinite, and solves those 

insufficiencies by considering more general power series - with non-integer exponents -

as he had done in chapter 2 of the first volume, extracting a method for obtaining those 

series from a memoir by Lagrange on continued fractions (see pages 107 and 155). 

Lacroix does not dwell on Lagrange's method for obtaining those power series, since 

he already had done so [Lacroix Traité, I, 220-230]; but he does dwell on Lagrange's 

use of it for obtaining continued fractions (see page 155). In fact, this takes up about 

two thirds of the section on approximation methods for first-order differential equations 

[Lacroix Traité, II, 288-296]. However, it would be wrrong to conclude from the number 

of pages that this is the most important method for approximation. It might need more 

8 2Concerning the influence of Lacroix's Traité, it is also noteworthy that Cauchy's first existence 
theorem derived from the same method of approximation [Cauchy 1981. 39-66], Gilain [1981, xxiv-
xxv, xxxiii] compared Cauchy's work with Lacroix's Traité, but because he used only the second 
edition of the latter he missed Lacroix's connection between the analytical version of this method and 
the "possibility" of differential equations. 

8 3 "And thus we will have a polygon 1C2C3C&C. replacing the required curve, that is, a mechanical 
curve in place of the geometrical one; at the same time we clearly perceive that the geometrical [curve], 
passing through a given point iC, is possible, since it is the limit into which the continually converging 
polygons finally vanish.''' 
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pages to be explained, but was probably less relevant: it is not taken up for second-

order differential équations, and it is dropped off from [Lacroix 1802a\. 

The section on approximation methods for second-order differential équations [La

croix Traité, II, 349-364] is essentially an account of chapters VII and VIII of the first 

section of [Euler Integrafo. II] - that is, power-series developments for ddy+a xn y dx2 — 

0 and xx(a -f bxn)ddy + x(c + exn)dxdy + ( / + gxn)y dx2 = 0. 

Euler's "general method" is mentioned. but only in a short article [Lacroix Traité, 

II, 351], remarking that what was said about its use for first-order équations also 

applies hère, except that now in séries such as (5.16) the second term is arbitrary. since 

a second-order differential équation leaves the first differential coefficient undetermined; 

one must then have as initial condition not only the value of y but also that of for 

x ~ a. 

This is accompanied by an article on the construction of second-order équations 

[Lacroix Traité, II, 351-352], entirely analogous to the one on first-order équations 

mentioned above, and which has little to do with approximation (see section 6.2.3.2). 

Lacroix includes one final section on approximate integration of differential équa

tions, namely on the use of integration of "first-degree" (in modem terms, linear) 

differential équations to obtain successive approximate solutions of non-"first-degree" 

differential équations [Lacroix Traité, II, 394-408]. That is, this section deals with the 

methods used in obtaining approximations of planetary orbits (see page 154 above). 

However, Lacroix does not mention that motivation for thèse methods. The only 

hint is when he refers the reader seeking further détails to the "excellens Mémoires 

d'Astronomie-physique de Lagrange et de Laplace" 8 4 [Lacroix Traité, II, 407]. Lacroix 

is clearly not interested in astronomy (not in the Traité, that is - "un ouvrage con

sacré uniquement à l'Analyse et à la Géométrie" 8 5 [Lacroix Traité, II, 299]), but rather 

simply in mathematical methods that happened to have originated from astronomical 

problems. This idea is reinforced by his closing sentence saying that he had had as 

only goal in this section to "rattacher à l'ensemble des méthodes du Calcul intégral" 8 6 

several procédures which had thus far always been expounded isolated - isolated, one 

gathers, from pure analysis. 

Lacroix [Traité, II, 394-397] introduces the traditional method through the example 

d?y 2 

— + ?; + ay = b, 

where a is very small; neglecting a yields the first-degree équation 

8 4 "excellent memoirs of physical astronomy by Lagrange and Laplace" 
8 5 "a work solely devoted to analysis and geometry" 
8 6 "restore to the set of methods of intégral calculus" 
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whose intégral is 

y = b-r-p cos x + q sin x: 

putting Y = b + p cosx + q s'mx, y = Y 4- ay', substituting in the original équation, 

and neglecting a2 and a 3 , yields 

d V 
— r - + y' = —Y2 \= -b2 — 2b(p cos x + q sin i ) — (p cos x + o sin x) 2 ] : 
aa;̂  

from which a second approximate value for y is obtained; and so on. Next [Lacroix Traité, 

IL 398] he remarks that this ammounts to assume 

y = Y + aY' + c?Y" + O J 3 Y " ' + etc., 

obtaining K, etc. from 

à2Y rP-Y' ffiY" 
^ T + K = 6> ^ + Y ' = - Y 2 ' ~ + Y" = -2YY', etc. da;' dar ax2 

After two itérations Lacroix lias something of the form 

y = A + [B + Cx + -Dx2) cos £ + + -Frc) cos 2a: + G cos 3x 

+ (B' + C'x 4- D'à:2) sin x + (£7' + F'x) sin 2x 4- G' sin 3a:, 

which he says is only an approximate value in case x is very small [Lacroix Traité, II, 

400] - a référence to the "arcs of circle", i.e. to the powers of x higher than zéro, which 

appear in the coefficients of the sines and cosines; while if one had a resuit of the form 

y = A\ 4- B\ cos px 4- Ci cos "fx 4- etc. 

-\-B[smf3x 4- C[ sin7X + etc., 

"et que les coefficiens A1:Bi, B-i,... B[,B'2, etc. formassent une suite convergente" 8 7, 

the fact that the sine and cosine are bounded would assure the convergence of the 

expression for y. Thus Lacroix présents as motivation for the avoidance of "arcs of 

circle" the fact that they make convergence harder to achieve, not any astronomical 

considérations. 

Notice the twofold mistake above: the séquence Ai, Bv, B2, • • • B\, B'2,,.. does not 

even make sensé; and if we assume that that is a typo for Ax, Bi, C\,... B[, C[,..., we 

still have to face the fact that Lacroix should be asking for B 1 ; Ci,... and B[,C{,... 

to be two convergent séquences. This is only the first of a séries of strange mistakes 

in this section. The following ones become even stranger when we notice that Lacroix 

was following [Lagrange 1783, § 1-4] closely - where those mistakes do not occur. 

8 7 « and the coefficients Ai, S i , B2,... B[, B'2, etc. formed a convergent séquence" -
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Thus Lacroix [Traite, II, 400-403] reports Lagrange's method of variation of con
stants: assuming 

y = P + P'x + P"x2 + P ' V + etc., 

where P, P ' , P" , P'", etc. contain only exponentials, sines and cosines of multiples of x, 
along with the arbitrary integration constants p, q, etc., differentiation yields 

dy dP , n / , f d P ' , n n , A , (dP" . „ > v 2 T i = : T - + i y + ^ - + 2P" x + ^ - + 3P"' x 2 + e t c , 
dx dx \dx J \ dx 

d2y d2P dP' fcPP' dP" 
+ 2 — + 2P" + - — - + 4—— + 6P'" x + etc., dx 2 dx2 dx \ dx2 dx 

and so on - here occurs the second mistake: in the equations above Lacroix writes the 
differentials dy,dy2 on the left-hand sides instead of the differential coefficients; now. 
in order to have the equation free of powers of x, the coefficients in these series must 
be null, and we must have 

„ dy dP „ , cPy SP n dP' n 

ax dx dx1 dxL dx 

- and another mistake: $y instead of jĵ f in the third equation (but a correct ^ in the 
second one); and for this to make sense (if y = P , ^ should certainly not be % + P') it 
is necessary to regard the arbitrary constants as variables, to differentiate accordingly 
and to determine them so as to verify the equations above. Here occurs yet another 
mistake: Lacroix seems to forget the "etc." in the list of constants "p, q, etc." which 
he had given, and writes 

dP , d P J dP J dy = —dx + — d p + -r-dq; 
dx dp dq 

he proceeds using only p and q in the next formulas (the corresponding formulas in 
[Lagrange 1783, § 3] have the appropriate &c.'s), although also repeating the list up, q, 
etc."; of course this might be simply dismissed as sloppy language, but it is unchar
acteristically sloppy for Lacroix, and culminates an uncharacteristic sequence of ty
pos/mistakes. This section seems to have suffered from a very poor editorial job. 

After extending this method to systems of equations [Traité, II, 403-406], Lacroix 
comments on the "arcs of circle" being terms from power series expansions of sines and 
cosines, so that Lagrange's method really ammounts to replace those series with the 
original functions; he then mentions a method by Trembley which uses this idea, by 
grouping the terms so as to form recognizable series - but which entails calculations 
too long to be included in Lacroix's Traité. 

This section finishes with a footnote (slightly over a page in size), where Lacroix 
[Traité, II, 407-408] reports the first version of Lagrange's method of variation of con
stants, following [Lagrange 1781, §25-26] (in the first edition Lacroix forgets to mention 
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[Lagrange 1781} in the table of contents - which may be why in the second édition it 
receives a "N.B." [Lacroix Traité, 2nd ed ; II, xvi]). 
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Chapter 6 

Types of solutions of differential 

équations 

This chapter deals wit h several aspects of differential équations relating to types of 

solutions (complete, general, particular, and singular intégrais or solutions), as opposed 

to methods of solution. That is, the subject here is not so much the processes for solving 

differential équations, as the conceptions about what kind of object a final solution 

might be. For this reason, the word "solution" will be used here in the sensé of answer, 

but not in the sensé of process for obtaining an answer. 

6.1 The eighteenth century 

It has been seen in section 5.1.1 that Euler tended not to distinguish conceptually inte-

grating functions from solving differential équations. Thus, his définitions of complete 

and particular integrai (from the general preface to [Euler Integratisi applied to both 

situations: 

"Integrale completum exhiberi dìcitur, quando functio quaesita omni exten

sione cum constante arbitraria representatur. Quando autem ista constans 

iam certo modo est determinata, integrale vocari solet particulare"1 [Inte

grala, I, § 36]. 

In thèse définitions, the phrase "arbitrary constant" should not be taken too literally: 

Euler had mentioned a few articles earlier the possibility of the function y being "defined 

by a relation between second-order différent i als". in which case it would involve two 

arbitrary constants [Euler Integralis, I, § 33]; and the possibility of y being a function 

of two variables x and t, in which case it also would seem to involve an "arbitrary 

constant", but apparently one for each value of t - that is, in fact an arbitrary function 

of t [Euler Integralis, I, § 34]. 

1 "A complete integrai is said to be presented when the required function is represented in ali 
its extension with an arbitrary constant. When, on the other hand, this constant has already been 
determined in some way, the integrai is usually called a particular one". 
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Given these definitions, it is easy to conclude that "intégrale ergo completum omnia 

integralia particularia in se complectitur" 2 [Euler integralis, I, § 38]. Naturally this 

applies both to integrals of explicit functions and to solutions of differential equations, 

which is confirmed at the beginning of a chapter on "particular integration of differential 

equations": a particular integral of a differential equation must be contained in its 

complete integral [Euler fntegralis, I, § 540]. 

The following sections are partly dedicated to the story of how this neat scheme 

got complicated. The first threat that it faced was the occurrence of singular solutions, 

that is, solutions not contained in the complete integral. But further complications 

appeared in the case of partial differential equations when Lagrange [ 1774 ] introduced a 

distinction between complete and general integrals, that is between integrals containing 

arbitrary constants and integrals containing arbitrary- functions. 

6.1.1 Terminological complications 

A modern reader faces additional difficulties when trying to understand the work of 

18th-century mathematicians on this subject, because of the use of different terminolo

gies, including sometimes the use of the same name for different objects. 

Until around 1770 everything was simple: as above, "complete" integrals (or syn

onymously "general" integrals [Laplace 1772a]) opposed to "particular" integrals. The 

first complication arose when Laplace [1772a, 344] decided to distinguish "particular 

integrals" (contained in the general integral) from "particular solutions" (not con

tained in the general integral). Rather confusingly, Lagrange [1774] used the name 

"particular integrals" for what Laplace had called "particular solutions"; as for what 

Euler and Laplace had called "particular integrals", Lagrange used the term "incom

plete integral" [1774, § 1, § 13]. Even more confusingly, there are a few (fortunately 

only a few) situations in which "particular integral" seems to refer to any solution 

which does not contain the necessary arbitrary elements to be complete, regardless 

of being contained or not in the complete integral; for instance, Lagrange in a let

ter to Euler dated 1769, complimenting the latter on his "méthodes [...] pour re

connoitre si une intégrale particulière peut être comprise dans l'intégrale générale" 3 

[Euler h Lagrange Correspondance, 464]; or Trembley [1790-91], who seems to usually 

employ the expression "particular integral" to refer to both particular instances of the 

complete integral and singular solutions, but who when addressing the subject of singu

lar solutions refers to "intégrales particulières proprement dites" 4 , to be distinguished 

from "incomplete integrals" [Trembley 1790-91, 4]. Later Lagrange [Fonctions, 69] in

troduced the adjective "singular"5, which eventually solved the confusion by displacing 

2 "thus the complete integral embraces in itself all the particular integrals" 
3 "methods to recognize whether a particular integral might be contained in the general integral" 
4 "particular integrals properly so called" 
5 He probably used this adjective because Taylor [1715], when encountering for the first time a 

singular solution, had remarked that it was "singularis quœdam solutio", which may be translated as 
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the word "particular" from names for singular solutions.6 

A different complication occurs with partial differential equations, because of La
grange's [1774] distinction between "complete" and "general" integrals, using terms 
that until then had been synonymous. As will be seen below, not everyone (not even 
Lagrange!) followed this terminological distinction in the late 18th century. That is, 
more often than not "complete integral" of a first-order partial differential equation 
still meant an integral with one arbitrary function [Lagrange 1779, 153; Monge 1784b, 
120; Legendre 1787, 338]. 

An attempt has been made in this chapter to follow the original terminologies 
when reporting the work of 18th-century mathematicians. Therefore, say "particular 
integral" will be used when speaking of Euler or Laplace with the same meaning as 
"incomplete integral" when speaking of Lagrange. There is however one important 
exception; "particular integral" in the sense of [Lagrange 1774} - that is, with the 
meaning of singular solution - would be too confusing, so that in the following sections 
it was replaced by "singular integral" (both when speaking of Lagrange or of other 
authors that followed his terminology). Confusion arising from conflicting uses of the 
expression "complete integral" is a necessary risk: the choice of which kind of integral 
to name complete is an important conceptual clue. 7 

6.1.2 Singular solutions 

6.1.2.1 Euler and Clairaut 

Euler was well aware of the existence of what is now known as singular solutions of 
differential equations. This existence had been noted in two works that had appeared 
in 1736,8 one of which by himself: his Mechanica [Euler 1736]. In its second volume 
Euler not only gives two examples of equations with singular solutions, 9 but he also 
gives a rule to find such solutions: if V is a function of u and T is a function of t such 
that T = 0 for t = 0, then the equation 

T 

"a certain unique solution1' - "unique" either in the sense of only one (of its kind) or of remarkable. 
6 But not immediately: in the 1820's the syllabi of the École Polytechnique still used Laplace's 

term "particular solutions" [Gilain 1989, 112, 116, 120, 126, 130], while Cauchy, in his lectures there, 
changed from following that in 1819/1820 and 1821/1822 [Gilain 1989, 61. 67] to speaking of "singular 
integrals" in 1823/1824, 1827/1828 and 1829/1830 [Gilain 1989, 73, 85, 93]. 

7Except for authors (possibly influenced by Laplace [1772a]) who seemed to prefer "general inte
gral" as the principal term: the syllabi of the Ecole Polytechnique from 1817 to 1830 spoke of "general 
integrals" of ordinary differential equations [Gilain 1989, 108-130], and so did Cauchy in his lectures 
[Gilain 1989, 56-94]. But among the authors studied here Laplace and Condorcet [1765, 3, 67] were 
the only ones with that preference-

8Brook Taylor had encountered one before that, but he docs not seem to have noticed its significance 
[Taylor 1715, 26-27]. 

9X = a for ds = , , ~ f ^ : [Euler 1736. II. §300]; k2u = (k2 + l)X for ^+1)^-^ = ±P 
[Euler 1736, §335]. 
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is satisfied both by 

t = 0 and 

moreover, even if T is not nuli for t = 0, T = 0 is a solution (since it implies dt = 0) 

[Euler 1736, II, §335]. 

The other work published in 1736 whîch mentions singular solutions is [Clairaut 

1734 Î 209-213]. Investigaiing a curve MON with two branches, each of which tangent 

to one of the two arms of a sliding set square MCN whose vertex describes a given 

curve EC, Clairaut arrives at 

dy 
x Ylu — u Uu — y — $u and -— = ïlu 

dx 

(where x,y are the coordinates AP,PM of MON; u,Qu are the coordinates AB,BC 

of the given curve EC; and ïlu is used to express the fact that ^ is a fonction of u). 

Differentiating, he gets dx ïlu + x Au du - du Uu — u Au du = ïlu dx — Eu du (where 

dïlu = Au du and dQu = "Eudu); happily dxïlu cancels out and ail that remains is 

divisible by du, so that x Au — ïlu — u Au = Su, whence the solution 

Tlu-r-uAu — Eu , (ïlu)2 — EuUu + Qullu 
x = and y = -—; . 

Au y Au 

An interesting issue, which Clairaut remarks, is that this process does not involve 

integration, although it is easy to think of a différent process that would: to solve 

^ = IIix for u, substitute the resuit in xllu — ullu = y — &u and integrate the 

resulting differential équation; the problem is that this intégral would inevitably include 

an arbitrary constant which is absent from the solution obtained above; so we have two 

non-équivalent solutions, and the one obtained by différentiation would seem to be less 

general than the one obtained by integration. However, argues Clairaut, the only step 

in the former that rnay cause a loss of generality is the division by du, which might 

be zero; and in the case of du — 0, that is u = a for some constant a, we would have 

only xYla — alla = y — 3>a, the équation of a straight line (an arm of the set square, 

in fact). Calculating two examples [Uu = $u = u, and Uu = and 4>u = 0), he 

concludes that integration leads only to the straight line solution, while the solution he 
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is after is not obtaiiiable by integral calculus. He closes the subject (which ìs not the 

central topie of the memoir) with the statement that, more generally, any équation of 

the form 
d($xy) p r i i 
———— = some function of x, y, dx. dy 

Qxy 

has the solution &xy = 0, besides the one obtained by integration ($xy is Clairaut's 

notation for a function of the two variables x,y). 

This is explained more clearly in [Euler 1756]. There Euler addresses these two 

interrelated paradoxes: that some differential équations are more easily solvable by 

further difïerentiation than by the normal methods of integrai calculus, and that some 

differential équations are satisfied by finite équations which are not contaìned in their 

complete integrai. 

For the first paradox Euler gives four examples, the first of which is that of, given 

a point -4, to find a curve such that all the normals taken from it to 4̂ have the sanie 

length a. This gives the differential équation 

ydx — xdy = a\J dx2 + dy2, (6.1) 

which it takes two pages to solve by setting the dìfferentials free of the square root: 

aa dy — xxdy -\- xydx = a dxy/xx + yy — aa, (6-2) 

and separating the variables by substituting y = uy/aa — xx: 

du adx 

y/u — 1 aa — xx 

to finally arrive at the solution 

(6.3) 

y= | ( f l + x) + ^ ( a - x ) (6.4) 

(n is the arbitrary constant; this is an équation of all the straight fines at distance a 

from the origin). Instead of this, it is rnuch easier is to differentiate, after putting (6.1) 

in the form 

y = px + ay/l 4- pp 

(where dy = pdx): this allows to cancel out pdx, and the remaining terms are divisible 

by dp; this division and a few algebraic manipulations lead to the solution 

xx + yy = aa; (6.5) 

while the case dp = 0 quickly gives 

y = nx + aV 1 + nn, (6.6) 
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(where once again n is the arbitrary constant; this also gives all the straight lines at 
distance a from the origin). Not only is this much easier, Euler remarks, but it can 
also be applied to equations such as 

ydx — xdy — aydx3 + dy3, (6.7) 

whose variables cannot be separated. The other three examples are very similar: after 
being differentiated, the only terms that are not multiples of dp are two instances of 
pdx which cancel each other. 

The same examples can be given for the second paradox. For instance, in the first 
example the normal procedures give only the solution (6.4), which clearly does not 
include the circle of radius a (65). Euler includes another example (it is in fact the 
first in the text), where the singular solution is found in a more immediate way: given 
the equation 

x dx + y dy = dyy/xx +- yy — aa, (6,8) 

"it is evident" that xx + yy — aa = 0 is a solution, although it is not contained in 
the complete integral \Jxx -\-yy — aa = y + c (of course the same immediate reasoning 
could be applied to (6.2) or (6.3)). 

Euler's explanation for these two paradoxes relies heavily on the form of the exam
ples, more precisely on the forms such as (6.3) and (6.8): the equation 

Vdz = Z(Pdx±Qdy), 

where z, P} Q, V are functions of x, y and Z is a function of z, accepts the solution 

Z = 0, 

since this implies z = Const., that is, dz = 0 (a variant of the rule he had given in 
[Euler 1736)). As for the first paradox, Euler simply argues that the cases in which it 
occurs are precisely those in which the second occurs, and that those solutions found 
by differentiation instead of integration are the ones that are not comprised in the 
complete integral. 

So, Euler had already studied the phenomenon of what are nowadays called singular 
solutions. Yet, he never gave any special name to these solutions [Rothenberg 1908, 
325, 344]. Moreover, in [Euler Integralis] he refused them the status of integrals; re
ferring to them, he wrote: "Etiamsi scilicet omnia integralia sint eiusmodi valores, 
qui aequationi differentiali satisfaciant, tarnen non vicissim omnes valores, qui satis-
faciunt, sunt integralia" 1 0 [Euler Integralis. I, §546]; even if the paradox had already 
been explained, these solutions were anomalies. They were also tricky: when one is 

1 0 "Although obviously all integrals are values such that they satisfy a differential equation, still on 
the other hand not all values that satisfy [it] are integrals." 
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not capable of finding a complete integrai particular intégrais are very useful, but 

there is the danger of getting instead those solutions which are not intégrais at ali. 

In [Euler 1764, § 34-35], he attributes a wrong result to the existence of a singular 

solution 1 1, which caused Condorcet to say that "M. Euler a remarqué [...] que ces solu

tions particulières non comprises dans l'équation générale ne pouvaient être emploïées 

à la solution des problêmes" 1 2 [Condorcet 1770-1773, 13-14]. This negative view of 

singular solutions motivâtes the study of the distinction between them and particular 

intégrais [Euler Integralis, I, §546]; the sole object of Eulers researches on singular so

lutions in [Integralis] is to find criteria for this distinction [Rothenberg 1908, 341-344]: 

for instance, in the case dy = ^, x = a is a particular intégral if it makes not only 

Q = 0 but also J ~ì = oo [Euler Integralis, I, §547]; or. for y — X (where X is a fonc

tion of x) to be a particular intégral of Pdx = Qdy, it is necessary, when substituting 

y = X 4- u, that u appears with an exponent greater or equal to 1 (in absolute value) 

[Euler Integralis, I, §565]. 

An inconvenience in Euler's work on the subject is that, as we bave seen, it was 

highly dependent on the forms of the solutions. For instance this last rule (Euler's 

most general) required the candidate to particular integrai to be in the form y = X(x). 

However, it was quite fruitful. being adapted by Laplace and later used also by Lagrange 

[Fonctions]. 

6-1.2.2 Laplace 

[Laplace 1772a] was a turning point in several respects. First of ail, it introduced a 

name for those solutions not comprised in the complete integrai (or general integrai, 

as Laplace calls it): particular solutions [Laplace 1772a, 344]. 

It also addressed the issue for the first time without relying on the spécifie forms of 

the solutions. To determine whether a certain solution a = 0 of a differential équation 

dy = pdx is a particular integrai, Laplace considers a curve HCM representing fi ~ 0, 

and another curve LCN obtained by deterrnining the arbitrary constant in the general 

integrai ip = 0 of dy = pdx with the condition that it should pass through a given 

point C of HCM. In case p = 0 is a particular integrai, HCM and LCN are one and 

the same curve; if for any abscissa P the points M and N in the two curves do not 

coincide, then a = 0 is a particular solution. To compare y' = PM with Y' = PN 

without knowing ip = 0, Laplace uses Taylor's theorem: 

, aôy a2 ò2y a3
 òzy 

1 1 [Blanc 1951, xx] présumes that some real mistake had slipped iato Euler's reasonings. He is very 
criticai of the whole memoir [Euler 176Ą}. 

1 2 "M. Euler has remarked [...] that those particular solutions not contained in the general équation 
could not be employed in the solution of problema' 
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, ady a? êy a 3 ofy 

(where y = BC, a = BP, 6 represents différentiation on the curve HCM, and d 

represents differentiation on the curve LCN). The conclusion is that u = 0 is a 

particular integral if not only it is a solution to dy = p dx but also 

ôy = dy_ Py__$y_ fPy _d?y_ ^ 
öx dx1 ôx2 dx2> 6x3 d x 3 ' 

Examining possible power expansions (with positive exponents) for p = ^ (but in 

fact concentrating only on the terni with the smallest exponent, n), Laplace reduced 

the differential équation dy = pdx (satisfied by p = 0) to the form du = an • hdx 

(where h is a function of x and a), arriving at two conclusions: one, that if n > 1 

then p = 0 is a particular integral, and if n < 1 then a = 0 is a particular solution (a 

development of one of Euler's criteria, seen above) [Laplace 1772a, 347-350]; and two, 

that p = 0 is a particular solution if and only if it makes ( ^ f ) + P (j^iÇ) + (ijf ) 

infinite [Laplace 1772a, 350-351]. 

Laplace also gave two methods to find all the particular solutions of a given dif

ferential équation dy = pdx. The first method related to integrating factors: let ß be 

the integrating factor of the équation, so that ß(dy — p dx) is an exact differential; if 

p = 0 is a particular solution of dy = pdx, then a is a function of x and y, and y 

is also a function of x and p, so that the integral of ß(dy — pdx) can be put in the 

form ^(Xjfi) + C (C an arbitrary constant): but whatever value we attribute to C, 

the condition p = 0 cannot make ^(x,a) + C vanish (otherwise p = 0 would be a 

particular integral) - and the same applies to its differential ß(dy — pdx): while a = 0 

must make dy — pdx = 0; therefore \i = 0 must make ß infinite; the conclusion is that 

the particular solutions are factors of ^ = 0 [Laplace 1772a, 352]. 

The second method could be used without knowing the integrating factor: if p is a 

function of x and y, then p = 0 is a particular solution of dy = pdx if and only if p is 

a common factor of 

[d^J 1 
p + - 7 — ~ and 

dy 

(as in Euler, parenthèses indicate partial différentìation) [Laplace 1772a, 355]. 
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Laplace also extended thèse methods to second-order équations [Laplace 1772a, 

357-365] and to partial differential équations (on three variables) [Laplace 1772a, 365-

370]. which was a multiple novelty, as until then only singular solutions of first-order 

ordinary differential équations had been considered. 

6 .1 .2.3 Lagrange 

But the major breakthrough in the theory of singular solutions was the memoir [La

grange 1774] "Sur les intégrales particulières des équations différentielles"1 3. Lagrange 

was able to explain them not as exceptions, but rather as natural outcomes of the 

complete intégrais [Lagrange 1774. §?]• 

For this Lagrange explored the relation between a differential équation 

Z = 0 

where Z is a function of x,y and and its complete integral 

V = 0 

where V is a function of x, y and of an arbitrary constant a which does not appear in 

Z = 0: differentiation of V = 0 gives something like 

dy 

Tx=p 

where p is a finite function of x, y and a, Z = 0 must be the resuit of eliminating a 

between V = 0 and ĵj — p = 0. 1 4 Now, the process of élimination of a is not dépendent 

on the constancy of a; so what if a were a variable? Since that would mean 

dy = pàx + qda, 

we would need 

qda = 0 

to ensure dy = pdx and that we arrive at the same resuit, namely Z = 0; for this 

either da = 0 (that is, a is in fact a constant) or 

g = 0. 

Thus élimination of a between q = ^ = 0 and V = 0 provides a finite équation which 

satisfies Z = 0 and does not contain an arbitrary constant: according to Lagrange, this 

1 3 "On the particular [v.e. singular] intégrais of differential équations" 
1 4 Thís idea of conceiving a differential équation as the resuit of the élimination of arbitrary con

stants between a finite équation and its differentials had already been given by Fontaine, but without 
connection to singular solutions (see section 6.1.4.1). 
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will be a singular integrai 1 5 of Z = 0 [Lagrange 1774, § 2-4]. 

As an example, let us look at the differenti al équation (6.1). that is (with a slight 

change in notation) 

y dx — x dy — b\fdx2 4- dy2, (6.9) 

whose complete integrai is 

V = %(b + x) + ±(b-x) (6.10) 

([Lagrange 1774, § 1>6] used y - ax — b\/l + a2 = 0, that is, (6.6)). Différentiation of 

(6.10) relative to a gives 

dy b + x b — x 

ck ~~2 2 Ï 2 " ' 

and élimination of a between - = 0 (that is. a 2 = £g) and (6.10) gives the 

singular integrai x 2 -i-iy2 = a 2 . This solution, although not contained in the complete 

integrai (6.10) (that is, it does not represent a détermination of the arbitrary constant 

a), is obtainable from it by this process of élimination. 

This can be carried to higher orders: as differentiation of V = 0 with a constant 

gives jjjj- = p, further differentiations give 

*¥l - ' ^1 - " 
dx2 P ' d x 3 P ' 

So a second-order differential équation Z' = 0 satisfied by V = 0 must "be formed 

by combination" of V = 0, ^ = p, and j§f = p'; a third-order équation Z" — 0 

satisfied by V = 0 must "be formed by combination" of V = 0, jjj = p, ^ = p' and 

= p"; and so on (in ali cases a being eliminated). But if a is variable, then it is 

necessary for V ~ 0 to satisfy Z' = 0 that not only = 0, but also = 0 (i. e., 

that dp = p'dx + q'da = p'dx); for V = 0 to satisfy Z " = 0 that additionally = 0; 

and so on [Lagrange 1774, §8-11]. 

If, however, ali the differentials 3 ^ , -rMf-, , . •. are zero, then a is a constant and 
1 ' D O ' D A R D A ' A X ' A A ' ' 

the solution at band is in fact ari "incomplete integrai" [Lagrange 1774, §13]. 

[Lagrange 1774, §14-15] also gives a method to find the singular integrai of a first-

order équation Z = 0, without knowing the complete integrai. His proof assumes that 

no transcendental fonctions occur in Z - but he argues that "it is not difficult to be 

convinced" that it also applies whatever the nature and form of Z. Further assuming 

that Z = 0 has been delivered of fractions and radicals, so that the same happens to 

dZ = Ad.*^-+Bdy + Cdx 
dx 

1 5 A s long as certain conditions apply: that at least one of x.y appears in ^ = 0 [Lagrange 1774, 

4] and that not ail of Ĵ, dSfo= • • • 3 X 6 z e r 0 ( s e e below). 
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(Z is a function of x, y, and Lagrange concludes (using the above fact that some of 

the quantities ^ , jjjj^, ̂ ijj,... is nonzero) that a singular integral will make A = 0; 

since Z = 0 implies dZ = 0, we have on one hand B dy + C dx = 0, and on the other 
AÙ + fîS + ̂  = °' w n e n c e 0 = thus a singular integral makes 

o2y = 0 

dx2 0' 

A simpler situation occurs when Z is such that B dy + C dx = 0 always; in that case, 

of course, the condition for a singular integral is simply ,4 = 0. The importance of this 

special situation is that it is the case for the equations of the form y — ^x + f.^L =0 

( / being an arbitrary function); the examples given by Clairaut and Euler fall within 

this category [Lagrange 1774, §16-17].1 6 

The study of singular integrals of second-order equations is very similar, but some

what complicated by two facts: one, that the complete integral of a second-order 

equation contains two arbitrary constants a, b instead of just one a; in order to use 

the conditions mentioned above, and since a and b are both arbitrary, Lagrange puts 

b = f.a, f being an arbitrary function 1 7; the conclusion is that a singular integral to a 

second-order equation Z' = 0 with complete integral V = 0 is obtained by elimination 

of a, 6, and ^ from 

V = 0, ^ - „ = 0, ? + | ^ = 0 and + ^ = 0 (6.11) 
dx da dp da darda d i d o da 

(where a and b are treated as variables) [Lagrange 1774, §27-29]. The other com

plicating fact is that the process to obtain a singular (finite) integral involves as an 

intermediate step to obtain a singular first-order solution (whose integral, including an 

arbitrary constant a, is the requested singular finite integral); this, being a first-order 

differential equation, may in turn have a singular integral, which may or may not be a 

(singular) solution of the second-order equation [Lagrange 1774, §30-31]. 

A more interesting extension of this theory of singular integrals is the one to partial 

differential equations. This involved a new definition for complete integral of a partial 

differential equation. In Euler's conception, such a complete integral was analogous 

to a complete integral of an ordinary differential equation, simply with the arbitrary 

constant(s) replaced by arbitrary function(s) [Euler Integralis, I. §34; III, §33, §37-

38, §249]. In a paper on first-order partial differential equations published in the 

Berlin Memoirs for 1772, Lagrange (still following Euler's terminology) had noticed 

that "a particular solution [i.e., one without the necessary arbitrary function] which 

contains two arbitrary constants is sufficient to permit the derivation of the complete 

1Gy ~ 3z'x -f (^c) = u ^s nowadays called Clairaut's equation. 
1 7Remarkably arbitrary for this period, particularly considering Lagrange's view of functions as 

analytic expressions (see section 6.1.3.2). 
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solution [i.e., with an arbitrary function]" [Engelsman 1980, 14]. He pursued this in 

[Lagrange 1774, §39]: if V is a function of x, y, and z involving two arbitrary constants 

a and b, and if différentiation of V = 0 yields dz = pdx 4- ady, then a and b may be 

éliminât ed from 

V = 0, - P = 0 and - g = 0, 
da; dy 

resulting in a differential équation Z = 0; Lagrange then adopts V = 0 as complete 

integrai of Z = 0, that is a complete integrai of a first-order équation in three variables 

must contain two arbitrary constants (instead of an arbitrary function). 

Now, if a and b are regarded as variables, the differential of V = 0 will become 

dz = p dx + q dy + r da + 5 db, 

so that to obtain Z = 0 it is necessary to have 

r d a + sdò = 0. (6.12) 

A singular integrai arises analogously to the case of ordinary differential équations by 

taking 

r ( = g ) = 0 and s ( = £ ) = 0 

and combining with V = 0 [Lagrange 1774, §40-41]. 

There is, however, one other type of solution: jjf = 0 and ^ = 0 is not the only 

way of satìsfying (6.12); if one assumes for instance b to be a function of a, namely 

b = <j)a, (6.12) becomes 
dz dz ,. 
— + — ¿ ' 0 = 0; 

da do 

the resuit of eliminating a between this équation and V = 0 will also be a solution, 

one which includes an arbitrary function (and which therefore corresponds to Euler's 

complete integrai). Because of that arbitrary function, argues Lagrange, this solution is 

"beaucoup plus général que l'intégrale compiette V = 0" 1 8 , so that he calls it precisely 

general integrai [Lagrange 1774, §47] 1 9 

For the geoinetrical interprétations of ali this. see section 6.1.3.3. For more on 

complete and general intégrais, see section 6.1.4.2. 

Between [Lagrange 1774] a n d [Lacroix Traité] there appeared a few more works 

devoted to or touching upon singular solutions: [Trembley 1790-91], [Legendre 1790} 

and [Lagrange Fonctions]. However, they did not bring any dramatic innovations, 

and will only be mentioned along with their treatment in [Lacroix Traité]. Sufffce 

to remark here that none of them was mentioned in the other main treatises on the 

calculus published in the 1790's [Cousin 1796: Bossut 1798}. 
1 8"much more general than the complete integrai V = 0" 
1 9Before [Lagrange 1774] "general integrai" had been simply an alternative name for "complete 

integrai": we have seen above Laplace using it in that sense. 
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6.1.3 Geometrical connections 

Like every other branch of the calculus, difTerential équations had geometrical begin-
nings. The French amateur mathematician Florimond de Beaune (1601-1652) is often 
credited with initiating the subject by proposing a few problerns to determine curves 
given properties of their subtangents - the first inverse tangent problerns. 

Also like every other branch of the calculus, differential équations were affected 
by the tendency for algebraization of mathematics throughout the 18th Century. The 
problerns, although often inspired by more concrete fields - mainly mechanics - , became 
more abstract and geometry was usually invoked only for illustration, for helping in 
visualization. A good example is the study of singular solutions, whose geometrical 
counterparts help to understand the relation between types of solutions, even though 
their dérivation is purely algebraic (sections 6.1.2.3 and 6.1.3.3). 

But even in the âge of analysis geometrical considérations played more important 
rôles in certain aspects of the development of differential équations, and namely in 
the study of their solutions. Gaspard Monge studied differential équations in three 
variables interpreting their solutions as surfaces (section 6.1.3.4). And the biggest and 
most famous challenge to the rule of analysis came also from this subject: could the 
arbitrary functions involved in solutions of partial differential équations be so arbitrary 
as to include not only functions defined by analytic expressions, but also those defined 
by the coordinates of a curve drawn "by the free stroke of the hand" (section 6.1.3.2)? 
Some of the supporters of this "return to geometry" revived in their arguments an old 
concept - the construction of differential équations - which requires some explanation 
(section 6.1.3.1). 

6.1.3.1 Construction of differential équations until c. 1750 

Henk Bos bas called attention to the importance of the concept of construction in 17th-
century analytic geometry (or rather, "application of algebra to geometry" - see section 
4.1.1) [Bos 1984; 1986: 2001} and in the early history of differential équations [Bos 
1986; 2004]. At a time when new curves were being introduced in mathematics (such 
as the cycloid and the logarithmic), and the use of algebra for the study of curves was 
also very recent, it was not obvious when was a curve sufficiently known. Only gradually 
did équations become sufficient représentations of loci: therefore a geometrical problem 
was not fully solved simply by having an équation (either algebraic or differential) 
corresponding to the solution: a geometrical construction for that équation was also 
demanded (although there was no consensus on the best methods for construction). 
Naturally, the need for such a construction was particularly felt when the solution 
équation involved a new curve (such as a transcendental one) - it was a fundamental 
factor in the légitimation of that new curve. 

This changed around the turn of the 17th to the 18th Century, with rnathemati-
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cians' "habituation" to algebraic (aiid certain types of transcendental) equations and 

their consequent acceptance as sufñcient representations of curves. The construction 

of algebraic equations slowly died out, and disappeared (except as a school subject) 

around 1750. 

Bos [2004] suggests that the construction of differential equations had a similar 

fate. As for differential equations in two variables, this indeed appears to be the case: 

there are not many traces of their construction in the latter half of the 18th century. 2 0 

In the early 18th century, the most natural way to construct a differential equa-

tion was to intégrate it first, and then to construct the resulting imite equation; when 

an algebraic integral could not be achieved, some quadrature or rectification had to 

be assumed. The only method for integration known in those early days was separa-

tion of variables, and Johann (I) Bernoulli gave a simple construction (described in 

[Montucla h Lalande 1802, 174-175]) for the separated equation Ydy = Xdx, which 

required drawing curves representing the áreas fYdy and ¡Xdx. Clairaut remarked 

in [1740, 293] that when variables in differential equations are separated, "on peut 

toujours ou les intégrer, ou au monis les construiré, puisque la difficulté est réduite a 

la quadrature des Courbes" 2 1 . 

There were other methods, seen as alternatives to analytical integration. In 1694 

Johann Bernoulli published a short paper entitled "modus generalis construendi asqua-

tiones differentiales primi gradus" 2 2 [Joh. Bernoulli 1694], where he tried to address 

precisely the construction of differential equations which he could not intégrate - that 

is, whose variables he could not sepárate. Given an equation ^ = m (m of course being 

a "quantity made up of x,y, and constants"), the first step in Bernoulli's method is 

to construct an infinite number of curves rn = constant (for very cióse valúes of m) -

the isoclines or, as Bernoulli called them, the "directrices" 2 3; Bernoulli assumed that 

these were algebraic curves (i.e., that ra is an algebraic function) and henee relatively 

easy to construct. Then it was enough to connect these curves by small straight Unes 

having the corresponding slopes. 

The approximative nature of this method is evident. The same is true for other 

methods of this period; for instance, Tournés [2003, 461-463] identifies a polygonal ap-

2 0 I t is true that in [Euler Integraiis, II] (published in 1769) there are two chapters which refer to 
construction of ordinary differential equations: chapters 10 and 11 of the first section. respectivcly 
"de constructionc aequationum differentio-diíferentialíum per quadraturas curvarum" ("on the con
struction of differentio-differential [i.e., second-order differential] equations by quadratures of curves") 
and "de constructione aequationum differentio-differentialium ex earum resolutione per series infinitas 
petita" ("on the construction of differentio-differential [i.e.. second-order differential] equations from 
their required solution by infinite series"). But one would seek in vaín for geometrieal constructions 
in those chapters. Rather. Euler seems to refine problems and techniques which had appeared in 
the context of construction of differential equations (namely solving an equation assuming certain 
quadratures or rectifications - see below), but which appear devoid of geometrieal meaning. Deakin 
[1985] finds integral transforms in chapter 10. 

2 1 "ít is always possible to intégrate them. or at least to construct them, since the difficulty ís reduced 
to the quadrature of curves'1 

2 2 "general method for constructing first-order differential equations" 
2 3"directing [curves]" 
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proximation in a construction given by Leibniz {1694}- However, this kind of graphical 

approximation was soon dropped in favour of analytical or numerical methods [Traité, 

II, 296; Montucla k Lalande 1802, III, 175] - like the ones mentioned in section 5.1.3; 

Euler's "general method" is a very clear example of an analytical version of a polyg

onal method. Graphical approximation only regained importance in the 19th Century 

[Tournes 2003\. 

A very interesting illustration of the loss of general relevance of the concept of 

construction involves the Italian mathematician Vincenzo Riccati. Riccati published 

in 1752 a treatise in which he proved that ail first-order (ordinary) differential équations 

conceivable at the time could be constructed using tractional motion [Tournes 2003, 

477; 2004). 

"However, the work of Vincenzo Riccati was neither celebrated nor infiu-

ential. [...] The book probably arrived too late, at the end of the time of 

construction of curves, at the moment when geometry was giving way to 

algebra" [Tournes 2004, 2742]. 

It may also be noted that although Cousin included a section on construction of 

équations in the introductory chapter on "application of algebra to geometry" of his 

Traité [Cousin 1796, I, 31-36], he did not do the same for construction of differential 

équations. Of course in 1796 the relevance of construction of algebraic équations was 

purely pedagogical; but Cousin seems to have thought that construction of differential 

équations lacked even that relevance. 

But the construction of differential équations in three (or more) variables seems to 

have a somewhat more complicated history, appearing with some regularity in argu

ments on possibilities. Clairaut [1740, 307-311] wanted to show that there are differen

tial équations in three variables which not only cannot be integrated, but also cannot 

be constructed. 2 4 The former impossibility had an algebraic proof: élimination of an 

integrating factor u and of ^ , ^ , ^ between certain condition équations gave 

dP dN ,,dN dM ^dP dM n 

N— P— + M— N— Af— + P—r- = 0 (6.13) 
dx dx dz dz dy dy 

as a necessary condition for the integration of Mdx + Ndy+Pdz = 0 to be possible. As 

for the latter impossibility: suppose that the surface expressed by dz = codx -f- d dy is 

constructed, PN is a section on it. perpendicular to the £-axis AP, and QN is another 

section, perpendicular to the y-axis AQ; suppose also that pn and qv are sections 

parallel and infinitely close to PN and QN: they must intersect in l, so that z + UJ dx 4-

dy + dx dy + ^ u dx dy must be equal to z + d dy + u dx + ^ dy dx + ^ •& dy dx, 

2 4 H e assumed that any possible integral was composed oî a single équation, and that any possible 
construction led to a surface. Later, Monge would be more flexible (see section 6.1.3.5). 
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A P P 

that is, 

(6.14) 

must hold - and this is the same condition as (6.13), with to = -f^ = -f. Clairaut 
concludes from this that problems whose solution depends on Mdx + Ndy 4- Pdz = 0 
are impossible unless (6.13) is verified. 

In the second half of the 18th century, geometrical arguments lost much ground. 
But we will see in section 6.1.3.2 that arguments involving constructions of partial 
differential equations played a relevant role in another discussion on legitimation - the 
legitimation of so-called "discontinuous" functions. 

6.1.3.2 The controversy on vibrating strings and arbitrary functions 

One of the most famous controversies in 18th-century mathematics was the one oppos
ing Euler to d'Alembert over which functions could be admitted in the solution to the 
partial differential equation ^ = c 2 ^ ; and more generally on whether the arbitrary 
functions appearing in the general solutions to partial differential equations could be 
arbitrary enough as to include "discontinuous" (~ non-analytic) ones. 

First, let us examine the concepts of "function", "continuous function", and "dis
continuous function". When Euler published his Introductio in Analysin Infinitorurn 
in 1748, he defined function as an "analytic expression": 

"Functio quantitas variabilis, est expressio analytica quomodocunque com
posita ex ilia quant i tate variabili; et numeris sen quantitatibus constan-
t ibus." 2 5 [Euler Introductio, I, § 4] 

Analytic expressions were composed by algebraic operations, and by (some) transcen
dental ones, such as exponentiation, logarithms, and others "quas Calculus integralis 
suppeditat" 2 6 [Euler Introductio, I, § 6], and their most general form was supposed to 
be power series: 

2 5 "A function of a variable quantity is an analytic expression composed in whatever way from that 
variable quantity and numbers or constant quantities." 

2 6 "furnished by integral calculus" 
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"num vero per hujusmodi terminorum [A-\-Bz-\-Cz2+ fac.\ seriem infinitam 

[Functio quaelibet ipsius z) exhiberi possit, si quis dubitet, hoc dubium per 

ipsam evolutionem cujusque Functionis tolletur." 2 7 [Euler Introducilo, I, 

§59] 

However, this definition should not be taken too literally. Giovanni Ferrara [2000] 

has analysed Euler's concept of function and has noticed two levels in it; a formalized 

level corresponding to the definition of function as an analytic expression involving 

variables and constants; and an intuitive level, corresponding to an "idea of depen

dence or relation between variables" (a "functional relation") [Ferrara 2000, 111-112], 

present in explanations, applications, or other more informal contexts. Ferrara does not 

see these two levels as contradictory, partly because in 18th-century mathematics "a 

definition did not necessarily exhaust the defined notion" 2 8 ; and partly because, he ar

gues, an analytic expression or formula was the proper way for expressing a '"functional 

relation" within analysis (how could one calculate without an analytic expression?) -

but not necessarily in geometry or mechanics [Ferrara 2000, 112-113]. 

One of those more informal contexts is the preface to [Euler Differentialis], pub

lished in 1755, where we find an explicit characterization of the "functional relation" 

aspect of the concept of function; just after giving a physical example of dependence 

involving four variables (amount of gunpowder, angle of fire, range of shot, and length 

of time before the bullet hits the ground) Euler proceeds: 

"Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam 

ipsae mutationes subeant, eae harum functiones appellari soient; quae de-

nominatio latissime patet, atque omnes modos, quibus una quantitas per 

alias determinari potest, in se complectitur. Si igitur x denotet quantitatem 

variabilem, omnes quantitates, quae utcunque ab x pendent, seu per earn 

deter minant ur, eius functiones vocantur" 2 9 [Euler Differentìalis, vi] 

This has often been regarded as a "new", "general" definition of function [Youschke-

vitch 1976, 69-70]. But it should be remarked that Ferrara [2000, 111] finds examples 

of the "functional relation" aspect already in [Euler Introducilo] - as in fact Youschke-

vitch [1976 , 69] himself had already found; and it must also be noticed that all the 

functions studied in [Euler Differentialis] are within the scope of the older definition -

analytic expressions. This later observation and the fact that Euler did not refer back 

2 7 "if anyone doubts whether in fact [any function of z) may be displayed by an infinite series of such 
terms [A + Bz + Cz2 + &c.]. this doubt will be eliminated by the very development of each function." 

2 8 I n fact Ferrara speaks only of Euler's mathematics; but one might remember here Lacroix's 
encyclopedic views, particularly his exploration of the nature of integrals not from their ostensive 
definition (see section 5.2.3). 

2 9 "Those quantities that depend on others in this way, so that if the latter change they also change, 
are called functions of the latter; this denomination applies very broadly, and comprises all the manners 
in which one quantity may be determined by others. If, therefore, x denotes a variable quantity, all 
quantities which depend on x in whatever manner, or are determined by it, are called functions of x" 
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to this definition when he eventually started talking about "discontinuous" functions 

leads Lützen [1983, 356] to a conclusion analogous to Ferraro's: Euler thought of this 

definition as equivalent to the older one. 

Later. Euler would try to expand the realm of functions. Grattan-Guinness [1970, 6] 

and Youschkevitch [1976, 64] both date the start of that expansion to Euler's definition 

of "discontinuous curves" in the second volume of his Introducilo. But as a matter of 

fact, while that definition may be seen as establishing a terminology ("continuous" vs. 

"discontinuous") that would later be applied to functions, it reinforces the idea that a 

function must be expressible by one formula - curves which do not follow one single 

law are ipso facto not expressed by one single function: 

"Linea scilicet curva continua ita est comparata, ut ejus natura per imam 

ipsius X Functionen^ definitam exprimatur. Quod si autem linea curva ita 

sit comparata, ut varias ejus portiones BM, MD, DM, &¿c, per varias ip

sius X Functiones exprimantur; [...] hujusmodi lineas curvas discontinuas 

seu mixtas h irregulares appellamus: propterea quod non secundum unam 

legem constantern formantur, atque ex portionibus variarum curvarum con-

tinuarum componuntur." 3 0 [Euler Introductio, II, § 9] 

However, it was about that time that Euler started speaking of functions not cor

responding to analytic expressions. This happened in his first contribution to the 

vibrating-string controversy, in a very matter-of-fact way: two arbitrary functions had 

to be determined; having described an appropriate curve, "soit régulière, contenue 

dans une certaine équation, soit irreguliere, ou méchanique, son appliquée quelconque 

PM fournira les fonctions, dont nous avons besoin pour la solution du Problème" 3 1 

[Euler 1748, §XXII]. 

It was only almost twenty years later that Euler [1765a] explained more or less 

clearly his "continuous" and "discontinuous" functions. He did this recurring once 

again to a correspondence between curves and functions: given a function y of x, it is 

always possible to describe a curve with abscissa a and ordinate y; and in turn, given 

a curve, its ordinates produce ("exhibent") a function of its abscissas. He now consid

ered a curve to be continuous if its points follow a certain "law or equation" (no longer 

simply a "function", since this word had now a broader sense than in his Introduc

tio), and discontinuous otherwise - and discontinuous curves provide ("suppeditant") 

discontinuous functions. 

Euler was very careful in explaining that the law of continuity does not mean 

connectedness of trace: a hyperbola is a continuous curve, in spite of its two branches, 

3 0 "A continuous curved line is [one] so arranged that its nature is expressed by one definite function 
of x. Whereas if a curved line is so arranged that several of its parts BM, MD., DM, & c , are 
expressed by several functions of x; [...] we call curved lines of this kind discontinuous or mixed and 
irregular: on account that they are not formed according to one constant law, but rather composed 
from parts of several continuous curves." 

3 1 "either regular - contained in a certain equation - or irregular or mechanical, its arbitrary ordinate 
PM will furnish the functions which we need for solving the problem" 
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sińce it is defined by one équation. In discontinuons curves, Euler included those drawn 
"libero rnanus t ractu" 3 2 and mixed curves (that is, those composed of several parts, 
such as the perimeter of a polygon) [Euler Î765a, § 1-3]. It should be remarked that 
in practice Euler's discontinuous functions were almost always functions corresponding 
to mixed curves. 3 3 Thus Euler's (and generally 18th-century !s) "continuous" functions 
broadly correspond to modem analytic functions. while most "discontinuous" functions 
would now be called piecewise analytic. Naturally the I8th-century meanings (vague 
as they are) will be used in the rest of this section. 

Let us now turn to the controversy on the vibrating string. This dealt with whether 
discontinuous functions could be allowed in solutions to the vibrating-string problem, 
or other problems translated into partial differential équations. It did not deal with the 
concept of function; that is, therc was no disagreement between Euler and d'Alembert 
on what a function was 3 4 , but rather on what curves or functions could be treated by 
analysis. 

D'Alembert first treated the problem of the vibration of a stretched string, ftxed 
at both ends, in a couple of memoirs published in the Berlin Academy volume for 
1747 [d'Alembert 17Ą7\. Calling y the displacement of a point of the string, so that 
y is equal to an unknown function <p(t, s) of the time t and of the arc length s of the 
string from one end to that point, we have dy = pdt + qds, dp = adi + vds and 
dq ~ vdt 4- (3ds, where p, q. a, v and ¡3 are other unknown functions of t and s; 

d'Alembert established then that a ~ / ? ^ r , that is, in modem notation, something 

of the familiar form ^ = c2^; choosing a convenient time unit so that Q2 = 2aml 

(c = 1), d'Alembert arrived at 

y = tf(t + s) + r ( t - a ) 

and, because of the boundary conditions y = 0 for s = 0 or s = l (the total length of 

the string) whatever t, 

y = * ( t + s) - # ( i - s), 

and is periodic with period 21 (the fact that the string only went from s = 0 to 

s = l did not restrict the domain of the function ^ ) . If, in addition, the string starts 

vibrating from the taut position (y ~ 0 for t = 0), then ^ must be an even function, 

or as d'Alembert puts it, " ^ s doit être une fonction de s dans laquelle il n'entre que 

3 2 "by the free stroke of the hand" 
3 3 W i t h one possible exception, striking but very isolated: according to Youschkevitch [1976 . 71] 

(following Trnesdell) Euler [1765c, § 39] introduced puise functions (différent from zero only at one 
point); Liitzen [1982, 197-198] disagrees with the implication in Youschkevitch's text that those were 
delta functions; for myself, I am not completely convinced that Euler thought he was talking about 
functions at ail. 

3 4 T h a t is, d'Alembert effectively accompauied Euler in this évolution: in [d'Alembert 17Ą.7[, the 
concept of function is the same as in [Euler fntroductio]: while [d'Alembert 1780] is a memoir on 
discontinuous functions. 
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des puissances paires, lorsqu'on l'aura réduite en serie" 3 5 [d'Alembert 1747, 217]. A 
more general solution dépends on the initial form of the string, given by a function 
E = ty s — ty {—s), and on the initial velocity of each point of the string, also given by 
another function a of s: the plain définition E = ty s — ty{—s) leads to the conclusion 
that E must be an odd function of 5 , that is, "ou il n'entre que des puissances impaires 
de s" 3 6 ; otherwise the problem is impossible - one cannot find y = ty(t + s) — ty(t — s) 
[d'Alembert 1747, 231]. 

Thus we see that d'Alembert naturally assumed thèse functions to h ave power-series 
expansions - in the terminology of [Euler Introductio], they were (simply) functions; 
in slightly later terminology, they were continuous functions. 

But Euler expressed a différent opinion, in a memoir which appeared in two versions: 
the Latin original in 1749 in the Nova acta eruditorum, and a Frenen translation in 
1750 in the volume for 1748 of the Berlin Academy [Euler 17Ą8]. Euler's analysis is 
very similar to d'Alembert's, arriving at the équation 

y = / : (z + ¿v^) 4- <p : {x - ty/b), 

where / and y? are arbitrary functions subject to <p : —ty/b = —/ : —ty/b and ip : 

(a — ty/b) = —/ : (a + ty/b) (a is the length of the string). But there is a significant 

différence: the curves which the string describes need not be "regular", because "la 

premiere vibration dépend de notre bon plaisir, puisq'on peut, avant que de lâcher la 

corde, lui donner une figure quelconque" 3 7 [Euler 1748, §111]. This had conséquences 

for the arbitrary functions / and tp: a passage has already been quoted above (page 

194), where Euler considers thèse functions furnished by the ordinate of an appropriate 

curve, even if it is "irregular". Thus he effectively introduces the considération of 

discontinuous functions, even if not calling them so. 

D'Alembert did not agrée, and he rectified Euler, "de crainte que quelques lecteurs 

ne prennent mal le sens de ses paroles" 3 8: he insisted that in the équation y = E of the 

initial curve, E must be an odd function of -s, with period 21; otherwise "le problème 

ne pourra se résoudre, au moins par ma méthode, et je ne say même s'il ne surpassera 

pas les forces de l'analyse connue" 3 9 [d'Alembert 1750 , 358]. 

Part of the discussion dealt with Euler's construction of the extension of the initial-

shape curve (d'Alembert's y = E): the string corresponds only to a section of this 

extended curve, but both Euler and d'Alembert agreed that (what we would cali) the 

domain of the function S should extend both ways indefinitely. Now, Euler [1748, 

3 5 "'i's must be a function of s with only even powers, once expanded into a series'1 

3 6 "with but odd powers of s" 
3 7 "the first vibration dépends on onr goodwill, since we may give the string any shape whatsoever, 

before releasing it" 
3 8"fearing that some readers niight misunderstand the meaning of his words" 
3 9 "the problem cannot be solved, at least by my method, and I am not sure whether it does not 

surpass the power of known analysis" 
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§ XXI) simply took the initial shape AMB of the string and copied it alternately on 

each side of the axis, so as to ensure the necessary periodicity and oddness. But for 

d'Alembert, it was necessary not only that AMB would be continuous, but also such 

that the curve . . . n'bmAMBNaM'... thus constructed would be continuous. 

The controversy proceeded for décades, in multiple publications. To analyze d'Alem

ber t^ later argumentation, suffice to mention two memoirs. One is in the first volume 

of his Opuscules [d'Alembert 1761. 15-42]. D'Alembert's most important argument 

(expounded in several ways) is that, for the vibrating-string équation = ^ to be 

satisfied, the radius of curvature of the initial curve cannot "jurnp": in modem terms, 

at every point the right-hand and left-hand second-order derivatives of the initial-shape 

function must coincide. Now, the simple act of pulling the string at one point (so as to 

release it and make it vibrate) introduces one such forbidden shape: two straight Unes 

making a finite angle. 4 0 

Almost twenty years later. d'Alembert would renne this argument, in a memoir 

on discontinuous functions [d'Alembert 1780).Al Considering cases where thèse resuit 

from the junction of continuous functions (that is, which correspond to Euler's mixed 

curves), 4 2 d'Alembert imposes the modern-looking condition that, to appear in solu

tions to ïi-th order differential équations, the left-hand and right-hand derivatives, up 

to n-th order, must be equal at the points of discontinuity (not in thèse words, of 

course, but rather: if the discontinuity is such that ipz becomes ("devienne") Az at 
. . , dTtpz dnAz dn~l(pz d^Az 

z = a, then it is necessary that —— = — . — = —- 7 - , and so on, ail 
dzn dzn ' dzn~l dzn~l 

thèse equalities considered at z = a [d'Alembert 1780 , 307]). 4 3 It is true that now 

d'Alembert admits discontinuous functions in solutions to differential équations, but 

this is hardly an agreement with Euler, even a partial one: the obvious discontinuous 

solution for the vibrating string (the angle) is stili out of the question. Moreover, this 

argument by d'Alembert is at odds with the global way of thinking typical of Euler -

d'Alembert [1780 , 307] requires that "pour toutes les valeurs possibles de z, l'équation 

différentielle aura rigoureusement lieu" 4 4 . 
4 0Moreover, even if the initial shape of the string properly speaking is smooth, the curvature in A 

and B should also be nuli; otherwise there is a "jump" in the curvature of the extended curve. 
4 1 Which was an answer to Monge's stand, rather than Euler's (see below). 
4 2 I t is not clear whether d'Alembert could conceive of any other kind of discontinuous functions. 
4 3Condorcet [1771, 69-71] and Laplace [1779, 299-302] imposed a less strict condition: the functions 

and the derivatives up to order n — 1 were forbidden to have "jumps", but the n-th derivative was not. 
Note however that Laplace admitted stconger discontinuities in physical (rather than "geometrical" ) 
solutions, using an argument similar to Euler's number 3 below [1779, 302]. See also section 9.5.4. 

4 4 "for ail possible values of 2 , the differential équation will take place strictly" 
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Many years before this refinement. Euler [1765b] had dismissed d'Alembert's ob

jections, using three arguments: 

1 - He implied an équivalence between the differential équation ( ^ ) = c c ( ^ f ) 

and the intégral équation y = F : (x + et) + A(x - et), "qui contient la solution du 

problème" 4 3 [Euler 1765b, § 44]; that is ; Euler replaced the original differential équation 

with a new, functional one. 4 6 

2 - He assumed that the "jumps" in the radius of curvature could occur only in 

isolated points (once again, the curve would be pieeewise analytic), and therefore would 

be of no conséquence: "quoiqu'on y commette quelque erreur, cette erreur n'affectera 

qu'un seul élément, et sera par conséquent sans aucune conséquence, étant toujours 

infiniment peti te" 4 ' [Euler 1765b, § 47]; a fine example of the global way of thinking 

that d'Alembert would contradict. 

3 - Finally, in order to remove any objection to the second argument, he argued 

that "on n'auroit qu'à emousser infiniment peu les angulosités (...) et par cela même, 

qu'on n'auroit changé qu'infiniment peu la figure [...], toutes les conclusions qu'on en 

tire, demeureront toujours les mêmes" 4 8 [Euler 1765b, § 46]. 

Euler also saw any objections possible to the second and third arguments as similar 

to the objections against the infinitésimal calculus, and therefore wrong. since "au

jourd'hui ces doutes sont entièrement dissipés" 4 9 [Euler 1765b, § 48] - a wonderfully 

optimistic point of view (see section 3.1). 

Several other mathernaticians expressed their opinions on this issue during the lat-

ter half of the 18th century (see for instance footnote 43 above). A curious one was that 

of Lagrange, combining some of d'Alembert's scruples with the generality of Euler's 

solution. In fact, the first major work of the young Joseph-Louis Lagrange was on the 

"nature and propagation of sound" [Lagrange 1759c]. Lagrange [1759c, § 15) agreed 

with d'Alembert that the differential and intégral calculus concerned only "fonctions 

algébriques", whose values are necessarily "liées ensemble par la loi de continuité", so 

that d'Alembert's and Euler's solutions, as it was deduced by them, was only applicable 

when the initial shape of the string was a continuous curve. Finding this insufficient, 

Lagrange decided to analyze the problem in a différent way: he first considered a 

weightless string loaded with a finite number m of bodies; and then he put m = oo, 

arriving at Euler's solution (applicable to discontinuous curves). That is, in modem 

terms Lagrange proceeded to a passage to the limit, which "is valid only subject to hy

pothèses essentially the same as those necessary to justify the direct use of appropriate 

4 5 "which contains the solution of the problem" 
4 6L\itzen [1982, 19] sees this as an anticipation of the most common technique in the 20th century for 

obtaining generalized solutions to differential équations, although this technique consists in replacing 
the differential équation with différent types of intégral équations. 

4'"although some error is made there. it will affect only one élément, and will therefore be of no 
conséquence, as it will be infinitely small1' 

4 8 "it will be enough to blunt infinitely little the angularities [...] and because the figure [...] will 
have been changed only infinitely little, ail the conclusions drawn will remain the saine" 

4 9"nowadays those doubts are entirely dispelled" 
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differentiations and integrations" [Truesdell i960, 263]. 5 0 

Lagrange was not very coherent on this issue. In a second memoir on the same 
subject. Lagrange came closer to Eulers stand, urging on the need to employ discon
tinuous functions [Lagrange 1760-61a, § 5]. Later (in the 1760's) he would change his 
mind and support d'Alembert [Truesdell i960, 279]; while in the end of his life (in the 
second edition of his Mécanique Analytique, 1811) he would return to his initial stand, 
and acknowledge that Monge's work (see below) had led to the general acceptance of 
discontinuous functions [Truesdell 1960, 295]. 

But what is most important for us to remark here is Lagrange's longest stand, 
similar to d'Alembert's. In both [Fonctions, 1] and [Calcul, 6] Lagrange defines function 
as an "expression de calcul" - a very similar phrase to that of [Euler Introductio, I, 
§4]; it is a very important characteristic of Lagrange's two books on the "calculus of 
functions" that any function "is given by a single analytical expression" [Eraser 1987, 
40-41]. 

Although the issue of discontinuous functions appeared with the controversy on the 
vibrating string, it was of course more general. Euler's memoir [1765a], cited above as 
his first clear mention of discontinuous functions, was a defence of the need to consider 
these in the integral calculus of several variables (which was then relatively recent 
- about 20 years old - and on whose novelty Euler insisted; this memoir falls within 
Demidov's "first period" in the history of partial differential equations [Demidov 1982, 
326]). Euler [1765a, § 6] recognized that discontinuous functions could not be admitted 
in the part of infinitesimal analysis which had been treated chiefly until then - namely 
the calculus of functions of one variable; however, in the "new" integral calculus, which 
treated functions of two or more variables, discontinuous functions were indispensable, 
since arbitrary functions took the place of arbitrary constants in "common" calculus 
(cf. page 177 above), and arbitrary functions could be discontinuous [Euler 1765a, § 
18]. 

The fact that mathematicians did not really know how to work with discontinuous 
functions was of course a problem. Euler might have this in mind when he incited 
all geometers to gather their forces in cultivating multivariate analysis [Euler 1765b, 
§ 32]. Lützen [1983] speaks of "Euler's vision of a general partial differential calculus 
for a generalized kind of function", a vision which was only fulfilled in 20th century, 
especially through the theory of distributions. This "vision" did not develop at all 
during the "age of rigorization of analysis" (most of the 19th century) because of the 
restriction of differentiation to differentiable functions [Lützen 1982, 14, 24-25]. But 
neither did it develop in the pre-Cauchy era, in spite of a growing consensus on the 
acceptability of discontinuous functions. Euler, for one, did not do much more than 
what has been mentioned above. 5 1 As Fraser [1989, 326] puts it, "[Euler's] notion of a 

5 0 I t is interesting to compare this to Lagrange's later attempt to avoid infinitesimals and limits by 
recurring to... infinite series (section 3.1.4). 

5 1 Euler even found himself a serious objection to his geometrical correspondence between curves and 
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general function was never incorporated into the analytical theory présentée! in his micl-
century textbooks, and indeed was at odds with its basic direction" - Grattan-Guinness 
[1970, 6] appropriately called Euler's correspondence between arbitrary functions and 
curves a "return to geometry", but returning to geometry was not exactfy the main 
current in late 18th-century mathematics. 

Nevertheless, in the late 18th century there was one important mathematician "re
turning to geometry" in the study of partial differential équations; Gaspard Monge. 

At least from 1771 Gaspard Monge showed a deep interest in something that would 
be a major thème in his work: the classification of surfaces in families, each correspond-
ing to a certain partial differential équation with two independent variables, and to a 
certain form of generation. In November 27th that year he presented to the Académie 
des Sciences de Paris a memoir [Monge 1771] related to that thème, which is in part 
a défense of discontinuous functions/curves. In spite of a report signed by Bossut. 
Vandermonde, and d'Alembert supporting its publication in the Savans Etrangers, it 
remained unpublished until [Taton 1950}.52 

[Monge 1771] starts from an analogy with ordinary differential équations: just as 
the complete integrai of an n-th order ordinary differential équation has to contain n 
arbitrary constants, so too the complete integrai of an n-th order partial differential 
équation has to contain n arbitrary functions - a consensual idea then, as [Lagrange 
177Ą ) was stili some years away. Therefore, the complete solution of such an équation 
corresponds not to a surface, but to a class of surfaces with some common property. 
The détermination of those arbitrary functions corresponds to the spécification of a 
partieufar surface in the class; and the most naturai way to do this is to subject the 
surface to pass through n spécifie curves. This would be a very important subject of 
research for Monge. 

The issues in this memoir are this spécification in the case of certain 1-st order 
équations, and the claim that the specifying curve does not need to be continuous. 

Monge gives three examples, ali with first-order équations (involvìng therefore only 

one arbitrary function). In the first example he gives two proofs that every horizontal 

cylindrical surface (that is, a surface generated by a horizontal straight line that slides 

along some curve - continuous or discontinuous - keeping always the same direction) 

has as differential équation (where ê refers to partial différentiation relative to x, and 

arbitrary functions: integrating (^f )+oo(g^f ) = 0 he arrived at z = f: (x+ayy/^ï)+F: (x—ayy/^ï); 
what could an abscissa likc x + ay-J^-ï mean, not even he had any idea [Euler Integralis, III, § 301; 
Ferrara 2000, 128-129]. Nevertheless, Ferrara [2000, 130] exaggerates when he says that the objects 
that Euler called discontinuous functions "substantially differed from effective functions sirice only the 
latter could bc manipulated and, therefore, accepted as solutions to a problem"; the vibrating-string 
controversy shows that Euler did accept discontinuous functions as solutions, and strived to be able 
to manipulate them. 

5 2 I n fact only the second part of that memoir was devoted to this; the first part was on the integration 
of a certain kind of linear partial differential équation, However, since that first part is lost (its contents 
can only be guessed from the report and a letter by Monge), and the two parts are quite independent, 
we may as well refer to the surviving second part as the memoir [1950, 48; 1951, 280]. 
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d to partial differentiation relative to y) 

? + a £ = 0. (6.15) 
dx dy 

For the first proof. Monge notes that the vertical planes passing through the generating 

straight line as it moves are all parallel, so that they have as équation y = ax — ß, 

where ß is constant for each plane but varies from plane to plane; so the surface is 

such that if one makes ax — y = constant, the resuit is a horizontal straight line, that 

is, z = const., or dz = 0: therefore the équation of the surface is z = ip(ax — y), 

where the arbitrary function <p dépends on the curve along which the generating line 

slides, and is "assignable" or not according to whether the curve is continuous; finally, 

z = {p{ax - y) always gives J + a~ = 0, no matter (p. For the second proof, Monge 

assumes for simplification that a = 1, i.e. that the generating line makes angles of 45° 

with the x and y axes; he then considers a tangent plane to the surface, remarking 

that its intersection with the xy plane also makes angles of 45° with the x and y axes, 

and examines right triangles formed by that plane and planes parallel to the vertical 

coordinates planes; thèse are similar to infinitesimal right triangles whose legs are ôz, dx 

and dz, dy, which leads him to the desired conclusion that J + |^ = 0 . The second 

example, with similar proofs, is that of a surface of revolution around the z axis, whose 

differential équation is 

Sz dz _ 

^ dx dy 

(so that its finite équation is z = <p(x2 + y2). The final example is that of a conical 

surface with vertex at the origin, of which Monge only gives the finite équation 0 3 

(x 
z = x<p[ — 

\y 

and no proof, claiming that it is analogous to the preceding ones. 

As corollaries, Monge states the possibility of "constructing" thèse équations (either 

the differential or the finite ones), subject to a condition such as that putting y = A(x) 

will make z = ty(x) (the projections of the specifying curve). For instance, in the 

first example, it is enough to construct a space curve with those projections, to take a 

horizontal straight line whose projection is y = ax — b, and to slide it along the curve. 

He also insists on the general validity of thèse constructions, even when either or both 

of these functions A(x) and ty(x) are "discontinuons", that is, not "de nature à être 

exprimés par des équations" 0 4 [Monge 1771, 50]; in that case the arbitrary function 

involved in the finite équation for the class of surfaces is not "expressible analytically" 

- but Monge does not seem to think that that situation might affect the validity of 

5 3 I u a letter to Condorcet dated 2nd September 1771 (published by Taton \l9Jt7, 979-982]). ke had 
given all of these equatioas plus + %~ — z — a for a conical surface. 

' l 4 ' i of such a nature as to be expressed by équations" 
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botti the rinite and the difierential équations. 

Reading this, one is led to wonder what precisely did Monge mean by "discontin-

uous". Both of his "proofs" above assume differentiability, of course: the first in a 

direct way, so as to go from z = ip{ax ~ y) to ^ + = 0; the second through the 

existence of a tangent plane in any point of the surface. D'Alembert would challenge 

thèse assumptions in [1780]. Although he does not mention Monge, it seems clear for 

us 5° who did d'Alembert have in mind: his main example is the équation z = tp(ax — y) 

and its relation t û ^ + ^ = 0-if<p changes form at z = a. ^ = ~^dj ^ o e s no^ (nec~ 

essarily) hold at ax — y = a; moreover, the finite angle described by the generating line 

in such a case thwarts the existence of a tangent plane to the surface at those points 

[d'Alembert 1780, 302-303, 305-307]. Apparently Monge never replied to d'Alembert 

(in 1780 he was no longer very rnuch concerned with this issue). But from his wording 

in [Monge 1771] it seems that the fundamental characteristic of discontinuous curves 

or functions was that they were not "expressible analytically" - they were objects of 

geometry, rather than analysis; but their smoothness was always taken for granted. 5 6 

For some time in the 1770's Monge kept working on the détermination of arbitrary 

functions. One very Ukely reason for [Monge 177i] not having been published is that 

Monge soon wrote three others which superseded it. In [Monge 1770-1773], he gives 

more general procédures for the détermination of the arbitrary functions given appro

priate conditions, and for their geometrical construction. Most of the examples involve 

two arbitrary functions, and the last one involves an indeterminate number of arbitrary 

functions, so that they correspond to second- and higher-order équations. However, the 

difierential équations themselves do not play any role. [Monge 1773a] tries to address 

that flaw: to show that the surfaces that satisfy the integrai of a partial difierential 

équation also satisfy that partial difierential équation. For instance, in problem II 

[Monge 1773a, 273-275] he constructs the surface-locus of 

z = M + NtpV (6.16) 

(where M, N and V are given functions of x and y) such that it passes through a 

curve with projections y = Fx and z = fx; in theorem II [Monge 1773a, 275-280] 

he proves that for each point of the surface thus constructed the difierential équation 

(independent of the arbitrary function ip) 

dV[N6z - NOM - zôN + MON] = SV[Ndz - NOM - zdN + MdN] (6.17) 

holds. [Monge 1773b] is a further exploration of the problem of determining arbitrary 

functions in intégrais of partial difierential équations, associating it with finite différence 

a 5 N o t so for the general 18th-century reader who did not know the inanuscript of [Monge 1771]. 
o 6 A différent possibiUty is that, similarly to Arbogast (see page 205 below), he assumed somethìng 

like piecewise continuity and could work with two tangent planes at a point of discontinuity. But I do 
not see any suggestion of this in his words. 

202 



équations. Taton [1951, 281] complains about the fastidious and répétitive nature of 

thèse memoirs: "ayant mis au point une théorie intéressante, il l'applique à tous les 

exemples d'équations qu'il sait, sinon intégrer, du moins étudier" 0 7 . However, the 

feeling one gets from reading these works (besides lack of patience for all the examples) 

is that Monge was trying to generalize ever more a theory which had started as a set 

of very simple examples. 

Later, Monge's studies on differential équations in three variables and families of 

surfaces proceeded in différent directions (see section 6.1.3.4). However. and in spite 

of d'Alembert's objections, Monge always kept his belief in the acceptabilité* of dis

continuons functions in the intégrais of partial differential équations (see for instance 

[Monge Feuilles. n° 4-iii] for cylindrical surfaces, which have always the differential 

équation 1 = a (^) + b ( ^ r ) , even if the curve along which the generating line slides 

is discontinuous). 

It is worth stressing the importance of construction of differential équations in 

Monge's argumentation. True, it was not Monge who brought discussions on construc

tions to the controversy on arbitrary functions: a great deal of the quarrel between 

Euler and d'Alembert revolved around the former's construction of the extended curve 

n'bAMBaM' (page 197 above). But that was a discussion on one isolated construc

tion, and only of a curve involved in the solution, not of the équation. Monge treated 

constructions much more generally: the construction of a certain partial differential 

équation corresponded to the generation of the surfaces of the family defined either by 

that construction/génération or by that équation. 

The last famous treatment of the issue of acceptability of discontinuous functions 

in the 18th Century [Arbogast 1791} was very much influenced by Monge. 

[Arbogast 1791] was the winning entry to the 1787 prize of the St. Petersburg Acad-

emy, devoted precisely to the question of whether the arbitrary functions introduced 

by the integration of differential équations in more than two variables may be discon

tinuous, or rather correspond only to curves capable of being expressed by aìgebraic or 

transcendental équations [Arbogast 1791, 95]. 

The only contribution of [Arbogast 1791 ] which has received any attention [Grattan-

Guinness 1970, 18; Youschkevitch 1976, 71] is his introduction of the distinction be

tween contiguous and discontiguous functions, more or less corresponding to the mod

em idea of continuous and discontinuous. Besides the concern about the change or 

conservation of the form of a function (that is, its "discontinuity" or "continuity"), we 

have seen above that some mathematicians of the 18th Century noticed the relevance of 

occurrence or not of "jumps" in the course of a function or of its derivatives. But they 

lacked words for this distinction; Arbogast [1791, 11] proposed "courbes discontigues" 

and "fonctions discontigues" for those composed of disconnected pièces, while keeping 

^"having developed an interesting theory, he applies it to ali the examples of équations which he 
can, if not integrate, at least study" 
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the word "discontinuous" with its old meaning. 

But it is interesting to look also at Arbogast's arguments for accepting discontinuous 

and e veri disco ntiguous fu notions in the intégrais of partial differential équations, most 

of which may be seen as more direct uses of Monge's arguments. For most of his 

dissertation. Arbogast repeatedly takes a partial differential équation, translates it 

into a geometrical condition, and then constructs the surfaces that obey this condition. 

Since thèse surfaces are so undetermined that they may be subject to pass through a 

discontinuous or even discontiguous curve (or two such curves, in the case of second-

order équations), that is, since the construction can be performed using continuous or 

even discontiguous curves, these curves must be allowed, and also the corresponding 

discontinuous or even discontiguous functions must be allowed in the intégrais of the 

original partial differential équations. 

The simplest example is that of the équation —— = a (where z is supposed to be a 
dx 

function of x and y, so that the équation belongs to a surface) [Arbogast 1791, 12-14]. 

This means that any section parallel to the xz plane is a straight line with slope a. 

Everything else (in particular the sections parallel to the yz piane) is undetermined. 

Therefore, if AB is the x axis, AC the y axis, and AD the z axis; a straight line KM is 

drawn on a plane perpendicular to BAC and making an angle with MT whose tangent 

is a; an arbitrary curve GIKL is drawn on the plane KRN perpendicular to AC: and 

if fìnally KM is made to slide along GIKL, then it will generate a surface satisfying 

the équation 4z — a. Now, the integrai of 4§ = a is z = ax + (j>.y, and if we put 

G 

.Ftp. 

G 

1 \ s 
I) I) 

•<.: / 

s r 

/ > l '1 

AR = b the equation of GIKL is z = ab 4- <p.y, so that the possibility of the curve 

GIKL being discontinuous and discontinguous 0 8 is passed on to the function <j>.y. 

A less convincing example (for a modem reader and probably for some contem-

porary reader who would agree with d'Alembert) is that of the equation — = — 
ax dy 

[Arbogast 1791, 23-25]. The geometrical condition expressed by this is that if by any 

point of the surface one takes two sections perpendicular to the xy piane, one parallel 

to the x and the other parallel to the y, and if one considers a tangent to each of 

these sections. the slopes of these tangents are equal. However, in his construction of 
5 8 I n the figure it is possible to notice a point of discontiguity between I and G. 
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the surface Arbogast Substitutes an equality between the two sections for the equality 

of the tangents, arguing that if the sections are equal, "leurs élémens seront toujours 

inclinés de la même quantité au point où elles se rencontrent" 0 9. Thus Arbogast sim-

ply considers a straight line on the xy plane making an angle of 45° with the x axis 

(clockwise from the x axis), and imagines it to move freely and irregularly in space, 

but always keeping the same direction ~ he completely bypasses the issue of the exis

tence of the tangents to the sections (or equivalenti}' whether "their éléments" are well 

defìned), admitting the possibility of thèse sections being discontinuons and discon-

tiguous (which is reflected on the possible discontinuity or discontiguity of the function 

0 in the integral z = <j>(x + y)). 

But from parts of Arbogaste discussions of objections by Condorcet and Laplace 

[Arbogast 1791, 39; 85-86] it is possible to conjecture why he is not concerned about the 

existence of tangents: 1 - apparently he regards discontiguous functions as piecewise 

contiguous; 2 - if a curve ABC is discontiguous at B. instead of not having a definite 

value for the differential of the corresponding function at B, one apparently has two 

definite values, each applying to one of the branches AB and BC (so presumably two 

semi-tangents). In modem terms, Arbogast is content with left- and right-derivatives. 

As for difficulties arising from discontinuity, they have to do with "jumps" - that is, 

discontiguity - not in the function, but in its differenti als, so that similar arguments 

apply. 

Thus we see, in Monge and even more clearly in Arbogast, constructions of équa

tions being used once again in arguments of légitimation - this time, the légitimation of 

discontinuous ("and even discontiguous") functions. 6 0 This is likely not a coïncidence. 

The construction of équations (particularly of algebraic équations) was dead as a re-

search subject, but it was still very rnuch alive as a school subject, and was therefore 

well-known of ail mathematicians and available to be used if it were ever appropriate. 

6.1.3.3 Lagrange: singular, complete, and general intégrais, in geometrical 

guise 

There are more direct connections between geomctry and solutions of differential équa

tions than the constructions discussed in the previous section. Some of the most direct 

ones are related to the problem of Singular solutions, through the identification between 

thèse and envelopes. 

[Lagrange 1774] not only gives an analytical theory of singular intégrais, but it also 

provides a geometrical interprétation of that theory. In fact, the "third article" of that 

memoir [Lagrange 1774 > § 21-26] purports to be a déduction through the "considération 

of curves" of the theory on singular intégrais of first-order ordinary équations that had 

5 9 "at the point where they meet their éléments will always have the same inclination" 
6 û I n the case of Monge there was at least one additional motivation: the détermination of the 

arbitrary functions involved in an integral. 
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been set up analytically in the first two "articles". If V = 0 is the complete integral 

of Z = 0, where Z is a function of x.y. and jjj, then V is a function of x,y, and 

an arbitrary constant a, so that V = 0 represents an infinite collection of curves, one 

for each possible value of a (including plus and minus infinity); naturally, Z = 0 also 

represents these curves; but the key point is that Z = 0 also represents the curve that is 

tangent to all these curves (in modern terms: their envelope), since Z = 0 determines 

jjj for each point, and therefore the position of the tangent line, which is shared with 

the envelope. Considering two infinitely close points of the envelope, corresponding to 

two infinitely close curves, and making these points coincide, Lagrange characterizes 

the envelope as formed by "l'intersection mutuelle et successive des courbes données par 

l'équation V = 0, en faisant varier le paramètre a" 6 i [Lagrange 1774, § 22]. Since for 

the same abscissa x the ordinates of two infinitely close curves are y and y + j^da, the 

intersection implies ^ = 0; thus the equation of the envelope is obtained by eliminating 

the parameter a between the two equations that it must satisfy: Z = 0 and jj^ = 0. 

Therefore the envelope corresponds perfectly to the singular integral. 

Lagrange [1774, § 25-26] gives two examples, both of which can be found in [Euler 

1756}. The first is also Euler's first (to find the curves such that all perpendiculars 

from their tangents to a given point have the same given length), a problem which as 

seen above has as complete solution a family of straight lines y — ax — bs/\ + a2 = 0 

((6.6) above) and as singular solution a circle x2 -\-y2 = b2 ((6.5) above). The second 

(Euler's third) is quite similar, having as complete solution also a family of straight fines 

y - a(x — 6) = y/c2(l + a2) — b2 and as singular solution the ellipse (X~P 4- = 1. 

It seems quite likely that Lagrange's process of discovery involved the recognition that 

the singular solutions found by Euler were envelopes of the complete solutions. 

As for partial differential equations, geometrical considerations play a different role. 

Instead of having a separate "article" for a parallel geometrical deduction of his theory, 

Lagrange uses geometry twice in the fifth and final "article" (on singular integrals of 

partial differential equations) to illustrate and explain his concepts of singular, complete 

and general integral of a first-order differential equation in three variables. In this case, 

a complete integral V = 0 represents a two-parameter family of surfaces, as it contains 

two arbitrary constants a, 6; the singular integral represents the surface that is tangent 

to all those surfaces (the envelope of the family) (Lagrange 1774, § 43]. The example 

given in [Lagrange 1774, § 44] is not surprising: consider the problem of finding the 

surfaces such that all perpendiculars from their tangent planes to a given point have the 

same given length; taking the given point to be the origin of coordinates, the sphere 6 2 

z = yh2— x2 ~ y2 

6 1 "the mutual and successive intersection of the curves given by the equation V = 0 by making the 
parameter a vary" 

6 2 A s in many other occasions, one must read "y" as meaning 
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(where h is the given length) is an obvious solution, but since it does not have any 

arbitrary constant, it must correspond to the singular integrai; a complete integrai is 

represented by the family of planes that are at distance h from the origin 

z = ax 4- by 4- h\/l + à2 4- b2, 

which of course have the sphère as envelope. The general integrai is more complicated; 

[Lagrange 1774- § 49] uses the sarne example: the general integrai is the resuit of 

eliminating a between 

z = ax 4- 4>a • y 4- hy/l + a2 4- {(f>a)2 

and 
, a + óa-d>'a 

x 4- 0 a • y 4- h , = 0. 

Vl + a2 4- (H 2 

This cannot be done in general, so Lagrange does it for two particular cases of <f>a. 

4>a = m 4- na (for some constant m and rt) gives a right cylinder whose axis passes 

through the origin (and centre of the sphère) and whose radius is h\ this is of course 

tangent to the sphère, although Lagrange does not mention it. <j>a — \/k2 — 1 — a2 (for 

some constant k) gives a right cone, also tangent to the sphère, although once again 

this is not mentioned. What Lagrange does mention, is that both the singular solution 

and each of the surfaces in the general solution are tangent in every point to one of 

the surfaces in the complete solution; but the singular solution is tangent to ail the 

surfaces of the complete solution (it is their envelope), while each of the surfaces in the 

general solution is tangent only to the surfaces in the complete solution that correspond 

to some particular relation between a and b (if we put b = 0(a), and then eliminate 

a between V ~ 0 and ^ = 0, we obtain of course the envelope of the one-parameter 

family V(xi y, z. a, 4>(a)) = 0, so that the general integrai is the collection of envelopes 

of one-parameter subfamilies of V(x,y,z,a,b) — 0 6 3 ) . 

Lagrange returned to geometrical considérations relating to singular intégrais in 

[Lagrange 1779]. In the first three articles of that memoir he gives examples of prob-

lerns in plane geometry (on evolutes, "roulettes", and more generally on curves having 

contact of some order) that are solved by considering singular solutions instead of 

complete solutions. For instance, the problem of finding the involutes of a given curve 

is a second-order problem in integrai calculus, so that apparently there are two in

determinate éléments; nevertheless, there is only one, namely the first point of the 

involute (in figure 65 in page 113, if BDF is given and AHK is sought, the length, 

but not the direction, of AB is arbitrary); this is because the involute is the envelope 

of a family of circles whose centres are on the evolute. Those examples can be seen 

63Although Lagrange does not do it. the example above can also be used to illustrate the dìversity 
of complete intégrais: the family of ail right cylinders with radius h and axis through the origin is a 
complete solution (the two arbitrary constants m and n in <j?a = m 4 na ensure that). 
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in coordination with a remark in [Lagrange 1774, §56]: the most naturai solution of 

the problem on surfaces above is the sphère, which is not represented in the complete 

integrai, but rather by the singular integrai; that shows "la nécessité d'avoir égard 

à ces sorts d'intégrales pour avoir toutes les solutions possibles" 6 4. Ail this sounds 

like an answer to Eulers previous objections on singular intégrais and especially to 

[Condorcet 1770-1773]. 

The fourth "article" is quite différent, having no direct connection to singular inté

grais, although it revolves around élimination of constants. Lagrange seeks équations 

for surfaces composed of lines "of a given nature" ; 6° for this, he considers the équations 

of the composing lines and difîerentiates them relatively to the constants which char-

acterize each line: he then éliminâtes ali the constants, obtaining the desired équation. 

We will see below that Monge carried this kind of procedure much further. 6 6 

6.1.3.4 Monge: geometrica! integration 

We hâve already mentioned in sections 4.2.2.1 and 6.1.3.2 Monge's association of dif-

ferential équations in three variables to families of surfaces. In the latter section only 

his early studies, on the détermination of arbitrary functions involved in intégrais, were 

addressed. In this section we will look at later developments. 

In (Monge 1780] he put to work several aspects of the association just mentioned, 

the family in question being that of developable surfaces . We have already seen (page 

128) that he obtains in three différent ways their differential équation 

5ôz • ddz = (ódz)2 (6.18) 

(where S stili refers to partial differentiation relative to x, while d refers to partial 

differentiation relative to y). For ruled surfaces he obtains 

2 6 (-ódz 4- sjjèdzf - 86zddz\ (~Sdz + sjjòdz)2 - SâzddzV __ Q 

l ddz I \ ddz I 1 

of which (6.18) is clearly a particular case [Monge 1780 , 431, 435]. A developable 

surface is completely determined by its edge of régression: if the latter has projections 

y = tp • x and z = <p • x, then the équation of the surface is 

z = tfV-r(x-V)<p'-V, (6.19) 

6 4 "the necessity of taking into account this type of intégrais to have ali the possible solutions" 
6 5Lagrauge assumes that thèse Unes must intersect consecutively (or be parallel, which may be 

interpreted as intersection at infinity). In the case of straight Unes this makes him miss the case of 
skew surfaces [Lacroix Traité, I, 501]. 

6 6 T h e fifth and final "article" in [Lagrange 1779] is also very différent, but in another sensé: it 
is there that Lagrange présents his method for integrating quasi-linear first-order partial differential 
équations. The connection with singular intégrais is that it is a generalization of a method given in 
[Lagrange 1774, § 52], A geometrical example is given, but it is irrelevant for us here. 

208 



where V is such that 

y = ip-V + {x~V)y)'.V} (6.20) 

and ip' and ip' are the derivatives of ip and ip [Monge 1780 , 387, 415]. The first 

derivation of (6.18) is precisely obtained through differentiation of (6.19) and (6.20) 

[Monge 1780, 385-389]. 

In 1776 Monge received from Condorcet an offprint of [Lagrange 1774], and he 

was delighted with it [Taton 1951, 190-192]. The association between envelopes and 

singular integrals opened many possibilities for the associated study of surfaces and 

partial differential equations, as did the elimination of arbitrary elements in finite 

equations. 

Some years later Monge wrote two memoirs on surfaces generated by the movement 

of space curves. 6 7 According to Taton [1951, 285-286], [Monge 1784-1785) was written 

in 1783 and received a favourable report for publication by the Turin Academy in 

February 1784. We will look only at the first problem studied: that of a surface 

generated by a circle of constant radius which moves remaining always perpendicular 

to the space curve described by its centre. If this curve has equations x = tpz and 

y = (j>z, z' represents the third coordinate of the centre, and a is the radius of the 

circles, then the fact that each point of the surface is on a circle is expressed by 

(z - z'f + (y - <j>z'f + (x - 4>z')2 = o? (6.21) 

and the fact that each point on the surface is on the normal plane to the curve that 

passes through the centre of the corresponding circle is expressed by 

z-z' + (y- <f>z')<f/z' + (x- ipz'ty'z1 = 0. (6.22) 

If the curve is given, then all there is to be done is to eliminate z' between these 

two equations. But if we want the general equation of these surfaces, expressing its 

generation without regard for a particular curve, then <fi and ip are to be considered 

as arbitrary and be eliminated using differentiation. The clumsy final result is the 

second-order equation 

¿•4 4- nh J (\ J- (dz\2\ddz o r f z dz ddz , [-\ , fdz\2\ ddz \ , „2 J ddz ddz f _ddz_\l\ _ n 

where k? = 1 + + ( | ) 2 . Monge [1784-1785, 22] does not fail to notice that (6.21) 

is the equation of the spheres with centre in the curve and radius a, and that (6.22) 

is the differential of (6.21) relative to z', so that the surface is the envelope of those 

6 7 W e cannot exclude the possibility that Monge was inspired in this by the fourth article of 
[Lagrange 1779). which appeared in 1781, but apropos of a completely different issue Monge claimed 
later not to have known [Lagrange 1779] (in [Monge 1784b, 118], which according to Taton [1951, 
289] was submitted only in 1786). The issue there was Lagrange's method for integrating quasi-linear 
first-order partial differential equations, which appeared in the fifth article of [Lagrange 1779). 
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sphères, or "à la manière de Mr. De la Grange son équation est l'intégrale particulière 

de l'équation différentielle qui appartient à toutes les sphères" 6 8 . 

Notice that élimination of arbitrary éléments plays here a double rôle. The first, 

which had always been prédominant in Monge's studies of classes of surfaces, is in keep-

ing arbitrary the curve used in the generation of the surfaces in a class; the second role 

can be thought of as obtaining a surface as the envelope of a farnily of other surfaces, 

although it is not always explicitly presented that way: the surface may be seen as gen-

erated by the movement of a curve (that Monge would later cali characteristic curve) 

which is in fact the intersection of two consecutive surfaces in the family. A major dif

férence is that the first role typically involves élimination of arbitrary functions, while 

the second involves élimination of arbitrary constants. The second role is of Lagrangian 

inspiration (although of course one can see it in piane geometry since the late 17th-

century studies of envelopes, and might see traces of it in space geometry in the élimi

nation of ß for obtaining (6.15) in [Monge 1771, 51-52]); the first role is essentially due 

to Monge: one can see traces of it in the fourth article of [Lagrange 1779], but it clearly 

conforms to Monge's program, and moreover it can be seen applied in [Monge 1773a, 

268], where équation (6.17) is obtained by writing (6.16) as ^j^- = fV, taking partial 

differentials relative to x (namely Nöz - N5M - z6N 4- MSN = N2ip'V.SV) and to y 

(namely Ndz - NOM — zdN - MdN = N2ip'V.dV), and eliminating N2Vcp'V between 

these . 

[Monge 1784a] (submitted to the Paris Academy in July 1785, according to Taton 

[1951, 287]) is an élaboration of the previous memoir. There Monge insists even more 

on the first role of élimination. An équation for a class of surfaces defined by a form 

of generation involves arbitrary functions which represent the curve that spécifies each 

mernber of the class. The fact that a function is arbitrary can be expressed in two 

ways: either by representing it by a special character; or by eliminating it between the 

differentials of the finite équation, thus obtaining a partial differential équation for the 

class of surfaces, where there is no trace of the generating curve [Monge 1784a, 86]. 

Monge even develops a new method for the élimination of an arbitrary function: the 

traditional method was to differentiate relatively to x, then relatively to y, and then 

eliminate the arbitrary function and its derivative (which had been introduced by the 

différentiations) between the three équations (one finite and two differential); his new 

method consists in regarding the argument of the arbitrary function as constant (that 

is, if the finite équation involves y>{üS), where LO is a known function of x, y and z, 

one puts ÜJ = const., and then takes the total differential, minding that ^ has now 

a determinate value established by ui = const.). The main advantage is that no new 

functions appear. 

The second role of élimination gained importance in [Monge 1784c] (see section 

G S "in the manner of Mr. De la Grange, its eqtiation is the singular integral of the differential équation 
which belongs to ail the sphères" 
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6.1.3.5), and especially later in [Monge Feuilles], where many surfaces are studied 

as envelopes of familles of other surfaces. In Lagrangian terms ; this does not mean 

that much attention is paid to singular solutions, but rather to general solutions -

we have seen that the geometrica! interprétation of a general solution is a collection 

of envelopes of one-parameter families of surfaces. Nor does Monge dwell much on 

complete solutions (again. in the Lagrangian sensé). He does consider a finite équation 

F = 0 for enveloped surfaces containing two parameters a and /?; but immediatety 

(in the same sentence) he takes ß = tpa [Monge Feuilles, n° 7-ii]; the two parameters 

are only useful for him to have a directing plane curve y = <px. His first example is 

a simplified version of the one seen above; a surface enveloping a family of sphères of 

constant radius a whose centres are on the curve y ~ (px, z = 0 [Monge Feuilles, n 0 6 7-ii 

- 8-i); since in this case there is only one arbitrary function, the differential équation 

is of first order: 

But one of the most important aspects of [Monge Feuilles] for differential équa

tions is its concern with characteristics. A characteristic curve of an envelope is the 

intersection of two consecutive surfaces in the family (in the example above, a vertical 

circle of radius a). Monge had given in [1784b] a method for reducing the integration 

of a partial differential équation to that of a system of ordinary differential équations. 

Oddly for Monge, this method did not come then with a geometrical interprétation. 

This only appeared later, in [1784c] and more explicitly in [Feuilles]: those ordinary 

differential équations belonged to the projections onto the coordinate planes of the 

characteristic curves of the integral surface of the partial differential équation. Among 

other things, Monge [Feuilles, n o s 27-iv - 28-iv] used this method to integrate the 

équation of minimal surfaces [Taton 1951, 302-303]. 

6.1.3.5 Monge: integration of "ordinary" differential équations not satis-

The last example of Monge's geometrical integration we will look at concerns what he 

called "équations of ordinary différences in three variables" - that is, équations involv-

ing ordinary, or total, differentials of three variables; in the first-order and first-degree 

case, they correspond, in modem terms, to "Pfaffian équations" (in three variables). 6 9 

We have seen above (section 6.1.3.1) that Ctairaut had arrived at a necessary con

dition (6.13) for a differential équation in three variables to be solvable. 7 0 For this, 

6 9 Monge also addressed ordinary differential équations in more than three variables, but we will 
omit them here: he was clearly guided by analogy in that, his reasoning being essentially geometrical. 

'°In fact, a skghtly différent version of this condition had already been found by Fontaine 
[Greenberg 1982, 12. 20-26]. Clairaut, although criticai of Fontaine's style, acknowledged his priority 
[1740, 310]. Furthermore, Cousin [1796, l, 258] attributed (6.13) to "N. Bernoulli" - presumably 
Nicolaus (I) Bernoulli, In an extract of a letter published in an article by his cousin Nicolaus (II) 

fying the conditions of integrability 
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Clairaut had assumed that the integral of such a differential equation was composed 
of one finite equation - or equivalently, that the geometrical construction of such a 
differential equation resulted in a surface. Euler [Differentials, I, §307-318; Integralis, 
III, ch. 1] had followed Clairaut's assumption, 7 1 in a more functional manner: using an 
analogy with finite equations, he had concluded that for a differential equation in three 
variables to be meaningful, one of those variables had to be a function of the other 
two: "aequatio differentialis tres variabiles complectens determinabit, qualis functio 
una sit reliquarum" 7 2 [Euler Differentialis, I, § 307]. He had also reproduced Clairaut's 
condition (6.13), but of course with purely analytical proofs [Euler Differentialis, I, 
§313-316; Integralis, III, §,1]; an equation was "real" if it verified this condition, and 
otherwise it was "imaginariam seu absurdam" 7 3 [Euler Differentialis, I, §317]. 

In addition, and for similar reasons, Euler had also declared absurd those equations 
in which the differentials were raised to powers higher than 1, such as Pdx2 A-Qdy2 + 
R dz2 + 25 dx dy + 2T dx dz + 2V dy dz = 0, unless they could be reduced to the form 
Pdx + Qdy + Rdz = 0 [Differentialis, §326; Integralis, §27], 

In [1768, 15-16], Condorcet challenged this. He accepted that equations "qu'on 
appelle absurdes" do not have integrals, but not that the related problems are neces
sarily impossible: given an absurd first-order equation in three variables, the problem 
is not satisfied by any surface; but if the equation is regarded as representing a curve 
of double curvature, one projection of which is arbitrary, the problem is not only pos
sible, but even has an infinity of solutions. He might have been thinking of Newton 
[Fluxions, 83]: as Lacroix would point out (see page 251 below), Newton had already 
used, in order to solve fluxional equations in n variables, the technique of temporarily 
reducing them to equations in two variables by establishing n — 2 relations between the 
n variables. 

Bernoulli \1720 , 442-443] (see [Engelsman 1984, 186-187] for the unravelling of this "bibliographical 
monster", which had been cited by Poggendorff and Fleckenstein as it if were an independent article, 
with a wrong date, and in the latter case with wrong page numbers - and still Engelsman [1984 > 231] 
cites it simply as being §30 in [Nic. Bernoulli 1720], apparently not noticing that while it is indeed 
§ 30 in Johann Bernoulli's Opera Omnia, it is numbered § 29 in the original publication in the Actorum 
Eruditorum Supplementa, 7 (1721), p. 310-312, because of a duplication of §22). Now, a formula 
somewhat similar to (6.14) does occur in [Nic.Bernoulli 1720 , 443] - namely, dq — Tqdy+ Rdy, for 
dx = pdy + qda, where dp = Tdx + Sdy + Rda and dq is the differential of q holding a constant; in 
modern notation, and noticing that holding a constant makes dq = f^dx + ^jdy — ^pdy + ^dy, 

this amounts to ^pdy+^dy = q^dy+^dy, whence pf^ + f j = ç f f + that is, the condition of 
integrability of dx — pdy + qda. Not only these later developments are not present, but also Bernoulli 
does not use the formula at all as a criterion for integrability; rather, he uses it to obtain q, given p 
(i.e., to solve what Engelsman [1984] has called the "completion problem1'). What really appears in 
Bernoulli's derivation of that formula for the first time is something else, although essential for (613): 
the equality of mixed second-order differentials - Lacroix noticed this in [Montucla & Lalande 1802, 
344]. 

7 l I n spite of Fontaine's (and to some extent Nicolaus (I) Bernoulli's) priority, it was Clairaut who 
communicated (6.13) to Euler [Engelsuian 1984, 198]. 

' 2 "a differential equation involving three variables determines which function one of them is of the 
others'" 

7 3 "imaginary or absurd" 
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But Condorcet did not develop this idea. It was up to Monge to do it, in [1784c]. 

For him, no differential equation in three variables is absurd; those that verify the 

integrability condition (6.13) belong to curved surfaces ; their integrals being single 

equations, with single arbitrary constants; while those that do not (rather than be

longing to no geometrical object, or having no integral), belong to families of curves 

in space, their integrals being systems of two equations 7 4 . In more modern (or more 

Eulerian) terms, an equation relating the differentials of three variables may determine 

two functions of one independent variable, instead of necessarily one function of two 

independent variables. 

Monge addresses firstly higher-order equations, and his first example [1784c, 506-

509] is 

dz2 = o?{dx2 + dy2), (6.23) 

which obviously belongs to the curves whose elements make a constant angle with the 

x, y plane. Therefore, he considers the straight lines that make that angle: 

x = otz + 0, y = z\J — - Q 2 + 7- (6.24) 

But this is not the "complete" integral of ( 6 . 2 3 ) 7 5 : eliminating a in (6.24) gives (x — 

P)2 + (y ~ l)2 — ¿1 that is, the cones with vertices on the x, y plane whose constituent 

straight lines make that angle; 7 6 putting 7 = <p(3, i.e., making the vertices follow an 

arbitrary curve, two consecutive cones will intersect along a straight line, included in 

(6.24); but the envelope of these intersection straight lines will also satisfy (6.23); thus 

the complete integral will be the result of eliminating p between 

(the reason why there are three equations here instead of two is precisely that ¡3 has 

still to be eliminated; but this cannot be done explicitly, on account of the arbitrariness 

of ip). A particular case is the thread of a screw with axis perpendicular to the x,y 

plane. 

After a couple more examples, Monge [1784c, 518-520] provides a more general 

picture: given an equation M = 0 of a family of surfaces (besides the coordinates 

x,y and z, M is supposed to involve a parameter a, and an arbitrary function of it 

(pet), a partial differential equation V — 0 for the envelope of those surfaces may be 

obtained by eliminating a and cpa between M = 0, ( ^ r ) = 0, and (^f*J = 0; but 

7 i l With the sole exception of M2dx2m + N2dy2m + P2dz2jn = 0, whose integral was the system 
1 = a,y = b,z = c: one arbitrary point in space. 

7 5 That is. it is not the most general one. Monge never followed Lagrange's distinction between 
"complete" and "general" integrals (see section 6.1.4.2). 

7 6 These cones are made up of straight lines satisfying (6.23), but unlike what Taton [1951, 298] 
says, they do not satisfy (6.23) themselves. The whole point is that these equations belong to families 
of curves, not to surfaces. 
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this envelope is composed of its characteristic curves 7 7 , and they Ln turn intersect two 

by two. along a curve of double curvature, which Monge calis here the "limit of the 

envelope", but which he would cali in [Feuüles] the "edge of regression 7 ' 7 8; eliminating 

a and <pa between M = 0, ( ^ ) = 0. dM = 0, and d.(~) = 0. one obtains an 

equation U — 0 for the edge of regression - an ordinary differential equation in three 

variables, of degree higher than one, which would be absurd to Euler. 

The most important practical consequence of all this is the equivalence, in a sense. 

between U = 0 and V = 0. Monge shows how to obtain one from the other without 

knowing their integráis [1784c, 520-5), and that if the integral of the V = 0 is the result 

of eliminating a from M = 0 and ( ^ ) = 0, then eliminating a from M = 0, ( ^ ) - 0 

and ( ^ ) = 0 gives the integral of U = 0 [1784c, 525-6]. 

As for linear 7 9 equations that do not satisfy the integrability condition, Monge 

[1784c, 528-532] applies procedures derived by analogy from the considerations above 

for higher-degree equations, using auxiliary partial differential equations. In an "ad-

dition" at the end of the memoir [1784c, 574-576], he remarks that he has not "con-

structed" any of these linear ordinary equations, and so he gives an example, in order to 

show "ce que ees sortes d'équations signifient dans l'espace" 8 0: the apparent contour of 

a surface of revolution seen from a point with coordinates a, b, c; this ammounts to the 

curve where that surface is tangent to a conical surface with vértex at that point; it is 

by combining the partial differential equations of the surface of revolution py ~ qx = 0 

and of the conical surface p(x—a)+q{y —b) = z—c that Monge obtains the ordinary dif

ferential equation for the apparent contour [x(x — a) -\-y{y~b)]dz = (z — c){xdx+ydy); 

its integral is given by the system 

z = <p{x2 + y2) 

2[x{x - a) + y(y - b)]<pf = (p - c, 

where tp is an arbitrary function. After this single example he concludes that any 

linear first-order ordinary differential equation in three variables nos satisfying the 

integrability condition belongs to the curve of contact of two curved surfaces (each 

given by a linear partial differential equation). 

It is interesting to look at the first attempt to give an analytical versión of this, by an 

author whom Lacroix [Traite. II, 629] appreciated particularly: the Italian Pietro Paoli. 

Given a differential equation in x, y, z that does not satisfy the integrability conditions, 

Paoli's idea [1792, 4-8] is that if one establishes an arbitrary relation y = (fi.x, that 

equation will be transformed into one in two variables x,z - thus necessarily integrable; 

the integral of the original equation will be the system formed by y = <¡>.x and the 

7 7 Monge does not use this ñame here. Instead, he speaks of "curves of intersection". 
7 8 Here this ñame is reserved for developable surfaces. 
7 9 I . e., quasi-Linear. 
8 0 "what is the spatial meaning of this kind of equations" 
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integral of the secondary équation. Of course this cannot he done in general; but we 

can obtain a "particular" integral by establishing a particular, rather than arbitrary, 

relation between x and y; if we include an arbitrary constant a in this relation, that 

particular integral will have two arbitrary constants (a, and another ß originating in the 

integration of the secondar}' équation); then, by a Lagrangian procedure of variation 

of constants, we can obtain the complete integral 8 1. He manages to derive from this 

Monge's procedure for integrating linear équations. 

A rather less interesting analytical treatment of thèse équations was given by a 

Belgian mathematician, Charles-François de Nìeuport [Mélanges, 1, 211-230], focusing 

on Systems of two or more such équations. It is only worth noting that Nieuport is 

probably the only author to cite Condorcet (namely [1768, 15]) instead of Monge (or 

even Newton), for the idea of establishing a relation between two of the variables in an 

équation in three variables that does not satisfy the condition of integrability. 

In spite of thèse reactions by lesser-known mathematicians. this work by Monge was 

ignored by textbook authors. As late as [1798, II, 129-135] Bossut declared équations 

not satisfying the conditions of integrability to be not real and having no integral. 

Cousin [1796, I, 258-259] was not so radical, but only because he paid much attention 

to observations by Euler [Differentialis, I, § 310,323-325] and Laplace [1772a, 368-370] 

on the occasionai existence of particular intégrais of thèse équations. 

6.1.4 The formation of differential équations and their com

plete and general intégrais 

6.1.4.1 Ordinary differential équations 

[Lagrange 1774} represented somewhat more than a theory of singular solutions. It 

entailed also a change in the theory of differential équations, in an aspect which (at least 

in theoretical or pedagogical terms) could go beyond the subject of singular intégrais: 

it stressed the formation of differential équations by algebraic élimination of arbitrary 

éléments between a finite équation and its differential(s), as opposed to focusing only 

on the process of integration (or on that of differentiation, as a simple inverse process). 

Engelsman [1980, 16] put it nicely in the following diagram: 

Euler: Z(x,y,£)=0 ' m ^ " " V(x,y,a) = 0 

Lagrange: Z{x,y,*) = 0 e l i m i " ^ ° f " V(x,y,a)=0 

An early sign of this outside the area of singular intégrais is the explanation given 

in [Lagrange 1774, § 32] for the fact that a second-order differential équation has 

two first-order intégrais: if instead of eliminating both a and b in (6.11) one simply 

8 1 O f course, Lagrange would call this the "generai'1, rather than "complete'', integral. 
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éliminâtes a between V = 0 and ^ - p = 0 ; one will obtain precisely one of those first-

order intégrais of Z' = 0; eliminating b one will obtain a différent first-order integral. 

Lagrange comments that this is "connu des Géomètres" 8 2 . 

Later, when Lagrange got around to wrìte his first treatise on the calculus, he 

introduced a distinction in terminology between the équations that are obtained by 

immediate dérivation of a primitive équation ("prime", "second"; etc. équations) and 

those obtained by combining the primitive équation with its prime équation and/or 

second équation and/or etc. ("derivative équations" 8 3) [Lagrange Fonctions, 51]. 8 4 He 

then explained the occurrence of arbitrary constants in primitive équations obtained 

from derivative équations (i.e.. in solutions of differential équations) by their disappear-

ance through élimination between those primitive équations and their prime, second, 

etc. équations [Lagrange Fonctions, 56; Calcul, 151]. This should be compared to 

Eulers explanation, which stressed differentiation: to remove the constant a from the 

équation x3 + y3 = Saxy, one should divide by xy to obtain = Sa, where the con

stant a is isolated, so that it disappears by differentiation [Euler Differentialis, I, §289]; 

the arguments about arbitrary constants in the preface to [Euler Integralis, I] make no 

specific référence to differential équations; and arbitrary constants appear casually in 

the first chapters of the second section of [Euler Integralis, I] (on differential équations) 

because the methods used (séparation of variables, integrating factors) involved inte

gration of explicit functions. Euler's tendency for analogy between integrating explicit 

functions and solving differential équations has already been noted twice (sections 5.1.1 

and 6.1.2.1). 

But did [Lagrange 1774] really introduce this new conception of formation of dif

ferential équations? The idea of conceiving a differential équation as the resuit of the 

élimination of arbitrary constants between a finite équation and its differentials can 

already be found (probably for the first time) in [Fontaine 1764, 84-85] (in a memoir 

which according to Fontaine was submitted to the Paris Academy in 1748) - together 

with the argument we saw above used by Lagrange for the existence of two first-order 

intégrais of a second-order differential équation; a similar one for the existence of 

three second-order intégrais of a third-order differential équation; related ones for the 

unìqueness of the differential équation derived from a given finite équation and of the 

finite (complete) integral of a given differential équation of any order [Fontaine 1764, 

86-87]; and finally a claim for priority in these results (included in the table of con

tents). Fontaine was not concerned with Singular solutions; rather, his purpose was the 

construction of tables of intégrais of differential équations, for which he conducted a 

S 2 "known by the Geometers" 
8 3 T h e original French being "équations dérivées", "derived équations" inight be a better trans

lation. But a nicer rendition in English of this distinction would be achieved by calling "derived 
équations" those obtained by deriving a primitive équation and "derivative equations : ] those obtained 
by combining the former. 

8 4 I n [Lagrange Calcul. 112] he abandoned the distinction in terminology, calling botti kinds of 
équations either "prime équations" or "first-order derivative équations", etc. 
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combinatorial study of possible forms for those equations and their solutions - in fact 

a study restricted to forms not involving transcendental functions [Gilain 1988, 93]. 

Fontaine had a "difficult personality", his work was "of limited scope, often obscure, 

and willfully ignorant of the contributions of other mathematicians" [Taton 1972, 54] 

and "'keeping himself aloof, [he] published very little during the bulk of his career, 

waiting instead until 1764 to bind his unpublished manuscripts together with a few 

things that had appeared earlier, in the form of complete works" 8 0 [Greenberg 1981, 

252], so that one might assume that his views on the formation of differential equations 

were generally overlooked. However, as we will see below. Lacroix (section 6.2.1.1) and 

Cousin were aware of them, and Condorcet tried to expand on them. One wonders 

whether Lagrange might have been inspired by Fontaine's work, realizing the potential 

of that simple idea. And to what did Lagrange refer as "connu des Géomètres"? The 

plain fact of existence of two first-order integrals; or Fontaine's argument? Be as it 

may. around 1800 there was some public acknowledgement of these ideas to Fontaine 

[Cousin 1777, 183; 1796, I, 196; Montucla k Lalande 1802, 344]. 

It does seem very likely that [Lagrange 1774] brought a much wider acceptance 

to this conception of formation of differential equations - not in the least because it 

used it to obtain results that were definitely non-trivial. However, that acceptance 

varied among the writers of textbooks and treatises in the late 18th century. Bossut 

used it when presenting singular integrals [1798, II, 320-321], but ignored it elsewhere, 

to the point of arguing for the existence of two first-order integrals of a second-order 

equation simply by giving examples [1798, II, 266-267]. Cousin, on the other hand, 

not only followed Lagrange in using it for particular solutions [1777, 528-549; 1796, II, 

91-105] but also gave Fontaine's argument (crediting it to Fontaine) for the existence of 

n integrals of order n — 1 of any differential equation of order n, and for the uniqueness 

of its finite integral [1777, 181-183; 1796, 1, 194-196]. 

From 1764 onwards, Condorcet studied the integral calculus in a way much influ

enced by Fontaine. Like Fontaine, Condorcet tried to have a list of all the possible 

forms of integrals for each type of differential equation. This led him (as it had led 

Fontaine) to observe the formation of differential equations from finite equations by 

differentiation and elimination [Condorcet 1765, 37-44, 67-69: Gilain 1988, 91-95] -

mainly elimination of transcendental functions, but taking the arbitrary constants with 

them; [Condorcet 1770) is more focused on elimination of arbitrary elements (constants 

and functions). 8 6 While Condorcet did not share at all Fontaine's lack of social skills, 

8 o N o t thoroughly complete, as he published three memoirs in the volumes of the Paris Academy 
for 1767 and 1768 (thus after [Fontaine 1764}). We may also notice the contradiction between the 
inclusion of "a few things that had appeared earlier", namely in the memoirs of the Paris Academy 
for 1734 and 1747, and the first title of [Fontaine 1764], which mentions the unpublished character of 
the works contained within. 

8 6Condorcet's researches would later evolve into a theory of integration in finite terms [Gilain 1988], 
which remained mostly unpublished: his main work on this was a large treatise of integral calculus 
which was only partly printed (152 of what would be about 1000 pages [GUain 1988, 127); according 
to Lacroix [Traité, 2nd ed, I, xxii-xxiii] those printed pages circulated at the time; but he was only 
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he did share his obscurity of language when writing mathematics, so that his mathe
matical works are and always were difficult to follow - which was publicly noticed by his 
friend and admirer S. F. Lacroix in 1813 [Gilain 1988, 88, 117]. Lacroix also decided 
not to mention in his Traité either of Fontaine's or Condorcet's "general methods of 
integration", because of their labour iousness [Lacroix Traité, II. 251]. However, we will 
see below that besides the full adoption of Fontaine's conception of the formation of 
differential equations, Lacroix also made use of some of Condorcet's reflections, namely 
on partial differential equations. 

6.1.4.2 Partial differential equations 

What about the formation of partial differential equations: what is the equivalent of 
Fontaine's conception of ordinary differential equations as the result of elimination of 
arbitrary constants? Given that in the traditional theory of partial differential equa
tions, as exemplified in [Euler Integralis, III], arbitrary functions play a role entirely 
analogous to that of arbitrary constants for ordinary differential equations, one might 
expect to see partial differential equations regarded as the result of elimination of 
arbitrary functions. 

But as we have already seen [Lagrange 1774] takes a clearly different option: a 
first-order partial differential equation with two independent variables is the result of 
eliminating two constants between a finite equation and its two first-order partial dif
ferentials. This has serious consequences for the classification of types of solutions: the 
finite equation involving two arbitrary constants is the complete integral of the differen
tial equation; the general integral is obtained from the complete integral by establishing 
an arbitrary functional relation between the two constants and then eliminating the 
one which remains arbitrary - put b = <j>{a) in the complete integral V(x, y, z, a, b) = 0, 
differentiate relative to a alone, and eliminate a (see section 6.1.2.3). The name "gen
eral integral" is justified in that it contains the complete integral: we can specify the 
arbitrary function included in the general integral by giving it a form involving two 
arbitrary constants and the result is a complete integral 8 7 (a byproduct of this argu
ment is the conclusion that there are many different complete integrals for the same 
partial differential equation) [Lagrange 1774, §56]. However, since the general integral 
may be obtained from a complete integral through the process above, it appears that 
the latter is equally powerful - and it is possible to pass from one complete integral to 
another through the general integral (in practice, this argument is useless, because it 
is usually not possible to obtain the general integral explicitly from a complete integral 
- see below). 

The historical literature on partial differential equations stresses this scheme as a 
very important point. For example, [Kline 1972, II, 532]: "Lagrange's terminology, 

able to study the whole manuscript in 1824 [Gilain 1988, 110]. 
8 7 Later, he would deny this inclusion [Lagrange Calcul, 372-381]. See section 9.5.3 below. 
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which is still current, must be noted first to understand his work" (followed by defi

nitions of complete, general and singular integral); (Engelsman 1980, 19-20]: "Euler's 

complete solution is characterized by an arbitrary function. [.,.] Lagrange's complete 

solution, on the other hand, is characterized by the occurrence of two arbitrary con

stants. [...] But far from being the final result itself, it is only an intermediary means 

for arriving at it. [...] Lagrange's new concept of a complete solution and the asso

ciated 'variation of constants' method provided a structure for the set of all solutions 

of a first-order partial differential equation"; [Demidov 1982, 330]: "The origin of 

Lagrange's 'theory' [of first-order partial differential equations] is connected with his 

gradual approach to the new concept of a complete solution". 

[Lagrange Functions, 99-100] is consistent with this: a primitive equation 

F{x,y,z) = 0, 

where z is regarded as a function of x and y, has two prime equations: 

F'(x) + z'F'{z) = 0 and F'{y) + z,F'{z) = 0 

(i.e., | £ + % = 0 a n d % + % = 0). First-order derivative equations are obtained 

by combining these three equations in any way; as we have three equations, two con

stants may be eliminated, so that if we want to determine a function z from an equation 

in x, y, z, z' and z,, "l'équation primitive entre x, y et z devra contenir deux constantes 

arbitrages" 8 8 . In the very next page Lagrange considers the possibility of one of the 

constants being a function of the other, and concludes that "l'équation primitive qui 

satisfait en general a une equation du premier ordre, doit renfermer une fonction arbi

t r age" 8 9 (emphasis added); the primitive equation with two arbitrary constants (i.e., 

the complete integral) is an intermediate step towards the more general one with an 

arbitrary function (the general integral), but it is enough to generate it, to generate 

the singular "primitive equation" (see section 6.1.2.3), and to generate the differen

tial equation. Thus, it seems to occupy the central role in the structure of possible 

solutions. 

However, there are a few problems with giving this scheme such an essential role 

in Lagrange's theory of partial differential equations, and more generally in the theory 

of partial differential equations of the late 18th century. The first problem is that 

other works by Lagrange are not consistent with it. After the introduction of this new-

scheme in [Lagrange 1774], Lagrange [1779] reverted to a more traditional terminology, 

speaking of a complete integral as containing an arbitrary function. [Lagrange 1779} is 

a memoir mainly on geometrical applications of singular integrals (see section 6.1.3.3), 

8 8 "the primitive equation between x,y and z must contain two arbitrary constants" 
8 9 "the primitive equation which satisfies in general a first-order equation must contain an arbitrary 

function'1 
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but without ever addressing the distinction between complete and general integrals; its 

fifth "article" has little to do with geometry, apart from some worked examples: it is 

Lagrange's presentation of his method for integrating (quasi-)linear first-order partial 

differential equations. Given the partial differential equation 

dz dz -dz . 
— + P— + Q— + kc. = Z, 
da; dy dt 

where P, Q , Z are functions of x, y, t. ...,z, Lagrange forms the ordinary differential 

equations dy — Pdx = 0, dt — Qdx = 0,..., dz — Zdx = 0, whose solutions have 

one arbitrary constant each; from those solutions, these constants can be expressed as 

functions of x,y,t,z; doing this, and calling them a, , 5 , 7 , t h e equation 

a = 7, 

where <j> is an arbitrary function, is an integral of the partial differential equation; 

"laquelle intégrale sera compiette, puisqu'elle contient une fonction arbitraire" 9 0 [La

grange 1779. 153]. When some years later he gave a fuller proof of this fundamental 

method, he once again used the expression "complete integral" [Lagrange 1785, §5]. 

In this particular context, the concept of an integral with arbitrary constants instead 

of arbitrary functions is in fact irrelevant. 

It cannot be said to be entirely irrelevant in a different context: that of Lagrange's 

method to reduce the integration of a first-order partial differential equation with two 

independent variables x,y (and one dependent u) to the integration of a (quasi-)linear 

partial differential equation with an extra variable p = ^ [Lagrange 1772b]. Lagrange 

noticed that it would be enough to find a value for p containing one arbitrary constant a; 

a procedure of variation of this constant a introduces the necessary arbitrary function 

[Lagrange 1772b, § 6]. At the end of the memoir, in a series of paragraphs unrelated to 

the method of (quasi-)linearization, Lagrange argues that such a procedure of variation 

of constants permits to obtain a value of u with an arbitrary function from one with 

two arbitrary constants [Lagrange 1772b, §9-11]. Engelsman [1980] correctly points 

this out as the origin of the new conception of "complete integral" in [Lagrange 1774] -

still, those paragraphs at the end are not related to the main topic of [Lagrange 1772b); 

a solution u with two arbitrary constants a, ¡3 does not occur in the (quasi-)linearization 

method. 

It is interesting to look at [Legendre 1787, 337-348], where first-order nonlinear 

equations are examined. Legendre [1787, 337, 340] cites [Lagrange 1772b] and [La

grange 1774] explicitly, and [Lagrange 1779] implicitly. His version of the complete/ge

neral integral - arbitrary constants/function issue may be summarized thus: for an 

integral to be "complete" it must contain an arbitrary function; a "particular integral" 

9 0 u "this integral will be complete, as it contains an arbitrary" function11 
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(that is. one without an arbitrary function) which contains as many arbitrary constants 
as there are independent variables is usually enough to deduce the "complete integral" 
by variation of constants 9 1 [Legendre 1787. 338-340]. It seems reasonable to assume 
that this was a common scheme (the most common?) by the end of the 18th century: 
it keeps Euler's terminology, but also acknowledges some importance to integrals with 
arbitrary constants instead of functions; however, it does not put them in the central 
place of the theory as [Lagrange Fonctions) would do; it also fails to address the issue 
of the formation of partial differential equations (i.e., should them be studied as the 
result of elimination of arbitrary constants, or of arbitrary functions?). 

Similar schemes may be found in [Bossut 1798, II, 356-358, 429-434] (integrals of 
partial differential equations are "completed" by arbitrary functions just like integrals 
of ordinary differential equations are "completed by arbitrary constants " ; integrals of 
partial differential equations containing arbitrary constants instead of functions only 
appear very briefly when mentioning singular solutions) and [Cousin 1777, 283, 702-
710; 1796, I, 253; II, 217-222] (complete integrals of partial differential equations in
clude arbitrary functions; arbitrary constants only appear instead of arbitrary functions 
when mentioning particular solutions). 

But there is a very important difference between these two traités. It was seen 
above that Bossut mostly ignored Fontaine's conception of the formation of ordinary 
differential equations (except when reporting Lagrange's theory of singular integrals), 
while Cousin used it in at least one occasion, citing Fontaine. Accordingly, Bossut 
[1798) does not address the formation of partial differential equations - except, insofar 
as it is necessary, in his very brief account of Lagrange's theory of singular integrals of 
partial differential equations [Bossut 1798, II, 429-434]. 9 2 Cousin, on the other hand, 
often uses the idea that a differential equation is the result of eliminating an arbitrary 
function contained in its integral "de Tordre immédiatement inférieur" 9 3 [Cousin 1777, 
mi\1796, II, 181]. To integrate Mfy + N% + Pz + Q = 0 (where M,N,P and 
Q are functions of x and y), he assumes that the "complete integral" has the form 
z = II + ty F:(UJ) (where II, $ and u> are unknown functions of x and y and F is the 
arbitrary function); he differentiates in order to x and y separately, eliminates F:(UJ) 
and F':(co) between the three equations, and compares the result with the proposed 
equation [Cousin 1777, 295-296: 1796, I, 260-261]. To integrate + iVg + V = 0 
(where M and N are functions of x and y but V is a function of x. y and z), he gives his 
own method, apparently submitted to the Paris Academy of Sciences in 1772. which is 
similarly based on assuming the form (B) + F;(LJ) for the integral ((B) being a function 

9 ' B u t not always: Legendre [1787, 340] gives two counter-examples in which the integrals thus 
obtained, although including an arbitrary function, are not as general as the "complete" one (because 
the functions involved have less arguments than the one in the "complete integral"). 

9 2 Bossut [1798, I I . 373-386] reports Lagrange's method for integrating (quasi-)linear first-order 
partial differential equations, but not his method of quasl-linearization, which might have motivated 
some reference to integrals with arbitrary constants instead of arbitrary functions. 

9 3 "of immediatly lower order" 
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oix,y and z). differentiating, and eliminating F:(u) and F':(u>) [Cousin 1777, 629-632; 

1796, II, 157-158]. 

Thus it seems that Cousin extended Fontaine's conception of ordinary differential 

equations to partial differential equations, not in Lagrange's manner, but rather ac

cording to the natural suggestion at the beginning of this section. This turns out to 

be also a new form of Euler's analogy between arbitrary constants and functions. 

This was followed, in a more explicit way, by an important rival of Lagrange in the 

study of partial differential equations in the late 18th century: Gaspard Monge. It has 

been seen in section 6.1.3.4 that Monge gave much importance to elimination of arbi

trary functions. An example given was [Monge 1784a], a memoir on the determination 

of equations for classes of surfaces, with an emphasis on the elimination of the functions 

that particularize each surface in the class. The memoir that appears right after this 

in the volume of memoirs of the Paris Science Academy for 1784 is also by Monge, 

but on the integration of partial differential equations [Monge 1784b]. There Monge 

presents Lagrange's method for (quasi-)linear first-order partial differential equations 

(which he seems to have developed independently), and extends it to higher-order and 

nonlinear equations (this would later be known as the "method of characteristics", 

after its geometrical interpretation in [Monge Feuilles}). This memoir starts precisely 

with the elimination of the arbitrary function <p from 

U = <pV, 

resulting in 

"C'est ce résultat nécessaire, exprimé en quantités différentielles, &; délivré 

de la fonction arbitraire ip, que l'on nomme Véquation aux différences par

tielles de la proposée, h dont celle-ci se nomme V intégrale complètes 

[Monge 1784b, 120] 

This conception is an important thème in this memoir. An example of its use is Monge's 

explanation for the nonlinearity of a partial differential équation as a conséquence of 

either an arbitrary function being raised to a power higher than one in the complète 

intégral, or of the arguments of an arbitrary function in the complète intégral being 

given by a nonlinear auxiliary équation; if neither of thèse situations occur, then the 

élimination process produces a differential équation that is linear with regard to the 

highest-order differentials [Monge 1784b, 164-168]. 

It was also mentioned above (section 6.1.3.4) that not much attention is paid in 

[Monge Feuilles] to solutions with arbitrary constants (i.e. complète solutions in the 

9 4 "It is this necessary resuit, expressed in differentials and free from the arbitrary function tp, that 
is called the partial différence équation of the given (équation], and the latter is its complète intégrai" 
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sense of [Lagrange 1774}- Accordingly, also there the expression "complete integral" is 

used for solutions involving arbitrary functions [Monge Feuilles, n° 8-iii]. 

There are enough comparisons made by Monge between the roles of arbitrary con

stants in integrals of ordinary differential equations and arbitrary functions in integrals 

of partial differential equations [1771, 49; 1770-1773, 16; 1784a, 85-86] to assume that, 

like Cousin, he was extending Fontaine's conception of ordinary differential equations 

to partial differential equations, 9 0 in the way most natural to him. 

Thus, we can say that Cousin and Monge's scheme is a more elaborate version of 

the one seen above used by Legendre (and Bossut), with a choice on the formation of 

partial differential equations: these are the result of elimination of arbitrary functions 

contained in the complete integral; solutions containing arbitrary constants instead 

of functions may be useful for particular purposes but are certainly not the central 

concept. 

Condorcet also seems to have had such a scheme in mind. In [1770, 151-160], he 

studied the number of arbitrary constants or functions that may be eliminated between 

an equation and its differential(s); there he indicated (in a very unclear way) important 

differences between ordinary and partial differential equations, caused by the fact that 

partial differentiation of arbitrary functions introduces more unknowns than equations 

with which to eliminate them. Below we will see Lacroix's much clearer version of this. 

6.2 Lacroix's Traité 

6.2.1 Differential equations in two variables and their partic

ular solutions 

6.2.1.1 The formation of differential equations in two variables 

It has been seen in section 6.1.4.1 that in the late 18th century the adherence to 

Fontaine's conception of the formation of differential equations varied from referring it 

only when dealing with Lagrange's theory of singular solutions to making it a central 

piece in the presentation of differential equations. Lacroix was definitely a supporter 

of the latter approach. How relevant he thought it to be can be seen in a footnote 

signed by him included in [Montucla & Lalande 1802, 344] (on Fontaine's priorities in 

the history of differential equations): 

"il ne faut pas oublier que l'on doit à Fontaine la manière d'envisager les 

équations différentielles comme le résultat de l'élimination des constantes 

arbitraires entre une équation primitive et ses différentielles immédiates. 

Cette remarque contient le germe de la théorie de toutes les espèces d'équa

tions différentielles, ou aux différences, et sert de base à l'élégante théorie 

9 5 W e may also notice that Fontaine's conception is very clear in [Monge 1785b], a memoir on 
ordinary differential equations. 
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des solutions (ou intégrales) particulières, donnée en 1774, par Lagrange, 

dans les Mémoires de l'académie de Berlin" 9 6 . 

Indeed, traces of Fontaine's conception can be seen in Lacroix's Traité preceding 

the sections on particular solutions in volume II. It has been mentioned above (section 

3.2.4) that Lacroix included in the first chapter of volume I a section "on differentia-

tion of équations" [Lacroix Traité, I, 134-178], corresponding to part of chapter 9 of 

[Euler Differentialis, I]. In that chapter Euler had remarked on the possibility of us-

ing differentiation to remove constant, variable, irrational or transcendental quantities. 

Lacroix [Traité, I, 144-147] duly reports this, but with much less emphasis than Euler 

on the removal of non-constants; 9 7 and, significantly, he uses algébrale élimination of a 

constant between a primitive équation and its differential, instead of Euler's procédure 

of isolating the constant before différent i ating (see section 6.1.4.1). Lacroix remarks 

that although the resulting équation is not the "immédiate differential" of the primitive 

équation, it derives from it in such a way that it expresses the relation that must hold 

between x,y and ^ [Lacroix Traité, I, 145]. 

The chapter on plane geometry in [Lacroix Traité, I] is not terribly relevant here, 

because the theory of plane envelopes is much older than Lagrange's theory of singular 

solutions. But it curious to note that just after explaining how to arrive at the équation 

of the envelope of a family of plane curves, Lacroix remarks that "le procédé par lequel 

on fait varier les constantes d'une équation, est un des grands moyens de l 'Analyse" 9 8 

[Lacroix Traité, I, 429-430]. 

A référence to Fontaine's conception of the formation of differential équations that 

may seem much more surprising is in volume II, when introducing the method of 

integrating factors. To explain this method, Lacroix reminds the reader that differential 

équations are not in general the "immédiate resuit" of the differentiation of a primitive 

équation, but rather the resuit of the élimination of an arbitrary constant between such 

an équation and its "immédiate differential" [Lacroix Traité, II, 230] - this includes a 

référence to the passage of the first volume cited above on élimination of constants, 

which reinforces the impression that in that passage Lacroix had intended to (subtly) 

prepare the reader for "la théorie de toutes les espèces d'équations différentielles", and 

especially for Lagrange's "élégante théorie des solutions particulières" (see quote above 

from [Montucla & Lalande 180Ë[). 

9 6 "it should not be forgotten that the manner of viewing differential équations as the resuit of 
élimination of arbitrary constants between a primitive équation and its immédiate différentials is due 
to Fontaine. This remark contains the germ of the theory- of ail the types of differential or [finite] 
différence équations, and is the basis of the élégant theory of particular solutions (or intégrais) given 
in 1774 by Lagrange in the Memoirs of the Berlin Academy'' 

9 7 When he later pays more attention to élimination of functions, it is to elimínate arbitrary functions 
from équations in more than two variables (see section 6.2.2) - something not. in [Euler Differentialis. 
I, ch. 9]. 

9 8 "the procédure by which one makes the constants of an équation vary is one of the great methods 
of analysis" 
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In case the primitive equation is in the form u = c, the elimination is immediate: 
du = 0; if in addition is not divided by any factor, it remains an exact differential. But 
different situations may occur. Lacroix [Traité, II, 234) gives the example of first-degree 
equations, each of which, according to him, must be the result of the elimination of a 
constant c between a (primitive) equation of the form P + cQ = 0 (where P and Q 
are functions of x and y) and its differential (dP + cdQ = 0); this elimination yields 

QdP - PdQ = 0; 

however, if we first put P + cQ = 0 in the form u = c (i.e., ^ = —c), differentiating 
we arrive at 

QdP -PdQ 

it is the disappearance of the factor along with any possible common factor to QdP 
and PdQ, that may prevent QdP — PdQ from being an exact differential. 

This is quite an unusual explanation: given a differential equation Pdx + Qdy = 0, 
Euler had assumed its complete integral V(x,y,a) = 0; considered it put in the form 
F(x,y) = a; then differentiated, resulting in an exact differential equation Mdx + 
Ndy = 0 that must be equivalent to Pdx + Qdy = 0; and finally noticed that the equiv
alence implies that ~ = ^ , i.e. M = LP and N = LQ, for some L [Euler Integralis, I, 
§459]. Arguments very similar to Euler's were used by Cousin [1777, 198-199; 1796, 
I, 204-205] and Bossut [1798, II, 124-125]. Bézout [1796, IV, 211] simply raised the 
possibility of making a differential exact through multiplication by a convenient factor, 
without any particular motivation. [Lagrange Fonctions] does not address integrating 
factors." 

Second- and higher-order differential equations also receive similar treatments be
fore the study of their particular solutions. For instance, Lacroix reports Fontaine's 
(and Lagrange's) explanation for the fact that a second-order equation has two "first 
integrals" (that is, two first-order equations that satisfy it; the primitive equation is its 
"second integral"): if U = 0 is a primitive equation containing two arbitrary constants, 
c,CI, and if it is differentiated twice, then a second-order differential equation W = 0 
results from the elimination of c and c\ between U = 0, dll = 0 : and d2U = 0: but 
there are two possible and distinct intermediate steps, namely either to eliminate c or 
Ci between U ~ 0 and dU = 0, resulting in different first-order equations - which may 
be called V = 0 and Vy = 0, respectively; both the elimination of ci between V = 0 
and dV = 0 and that of c between V'i = 0 and dV\ = 0 will result in W = 0; therefore 
both V = 0 and V\ — 0 are first integrals of W = 0, while U = 0 is its second integral; 
similarly a third-order equation has three first integrals and its corresponding primi-

9 9 [Lagrange Calcul, 168-177] does, explaining their existence in a way similar to Lacroix's, although 
more detailed and generalized. But the first edition of [Lagrange Calcul] was first printed in 1801 
[Grattan-Gu'mness 1990,1, 196], three years after [Lacroix Traité, II]. 
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tive equation is its third integral (and an n-th order equation has n first integrals and 

its corresponding primitive equation is its n-th integral) [Lacroix Traité, II, 308-310; 

Fontaine 1764, 87; Lagrange 1774, §32]. 

Also integrating factors for second-order equations are explained by regarding these 

as the result of eliminating a constant between a first-order equation and its "immediate 

differential" - which may cause a factor to disappear [Lacroix Traité, IL 335]. 

6.2.1.2 Particular solutions of first-order differential equations in two vari

ables 

Obviously, Lacroix reports not only Fontaine's view on the formation of differential 

equations but also Lagrange's theory of singular solutions. 

However, he adopts Laplace's terminology: "particular integrals" are particular 

cases of the complete integral; "particular solutions" are solutions not contained in 

the complete integral, whatever values one might give to the arbitrary constant . 1 0 0 

In a footnote, Lacroix warns the reader about Lagrange's inverted use of these ex

pressions, 1 0 1 and argues for his choice: those solutions which are not contained in the 

complete integral, "ne s'obtenant point par les procédés de l'intégration, ne doivent 

pas porter un nom qui rappelle ces procédés" 1 0 2 [Lacroix Traité, II, 263]. An argument 

which Lacroix does not invoke, but which might have some weight, is that his choice 

is consistent with Euler's terminology, unlike Lagrange's. 1 0 3 

It is interesting to note that an option which was available at least since the previous 

year in [Lagrange Fonctions, 69], namely "singular primitive equation" (or, adapting 

to the differential-integral language, "singular integral", or even "singular solution"); 

is not even mentioned - although material from [Lagrange Fonctions] (or at least from 

Lagrange's lectures at the Ecole Polytechnique) is used in this section (see below). The 

question about why Lacroix ignored this terminology in the first edition of his Traité 

raises once again the issue of whether it was more dependent on [Lagrange Fonctions] 

or on Lagrange's 1795-1796 lectures at the Ecole Polytechnique. One could specu

late on whether Lagrange did use that terminology in those lectures - he could have 

introduced it only when writing the book, and Lacroix may have based the passage 

mentioned below on the lectures, not on the book; the corresponding passage from 

[Lagrange Fonctions] is cited in the table of contents [Lacroix Traité, II, vi] - but of 

course the table of contents is the last item to print. Another possibility (which does 

not exclude this one) is that the bulk of this section of Lacroix's Traité (and of its other 

1 0 0 There is one detail related to this in which Lacroix's and Laplace's terminologies are different: 
Lacroix speaks of "complete integrals", while Laplace [1772ft] spoke of "general integrals". 

1 0 1 Which is exaggerated: Lacroix incorrectly says that Lagrange called "particular solutions" the 
"différens cas de l'intégrale complète" ("several instances of the complete integral") - Lagrange had 
used the term "incomplete integrals" (see section 6.1.1). 

1 0 2 "not being obtained by the procedures of integration, should not bear a name which reminds of 
these procedures" 

1 0 3 A n d to a minor extent Laplace's, as far as "general integral" goes. 
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sections dealing with singular solutions) was already advanced enough when Lacroix 
knew of this material by Lagrange, so that his choice of terminology was beyond a point 
of return - the passage inspired by either Lagrange's lectures or [Lagrange Fonctions] 
is quite independent of the rest and could well be a later insertion; not having a good 
reason to reject "singular solution" Lacroix might have preferred to omit the possibility 
- but that is not consistent with his encyclopédiste approach; besides he did mention 
Lagrange's new terminology in the second edition, stressing the analogy between "sin
gular primitive equations" and "singular values" (i.e. non-analytic points) of a function 
[Lacroix Traité, 2nd ed, II, 373, 388]. 1 0 4 

Besides terminology, another small influence from Laplace can be seen in a remark 
about a distinction to be made between trivial solutions (factors of the given differential 
equation which do not involve neither dx nor dy; p = 0 trivially satisfies uMdx + 
fiNdy = 0) and particular solutions properly speaking [Laplace 1772a, 344; Lacroix 
Traité, II, 263]. Lacroix does not seem to have noticed Trembley's denial of this 
distinction (it is possible to transform the equation so that the singular solution appears 
as a factor) [Trembley 1790-91, 10] - although he did cite and use that memoir by 
Trembley (see below). 

Apart from these two influences from Laplace and some different examples, Lacroix 
[Traité, II, 263-274] follows closely [Lagrange 1774, §3-20], that is, the theory of sin
gular integrals of first-order ordinary differential equations: given a primitive equation 
U = 0 in the variables x,y and the constant c, the corresponding differential equation 
V = 0 is the result of eliminating c between U = 0 and ^dx + ^dy = 0 (with a 
reference to the first volume); if this is put in the form dy = pdx, and if c is regarded 
no longer as a constant, but rather as a function of x, it will become dy =pdxJt- qdc; 
particular solutions are obtained by eliminating c between q = 0 and U = 0, in case 

V = 0 has particular solutions - otherwise this will result in particular integrals; partic
ular integrals satisfy not only ^ = 0, but also = 0, = 0, etc., while particular 
solutions satisfy only a limited number of these; particular solutions may be obtained 
directly from V = 0 without access to the complete integral U = 0 by putting = ^ 

dy2 0 
The rest of the section on "particular solutions of [ordinary] first-order differential 

equations" [Lacroix Traité, II. 274-284] in fact oscillates between particular solutions 
and particular integrals. It is broadly dedicated to attempts to find complete integrals 
from particular solutions (which can be deduced directly from differential equations) 
and/or from particular integrals (which can sometimes be found from careful exami
nation of differential equations). 

1 0 4 A s will be seen below, singular solutions ("singular primitive equations") are introduced in 
[Lagrange Fonctions] in a way that associates them to failures in certain power series. But it 
should be remarked that the adjective "singular" seems to have been associated with failures in 
more general power-series expansions (non-analyticity, in modern terms) only in the second edition of 
[Lagrange Fonctions] (dated 1813), and only in the title of chapter 5 - not in its text. 
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Lacroix gives a couple of examples related to the Riccati équation dy+y2dx+Xdx = 

0: if y = Q is a particular integral, then dQ + Q2dx -f- Xdx = 0, so that Xdx = 

—dQ - Q2dx; dy + y2dx - dQ — Q2dx = 0 can be solved using an integrating factor. 1 0 5 

But he remarks that the method involved usually leads to differential équations more 

difficult to solve than the original. 

He then turns his attention to the possibility of using power séries for this task. He 

does that in three articles [Lacroix Traité, II, 274-277] two of which are referred to in 

the subject index as "Solutions particulières, procédé de Laplace, pour les déterminer 

par le développement de l'intégrale en sér ie" 1 0 6 [Lacroix Traité, III, 574]. This is an 

obvious référence to [Laplace 1772a], where such séries expansions do occur, although 

not with the pur pose of "completing" particular intégrais (see page 184 above). 

But what Lacroix does here is much closer to (and in fact clearly drawn from) the 

section in [Lagrange Fonctions, 65-69) where singular solutions are introduced, and 

which is an adaptation of part of [Laplace 1772a] and of [Integralis, I, §565]. This 

was a somewhat unusual way of introducing singular solutions, but quite connected to 

the power-series foundation of the calculus: instead of presenting a few examples of 

"derivative équations" together with solutions not contained in their complete primitive 

équations, Lagrange had introduced singular solutions as exceptions to a power-series 

expansion - an expansion used precisely to "complete" particular primitive équations. 

In Lacroix's version: let y — X be a particular integral of dy =• pdx, and let y = V 

represent the complete integral; X is then a function of x and V is a function of x and 

of an arbitrary constant c, such that X(x) = V(x,c'), for some appropriate value d; 

thus, the complete integral may be expanded into 

where V, V", V", etc. are the values of etc. for c = d\ h = c — c' plays here 

the rôle of arbitrary constant. Lagrange [Fonctions, 66-67] gives a method (and Lacroix 

[Traité, IL 275-276] reports it) for fìnding V, V", V", etc. using a related expansion 

for p: 

(P, P', P", etc. are the values of p, ^ , ^jf,etc. for y = X). But it had already been 

shown that there are cases in which séries such as thèse are faulty for particular values of 

the variable (see section 3.2.5); in those cases the derivatives from some order upwards 

are infinite and the expansion must involve fractional exponents. An analysis of the 

1 0 5 T h i s is similar to an example in [Euler Integralis, I, §544]. 
106"Particular solutions, procedure by Laplace for their determinatan through the series expansion 

of the integrai' 
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more general expansions 

p = P + Qkm + i?fcn + etc. and y = X + qh + rfc" + etc. 

leads to the conclusions that if m < 1. or equivalently if y = X makes P'{= ^) 

infinite, then the completion is not possible - it is not a particular integral, but rather 

a particular solution; this means that P' must have the form ~ , such that the particular 

solutions are factors of L [Lacroix Traité, II. 276-278). These results are recognizable as 

Euler's (m < 1) and Laplace's; the characterization of singular solutions as solutions 

which cannot be completed can also be traced back to Euler [Integralis, I, §565] -

Lagrange did [Calcul, 237]. 

To finish the section. Lacroix addresses the relations between particular integrals 

or solutions and integrating factors, especially a method by Jean Trembley to find the 

latter from the former [Trembley 1790-91]. Euler had noticed that, given a differential 

equation Mdx+Ndy = 0, firstly - if z is an integrating factor, then z = 0 is a particular 

integral, as long as it does not make either M nor N infinite; and secondly - if M s 

an integrating factor, then again z = 0 is a particular integral, as long as it does not 

make either M = 0 nor N = 0 [Integralis, I, §572-574; Lacroix Traité, II, 278-279]. 

Laplace had also noticed that particular solutions make integrating factors infinite (see 

page 184 above) - they are factors of z~l = 0. Trembley's idea was to search for an 

integrating factor by multiplying the known particular integrals and solutions of a given 

differential equation 1 0 7 , each raised to an indeterminate power, and after substituting 

this product trying to solve for those powers. 1 0 8 

6.2.1.3 Particular solutions of second- or higher-order differential equa

tions in two variables 

Lacroix's explanation for the existence of particular solutions of second- or higher-order 

differential equations [Lacroix Traité, II, 408-409] is, just like Lagrange's, a generaliza

tion of the latter's explanation for first-order equations: if U — 0 is the complete 

integral of the second-order equation V = 0, then U contains two arbitrary constants, 

ci and c-i: and V ~ 0 is the result of eliminating c L and c2 between 

fj = 0, d£/ = 0, and d*U = 0\ 

now, if ci and c 2 are taken as variables, in order to obtain the same results we need to 

have 
dU , dU , 
-r-dcx + — dc2 = 0; 
dc\ dC2 

1 0 7 More correctly, as [Lacroix Traité, II, 281-282] puts it: the functions which when equaled to zero 
yield those integrals/solutions. 

1 0 8 [Trembley 1790-91] is not always very easy to follow: his uses of the expression "particular inte
grals" are particularly unhelpful (see section 6.1.1). 
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and 
dU' dU' 
-r—dci + -r~dc2 = 0 
dei dc2 

(where, for the sake of abbreviation, U' = ^dx + ~j^dy, that is U' = dU in the cases 

of C i , c 2 constant or variable but verifying the first of thèse conditions); particular 

solutions are obtained by eliminating C\_,c2, and ^ between 

dU dU dU' dU' 
U = 0, V = 0, —- dei -f — dc2 = 0, and -—rfci + — dc2 = 0. 

dc\ dc2 dc\ dc2 

Nevertheless. the treatment of thèse particular solutions is mainly inspired by 

[Legendre ¿700] , 1 0 9 although with some improvements. Legendre had based his ap-

proach on the remark that a singular integrai, "reduced to finite forni", always contains 

fewer arbitrary constants than the complete integrai (that is, if we have a differential 

équation V = 0 of order n, and a singular solution W = 0, say of order n — i, the 

integrai of W = 0 contains less than n arbitrary constants). Legendre proved this 

for orders one and two and claimed that the same reasoning applied to higher orders 

[Legendre 1790, 222]. Lacroix, on the other hand, gave a proof for any order: let 

V = 0 be an n-th order differential équation, and let U = 0 be its complete integrai, 

containing the arbitrary constants c i , c 2 , . . . c n ; V = 0 is obtained by eliminating thèse 

constants between U = 0 and its differentials dU = 0, (fiU = 0 , . . . dP-U = 0; now sup

pose Ci, c2, • •. Cn vary, and let d'represent differentiation relative to them, so that the 

complete first differential of U is dU + d'il, where 

j r r dU , dU J 

du ~ ~—dx + — dy and 
dx dy 

J l T T dU J dU J dU J 

du = —dei -f — dc2... + -r-dcn; 
aci ac2 acn 

in order to stili satisfy V = 0, we need to keep this first differential equal to dU, and in 

addition the second differential of U (which because of that condition is dPU + d'dU) 

equal to d2U, and so on up to the n-th differential of U (dP-U + d'dn~xU) equal to dPU; 

in other words, we need to have 

d'U = 0, d'dU = 0, d'dr^U = 0, 

which thanks to the equality of mixed partial differentials can be transformed into 

d'U = 0, dd'U = 0, tt^d'U = 0; 

1 0 9[Legendre 1790] was only published in 1797, but it was already printed in 1794, along with the 
other memoirs in the Paris Académie des Sciences' volume for 1790 - the dévaluation of banknotes 
had prevented its sale in the meanwhile. Given thc facts that Lacroix uses this meinoir both here 
when when dealing with particular solutions of partial differential équations (see below), in a volume 
published in 1798, and that Lacroix had been elected a correspondent of the Académie in 1789, it is 
very Hkcly that he had access to the printed memoir while stili unpublished. 

230 



since no differentials of either x or y appear in d!U, this set of equations is at most of 

order n — 1 relative to x and y, and so will be result of the elimination of the 2n — 1 

constants d, c2, • • • CN, . . . ^ between the 2n equations 

U = 0, dC/ = 0, . . . , £T" l r 7 = 0, d'C/ = 0, d'rfc/ = 0, . . . , d'a™-1!/ = 0; 

the integral of this result (which is a particular solution) will therefore contain at most 

n — \ arbitrary constants. 1 1 0 

This is a smart proof, not only because of its actual generality, but especially 

because of the casual introduction of the operator d'. To apply this result Legendre 

had used calculus of variations, something which Lacroix cannot do here, since he is 

still more than 200 pages away from introducing that method. But this d' is as efficient 

here as the operator 6 in [Legendre 1790].111 Suppose that Y contains a number of 

constants (not more than n) and that y = Y satisfies V = 0; if those constants are 

made to vary. V = 0 will become V + d'V = 0, whence d'V = 0, which is of the form 

if1 d'Y dn~ld'Y dd'Y 
M ± ^ + N^~-^...^R~-rSd'Y^0. (6.25) 

d.xn dxn~x dx * 

Now, if we try to integrate this equation in order to obtain d'Y = ^dci + j^dc2 + etc., 

we may have two different situations: either y = Y is contained in the complete integral, 

and thus d'Y contains n arbitrary constants (which are the dcVs), so that (6.25) is of 

order n and M ^ 0; or y — Y is a particular solution, d'Y must contain less than 

n arbitrary constants, the equation is of order at most n — 1, and therefore M = 0 

[Legendre 1790 , 222-224; Lacroix Traité, 411-412]. 

Lacroix [Traité, II, 417] is less convincing about the correspondence between Legen-

dre's and Lagrange's rules: he simply replaces d' with d to get 

M ^ ! + jvA.„ + ^ + ^ + T d i = 0 (6.26) 
dxn dxn~l dx 

whence 
dn+lV -Nf*...-Rg-S%-T 
dxn+l M 

and since M = 0 yields N ... + R^ + Sdy + Tdx = 0, it also yields £ ^ = §, 

as Lagrange [1774, §35, §37] had indicated. The problem is that d'-differentiation is 

carried out holding x constant, unlike ^-differentiation. So why should the coefficients 

1 1 0 [Houtain 1852. 1181} claims that Legendre's proof (and consequently Lacroix's) rests on a vicious 
circle. However, I believe that at least in the case of Lacroix the purpose of the proof is not to 
demonstrate that a singular solution contains less than n arbitrary constants (something which was 
taken for granted in the 18th century), but rather a simpler consequence: that the finite (or primitive) 
equation obtained from it (that is, its integral) contains less than n arbitrary constants. 

u l [Lagrange ¿773. 613-614], addressing singular integrals, introduces this operator using the symbol 
â and then suddenly invokes the theory of variations (not the equality of mixed partial differentials) 
for 5dV = dSV. 
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in (6.25) and (6.26) be the same? 

6.2.2 Complete and general intégrais and particular solutions 

of partial differential équations 

6.2.2.1 The formation of first-order partial differential équations and their 

general (and complete) intégrais 

Given what we saw in section 6.1.4.2, it is natural to ask how does Lacroix présent the 

formation of first-order differential équations in three variables: as the resuit of élimi

nation of two arbitrary constants between a primitive équation and its two immédiate 

partial differentials like Lagrange [Í77^]; or as the resuit of élimination of one arbitrary 

function like Monge [1784b]? (In other words, how does he extend Fontaine's formation 

of ordinary differential équations to partial differential équations?) We will see that 

although the former possibility is mentioned, Lacroix is much closer to following the 

latter. 

First of ail, we may notice that Lacroix had a background of strict adhérence to 

Monge's approach. In the memoir on partial differential équations that Lacroix had 

submitted to the Paris Academy in 1785 (see appendix A.l) he had expressed this very 

clearly: starting with the example z = <p: (ax + y), Lacroix eliminated ip' : (ax + y) 

between its two differentials p = ip' : (ax + y)a and q = ip' : (ax + y), arriving at 

p - aq = 0; he then remarked that 

"l'équation différentielle p — aq = 0, ou toute autre, peut toujours être 

envisagée comme produite par 1 élimination d'une fonction arbitraire. Cette 

méthode est celle de M. Monge, et s'applique avec élégance aux équations 

linéaires de tous les ordres: c'est aussi celle dont nous nous servirons à peu 

près dans la suite de ces recherches" 1 1 2 (see page 351). 

The basis of the memoir was in fact an attempt to apply this approach to obtain 

solutions of non-linear partial differential équations. It was not a very successful at

tempt, and there seem to be no traces of the spécifie methods propounded there in his 

Traité; but some basic ideas of Mongean inspiration (formation of partial differential 

équations, their correspondence to families of surfaces) remain. 

Returning to the Traité, let us look again at the section "on différent i at ion of 

équations" in the first chapter of [Lacroix Traité, I]. There Lacroix does allude briefly 

to the possibility, given an équation u — 0 in x, y and z, of éliminâting two constants 

between 
d(u) d(u) 

u = 0, ——, and ——, 
dx dy 

1 1 2 "the differential équation p — aq — 0, or any other, may always be viewed as produced by the 
élimination of an arbitrary function. This is M. Monge's method, and it applies elegantly to linear 
équations of ail orders: it is also pretty much the one we will use in the course of this research" 
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the resuit expressing the relation between the variables x,y,z and the differential co

efficients ^ [Lacroix Traité, I, 176]. 1 1 3 But lie gives much more importance to the 

possibility of eliminating a function whose form is unknown [Lacroix Traité, I, 176-

178]. For instance, if we have z = f(ax-\-by), we can put t = ax-\-by: whence z = f(t), 

so that 
dz ... .dt ... . , dz „,, sdt ,.. . , 
Tx=f'i.t)Tx = /'(*)• a and - = / < ( * ) - = /<(*)•*; 

now f'(t) may be eliminated, yielding 

dz dz 
b — - a — = 0, 

ax dy 

a differential équation satisfied by z — ax + by, z = >Jax + by, z = sin(ax -f- by), or any 

other équation of the form z = f(ax 4- by). More generally. if u = 0 is an équation in 

x,y,z and an indeterminate function /(£), where t is a known function of x, y, and z, 

then / ( t ) and /'(£) can be eliminated using 

^ = 0 and ̂ 1=0. 
aa; dy 

In the second volume, this latter passage on élimination of a function is referred 

to as showing that "les équations différentielles du premier ordre se déduis[ent] des 

équations primitives à trois variables, par l'élimination d'une fonction arbitraire" 1 1 4 

[Lacroix Traité, II, 480], while there seems to be no référence to the former, on élimi

nation of two variables. 

This is why arbitrary functions occur in solutions of fîrst-order differential équations 

with two independent variables, but naturally it is not how they appear. Instead, as 

in [Euler Integralis, III, § 7, § 33], an arbitrary function appears when intégration is 

performed holding one of those variables constant: the arbitrary constant thus intro-

duced must be regarded as an arbitrary function of that variable [Lacroix Traité, II, 

458, 477]. More interestingly, and similarly to [Euler Integralis, III, § 73, § 142], an 

arbitrary function also appears when integrating équations of the form 

Pp + QP = 0 (6.27) 

(where P and Q are functions of x and y, p = ^ , and q = ~): this yields dz = 

^(Pdy — Qdx); if p is an integrating factor of Pdy — Qdx, we can put 

aPdy — pQdx ~ dU; 

1 1 3 For the notation see page 73. 
m "nrst-order differential équation [are] derived from primitive équations in three variables by the 

élimination of an arbitrary function" 
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and (since q is indeterminate) ^ - = tp'(U), so that dz = (p'(U)dll and therefore 

{(p'(U) and (p(U) being arbitrary functions, subject only to the condition that the 
former is the derivative of the latter) [Lacroix Traité, II, 478-479]. Only after this 
latter appearance does Lacroix remind the reader of the passage in the first volume on 
the origin of first-order partial différential équations, establishing a connection between 
the eliminated function and the one introduced by integration [Lacroix Traité, II, 480]. 
But something similar had happened with ordinary differential équations: arbitrary 
constants appeared because the methods of solution resort to integration of explicit 
functions. It was not for introducing arbitrary constants that Lacroix invoked the 
formation of ordinary differential équations by their élimination (see section 6.2.1.1). 
Nevertheless, those références to the first volume do feel like theoretical explanations 
for the practical fact of the appearance of arbitrary éléments. 

Thus Lacroix seems to follow Cousin and Monge in keeping the old Eulerian analogy 
between arbitrary constants for ordinary differential équations and arbitrary functions 
for partial differential équations, putting it on the new ground of the formation of the 
équations by élimination. However, we will see below that Lacroix had very serious 
reserves about extending this analogy to équations of order higher than one, and that 
he did not follow Cousin and Monge in their use of the naine "complete intégrais" for 
intégrais with an arbitrary function. 

Lacroix also mentions the possibility of having intégrais containing arbitrary con
stants instead of intégrais containing an arbitrary function. He does so several times 
in the section dedicated to first-order partial differential équations [Lacroix Traité, II, 
480, 489, 497-499, 516]. But intégrais with an arbitrary function are clearly more 
important, and as we nave seen above they seem to be the only ones involved in the 
formation of partial differential équations; when an intégral with arbitrary constants 
appears it is always a means to obtain another one with an arbitrary function. Just 
after the référence to the first volume mentioned above, and stili addressing équation 
(6.27), Lacroix notices that if one puts ^ = a, one obtains a resuit with two arbitrary 
constants, since this yields dz = adii and therefore 

he finds "quite remarkable" that although this is obviously less general than the previ-
ous resuit (6.28), it is possible to restore (6.28) from (6.29): varying the constants 
a and 6. we have dz — adii + Vda + db, which is equal to adii provided that 
^ = -U; thus Lacroix puts b = ip(a), ip being an arbitrary function; then VJ'(a) = Ut 

whence a = ip,(U), where ipr is the inverse function of ip'\ therefore (6.29) becomes 

(6.28) 

z = ail 4- b; (6.29) 
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z = (JI¡J,(U) 4- I/J[I/>,(£/)]; but Uip^U) + Í}bfr<{U)} ' s nothing more than an arbitrary 

function of U, and can be written as z = tp(U) [Lacroix Traite, II, 480-481], 

A similar argument is used for first-order partial differential equations with three 

independent variables: from the equation V = aT + bU + c it is possible to obtain the 

more general one V = <p(T, U) by varying the arbitrary constants a, b, c [Lacroix Traite, 

II. 489]. This is repeated and generalized when reporting the Lagrange-Charpit method 

for solving first-order partial differential equations in three variables [Lacroix Traite, 

II, 496-497] (after all. the idea of varying an arbitrary constant to obtain an arbitrary 

function had first appeared in [Lagrange Í772b\, included in the "first half" of the 

Lagrange-Charpit method - Lagrange's method for quasi-linearizing first-order partial 

differential equations). Since the elimination of the arbitrary constants is usually not 

feasible, general integráis are represented as systems of equations (from which the 

elimination is supposed to be done, even if only conceptually): if Z = 0 is an integral 

of dz = pdx + qdy containing the arbitrary constants a and 6, and (Z) designates the 

result of substituting (p(a) for 6 in Z, then the general integral will be represented by 

and analogously, if Z = 0 is an integral of a first-order partial differential equation 

in 5 variables containing the arbitrary constants a, b, c, e, and (Z) stands for Z with 

íp(a, b, c) substituted for e, the general integral is represented by 

6.2.2.2 Terminology: "general" and "complete" integráis 

Two issues related to our subject are very notably absent from the section on first-order 

partial differential equations in [Lacroix Traite, II]. One is particular solutions: they 

are addressed only later, together with the particular solutions of higher-order partial 

differential equations (see section 6.2.2.4). 

More importantly, the issue of terminology is not addressed: Lacroix uses occasion-

ally the expression "general integral" for an integral containing an arbitrary function. as 

opposed to one containing arbitrary constants [Lacroix Traite, II. 498, 501, 508, 516], 

but he never defines explicitly "general integral"; moreover, in this section he does 

not have any ñame for integráis containing arbitrary constants instead of arbitrary 

functions. This is well illustrated by the first occurrence of the expression "general 

integral": 

"En general, si Z = 0 designe 1'intégrale d'une equation différentielle par

tidle du premier ordre, entre m variables, et que Z renferme ra — 1 con

stantes arbitraires, on en pourra tirer Tintégrale genérale, qui doit contenir 
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une fonction arbitraire de m — 1 quantités différentes." 1 1 0 [Lacroix Traité, 
IL 498] 

Notice the awkward definite article applied to the integrai containing arbitrary con
stants, which is evidently not unique (but Lacroix might claim illustrious antécédents; 
Lagrange [1774, § 57,59-61] repeatedly speaks of "l'intégrale compiette" after having 
argued for the existence of several complete intégrais [Lagrange 1774, § 56]). 

But the two most striking points here are on the one hand the use of "general 
integrai" instead of "complete integrai" (the expression which Cousin and Monge had 
used), and on the other hand the lack of conviction in that use. 

Later, well into the section on partial differential équations of orders higher than 
one, the riame "complete integrai" is used for intégrais witli arbitrary constants. That 
is, when Lacroix finally adopts a name distinction between types of intégral according 
to the kind of arbitrary élément involved, it is the Lagrangian nomenclature that he 
adopts (the occasionai uses of "general integrai" in the section on first-order partial 
differential équations are certainly only an anticipation of this distinction). A likely 
reason for this is that it was the only nomenclature available: the authors who used 
"complete integrai" for intégrais containing arbitrary functions did not have any name 
for intégrais containing arbitrary constants. But even then Lacroix does not seem fully 
committed to this nomenclature. He introduces it saying that Lagrange uses the name 
"complete integrai" to make a distinction from general intégrais [Lacroix Traité, II, 
555]. 

For someone who seemed to be so careful about terminology, ail this is quite un-
satisfactory. It would not have been very difficult to adapt the Laplacian terminology 
(see footnote 7), using "general integrai" also for intégrais of explicit functions or of 
ordinay differential équations containing the appropriate arbitrary constants (as well 
as for intégrais of partial differential équations containing arbitrary functions), and 
to use the name "complete integrai" only for intégrais of partial differential équations 
containing arbitrary constants. 

6.2.2.3 Complete and general intégrais of second- and higher-order partial 
differential équations 

The issues relating to types of solutions of partial differential équations are more thor-
oughly addressed in the section on "integration of partial differential équations of orders 
higher than one" [Lacroix Traité, II, 520-608]. 

It was mentioned above that Lacroix had reserves about the analogies between 
solutions of ordinary and partial differential équations; that can be seen in this section, 
where he exposes weaknesses in those analogies. For instance, he gives an example of 

U o " I n general, if Z = 0 représente the integrai of a first-order partial differential équation in m 
variables, and if Z = 0 contains m — 1 arbitrary constants, it will be possible to extract from it the 
general integrai, which must contain an arbitrary function of m — 1 distinct quantities." 
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a second-order équation 

(x + y)(r -t) + 4p = Q 

(Lacroix follows the usuai conventions dz = p dx 4- q dy, dp = rdx 4- sdy, dq = s dx 4-

tdy). which has orily one first integrai, namely 

{x + y){p-q) + 2z = <p{y - x), (6.30) 

instead of two as one would expect by analogy with second-order ordinary équations 

(see sections 6.1.4.1 and 6.2.1.1); nevertheless it has a second integrai (i. e., a primitive 

équation) [Lacroix Traité. II. 534-535]: 

z = e-9(f e%—<p(a'-2x) + i;{a')) (6.31) 
J a 

(where a1 is to be replaced by x 4- y after the integration). Even stranger seems to be 

the équation 

r - t - ^ = 0 (6.32) 
x 

[Lacroix Traité, II, 547-548]: it does not have any first integrai, and yet it has a second 

intégral: 

z = tp(y + x) 4- ip{y - x) - x[<p'(y 4- x) - ip'(y - x)\. (6.33) 

The reason for the non-existence of first intégrais is that it is impossible to eliminate 

any of the arbitrary functions tptip (each together with its derivatives) between (6.33), 

p = -x[p°(y + x) 4- iP"(y ~ *)], (6-34) 

and 

q = -x[ip"{y + x) - 1>"(y - x)\ + <ff(y 4 x) + i>'(y - x); (6.35) 

while from 

r = -W'{y + x) + f(y ~ x)} - x\v"'{y + x) - ^ '"(y - x)] 

and 

t = -xW"{y 4- x) - ip'"{y - x)} + <pu{y + x) -1- if>"[y - x) 

we have 

r - t = 2[<f/'{y + x) + ip"(y-x)]t 

which together with (6.34) gives precisely (6.32) - that is, <p and ip may be eliminated 

together, yielding the proposed differential équation, but not separately, which is what 

would provide the existence of first intégrais. 1 1 6 Sirnilarly. it is possible to eliminate 

n 6 I t is possible to eliminate ip and tp separately using the total differentials dp and dq, but thèse 
differentials are of second order, and so are the resulting équations, which are the closest one can have 
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tp between (6.31) and its first-order differentials - thus arriving at (6.30) - but to 

elirninate tp it is necessary to use second-order differentials. 

Lacroix's trigger for thèse reflections was alrnost certainly [Condorcet Î770\. That 

is probably why Lacroix [Traité, IL 546] says that this issue, "l'un des plus importans 

de la théorie des équations différentielles partielles, n'a pas encore été suffisamment 

éclairci, du moins dans tous les traités qui ont paru jusqu'à ce j o u r " l l 7 : a likely allusion 

to [Condorcet 1770], which is neither a treatise nor very clear. 1 1 8 In his "Compte rendu 

[...] des progrès que les mathématiques ont faits depuis 1789 [...]" (appendix B) Lacroix 

would repeat this claim for priority in publication, in a paragraph (page 396) that was 

not included in [Delambre 1810]. 

Lacroix proceeds to clarify the issue, examining the possibility of a second-order 

partial differential équation being derived from a primitive équation with two arbitrary 

functions [Lacroix Traité, II, 549-553]: if U = 0 is a primitive équation in x,y and z, 

and if it is differentiated to the second order, we have six équations 

£, = 0, ^ = 0 . ^ = 0 , 
dx ay 

(6.36) 

dx2 dxdy ' dy2 

so that in general only five quantities may be eliminated; however, if U includes two ar

bitrary functions (p(t),ip(u), thèse différentiations introduce four new quantities (^'(t), 

tp"{t), ip'(u), and I/J"(U)), so that we have in total six quantities to eliminate. More 

generally, if we have a primitive équation with two independent variables and if the 

differenti at io ris are carried up to order n, we get ( n + 1K"+ 2) équations; and if there are 

m arbitrary functions, each différentiation introduces m quantities, so that there are 

m(n + 1) quantities to eliminate at order n; the conclusion is that in the worst case 

scenario it is necessary to have m(n + 1) < ( r a + 1 ^" + 2 ) ; that is n > 2m - 2; in other 

words, the différent iat ions must be carried up to order 2m — 1. In the case of three 

independent variables, we must have ( n + 1 ) ( 7 1 ^ 2 } ( r i + 3 ) < ( n - m - f l ) ( n - m + 2 ) ( r a - m + 3 ) . 

Of course, in many situations there are nice peculiarities in the équations which 

allow for simultaneous éliminations, so that some lower order is sufficierit. Lacroix 

[Traité, II, 552-555] examines in particular those situations in which the arbitrary 

functions have the saine argument (u = t above): holding that argument constant 

allows to treat ail the arbitrary functions as constants, which obviously simplifies the 

élimination procedure. 

to first intégrais [Lacroix Traité, 548-549]. 
1 1 7 "one of the most important in the theory of partial differential équations, has not yet been clarified 

enough, at least in the treatises published so far" 
l i 8 W i t h a safeguard about the possibility that Condorcet's unpublished treatise mìght address the 

subject? In 1798 Lacroix might know its beginning (he knew it in 1810), but he certainly did not 
know yet the whole manuscript (see footnote 86 above). 
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The fact that from (6.36) it is possible to eliminate five constants motivâtes the 

considération of complete intégrais, that is, intégrais containing arbitrary constants 

instead of arbitrary fmictions (see also section 6.2.2.2). More precisely, in the case 

of two independent variables an n-th partial differential équation may resuit from the 

élimination of (n+lì(n+2) _ i constants in a primitive équation. 

Lacroix [Traité, II, 555-556] remarks that this does not solve ali the difhculties with 

élimination, a remark that in fact goes back to [Lagrange 1774 > § 67], and which results 

from the conclusion that a first complete integrai must contain two arbitrary constants, 

a second complete integrai must contain five arbitrary constants (i.e., three more than 

a first complete integrai), a third integrai must contain nine arbitrary constants (four 

more than a second complete integrai), and so on . 1 1 9 The trouble is that it is then 

necessary to be able to eliminate three constants to go from the second integrai to a 

first integrai (and worse, to eliminate four constants to go from the third integrai to 

a second integrai), which is generally not possible. Therefore, there are second-order 

partial differential équations that do not possess complete first intégrais. 

Naturally, the relationship between complete and general intégrais of second-order 

partial differential équations is an extension of the relationship between primitive équa

tions of first-order équations containing two arbitrary constants and those containing 

one arbitrary function (page 234 above). A general first integrai is obtained from a 

complete first integrai exactly in the same way, since as seen just above a complete first 

integrai contains two arbitrary constants, and a general first integrai contains one ar

bitrary function. As for second intégrais, a complete one U = 0 contains five arbitrary 

constants, a,b,a! ,b',c', which may be regarded as variables as long as 

dz , dz „ dz , , dz „ . dz , . 
-rda + —db + —da' + — db' + -j-dc' = 0 
da db da' dfx de 

J^+f^+^ + jy+ = 
da db da' do de 

da db da' db' de 

this means that there are three équations to determine five (arbitrary) quantities, so 

that two of these may be regarded as (arbitrary) functions of the other three: 

a = <p{a',b',c'), b = ip{a',b',,c!); 

1 1 9 This must be because it would be undesirable to sever the ties between first integrai and single 
integration, second integrai and double integration, etc. Otherwise, the stress on élimination instead 
of integration might allow to consider a first integrai of a second-order differential équation in three 
variables (with primitive équation U = 0) as the result of eliminating two of the five constants in 
U — 0 using ^~ = 0 and ^~ = 0, so that it would contain three arbitrary constants; a second 
integrai of third-order differential équation in three variables would likcwise contain seven arbitrary 
constants, and a first integrai of such an équation would contain four arbitrary constants (because 
the six équations (6.36) would permit the élimination of five of the nine arbitrary constants in the 
primitive équation U — 0, or because the three second-order differentials of the primitive équation 
would permit the élimination of three constants from a second integrai); and so on. 
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in practice this is even more complicated than ifcs first-order analogue, and too compli-

cated to be useful [Lacroix Traité, IL 557-559; Lagrange 1774, § 65-66]. 

6.2.2.4 Particular solutions of partial differential équations 

As has already been mentioned, Lacroix does not address particular solutions in the 

section on first-order partial differential équations. He only treats the issue (quite 

briefiy) in the section on second- and higher-order équations [Lacroix Traité, II, 559-

563). This location seems much more a resuit of the late introduction of complete 

intégrais, rather than some désire for generality: most of thèse nearly four pages are 

dedicated to particular solutions of first-order partial differential équations. 

The order "theory of general/complete intégrais" —* "particular solutions" reflects 

(voluntarily?) the historical order: singular solutions of ordinary differential équations 

had appeared spontaneously, as a paradox to be solved (see section 6.1.2.1); while sin

gular solutions of partial differential équations had appeared only in [Lagrange 1774], 

not as a problem but rather as a conséquence of the very theory which explained them. 

This is well expressed in Lacroix's introduction of them: 

"La théorie que nous venons d'exposer sur les intégrales des équations 

différentielles partielles [intégrales complètes et intégrales générales], mon

tre que ce genre d'équations a aussi ses solutions particulières" 1 2 0 [Lacroix 

Traité, IL 559]. 

Naturally. the présentation of thèse particular solutions is Lagrangian. If U = 0 (U 

containing two arbitrary constants a, b) is the complete integral of a first-order partial 

differential équation, according to Lacroix ail the possibles ways of satisfying that given 

équation are comprised in the System 

dU dU 
U = 0, — da+— db = Q. 

da db 

The general integral is obtained by putting b = (p(a) (and eliminating a) - see page 

234; but one can also put 

da do 

and eliminate a and b: the resuit, containing no more arbitrary constants, is "the most 

particular" solution of the differential équation. Lacroix's single example [Traité, II. 

560-561] is taken from [Lagrange 1774, § 42]. 

But the procédure that Lacroix gives for obtaining particular solutions directly 

from the differential équations is taken from [Legendre 1790]. It is of course a develop-

ment of what he had given for second- and higher-order ordinary differential équations 

1 2 0 "The theory which we hâve just set forth on intégrais of partial differential équations [complete 
and general intégrais], shows that that kind of équations also havc particular solutions" 
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(see section 6.2.1.3). If the given partial differential equation is of first order, its d'-
differential (that is, its differential relative to the arbitrary constants appearing in its 
complete integral 1 2 1) is of the form 

Pd'~ + Qd'^-rRd'z = 0. 
dx dy 

which can be transformed into 

dd'z ^dd'z n P— + Q— + Rd'z = 0, 
dx dy 

a first-order partial differential equation in d'z; unless P = 0 and Q = 0, this equation 
implies an expression for d'z containing an arbitrary function, which in turn implies 
a value for z too general for a particular integral; thus the particular solution is ob
tained by combining P = 0 and Q = 0 with the given partial differential equation 
[Lacroix Traité, II, 561-562], 

Lacroix's treatment of particular solutions of second-order partial differential equa
tions amounts to two short paragraphs [Traité, II, 561. 563] indicating generalizations 
of the theory and the procedure above. 

6.2.3 Geometrical connections 

6.2.3.1 Geometrical interpretation of particular solutions and complete 
integrals 

It may be surprising at first to notice how little space Lacroix devotes in the second vol
ume of his Traité to the geometrical interpretation of particular solutions and complete 
integrals of differential equations in two variables. 

For first-order differential equations in two variables there is only §608 [Lacroix 
Traité, II, 305-307], half of which is occupied with an example; Euler's problem of the 
curves whose normals through a given point are all equal (see pages 181-182 above), 
a problem which Lacroix [Traité, II, 260-261, 265] had already addressed simply as 
the equation ydx — xdy = n-^/dx2 + dy2, without any geometrical motivation. Now 
Lacroix notes that the singular solution is a circle tangent to the straight lines which 
comprise the complete integral, and remarks that this relation is general: particular 
solutions give envelopes of the curves corresponding to complete integrals. In fact, 1 -
a differential equation provides information precisely about the direction of tangents, 
which are shared with the envelope; and 2 - the procedure for obtaining the equation of 
the envelope (given in chapter 4 of the first volume) is the same as that for obtaining the 
particular solution from the complete integral. Geometrical considerations also permit 
to arrive at Lagrange's rule for obtaining particular solutions directly (^f = | ) . 

1 2 1Legendre (who as already mentioned, called "complete integral" one with an arbitrary function) 
considered here instead the variation 6 relative to the arbitrary function [Legendre 1790, 235-236]-
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The geometrical interprétation of particular solutions of higher-order équations is 

mentioned even more succinctly [Lacroix Tratte, II, 418]. The particular integrai stili 

belongs to a curve enveloping the curves of the complete integrai, but with a higher 

order of contact (equal to the order of the équation). 

Perhaps the reason for this conciseness is that Lacroix had already paid enough 

attention to envelopes of families of curves in the first volume [Lacroix Traité, I, 427-

434] (see the end of section 4.2.1,2). It is enough in the second volume to rernark the 

connection. 

Apart from the conciseness, it is interesting to notice the séparation between the 

analytical and geometrical versions of the solutions of differential équations: the geo

metrical interprétation appears in the chapter on differential geometry, and in the 

section on geometrical construction of first-order differential équations, both clearly 

separated from the analytical development of the theory 1 2 2 . This séparation is quite 

consistent with Lacroix's ideas about geometrical considérations as depictions of ana

lytical procédures (pages 88 and 104). 

Much more surprising than this conciseness is the absence of even a remark on 

the geometrical interprétation of particular solutions, complete intégrais and general 

intégrais of partial differential équations. The study of envelopes of families of surfaces 

in the first volume does not compensate the lack of geometrical versions for thèse 

concepts (which are not that simple to understand). The fact that in the second édition 

Lacroix supplied this interprétation [Lacroix Traité, 2nd ed, II, 682-685] supports the 

verdict that this absence is a flaw (a serions one) in the first édition. 

6.2.3.2 Construction of differential équations in two variables 

One of the sections in the chapter on integration of differential équations in two vari

ables is entitled "De la construction géométrique des équations différentielles du premier 

o rdre" 1 2 3 [Lacroix Traité, II, 296-307]. This section is clearly divided into three parts, 

the first being the only one effectively dedicated to construction of differential équa

tions: the third part [Lacroix Traité, II, 305-307], on the geometrical interprétation of 

particular solutions, was already mentioned above; the second part [Lacroix Traité, II, 

299-305] is dedicated to the problem of trajectories (given a one-parameter family a 

curves, to determine a curve that intersects ali the given curves in a given angle), which 

seems to be essentially an example of a geometrical problem solved by integration of a 

differential équation. 

As for the first part, it appears to have a mainly historical interest: 

"Dans les premiers tems on chercha à déterminer par les aires ou même par 

l 2 2 T h e case of higher-order équations is an exception: the analytical study of their particular solu
tions is accompanied by the very short mention of their geometrical interprétation; perhaps because 
the section in which this is included is assumedly a miscellany ("General reflections on differential 
équations and transcendents" ) 

1 2 3 "On the geometrical construction of first-order differential équations" 
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les ares de quelques courbes connues. l'ordonnée de la courbe demandée; 

depuis on a laissé ees coristructions de cóté, parce que, quelqu'élégantes 

qu'elles fussent dans la théorie, elles étoient toujours moins commodes et 

sur-tout moins exactes dans la pratique, que les formules approximatives 

qui ont pris leur place." 1 2 4 [Lacroix Traite, II, 296] 

After remarking that usually ("en general") differential equations can only be con-

structed once their variables are separated, 1 2 0 Lacroix gives a construction of = X 

(where X is a function of x) which requires the construction of the logarithmic curve 1 2 6 

and the quadrature of ~ (m is a constant which may be supposed equal to 1) 

[Lacroix Traite, II. 297-298). This is a general i zat ion (possibly by Lacroix) of Jacob 

Bernoulli's resolution [1696] of an already generalized versión of de Beaune's problem: 

given a curve, to find another where the ratio of the subtangent to the ordinate is equal 

to the ratio of a constant line m to the sum or difference of the ordinates of the two 

curves, i.e. ^ = Lacroix [Traite, II, 298-299] duly presents also this application. 

In the table of contents Lacroix [Traite, II, vi] cites both ¡Jac. Bernoulli 1696] and 

[Joh. Bernoulli 1694} f ° r this section, but does not use the matter of the latter (a 

method for constructing non-separable equations; see section 6.1.3.1). Three memoirs 

of Euler are also cited; two on orthogonal trajectories (the sources for the second part); 

and one on construction of differential equations using tractorial motion - something 

that Lacroix [Traite, II, 299] quickly dismisses, as being related to mechanics, rather 

than geometry. 

Curiously enough, the most interesting constructions of differential equations in 

two variables are not in this section. Rather, they oceur in the sections on approxima-

tion of solutions of first- and second-order differential equations (see section 5.2.4), in 

awkwardly placed articles on the "possibility" of those equations [Lacroix Traite, II, 

287, 351-352]. These constructions are geometrical counterparts (depictions) of Euler's 

"general method" for differential equations. A first-order differential equation gives for 

each point the valué of ^ , that is, the slope of the tangent to the curve in that point; 

starting at a point M, one draws the straight line TMM', such that the tangent of the 

angle M'MQ (where MQ//AP) is the valué of & calculated using the abscissa AP 

and the ordinate PM; next one takes a point P' "infinitely cióse to P " , and draws the 

straight line T'M'M" in the same way; carrying this on one gets a polygon which will 

be as closer to the desired curve as the more sides it has. Lacroix concludes from this 

construction not only that all first-order equations in two variables are "possible" (a 

1 2 4 "In the early period [of the integral calculus] it was sought to determine the ordinate of the 
required curve by the áreas or even by the arc-lengths of some known curves; later these constructions 
were abandoned because, however elegant they might be in theory. they were always less convenient 
and especially less precise in practice than the approximation formulas which took their place." 

l 2 5 I n a sentence added in the errata. Lacroix {Traite, II, 730] explains that this is why in the writings 
of the early analysts who dealt with integral calculus "to construct a differential equation :' is often 
the same as to intégrate it or to sepárate its variables. 

1 2 6 Lacroix suggests a construction by points, or the use of the asymptotic spaces of the hyperbola. 

243 



A V F y — h 

conclusion drawn also from the analytical version of the method) but also that each 

differential équation represents an infìnity of curves, since the point M is taken at will. 

In the case of a second-order équation, only the second-order coefficient is 

determined; tins rneans that the terms of the approximating séries ace of degree at 

least two, namely of the form Yi = Y + Y't -f- V ' y . Thus. instead of having tangent 

straight Unes one has osculating parabolas. Also, the first parabola M M ' N has two 

arbitrary éléments instead of one. so that in order to draw one needs to fix not only M 

but also either another point in the parabola or the slope of its tangent at M (i.e., the 

value of Y); next one takes an "infmitely close" point P ' , which détermines the values 

of Vi = P'M' and Y( = Y' + Y"t (where t = P P ' ) , and therefore the second parabola 

M'M"N'\ naturally the process is carried on, and the curve obtained by assemblage 

of the parabolas will be the closer to the required curve as the points P,P',P", etc. 

are closer to each other . 1 2 7 Arguing that it is easy to extend this construction to any 

order, Lacroix [Traité, II. 352] concludes that differential équations in two variables, 

"qui sont toujours possibles" 1 2 8, represent an infìnity of curves. 

What is the purpose of thèse constructions? Certainly not historical, like that of 

Bernoullrs mentioned above. Possibly practical: providing graphical approximations. 

But the text suggests only theoretical purposes: showing the possibility and infìnity 

of solutions. Their location also suggests purposes similar to those of the geometrica! 

illustration of Euler's "general method" for approximation of explicit functions - only 

much less developed, as the method is much less developed for differential équations; 

and the purpose of that was clearly theoretical (sections 5.2.2-5.2.3). 1 2 9 Another very 

1 2 7 A n alternative construction, unrelated to Euler's "general method" and yielding a polygon instead 
of an assemblage of parabolas, is relegated to a footnote. 

1 2 8 "which are atways possible" 
1 2 9 I n the second édition Lacroix is more direct in dismissing any usefulness of thèse constructions 

for approximation, and in explaining that they serve to prove the "reality1' of differential équations 
(sec section 9.5.3); in the second édition he also seems less convinced of the practical usefulness of the 
analytical version of Euler's "general method" for approximating differential équations (see section 

32 
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likely purpose is that of preparing the reader for the construction of partial differential 

équations. 

6.2.3.3 Construction of differential équations in three variables and arbi-

trary functions 

Chapter 4 of the second volume includes a section "on the geometrical construction 

of partial differential équations, and on the détermination of the arbitrary functions 

contained in their intégrais" [Lacroix Traité, II, 608-624). Naturally, Monge and Arbo

gast are the main influences (more specificalty, according to the table of contents, the 

memoirs [Monge 1770-1773; 1773a] and the dissertation [Arbogast 1791]); but that of 

Clairaut [1740] is also very clear ([Clairaut 1740] appears in the table of contents for 

the first section of the same chapter). 

The first construction presented by Lacroix [Traité, II, 608-609] is an analogue of 

the construction of first-order differential équations in two variables based on Euler's 

general approximation inethod; we might say it combines that construction with the 

vertical-section approach présent in [Clairaut 1740] and several of Arbogaste construc

tions. Given a first-order partial differential équation in three variables V = 0, Lacroix 

considers the value of ^ as a function of x,y,z, and which are indeterminate; he 

then takes an arbitrary curve XMm on a plane parallel to the x,z plane BAD, and 

regards it as a section of the solution surface (along which, of course, y is constant 

and z and j j | are functions of x); for each point M (or m) of that section he draws 

a straight line MN (resp. mn) on a plane parallel to the y,z plane CAD, having as 

slope the corresponding value of ^ ; then a plane xNn, parallel to XMm and very 

close to it. will intersect thèse straight Unes in points N,n which may be regarded as 

belonging to the surface, since the closer the two planes XMm,xNn the less xNn 

will differ from the section "parallel and consecutive" to XMm; carrying this on one 

9.4.2). The third and later éditions of [Lacroix 1802a] also suggest non-approximative purposes (see 
section 8.8.2). 
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obtains the desired surface. Thus, concludes Lacroix, the first section XMm is in fact 

entirely arbitrary. and possibly not even continuous (see below). 

Lacroix also uses a similar construction to show the différence in indeterminacy 

between partial and total differential équations 1 3 0 . If we bave one of the latter, the 

differential coefficients ^ and J will both be given, independently of each other, and 

only a first point M (not a first section XMm) may be taken arbitrarify: the differential 

équation ~ = p allows to construct the point m , and the équation ^ = q to construct 

the point iV; then the point n may be constructed using the former équation, starting at 

N, or the latter équation, starting at m. For both constructions to give the same point 

n one needs an additional condition (which ainmounts to the condition of integrability 

of the original total differential équation): ^ — ^ (cf. with [Clairaut Î740], section 

6.1.3.1). But this is a parenthesis in the section - the rest of it is entirely dedicated to 

partial differential équations. 

Thèse two constructions are in a certain sensé the only constructions of differential 

équations in this section; true, Lacroix présents a few more constructions, but of inté

grais of differential équations - with some proofs that the constructed surface satisfies 

the respective équation. 

The first of thèse is the construction [Lacroix Traité, II, 610-611] of the integrai 

olPp-ì-Qq = 0 (where P and Q are functions of x and y only) - namely z = <p(U) 

(where U is a function of x and y such that dU = uPdy — pQ dx, and <p is an arbitrary 

function). This construction had appeared as "Problem I" in [Monge 1773a, 269-271]. 

It is a point-wise construction (i.e., for each point M' on the x,y plane BAC, or 

equivalently for each set of x, y coordinates, we wish to find the 2-ordinate M'M of the 

corresponding point M of the surface). Of course the surface is indeterminate, unless 

we force it to pass through a given curve NR (with projections N'R' and N"R"). The 

basic idea is that U constant makes z constant: if we draw a curve M'N' of équation 

C/ = a o n the x, y plane, and if we intersect the cylindrical surface raised on it with the 

1 3 0 T h a t is, total differential équations that satisfy the ìntegmbility condition: Lacroix assumes that 
theîr construction, like that of partial differential équations, results in a surface 
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desired surface, we get a curve MNUI of constant z-ordinate z = b(= <p(a)); the value 

of b may be easily obtained by intersecting the curve M'N' with the projection N'R' 

of NR, and inspecting the 2-ordinate QN" of the intersection N; M'M will be equal 

to QN". 

The proof [Lacroix Traité, IL 611-612] that the surface thus constructed effectively 

satisfies the équation Pp+Qq = 0 is also taken frorn Monge [1773a, 271-272]: consider 

the tangents MX' and MY' to the sections through M parallel to the x, z plane and 

to the y, z plane, respectively; then M'X' = | and M'Y' = ~; consider also M'N' and 

MN as above; the "élément" Mn of MN is in the tangent plane X'MY', and because 

MN is parallel to the plane BAC, Mn is also parallel to the intersection X'Y' of BAC 

with X'MY'; therefore, M'n' is also parallel to Y'X' and M'm' : m'n' :: M'Y' : M'X'; 

now, if m'n' is dx, then M'm' is -dy,i32 taken along the curve M'N' of équation U = a 

(and therefore P — Q dx = 0); combining the latter with = — ̂  taken from the 

proportion above gives P p + Qq = 0, as required. 

The construction [Lacroix Traité, II, 612-613] of the integral V = ^(c7) of the 

"gênerai équation" Pp + Qq = R (P,Q,R,U and V are functions of x,y and z) is 

also taken from Monge [1773a, 285-288]. It is also based on the idea that U = a 

constant makes V = b constant; but it is more complicated, particularly so because the 

intersection of U = a with V = b must also intersect a given curve NR (through which 

the constructed surface is supposes to pass). The construction given by Arbogast 

[1791, 30-33] was much simpler, because Arbogast disregarded this condition: the 

required surface is simply the "continued intersection" of the surfaces of équations 

U = a and V = b. Lacroix does not attempt to report Monge's proof [1773a, 291-293] 

of the validity of this construction; instead, he invokes its adequacy to the integral, 

and Monge's memoir. 

1 3 l T h e figure is misleading, as MN is not necessarily straight. 
1 3 2 Lacroix says that M'm' is dy, keeps all terms of the proportion apparently positive, and only 

argues about signs when reverting to fractional notation - that is. when abandoning geometry and 
turning to analysis. 
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One may wonder why does Lacroix give a construction (probably his own) for "any" 

first-order partial differential équation - dìrectly from the équation - and then two 

constructions for less general équations (first-degree) - and which need their intégrais? 

The reason is probably the same as why he prefers Monge's construction to Arbogast ;s: 

the initial condition should be as general as possible - that is, one should be able to 

determine the surface that satisfies the équation and passes through any given curve 

of double curvature; the initial condition in his construction of first-order équations is 

a plane curve, and therefore not general enough. 

As we would expect, Lacroix uses thèse constructions also to argue for the admiss-

ability of discontinuons functions. When giving the first construction above he remarks 

that the first section XM is entirely arbitrary, and it is not even necessary for it to 

be subject to the law of continuity, that is, it does not nave to happen "que toutes ses 

parties puissent être décrites par une même loi, ou dépendent de la même équation" 1 3 3 

[Lacroix Traité. IL 609]. He h ad mentioned that the differential coefficient ^ (which 

may appear in the équation, and therefore in the expression for j^ ) represents the slope 

of the tangent to XM: but he seems completely unconcerned about whether ^ exists 

or not in the case of discontinuons XM. 

In another article [Traité, II, 610] which seems to be about the same issue of discon-

tinuity, Lacroix discusses the équation p = î(x,y,z). If he were to follow exactly the 

construction he had just given (taking in account that now he cannot have an expression 

for q = Lacroix would start by fixing an arbitrary constant-rc section MNY (see 

figure in page 245) and then construct the constant-y sections XMm, xNn; instead, 

Lacroix starts by particularizing a value PM' for y in the équation ^ = f(x,y,z) and 

using it to construct the corresponding constant-y section XM (for which he must fix 

some arbitrary point); then he does the same with a very similar value FA'"' for y (for 

which he must also fix some other arbitrary point); and so on. The only real différence 

is that with this order it is clearer that the constant-a; sections may be completely 

random, and quite discontinuons. Of course, the fact that ^ does not occur in the 

équation is important for this. But that is not such a particular case as it may seem: 

Lacroix includes a footnote to say that the équation Pp-\-Qq = R (that is, any quasi-

linear first-order équation) may be reduced to this form, using a change of variables: 

it is reduced to ^ = |*, if y is replaced by a new variable v such that P ^ + Q ^ = 0, 

which is of course possible 1 3 4 . This is a very interesting argument, but once again it 

overlooks the issue of the existence of q (assumed in the équation P p + Qq = R) when 

the constant-x sections (which correspond to functions of y) are discontinuons. 

Lacroix refers more directly to the controversa' on dis continuo us functions apropos of 

second-order partial differential équations [Traité, II, 618-620]. He gives a construction 

for the integrai z = ip(x) + ip(y) of = 0, and a proof that it satisfies the differential 

1 3 3 "that ail its parts may be described by one single law, or dépend of the same équation" 
î 3 4 Provided that P and Q are well behaved; but around 1800 they surely were well behaved: discon

tinuons functions were conceived of only in solutions, expressing initial conditions. 
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équation (which, predictably, assumes the existence of ^ | p 1 3 5 ) . The reason for the 

choice of this équation is that the vibrating-string équation r = aH is transformed into 

= 0 by putting u = x + ay and v = x - ay (so that its integral is z = <p(x + ay) + 

tj)(x - ay)). Lacroix addresses very quickly the controversy itself, mentioning that it 

opposed Euler to d'Alembert, but not giving any hint at all of d'Alembert's arguments 

(nor even of Euler's); he simply expresses his adhérence to Arbogast's position, and to 

his reasonings, "analogues à ceux que je viens de rapporter" 1 3 6 - this is not the most 

encyclopédiste passage in Lacroix's Traité. Apparently he thought that the issue was 

settled, and the détails were no longer relevant. 1 3 7 

6.2.4 Total differential équations not satisfying the conditions 

of integrability 

6.2.4.1 The memoir of 1790 

The first sign of interest shown by Lacroix on équations in three variables not satis

fying the conditions of integrability appears in the final pages of the memoir that he 

submitted to the Paris Academy in August 1790 (see appendix A.2, particularly pages 

387 ff.). 

Naturally, Lacroix follows Monge's approach. He does so much more faithfully 

(much more geometrically) than he would later do in his Traité. However, unlike 

Monge, he focuses mainly on first-order (quasi-)linear équations, elaborating on their 

geometrical interprétation: he assumes that any first-order (quasi-)linear ordinary dif

ferential équation in three variables is the resuit of the élimination of p and q between 

two partial differential équations; in good Mongean fashion, thèse partial differential 

équations represent families of surfaces, and in case there are surfaces common to these 

families, they satisfy the ordinary équation (which in turn satisfies the condition of in

tegrability); in case there are not common surfaces, the ordinary équation represents 

the ciirves of contact between the surfaces of the two families. For higher-degree équa

tions, in spite of Monge's results, Lacroix cannot give a full picture of the solutions; 

nor can he do it for higher-order équations, wliose situation is even less elear. 

The issue that Lacroix wants to address is the détermination of the solutions of these 

équations that are algebraic. But he does not do much about it: Monge had related the 

integration of M dz + Pdx + Qdy = 0 to those of Mp + P = 0 and Mq + Q = 0; Lacroix 

remarks that other Systems of (quasi-)linear partial differential équations will do, as 

long as they produce Mdz + Pdx + Qdy = 0 by combination with dz = pdx 4- qdy, 

and that those other équations may be chosen so as to have algebraic intégrais. 

1 3 5 I t consists in verifying that p - does not vary with y, so that = - 0. 
1 3 6"analogous to those I have just reported" 
1 3 'This changed a little in the second édition, because of Laplace (see section 9.5.4). 
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6.2.4.2 The analytical theory in Lacroix's Traité 

Lacroix could not fail to treat thèse équations in his Traité. Already in the first volume, 

in the section on "difierentiation of équations". he uses a couple of examples in which 

variables disappear by differentiation to remark that 

"il n'y a point d'équation différentielle qu'on puisse regarder comme réelle

ment absurde ou insignifiante; il faut seulement entendre qu'une équation 

différentielle ne se rapporte pas toujours à une seule équation primitive, et 

que pour y satisfaire il faut en supposer plusieurs, qui quelquefois renfer

meront de nouvelles variables" 1 3 8 [Lacroix Traité, I. 167]. 

He is more spécifie in the second volume, when addressing the conditions of integrability 

for équations in more than two variables [Traité, II. 457]: given a differential équation 

in three variables, we cannot always assume that one of the variables is a function 

of the others; but Monge has shown that those in which this does not happen are 

not absurd. rather they belong to an infinity of curves of double curvature, instead of 

curved surfaces. 

Lacroix addresses then only those that do satisfy the conditions, leaving "total 

differential équations that do not satisfy the integrability conditions" for their own 

section [Traité, II, 624^654], the last one of the large chapter 4 of the second volume, 

on "intégration of functions of two or more variables" (which is understandable, even if 

they do in fact usually refer to two functions of one variable). This section is roughly 

divided in two halves, in typical Lacroix fashion: in the first half he gives a purely 

analytical theory and in the second he gives the geometrical interprétation. 

As with Paoli [1792], Lacroix's first idea is that if we have a differential équation 

of the form 

Pdx 4- Qdy + Rdz = 0 (6.37) 

which does not satisfy the integrability condition 

P f - R f + R f „ Q f + Q

d ± - P f = ,, (6.38) 
ay dy dx dx dz dz 

we can change it into a differential équation in two variables only (and thus necessarily 

integrable) by establishing some relation between x, y and z. For instance, ~ _ ~ 

j(s-t)+j/(y-fr) ^ o e s n o ^ s a t ^ s i y (6.38), unless a = b = 0; but if we put y = x, it becomes 

£ = ra- w h o s e i n t e § r a l * * - c = C{2x -a-b); thus, £ = is 

satisfied by the System 

y = x, z - c = C(2x - a-b). 

1 3 8 "there are absolutely no differential équations that we may regard as absurd or meaningless; it 
must sirnply be understood that a differential équation does not always refer to a single primitive 
équation, and to satisfy it we must assume several, which sometirnes will contain ucw variables" 
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An interesting détail hère is that Lacroix, unlike Condorcet, Monge, Paoli, or Nieuport, 

attributes this technique to Newton. In fact, Newton had given it as the solution to the 

"third case" (équations involving fluxions of three or more quantities) of the "second 

problem" (given an équation containing fluxions, to find the relation between their 

fluents) of his Method of Fluxions [Newton Fluxions, 83]. 

After remarking the serious inconvenience in this technique that one would need to 

perform a separate integration for each particular relation between x,y and z, Lacroix 

[Traité, II, 625-626] gives Monge's procedure for integrating (6.37), which introduces 

an arbitrary function in the solution (thus solving the inconvenience). Lacroix's version 

of this procedure is presented as an adaptation of the method for integrating équations 

that do satisfy (6.38) - which seems clearer and more naturai than the version in 

[Monge 1784c]. 

Naturally Lacroix refers the problem of determining algebraic solutions. He would 

even mention this référence in his "Compte rendu [...] des progrès que les mathématiques 

ont faits depuis 1789 [...]" (appendix B, page 395). Nevertheless, it is only a short 

référence - one article [Traité, II, 626-627]. The most interesting point made is the 

possibility of choosing the argument of the arbitrary function. 

After some remarks on équations in more that three variables, Lacroix proceeds to 

higher-degree équations. He reports Monge's first example dz2 = m2(dx2+dy2) [1784c, 

506-509] (without the geometrical considérations) and its gêneralization F ^ ) = 0 

[1784c, 515-516]. Hère solutions with three arbitrary constants are obtained easily, and 

then used to obtain solutions with an arbitrary function by varying the constants 1 3 9 . 

This was certainly the inspiration for what is the core of this section: the analytical 

theory of the formation of diflerential équations in three variables that do not satisfy 

the conditions of integrability [Lacroix Traité, II, 634-638]. Lacroix was clearly proud 

of it: not only he mentioned it in his "Compte rendu [...]" (appendix B, page 395), 

but he even published it in advance as [Lacroix 1798a]. 

Of course, like with ail other Fontaine-like théories of formation of particular types 

of differential équations, Lacroix starts with finite équations; since in this case the 

solutions are composed of two équations, he starts with two équations 

t; = 0 and v' = 0 (6.39) 

in three variables x, y, z. Now, in (6.39) any two variables are functions of the third one 

("and of the constants that may be found" in there); so, Lacroix differentiates (6.39), 

1 3 9 I n Monge :s version, the process of varying constants was geometrical: one was eliminateci in order 
to obtain conical surfaces out of straight lines, another was put as a function of the last one in order 
to have the vertices follow a curve, and finally differentiation was performed relative to this last one 
in order to have the characteristics and the edge of régression. 
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putting dy — pdx and dz = qdx, resulting in 

dv dv dv , dv' dv' dv' n . i n . 

dzq + Tv

p + Tx=Q

 and
 ^9+*7p +dï = 0 ; ( 6 ' 4 0 ) 

it is possible to eliminate three constants between (6.39) and (6.40), and the resuit of 

this élimination is a first-order differential équation W = 0, which does not satisfy the 

integrability conditions 1 4 0 . The équations v = 0 and v' = 0, containing three constants 

a, b, c. constitute the complete integrai of W = 0. But. as always. there are other ways 

to satisfy W = 0: the quantities a, b, c may vary instead of being constants, as long as 
dv , dv „ dv , n , dv' , dv' „ dv' , 
--da + —db + --de = 0 and —da 4- —db + —de = 0 
da db de da db de 

(so as to keep (6.40)); there are twenty-fìve ways to satisfy thèse conditions, from the 

most particular 

dv n dv n dv n du' rt dv' n dv' . A , 

to the most general 

dv , dv „ dv , rt aV , di/ „ di;' , , _ 
—da + — dò + —de = 0, —da + —-dò + — d e = 0; (6.42) 
da db de da db de 

(in [Traité, II, 635] - but not in [1798a] - Lacroix reports three other possibilities, such 

^ s = o. 1 = 0. £ = °. £ = o, ^rf6 + f r f c = 0). 

Presumably ali these possibilities, except for (6.42), correspond to particular solu

tions (in différent degrees of particularity); however, Lacroix only addresses the case 

in which the six équations (6.41) are compatible and additionally they reduce v = 0 

and v' = 0 to a single équation - in this case we have a very remarkable "particular 

solution" belonging to a curved surface. 

The general integrai comes from (6.42): putting è = (j>(d),c = tp(a), we have instead 

of W = 0 the system 

, „ dv dv , dv ,,. , dv' dv' , dv' ,,, , 

if one of the functions d)(a),ip(a) can be elimiriated along with its derivative, then we 

will have a system of three équations containing one arbitrary function - that is, a 

general integrai. 

It is compelling to compare this with Paoli's analytical theory. Not only [Paoli 1792] 

appears in the table of contents for this section. Lacroix also cites it in the text [Traité, 

II, 629] - although not in direct relation to the theory of formation of the équations 

1 , 1 0 Well, does not necessarîly satisfy them. Lacroix concèdes later that under certain conditions v = 0 
and v' = 0 may be reduced to a single équation, corresponding to a curved surface. 
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and their types of integrals. Both Paoli's and Lacroix's theories are based on what 

Lacroix called Lagrange's "general theory of integrals and particular solutions" (see 

page 395 below). But the similarities end there: in [Paoli 1792] we see solutions 

with two arbitrary constants, while Lacroix's complete integrals have three arbitrary 

constants. Paoli's theory is much more practical, arising from an integration technique, 

and unconcerned with the formation of the equations; Lacroix's theory, with all its 

similarities to the formations of other types of differential equations, seems to arise 

from a desire for systematization. It is also clear from what we have seen above that 

the direct technical source for Lacroix's theory was Monge's work and not Paoli's. 

Just after presenting the theory, Lacroix works out another example [Traite, II, 

636-638] 

(y dx - x dy)2 + (zdx-x dz)2 + (ydz - z dy)2 = rn2(dx2 -1- dy2 + dz2) 

already addressed (geometrically) by Monge [1784c, 512-514]; Lacroix's complete in

tegral corresponds to the immediate solution that occurs in Monge's example (the 

straight lines tangent to a certain sphere); in the end he manages to eliminate one of 

the arbitrary functions and arrive at a result in the form 

TJ rt dU rt SV n 

17 = 0, ~r = o, -T~K — o, 
da da£ 

where U contains the other arbitrary function. 

Lacroix concedes that his theory carries the same practical difficulties as Lagrange's 

derivation of general integrals from complete integrals for equations of orders higher 

than one (see page 239 above). But for practical purposes there is Monge's "very 

remarkable correspondence", which Lacroix procedes to report [Traite, II, 638-643], 

between the general integral 
dU 

U = 0, — = 0 
da 

of a first-order partial differential equation V = 0 and the general integral 

^ ^' da ^' da2 

of a total differential equation W = 0 obtained by eliminating p (or q) between V = 0 
dV 
dq and dz = pdx 4- qdy and then q (or y) between the result V = 0 and = 0 (or 

6.2.4.3 Geometrical considerations in Lacroix's Traité 

The articles on geometrical considerations do not bring anything new, being taken up 

mostly with examples. 

The first example leads to the geometrical interpretation in Lacroix's memoir of 
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1790: if we take two families of surfaces représentée! by first-order partial différential 
équations, and combine them with dz = pdx + q,dy, we obtain a total differential 
équation; this équation represents the curves along which the surfaces of one farnily 
touch those of the other; if the équation satisfies the integrability conditions, then there 
is a séries of surfaces common to the two surfaces, which contain the curves of contact 
[Lacroix Traité, II, 643-645]. 

The geometrical interprétation of the correspondence between partial and total 
differential équations is very short - little over half a page [Lacroix Traité, II, 649-650); 
Lacroix shows succinctly that the procedure to go from V = 0 to W = 0 (see above) 
also leads from a "limit surface" (that is, an envelope) to its edge of régression. 
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Chapter 7 

Aspects of différences and séries 

7.1 Indices 

This section is concernée! with the indexée! (subscript) notation for sequences/series, as 

in «o + 4- . . . + un 4- . . . This may seem a rather trivial subject, but the dedication of 

a section to it is justified for two reasons: one, it is completely overlooked in the bible 

on notations, [Cajori 1928-1929]; two, its use by Lacroix has caused some confusion, 

its création or its introduction in France being misattributed to him. Thus, Dhombres 

[1986, 156], quoting [Lacroix Traité, 2nd ed, I, 33], remarks that "c'est à cette occasion 

que Lacroix introduit la notation indexée A0 + A-^x 4- A2x
2 4- A3x

3 4- . . While 

Schubring [2005, 386] gives a lengthy footnote on the subject, which is worth quoting 

in full (citations of Lacroix have been adapted): 

"Standard French textbooks up to about 1800 do not give séquences of 

quantities or variables with a notation identifying the single terin of a sé

quence as part of a generally labeled séquence, for example, as as part of 

a séquence (an) with the gênerai term an. Lagrange used letters in al-

phabetic order to label éléments as part of a séquence, for example, the 

function terms in developing it into a séries as P, Q, R, and so forth or 

coefficients with A, B, C, and so forth. With such an unspecific approach, 

he was not able to label the last term of a séquence or a gênerai term. 

It is notable that Crelle shifted to indexed séries in the sections he added 

to his translation of the Théorie des fonctions analytiques, for example: 

B{, B-2 . . . , Bn or Pi, P2, P% with Pn as gênerai term (Lagrange 1823, Vol. 2, 

332 ff.). Lacroix had already used gênerai indexed quantities ai , a 2 . . . , an 

in both 1798 and 1802, but only in a narrowly restricted field of calculus: 

within intégral calculus to operate with the séquence of approximate val

ues in using approximation to détermine intégral values [Lacroix Tiuité, II, 

135ff.; 1802a, 285ff.]. Lacroix, who had studied the contemporary litera-

1 "It is at this point that Lacroix introduces the indexed notation AQ + A^x + AIT? + A 3 1 3 + . . , ! ' 
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ture intensively, may have been encouraged to introduce this usage-even 
though very partial-by the publications of the Germán school of combina-
torics, which used indexed quantities as one of their everyday tools." 

We will see that both Dhombres and Schubring were rnistaken.2 

7.1.1 índices from Leibniz to Laplace 
It is a fact that in the 18th century the most common way of naming the coefficients in 
a power series, or the terms of a (finite or infinite) sequence. was to use the alphabetic 
order. Thus, for instance, Euier argued for the possibility of expanding any function 
of z in the form A + Bz 4- Cz2 4- Dz3 4- &c, or at least Aza 4- Bz$ -V Cz1 4- Dz6 4- &c. 
[Introductio, §59]. 

Interestingly, a complaint about the insufficiency of letters occurs as early as [Leib
niz 1700, 208]: 

"literas Algebraicas indiscriminatim adhibitas non satis [sunt] útiles, quia 
ob vagam generalitatem suam non admonent mentem relationis, quam ex 
prima suppositione sua habent inter se invicem. Hinc ut nonnihil succurra-
mus defectui, solemus interdum (inprimis cum multae adhibendas sunt) in 
ordine earum subsidium quaerere"3. 

"Their order" might be a reference to the alphabetic order, or it might be a reference 
to Leibniz's occasional use of numbers in labelling suecessive points in a construction 
(for instance, iC, 2(7,3C - see page 172 above 4). But Leibniz's proposal in [1700] 
was more radical: to use "fictitious" numbers instead of letters - that is, he put the 
Índices not as subscripts, but in the place of the coefficients themselves, as in Z = 
10ir 4- 102V2 4- 103K 3 4- 104r4 4- 1055 4- &c [1700 , 207]. This allowed him to use 
determinant methods, but almost all of his work on this remained unpublished until 
rcccntly [Knobloch 1994 , 767-769]. 

Lacroix [Traite, 2nd ed, I, xxviii-xxix] saw in [Leibniz 1700] the inspiration for the 
Germán Combinatorial School5. But that group of mathematicians only flourished by 

2 It is not cornpletely clear whether Dhombres, in the sentence quoted above. means that Lacroix 
introduces the indexed notation absolutely {as in, say, "in his ftrst articie on differential calculus, 
Leibniz introduces the d notation"), or only in the context of his book ( i !in [1696\ l'Hópital introduces 
differentials as infinitely small differences"). If the latter is the case, he was not rnistaken. But the 
former seems much more likely (a few pages earlier he had remarked that Euler had not used that 
notation [Dhombres 1986, 153]). In [1988, 19] Dhombres and Pensivy were more cautious, speaking 
only of Lacroix having díffused the modern indexed notation. 

3"algebraic letters employed indiscriminately are not useful enough. as because of their vague 
generality thcy do not. remind us of the mutual relation they hold from their introduction. Henee, 
in order to mitígate somewhat this defect, sometimes (especially when there are many [letters] to be 
employed) we seek aid in their order" 

4Notice that these are not subscripts, but rather "old-style numeráis". Transcribíng to "lined 
numeráis" (more common nowadays), we would have 1C.2C,3C - but Leibniz did not mean 1 x 
C,2 x C,3 x C. 

°On the Germán Combinatorial School, see for example [Jahnke 1993]. 
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the end of the 18th century (and only in Germany). Meanwhile, as has already been 
said, most authors relied on alphabetic order - but often, especially in the "theory 
of series" 6 and in the calculus of finite differences, they resorted to other notational 
devices. For instance, Stirling [1730, 3] combined the alphabetic order with the special 
letter T for a general term, and superscript roman numerals (which we now interpret 
as primes) for the following ones: 

'Términos seriei initiales designo Uteris Alphabeti initialibus A. B, C. D ; 

&c. A est primus, B secundus, C tertius, & sic porro. Et Terminimi quemvis 
in genere denoto litera T, atque reliquos ordine succedentes eâdem litera, 
adjunctis numeris Romanis I, II, III, IV, V, VI, VII, &c. distinctionis gratia. 
Ut si T sit decimus, erit T' decimus primus, T" decimus secundus. T'" 
decimus tertius, &; sic deinceps. Et in genere quicunque Terminus definitur 
per T, succedentes definientur universaliter per T', T", T'", T , v , &c." 7 

In [Differentialis] Euler also used superscript roman numerals, with a slightly different 
meaning, and printed more clearly as roman numerals: for instance, y being a function 
of x, he called yl,yu ,ylll,ylv ,yv,... the results of substituting x-\-w, x+2u, x + 2no,x-\-
4OJ, x 4- 5CJ, . . . for a; [Euler Differentialis, I, § 2]. 

In Euler's theory of series the notion of index was fundamental, but it did not 
correspond exactly to these roman numerals; instead of representing the changes in 
a variable, indices gave the place of a term in a series: "Indices seu exponentes in 
qualibet serie vocantur numeri, qui indicant quotus quisque terminus sit in ordine: sic, 
termini primi index erit 1, secundi 2. tertius 3, &; ita porro." 8 [Euler Differentialis, I, 
§40]. For notation he used tables such as 

INDICES 

1, 2, 3, 4, 5, 6, 7, &c. 
TP, RM S 

A, B, C, D, E, F, G, kc. 

and the following example [Euler Differentialis, I, §43] is telling of the lack of corre-
e That is, the study of finite or infinite sequences and summation of finite sums or infinite series. 
7 "I denote the initial terms of the series by the initial letters of the alphabet A, B, C, D, etc. A is 

the first, B the second, C the third, and so on. And I denote an arbitrary term generally by the letter 
T with the Roman numerals I, II, III. IV. V, VI, VII, etc. attached to distinguish them. Thus if T is 
the tenth term, then V will be the eleventh , T" will the twelfth, V" will be the thirteenth, and so 
on. And in general, whatever term is defined by T, the succeeding ones will be defined universally by 
T,T",T",Tiv, etc." [Stirling 1730, Eng transi, 21] 

8 'The numbers that indicate the place of each term in order are called indices or exponents. Thus, 
the index of the first term is one, that of the second is 2, that of the third is 3, and so on.;' 
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spondence between the roman numerals and indices: 

INDICES 

1. 2, 3. 4. 5, 6, &c. 

T E R M S 

a, a\ a)1, am, a I V , a v , &c. 

Naturally. the "gênerai term : : of a séries or séquence was a fundamental concept for 

Euler also. He defined it as a function of the index, not only in [Differentialis, I, § 39], 

but as early as 1730 [Ferraro 1998, 293]. And he was able to refer to a gênerai term 

or to the last term of a séquence, although with cumbersome notations. For instance: 

in [Differentialis, II, § 105] he explains that if we have a séries with gênerai term y 

1 2 3 4 x - l x 

a + 6 - t - c + <2 + . . . . + v + y 

and the term corresponding to the index 0 is A, then v is the gênerai term of the séries 

1 2 3 4 5 x 

A + a + 6 + c + d + . . . . + u 

(and therefore Sv = Sy—y-YA, S denoting sums); we have also seen in page 150 Euler's 

use of left-hand primes ('x, rX) for penultimate values in certain flnite séquences. 

I have only noticed one occasion in which Euler extends the roman numéral super

script notation to refer to a gênerai term: as y 1 , y 1 1 , y 1 1 1 , . . . resuit from substituting 

x + w, x + 2OJ, x -f- 3to,... for x, he wrote this one time y^ for the resuit of substituting 

y + nuj for x [Euler Differentialis, I, §23]. But as far as I know this is an isolated 

occurrence, and elsewhere Euler's notations for gênerai terms were entirely separate 

from the roman numéral superscript notation. Lagrange [1759b], on the other hand, 

used a (cumbersome) version of Euler's notation to represent gênerai terms; he wrote 

y1 for "le terme qui suit y dans la suite des y" 9 , and also y m for the gênerai term ("the 

saine as y"), m being the "number that dénotes the place of the terms", and thus 

he used indifferently y1 = Ry + S or y m + I = Rym + S [1759b, §3-4]. Of course, this 

invites confusion with exponentiation, which may partially explain why the editors of 

Lagrange's Œuvres substituted yi..ym.,ym+i for y l . y m , y m + l respectively.1 0 

The introduction of the modem subscript notation for indices appears to be due 

to Laplace, in 1773. In [1774] (submitted in 1772 [Gillispie 1997, 297]), he still used 

Lagrange's notation: "si tp exprime une fonction quelconque de x, et que Ton y substitue 

9 "the term that follows y in the séquence of the y:sy' 
1 0 They dkl the same for [Lagrange 1759c]: confront (my emphases) "si ¥ exposant de y exprime 

toujours la place qui tient la particule qui parcourt l'espace y, en comptant depuis la première F" in 
[Lagrange 1759c. lst ed, 9], with "si Vindice de y exprime toujours la place qui tient la particule qui 
parcourt l'espace y, en comptant depuis la première F" in [Lagrange Œuvres, I, 55], 
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successivement au lieu de x, 1, 2, 3, &c. on formera une suite de termes dont je 

désigne par yx, celui qui répond au nombre a:"11; for double sequences (<p being a 

function of x and n), of which his "recurro-recurrent" series are a particular case, he 

used nyx [Laplace 1774, 353]. 1 2 But in his next memoir on finite difference equations 

[1773a] Laplace adopted a clearer notation, changing the right-hand superscripts into 

subscripts: 

"j'imagine la suite 

3/1, 2/2, 2/3: 3/4: 2/5 2/z, & C . 

formée suivant une loi [...] les nombres l , 2 , 3 . . . x , placés au bas des y, 

indiquent le rang qu'occupe Vy dans la suite, ou, ce qui revient au même, 

l'indice de la série" 1 3 [Laplace 1773a, 39]. 

Laplace really needed a clearer notation in this memoir, not only because of the danger 

of confusion with exponentiation 1 4, but also because he wanted to play with indices 

in different ways: for instance, using 1H, 2H, 3H for different quantities that might not 

have any relation (such as several particular integrals of a given equation [1773a. 46]), 

and H\, H2, H$... Hx for the terms of a sequence following some law [1773a, 41]. 

Indices were also an essential component of "generating functions", a tool that 

Laplace developed in [1779] and that was to be very important to him (namely being 

the analytical foundation for his Théorie analytique des probabilités [1812]). If yx is a 

function of x, then 

w = 2/0 + 2/1 • * + y 2 • t2 + y-i • t3... 4- yx • tx + yx+l - t x + l . . . + y^ • t°° 

is the generating function of the variable yx; and reciprocally, "la variable correspon

dante d'une fonction génératrice, est le coefficient de tx dans le développement de cette 

fonction suivant les puissances de t " 1 5 [Laplace 1779 , 211-212]. His first example is 

that if u is the generating function of yx, then u • tr is that of yx-r - which should be 

enough to show the central role of index manipulation. 

It must be remarked that, after Laplace had introduced the subscript notation, 

it was used by Lagrange for recurrent series /finite difference equations [1775; 1792-

1 1 "if ip expresses a function whatsoever of x, and if we substitute successively 1, 2, 3, &c. for x, we 
will form a sequence of terms in which I designate by yx the one corresponding to the number x" 

1 2 I n this matter, the editors of Laplace's Œuvres Complètes (which are not complete), were more 
faithful than those of Lagrange's - they kept these notations. 

1 3 "I imagine the sequence 

Vi, V2, Stìi 1/4, ^5 Vxi Re

formed following a law [.,.] the numbers 1 , 2 . 3 . . . x, placed in the lower part of the y, indicate the 

rank occupied by the y in the sequence, or, equivalently, the index of the series'" 
1 4 For instance, in [Laplace 1773a, 57] we see p1 and V ; meaning p and V raised to the xth power. 
1 5 "the variable corresponding to a generating function is the coefficient of tx in the expansion of 

that function in powers of t" 
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1193). True, he did not use it in [Fonctions] nor in [Calcul], where power séries are 

fundamental. But the fact is that in thèse books he did not work with combinatori al 

properties of the indices of those power séries. Therefore he could use what around 

1800 was stili simpler notations: alphabetical order, and superscript roman numerals 

similar to those used by Stirling - whence our prime notation for derivatives. 

It is also true that even in works on finite différences Laplace's notation was not 

universal. Bossut, in the introduction on finite différences to his treatise on the calculus, 

used only fx. x, x', x", x'", x{V for successive values of the variable [1798, I, 7], and a 

traditional functional notation ip:(x) when, addressing récurrent séquences, he felt the 

need for a general terni (here indexed by x, of course) [1798, I, 76]. 

But in advanced (or non purely introductory) works a more systematic form of 

referrìng to general terms was required. leading to notations more or less équivalent 

to Laplace's. Prony wrote z~",z~',z° (or z), z' ,z", z'",zlv ,zv for successive terms, 

and z^ (sometimes zn) for the general terni, as well as z^71-^, z^n~2">, with obvious 

meanings [1795a, II, 1-2].16 The Italian Anton Mario Lorgna, in his memoir [1786-

87] developing the analogy between différent iati on and exponentiation that had been 

proposed by Lagrange [1772a], wrote y0', y1', y2' &c. for the successive values of y, and 

yx' for the general term [Lorgna 1786-87, 412-413]. This notation was meant to keep a 

distinction, but also an analogy, with the powers y0, y1, y2,. • •, yx\ he also wrote dx', AX/ 

for the iterated operators d \ A A . 

7.1.2 Indices in Lacroix's Traité 

It is clear enough from the previous section that contrary to Schubring's suggestion, 

Lacroix did not need German encouragement to use subscript indices. But there is an-

other mistake in the quotation from [Schubring 2005, 386] given above: that Lacroix 

used "general indexed quantities ai , a2 - • -, an in both 1798 and 1802, but only in a nar-

rowly restricted field of calculus: within intégral calculus to operate with the séquence 

of approximate values in using approximation to détermine intégral values" - that is, 

in his version of Euìer's "general method" for approximate integration (see sections 

5.2.2-5.2.4). It is quite true that Lacroix uses subscript indices in that context - see 

for instance équation (5.8), page 158 above. But this is very far from being the "only 

field" in which he uses them. 

The first use of subscript indices in Lacroix's Traité (their introduction, according 

to Dhombres), is in the first volume, in the Introduction, for the expansion in power 

séries of ax : 

"Nous supposerons que ax soit représenté par la série 

A 0 + Aix + A2x
2 + A 3 x

3 4- etc. 

16Towards the final lectures, Prony also wrote ZQ,Z,, z„, &c... z(n) [1795a, IV, 544]. 
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A0,Ai,A2 sont des coefficiens indépendans de x, et les chiffres inférieurs 

0,1,2 etc. marquent l'exposant de la puissance de x qui multiplie la let

tre à laquelle ils sont attachés, ainsi A m sera le coefficient de xm. Ce qui 

m'a déterminé à employer cette notation, quoiqu'elle paraisse un peu com

pliquée, c'est que par son moyen il sera facile de découvrir la loi qui régne 

entre les valeurs des coefficiens."17 [Lacroix Traité, I, 33] 

Lacroix makes effective use of this notation, not only in the expansion of the expo-

nential function, but also in those of the logarithm, cosine, and sine. For the exponential 

function, he uses the functional équation ax x au = ax+u, so that 

(AQ-\-A{x + A2x
2 + etc.) x (AQ +AYu + A2a

2 + etc.) = A0 + Al(x-rit) + A2(x-r-u)2-r-etc. 

Expanding the product on the right side and the powers on the left, and comparing 

the coefficients, Lacroix concludes first that AQ = A 0 , whence A0 = 1, and thus the 

coefficients of x,x2,xz, etc. are A i . A 2 , A 3 , etc., on both sides; next, analysing the 

coefficients of u, ux, ux2, etc., he sees that 

A]_ = Ai. AyAi = 2A2, AiA2 = 3A 3, etc., and in gênerai AiAm^i = mAm, 

whence 

Ai A2 A3 A m 

Ai = —, A2 = -r~7 A 3 = - — e t c . , and in gênerai Am = 1 

1 ' 4 1-2 ' * 1 - 2 - 3 ' to l - 2 - 3 - - - m 

(Ai, which dépends on a, is to be determined later). So far the indexed notation only 

makes this a little clearer. But Lacroix also needs to confirm that thèse values for 

the coefficients satisfy the rest of the equality, and that is where indices really make 

gêneralization easier: an arbitrary term frorn the left side is of the form 

A m An Atn+n 
AmAnu

mxn = —-4T x A l - 7 1 1 

1 - 2 • 3 - - • m 1 • 2 • 3 • • • n l - 2 - - m x l - 2 - - n 

now, on the right side, umxn obviously cornes from (x + u)m+n. and has as coefficient 

(m -I- n)(m + n — 1) - - • (m + 1) 
m + n 1 . 2 - 3 - - - T I = 

AT[l+n ( m + n ) ( m + n _ i ) . . . ( m + i) A?+n 

1 • 2 • 3 • • - (m + n) 1 • 2 • 3 • • • n 1 • 2 • • • m x 1 • 2 • • • n 

1 7 "We will suppose that ax is represented by the séries 

Ao + Aix + A2x
2 + A2x

3 + etc. 

AQ, AI, A2 are coefficients hidependent of x, and the inferior mimerais 0,1,2 etc. mark the exponent 
of the power of x that is multiplied by the letter to which they are attached; thus Am will be the 
coefficient of xm. Although this notation appears a little coinplicatcd. I have decided to employ it 
because by using it it will be easy to discover the law ruting the values of the coefficients.11 
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as above. 

Lacroix regarder] this method as important enough to be mentioned in his Compte 

rendu (...] des progrès que les mathématiques ont faits depuis 1789 (see appendix 

B, page 394). In the préface to the second édition of his Traité, he also stressed 

the advantages of his method, namely over those that used infinité of infinitely small 

quantities (he might have been thinking of [Euler Introductio}): 

"La méthode dont j 'ai fait usage pour le développement des fonctions, ne 

s'appuie sur aucune considération de ce genre; aucun terme n'y est négligé; 

toutes les équations de condition y sont vérifiées en quelque nombre qu'elles 

soient, par un calcul fondé sur les indices des quantités à déterminer, et très-

propre, je crois, à faire sentir les avantages de la symétrie dans les calculs, 

et la puissance d'une notation quand elle est analogue aux idées qu'elle 

représente." 1 0 [Lacroix Traité, 2nd ed, I, xix-xx] 

Now, Lacroix does not adopt the subscript index as default notation in the first 

two volumes of his Traité; most often, he keeps the use of alphabetic order for séries 

coefficients. Still, he does occasionally use subscript indices - probably in those occa

sions where they do seem useful, even if not terribly so. For instance, in the chapter 

on the principles of differential calculus (see section 3.2.2), deriving Taylor's theorem, 

where we find [Traité, I, 88]: 

X\, Xi, X3, etc. for the coefficients in the expansion of the incrément of f(x); 

X\,X'{,X'{', etc. for the coefficients in the expansion of the incrément of Xi; 

X'2, X%, Xlf, etc. for the coefficients in the expansion of the incrément of X2; 

In precisely the same context, Lagrange had used 

etc. for the coefficients in the expansion of the incrément of u; 

7T, p, a, etc. for the coefficients in the expansion of the incrément of p; 

TT!,pr,a', etc. for the coefficients in the expansion of the incrément of p'; 

- somewhat more cumbersome [Lagrange 1772a, §4]. 

1 8Around the same time. Fourier, in his lectures at the Ecole Polytechnique [1796 , 54-55]. gave a 
similar proof for the expansion of a x , with two différences: 1 - he did not use indices, but rather the 
alphabetical order A, B, C,...; 2 - instead of ax xa* = a x + u he used the property a2x = ( a x ) 2 . which 
makes calculations much casier, and indices dispensable. In the second édition of his Traité, Lacroix 
mentioned this approach in a footnote, but he preferred ax x au = a x + l i for being more gênerai and 
expressing the most extensive définition of ax [Traité, 2nd ed, I, 35]. 

1 9 "The method which I used for the expansion of functions does not rely on any considération of 
that kind; no term is neglected; ail the équations of condition are verified, whatever their number, by 
a calculation based on the indices of the quantities to be determined, and which I believe to be very 
proper to make perceive the advantages of symmetry in calculations and how powerful is a notation 
that is analogous to the ideas for which it stands."' 
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The situation in the third volume is a little différent. Subscript indices become much 

more fréquent - which is natural, given that it was within the context of séries and 

finite différences that they had appeared, and that this is a more combinatorial subject. 

In fact, the first numbered paragraph of the third volume starts with a reintroduction 

of indices: 

"Supposons qu'on ait une série de la forme 

Ao + Aix 4- A2x
2 + A3x

3 + etc. 

dans laquelle les chiffres inférieurs affectés aux coefhciens des puissances 

de x, et que je nommerai indices, font connoître le rang qu'occupe chaque 

terme [... ] si l'on avoit l'expression du terme général Anx
n, qui répond 

à un indice quelconque, on en déduiroit tous les autres, en donnant à n 

différens valeurs" 2 0 [Lacroix Traité, III. 2] 

Unlike what this reintroductory example suggests, Lacroix usually abstains from 

writing 0 as a subscript. This sometimes results in ambiguity (probably intentional) 

between a variable x and its first value x$ (in thèse cases we might see the variable x 

as distinct from its gênerai value xn) • 

Thus, given a séquence u,u\, u2,u3,the différence Au is defined as u\ - u; Aux 

is defined as u2 — U\\ and more generally Au„_i as un — un-i (and naturally A2u = 

A«i — Au, and so on). Some calculations follow, giving 

n . n(n — 1) . -, n(n — l)(n * 2) . 0 . „ H . 

un = u + -Au + K JA2u + V £ J-A\ + etc. (7.1) 

and 
n n(n — 1) ra(n —l)(ra — 2) n . 

Anu = u n - -un^ + K Jun.2 - K
 ;-Un-3 + etc. (7.2) 

(7.1) is found in [Euler Differentialis, §22] - it is the single occurrence of for a 

gênerai terni, mentioned in the previous section; (7.2), which requires a systematic no

tation for gênerai terms, appears in [Euler Differentialis, § 10] only as a set of examples, 

up to A 5 y = yv - 5y I V + 1 0 y m - lOy11 + 5y* - y. 

Lacroix [Traité, III, 6] also présents (7.1) and (7.2) as the symbolic expressions 

un = (1 4- Au)n and Anu = (u - l ) n ; (7.3) 

2 0 "Suppose that we hâve a séries of the form 

AQ + A\x + A2x
2 + + etc. 

in which the inferior mimerais affected to the coefficients of the powers of x, and which I will call 
indices, display the rank occupied by each terni [... ] if we had the expression for the gênerai term 
Anx

n, corresponding to an arbitrary index, we would deduce ail the others from it, giving différent 
values to n" 
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in the expansion of (1 4- Au)n, one has to remember to change the powers (Au)* into 
higher differences Aku; and in the expansion of Anu = (u — l)n one has to remember 
to change the powers un into terms un.21 These symbolic expressions, as such, come 
from [Lorgna 1786-87],22 but Lacroix abstains from expounding Lorgna's "new kind 
of calculus", which consisted in using the analogy between exponents of powers on one 
side and indices of iteration on the other to obtain formulas. Lacroix limits himself to 
notice the analogy, both in (7.3) and in Lagrange's 

Anu = ( e * f c - l)n (7.4) 

(where u is a function of x, h = Ax, and the powers ^ must be changed into the 
higher derivatives ^ ) . 

Naturally, the sections on difference equations are written in the language of indices. 
Thus, the general first-degree equation is: 

Vx+n + PxVx+n-l + QxVx+n-2 - - - + Uxyx = Vx 

(the subscripts in P X i Q x , etc. are not indices: they mean that those are functions of 
x) [Lacroix Traité, III, 188]. It is certainly not necessary to speak of chapter 2, on 
generating functions, where Laplace's notations are followed. 

What there seems to be of correct in Schubring's and Dhombres' suggestions (and 
especially in [Dhombres &; Pensivy 1988, 19]) is that Lacroix diffused the use of sub
script indices. Their use in volume III was obvious enough; but their uses in volumes 
I and II, limited as they are (although far from being as limited as Schubring has it), 
probably contributed to their adoption outside the area of "theory of series" and finite 
differences. 

7.2 The "multiplicity of integrals" of difference equa
tions 

7.2.1 The peculiar equivalent to singular integrals in finite 
difference equations 

The subject of finite difference equations started with [Lagrange 1759b]. This memoir 
consists in applications to linear finite difference equations of existing methods for 
linear differential equations: separation of variables for first order, and d'Alembert's 

2 1 Notice that 0-powcrs are included: in the first case, (Au)° must he changed into A°u = u, and in 
the second case, u° must be changed into UQ = u. 

2 2 I n [Domingues 2005, 289] I said that (7.3) come from [Lagrange 1772a]. I was wrong: 
[Lagrange 1772a] gives analogies between powers and higher differences and derivatives (like (7.4)), 
and it is the inspiration for [Lorgna 1786-87], but (7.3) are not found there. Incidentally, (7.1) is. but 
with un referred to only verbally [Lagrange 1772a. § 17]. 
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réduction of higher-order linear équations to Systems of first-order ones. According 

to Wallner [1908, 1052] the majority of works on finite différence équations in the 

18th century remained dépendent on analogies with differential équations. The area in 

which this analogy was trickier was that of singular intégrais. 

We will not start by the exact beginning, but by something close enough. On the 

30th November 1785 Monge read to the Paris Academy of Sciences a very short memoir 

[1785c] on integration of nonlinear finite différence équations. As usuai, this consisted 

in adapting a method for differential équations (proposed in [Monge 1785b]). This 

method involved differentiating the équation enough times as to be able to eliminate 

all constants, or at least enough times as to obtain a quasi-linear équation. In the case 

of finite différence équations, there were remarkable conséquences. Monge gives the 

very simple example 

(Ay) 2 = b\ 

where b is a constant 2 3: the common integration of Ay = ±6 gives 

y = ±-x 4- A 
a 

(where the constant a = Ax and A is the arbitrary constant); but differentiating 

(Ay) 2 = 6'2 we obtain 

2AyAAy + (AAy)'2 =0, 

which can be split into the factors 

AAy = 0 and 2Ay -1- AAy = 0; 

the first gives 

y 

as above; the second, however, gives 

t, = C±^( - l ) ï . 

The latter is a solution of the given équation which is not contained in y = ±^x + A. 

Thus, Monge had come across a Clairaut-like situation - an extra solution obtained via 

differentiation. With a surprising différence: the équivalent to the singular integral, 

namely y = Cdb |(— 1)«. also contains an arbitrary constant - C - and is therefore as 

general as the équivalent to the complete integral. 

The reason why this was not the beginning is that precisely one week before, 

'23Sic. Probably what Monge meaus is that Ab = 0, that is, that b is constant for values of x that 
differ by Ax. Euler had already remarked that this is also satisfied when b = y?(sin cos ̂ §), for 
constant Ax. This is not terribly important for the subject of multiple intégrais, and so I will avoid. 
the issue, using the word "constant" when the author studied uses it, and speaking of "arbitrary 
quantifies" otherwise. 

= ±— + A 
a 
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Jacques Charles ("le geometre") had read to the same academy an even shorter work 
stating that "there are finite difference equations that have two complete integrals" 
[Charles 1785b]. While Monge's observation is similar to Clairaut :s and Euler's "para
doxes", Charles's approach is an adaptation of Lagrange's theory of singular integrals. 
He considers the integral 

V = 0 

of a finite difference equation 
Z = 0, 

V being a function of x,y and of a constant a not in Z; if V is (finitely) differentiated 
holding a constant, and if the result is denoted SV, then Z = 0 must be the result of 
eliminating a between 

V = 0 and 5V = 0 ; 2 4 

but if a is also varied, then we get 

AV = 5V + RAa; (7.5) 

the result of eliminating a between V = 0 and AV = 0 will still be Z = 0, provided 
that R = 0; thus a singular integral should be obtained by eliminating a between 

V = 0 and R = 0; 

the problem is that while the equivalent to R. in differential equations does not contain 
da, most often this R does contain Aa; thus, to eliminate a one must integrate R = 0 
beforehand, and this introduces an arbitrary constant, which will also appear in the 
not-so-singular integral. Charles gives two examples, the first of which will suffice. 
Consider 

(where the constant g = Ax), whose complete integral is 

gy = 2nax + a2 (7.7) 

(where a is the arbitrary quantity); the finite difference of this integral, holding a 
constant, is 

Ay = 2na; 

and if a is varied, it is 

Ay = 2na + — [2n(x + g) + 2a + Aa]; (7.8) 
9 

2 4Charles [1785b, 560] has "V = 0, & V = 0 : \ which is clearly a typo. 
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(7.8) reduces to Ay = 2na by putting 

2n(x + g) + 2a + Aa = 0, (7.9) 

where, as had been warned, we find Aa: now, the integral of (7.9) is 

- a ( - l ) f = 6 + n ( - l ) ï ( l + a ; ) 

(where b is an arbitrary quantity), and substituting this value of a in (7.7) we get 

gy = - n V + + * ( - ! ) • ! (7-10) 

as a second complete integral of (7.6). Charles also remarks that following this proce

dure with (7.10) as the first integral, we would arrive at (7.7) - as Wallner [1908, 1053] 

put it, the Singular integral of the singular integral is the original complete integral. 

This would have remained as a nice observation, but unfortunately Charles decided 

to elaborate - in a misguided direction that made him arrive at stränge paradoxes. In 

[1788] he retook (7.6), writing it as 

xAy Ay2 

y = — + T~2~2 ' ( 7 - u ) 

and writing its two complete intégrais as 

y = 2nax + a2 (7.12) 

and 

y = _ n V + ^ œ s ™ + ff^j. ( ? 1 3 ) 

x 

it must be remarked that c o s . ~ is precisely the same as the (—l) s that occurred 

in (7.10), as x is a discrete variable with différence Ax = g, and therefore ^ takes 

only integral values. But in order to have a locus for the équation. Charles needs 

a continuous x; he divides the abscissa axis irrto equal segments TV, VR, RS,... of 

length g, and puts x — X + ga - the integer a indicates the division where x lies and, 

in modem terms. X is x modulo g\ (7.13) is thus transformed into 
n2p2 

y = b2 + n2x2 - nbgcos.7r/i. (7.14) 

He then constructs the parabola CEG with équation 

z = b2 + IlLÉ. _ n

2

X

2 

4 

(that is, the différence between y and z is —nbg cos .iru), and since —nbgcos.irß is 
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alternately -nbg and nbg, he alternately adds and subtracts nbg to the division ordi-
nates TV, VV, RR', SS1,..obtaining new points H, L,N,0,... that belong to (7.14). 
Then he decides that the polygon . . . HLNO . . . obtained by joining these new points 
may be regarded as the locus of (7.14); also each side of the polygon is of the form 
(7.12) - luckily the first complete integral was a linear equation; Charles concludes 
that the polygon must verify (7.11). 

As if this were not confused enough, Charles goes on: making the difference g di
minish until it becomes zero, the polygon becomes the parabola CEG, which therefore 
must be an integral of "la proposée dans le cas des différences infiniment pet i tes" 2 5 -
presumably 

xdy dy2 

^-57 + 4 ^ ' ( 7 ' 1 5 ) 

although he does not write it explicitly. Now, this second integral retains the arbitrary 
constant b: it is 

y = b2 - n2x2 -f- nbdxcos.(nu). (7.16) 

Charles's grand conclusion is that singular integrals are in fact only incomplete integrals 
taken from a second complete integral that no one had noticed before [Charles 1788, 
118]. 

The last problem to be mentioned is the term nbdxcos.(ira) in (7.16). The real 
infinitesimal equivalent to (7.13) or (7.14) would have been simply y = b2 — n2x2. 
But Charles noticed that this would not satisfy (7.15). Thus he decided to keep the 
"differential term" n b dx cos .(iru), which allowed him to obtain the "true value" of 
^ , namely ~2n(nx + 6cos .ira) = — 2n(nx ± b).2® The need to keep this "differential 
term" led him to ramble about not all (sequences of) polygons converging to a curve 
being valid to obtain the tangents to that curve, and about the need, when studying 
a differential equation, to carefully consider the finite difference equation of which it 
derives. 

2 5 "the given equation in the case of infinitesimal differences" 
2 6 Even then, I cannot understand how this value is supposed to satisfy (7.15). 
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Charles goes on with this in what appear to be two additions: on page 121 (the sev-

enth of the memoir) there is a sidenote "presented on the 4th March 1790", presumably 

referring to pages 121 to 132. which suggests that they form one such addition; pages 

132 to 139 constitute explicitly a "suite du mémoire". One can imagine the negative 

reactions at the Academy meetings, and Charles coming up with new examples and 

arguments. This was probably not easy - he was quite ili by then, suffering from paral-

ysis of his right hand, and was to die the next year [Hahn 1981, 85-86]. But sumrning 

up, we have to conclude that Charles thought too much in terms of finite différences, 

and was not able to grasp how a limiting process works. 

In [1795a, IV, 502-509] Prony addressed this subject of "multiplicity of intégrais", 

as an example of the difficulty in dealing with nonlinear finite différence équations (ail 

the examples of multiple intégrais were of nonlinear équations, for very good reasons -

see below). But he gives only examples taken from [Monge 1785c], adding geometrical 

constructions for the two double intégrais of (Az)2 = a2 that Monge had found. He 

referred the students who would like further détails to the memoirs published by Monge 

and Charles in the volumes of the Paris Academy from 1783 to 1788, and mentioned 

"paradoxical results", but did not give détails. 

7.2.2 Biot's work and Lacroix's account 

One of Prony's students in the first year of the Ecole Polytechnique was Jean-Baptiste 

Biot, Grattan-Guinness [1990, I, 224] says that Biot began his scientific career by 

taking Prony's advice, mentioned in the previous section, of looking into Monge's and 

Charles's memoirs on the multiplicity of intégrais of finite différence équations. In 

fact, Biot's first research work [Ì7P7] addressed that problem. But the story of Biot's 

motivation may have been a little more complicated. 

Biot completed his studies at the Ecole Polytechnique in 1795 [Grattan-Guinness 

1990, I, 188] or 1796 [Frankel 1978, 37], and he quickly created a relationship of 

patronage with Lacroix, described in [Frankel 1978]. Lacroix was preparing a new 

édition of Clairaut's Elémens d'Algèbre to be used in the newly founded écoles centrales, 

and it was Biot who wrote the introduction on arithmetic. In November 1796 Biot 

applied for a job as teacher of rnathematics at the Ecole centrale of the Oise department, 

in Beauvais, with the support of Lacroix, Prony, and Cousin (he was appointed in 

February 1797). 

It is the correspondence dating of Biot :s Beauvais period (1797-1800) that best teils 

us of the relationship between hirn and Lacroix: 

"Lacroix was the 'master', who suggested problems to his pupil, evaluated 

his solutions, helped him to become known to other scientists, generated 

publication and guided his career. Biot was the protégé who worked dili-

gently on the tasks set to him by his 'master', edited and made additions to 
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Lacroix's textbooks, dutifully followed his advice on matters affecting his 
career and thanked him profusely for his services." [Frankel 1978, 38] 

This relationship probably changed after 1800 ; when Biot was appointed both as an 
associate member of the Instituí National and as a professor of the Collége de France. 
He and Lacroix were now on similar levéis. But it is reasonable to assume that Lacroix's 
patronage liad started before Biot's move to Beauvais forced it to be expressed in 
writing. 

Thus Frankel [1978, 40] has suggested that [Biot 1797] may have been written 
specifically to be included in the third volume of Lacroix's Traite. This is probably an 
exaggeration, as it is somewhat exaggerated to say that [Biot 1797] '"appeared intact" 
in (Lacroix Traite, III]: the changes from [Biot 1797] to [Lacroix Traite, III, 237-247] 
are not very substantial - there are a few differences in notation, terminology. one less 
example, occasionally less detall, and the whole is rewritten by Lacroix - but enough 
not to consider this a section of Lacroix's Traite commissioned to Biot. Lacroix's 
section is rather a cióse account of Biot's work. 2 7 

Still, it is very likely that Lacroix suggested the topic to Biot, and maybe even some 
hints at how to deal with it. It is also very likely that Lacroix had his third volume 
in mind - that he wished to have a better source on the multiplicity of integráis of 
difference equations than the confused [Charles 1788] or the laconic [Prony 1795a]. 

The similarity between [Biot 1797] and [Lacroix Traite, III, 237-247] and the pos-
sibility of Lacroix having suggested the topic are two reasons to address together 
Biot's work and Lacroix's account. One final reason has to do with dates of publi-
cation. Biot submitted his mernoir "Considérations sur les intégrales des equations 
aux differences finies" to the Instituí National on the 6 Ventóse of year 5 (24 February 
1797) [Acad. Se. Inst. PV, I, 174]. Laplace and Prony were charged with reporting on 
it, but the report (written by Prony) only appeared over two and a half years later (6 
Frimaire year 8 = 27 November 1799) [Acad. Se. Inst. PV, II, 45-48]; it recommended 
either the publication of Biot's mernoir in the Savants Étrangers, or of the report itself 
in the Mémoires] it was the latter option that was followed, in the volume that appeared 
in 1801. Biot's mernoir was finally published in the Journal de l'Ecole Polytechnique 
in 1802 (it is this versión that is cited here as [Biot 1797]). But as [Lacroix Traite, 
III] had appeared in 1800, Lacroix's account constitutes the first publication of Biot's 
work. 

Still about dates: the publication in the Journal de l'Ecole Polytechnique mentions 
that the mernoir had been submitted to the Instituí on the "6 Ventóse year 8"; this is a 

2'Oddly, Grattan-Guinness \ig90, I, 224] has said that in the first edition Lacroix "mentioned" 
Biot's mernoir, "and gave a lengthy account of it in the second edition". In fact, the lengthy account 
of the second edition is virtually identical to that of the first edition [Lacroix Traite, lst ed, III, 237-
247: 2nd ed, III, 250-260]. He has also said [1990.. I, 227] that Lacroix used Biot's paper on mixed 
difference equations (Biot 1799] only in the second edition of his Traite, but as we will see below 
that already happened in the first edition. Grattan-Guinness must have underestimated the degree of 
collaboration between Lacroix and Biot. 
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typo for year 5, corrected in the errata at the end of the volume; moreover, Biot did not 
submit anything at the meeting held on the 6 Ventose year 8 [Acad. Sc. Inst. PV, II, 
110-114], He did submit another memoir on the 11 Pluviôse year 8 (31 January 1800), 
but it was on the integration of linear finite difference equations [Acad. Sc. Inst. PV, 

II, 87]; this was never published, and the report (of which Laplace and Lacroix were 
charged) was never made; thus, we do not know what were its contents; but the fact 
that it was about linear finite difference equations indicates that it had little or nothing 
to do with his memoir on the multiplicity of integrals (which, as has been noted above 
and will be explained below, occurred only for nonlinear equations); in particular, it 
was not another version of it, as Grattan-Guinness [1990,1, 224] has suggested. Prankel 
[1978, 41] made a similar claim, even quoting a letter from Biot to Lacroix, which he 
dates of the winter of 1799-1800: 

"I have started again from scratch and I have arrived at the same results 
but in a much simpler manner. . . using powers of the second order. You 
can see that I am profiting from what you tell me, because it was you who 
engaged me to read your third volume carefully, and the high opinion you 
have of powers of the second order led me to use them to good advantage." 

As I have not seen this letter, which is kept at the David Eugene Smith Collection, in 
Columbia University, New York. I cannot discuss in detail Prankel's claim that it refers 
to Biot's memoir on the multiplicity of integrals of finite difference equations; but I 
find it more likely to refer to Biot's memoir on linear finite difference equations, which 
may very well have been through two versions. It is noteworthy that the version of the 
former that we know, published only in 1802, has no second-order powers whatsoever. 2 8 

If there ever was a second version of it. it is not the one published in the Journal de 
l'École Polytechnique. I assume that this published version is the original (or only) 
one, and that is why I cite it as [Biot 1797]. 

After all this introductory considerations, let us examine (Biot 1797], together with 
the section in Lacroix's TYaité "on the multiplicity of integrals of which difference 
equations are capable" [Traité, III. 237-247]. The main differences between the two 
will be noted. Otherwise, where one reads "Biot" one may also read "Lacroix". As for 
notation, it is Lacroix's that will be followed. 

It could go without saying that Lacroix acknowledges Biot's authorship. As al
ways for manuscripts, he does not include Biot's memoir in the table of contents 
[Lacroix Traité, III, vi], but he cites it at the beginning of the section [Lacroix Traité. 
III, 237] as the source from where he took what follows. 

Biot starts with a similar approach to that of Charles - namely, adapting Lagrange's 
explanation for singular integrals of differential equations; Lacroix does not fail to 
highlight the analogy [Lacroix Traité, III, 237], But instead of using a complete integral 

2 8 "Second-order powers1' are generalized factorials. See page 2.5 above. 
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and its finite différence, Biot uses a complete integrai 

F{x ; Q,y, , a } = 0 (7.17) 

(the notation y I Q is used to exploit the tact that y is a fonction of x and particularly 

of a) and the consecutive équation 

F{xlta,yXlA} = 0: (7.18) 

that is, (7.17) is the complete integrai of the différence équation Z = 0 that results from 

eliminating a between (7.17) and (7.18). 2 9 This is of course équivalent to using (7.17) 

and its différence, since that différence is precisely F{xi,a,yXlia} — F{x,a,yx,a} = 0; 

but this format is more appropriate than Charles's (7.5). since it allows to deal better 

with différent values for a. If a is varied along with x, (7.17) becornes 

F{xi } = 0; (7.19) 

but the same différence équation Z = 0 may resuit using (7.19) instead of (7.18), as 

long as in thèse two équations we have y X i i a i = yx^ai that is, as long as we have 

F{xlìaìyXl.a} = 0 and F{xu a u y X u a } = 0. (7.20) 

Elimination of y X u a between thèse two équations results in an équation in x,X\,a and 

ai (a différence équation) that gives the law that the values of a must follow for Z = 0 

to be satisfied. Since this a différence équation, it must be integrated in order to get 

an expression for a, which when substituted in (7.17) will result in a new intégral for 

Z = 0; as that expression for a contains an arbitrary quantity, this new integrai is 

"aussi generale que la première" 3 0 [Biot 1 7 9 7 , 183], or "encore une intégrale complète 

[...], au lieu d'une intégrale particulière" 3 1 [Lacroix Traité, III, 238]. 

This "new integrai" is not iiecessarily new: if (7.17) is linear in a, then (7.20) gives 

the trivial équation ax = a, so that no new integrai arises; 3 2 but if a is raised to some 

power in (7.17), then there should be a new integrai. Incidently, this is why ali the 

examples of multiple intégrais were of nonlinear équations: if (7.17) is not linear in 

a, then the élimination of this quantity between (7.17) and (7.18) should resuit in a 

nonlinear différence équation; but neither Lacroix nor Biot make this remark, 3 3 

At this point a différence in terminology between Lacroix and Biot must be noted: 

2 9 This is Lacroix's notation. Biot has x' instead of x-^. The brackets instead of parenthèses, as well 
as the subscript x and a, are in both Biot and Lacroix. In both cases, one must be aware that x and 
a stand both for the variables (sometimes constant, in the case of a) and for their first values, which 
Lacroix might have noted XQ and a<>- This ambiguity has been remarked in section 7.1.2. 

3 0 "as general as the first" 
3 1 "yet a complete integrai [ . . .] , instead of a particular solution" 
3 2 T h i s is better explained in [Biot 1797, 184-185] than in [Lacroix Traité, III, 238]. 
3 3Apparently it was Poisson who first made it [1800, 180]. 
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Lacroix [Traité, III, 240] calls the new integrals (those truly new) "indirect integrals"; 
while Biot simply calls them "new integrals". Curiously, later in [1799, 311] Biot 
was to refer to this memoir as a "théorie des intégrales indirectes des équations aux 
différences" 3 4 . 

Something that Biot introduces very early in his memoir [1797, 183; Lacroix Traité, 
III, 239] is a geometrical interpretation: a difference equation is the locus of a sequence 
of points corresponding to abscissas that "follow a certain law" (that of x,X\,x2, • •.); 
assigning distinct particular values to a, (7.17) gives us distinct particular integrals 

F{x,a,yX:a} = 0, F{XlaltyXiai} = 0, F{x,a2,yXA2) = 0, . . . , 3 5 (7.21) 

so that (7.20) - or equivalents, the equality y X l A i — yXu* ~ means that the first two 
particular integrals in (7.21) intersect at a point of abscissa X\; now, if the successive 
values of a follow the law mentioned above for Z = 0 to be satisfied (that is, the integral 
of the difference equation obtained by elimination of y X l ; a from (7.20)), then we will 
have yX2,a2 — 2/x2,ai as well, so that the second and third particular integrals in (7.21) 
will intersect at a point of abscissa x2\ and so on; these points of intersection 

X. X\, • • • 

Vx,a, Vxi,a — Vxi,ai, Vx2,ai = Vxi^a-i, • • • 2/a;(n): a(n-i) = ^ ( n J i O f n ) 

form a sequence that satisfies Z = 0 and is an indirect integral. 
It is when presenting this geometrical interpretation that Biot remarks that the 

new integral, although coinciding with the original one as far as first-order differences 
go, deviates from it at second-order differences. Lacroix is a little clearer on why 
this is so: the sequence above does not necessarily verify yX2,a = yx2,ai> a n o ^ the u ^ e -
Lacroix also uses a more precise language when explaining that distinct integrals of 
the same difference equation cannot coincide indefinitely at differences of all orders, so 
that two integrals of one first-order equation should, in general, correspond to distinct 
second-order equations [Traité, III, 243]. This property is another analogue between 
indirect integrals of difference equations and singular integrals of differential equations 
(see page 186 above). And it is important - Biot uses it to explain Monge's example 
A y 2 = c 2, and similar situations, and to propose a general method for finding new 
integrals, without recurring to the ordinary integral: differentiating (finitely) the dif
ference equation, if the result is factorizable, then each of the factors corresponds to 
an integral; but he recognizes the disadvantage of introducing higher-order equations 
[1797, 192]. 

The refutation of Charles's paradoxes is more detailed in [Biot 1797, 195-198] than 
in [Lacroix Traité, III, 246-248]. Let us sum it up. 

3 4 "theory of indirect integrals of difference equations" 
3 5 [Biot 1797, 183] has F[x,a,yx a} = 0, F{x',a',yx a.} = 0, F{x',a",yx a.} - 0, which must be a 

triple typo for F{x,a,yx a} - 0, F{x.a',yx a-) = 0, F{x.a".yx a » } = 0. 
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Charles had treated differential équations and their intégrais as limits of différence 

équations and their intégrais, respectively; but his handling of limits was very naïve. 

Both Biot and Lacroix agrée with Charles that putting Ax = 0, Ay = 0 in a différence 

équation results in the differential équation that is its limit; 3 6 but Charles also assumed 

that putting Ax = 0, Ay = 0 in an intégral of the différence équation was enough to 

obtain an intégral of the differential équation, and this was his big mistake. Taking 

yxua = a) and y X l ] a i = f(xi,ai) from (7.20). we get f(xi,ai) - f ( x i , a ) = 0; writing 

a\ as a + Aa, Biot argues that this can be written in the form 

Aaf,(£i,a, Aa) ~ 0, 

whence the two possibilités Aa = 0 (that is, a is a constant and the original intégral 

results) and 

l,(x + Ax,a,Aa) = 0. 

Now, this différence équation can be integrated, resulting in an indirect intégral: but 

if we put Ax = 0, Aa = 0 , 3 7 it becomes a "primitive équation" [Lacroix Traité, III, 

247], so that a can be retrieved from it without intégration, and therefore without an 

arbitrary quantity (resulting in a particular solution). Thus, to go from the indirect 

intégral of the différence équation to the particular solution of the differential équation 

it is necessary to drop the arbitrary quantity. 

It was because Charles arrived at false intégrais that lie needed an extra "differential 

terni". Both Lacroix and Biot remark that this terrn, destroying the "homogénéité qui 

fait la base du calcul différentiel"3** [Biot 1797, 198; Lacroix Traité, III, 247], should 

bave make him realize how wrong he was. The error of concluding that not every 

inscribed polygon tends to the curve, as the number of sides is assumed infinité, but 

does not even deserve a counter-argument - it seems to be presented as yet another 

silly conclusion (not in so many words). 

To finish this, we must look at the citations of Charles, where we find one of 

the few mistakes in Lacroix's références. Biot cites only [Charles 1788] - which is 

enough for his purposes. Lacroix has a more historical concern - and gets it wrong: 

he correctly points out Charles's priority in noticing the multiplicity of intégrais of 

différence équation, but cites [Charles 1785a) as the place where that happened, instead 

of [Charles 1785b]; [Charles 1785a] is a memoir on différence équations, but not on 

what Lacroix called indirect intégrais, and certainly prior to Charles's discovery of 

them 3 9 . To make this mistake worse: 1 - Lacroix [Traité, III, vi] cites [Monge 1785c], 

3 6 0 f course this language of "putting Ax — 0. Ay = 0" is also very naïve. But we understand that 
it means taking the limit as Ax —* 0, Ay —* 0, taking in accoutit the limit ^ of 

3 7 T h a t is, if we take the limit as Ax —» 0, Aa —> 0. 
3 8 "hornogeneity that is the basis of the differential calculus" 
3 9 [Charles 1785a\ is probably the resuit of combïning several memoirs submitted to the Paris Acad-

emy in 1779 and 1780. and possibly one submitted in May 1785 [Hahn 1981, 84]. [Charles 1785b), as 
we have noticed above, was read in November 1785. 
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which was published in the same volume as [Charles 1785b}; 2 - he fails to include 
[Charles 1788] in the table of contents. This omission (which is not serious, since 
[Charles 1788] is mentioned in the main text) was rectified in the second edition, but 
the confusión between [Charles 1785b] and [Charles 1785a] was not [Lacroix Traite, 
2nd ed, III. xiv, 259]. There is some further evidence that Lacroix did not really know 
[Charles 1785a] (see footnote 52 below). 

7.3 Mixed difference equations 

7.3.1 "Equations in finite and infinitely small differences" 

Equations containing both finite differences and differentials appeared for the first time 
in [Condorcet 1771]. In this memoir, Condorcet reduced to finite difference equations 
the determination of the arbitrary functions occurring in integráis of partial differential 
equations; but in some cases, where those arbitrary functions are originally given by 
non-algebraic equations. the resulting finite difference equations contain also differen
tials [1771, 51-52]; henee Condorcet dedicating the third "article" of the memoir [1771, 
56-66] to "equations aux differences finies et infiniment peti tes" 4 0 . 

Condorcet starts by the easy possibilities: if regarding the differentials as new 
variables in a finite difference equation this finite difference equation is integrable, 
then we should intégrate it - the result will be a differential equation, which we then 
intégrate; and of course if regarding the finite differences as new variables we get an 
integrable differential equation, then we should intégrate it, and then intégrate the 
resulting finite difference equation. But he notices that these two cases do not cover 
all equations in finite and infinitesimal differences. Therefore Condorcet tries to get a 
general mode of solution through different means ("more direct principies", according 
to him). His answer is typically Condorcetian: try to find the form of the solution 
(how many transcendental functions, and of what types) 4 1 , and then use the method 
of indeterminate coefficients. 

Laplace also occasionally addressed this kind of equation. In [1779, 302-305] he 
applied his calculus of generating functions to "equations aux differences partidles, 
en partie finies, et en partie infiniment peti tes" 4 2 . In [1782, 31-53] he addressed ap-
proximate integration of linear finite difference equations, also extending it to linear 
differential equations equations and linear equations in finite differences and differen
tials [1782, 42-43]. 

According to Wallner [1908, 1065], Lorgna and Paoli also treated these equations 
(in the latter case using Laplace's generating functions). 

4 0 "equations in finite and infinitely small differences" 
4 1Condorcet's underestimation of the variety of transcendental functions is one of the biggest prob-

lems with his "general" theory of integration [Gilain 1988, 93]. 
4 2 "equations in partial differences, partly finite, and partly infinitesimal" 
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Finally, we must mention Jacques Charles - the same of the paradoxical results 

in finite difference equations. From 1779 to 1785 Charles submitted seven memoirs 

to the Paris Académie des Sciences, in an effort to be elected a member (he was 

successful in 1785); out of these, two were expressly about "equations containing both 

finite differences and infinitesimal differences" - one submitted in 1779, and the other 

submitted in 1785 (the last in the series of seven memoirs) [Hahn 1981, 84). 

Although both these memoirs were recommended for publication in the Savants 

étrangers, none of them was published, at least not in its entirety. [Charles 1785a] 

seems to be a combination of some of those seven memoirs, but little survived from 

these two. The subject of the 1779 memoir was the construction of equations containing 

both finite differences and differentials, according to the report made by Vandermonde, 

Bossut and Condorcet [Acad. R. Sc. PV, XCVIII, 224r-224v], also quoted by Hahn 

[1981, 84]; while in the one submitted in 1785 Charles reduced the integration of 

these equations to that of partial equations in finite differences only (according to the 

reporters 4 3 [Acad. R. Sc. PV, CIV, 80v-81r]). But in the published memoir there are 

less than two full pages [Charles 1785a, 584-585] dedicated to "equations containing 

both differentials and finite differences"; these contain a "problème", indeed solved 

through a partial finite difference equation, which suggests that it is taken from the 

memoir submitted in 1785, and a "remarque" on the application of this kind of equation 

to Lagrange's version of the vibrating string with discrete weights - there is no trace of 

constructions of equations in both differentials and finite differences (that is, no trace 

of the 1779 memoir). 

Still, this is one of the few publications in the 18th century on equations con

taining both differentials and finite differences. And its larger part (the "problème") 

was reprinted, already in 1785, as one of Charles contributions to the Encyclopédie 

Méthodique - the article "INTÉGRAL (Calcul intégral des équations en différences 

mêlées)'''' [Charles 1785d].u Incidentally, the title of this latter version seems to be 

the first occurrence of the expression "différences mêlées" ("mixed differences"), which 

was to become standard with Biot's work and Lacroix's account of it. 

7.3.2 Biot's work and Lacroix's account 

We saw above that it is possible that it was Lacroix who proposed to Biot to study 

the multiplicity of integrals of finite difference equations. As for the topic of Biot's 

second submission to the Institut, namely mixed difference equations, we know that it 

was suggested by Lacroix, in 1797 [Frankel 1978, 40]. 

4 3 T h e procès-verbal says that the reporters were Lavoisier, Cadet and Darcet, which must be a 
mistake (these were all cheimsts). According to Hahn [1981, 84] the reporters were Cousin and 
Condorcet. 

4 4 Another contribution, immediately preceding that one, is the article " I N T É G R A L (Calcul intégral 
des équations en différences finies)" [Charles 1785c], more than half of which is also reproduced from 
[Charles 1785a, 574-579] 
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Biot did not produce a memoir then, but he resumed his research in early 1799, 

and on the 1st Brumaire of year 8 (23 October 1799) he read to the Institut his 

"Considérations sur les équations aux différences mêlées" [Acad. Sc. Inst. PV, II, 18]. 

Laplace, Bonaparte and Lacroix were charged with reporting on it, and the report 

(written by Lacroix 4 5) was read twenty days later, recommending the publication in 

the Savans Étrangers [Acad. Sc. Inst. PV, II, 30-32]. Unlike what happened to his 

memoir on integrals of finite difference equations, this recommendation was eventually 

followed, and the memoir was published in the new series of the Savans Etrangers, 

in 1806 - this is what is cited here as [Biot 1799]; but of course Biot was not very 

confident that this would happen (no one would be - the Savans Étrangers was not 

published between 1786 and 1806). and he submitted the memoir also to the Société 

Philomatique, in whose Bulletin appeared a summary [Biot I800).m 

The issue with that summary was published in Pluviôse year 8 (January-February 

1800), That same year appeared the third volume of Lacroix's Traité; and most of its 

final chapter (chapter 4, "On mixed difference equations") is an account of [Biot 1799] 

- although it must be said that it does not follow Biot's work as close as the section 

on the multiplicity of integrals of difference equations. Lacroix starts by mentioning 

Condorcet and Laplace as the originators of the subject (Biot omits this); then he gives 

a couple of examples; and only then he picks up the beginning of Biot's memoir. We 

will also see below that he actually has more to say than Biot on "mixed difference 

equations in the strict sense". On the other hand, it is noticeable that Biot follows 

Lacroix's notation {x\ instead of x') and terminology more closely here than in [¿707] 

- to the point of referring to his previous memoir as being about "indirect integrals" 

[Biot 1799, 311]. 

[Biot 1799} is divided into two parts, corresponding to the two sections in [Lacroix 

Traité, III, ch. 4]: the analytical theory and geometrical applications. Although Biot 

does not cite Condorcet (or anyone else for that matter, except himself for on indirect 

integrals, and Euler as a source of geometrical problems), the analytical theory seems 

to be a clarification of some parts of that in [Condorcet i 7 7 / ] . 4 7 Like Condorcet, Biot's 

starting point is that a mixed difference equation results from combining an equation 

with its differences and differentials. This is an extension of Fontaine's conception of 

differential equations (see sections 6.1.4.1 and 6.2.1.1), similar to what Charles and Biot 

4 5 B o t h Frankel [1978, 41] and Grattan-Guinness [1990, I, 227] attribute it to Lacroix, and tbere is 
no reason to question this attribution; on the contrary - its terminology ("differences" instead of "finite 
differences"; "partial differentials" instead of "partial differences"; "indirect integrals"; "differential 
coefficients") points to Lacroix, and so does a reference to Fontaine's authorship of the "important 
remark" that a differential equation is the result of elimination of constants between a "primitive 
equation" and its differentials. 

4 6 Biot was an associé-correspondant of the Société Philomatique. Although this summary has an 
indication "Institut Nat." on the side, the report of the activities of the Société states that Biot also 
read the memoir to its members [Soc. Phil. Rapp, IV, 14]. 

4 7 A s has been remarked above. Lacroix does mention Condorcet. but he does not say anything 
about the contents of [Condorcet 1771], nor establishes any relation between Coudorcet's and Biot's 
theories. 
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himself had done for différence équations, as Lacroix refers in the report on [Biot 1799] 

for the Institut [Acad. Se. Inst. PV, II, 30-31]. But Biot is much clearer than Condorcet 

in how that "comb i nation" happens: élimination of constants. 4 8 

In the case of first-order équations (the only one considered by Biot), there are four 

possibilities for this élimination. Writing them as in Lacroix's version 4 9, the first two 

consist in elirninating two constants between 

V = 0, dV = 0, and AV = 0 

or elirninating four constants between 

V = 0, dV = 0, AV = 0 and dAV = 0; 

the third possibility consists in elirninating one constant between 

V = 0 and dV' = 0, 

where V = 0 is already a différence équation (Lacroix notes that V = 0 is obtained 

by elirninating an "arbitrary function of the type that complete intégrais of différence 

équations" between V = 0 and AV = 0); while the fourth possibility consists in 

elirninating an arbitrary quantity between 

dV' = 0 and dAV = 0, 

where dV represents "a first-order differential function of two variables" (and presum-

ably is obtained by elirninating a constant between V = 0 and dV = 0). 

This division into several possibilities suggests another point of contact with [Con

dorcet 1771] - Biot's third and fourth cases correspond to Condorcet's easy possibili

ties: the mixed différence équation obtained in Biot's third case is such that regarding 

Ay as a new variable we get an integrable differential équation, whose integral is of 

course V = 0; and the fourth case is such that dV = 0 is the finite différence integral of 

the mixed différence équation, when dy is regarded as a new variable. Biot [1799 , 300] 

calis thèse two cases "équations aux différences successives" - "successive différence 

équations", because they resuit "d'une différence succédant à une différentiation. ou 

d'une différentiation effectuée sur une différence"5 0 [Lacroix Traité, III, 532]. Successive 

différence équations are easily recognizable because they must satisfy their respective 

conditions of integrability (an observation that Condorcet would have appreciated); for 

instance, in the third case, the successive différence équation must satisfy the condi-

4 8 Well , mostly constants. In some cases, more or less obvious, ¡t is élimination of functions that are 
constant for values of x that differ by Ax that is intended. One référence by Biot [1799 , 297] to the 
possibility of a "more general" characterization may be an allusion to this issue. 

4 9 T h e main différence from Biot's version is that the latter uses Vi (= V + AV) instead of AV. 
5 0 "from a différence succeeding to a différentiation, or from a différentiation effected on a différence" 
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tions for integrability of différential équations in three variables - thèse three variables 

being x,y and Ay. 

When both a finite différence integration and a differential integration can be per-

formed, it is the latter that should be done done first - it only introduces an arbitrary 

constant, while the former introduces an arbitrary fu action that is constant for values 

of x differing by Ax, and this function must be particularized before the differential 

integration can be performed. 

As for Biot :s first and second cases, he calls them "équations aux différences mêlées 

proprement dites" 5 1 [1799, 300]. Biot does not give any method for solving them, and 

he explicitly avoids the complicated topic of the extent ("étendue") of their intégrais 

[Biot 1799, 303]. Lacroix is a little more helpful: he makes it clearer that this extent 

problem is similar to that of partial differential équations, and refers the reader to the 

proper passages in second volume (see section 6.2.2.3) [Traité, III, 534], And he briefly 

addresses a method of solution, admittedly very difficult to actually use: to replace Ax 

with 
dy_h d?y h2 o?y h? 
dx 1 + dx2 1 • 2 + cte3 1 • 2 • 3 + 6 t C ' 

and A g with 

c?yh d3y h2 

^ ï + ^ ï ~ 2 + e t C ' ; 

thus converting the mixed différence équation into an indefinite-order differential équa

tion [Traité, III, 533]. He uses this method in one geometrical example (see below). 

The only analytical issue about, mixed différences in the strict sensé that Biot really 

develops is that of their indirect intégrais; he occupies eight pages with this [1799 , 303-

310]. Lacroix, on the other hand, dévotes less than a page [Traité, III, 534] to results 

that are "very analogous" to those on différence équations. 

As has already been mentioned, the second sections of both [Biot 1799] and [Lacroix 

Traité, III, ch. 4] are dedicated to applications to geometrical problems (essentially 

problems that had been treated by Euler using other means, and namely the problem 

of reciprocai trajectories). Also both authors présent this as the main interest of mixed 

différence équations [Biot 1799 , 297; Lacroix Traité, III, 535]. However, we will not 

dwell much on this, as they are mostly that - applications. 

But there are a couple of issues to point out. constituting two more différences 

between Biot's memoir and Lacroix's chapter. The first is that ail problems treated 

by Biot are reported to successive différence équations, while Lacroix includes one that 

leads to a mixed différence équation in the strict sensé. In this problem he manages 

to use the method mentioned above of using the séries expansion of Ay to reduce the 

équation to a differential one of indefinite order. And in addition he gives Charles's 

treatment of this problem - the mixed différence équation in question is the one that 

5 1 "mixed différence équations in the strict sensé" 
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Charles had solved in [1785a, 584-585] and [1785d].52 

The second issue is that, unlike Biot. Lacroix includes one short paragraph on 
analytical applications of mixed différence équations [Lacroix Traité, III. 543]. He 
briefly mentions an unpublished work by "Français de Colmar" 5 3 on the use of mixed 
différence équations in Laplace's cascade method. and also the originai context of mixed 
différence équations - the détermination of arbitrary functions occurring in intégrais 
of partial differential équations. 

All things considered, Lacroix's 14-page chapter, although more concise, seems a 
little more substantial than Biot :s 32-page memoir. 

5 2 T h e fact that in the table of contents Lacroix only mentions [Charles 1785d] is the final indication 
that he did not really know, or did not pay attention to, [Charles 1785a\. 

5 3Françpis-Joseph Français (1768-1810), who was for some time a teacher in Colmar. 
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Chapter 8 

The Traité élémentaire 

In 1802 Lacroix published a Traité élémentaire du calcul différentiel et du calcul intégral 

(Elemeritary treatise of differential and intégral calculus) [Lacroix 1802a}. According 

to the publisher's list of elementary works by Lacroix, it was "tiré en partie" 1 from the 

large Traité [Lacroix 1802a, ii]. Indeed it is mostly an abridged version of the latter. 

It is divided into a "first part: differential calculus", a "second part: intégral calculus" 

and an "appendix: on différences and séries". The correspondence between thèse three 

parts and the three volumes of the large Traité is perfect. 

But before we compare [Lacroix 1802a} with [Lacroix Traité} we must see where and 

how the former fits in the context of Lacroix's pedagogical œuvre and in the curriculum 

of the École Polytechnique. 

8.1 The Traité élémentaire de calcul... and the 

Cours élémentaire de mathématiques 

The first édition of the Traité élémentaire opens with a discours préliminaire entitled 

"Réflexions sur la manière d'enseigner les Mathématiques" 2 . There Lacroix mentions 

that he is publishing "la dernière partie du Cours élémentaire [de Mathématiques]" 3 

[Lacroix 1802a, v]. This Cours was probably thought of as composed by a set of works 

advertised in the same volume as being sold at Duprat and collectively referred to as 

the "collection complète des ouvrages élémentaires, publiés par S. F. Lacroix, membre 

de l'Institut national" 4: 

1. Traité élémentaire d'Arithmétique à l'usage de l'Ecole centrale des Quatre-Nations 
1 "partly taken" 
2 The full title is "Réflexions sur la manière d'enseigner les Mathématiques, et d'apprécier dans 

les examens le savoir de ceux qui les ont étudiées" ("Reflexions on the manner of teaching Mathe-
matics, and of cvaluating in exames the knowledge of those who have studied it") [Lacroix 1802a, 
v-xxxii]. Thèse "Réflexions" were afterwards included in [Lacroix 1805] and therefore omitted from 
later éditions of [Lacroix 1802a], 

3 "the last part of the elementary course [of mathcmatics]". 
4 "complète collection of elementary works published by S. F. Lacroix, member of the Institut 

nationaF 
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2. Elémens d'Algèbre [Lacroix 1799} 

3. Complément des Elémens d'Algèbre [Lacroix 1800] 

4. Elémens de Géométrie 

5. Complément des Elémens de Géométrie, ou Essais de Géométrie sur les plans et 

les surfaces courbes [Lacroix 1795) 

6. Traité élémentaire de Trigonométrie et d'application de l'Algèbre à la Géométrie 

[Lacroix 1798b] 

7. Traité élémentaire du calcul différentiel et du calcul intégral [Lacroix 1802a] 

This same list of works appears explicitly in two advertisements by the publisher of 

[Lacroix 1805] (Courcier, successor of Duprat), as a "Cours de Mathématiques à l'usage 

de l'Ecole centrale des Quatre-Nations, par S. F. Lacroix, membre de l'Institut national, 

ouvrages adoptés par le gouvernement pour les Lycées et les Ecoles secondaires, 7 

vol. in-8"° [Lacroix 1805, iv, 391). In 1819, this cours (now with the extra adjective 

"complet") had grown to 9 volumes [Lacroix Traité, 2nd ed, III. ii], including a Traité 

élémentaire de Calcul des Probabilités and even [Lacroix 1805, 2nd ed], which was not 

a textbook, but rather a collection of writings about mathematical éducation. 

However, that same book [Lacroix 1805] includes an analysis by Lacroix of his 

"Cours élémentaire de Mathématiques pures, à l'usage de l'Ecole Centrale des Quatre-

Nations" (our emphasis), where it is made clear that the author thought of it as 

comprising only items 1-2 and 4-6 above. 6 He does include a few words on the Traité 

élémentaire de calcul [Lacroix 1802a], probably because it had been written to follow 

immediately the cours élémentaire, but does not dwell on it, since "[il] ne fait point par

tie du Cours élémentaire" 7 [Lacroix 1805. 384, 386]. As to item 3, the Complément des 

Elémens d'Algèbre [Lacroix 1800), it is even more distant from the cours élémentaire. 

Lacroix does not give a reason for [Lacroix 1802a] not being part of the cours élé

mentaire, but the fact that it was directed at higher-education students (although not 

exclusively — see below) must have been relevant. A much more interesting problem 

is the status of [Lacroix 1800); and although it is not this book that we are studying 

here. its stronger séparation from the cours élémentaire had important conséquences 

5 "Course of Mathematics for the use of the Ecole centrale des Quatre-Nations, by S. F. Lacroix, 
member of the Institut national, works adopter! by the government for the Lycées and secondary 
schools, 7 vols. in-8" 

6 O r even just 1, 2. 4 and 6. Item 5 [Lacroix 1795) was not "essentiellement partie du cours 
élémentaire de Géométrie" ( "essentially part of the elementary course of geometry") [Lacroix 1805, 
346]. That minimal version of the cours élémentaire is the one that appears in the first édi
tion of [Lacroix Traité, III] (in the usual advertisement for books by Lacroix). [Lacroix 1795], 
[Lacroix Traité], and the Complément des Elémens d'Algèbre appearing apart. But it is not of much 
coucern here whether [Lacroix 1795] should be included in Lacroix's cours élémentaire. 

7"[it] is really not part of the cours élémentaire" 
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for [Lacroix 1802a]. This séparation was motivated by Lacroix's views on mathematical 

éducation and on what should a good curriculum include: 

"le nombre des matières qui doivent entrer dans l'instruction de la jeunesse 

est si grand, qu'il faut écarter, quelque intéressant qu'il puisse être en lui-

même, tout sujet qui n'est pas d'une application fréquente" 8 [Lacroix 1805, 

389]. 

In other words, the encyclopédiste approach that is so clear in [Lacroix Traité] was 

not présent in Lacroix's pedagogical works.9 Instead. he sought to avoid too many 

metaphysical détails, attempts to présent ail the artifices employed by geometers, and 

duplications: 

"présenter [les matières aux élèves] sous de points de vue différens, serait 

les éblouir et non les éclairer" 1 0 [Lacroix 1805, 117]; 

"ne convient-il pas mieux d'employer le temps des élèves à leur faire connoître 

des résultats nouveaux, plutôt que des procédés différens pour parvenir au 

même résultat)?]" 1 1 [Lacroix 1802a, x-xiv; Lacroix 1805, 177-181]. 

[Lacroix 1800] deals with several questions on the theory of équations (symmetric 

functions of their roots, the fundamental theorem of algebra and complex numbers, etc.) 

and an algebraic treatment of séries: that is, it roughly comprises what was then often 

referred to as algebraic analysis (and also corresponds to the introduction and chapter 

3 of [Lacroix Traité, lst ed]) - see the beginning of section 3.2.6. According to Lacroix, 

thèse topics were very convenient for those who wished to study pure mathematics, 

and would even facilitate the study of [Lacroix I802a\; but were dispensable for the 

physico-mathematical applications. Being dispensable, they should be dispensed with 

in the cours élémentaire [Lacroix 1805, 389-390]. 

One might ask then, to whom was [Lacroix 1800} addressed. Its full title does say 

it is "à l'usage de l'École Centrale des Quatre-Nations" l 2 , which seems clear enough: 

it was a textbook at secondary-school level; but a spécial, advanced secondary-school 

level. According to Dhombres [1985, 125, 127], "spécial classes for higher mathematics 

8 "the number of subjects that must be studied by the youth is so large, that it is necessary to put 
aside any topic that is not of fréquent application, however interesting in itself it may be" 

9 At least it was not présent within each subject. Lacroix was an ardent supporter of the model of the 
écoles centrales, which offered a much wider range of subjects than either the pre-revolutionary collèges 
or the lycées that later replaced them. l t[T]he avowed aim of [the écoles centrales) was a sound but 
encyclopédie éducation, covering ail 'positive' knowledge" [Dhombres 1985, 125]. Dhombres [1985, 
130] seems to attribute an encyclopédie character also to each of Lacroix's textbooks by extrapolating 
from the characteristics of [Lacroix Traité). 

1 0 "to présent [the subjects to the pupils] under différent points of view would be to dazzle, rather 
than to enlighten them" 

1 1 "is it not more convenient to employ the pupil's time acquainting them with new results, rather 
than with différent procédures to arrive at the same result[?] , : 

1 2 "for the use of the Ecole Centrale des Quatre-Nations* 
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("mathématiques transcendantes") were added to [the écoles centrales}". They cer

tainly existed in the lycées which replaced the écoles centrales in 1802. 1 3 These special 

classes seem to solve our riddle, since in the list [Lycées 1803] of textbooks adopted in 

1803 for the lycées, [Lacroix 1800] and [Lacroix 1802a] are chosen for "transcendental 

mathematics". 

The motivation that Dhombres [1985] presents for these special classes is the prepa-

ration of pupils for admission to the Ecole Polytechnique - this admission was through 

a nationwide selection, at first based on information given by more than 22 local ex

aminers, and from 1798 onwards it was carried out by 4 or 5 itinerant examiners 

[Belhoste 2003, 54-56]; the programme for the entrance exams was published every 

year. However, this seems to have soon excluded the topics treated in [Lacroix 1800] 

(and to have never included those in [Lacroix 1802a]): the first regulation of admission 

spoke quite vaguely on "connaissance de l'arithmétique et des élémens d'algèbre et de 

la géométrie" 1 4 [Fourcy 1828, 30; Belhoste 1995, 73]; after a first year in which the lack 

of mathematical preparation of the students caused many difficulties [Langins 1987a, 

76-79], the requirements in algebra were a little detailed (and probably much enlarged) 

to include "la resolution des équations des quatre premiers degrés, et la théorie des 

suites" 1 0 [Fourcy 1828, 82; Belhoste 1995, 73], an expression that might cover a large 

part of algebraic analysis; but in 1798 they were relaxed back to "l'algèbre jusqu'aux 

équations du deuxième degré inclusivement" 1 6 [Fourcy 1828, 155; Belhoste 1995, 73]. 

A more detailed admission programme, written by Monge, was adopted in 1800. It was 

sent by the minister of the interior (Lucien Bonaparte) to the teachers of mathemat

ics of the écoles centrales throughout the country, together with a letter, containing 

methodological advices for their teaching, signed by the minister but in fact, according 

to Belhoste [1995 , 73], written by none other than Lacroix 1 7 [Fourcy 1828, 203-208; 

1 3 T h c curriculum at each école centrale was decided by a local commission. On mathematics the law 
only stipulated that at each école centrale there should be one teacher of that subject, placed at the 
"second section" (to which only pupils aged 14 and over were admitted). All subjects being optional 
for the students, the "special" character of some is doubtful. Moreover, transcendental mathematics 
might be taught in some écoles centrales but not in others. At the Ecole Centrale du Doubs at 
Besançon, for instance, the most advanced topic seems to have been the application of algebra to 
geometry (no theory of series nor calculus) [Troux 1926, 167-170]. On the other hand, infinitesimal 
calculus (which would qualify as transcendental) was taught at the école centrale of Nantes; and yet, 
very few students from Nantes applied for the Ecole Polytechnique [Lamandé 1988-1989, 134-143]. 
The lycées, created by law in 1802, were on the contrary highly centralized. At each lycée there 
should be six "classes" of mathematics (two per year, giving a total of three years), taught by three 
teachers, plus two "classes" of "transcendental mathematics" (two years, one teacher). Transcendental 
mathematics included topics such as "application of differential [and integral] calculus to mechanics 
and to the theory of fluids" or "general principles of high physics, especially electricity and optics" 
[Lycées 1802, 307]. 

H "knowledge of arithmetic and the elements of algebra and analysis" 
1 5 "the solution of equations up to the fourth degree and the theory of series" 
1 6 "algebra up to and including the equations of second degree" 
1 7Dhombres [1987, 95], on the other hand, suspects that the letter had been prepared by the 

predecessor of Lucien Bonaparte. Laplace. 
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Belhoste 1995, 73-76]. 1 8 This programme remained essentially unchanged until 1854 

[Belhoste 1995, 73]. 1 9 The topics covered in algebra are: the solution of équations of 

second degree; the proof of Newton's binomial formula for positive integer exponents, 

using combinations: the composition of équations and their nurnerical solution, using 

the method of commensurable factors and approximation; élimination in équations of 

higher degrees in two unknowns; and finally, the theory of logarithms (apparently as 

inverse functions of exponentials), explicitly excluding their séries expansions froin the 

requirements. AU of thèse required subjects were included in [Lacroix 1799]. The can

didates to the École Polytechnique were not compelled to study [Lacroix 1800] or any 

similar textbook. 

However. the candidates to the Ecole Polytechnique were certainly advised to study 

some matters not required for the entrance exams but taught there in the first year. 

This was strongly defended by a competitor of Lacroix as textbook writer, Jean-

Guillaume Garnier, who was an examiner (and a teacher) of candidates to the Ecole 

Polytechnique and also taught there from 1798 to 1802 (replacing Fourier, away in the 

Egyptian campaign): 

"pour qu'un candidat soit suffisamment préparé, je pense qu'il faut non-

seulement qu'il possède toutes les connoissances énumérées dans le pro

gramme d'admission, mais encore qu'il ne soit pas étranger à l'analyse 

algébrique qui fait partie de l'enseignement mathématique de la première 

division de TEcole" 2 0 [Garnier 1801, vii]. 

Lacroix might not agrée with this (he did not think that teaching algebraic anatysis 

at the École Polytechnique was a good idea); but we have seen above that he found 

some usefulness in his Compléments of algebra [1800] as facilitator of more advanced 

studies. In 1804 he was appointed teacher of transcendent al mathematics at the Lycée 

Bonaparte, where he had to teach algebraic analysis as a secondary-school subject (and 

he certainly had done the same at the Ecole Centrale des Quatre-Nations, possibly only 

to a few more advanced students). 

Summing up, we can picture Lacroix's cours de mathématiques as containing several 

layers: 

a) The cours élémentaire consisted in items 1,2,4 and 6 above (Traité élémentaire 

d'Arithmétique, Elémens d'Algèbre (Lacroix 1799], Elémens de Géométrie and 

Traité élémentaire de Trigonométrie et d'application de l'Algèbre à la Géométrie 

1 8 Thus the Ecole Polytechnique, through its entrance exams. would serve as a factor of unification in 
a highly decentralized educational system. Whether that occurred in the two or three years between 
this letter and the replacement of the écoles centrales by the centralized lycées, is a good question. 

1 9 A very similar programme can be seen in [Éc. Pol. Concours 1802) (1802, incidentaUy, is the year 
of publication of the first édition of Lacroix's Traité élémentaire du calcul...). 

2 0 "for a candidate to be prepared well enough. I find it necessary not only that he possess ail the 
knowledge detailed in the admission prograin, but also that he be familiar with the algebraic analysis 
that is part of the mathematical teaching in the first division of the Ecole'' 
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[Lacroix 1798b]). This probably correspondecl to the usual curriculum in the 

écoles centrales (spécial classes excepted); it certainly corresponded to the cur

riculum of "mathematics" stricto sensu (that is, excluding transcendental math-

ematics) in the lycées^ and also to the required knowledge for admission to the 

École Polytechnique. 

b) In addition, item 5 (Complément des Elémens de Géométrie [Lacroix 1795}) 

was apparently included in Lacroix's teaching at the École Centrale des Quatre-

Nations [Lacroix 1805, 346). at an elemeniary level. 

c) The Traité élémentaire du calcul différentiel et du calcul intégral [Lacroix 1802a]. 

in spite of the naine, was no longer at an elemeniary level: it was used mainly in 

higher éducation; in secondary éducation it was studied only at spécial classes. 

However, it had a close connection with the cours élémentaire, as it had been 

written so as to follow immediately the latter's final part (namely the application 

of algebra to geometry in [Lacroix 1798b}), and thus formed a natural continua

tion [Lacroix 1805, 384]. 

d) The Complément des Elémens d'Algèbre [Lacroix 1800\ was not more elementary 

than [Lacroix 1802a] (being absent from the normal curriculum of mathematics 

at secondary schools), and was dispensable for the study of applications, so that it 

stayed outside of the progression from the cours élémentaire to [Lacroix 1802a}. 

In 1805 thèse books constituted a cours de mathématiques at least in the commercial 

sensé that Courrier would sell them as a set for 28 fr. 50 c. [Lacroix 1805, iv] 2 2 In 1819 

the cours complet de mathématiques included two more items, costing in total 38 fr. 

50 c. [Lacroix Traité, 2nd ed, III, i i] 2 3 : 

e) The Essais sur l'enseignement [Lacroix 1805) were a natural complément to the 

cours élémentaire, a useful aid for those teachers who would follow Lacroix's cours 

(especially the cours élémentaire). 

f) The Traité élémentaite du Calcul des Probabilités, first published in 1816, was 

also included in the 1819 cours complet. Unfortunately Lacroix does not seem to 

have inserted any référence to it in subséquent éditions of [Lacroix 1805]. 

2 1 These were precisely the textbooks adopted in 1803 for the six normal "classes" of mathematics 
[Lycées Î803]. 

2 2 T h i s apparently meant a modest discount, as bought separately they would cost 29 fr. 50 c. But 
it may be a misprint, the Elémens d'algèbre costing 4 fr.. not 5 [Lacroix 1805, iv. 391]. 

2 3 A n d very clearly there was no discount. 
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8.2 Analysis in the early years of the Ecole Poly-

technique 

The history of the teaching of analysis in the early years of the Ecole Polytechnique 

is quite a complicateci subject. The first year of the École (1794-1795)2 4 was chaotic, 

with frequent changes of staff due to illnesses and politicai troubles (including impris-

onment), and unrealistic syllabi which most students could not follow - resulting in 

improvised solutions [Langins 1987a); in the following years the situation stabilized. 

but there were only officiai, fìxed programmes of teaching from 1800 onwards. More-

over, the habit of taking down summaries of the lectures only started in 1805, which 

does not facilitate the understanding of what was going on before that. Stili, work has 

been done on this. [Langins 1987a) is an excellent study of the first year of the Ecole, 

and [Belhoste 2003, 235-252] gives a very good survey of mathematics there before and 

during Lacroix's time. 

One very important characteristic of the teaching of analysis at the École Polytech

nique is its novelty. I believe that Belhoste exaggerates somewhat in his claim that 

"la méthode analytique n'[a] été enseignée nulle part de manière régulière et complète 

avant 1794. [...] l'étude des series et surtout celle du calcul infinitesimal rest[aient] 

exceptionnelles" 2 5 [Belhoste 2003, 234]: Bézout included a section on the calculus in 

his course for the Gardes du Pavillon et de la Marine [Bézout 1796]: and so did Marie 

in [La Calile & Marie 1772], a textbook that he probably followed in his lectures at 

the Collège Mazarin.26 But the high level of the mathematics taught at the École 

Polytechnique seems really unprecedented - far beyond the level of Bézout's or Marie's 

textbooks. This means that a lot of experimenting was being done in the early years 

of the Ecole, regarding what and how could be taught to a large number of students. 

The first instituteur (Le., professor) of analysis was Lagrange. His lectures are 

famous because of [Lagrange Fonctions], but it is not easy to know what in that book 

was taught in class. According to Prony \1795b] Lagrange's course of analysis in 

1795 started with arithmetic (even number systems!), proceeded with the theory of 

series, and then went on to his power-series versión of the calculus (so that [Fonctions] 

corresponds only to this last part). After a few lectures very few students could follow 

hirn, and his course was soon regarded as optional, and attended only by the best 

students. 

2 4 During this first year its name was École Centrale des Travaux Publics. But 1 will ignore this 
detail here. 

2 5 "the analytical method was not taught in a regular and complete manner anywhere before 1794. 
[...] the study of series and especiallv that of infinitesimal calculus were exceptional" 

2 6 I t may also be relevant that the statutes of the University of Coimbra of 1772 established the 
regular teaching of differential and integrai calculus in the second year of the new Faculty of Math
ematics [Univ. Coimbra Estatutos 1772, III, pt.2] - for this teaching the calculus section in Bézout's 
course was translated into Portuguese; even Belhoste acknowledges that Lagrange taught the calculus 
in an artillery school in Turni in 1758 and 1759, and that Euler appcars to have done the same in St. 
Petersburg in the late 1720's [2003, 477]. 
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Meanwhile, in this first year of the Ecole Polytechnique Prony taught a course 

in "analysis applied to mechanics", with a quite surreal syllabus: his lecture notes 

[Prony 1795a] are almost entirely devoted to the calculus of finite differences; they also 

include a summary of the six lectures where he addressed the fundamental principles 

of the differential calculus [Prony 1795a, IV. 543-569]; and near the end he mentions 

in passing that he also gave lectures on mechanics [Prony 1795a, 567]. Another surreal 

aspect of Prony's course is that it was for second- and third-year students, in spite 

of this being the first year that the Ecole functioned (this was a consequence of the 

"revolutionary courses", and is explained in [Langins 1987a]). 

The first-year students had a course in "analysis applied to geometry". If the pro

gramme for this course was similar to that of the corresponding revolutionary course 

[Langins 1987a, 130-131], and it probably was, it had three parts: the first part con

sisted in some advanced algebra (equations up to fourth degree, including approxima

tion methods) culminating in analytic geometry; the second part included the rest of 

algebraic analysis (series, logarithms and exponentials, elementary probabilities), dif

ferential and finite difference calculus, and differential geometry; and the third part 

was mainly integral calculus (including partial differential equations and the method 

of variations). 

According to Langins [Langins 1987a, 78] this course was initially given by Monge, 

but many students could not follow it, and an easier course was given by Hachette (until 

both Monge and Hachette had to disappear temporarily for political reasons, further 

confusion ensuing). However, according to Belhoste and Taton [Belhoste &c Taton 

1992, 294-299] Monge's course was restricted ("restricted" may not be a good word) 

to the application of analysis to geometry - i.e., analytic and differential geometry; 

from this resulted [Monge Feuilles], Presumably, either the students were initially 

expected to acquire the necessary analysis to be applied in Lagrange's lectures; or the 

more elementary course by Hachette was meant to cover that. An aspect that resulted 

from this confusion, and remained for several years, was some lack of correspondence 

between teaching posts and courses: the teachers of descriptive geometry (Monge and 

Hachette) would systematically teach part(s) of the course of "analysis applied to 

geometry" [Langins 1981, 206]. Of course this makes it harder to understand what 

was going on. In 1800 the application of analysis to geometry was officially annexed to 

descriptive geometry [Ec. Pol. Rapport, an 9]. 

In the middle of the confusion, Fourier was recruited in 30 Floreal (19 May) to give 

a course in (algebraic?) analysis. But he was arrested less than three weeks later for 

being a jacobin, and stayed in prison until Vendémiaire (October). 

As has been said above, the situation became much more stable afterwards. In years 

4 to 6 of the French Republic (1795-1796 to 1797-1798) Fourier gave regular lectures 

of analysis, "des mathématiques pour tous les élèves" 2 7 [Belhoste 2003, 245]. Two 

2 7 "mathematics for all students" 
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manuscripts containing Fourier's own notes survive - one is kept at the Bibliothèque 

de l'Institut de France, and the other at the École Nationale des Ponts et Chaussées; 

unfortunately none of thèse has been published. But another one, with notes taken by 

one of his students ( C L . Donop) has been transcribed and published (Fourier 1796]] 

and it gîves us a good idea of Fourier's lectures in analysis (except for the integrai 

calculus, which is not included there). 

It seems that Fourier gave two courses in analysis: presumably one was for first-year 

students (but, at least in year 4, open to ail students), while the other was for second-

year students (and possibly third) . 2 8 The first course was on "algebraic analysis" (the 

expression occurs, but is not yet prédominant). Fourier was helpful in dividing it 

for us in two parts: "la l e r e considère les équations; la 2 d comprend les séries, suites 

arithmétiques, géométriques et récurrentes, les fractions continues, les logarithmes et le 

théorème de Côtes" 2 9 [Fourier 1796, 19] - although he does not seem to have followed 

this particular order. The "séries" in the second part included expanding the usuai 

transcendent al functions (trigonometrical, exponential, logarithmic). There was some 

concern with convergence [Fourier 1796, 89-90, 103]. Fourier sometimes used infinite 

and infinitésimal quantifies, but he also gave alternative, algebraic methods (such as 

indeterminate coefficients), regarded as more rigorous. 

Fourier's other course was on differential and intégral calculus. His approach was 

a mixture of limits with power séries. Foundationally, it was mainly based on lim-

its: "L'objet du calcul des différences est de trouver le rapport de la différence de la 

fonction à la différence de la variable. [...] Le calcul différentiel ne considère que la 

limite de ce rapport" 3 0 [Fourier 1796, 114]. 3 1 But the fundamental technique used for 

differentiation was the expansion of the différence of the function into a séries of powers 

of the différence of the variable; then, the limit of 

^ = A 4- BAx2 4- CAx3 4- &c., 
Ax 

is easily obtained as 

dx 

But this technique also shared some of the conceptual burden: it is not clear whether 

2 8 Apart or in connection with thèse he also taught descriptive geometry, Euclidean geometry, statics, 
hydrostatics and dynaimcs [Fourier 1796, xv; Grattan-Guinness 1972, 6-7]. But thèse subjects are 
not our concern here. 

2 9 "the lst regards équations; the 2nd comprises séries, arithmetic. geometrie and recurring sé
quences, continued fractions, logarithms, and Cotes' theorem" 

3 0 "The purpose of the calculus of différences is to find the ratio between the différence of the function 
and the différence of the variable. [...] The differential calculus examines only the limit of that ratio" 

3 L Belhoste [2003, 245], as well as Lorrain and Pepe [Fourier 1796, xviii], associate Fourier's use of 
finite différences in introducing the differential calculus to Prony's lectures of year 3 [Prony 1795a\. 
But Fourier uses finite différences in a traditional manner. similar to wnat Euler [Differentialis] and 
Cousin [1777; 1796} had done, and Bossut [1798] was about to do. Prony's use of the calculus of finite 
différences instead of differential calculus is something quite différent, and not necessary to explain 
Fourier's short références. 
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he defined the differential dy as the first terni in the expansion of Ay (changing Ax 

into dx), or he gave this only as a means to calcitiate the differential; but either way, 

he added that "le calcul différentiel considéré analytìquement est le calcul des 1 e r s ter

mes des différences"3 2 (my emphasis) [Fourier 1796, 118]. Of course the expansions 

obtained previously in algebraic analysis were applied fiere. Differentials were used 

throughout, but derivatives ("fonctions dérivées") also appeared (Fourier 1796, 172], 

Fourier tried to combine an analytical with a geometrical approach: for instance, he in-

troduced the treatment of maxima and minima by studying behaviour of curves [1796, 

183-190], but followed it with a power-series analysis, using what I call Arbogast's prin-

ciple [1796, 190-192], Good students would then be able to follow Lagrange and/or 

Monge. 

As for integral calculus, the published manuscript [Fourier 1796] does not include it. 

Grattan-Guinness [1972, 6-7], based on the Paris manuscripts, mentions "foundations 

of integral calculus 1 ' 3 3, applications to geometry (probably calculation of areas, and 

so on), and calculus of variations. Ordinary differential équations were likely to be 

included, but not partial differential équations. The latter were probably taught by 

Monge and Hachette, associated with differential geometry. 

In May 1798 Fourier was invited to join the scientific expédition that accompa-

nied Napoleon's Egyptian campaign. He accepted and Jean-Guillaume Garnier was 

recruited to replace him during his absence. Garnier stayed in the Ecole Polytechnique 

until 1802. There are plenty of sources to study Garnier's teaching, but most of them 

not published (at least in the usuai sensé) or rare: a manuscript programme of his 

course of differential and integral calculus, sent to the examiners Laplace and Bossut 

at the end of year 7 (1798-1799) is kept at [Éc. Pol. Arch, III3b]; he published text-

books on algebraic analysis and differential and integral calculus [1801; 1800]M; and 

he had printed lecture notes distributed to the students [Garnier 1800-1802].30 True, 

[Garnier 1800-1802; 1800; 1801] are ali contaminated by the officiai programmes ap-

proved in 1800, when Lacroix was already at the Ecole. But the sirnilarities with his 

personal programme of 1799 and with Fourier's lectures suggest a deep continuity. 

But let us start with the time allocation for courses decided by the Council of 

the École on 12 Frimaire year 7 (2 December 1798) [Éc. Pol. Extraits Conseil, 62]: 

first-year students would have an year-long course on "the method of indeterminate 

coefficients, the theory of higher-degree équations, the application of algebra to geom-

3 2 "the differential calculus, regarded analytically, consists in calculating the first terms in the dif
férences" 

3 3Presumably, in this context "foundations" means introductory remarks and integration of explicit 
functions, not elaborated conceptual work. 

3 4[Garnier 1801] is relatively common. But [Garnier 1800) seems quite rare - no copies at the 
Ecole. Polytechnique, Bibliothèque Nationale de France, or British Library; oddly, there are copies in 
the Faculty of Science of Porto and Science Museum of Lisbon (with some différences between them 
- see the Bibliography below). 

3 a T h e text of thèse lecture notes seems very close to that of his published textbooks, although with 
fréquent changes in order. 
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etry, the introduction to differential calculus, and the differential calculus"; while the 

second-year students would have a 4-month course on integral calculus, with applica

tions taken from [Monge Feuilles]36. The analytic and differential geometry implied in 

the last sentence were certainly taught by Hachette 3 7 . The rest was taught by Gamier. 

It is clear that Gamier gave considerable importance to algebraic analysis. His first-

year lecture notes [Gamier 1800-1802, I-III] contain 16 leaves of algebraic analysis, 

against 18 of differential calculus, and 9 of integral calculus; and in the preface to that 

set, he implies that he taught more on algebraic analysis than what was specified in 

the official programme recently approved 3 8. Interestingly, and unlike Fourier's case, his 

algebraic analysis does not include the expansions in series of transcendental functions 

- these are only dealt with in the differential calculus. Instead, it mostly addresses the 

theory of equations. 

As for differential calculus, Garnier's approach is very similar to Fourier's: there 

are introductory sections on finite differences and on limits; then it is proven that the 

increment f(x + Ax) of a function may be expanded into a series of powers of Ax; 

from this follows that the limit of a ratio such as is the first term in its expansion; 

and the differential calculus consists in determining these first terms; the differential 

is "the part of the difference suitable to give the limit, having substituted d for A 

[Gamier 1800, 380-381; 1800-1802, II, n° 5). The main difference from Fourier, as has 

already been noted, is that Garnier does not have the expansions of transcendental 

functions beforehand, and so he has to obtain them here; 3 9 one might think that this is 

an influence from the official programme approved in 1800, but Garnier's programme 

of differential calculus of 1799 already used Taylor's theorem for those expansions. We 

may also notice some greater detail on limits and differences, and less pedagogical use of 

geometrical considerations; but these may be due to the difference between manuscript 

notes and printed, more or less published notes - and possibly also to the increase in 

allocated time to analysis lectures from year 4 to year 9 [Belhoste 2003, 247]. 

There is not much to say about the integral calculus, except that Gamier does not 

address either the calculus of variations or partial differential equations. He explicitly 

mentions that the teaching on partial differential equations was trusted to Monge and 

Hachette [Gamier 1800, 826] or Monge [Gamier 1800-1802, VI, n° 32]. 

3 6 "Cours de Calcul intégral dont on prendra des applications dans la suite des feuilles de l'analyse 
géométrique de Monge" 

3 7 Monge was in Egypt. Hachette published that year [Monge & Hachette 1799] to compensate for 
the lack of material on space curves in the first edition of [Monge Feuilles] 

3 8"lorsque le programme nous fut remis, mes leçons d'algèbre [était] préparées et le cours engagé [...] 
et si le cours d'analyse algébrique que j'ai fait n'est pas textuellement celui qui est exigé, au moins le 
comprend-il en entier" ("when the programme was sent to us, my lectures in algebra [were] prepared 
and the course had began [,..] and if the course in algebraic analysis that I have given is not word for 
word the one that is required, at least it comprises it in full") 

3 9 B u t , according to an addition ("Note sur les numéros 6, 7, 8 et 9") to [Gamier 1800-1802, II], 
in one of his courses Fourier used functional equations ("propriété[s] caractéristiquejs]") to obtain the 
differentials of transcendental functions, and then used these to arrive at their expansions. 
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8.3 Lacroix in the Ecole Poly technique 
In Brumaire year 8 (November 1799) Lagrange resigned from his post of instituteur for 
health reasons. Lacroix was chosen to replace him. Lagrange had suggested that the 
person who was to replace hirn should teach obligatory courses. It appears that at first 
the Conseil d'Instruction of the Ecole did not wish to follow this suggestion: in the 
meeting of 28 Brumaire (19 October) Gamier was charged with a first-year course in 
algebra (45 lectures) and differential calculus (40 lectures), and a second-year course in 
differential and integral calculus (40 lectures); while Lacroix was invited to give an op
tional course for the best students (with only one lecture every 10 days) [Ec. Pol. Arch, 
X2c/30, II, 53-54]. But in later meetings there were some discussions on how to im
prove the course distribution, and at the end of that school year the examinations of 
first-year students followed Lacroix's programme of algebra and differential calculus, 
while those of second-year followed Garnier's programme of differential and integral cal
culus [Ec. Pol. Arch, II, 109-110].40 For the following year it was decided that Lacroix 
would teach the second year and Gamier the first year [Ec. Pol. Arch, II, 102]. This 
scheme of alternation, so that each student would have the same teacher for the two 
years (provided he passed), was kept thenceforth. Lacroix taught first-year courses in 
1799-1800, 1801-1802, 1803-1804, 1805-1806, and 1807-1808; and second-year courses 
the alternating years until 1808-1809 (inclusive). In 1809 he left the post of teacher for 
the higher-ranking one of permanent examiner, 4 1 which he kept until 1815. 

On 25 Frimaire year 8 (16 December 1799), little over two months after Lacroix's 
appointment, a new organization for the Ecole was decreed. One of the novelties was 
that a new body, the Conseil de Perfectionnement, should fix official syllabi every year. 
Monge, Gamier and Lacroix prepared the project of syllabus of analysis [Belhoste 2003, 
248]. Lacroix prepared a document that is transcribed in appendix C.2.1 below. It 
contains the radical proposal of abolishing algebraic analysis. For Lacroix, the subject 
that was really important for the students of the Ecole Polytechnique was the differ
ential and integral calculus; he did not see the point in teaching them the theory of 
equations - excepting the best students, those attracted by pure mathematics. Thus 
the binomial formula in the cases of negative or fractionary exponent, and the series 
expansions of trigonometric and logarithmic functions, would be obtained with differ
ential calculus, using Taylor's theorem. This is fully consistent with what we have seen 
in section 8.1 on his opinion about [Lacroix 1800}. 

But the programme that was approved by the Conseil de Perfectionnement was not 
4 0Considering the summaries of Lacroix's lectures on differential and integral calculus transcribed 

in appendix C.l and almost certainly related to this year, it is possible that Garnicr gave 25 lectures 
on algebraic analysis, and Lacroix took over afterwards; or that Lacroix started the course afresh and 
hence gave only 54 lectures (including algebraic analysis) instead of the 85 assigned. 

4 1According to the Registre de Contrdle des Instituteurs et Agents [Ec. Pol. Arch, X2c26], he had 
already fulfilled the duties of examiner in 1808 (seemingly in a temporary way), but was only appointed 
for the post in 1809. 
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the one propoimded by Lacroix: it included extensive sections in algebraic analysis, 

both in the first and second years (see appendix C.2.2). In the following years the pro

gramme became less detailed. and the section on algebraic analysis was shortened. But 

it was never short enough for Lacroix- When we compare the officiai programmes for 

1805-1806 and 1806-1807 with the summaries of Lacroix's lectures in those years (ap

pendices C.3.1 and C.3.2), we see that Lacroix did not teach ail of the algebraic analysis 

that he should in the first year (he missed the expansion of functions using indeter-

minate coefficients), and he ignored it in the second year (it was his adjoint Ampère 

who gave three lectures on solving 3rd- and 4th-degree équations, after Lacroix had 

declared the course finished; he had been explicit in 1800 about the limited usefulness 

of this). 

8.4 Prom the large Traité to the Traité élémentaire 

In the first year(s) that he taught at the Ecole Polytechnique, Lacroix used his large 

Traité as a supporting text. We know this from a manuscript syllabus kept at the 

Wellcome Institute, London (appendix C l ) : next to each lecture it indicates the cor-

responding articles in the Traité. 

But of course the large Traité was not a textbook, and the same manuscript also 

shows how Lacroix adapted it. The first, obvious. change is the réduction in covered 

subject matter: the Traité addresses much more that what the students at the Poly

technique had to (or could) study, and we can see that out of the 403 articles in the 

first volume of the Traité, only about 100 appear in the syllabus. 

A second change is in the order in which some topics of differential calculus are 

treated 4 2 : the exposition is more driven by pedagogical concerns and less tightly packed 

into subjects - for instance, Taylor séries for functions of one variable appear before 

the differential calculus of functions of two variables, and maxima and minima appear 

in the middle of the discussion of spécial points of curves. 

^A third change is in foundations: limits instead of power séries (more on this in 

section 8.5 below). Fortunately, Lacroix had addressed limits in the Introduction of the 

large Traité, and so he could support his first lecture on the principles of differential 

calculus with some articles from the Introduction. 

In 1802 Lacroix took the obvious next step: the publication of this adapted version 

of the large Traité (with some further changes) as a book - a textbook, to be followed in 

his lectures; this was his Traité élémentaire de Calcul différentiel et de Calcul intégral 

[1802a]. 

Table 8.1 shows the contents of the first édition of the Traité élémentaire (suc-

cinctly), and how they correspond to the chapters of the large Traité. 

4 2 T h e order in intégral calculus is kept. 
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Part I — differential calculus Large Traité 
(vol. 1) Top ics Pages 

Large Traité 
(vol. 1) 

Différentiation of functions of one var. and of eqs. in two var. 1-55 Ch. 1 
Maxima and minima of functions of one var.; indeterminacies 55-75 Ch. 2 
Application of differential calculus to the theory of curves 75-143 Ch. 4 
Change of independent var.; differ. of fcts. of 2 or more var. 143-172 Ch. 1 
Maxima and minima of functions of two variables 172-179 Ch. 2 
Appi, of diff.. cale, to curves of double curvature and surfaces 179-186 Ch. 5 

Part II — intégral calculus Large Traité 
(vol. 2) Topi es Pages 

Large Traité 
(vol. 2) 

Integration of functions of one variable 187-309 Ch. 1 
Application of integrai cale, to quadrature, rectification, etc. 309-341 Ch. 2 
Integration of differential équations in two variables 341-430 Ch. 3 
Integration of functions of two or more variables 430-461 Ch. 4 
Method of variations 461-488 Ch. 5 

Appendix — Différences and séries Large Traité 
(vol. 3) Topics Pages 

Large Traité 
(vol. 3) 

Calculus of différences (direct; inverse; équations in two var.) 489-557 Ch. 1 
Application of intégral calculus to the theory of séquences 557-570 Ch. 3 

Table 8.1: Lacroix's Traité élémentaire de Calcul différentiel et de Calcul intégral 

Here we see a further change in the order of subjects (once again, only for differ

ential calculus): first, functions of one variable, including analytical and geometrical 

applications; only after that are treated functions of two or more variables. In the 

Preface to the second édition of the large Traité, Lacroix remarked that in chapter 1 of 

the first volume he had given the complete exposition of the principles of differential 

calculus, "at one stroke"; but "dans un livre élémentaire, cette marche retarderait trop 

les applications, si nécessaires pour soutenir le courage d'un lecteur qui s'engage pour 

la première fois dans une carrière dont il n'apperçoit pas le bu t " 4 3 [Traité, 2nd ed, I, 

xx]. 4 4 

We can also confimi the différence in size: the three volumes of the first édition of 

the large Traité have 1790 4to pages in total; the first édition of the Traité élémentaire 

has 574 8vo pages - the latter is about one sixth of the former. Naturally, the most 

advanced subjects are the ones that suffer most in this réduction: differential geome-

try in space, partial differential équations, and the whole appendix on différences and 

séries (but especially différence équations). For example, in the Traité élémentaire 

partial differential équations have one third of the space dedicated to ordinary differ

ential équations, while in the large Traité they have almost the same number of pages; 

4 3 "in an elementary book, that process would delay applications too much, [and they are] so neces-
sary to keep up the heart of a reader who does not notice the goal of a course that he undertakes for 
the first time" 

4 4 For some reason, from the third édition of the Traité élémentaire onwards Lacroix reverted to 
an order closer to that of the large Traité: differentiation of functions of more than one variable 
and of équations in two variables before any applications (but change of independent variable and 
differentiation of équations in more than two variables between applications to planar geometry and 
space geometry). 
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"differences and series" are reduced from about one third of the large Traite to one 

seventh of the Traite élémentaire. 

With these rearrangements and reduction, and with the loss of such special char

acteristics as the subject index and the bibliography in the table of contents. Lacroix's 

Traité élémentaire became less encyclopedic than his large Traité. But that is only 

natural in a textbook. Its scope was much narrower than that of the large Traité. Still, 

it was a landmark textbook. It was very far from the common textbooks of the 18th 

century, such as Bézout's, both in content and in mathematical style. Pierre Lamandé 

\1988\ compared [Lacroix 1802a] with Bézout's section on the calculus; the comparison 

is quite relevant because Bézout's text was popular well into the 19th century. Lamandé 

remarked the huge gap that existed between Bézout's text (and other pre-revolutionary 

textbooks) and mathematical research [1988, 23]. 4 5 Lacroix's Traité élémentaire, on 

the other hand, pointed in the direction of contemporary mathematics, even if it did 

not prepare the students for understanding research works (which was the aim of the 

large Traité). 

The success and influence of [Lacroix 1802a] are undeniable. It had five editions in 

Lacroix's lifetime (1802, 1806, 1820, 1828, 1837), and four posthumous ones (1861-1862, 

1867, 1874, 1881) 4 6; less than his textbooks on more elementary subjects, but much 

more than usual for a calculus textbook. Translations were published in Portuguese, 

English, German (two), Polish, and Italian; in addition, a Greek translation was made 

but not published (see below). The English translation is famous for its importance in 

introducing continental-style calculus in Britain. 

Of course, part of its influence came from being the "reference work" on the calculus 

in the Ecole Polytechnique until about 1815 [Belhoste 2003, 249]. 4 7 But it must not 

be reduced to a Polytechnicien text. As was mentioned in section 8.1, it was adopted 

also for the Lycées; Lacroix probably used it in the Faculté des Sciences and in the 

Collège de France; and only two out of its nine editions appeared during its Polytech

nicien period. Moreover, it was never a perfect fit for the course of analysis at the 

Ecole Polytechnique: it does not contain algebraic analysis, and it does address partial 

differentia] equations. It could and did live a life of its own. 

Garnier's texts [1800; 1800-1802} are comparable to [Lacroix 1802a], if we except 

their lack of treatment of partial differential equations, calculus of variations, and fi

nite differences. These are important exceptions; but one can imagine that, if Garnier's 

textbooks had not had such a restricted distribution, they might have been serious com-

4 5 Lamandé has also compared [Lacroix 1802a] with [l'Hospital 1696], in [Lamandé 1998). A detail 
in the title of this paper is quite eloquent: "Une même mathématique?" ("The same mathematics?"). 
Still, there is a point in common between [Lacroix 1802a) and [l'Hospital 1696]: both were modern 
when they were written; the same cannot be said of Bézout's text. 

4 6 T h e posthumous editions, in two volumes, contain extensive endnotes by Joseph Alfred Serret 
and Charles Hermite, necessary to bring it up to date. 

4 7Actually, part of its influence may have been lost before 1815. From 1808, Ampère had introduced 
some developments of his own on the use of limits; and in 1812, limits were officially replaced by 
infinitesimals [Fourcy 1828, 303]. 
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Petitors. As it happened, [Lacroix 1802a] was the foremost textbook on the calculus 
in the early 19th century (when Gamier published enlarged editions [1811; 1812] it 
was a little too late to make a stand). 

Of course, in spite of the differences, much of the quality and modernity of [Lacroix 
1802a] result from the fact that it is a by-product of [Lacroix Truite]. Certainly not 
many textbooks have resulted from such amount of work. 

In the following sections we will look at what happened in the Traité élémentaire 
to the aspects of the large Traité that have been studied in chapters 3-7. We will 
focus mainly on the first edition (1802). but also look at the second (1806) and third 
(1820) editions, still chronologically close to the large Traité; only occasionally will 
later editions be mentioned. 

8.5 The principles of the calculus 
The most famous difference between [Lacroix Traité] and [Lacroix 1802a] is founda
tional: in the latter Lacroix wished "un degré suffisant de rigueur et de clarté" 4 8 , but 
without the lengths entailed by certain unnecessary details [1805, 384], and for this rea
son he decided to use limits (always calculated naively). These "unnecessary details" 
were almost certainly the whole Introduction of the large Traité, and the proof that 
f(x + k) — f(x) may be expanded into a series of powers of k prior to the introduction 
of differential coefficients. 

However, in the first edition of [Lacroix 1802a] we still find several remnants of 
the power-series foundation of the large Traité. Let us examine the foundations of the 
calculus in [Lacroix 1802a, 1st ed]. 

After defining function, variable and constant, Lacroix explores the relations (and 
particularly the ratios) between the increments of a variable and of functions of that 
variable. If u = ax2, putting x 4- h in the place of x and calling v! the new value of u, 
we have 

—-—- = lax + an 
h 

This ratio is clearly divided into two parts, one independent and the other dependent 
of h. As h is supposed to decrease, the ratio keeps approaching 2ax, not reaching it 
unless h = 0. Thus, 2ax is the limit of "c'est-à-dire, la valeur vers laquelle il tend 
à mesure que la quantité h diminue et dont il peut approcher autant qu'on le voudra" 4 9 

[Lacroix 1802a, 3]. 

A similar situation occurs if u = ax^, since in that case 

u' — u 2 l 2 —•— = 3ax + 3axh. + ah . 
h 

4 8 "a sufficient degree of rigour and clarity" 
4 9 "that is. the value towards it tends as the quantity h diminishes, and which it can approach as 

much as one might wish". 
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which has 3a.x2 as limit. Lacroix then remarks that to firid such a limit it is enough to 

consider the first term in the différence 

v! - u = 3ax'2h + Saxh2 + ah3 (8.1) 

and he extrapolâtes tins for every function. He assumes that the incrément of any 

function can be expanded into a power séries of the incrément of the variable; but 

he never states this explicitly - only that "this first term, or this limit" of the ratio 

between the incréments always exists. 

Later in the book, when introducing the geometrical applications of the différential 

calculus, Lacroix emphasizes this point: it is an analytical fact that ail functions admit 

a limit in the ratio between their incréments those of the independent variable; consid

ération of limits allows to express the "law of continuity" in the calculus [1802a, 75-76]. 

The "law of continuity" is not very easy to understand, but refers to the situation in 

which "les point consécutifs d'une même ligne se succèdent sans aucun intervalle" 5 0; 

in the "calcul" one always présumes an interval between consecutive values, but limits 

compensate for this. Lacroix proves the existence of the limit between the ratios of 

the incréments, by establishing an équivalence between a function and a (graph-)curve 

and assuming the existence of a tangent at any point of this curve [1802a, 76-77]. 

Back to the beginning of the book: the first term in (8.1) receives the name differ-

ential, because it is only a portion of the différence of the function [Lacroix 1802a, 4], 

It is also given the notation du, so that in this case du = Zax2h. But in the case of a 

simple variable, the différence and the differential are the same, that is, dx = x'—x = h. 

Thus, h is replaced by dx "afin de mettre de l'uniformité dans les calculs" 5 1, and 

— is christened differential coefficient because it is the multiplier of da: in the expres-
dx 
sion of the differential. Notice how ail thèse fundamental concepts are introduced by 

examples, presumed to be generalizable. 

The immediate relations between differential and differential coefficient are useful, 

because in some cases it is easier to find the former and in others to find the latter, 

It is more direct to substitute x + dx for x, expand the function in powers of dx, and 

extract the term with the first power; but this requires that one knows how to expand 

the proposed function, which in some cases demand "secours étrangers" 5 2 - in those 

cases, limits often save us that trouble. 

Thus, in most cases Lacroix uses power-series arguments: for instance, the dif

ferential of u ~ ax is obtained by putting ax+àz — ax = ax(adx - 1), and expanding 
5 0 "consecutive points of a line succeed each other without interval" 
5 1 "to put uniformity in the calculations" 
5 2 "extraneous assistance" 

dît = 3ax2dx 
dx 

du 
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adx = (1 + è ) d l using the binomial theorem [1802a, 23-24]. 5 3 But the séries expansions 

of the trigonométrie functions are much more involved. and when it cornes to sinx he 

uses an argument free of power-series: using a few trigonométrie identifies, 

sin(x + dx) - sinx 
= (sinx 

s in dx 
4- cos x) 

sin dx 

dx 1 4- cos dx dx 

and, as dx variishes. sindx becomes 0, cosdx becomes 1. and tends also to 1. so 

that the right side of this equality tends to cosx [1802a, 33-34]. 

Lacroix déclares that the differential calculus consists in finding "la limite du rap

port des accroissemens simultanés d'une fonction et de la variable dont elle dépend""'4 

[1802a, 5]; in the introduction to the geometrical applications he also expresses the 

following opinion: 

"Il me paroît maintenant très-évident que la métaphysique précédente ren

ferme l'explication philosophique des propriétés du Calcul différentiel et du 

Calcul intégral, soit par rapport aux recherches sur les courbes, soit par 

rapport à celles qui concernent le mouvement." 5 5 [Lacroix 1802a, 76] 

Nevertheless, one cannot fail to notice several passages similar to those in [Traité, 

I], where the power-series approach was followed; the définition of the differential as 

the first term in the development of the différence of the function is striking. 

Also striking is the similarity between this approach and those of Fourier and Gar-

nier: limits as the main foundation; power séries as the main technique and intervening 

in the définition of the differential. Where Lacroix départs from his predecessors, he is 

a little less rigorous: both Fourier and Garnier had tried to prove the gênerai validity 

of the power-series expansion; Lacroix simply assumes it. 

It is not inconceivable that this similarity with Fourier and Garnier is a resuit of 

influence from them (or from a tradition in the École Polytechnique). But Lacroix's 

advocacy of limits in [1802a] seems quite sincère (and there are several later texts 

supporting it). And it is not necessary to invoke such an influence in order to explain 

his use of power séries: it was mentioned in section 3.1.4 that Cousin [1777: 1796], for 

instance, used power-series expansions in a context of limit-based calculus; moreover, 

would it not be easier for Lacroix to simply adapt most of the power-series arguments 

in his large Traité, rather than create new ones? 

In the second édition there are a few little. but important, changes. Most of the 

preliminary considérations remain, but Lacroix adds two simple theorems on limits, 

^There is a serious (but common) problem hère. Lacroix had obtained the binomial expansion 
in two ways, but both dépendent on the differential coefficient of xn being nxn~l: and he had only 
derived this for rational n. 

5 4 "the limit of the ratio between the simultaneous incréments of a function and of the variable on 
which it dépends" 

& 5 "It now seems to me very clear that the preceding metaphysics comprises the philosophical ex-
planation of the properties of the differential and intégral calculus, both in relation to researches on 
curves and in relation to researches concerning movement.'; 

298 



includes a proof of the chain rule (in the first édition it was simply assumed, in a 

Leibnizian way), and replaces the assumption of power-series expansion for something 

a little différent, when deriving some différent i ation rules involving general functions 

(such as the product rule, or the chain rule itself). The two theorems on limits are: 

the limit of a product is the product of the limits; and the limit of the quotient is the 

quotient of the limits. The former is proved thus: let p and q be the limits of P and Q, 

respectively; then P =• p + ct, and Q = q + P, where a and p are "quantités susceptibles 

de s'évanouir en même tems. après avoir passé par tous les degrés de petitesse" 0 6; we 

h ave 

and the limit of the rightmost expression is pq, as we can see by putting a = 0 and 

0 = 0, and noticing that "en donnant aux quantités a et p des valeurs convenables, on 

peut rendre aussi petite qu'on voudra la différence"5 7 [1802a, 2nd ed, 8]. As for the 

limit of the quotient, the argument is similar; the différence turns out to be 

and can also be made as small as we wish. 5 8 

The theorem on the limit of the product is applied to prove the chain rule: let v 

be a function of u and u be a function of x; let them simultaneously become v', v! and 

x'; the limits of ^ and ^ will be ^ and ^ , respectively; therefore the limit ^ of 

S = ëxfcf will be pq = fu x fx [Lacroix 1802a, 2nd ed, 9]. 

Another limit argument is used to dérive the differential of the product of two 

functions u and v. In the first édition, Lacroix had written H-t-pdx-r-etc. and v 4-<? dx + 

etc., multiplied thèse séries, and extracted the dx term [1802a, lst ed, 9], reproducing 

[Traité, I, 102]. In the second édition, instead of assuming the power-series expansions, 

he writes the incremented states of u and v as u + a and v + p; we have 

Thus. while a case could be made for a mixture of approaches in the first édition, 

the second édition has a more clear-cut option for limits. 

5 6"quantities capable of vanishing simultaneously, after passing through every degree of littleness' : 

5 7"assigning appropriate values to a and ¡3, we can make the différence as small as we wish" 
5 8Grabiuer found thèse simple arguments "important because they cxemplify translations of a verbal 

limit concept into algebraic language, however simple'1 [Grabiner 1981, 84], That is true, but she 
appears to speak of them only as examples of a kind of argument that sometimes appeared around 
1800; in other words, they are not major breakthroughs. For instance, the Portuguese mathematicians 
José Anastâcio da Cunha and Francisco Garçâo Stockler had given more sophisticated arguments 
[Domingues 2004], had l'Huilier. 

PQ = (p + a)(<l + 0) = pq + pP + qa + aP, 

P p __ qa — pp 

Q~~q ~q{q + 0)'' 

(u - f a)(v + P) — uv 

dx 

and since p vanishes with dx, the limit of this is + [Lacroix 1802a, 2nd ed, 

11-12]. 
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In the third édition, this option is a little strengthened. There remained in the 

second édition at least one instance of the assumption of power-series expansion of 

the différence of any function; now it disappears [Lacroix 1802a, 2nd ed, 6; 3rd ed, 

6]. And more importantly, an endnote on "the method of limits" is added [1802a, 

3rd ed, 625-631], developing Lacroix's advocacy of limits, mainly based on geornetrical 

arguments. It is interesting to read that the considération of limits "est aujourd'hui 

la meilleure base que l'on puisse donner au Calcul différentiel"5 9 [1802a, 3rd ed, 628]; 

this was published in 1820 - his former Student Cauchy was then giving thèse words a 

meaning that far surpassed Lacroix's. 

8.6 Analytic and differential geometry 

First of ail, let us note that, contrary to the large Traité, there is practically no an

alytic geometry in Lacroix's Traité élémentaire de calcul... The place for analytic 

geometry in his Cours de mathématiques was the Traité élémentaire de Trigonométrie 

[...} et d'Application de l'Algèbre à la Géométrie [1798b] - and when applying the 

calculus to geometry Lacroix often invokes results from that other textbook, in the 

form u(Tng.Uef [1802a, 80]. 

The only exception to the absence of analytic geometry is the introduction of polar 

coordinates and their transformation to and from rectangular coordinates [1802a, 134; 

136-137]. The context is the study of spirals, which are not treated in [Lacroix 1798b). 

In the large Traité polar coordinates also appeared apropos of spirals and separated 

from the rest of analytic geometry. 

On differential geometry of plane curves, or rather "application of differential calcu

lus to the theory of curves" [1802a, 75-143], the rnost important différence relative to 

the large Traité is the exclusive use of limits (recall from above that this section starts 

with considérations on the metaphysics of the calculus based on limits). We have seen 

in sections 4.1.2.1 and 4.2.1.2 that in [Traité, I, ch. 4] Lacroix had used five approaches 

to calculate tangents to curves: 1 - using transformation of coordinates (supported by 

a limit argument); 2 - using the séries expansion of the équation of the curve, obtained 

by algebraic means (supported by Arbogast's principle); 3 - using differential calculus 

(also supported by Arbogast's principle); 4 - using the method of limits directly; and 

5 - using infinitesimals. In [Lacroix 1802a] there is only one approach (recall frorn sec

tion 8.1 his rejection of duplications in textbooks): consider a given curve, and another 

having two points in common with the former; if the coordinates of the first point of 

intersection are x',y', and the gênerai coordinates of the second curve are x,y, then 

for that first point of intersection we will have y = y'; if in addition h is the différence 

5 9 "is nowadays the best basis we can give to the differential calculus" 
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between the abscissas of the points of intersection, then 

, / ày', 
y + ~h + etc. = y'4- -f-h + etc.. 

ax dxf 

whence 
dy, dy' 
— n, + etc. = -—h 4- etc.; 

d£ dx' 

now, dividing the latter équation by h and then taking the limit for h = 0, we get 

jjj = ^ 7 ; if the second curve is to be a straight line y = Ax + B, then ^ = A, and 

thus the équation of the tangent of the first curve at x',y' is 

y - y = d ^ ( a ; - ' T ) -

That is, we have a naïve limit argument with a little help from Taylor's series. 

Similarly, and sirice three points determine a circle, the osculating circle to a curve 

is introduced by considering those three points on the given curve, and then examining 

what happens when the three points coincide [Lacroix 1802a, 112-114]. 

There is also some réduction in topics addressed. The most marked absence is that 

of envelopes - except in the particular case of the evolute, which is seen to be the 

"limit" of the intersections of the normáis [Lacroix 1802a, 117]. 

As for differential geometry in space, it is reduced to just some "general notions 

on the application of differential calculus to the theory of curves of double curvature 

and of curved surfaces" [Lacroix 1802a, 179-186]. Only the most simple problems. For 

space curves: tangent Unes, osculating planes and normal planes. For curved surfaces: 

the "law of continuity" = differential équations of sections, tangent planes, 

and normal planes. No evolutes of space curves, no curvature of surfaces, no families 

of surfaces. Notice also the order (curves first, then surfaces), reversed from that of 

the large Traité. 

I have not noticed any relevant changes in the second édition. 

The same cannot be said for the third édition: the space dedicated to differential 

geometry in space more than triples. There are now three sections. The first is on the 

"application of differential geometry to the theory of curved surfaces" [Lacroix -1802a, 

3rd ed, 189-205]: apart from what was already in the first and second éditions, it 

includes generation of surfaces (that is, a short introduction to farnilies of surfaces), and 

curvature of surfaces. The following section is not exclusively on differential geometry, 

but rather "on singular points of curved surfaces, and on maxima and minima of 

functions of several variables" [1802a, 3rd ed, 205-212]. Finally, the third of these 

sections is "on the application of differential calculus to curves of double curvature, 

and on developable surfaces" [1802a, 3rd ed, 212-224]: apart from what was already 

in the first and second éditions, and from an introduction to developable surfaces, it 

contains more détails than the large Traité on the two "curvatures, or flexions" of 
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space curves [1802a, 3rd ed, 221-224; Traité, 2nd ed ; I, 632-633]. 

8.7 Approximate intégration and conceptions of the 

integral 

8.7.1 Conceptions of the integral and approximate intégration 

of explicit functions 

Lacroix's conceptual reflections on intégrais, treated in sections 5.2.2 and 5.2.3. were 

naturally appropriate for inclusion in an educational version of his Traité. 

The syllabus of the first course of analysis given by Lacroix at the Ecole Poly

technique effectively includes them, under the heading "de la détermination des Con

stantes dans les Intégrales" 6 0 (see page 402). From the articles linked to this entry we 

can conclude that in the 6th lecture on integral calculus Lacroix spoke about Euler's 

approximation method (with very few détails and no applications), about his interpré

tation of the integral as a sum or a limit of sums (but did not give either of the two 

proofs involving limits), about the distinctions between the integral and a given prim

itive function and between definite and indefinite intégrais, and about the geometrical 

interprétations of ail this. 

In [Lacroix 1802a] he was a lot inore detailed. In fact, he reproduced practically 

the entire section on the "general method to obtain approximate values of intégrais" 

from the large Traité [Lacroix 1802a, 284-309]. The extra détails were almost certainly 

not taught at the lectures, but rather left for smart students to read. 

Significant altérations were introduced in the second édition of [Lacroix 1802a). The 

articles directly addressing definite and indefinite intégrais and arbitrary constants 

were joined and transferred to the beginning of the section. This made Lacroix's 

explanations clearer. but also more conventional and less attached to the conception 

of the integral as sum or limit of sums [Lacroix 1802a, 2nd ed, 303-304]: 

"Si jXdx = P+C, P désignant la fonction variable déduite immédiatement 

du procédé de l'intégration, C la constante arbitraire, et que l'intégrale 

doive, s'évanouir pour une valeur x = a qui change P en A; on posera 

l'équation A 4- C = 0. de laquelle on tire 

C = -A et ¡Xdx = P~A. 

Sous cette forme l'intégrale JXdx n'est plus que la différence entre la valeur 

que prend la fonction P lorsque x = a, et celle qu'elle acquiert pour toute 

autre valeur de la même variable. Si, par exemple, x = b, change P en B, 

6 0 "on the détermination of the constants in the intégrais" 
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il vient 

JXdx = B- A"61 

This. of course, is the "definite integrai", taken "from x = a to x = 6", and so on. 

The dérivation of the approximation formulas is also différent. Lacroix postpones 

the neglecting of higher-order terms in the Taylor séries, but assumes quite early that 

the subintervals are ali equal, so that the formula at which he arrives first is équivalent 

to (5.11). (5.8) does not occur; instead, we see 

j Xdx = Aa + Aia + A2a + 

(the Al

ìs correspond to the IVs in [Lacroix Traité]). Notice that because of the change 

in the order of présentation, the approximation formulas can be introduced as formulas 

for definite intégrais (as is the case for this one). 

Finally, the considération of limits is very diminished, or even completely gone in 

this section of [Lacroix 1802a, 2nd ed] . 6 2 The last formula above is used to explain 

the conception of the integrai as an infinite sum - clearly not as a limit of sums - by 

putting x equal to a, a -f- a, a + 2a, etc., and dx equals to a [Lacroix 1802a, 2nd ed, 

306-307]. Naturally the two proofs that used the property of the integrai being the 

limit of approximating sums are now absent. 

Overall, in the second édition this section seems to be much more pedagogically 

oriented: clearer, more neatly organized. But also, probably for the same reason, less 

complex and less interesting mathematically. 

From the third édition onwards Lacroix returns to limits, reusing material from 

the second édition of [Lacroix Traité] (see section 9.4.1) but keeping the order of 

[Lacroix 1802a, 2nd ed]. The introduction to the section is the same, with the ex-

planation of the definite integrai quoted above. But after arriving at the formulas 

équivalent to (5.11) and (5.12), Lacroix sets to prove their convergence. For this he 

6 1 "If JXdx = P + C, P denoting the variable function immediately deduced by the process of 
integration, C the arbitrary constant, and if the integrai ought to vanish for a value of x = a, which 
changes P into A; we shall then have the équation A + C = 0, from which we deduce 

C = -A, and JXdx = P - A. 

Under this forni the integrai fXdx is nothlng more than the différence between the value of the 
function P, when x = a, and that which it acquires for every other value of the same variable. If, for 
example, x — h, changes P into B, there arises 

jXdx = B - A , ! 

[Lacroix 1816, 271-272] 
6 2 I t may be said to survive timidly in the passage giving the geometrical interprétation of the 

approximation method [Lacroix 1802a, 2nd ed, 310-312], and in the argument that because Aa + 
Aia + A-2<x ... + An- ia < Amna = Am{b - a), where Am is the largest of A, Ai, A2, • • •, A„_i and a, b 
are the limits of integration, then fXdx < M(b — a), where M is the largest value of X between x = a 
and x - b (and similarly for JXdx > m(b - a)) [Lacroix 1802a, 2nd ed, 307]. But this argument 
might also be interpreted in terms of infinitesimals. 
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invokes Arbogast's principle, and concludes that, in case X is increasing and we restrict 

ourselves to the terms in a, 

a(A + Ai + A2 ... 4- An-x) < JXdx < a(Ai + A2 + A3... + An) 

and that the différence between thèse two "bounds" for the intégral, that is a(An — A), 

can be made always smaller by decreasing a, so that each of them can approach the 

true value of J Xdx as close as one wishes. As in the original version of the section 

[Lacroix Traité, IL 137; 1802a, 287], this is given as the justification for the possibility 

of viewing the intégral as a sum of differentials (the différence being that here there is a 

stronger emphasis on the limit process). Also as in the original version [Lacroix Traité, 

II, 140; 1802a, 291], the problem of the necessity for the function to be monotonie and 

non-infiriite is addressed by suggesting that the interval of intégration be split into 

several intervais where those conditions hold [Lacroix 1802a, 3rd ed, 315-317]. 

After this oscillation in the first three éditions, this section did not suffer any more 

major changes in the last two éditions. It did however gain a more modem look, thanks 

to a modernization of notation: some use of f(x) for y, and especially the adoption of 

Fourier's notation Xdx; hence [Lacroix 1802a, 4th ed, 324; 5th ed, 341]: 

f Xdx = f{b)-f(a) 
Ja 

(instead of J Xdx = B — A as above) and the explicit conclusion in the introduction 

to the section that 

f Xdx= f Xdx-r f Xdx 
Ja Ja Jb 

(simply because /(c) - f{a) = f(b) — f(a) + / (c) — f(b)) and even, in a footnote, the 

statement that uf^Xdx = f(b) — j(a) est la limite dont l'expression 

+ f (a + a) + /'[a + (n - l)a]} 

s'approche de plus en plus, à mesure que le nombre n augmente et que a, qui est 

diminue" 6 3 [Lacroix 1802a, 4th ed, 329; 5th ed, 346]. 

8.7.2 Approximate intégration of differential équations 

In the first édition of [Lacroix 1802a] there are two short sections on rnethods for 

solving differential équations by approximation: one for first-order [Lacroix 1802a, 

383-387] and another for second-order differential équations [Lacroix 1802a, 412-415]. 

0 3 1 1 lu = -f(^) - ^ ( a ) [ S ' n e liiïiit which the expression 

a{/'(û) + f'(a + a) + f'[a + (n - l)a]} 

approaches more and more as the mimber n increases and a, that, is decreases'; 
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Each is a shortened version of the corresponding section in the large Traité; there is 
no trace of the section on successive approximations using integration of "first-degree" 
differential equations. 

The section on first-order equations is a copy of the beginning of the corresponding 
section in the large Traité: undetermined coefficients and Taylor series. The reference 
to insufficiencies of Taylor series is omitted, as well as Lagrange's method of continued 
fractions. There is an advantage in this* the use of Taylor series for approximation 
finishes this section, being immediately followed by the section on the geometrical con
struction of first-order equations, which opens with the remark on the "possibility" of 
those equations - because of Taylor series and because of their geometrical construc
tion; this article, which seemed out of place in the large Traité, fits nicely here. 

Very similar comments can be made about the section on second-order equations. 
Lacroix says very little about approximation properly speaking, and includes a sub
section on "geometrical constructions" [1802a, 414-415] with the same text as the 
corresponding article in [Lacroix Traité, II, 351-352]. 

In the second edition the order is yet improved: there is only one section on ap
proximation methods, for both first- and second-order equations [Lacroix 1802a, 2nd 
ed, 420-428] (including a subsection on geometrical constructions of those equations 
[Lacroix 1802a, 2nd ed, 426-428]). Lacroix speaks first of first-order equations: un
determined coefficients and Taylor series (including now its insufficiencies - but with 
simpler techniques to try to overcome them than Lagrange's continued fractions); then 
second-order equations, similarly to the first edition. As for the subsection on geomet
rical constructions, see section 8.8.2. 

From the third edition onwards Lacroix pays less attention to approximation meth
ods (consistently with what had happened in the second edition of the large Traité). 
This section [Lacroix 1802a, 3rd ed. 450-454] is shortened (even considering that the 
geometrical constructions are no longer included here), and most of it is taken up with 
two examples of use of undetermined coefficients. The use of Taylor series is only 
alluded to very quickly 6 4, and Euler's "general method" is not even mentioned (the 
associated constructions do appear, but without approximative purposes - see section 
8.8.2). The section finishes with the remark that these approximation methods are 
seldom convergent enough, and that in "physico-mathematical" problems one usually 
just tries to determine small corrections to values that one already knows to be ap
proximate (see pages 154 and 173 ff above, and the end of section 9.4.2 below) - but 
the methods used for this are too varied to be included in "elements". 

6 4 I n fact. Lacroix refers to a previous article, where Taylor series had been used to argue for the 
existence of solutions [Lacroix 1802a, 3rd ed, 402-404]. 
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8.8 Types of solutions of differential équations 

8.8.1 Formation of differential équations and their types of 

solution 

The most significant altérations on this subject from the large Traité to the Traité 

élémentaire are a conséquence of the radical decrease in attention given to partial 

differential équations and (a little less so) to ordinary differential équations of degree 

higher than one. 

The idea that ordinary differential équations are formed by eliminating constants 

between finite équations in two variables and their differentials is présent in the sanie 

places as in the large Truite: a section on "élimination of constants" [Lacroix 1802a, 

48-50]; the explanation for the method of integrating factors for first-order équations 

[Lacroix 1802a, 354, 359-361] (integrating factors for second-order équations are not 

treated in [Lacroix 1802a]): the explanation for the existence of n first intégrais of 

an nth-order équation [Lacroix 1802a, 397-399]; and of course the section on particu-

lar solutions of first-order équations [Lacroix 1802a, 371-385] (particular solutions of 

second-order équations are also not treated in [Lacroix 1802a]). 

There are no différences on this in the second édition. From the third édition 

onwards, however, we see in two subsections on the number of arbitrary constants and 

the number of intégrais [Lacroix 1802a, 3rd ed, 402-409] a combination of this idea with 

a use of Taylor séries, inspired by Lagrange [Fonctions; Calcul]. This is an adaptation 

of changes introduced in the second édition of the large Traité (see section 9.5.1). 

As for the section on particular solutions of first-order differential équations in two 

variables [Lacroix 1802a, 371-383], it is a close reproduction of [Lacroix Traité, II, 262-

274], that is, the essential part of the corresponding section in the large Traité, with 

material taken from [Lagrange 1774} : the explanation for the existence of particular in

tégrais, their characterization as satisfying ali the équations ^ = 0, = 0, dfx

v

dc = 0, 

etc. (while particular intégrais satisfy only a finite number of thèse), and the procedure 

to obtain particular solutions directly from differential équations by putting ^ = ^ or 

dpf = attempts to obtain complete intégrais from particular solutions or particular 

intégrais are entirely omitted. Also omitted are particular solutions of higher-order 

differential équations in two variables. 

There are a couple of significant changes on this in the second édition: first, Lacroix 

[1802a, 2nd ed, 434-436] cites [Poisson 1806]65 to the effect that the form of a differ

ential équation may be changed so as to nave its particular solution as a factor 6 6; more 

importantly, the method given to obtain particular solutions directly from the differ-

6 5 Notice the dates: [Lacroix 1802a, 2nd ed] was also published in 1806. 
6 6 I n spite of this, in the introduction to the section Lacroix keeps a distinction between particular 

solutions which are simply factors of the differential équation and others "intimately linked'' to it 
[1802a, 2nd ed, 429-430]. 
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ential équations [Lacroix 1802a, 2nd ed, 436-440] is no longer that of [Lagrange 1774], 
but rather that of [Lagrange Fonctions, 65-69], based on a power-series completion of 
particular intégrais. This had been reported in the first édition of the large Traité, but 
would become much more important in the second one, where we see an expansion of 
the changes introduced here, with several pages simply reproduced (see section 9.5.1). 
Lacroix seems to have been quite happy with this new version, so much so that he kept 
this section practically unchanged in the third édition. 

As for reflections on the formation of partial differential équations, the only trace of 
them in the first and second éditions of the Traité élémentaire is the reproduction, in the 
section on differentiation of functions of two or rnore variables, of the passages from 
volume I of the large Traité on élimination of either two constants or one arbitrary 
function between a finite équation in three variables and its two first-order partial 
differentials [Lacroix 1802a, 168-171]. But unlike in the large Traité, neither is later 
referred to as showing how partial differential équations are formed. As lias been 
noted already, partial differential équations receive much less attention, and particular 
solutions are not even mentioned. 

This changes a little in the third édition. Partial differential équations do not get 
much more coverage than in previous éditions (particular solutions are stili entirely 
absent), but Lacroix includes two new mentions to their formation: a brief référence 
to the passage on élimination of arbitrary functions when arriving at the solution 
AT = tp(M) of Pp+Qq = R [Lacroix 1802a, 3rd ed, 478]; and a new short article about 
the limitations of the analogy between arbitrary functions and arbitrary constants 
[Lacroix 1802a, 3rd ed, 497-498]. 

8.8.2 Connections between differential équations and geome-
try 

Once again, the most relevant modifications are simple conséquences of the decrease 
in importance of partial differential équations. AU considérations on their construction 
are reduced to a short footnote [Lacroix 1802a, 457], associating the détermination of 
the arbitrary functions involved in their intégrais to making the corresponding sur
faces pass through given curves, and clairning that those curves and functions may be 
discontinuous - no détails on either the claim or the association. 

Stili, there are a couple of novelties in organization which are worth mentioning, 
since they throw light on the geometrical versions of Euler's "general method' :, showing 
them openly as constructions. It has been mentioned already how the diminution of 
the section on approximate integration of differential équations allows for that geomet
rical version to open the section on "geometrical construction of first-order differential 
équations" [Lacroix 1802a, 387-396] 6 7. Moreover, the article giving the geometrical 

6 7 T h e rest of this section is a shortened version of the one in the large Traité, omitting Jacob 
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version of Euler's general method for second-order equations, which is also reproduced 
[Lacroix 1802a, 414-415], is referred to in the table of contents as "geometrical con
structions of [second-order differential] equations" [Lacroix 1802a, xl]. 

This neat order is a little affected in the second edition, due to a reorganization 
of the chapter on differential equations in two variables: the special topics of approxi
mate integration (for both first- and second-order equations), particular solutions, and 
geometrical problems are treated, in this order, at the end of the chapter (this is an 
anticipation of the second edition of the large Traité, where they have separate chap
ters). Thus the geometrical version of Euler's "general method", being in the section 
on approximation, becomes separated again from the geometrical section; still, it is 
entitled to its own subsection in the table of contents "geometrical constructions of 
[first- and second-order differential] equations" [Lacroix 1802a, 2nd ed. x]. 

This is reverted again from the third edition onwards, due to the decrease in impor
tance given to approximation methods, and especially to the disappearance of the ana
lytical version of Euler's "general method" for differential equations. The correspond
ing geometrical constructions [Lacroix 1802a, 3rd ed, 460-462] appear in the middle 
of the section on "resolution of some geometrical problems", are referred to in the ta
ble of contents as "geometrical constructions of differential equations" [Lacroix 1802a, 
3rd ed, ix] and, in case someone might wrongly suspect that they have something to 
do with approximation, Lacroix had a few pages previously finished the section on 
approximate integration saying precisely that he was "terminant [...] ce qui regarde 
l'intégration approchée des équations différentielles"68 [1802a, 3rd ed, 454]. 

8.8.3 Total differential equations not satisfying the conditions 
of integrability 

These equations have their own section, albeit a short one [Lacroix 1802a, 458-461]. 
It is a plain reproduction of the first two articles of the corresponding section in the 
large Traité: the idea of establishing a relation between x,y and z (and its attribution 
to Newton), and Monge's procedure for integrating equations P dx + Q dy 4- R clz = 0, 
presented as an adaptation of the method for integrating them when they do satisfy 
the condition of integrability. 

This section remained unchanged throughout the several editions of the Traité élé
mentaire, except for being moved, from the third edition onwards, from the end of 
the chapter on "Integration of functions of two, or more, variables" to right after the 
section addressing the conditions of integrability and the integration of total differen
tial equation that satisfy them (and thus before the integration of partial differential 
equations). 

Bernoulli :s construction of jj^ = and some technical details on construction of trajectories, but 
mostly reproducing it word for word. 

6 8 "concluding what regards the approximate integration of differential equations" 
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8.9 Aspects of différences and séries 

8.9.1 Indices 

Subscript indices have a smaller présence in the Traité élémentaire than in the large 
Traité. There are two main reasons for this. One, is that their first appearance in the 
large Traité (and one of the most innovative) is in the Introduction, which is absent 
from the Traité élémentaire. The other reason is that the appendix on différences 
and séries has a lesser weight in the Traité élémentaire than volume III in the large 
Traité. Moreover, the occurrence of indices in the expansion of arbitrary functions 
(Taylor's theorem) [Lacroix Traité, I, 87-91] disappears with the change of foundations 
for differential calculus. Stili, other occasionai occurrences seem to be kept; for instance, 
in approximate integration. 

8.9.2 The "multiplicity of intégrais" of différence équations 

The subject of the différent types of intégral of différence équations was clearly too 
complicated, or at least too finicky, for the Traité élémentaire. Lacroix did not include 
anything on it. 

8.9.3 Mixed différence équations 

Mixed différence équations seem also too spécifie for the Traité élémentaire. In the 
first and second édition there is nothing on them. However, from the third édition 
onwards Lacroix included one short article about them, at the end of the section on 
différence équations [1802a, 3rd ed, 602-603]; but this article only gives two very simple 
examples, reports the interested reader to the large Traité, and cites the authors that 
had addressed the subject. 

8.10 Translations of the Traité élémentaire 

Around 1800 FVench mathernatical (and generally scientific) books seem to have cir-
culated widely in Europe. Among them, Lacroix's textbooks were very popular. It is 
not easy to give a quantitative perspective on this, but at least in good British and 
Portuguese libraries it is certainly easy to find copies of them (although not always of 
the earlier éditions). 

Translating French textbooks into other languages was also a common activity 
[Grattan-Guinness 2002, 20-24]. Once again, Lacroixs textbooks were popular tar-
gets. Below we will see translations of his Traité élémentaire into Portuguese (made 
in Brazil), English, German, Polish (made in modem Lithuania), Italian, and Greek. 
Notice that translations of some of his other textbooks into Portuguese, Italian, and 
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Greek will also be mentioned; several more German and Spanish translations are men-

tioned in [Grattan-Guinness 2002, 39-40]; we have mentioned in section 4.1.1.2 an 

English translation, made in America, of his trigonometry text, and this was part of 

a series of translations of European textbooks that also included Lacroix's Arithmetic 

and Algebra [Ackerberg-Hastings 2004 7]; Danny Beckers has discussed the unfaithful 

Dutch translation of Lacroix's algebra textbook; farther away, an English translation 

of his algebra textbook was made and printed in Calcutta to be used at the local Hindu 

College [Aggarwal 2006, I I I ] ; and it would be surprising if this list were exhaustive. 

8.10.1 The Portuguese translation (Rio de Janeiro, 1812-1814) 

Lacroix's Traité élémentaire was translated into Portuguese during a very peculiar 

period in Portuguese history. In November 1807 the royal family fied to Brazil from 

a French invasion, only to return in June 1821. During those nearly 14 years. Rio 

de Janeiro was the capital of Portugal. Naturally, this situation had far-reaching 

conséquences for Brazil, including the foundation of the first printing press and of 

the first higher-education institutions. 

Among thèse institutions was the Royal Military Academy (Academia Real Militar 

do Rio de Janeiro), created in 1810 by the Prince Regent, John (later king John VI). 

It had a 7-year course, of which 4 years were devoted to mathematics [C.P. Silva 1992, 

51-57]. Several French textbooks were translated to be used by the students of this 

Academy. and among them several by Lacroix, including the Tratado Elementar de 

Calculo Diferencial e Calculo Integral [Lacroix 1812-1814]-69 

Like all those textbooks, the [Lacroix 1812-1814] was published in Rio de Janeiro 

by the Royal Press (Impressäo Regia). It appeared in two volumes: the first in 1812, 

dedicated to differential calculus, and corresponding to the first part of (Lacroix 1802a]\ 

the second in 1814, dedicated to integral calculus, and corresponding to [Lacroix 1802a, 

187-461] - that is, the second part minus the method of variations. Thus, it is an in

complete translation, as the method of variations and the appendix on finite différences 

and séries are missing. 

The translator was Francisco Cordeiro da Silva Torres (often called Francisco Cor-

deiro da Silva Torres e Alvini). Silva Torres was born in Ourém (European Portugal) in 

1775 and died in Rio de Janeiro in 1856. He was at the time of this translation sergeant-

major in the Royal Corps of Engineers and a lecturer at the Royal Military Academy 

(according to Clóvis P. Silva [1992, 56] he taught higher algebra, analytic geometry, 

6 9 A n d also the Tratado elementar de Arithmetica (1810, translated by Francisco Cordeiro da Silva 
Torres e ALvim; I have not seen this book. but it is mentioned by Inocencio [DBP, II, 367) and Circe 
M.S. Silva [1996, 82]), the Elementos d'Algebra (1811, translation of [Lacroix 1799), also by Francisco 
Cordeiro da Silva Torres), the Tratado Elementar de Applicaçào de Algebra á Geometria (1812, partial 
translation of [Lacroix 1798b], with an appendix on geometry in space, by José Victorino dos Santos 
e Souza), and the Complemento dos Elementos d'Algebra (1813; I have not seen this book, which is 
mentioned in [NUC, CCCX, 654]). 

310 



and differential and integral calculus). He stayed in Brazil after the independence 

(1822) and became viscount of Jerurnarim, state councillor, etc. Apart from translating 

Lacroix, Silva Torres also published a few works on weights and measures and on finance 

[Inocencio DBF, II, 367; IX, 281-282; C.M.S. Silva 1996, 82]. 

As to the translation itself, there is nothing to say. except that it was clearly 

made from the first édition of [Lacroix 1802a] - although the second had already been 

published in 1806; presumably it was not easily available in Rio de Janeiro. 

In spite of this, and of the incompleteness of the translation, the students of the 

Royal Military Academy of Rio de Janeiro were undoubtedly well served with this 

textbook; at least much better than their colleagues at the University of Coimbra: the 

adopted textbook there was still Bézout's, and would be until the late 1830's, when it 

was replaced by Francoeur's. 7 0 

In Brazil, this translation remained as the adopted textbook for a long time, and 

was probably still used in 1871. It is also remarkable that what seems to have been the 

first textbook on the calculus written by a Brazilian, José Saturnino da Costa Pereira, 

in 1842, was entitled "Elementos de Calculo Différenciai e de Calculo Integral, segundo 

o systema de Lacroix" - i.e., "Elements of differential and integral calculus. following 

Lacroix's system" [C.M.S. Silva 1996, 84]. 

8.10.2 The English translation (Cambridge, 1816) 

The most famous, and probably the most interesting, translation of Lacroix's Traite 

élémentaire was the English one, published in Cambridge in 1816 by George Peacock 

(1791-1858), Charles Babbage (1791-1871) and John Herschel (1792-1871). 

Düring the 18th Century the British method of fluxions had grown apart from the 

Continental differential and integral calculus. In the beginning of that Century the 

différence was mainly one of notation and a few distinct conceptions. But from the 

1740's onwards the British were not able to follow Continental developments such as 

partial differential équations [Guicciardini 2003, parts 2 and 3]. At the University of 

Cambridge mathematics had a prominent role in éducation and particularly in exami-

nations; but it was seen as a mere exercise in reasoning, and there were no incentives 

for doing research nor simply for keeping up to date with external research. 

By the late 18th Century and the early years of the 19th, a number of mathe-

maticians tried to change this state of affairs. It is only fair to mention the Scot 

William Wallace (1768-1843), who held teaching posts at Perth Academy (1794-1803), 

the Royal Military College (1803-1819), and the University of Edinburgh (1819-1838). 

Wallace published in 1815 an 86-page article on "Fluxions" in the Edinburgh Ency-

clopœdia [Wallace 1815), using the differential notation and including "partial flux

ions" (i.e., partial differentials) and "fiuxional coefficients" (i.e., partial derivatives) 

7 û I t seems that not many copies of the Brazilian éditions of Lacroix crossed the Atlantic to Portugal. 
At least, they are not very common in Portuguese libraries nowadays. 
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[1815, 433]. 7 1 In spite of the words "fluxion" and "fluent", this was in fact a complete 
account of the (Continental) differential and integral calculus - the first one in Britain 
[Guicciardini 2003, 120]. However, partly because this was an encyclopedia article in
stead of a book, and partly because he used limits instead of Lagrangian power series, 
his contribution was disregarded by more influential British mathematicians, and soon 
forgotten [Panteki 1987; Craik 1999, 253]. 

A more influential figure was Robert Woodhouse (1773-1827), a fellow of Gonville 
and Caius College, Cambridge (from 1795), Lucasian Professor of Mathematics (1820-
1822), Plumian Professor of Astronomy and Experimental Philosophy (1822-1827), and 
director of the Cambridge Observatory (from 1824). Starting in 1790's. Woodhouse was 
also a reviewer of mathematics for the London Monthly Review. This made him read 
the works of French mathematicians, and soon he was a Lagrangian. He published 
in 1803 a book entitled Principles of Analytical Calculation, where he adopted the 
power-series approach (although criticizing some details of Lagrange), and used the 
differential notation, as well as Arbogast's D operator [Guicciardini, 2003, 126-131; 
Philips 2006, 70-71]. 7 2 Later, he published books on trigonometry and the calculus of 
variations, that according to Philips [2006] had much greater influence in Cambridge 
education than his 1803 book. 

Woodhouse was certainly also an inspirational figure for the famous Analytical So
ciety. This society was formed in 1812 by a group of undergraduate students, among 
whom were Babbage, Peacock, and Herschel, later to be active researchers in mathe
matics. The Analytical Society started as a joke on societies devoted to distributing 
Bibles - instead, it would distribute Lacroix's Traité élémentaire, as a way of propagat
ing the "pure d-ism against the Dot-age of the University" (that is, the Continental dx 
against the Newtonian x) [Guicciardini 2003, 135; Euros 1983, 26-27]. Setting the joke 
aside, the society was formed and met regularly, discussing "analytics" and putting out 
a volume of memoirs in 1813. 

The society dissolved in early 1814, but nearly three years later its three more 
prominent members published [Lacroix 1816} - a partial English translation of [Lacroix 
1802a, 2nd ed], with additions. 

The division of labour between the three of them, according to the "advertisement" 
[Lacroix 1816, iii-iv] was thus: Babbage translated part 1 (differential calculus); Pea
cock and Herschel translated part 2 (integral calculus); Peacock alone wrote twelve 
endnotes (A-M) 7 3 on the differential and integral calculus; Herschel alone wrote four 
more endnotes (N-Q) on differential equations and the calculus of variations, and an 

7 1"Fluxional coefficient" is of course evocative of Lacroix's "differential coefficient". Wallace gave 
a long list or works on the calculus, both British and Continental, [1815, 388-389], but lamenting the 
absence of up-to-date books in English. Anyone wishing to study it "beyond its mere elements" should 
recur to Euler's books, or French treatises - among the latter, he stressed Lacroix's large Traité. 

7 2 B u t apparently this was not a complete account of the calculus, rather just a reflection on its 
principles. 

7 3 There is no note (J). 
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appendix on differences and series to replace that of Lacroix. 
Some of the endnotes are quite extensive. In particular, those written by Peacock 

are one the main points of interest in this translation: the advertisement tells us that 
they "were principally designed to enable the Student to rnake use of the principie of 
Lagrange" - that is, to compénsate for the fact that in the Traite élémentaire Lacroix 
had "substituted the method of limits of D :Alembert, in the place of the more correct 
and natural method of Lagrange". Let us see some of the most important examples. 

Note (A) [Lacroix 1816, 581-596] is in fact about limits. Peacock gives a historical 
account of them (and also of infinitesimals and indivisibles), starting with the "Method 
of Exhaustions", and he establishes some results, probably taken from the Introduction 
of Lacroix's large Traite. In particular, he gives Arbogast's principie (and Lacroix's 
counter-example), and uses it for the pinching theorem for power series, useful for 
geometrical applications (see section 3.2.6 and page 122 above). 

Note (B) [Lacroix 1816, 596-620] is the most substantial one, and the one that 
most closely corresponds to the design announced in the "advertisement" - that is, it 
is an attempt to establish the differential calculus on a power-series basis (still using 
the differential notation). Peacock acknowledges that he used [Lagrange Calcul] and 
[Lacroix Traüé[ to write the note, but probably he used the latter more than the former. 
The last pages of this note are dedicated to comparisons between the power-series 
approach, the method of limits, infinitesimals, and the method of fluxions (including a 
criticism of the fluxional notation). 

Note (D) [Lacroix 1816, 622-633] is dedicated to finding the differentials of expo-
nential and trigonometric functions, by other means than those used in [Lacroix 1802a] 
- using power series, of course. 

Note (G) [Lacroix 1816, 654-660] is on "the application of differential calculus to 
the theory of curves, without the introduction of limits" - power series again, and the 
pinching theorem proved in note (A). 

Some other notes give details that Lacroix had omitted (or much reduced) in the 
Traite élémentaire. For instance, note (F) [Lacroix 1816, 647-654] addresses the par
ticular valúes for which Taylor's series was seen to fail. 

According to the "advertisement", Herschel :s appendix on differences and series 
purported to include "many important subjects [...] which had been either entirely 
omitted, or very imperfectly considered" in Lacroix's, Clearly, one such important 
subject was the "determination of functions from given conditions" [Lacroix 1816, 
544-550] - that is, functional equations, a favorite topic for Herschel and Babbage 
[Grattan-Guinness 1994- 559-560]. But there is an overall increase in size: Herschers 
appendix occupies about 20% of the book (endnotes excluded) against about 15% for 
Lacroix's. 

One gets the distinct feeling that this translation aimed at a kind of comprornise 
between the large Traite and the Traite élémentaire. 
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As for the influence of [Lacroix 1816), the traditional view was quite enthusiastic; 
"the year 1816. in which Lacroix's shorter work was translater! into English [...] wit-
nessed the triumph in England of the rnethods used in the Continent" [Boyer 1939, 
265-266). This opinion is no longer held by historians of the period [Enros 1983: Guic
ciardini 2003; Philips 2006). There had been precursors, like Wallace and Woodhouse; 
and the actual reform in Cambridge teaching was a slow process, in which the role 
of [Lacroix 1816] is not elear. But eventually it was seen as a landmark, at least by 
research mathernaticians. When De Morgan finished his book on The Differential and 
Integral Calculus, he expressed its extent by saying that it was "more than double in 
matter of the Cambridge translation of Lacroix, and full half as much as the great work 
of the same author in three volumes quarto" [De Morgan 1836-18Ą2, iii). 

8.10.3 The German translations (Berlin, 1817; 1830-1831) 

I have not been able to consult any of the German translations of Lacroix's Traité 
élémentaire du calcul.... The information below is taken from the catalogues [NUC, 
CCCX, 657] and [GV, LXXXIII, 198]. 

The first German translation had the title Handbuch der Differential- und Integral-
Rechnung; it was made by C. F. Bethke, from the second French édition 7 4 , and it was 
published in 1817 by G. Reimer in Berlin. [NUC, CCCX, 657] indicates the publisher 
as Realschulbuchhaiidlung, while [GV, LXXXIII, 198] indicates Reimer; but this is 
not so Strange - Georg Andreas Reimer (1776-1842) had taken over the Buchhand
lung der Königlichen Realschule (Bookstore of the Royal Secondary School) in 1801 
[Gruyter History]. 

Another translation, with the same title, was published also by Reimer (and of 
course also in Berlin) in 1830-1831, in three volumes. The first volume (1830) con-
tained the differential calculus; the second volume (1831) contained the integral calcu
lus. minus the method of variations; the third volume (1831) contained the calculi of 
variations and of différences. The translator was différent - Fr. Baumann; the trans
lation was made from the fourth French édition 7 0; and apparently Baumann included 
some annotations 7 6 . 

I have not been able to locate any information on either C. F. Bethke or Fr. Bau
mann. 

We have examined in section 2.6.1.2 the (unlikely) possibility that Reimer may have 
published yet another translation of the Traité élémentaire in 1833. 

8.10.4 The Polish translation (Vilnius, 1824) 

[Lacroix 1802a] was translated into Polish in Vilnius, nowadays the capital of Lithua-
7 4 "Nach der zweiten durchgesehen und verbesserten Original-Ausgabe." 
7 3 "Nach der vierten verbesserten und vermehrten Original-Ausgabe (1828)" 
7 6 "mit einigen anmerkungen versehen von Fr. Baumann" 
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nia, but at the time recently incorporateci in the Russian Empire, as a resuit of the 1795 
partition of the Polish-Lithuanian Commonwealth. Polish was then the main language 
of the higher classes in Lithuania, and had been replacing Latin as a teaching language 
[Venclova 1981; Yla 1981}. 

I have not consulted this translation. The online library catalog of Vilnius Univer
sity 7 7 gives its title as Traktat początkowy rachunku różniczkowego i całkowego, place of 
publication Wilno (the Polish name for Vilnius), publisher A. Marcinowski, and date 
of publication 1824. As subtitle there are also the indications "przełożony na język 
polski z drugiego wydania przez Zacharyasza Niemczewskiego; poprawiony i wydany 
przez Michała Pełkę Polińskiego" - that is, "translatée! into Polish from the second 
édition by Zacharyasz Niemczewski; corrected and edited by Michał Pełkę Poliński1'. 

The translator Zacharyasz Niemczewski7 8 (1766-1820) was of peasant origin. Apart 
from mathematics he also contributed to Lithuanian studies, for instance writing a short 
French-Lithuanian dictionary [Venclova 1981; Yla 1981]. In 1799 he started teaching 
applied mathematics at Vilnius University, from where he had graduated. From 1802 
to 1808 he stayed in Paris to pursue further studies in mathematics, namely at the 
École Polytechnique79 (where he attended Poisson's lectures on analysis). Returning to 
Vilnius, he lectured from 1810 to his death in 1820 on differential and integrai calculus, 
following Lacroix's Traité élémentaire, and on mechanics, following Francceur's Traité 
de mécanique élémentaire [Gyachyauskas 1979, 169; Banionis 2001, 56-57]. It was 
certainly for his lectures that Niemczewski translated thèse two textbooks, as well as 
Biot's Essai de géométrie analytique. But he did not publish any of thèse translations. 8 0 

As we have seen. it was Michał Pełkę Poliński (1784-1848) who accomplished the 
publication of Niemczewski's translation of Lacroix's Traité élémentaire, in 1824 - four 
years after Niemczewski's death. Poliński had also studied for some time in Paris, 
but in the Faculté des Sciences (where he was a student of Lacroix), not in the Ecole 
Polytechnique81. From 1819 until the closure of Vilnius University in 1832 he taught 
several mathematical subjects, from algebra to analytical mechanics. He also published 
textbooks on trigonometry and geodesy [Gyachyauskas 1979, 169]. 

8.10.5 The Italian translation (Florence, 1829) 

An Italian translation was printed in Florence, at the press of Francesco Cardinali, in 
1829, with the title Trattato Elementare del Calcolo Differenziale e del Calcolo Integrale. 
Unfortunately there is not much that can be said about this translation. It does not 

7 7 <http://lanka.vu.lt>, accessed on 26 December 2006. 
7 8 I n Lithuanian: Zakarijas Niemœvskis [Venclova 1981', Yla 1981} or Zacharijus Nemcevskis 

[Banionis 2001, 43]. 
7 9 H e appears in Fourcy's list of foreign students for 1804, as "Niemezewski" [Fourcy 1828, 387]. 
8 0 Another translation of Biot's géométrie analytique, by Antoni Wyrwicz, was published in 1819 (by 

the same publisher, Marcinowski). Wyrwicz (or Virvichyus [Gyachyauskas 1979, 170]) also taught at 
Vilnius University. 

8 1 H e does not appear in Fourcy's list of foreign students [Fourcy 1828, 387-389]. 
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indicate who the translater was, nor where it was meant to be used. 

Italian translations of several other textbooks by Lacroix had been published or 

were later published, and Florence appears to have been the main (or sole) place of 

publication: the Elementi d'algebra appeared in 1809, and the Elementi di geometria 

in 1813, both in Florence, both with Piatti as publisher [Pepe 2006, 3]; at the time, 

Florence (and a great part of northern and middle Italy) was part of the French Empire. 

But the influence of French textbooks remained after the fall of the French Empire in 

1815, at least in Tuscany (where Florence in located) and in Naples. In 1834 a new 

édition of Lacroix's Trattato elementare di applicazione dell'algebra alla geometria was 

prepared by the professor of the University of Pisa. Filippo Corridi (1806-1877) - once 

again in Florence, and once again published by Piatti (Pepe 2006, 16]. Although the 

publisher of the translation of [Lacroix 1802a] was a différent one, one may conjecture 

that Corridi is a good candidate for having been the translator. 

As for the translation itself: it was based on the French fourth édition (published 

in 1828 - just one year previously), and it appears to be faithful. 

8.10.6 The Greek translation (unpublished; Corfu, 1820's) 

We have seen in section 2.6.2 Ioannis Carandinos' actìvity in the 1820's as a translator 

of contemporary mathematical works into Greek. We have also seen that many of 

thèse translations were not published, and are now lost. Among these, was not only 

Lacroix's large Traité (partially). but also several of Lacroix's textbooks, including the 

Traité élémentaire [Phili 1996, 318]. 
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Chapter 9 

The second édition of the Traité 

9.1 Overview of the second édition 

We do not know the print-run of the first édition of Lacroix's Traité, but it must have 

sold well. [Lacroix 1805] includes, just before the table of contents, a list of other 

works by Lacroix "that can be found in the same bookstore" (Courcier). We find the 

several textbooks in his Cours de Mathématiques, with their respective priées, and the 

large Traité. But the latter does not have a price; instead, it carries the indication 

"rare et épuisé" 1. 

The three volumes of the second édition came out in 1810, 1814, and 1819. 

The first issue that cornes to mind is the nine-year interval between the first and the 

third volumes. Recali that in the first édition the corresponding interval was only of 

three years (or at most five, if we account for the fact that part of volume I was printed 

and distributed to some people already in 1795 - see section 3.2.1). I cannot explain 

this différence. But it is noticeable that the cohérence of the second édition suffered 

from this: the third volume fìnishes with a 132-page set of "corrections and additions", 

nearly ail dedicated to volumes I and II, and nearly ail consisting in "additions" -

material that had corne to Lacroix's knowledge or mind after the printing of volumes 

I and IL 

Tables 9.1-9.3 show the chapters of the second édition, comparing them with those 

in the first édition. We can see that some of the larger chapters were subdivided 

- namely, the chapter on differential équations in two variables in vol. II, and the 

chapters on the calculus of différences and on several mixtures of intégral calculus with 

séries in vol. III. 

Something that cannot be seen in thèse tables but is also présent is a similar sub

division of rnany sections. For instance, the section on the "application of differential 

calculus to the theory of curved surfaces" [Traité, lst ed, I, 465-504] is divided into 

the sections on the "application of differential calculus to the theory of contact of sur

faces", "theory of curvature of surfaces". and "generation of surfaces" [Traité, 2nd ed, 

1 "rare and out-of-print" 
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lst édition 2nd édition 
chapter pages chapter pages (some) topics covered 

Preface iv-xxix Preface i-xlviii History of the calculus 
Table of contents xxx-xxxii Table of contents xlix-lvi Contents and 

bibliography 
Functions, séries and 

Introduction 1-80 Introduction 1-138 limits; séries expansion 
of functions; "imaginary" 
(i.e., complex) numbers 

Ch. 1: Principles Ch. 1: Principles Différent i ation of 
of differential 81-194 of differential 139-248 functions; differentiation 
calculus calculus of équations 

Ch. 2: Use of Differential methods for 
Ch. 2: Main diff. calculus to 249-326 expansion of functions in 
analytîcal uses 195-276 expand functions séries 
of differential Ch. 3: Particular Indeterminacies ; 
calculus values of diff. 

coefficients 
327-388 maxima and minima 

Ch. 3: Digression 277-326 (suppressed; "imaginary" numbers 
on équations transferred to Introduction) 
Ch. 4: Theory 327-434 Ch. 4: Theory 389-500 Analytic and differential 
of curves of curves geometry of plane curves 
Ch. 5: Curved Ch. 5: Curved Analytic and differential 
surfaces and curves 435-519 surfaces and curves 501-652 geometry of surfaces and 
of double curvature of double curvature space curves 

Table 9.1: Volume I of the second édition (1810), compared with the first édition 

I, 563-572, 572-588, 588-615). 

Thèse new divisions constitute clear improvemerits in the structure of the Traité, 

making it even easier to use as a référence text. 

As for content, the second édition is a little larger than the first, in spite of a couple 

of passages having been removed 2. The bibliography grew considerably (although a 

new graphical arrangement for the table of contents exaggerated this in terms of num-

ber of pages; beware this in tables 9.1-9.3). Many new developments were included; for 

instance, a short account of Cauchy's early work on definite intégrais appears in [ Traité, 

2nd ed, III, 497-500]. But there are no major modifications. As Grattan-Guinness has 

said, "the general impression is stili that the main streams and directions of the cal

culus had been amplified and enriched, rather than changed in any substantial way" 

[1990, I, 267]. Moreover, it seems that Lacroix missed some signs of what were to be 

substantial novelties: for instance, although he included some références to Gauss in 

the bibliography [Traité, 2nd ed, III, xi-xii], he omitted both Gauss' 1813 paper on 

the hypergeometric séries [Grattan-Guinness 1970, 145-146] and Gauss' proofs of the 

Fundamental Theorern of Algebra; 3 neither did he mention Argand's geometrical rep-

2 The principal passages removed were from the first volume: the sections on symmetric functions, 
and on the elementary aspects of analytic geometry on the plane. 

3 A s is well known, Gauss gave four proofs of the Fundamental Theorern of Algebra [Kline 1972, 
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1st edition 2nd edition 
chapter pages chapter pages (some) topics covered 

Table of contents iii-viii Table of contents vii-xxi Contents and 
bibliogTaphy 

Ch. 1: Integration 
of functions of 
one variable 

1-160 
Ch. 1: Integration 
of functions of 
one variable 

1-155 
Antiderivatives; 
approximate 
integration 

Ch. 2: Quadratures, 
cubatures and 
rectifications 

161-220 
Ch. 2: Quadratures, 
cubatures and 
rectifications 

156-224 
Areas. volumes 
and arc-lengths 

(partly in chapters 3 and 4) 
Ch. 3: Integration 
of diff. functions of 
several variables 

225-249 
Conditions of 
integrability 

Ch. 3: Integration 
of differential 
equations in two 
variables 

221-452 

Ch. 4: Integration 
of diff. eqs. in two 
variables 

250-372 
Solutions of 
ordinary differential 
équations 

Ch. 3: Integration 
of differential 
equations in two 
variables 

221-452 

Ch. 5: Particular 
solutions of diff. eqs. 

373-408 "Particular" (Le, 
singular) solutions Ch. 3: Integration 

of differential 
equations in two 
variables 

221-452 Ch. 6: Approximate 
integr. of diff. eqs. 

409-446 Approximation 
methods 

Ch. 3: Integration 
of differential 
equations in two 
variables 

221-452 

Ch. 7: Geometric 
applications of diff. 
eqs. in two vars. 

447-470 Geometrical problems 

Ch. 3: Integration 
of differential 
equations in two 
variables 

221-452 

Ch. 8: Comparison 
of transcendental 
functions 

471-502 
Logarithmic, 
trigonometrie and 
elliptic functions 

Ch. 4: Integration 
of functions of two 
or more variables 

453-654 
Ch. 9: Integration 
of equations in three 
or more variables 

503-720 
Partial 
differential 
équations 

Ch. 5: Method of 
variations 

655-724 Ch. 10: Method of 
variations 

721-816 Calculus of 
variations 

Table 9.2: Volume II of the second edition (1814), compared with the first edition 

resentation of complex numbers [Grattan-Guinness 1990, I, 256-259]. He did mention 
Fourier's (unpublished) works on heat theory [Lacroix Traité, 2nd ed, III, 501, 562-564] 
and Cauchy's early works on definite integrals [Traité, 2nd ed, III, 497-500], but a more 
detailed analysis would be needed to determine how well he understood them. 

Still, there were some modernizations. In the chapter on the calculus of variations 
Lacroix introduced Lagrange's power-series approach. And we will see in the following 
sections that he updated the particular aspects that have been studied in chapters 3-7. 

598-599]. The fourth proof appeared only in 1850, and the first proof was given in his doctoral 
dissertation, which Lacroix probably did not know. But the second and third proofs [1814-1815b; 1814-
1815c] appeared in the same volume of the Royal Society of Gôttingen as a paper on approximation 
of integrals [Gauss 1814-1815Ô] which was cited by Lacroix [Traité, 2nd ed, III, xii]. 
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1st edition 2nd edition 
chapter pages chapter pages j (some) topics covered 

Table of contents iii-viii Table of contents vii-xxiv Contents and 
bibliography 

Ch. 1: Calculus of 
differences 

1-300 

Ch. 1: Direct calculus 
of differences 

1-74 Finite differences; 
interpolation 

Ch. 1: Calculus of 
differences 

1-300 Ch. 2: Inverse calculus 
of differences of 
explicit functions 

75-194 
E-integration; 
summation of series; 
interpolation 

Ch. 1: Calculus of 
differences 

1-300 

Ch. 3: Integration of 
difference equations 

195-321 Difference equations 

Ch. 2: Theory of 
sequences deriv. from 
generating functions 

301-355 
Ch. 4: Theory of 
sequences deriv. from 
generating functions 

322-373 Generating functions 

Ch. 3: Application 
of integral calculus 
to the theory 
of sequences 

356-529 

Ch. 5: Application of 
integral calculus to the 
theory of sequences 

374-411 
Summation 
of series; 
interpolation Ch. 3: Application 

of integral calculus 
to the theory 
of sequences 

356-529 
Ch. 6: Evaluation of 
definite integrals 

412-528 Use of series and 
infinite products 

Ch. 3: Application 
of integral calculus 
to the theory 
of sequences 

356-529 
Ch. 7: Definite 
integrals applied to the 
solution of differential 
and difference eqs. 

529-574 Transcendental 
functioiis 

Ch. 4: Mixed 
difference equations 

530-544 Ch. 8: Mixed 
difference equations 

575-600 Difference-differential 
equations 

Subject table 545-578 Subject table 733-771 Subject index 
Corrections 
and additions 

579-582 Corrections 
and additions 

601-732 Some corrections; 
mainly additions 

Table 9.3: Volume III of the second edition (1819), compared with the first edition 

9.2 The principles of the calculus 

Between the publication of [Lacroix Traité. 1st ed, I] and that of [Lacroix Traité, 2nd 

ed, I], that is, between 1797 and 1810, there was a considerable amount of publications 

on the foundations of the calculus [Grattan-Guinness 1990, 195-223]. To start with, 

Lagrange published [Fonctions] (still in 1797) and [Calcul] (in different forms, between 

1801 and 1806). Still in or around the Ecole, Polytechnique, there appeared papers by 

Poisson [1805], Ampere [1806], and Paul René Binet [1809] on Taylor's series, the 

derivative, and their relations (Poisson staying in a power-series framework. Ampère 

and Binet moving towards limits). Outside the Ecole Polytechnique, there was also 

interest in series and algebraic views on the calculus; the most important outcome was 

Arbogast's 1800 book on the "calculus of derivations". Meanwhile, Lacroix himself 

published the first two editions of the Traité élémentaire de Calcul..., following a limit-

based foundation for the calculus (see section 8.5). So, how does all this reflect in the 

second edition of the large Traité? 

The first point to make is that Lacroix keeps the power-series foundation, instead of 
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changing to the rnethod of liraits. Why? We saw in section 8.5 that he now saw limits 
as embodying the proper metaphysics of the calculus, at least as far as applications 
went. And he is very explicit in the Preface about his préférence for limits in teaching 
[Traité, 2nd ed. I, xxiv-xxvi], Perhaps he was not willing to do a major reform of the 
large Traité (but would it be that major?). Perhaps he stili thought of power séries as 
more appropriate for an analytical treatise. rather than a textbook (but in that case, it 
would have been helpful if he had said so explicitly). Perhaps he simply did not want 
to lose his face - writing a whole treatise based on power séries was one of the main 
motivations he had presented in the first édition. I do not have an answer for this. 
But this issue was probably not so important as it might seem; the important point 
was stili the "rapprochement des Méthodes" (section 3.2.8). Even in his préférence for 
limits in teaching. Lacroix remarks that each foundation offers some facilities. and one 
could not foresee important discoveries that might be provided by them [Traité, 2nd 
ed. I, xxiv]. 

Keeping the power-series foundation does not mean that Lacroix does not introduce 
modifications. He does - and they might be interpreted as facilitating the "rapproche
ment des Méthodes", by making the power séries less fundamental. Recali that in the 
présentation of the principles of the calculus in the first édition, one of the main points 
was the process of dérivation for "any" function f - that is, that the coefficients in 
the séries expansion of î(x + k) can be obtained by a recursive process; the "derived 
functions" were then introduced in one lot. In other words, Taylor's séries was embed-
ded in this présentation. In the second édition, the dérivation process appears only in 
an example (xn) [Traitée 2nd ed, I, 144-145]; the first-order differential and first-order 
differential coefficient are introduced together (as the first term in the expansion of 
the incrément of the function, and as the coefficient of the incrément of the variable in 
that term) [Traité, 2nd ed, I, 146-147], and separately from higher-order differentials 
and differential coefficients. The latter only appear after the différentiation of com
mon functions, in a section dedicateci to Taylor's séries [Traité, 2nd ed, I, 160-169]. 
In this new structure, the differential coefficient could be defined as the limit of the 
ratio between the incréments, as Lacroix himself acknowledges [Traité, 2nd ed, I, 146] -
hence the possible interprétation that it is more appropriate to accommodate différent 
foundations. 

The proof of Taylor's theorem is an adaptation of [Poisson 1805], assuming the 
existence of a development of the form N -f Pha + Qh& -\- Rhy + Sh& + etc. (that is, 
the exponents of h are not assumed, but rather proved to follow the séquence 1, 2, 3, 
4, etc.). In the argument it is necessary to use the fact that the second term in the 
expansion of (h 4- fc)m is of the form Mhm,~lk, but not the whole binomial expansion. 

Notationally, Lacroix abandons the Lagrangian f '(x), t"(x), etc. - which is naturai, 
given the loss of importance of the dérivation process. Instead, he uses the Eulerian 
p, q, etc. - as he had done in most of the first édition (together with the Leibnizian 
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â'^ 1 etc.), apart from the présentation of the principles of the calculus. We have 

seen in section 3.2.8 that already in the third volume of the first édition Lacroix had 

criticized [Lagrange Fonctions] for its exclusive use of the prime notation. 

The section on alternative foundations [Traité, 2nd ed. I. 237-248] is greatly changed. 

Even the name is différent: "Reflexions on the metaphysics of differential calculus and 

on its notations", instead of "method of limits" (which did not quite cover its contents, 

in either édition). Lacroix's explanation of the Leibnizian calculus is mostly unchanged. 

But the passage on limits is complctcly différent. The calculations of some differential 

coefficients using limits simply disappear (possibly because most of them were in the 

Traité élémentaire). Instead, Lacroix gives a glimpse of Landen's "residuai analysis" 

[Guicciardini 2003, 85-88], and interprets it in terms of limits: the differential coeffi

cient is the limit of
 f^i~^, corresponding to Landen's "special value" of this quotient 

(for x1 = x). 

An interesting point is the discussion on the existence of this value, whatever the 

function; this is acknowledged by Lacroix as a "difficulté" [Traité, 2nd ed, I, 240]. 

Being a "difficulté" does not mean that Lacroix actually doubts its general existence: 

we have seen that in the Traité élémentaire he had claimed this existence to be an 

analytical fact (section 8.5); and in the Preface to the second édition of the large Traité 

he repeats the claim [Traité, 2nd ed, I, xxv]. But it is something that needs to be 

proved. Lacroix gives two ways to prove it. The first, only sketched, consists in using 

the possibility of expanding f(x-\-h) into a séries î(x) + Ph+Qh2+etc. (which had been 

proved following [Poisson 1805]) - P is the special value of f ^+^~ f ( x ) for h = 0. The 

second, given in a long footnote, is Binet's proof [1809] that f ( I + / l Mfo) cannot become 

infinite or zero when h tends to zero (whence it has an assignable limit) except for 

particular values of x. Ampère had also given a proof of this, in [1806]; but apparently 

even he recognized that Binet's was simpler4; and Lacroix does not cite [Ampère 1806] 

here. 5 

The second half of the section on alternative foundations consists in an enlarged 

version of the footnote in [Traité, lst ed, III, 10-12] criticizing novel but unnecessary 

notations. In 1810 Lacroix was aware of a few more targets, namely notations for the 

differential coefficient employed by Pasquich, Gnison, and Kramp [Traité, 2nd ed, I, 

247]. He does not address Arbogast's "numerous notations" because he thinks that 

they do not really refer to differential coefficients. 

Arbogast's calculus of dérivations is relegated to the last section of chapter 2, "in

vestigations on the development of functions of polynomials" [Lacroix Traité, 2nd ed, 

I, 315-326]. It is associated to the German combinatorial school, and especially to 

4 It was Ampère who reported Binet's proof to the Société Philomatique, saying that Binet proposed 
to demonstrate this theorem "d'une manière plus simple qu'on ne Ta fait jusqu'à présent" ("more 
simply than what has been done until now :') [Binet 1809, 275]. 

°He does cite it later apropos of its other subject: the remainder of Taylor ;s séries [Traité, 2nd ed, 
I, 388, III, 399-400]. 
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Kramp; but it is présentée! without Arbogast's and Kramp's notations, and mainly 

through an adaptation by Paoli, Connecting it to the usuai difTerentiation. In the 

Preface [Traité, 2nd ed, I, xxviii-xxxii] Lacroix is quite criticai of both the German 

combinatorial school and of Arbogast's calculus of dérivations; in a draft letter written 

about this time to François Joseph Français. 6 he expanded this criticism: briefly, they 

did not really offer anything that the usuai calculus did not offer, and they were not 

practical for applications (namely, physical applications). 

9.3 Analytic and differential geometry 

9.3.1 Analytic geometry 

Between 1797 and 1810 analytic geometry became a standard subject in mathematics 

éducation, and several textbooks on it were published [Taton 1951, 132-133] - in-

cluding [Lacroix 1798b\. We could expect it to disappear from the second édition of 

[Lacroix Traité]. But that is not what happens. 

In the case of analytic geometry on the plane, the prelirninary paragraphs do disap

pear - they were quite elementary, and had been transferred to [Lacroix 1798b]. But 

the same could not be said about the investigation of singular points; nor about the 

applications of coordinate transformation; 7 nor about the applications of séries expan

sions; 8 nor, finally, about polar coordinates 9 - none of thèse topics is to be found in 

[1798b], and so they are kept in [Traité, 2nd ed, I]. 

As for analytic geometry in space, the situation is différent: Lacroix keeps even the 

most elementary results. At the start of chapter 5, he justifies this option by saying 

that that this way he offers a "more complete whole" ("ensemble plus complet"). But 

he is probably more sincere in the Preface [Traité, 2nd ed, L xxxvii], explaining that 

he tried to give a version of analytic geometry in space even more independent of 

geometrica! considérations than that in the first édition. In the previous 15 years a lot 

of work had been done on the systematization of three-dimensional analytic geometry, 

associated to the teaching in the École Polytechnique and elsewhere; 1 0 and Lacroix 

was clearly motivated by that to improve this chapter (he could not really do this in 

[1798b], which was too elementary, and only had an appendix on three dimensions). 1 3 

6 This draft is kept at [Lacroix IF, ms2400], and is transcribed in [Grattan-Guinness 1990, III. 
1325-1329). The letter was not sent, because meanwhile Français died (in October 1810). 

7There is even a new application of this: the détermination of infinite branches of curves 
[Lacroix Trafie', 2nd ed, I, 408-413]. New, that is, in the sensé that it was not in the first édition 
- Lacroix attributes the procedure he reports to du Séjour and Goudin. 

8Lacroix adds four pages on séries with decreasing exponents [Truite, 2nd ed, I, 417-421]. 
9 We have seen in section 8.6 that polar coordinates is the only topic of analytic geometry appearing 

in [Lacroix 1802a] instead of [Lacroix 1798b]. 
l 0Throughout the three sections on analytic geometry in space we can sec références to works by 

l'Huilier, Monge, Carnot, Puissant, Biot, and Hachette and Poisson, published after the first édition of 
the Traité; and this is in the text of the sections, not just in the bibliography in the table of contents. 

u I n spite of the improvement, there is a clear editoria! flaw: the équation of the sphère is derived 
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The first section, "on the point, the plane, and the straight line" [Traité, 2nd ed, 

I, 501-527], is for a great part rewritten, and actually doubled in size. The distance 

formula is much more prominent than in the first édition. Lacroix uses a définition 

of plane that had been proposed by Fourier in a debate at the École Normale (de 

Van 3) [Monge 1795, 318-319]: a plane is a set of points equidistant from two given 

points. He says that this définition does not have the simplicity required to be used 

in the "éléments of geometry". but that it provides an élégant means to arrive at the 

équations of the piane and of the straight line in space. Transformation of coordinate^ 

gains a section [Traité, 2nd ed. I. 528-542], which has almost three times the space 

that had been dedicated to that topic in the first édition (this increase is mainly due to 

the addition of severa! trigo no metrical relations). The study of second-order surfaces 

[Traité, 2nd ed, I, 542-563] is about double in size compared to the first édition (partly 

because he gives more attention to Euler's classification). It is noticeably influenced 

by the "first part" of [Monge Feuilles, 3rd ed], by Monge and Hachette (and with a 

little participation by Poisson). 

In "additions" at the end of the third volume Lacroix continues keeping track of 

works on analytìc geometry, particularly in space [Traité, 2nd ed, III, 646-654]. He 

cites Gabriel Lamé, Aléxis Petit, (Joseph-Baltazar?) Bérard, and even "M. Yvory" 

(i.e., James Ivory). 1 2 

9.3.2 Differential geometry 

The application of differential calculus to the study of curves on the plane does not 

suffer many changes in the second édition. There is some rearrangement of topics and 

sections, and a couple of passages are rewritten to achieve a clearer systematization. 

For instance, just after the détermination of tangents and asymptotes there is a new 

section on the differentials of are length and of area under a curve [Traité, 2nd ed. I, 

431-436]; in the first édition this was included in the section on transcendental curves. 

The section on the theory of osculation is divided into two: one on the general theory 

of contact, and the other on the osculating circle; the latter also includes evolutes, 

and the limit-based approach to osculation . The most thoroughly rewritten section is 

the new one on "détermination of singular points" [TYaité, 2nd ed, I, 456-470], where 

Lacroix tries to systematize the methods for characterizing the several kinds of such 

points. 

There are more changes in the sections on differential geometry in space - although 

maybe not as much, or not as deep, as one might expect, given the popularity of the 

subject in the early 18th century, in and around the Ecole Polytechnique. But the situ-

twice [Lacroix Traité, 2nd ed. I. 508, 519] - and this is not a sign of encyclopédisme, since the dérivation 
is precisely the same. 

1 2 Ivory is cited because of his 1809 paper on attractions of spheroids. a paper that caused 
sensation among Parisian mathematicians, although for much more than analytic geometry 
[Grattan-Guinness 1990, I, 418-422]. 
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ation was différent from that of analytic geometry in space: the fundainental outlook of 

the subject had been established in [Monge Feuilles], and the work done on it (mainly 

by Monge and Lancret) was research work. not experiments on its systematization. 

The first change to note, as usuai, is the multiplication of sections 1 3. The section 

on the "theory of contact of surfaces" is very similar to the corresponding articles in 

the first édition. The section on the "theory of curvature of surfaces" does not nave 

many changes either, but one of them is worthy of note: the inclusion of a version of 

Monge's [Feuilles, n œ 19-20; 3rd ed, 122-132] détermination of the lines of curvature of 

the cllipsoid, very shortened and adapted to the fact that it is presented before integrai 

calculus [Lacroix Traité, 2nd ed, I, 584-586].1 4 The section "on generation of surfaces" 

again has only changes in détail, except for the inclusion of some remarks by Monge for 

simplifying the élimination of arbitrary functions [Lacroix Truite, 2nd ed, I, 612-615]. 

The main change to the section on "curves of double curvature", although not 

much more extensive, is more substantial. In its final pages [Traité, 2nd ed, I, 632-636] 

Lacroix reports the work of Michel-Ange Lancret [Grattan-Guinness 1990, I, 261-263; 

Struik 1933, 115-116]: the notions of "first and second flexion" (more or less infini

tésimal équivalents of modem first curvature and second curvature, or curvature and 

torsion), but especially an introduction to his work on "développoïdes" (a generaliza-

tion of evolutes. arising not from normals to the curve, but rather from straight lines 

at a fixed angle). 

The last section, "on the development of curves traced on curved surfaces" [Traité, 

2nd ed, I, 636-652], is in a certain sensé one of the most interesting, because its content 

is due to Lacroix himself. It consists in a revised and somewhat shortened version of 

the first part of the memoir submitted to the Academy of Sciences of Paris by Lacroix 

in 1790 (see appendix A.2). It revolves around two problems: given a curve on a 

developable surface, what does it become when the surface is developed into a plane; 

and reciprocally, given a curve on a plane, what does it become when that plane is 

enveloped onto a surface. 

The most important work on differential geometry published in the 1810's was 

Charles Duphïs Développements de Géométrie (1813) [Struik 1933, 117-118]. We 

should expect to see traces of it in the third-volume "additions". Indeed, it is added 

to the bibliography [Lacroix Traité, 2nd ed, III, xxii]. But in the "additions" properly 

speaking, even though Lacroix includes many new détails on differential geometry in 

space [Traité, 2nd ed, III, 654-677], I could not find any that would seem to be drawn 

from Dupin :s book. 1 0 

1 3 Recall that in the first édition there were only two: one on surfaces and another on curves of 
double curvature. 

1 4 T h i s finishes with a référence to a couple of papera (or a couple of versions of a paper) on optics by 
Etienne Louis Malus [Grattan-Guinness 1990, I, 473; Struik 1933, 115], which do not appear in the 
table of contents (the version submitted to the Institut had received a favourable report by Lacroix). 

1 5 These new détails are not necessarily new - that is, not necessarily posterior to 1810; even 
d'Alembert is cited {Traité, 2nd ed, III, 671, 672-673]. 
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9.4 Approximate integration and conceptions of the 

integrai in the second édition of Lacroix's Traité 

9.4.1 Approximate integration of explicit functions and con

ceptions of the integrai 

The section on Euler's "general method" of approximation suffered several modifica

tions in the second édition [Lacroix Traité, 2nd ed, II, 130-150]. Similarly to what he 

had done in the second édition of \1802a] (see section 8.7.1), Lacroix assumes almost 

from the start that the différences ai — a, a2 — a,, a3 — a 2 , etc. are ail equal, and 

postpones the neglect of their higher powers, so that the first (and main) formulas of 

approximation are those of Euler's "improved" method: (5.11) and (5.12). The equal-

ity of the subintervals raises the issue of what to do when the function to be integrated 

has rnarked différences in its rate of change; but this is solved quite simply by first 

splitting the interval of integration appropriately and then applying the method to 

each of the resulting intervais [Lacroix Traité, 2nd ed, II, 141-143]. 

However, the articles on the "nature of intégrais", arbitrary constants and definite 

intégrais are kept essentially unchanged from the first édition; the main différence is 

that now, more sensibly, they are fused into one. Naturally they appear after the 

dérivation of (5.11) and (5.12). 

The main modification from the first édition is in Lacroix's examination of the con

vergence of (5.11) and (5.12) [Lacroix Traité, 2nd ed. II, 135-136] (in the first édition 

this convergence had simply been assumed). The first part of it may be inspired by [La-

grange Fonctions, 45-46]: assuming for simplicity sake that ail of Y', Y",... Y" ,Y", etc. 

are positive, Arbogast's principle guarantees that, for values of a small enough, (5.11) 

always takes values smaller than f Xdx and (5.12) takes values alternately smaller and 

larger than JXdx ( "alternately" in the séquence: neglecting a 2 and higher powers of 

a; neglecting a 3 and higher powers of a; etc.). In case we neglect a2 and higher powers 

of a, this means that (for values of a small enough) 

a{Y' + YI + YÌ... + < jxdx< a{Y{ + y 2 ' + X, ' . . . + K } . 

Now, the différence between thèse two approximations is a(Y^~Y'), which can be made 

as small as wished by increasing n (which does not affect KT't), that is, by decreasing 

a; and of course this différence is larger than the error associated to any of thèse two 

approximations. Lacroix concludes that, "même en se bornant à la première ligne des 

formules" 1 6 (5.11) and (5.12), it is possible to obtain values for JXdx as approximate 

as one may wish. 1 7 The phrase "même en se bornant à la première ligne" seems to 

l 6 "even if we restrict ourselves to the first line of the formulas" 
1 7 This contradicts Grabiner's assertion that "Lacroix did not try to prove that the true value of 

the integrai of an arbitrary function differs from the approximating sums by less than any given 
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imply that if those two approximations converge to the true value, then the same must 

happen to any truncation of formulas (5.11) and (5.12). 

Naturally, Lacroix présents tins as the explanation for the possibility of viewing the 

integrai as the sum of "an infinite number of éléments" - and he adds in a footnote that 

the word "infinite" is being used only as an abbreviation for "the larger the number of 

éléments", the closer the approximation. 

The two proofs that used the property of the integrai being the lirnit of approxi-

mating sums in the first édition are absent from the second édition: one, that a(Y' + 

Y( + Y2' • - • + YJ[_l) and a(Y{ + Yi + K [ . . . 4- Y£) are bounds for the integrai, is subtituted 

by the argument invoking Arbogast's principle in the beginning of the proof above; the 

other, that / X d x , taken between x = a and x = b, is positive if X is always positive 

in the same interval, is simply dispensed with in this section 1 8. 

But the reason why the latter had been included in the first édition - namely the 

proposition that m(b — a) < jXdx < M(b — a), where the integrai is taken between 

x = a and x = b and m and M are the smallest and largest values of X in that interval 

- is given as a resuit of both sums a{Y'+Y{ + Y£.. • + ^ _ 1 ) and a(Y{ + Y£+Y£ .. . + Y£ 

being contained between naYm = (6 — a)YTn and UCLYM — (b — a)YM, where Ym and YM 

are the smallest and largest of Y'^Y^Y^.. .Y^. This is precisely the same argument 

that had been used in [Lacroix 1802a, 2nd ed, 307], with the significant différence that 

there it could be seen as invoking the idea of integrai as infinite sum, while hère it 

certainly invokes the idea of integrai as limit of sums. 

Thus we see that the idea of integrai as limit of sums is addressed in the second 

édition of Lacroix's Traité in a différent way from the first édition. But it is certainly 

kept, and even reinforced, insofar as the convergence of the approximating sums receives 

a proof. 

9.4.2 Approximate integration of differential équations 

The methods for approximate integration of differential équations are the subject of 

one of the four new chapters (more precisely chapter 6 (Lacroix Traité, 2nd ed, II, 409-

446]) which corresponds to sections from chapter 3 in the second volume of the first 

édition, but with several modifications. Having their own chapter does not mean that 

they play a larger rôle than in the first édition. Quite the contrary: Lacroix explains in 

the avertissement [Traité, 2nd ed, II, v-vi] that he has suppressed more than added. He 

had done so because there were too many methods, proper for spécifie applications, and 

it would be useless to expound them ali, separated from the applications and therefore 

deprived of interest. 

quantity for sufficiently small subintervals1' [Grabiner 1981, 152]. She seems to have read the section 
on approximation only in the first édition of Lacroix's Traité, and to have assumed that it was 
unchanged in the second. 

1 8 A similar resait had been proved by other means in [Lacroix Traité, 2nd ed, I, 382]. 
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This chapter is divided into three sections, the first of which is dedicated to power 
series. Lacroix starts by referring to Taylor series (influenced by Lagrange [Fonctions: 
Calcul], he had already given greater importance than in the first edition to Taylor se
ries in establishing fundamental properties of integrals of differential equations, namely 
number of arbitrary constants, number of "first integrals", and even the existence of 
solutions [Lacroix Traité, 2nd ed, II, 294-298] - see section 9.5.1). After this he quickly 
mentions Euler's "general method", but also quickly dismisses it because it demands 
too many calculations and because each step is affected by the error of the previous 
one - something which does not happen in the case of explicit functions. The larger 
part of the section [Lacroix Traité, 2nd ed, II, 411-426] is occupied with the method 
of undetermined coefficients - mostly by examples, of both first- and second-order. 
Finally Lacroix quickly refers to the method he had extracted from Lagrange's memoir 
on continued fractions (pages 107 and 155), as he had done in the first edition, but 
adding that it is hardly useful because the series obtained by using it are usually not 
very convergent, and their general terms not easy to understand [Lacroix Traité, 2nd 
ed, II, 427]. 

The second section [Lacroix Traité, 2nd ed, IL 427-434] is dedicated precisely to 
Lagrange's method of continued fractions, and it has almost no difference from the 
corresponding articles in the first edition [Lacroix Traité, II, 288-296]. 

The third and final section [Lacroix Traité, 2nd ed, II, 435-446] is dedicated to the 
"use of first-degree differential equations to integrate by approximation", that is to 
the methods used in obtaining approximations of planetary orbits, mentioned above 
(pages 154 and 173 ff.). Meanwhile new work had been done by Laplace, Lagrange 
and Poisson on subjects close to this, namely on the stability of the planetary sys
tem, and more general variational mechanics leading to Poisson and Lagrange brackets 
(Grattan-Guinness 1990, I, 371-385]. Lacroix was well aware of this new work, having 
reviewed and praised one of Poisson's papers [Grattan-Guinness 1990, I, 380]. He in
cludes the most relevant new papers (by Lagrange and Poisson) in the table of contents 
for this section, but only mentions them briefly in the text [Lacroix Traité, 2nd ed, II, 
443]. Nevertheless, a great deal of the section is written anew, with clear improvements 
- Lacroix seems more comfortable with the subject, and the series of mistakes in the 
first edition is gone. Also, the astronomical motivation is acknowledged [Lacroix Traité, 
2nd ed, II, 443-446]. 
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9.5 Types of solutions of differential équations in 

the second édition of Lacroix's Traité 

9.5.1 Differential équations in two variables and their partic

ular solutions 

There was no reason for Lacroix to abandon, from the first to the second édition, his 

point of view on the formation of differential équations in two variables by élimination of ' 

constants between finite équations and their différentials. And he did not. Most traces 

of it remain: for instance, the élimination of constants leading to differential équations 

[Lacroix Traité, 2nd ed, I, 197-198], the explanation for the method of integrating 

factors for first-order équations [Lacroix Traité, 2nd ed, II, 260-261], and of course the 

new chapter on particular solutions [Lacroix Traité, 2nd ed, II, 373-408]. 

Nevertheless, the importance of that point of view decreases, as is clear in a few 

changes inspired by Lagrange [Fonctions, 54-58; Calcul, 151-167] (resp. a section and 

a chapter, both with the title "Théorie générale des équations dérivées, et des con

stantes arbitraires" 1 9). Although the "nature" of differential équations corresponded 

to their formation by algebraic élimination of constants between primitive and deriva-

tive équations [Fonctions, 56], Lagrange had also used Taylor series to explore arbitrary 

constants [Fonctions, 55: Calcul, 160-165]. In the second édition of his Traité, Lacroix 

includes a new section "on the successive intégrais of higher-order differential équa

tions" [Lacroix Traité, 2nd ed, IL 292-298], whose références in the table of contents 

are precisely those two passages by Lagrange, and which opens mentioning "la théorie 

générale de la liaison qui existe entre les équations différentielles et leur intégrales 

successives" 2 0. This "general theory" includes the formation of differential équations 

by algebraic élimination of constants, with its conséquences on the number of "first", 

"second", etc. intégrais; but naturally Lacroix also follows Lagrange in using Taylor 

series in this - he uses them to reinforce the conclusions on the number of arbitrary 

constants,and to conclude that every differential équation in two variables is possible 

(i.e., has a solution, even if we cannot find it), provided that the highest-order differen

tial coefficient is a real function of the others and of the variables [Lacroix Traité, 2nd 

ed, II, 296]. We thus see, like in [Lagrange Fonctions; Calcul], a shared foundation of 

differential équations. 

As for particular solutions of differential équations in two variables, they gain a 

sepárate chapter (chapter 5 [Lacroix Traité, 2nd éd., IL 373-408]). This new chap

ter is divided into one srnall introduction and three sections: "liaison des solutions 

particulières avec les intégrales" 2 1, "comment les solutions particulières se tirent des 

1 9 "General theory of derivative équations, and of the arbitrary constants" 
2 0 "general theory of the connection between the differential équations and their successive intégrais'' 
2 1 "connection between particular solutions and intégrais" 
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équations différentielles"22, and "application de ce qui précède, à l'intégration" 2 3. 

The first section has little novelty: Lacroix combines the explanations for the ex

istence of particular solutions of first-order and higher-order differential équations, 

which had been separate in the first édition. The only change to be noticed, related to 

higher-order équations, is that now Lacroix pays a little more attention to particular 

solutions of non-finite particular solutions (which are themselves differential équations) 

- he mentions Lagrange, and his name of "double" and "triple" particular solutions 

for thcsc, introduced in [Lagrange Calcul, 199-202]. 

The second section is quite a différent matter. Lacroix must have been impressed by 

[Poisson 1806\ - he had already cited it in the second édition of the Traité Élémentaire 

- and its influence here is clear. Poisson had adopted as a point of departure the char-

acterization of particular solutions as solutions which cannot be completed by an arbi-

trary constant [1806, 61). In the first édition Lacroix had reported this characterization 

[Traité, II, 274-277] (adapting a passage from [Lagrange Fonctions}) but in asubsidiary 

manner. In the second édition, it is the way to study particular solutions directly from 

the differential équations. The first few pages of this section [Lacroix Traité, 2nd ed, II, 

383-387] reproduce [Lacroix 1802a, 2nd ed, 436-442]: an adaptation of [Lacroix Traité, 

lst ed, II, 274-277]. Next, in an article with some historical remarks [Traité, 2nd ed, 

II, 388], Lacroix mentions Lagrange's terminology of "singular primitive équations", 

and how it refers to an analogy with "singular values" (for which Taylor séries fails) 

- something which he had failed to notice in the first édition. Another clear influence 

from [Poisson 1806} is the important issue of the possibility of transforming a differen

tial équation possessing a particular solution so that the latter appears as a factor. In 

the first édition, Lacroix had distinguished the particular solutions which are factors 

(and thus apparently trivial) from the real particular solutions; this in spite of Trem-

bley [1790-91] having already stated that that transformation is always possible. It 

seems that Lacroix was more convinced by Poisson [1806, 70-71], so that he reports 

his proof [Lacroix Traité, 2nd ed, II, 389]. 2 4 Finally, the study of particular solutions 

of differential équations of order higher than 1 [Lacroix Traité, 2nd ed, II, 392-399] is 

also admittedly based on [Poisson 1806}. 

In the third section Lacroix mostly retakes, from the first édition, Trembley's 

method to find integrating factors from particular intégrais and solutions. A few nov-

elties resuit from Lagrange's factorization of the derivative of a "derivative équation" 

into a singular primitive équation times something which corresponds to the complète 

primitive équation [Lagrange Calcul, ch. 15] - which explains why certain differential 

équations are easier to integrate after being differentiated. 

2 2 "how to obtain particular solutions from the differential équations" 
2 3 "application of this to intégration" 
2 4 A n d modifies the introductory article to the chapter [Lacroix Traité, 2nd ed. II, 373}: now par

ticular solutions "paraissent d'abord de deux sortes" ("appear at first to be of two kinds"), instead of 
"sont de deux sortes'' ("are of two kinds") [Lacroix Traité, lst ed, I, 389]. 
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9.5.2 Partial differential equations and their particular solu

tions 

From Lacroix's memoir of 1785 (appendix A.l), through the first edition of his Traité, 

to the second, one can observe a decrease in Lacroix's confidence in the point of view 

that partial differential equations result from the elimination of arbitrary functions. 

It has already been seen how in the first edition he expresses his reserves about the 

analogy between arbitrary constants and arbitrary functions in those eliminations. 

Not that this point of view is abandoned. But the reserves on the analogy gain 

relevance. The first encounter with them is now in the first volume, in a new section 

"on the elimination of indeterminate or arbitrary functions" [Lacroix Traité, 2nd ed, 

I. 230-237] where they follow immediately the introduction of those eliminations. 

In the second volume, the first reference to the formation of partial differential 

equations occurs somewhat later than in the first edition, near the end of the section 

on "integration of first-order partial differential equations" (which in fact addresses 

only those of "first degree"): Lacroix remarks that the method he has been using 

(Lagrange's method for quasi-linear equations) assumes the solution to be V = ip(U) 

in the case of three variables, V = <p(T, U) in the case of four variables, and so on; 

and since no limitation appears, those forms are general and the origin of first-order 

partial differential equations indicated in the first volume "ne souffre aucune exception, 

lorsque les coefîiciens différentiels ne passent pas le premier degré" 2 5 [Lacroix Traité, 

2nd ed, II, 545]. As for partial differential equations of degree higher than one, he does 

not seem so certain here that those forms are indeed the most general [Lacroix Traité, 

2nd ed, II, 564-565], although in a later addition he seems to have been convinced 

by Poisson [Lacroix Traité, 2nd ed, III, 705-708]. Also the section on "integration of 

partial differential equations of order higher than one" opens with a complaint about 

the ignorance of the general forms of the integrals [Lacroix Traité, 2nd ed, II, 575-576]. 

The relationships between complete and general integrals are addressed in three (or 

four) places: 1 - just after the remark quoted above on the assumption of the forms 

V = <p{U) or V = <p[T, U), Lacroix [Traité, 2nd ed, II, 545-546] repeats from the first 

edition their derivation from V = all + b and V = aT -f bll + c; 2 - a new section 

"on the various forms of the integrals of partial differential equations" [Lacroix Traité, 

2nd ed, II, 658-667] repeats those reflections on this in the first edition which had 

not been moved to the first volume, including the introduction of Lagrange's terms 

"complete" and "general" integrals (in an addition, Lacroix [Traité, 2nd ed, III, 710-

711] reports later work by Ampère [1815] on the number of arbitrary elements, based 

on the differentiation-elimination process); 3 - the section on construction of partial 

differential equations now includes an article on the geometrical interpretation of types 

of solutions (see below). 

2 5 "does not admit any exception, as long as the differential coefficients do not go above first degree" 
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As for particular solutions of partial differential équations, the new (short) section 

on them [Lacroix Traité. 2nd ed, II, 667-672] repeats the Lagrangian explanation from 

the first édition, but replaces the procedure for obtaining them by Legendre [1790] 

with the one by Poisson [1806, 114-116). 

9.5.3 Geometrical connections 

The second édition includes a new chapter on "geometrical applications of differential 

équations in two variables" [Lacroix Traité, 2nd ed, II, 447-470], which corresponds 

for the most part to the section on "geometrical construction of first-order [ordinary] 

differential équations" in the first édition. There are a couple of new problems (namely 

a construction for curves of the form s = f(p), where s is the arc length, and the 

détermination of curves whose radius of curvature is equal to the normal). But the 

most interesting modifications are the inclusion of the construction analogous to Euler's 

"general method", and a significant expansion of the space dedicated to particular 

solutions. 

It has been remarked that in the first édition the most interesting constructions of 

ordinary differential équations occur in connection to approximation, more specifically 

to Euler's "general method" (see sections 5.2.4 and 6.2.3.2). In the second édition 

Lacroix is quite dismissive of the application of this method to differential équations 

(see section 9.4.2), and moves its geometrical version to the chapter on geometrical 

applications [Lacroix Traité, 2nd ed, II, 451-452] - a more naturai location. Their 

purpose is now much clearer: thèse constructions "ne saurai[en]t guères être utile[s] 

dans la pratique; mais [ils] prouve[nt] que ces équations expriment toujours quelque 

chose de réel" 2 6 , confirming or reinforcing a conclusion which Lacroix had already 

obtained using power séries (see section 9.5.1). 2 7 

The five-and-a-half-page new section on the (geometrical) "meaning of particular 

solutions" [Lacroix Traité, 2nd ed, II, 465-470] has over twice the space that had been 

dedicated to that issue in the first édition. Stili, most of it is yet dedicated to examples: 

a great deal of this expansion cornes from an adaptation of [Lagrange Calcul, 263-268] 

- a discussion of a problern solved by Leibniz, and of why Leibniz had arrived only at 

the particular (singular) solution. However, Lacroix now includes also the remark that 

any given curve corresponds to the particular solutions of several differential équations 

(that of its tangents, that of its osculating circles, and so on); and alludes briefiy to 

the geometrical problems posed by the possibility of removing the particular solution 

2 6 "are hardlv ever useful in practice; but thcy prove that thèse équations always express somethîng 
real" 

2 7 I n the case of second order équations, Lacroix gives also a construction using osculating circles, 
simpler than the one resulting from Euler's "general method", which involves osculating parabolas. 
Tournes [3003, 469] remarks that although the détermination of centres of curvature and osculating 
circles had long been an important problem, he has not found any instance of this kind of inverse 
problern prior to the second édition of Lacroix's Traité. 
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from the differential equation (after having transformed the latter so that the former 
becomes a factor - see section 9.5.1). directing the reader to Poisson's work [1806, 75 : 

117-123]. 

The only significant modification to the section on geometrical construction of par
tial differential equations is the correction of an important flaw in the first edition: the 
addition of an article [Lacroix Traite. 2nd ed, II. 682-685] on the geometrical meaning 
of complete and general integrals and particular solutions. General integrals are asso
ciated to the two Mongean types of generation of surfaces: by movement of a line in 
space, and by continued intersection of a family of surfaces (that is, as an envelope). 
Integrals directly of the form V = <p{U) correspond to surfaces generated by the move
ment of a line in space - a line with equations U = a and V = (p(a) = b. General 
integrals obtained from complete integrals by variation of constants, being expressed 
by systems of the form 

d F 
F[x.y,z,a,ip(a)} = Q and - 3 — = 0 

da 

(from which a is to be eliminated), correspond to envelopes of families of surfaces pa
rametrized by a; these latter surfaces correspond to instances of the complete integral, 
each family corresponding to a particular function <p, that is to a particular relation 
between the two constants in the complete integral. Lacroix also mentions here the 
correspondence between Monge's characteristics (given by the above system, with
out eliminating a) and the ordinary differential equations appearing in the Lagrange-
Charpit method, And naturally he also refers to the tangency between the surfaces 
given by particular solutions and those given by complete and general integrals. But 
about half of the article is taken up with the issue of whether the complete integral 
is contained or not in the general integral. Lagrange had originally assumed that the 
general integral contains the complete integrals [1774, §56] (see also section 6.1.4.2 
above), but he had later [Calcul, 372-381] changed his mind, based on two arguments. 
Firstly, the example (written here with the notation used by Lacroix) of the equation 
px + qy = z; its complete integral is z = ax + by and therefore one may regard as its 
general integral the result of eliminating a between z = ax + y<p(a) and x + y<p'{a) = 0; 
but there is no function <p such that this elimination yields z = ax + by. Secondly, the 
geometrical interpretation of the complete and general integrals: the latter is formed by 
the successive intersections of the former (for a particular tp), suggesting that they are 
essentially distinct. Lacroix reports Lagrange's view, especially the example above, but 
he does not seem to adhere to it: z = xtp (J) is also a general integral of px + qy = z, 
and putting y> = A + one obtains z = Ax 4- By, and so he concludes that 
that exception does not affect general integrals represented by one single equation (La
grange himself had given this apparent counter-example [Calcul, 374-377]; it seems 
that this muddle was a matter of definition - in [Calcul, 371] Lagrange had defined 
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"general primitive equation" not as one containing an arbitrary function, but rather 

as one obtained from the complete primitive equation F(x,y,z,a,b) = 0 by putting 

b = tpa and eliminating a using F'(a,ipa) = 0, so that he did not refer to ~ = ip (*) 

as a "general" primitive equation, only as a "simpler and more general form" of the 

primitive equation [Calcul. 374]). 

9.5.4 Continuity of arbitrary functions 

As is implicit in the previous section, the articles where Lacroix addresses the possible 

discontinuity of arbitrary functions remain practically unchanged in the second volume 

of the second edition. But he adds an announcement: he will treat Laplace's opinion 

on the subject in the third volume [Lacroix Traité, 2nd ed, II, 686]. 

Laplace had stated his opinion in [1779 , 298-302], He regarded partial differential 

equations as particular cases of partial finite difference equations; the solutions of the 

latter might be constructed as polygons, and "lorsqu'on passe du fini à l'infiniment 

petit, ces polygones se changent dans des courbes qui par conséquent peuvent être 

discontinues" 2 8 ¡1779, 300]. Of course, "discontinuity" is to be understood with its 

18th-century meaning of absence of a general expression. In fact, Laplace proceeded 

by remarking that in order for an n-th order partial differential equation to "subsist", 

there can be no jumps between consecutive values of the dependent variable, nor of its 

derivatives up to order n - 1 - so as to ensure that the n-th derivatives (or rather, the 

n-th "differences, divided by the respective powers" of the independent variables) are 

finite quantities. 

Arbogast had argued against Laplace's opinion in his dissertation on arbitrary func

tions [1791, 79-86], and Lacroix seems to have thought that this settled the issue, so 

that in the first edition he did not even mention Laplace apropos of this controversy. 

But Laplace repeated his old stand in [1812, 72-80]. As after all the issue was 

not consensual, Lacroix included a new short section "sur la nature des fonctions 

arbitraires des intégrales aux différentielles partielles ,,2Q [Traité, 2nd ed, III, 307-

311]. Most of the section is taken up with reporting Laplace's argumentation (which 

must be the reason for putting this section in the third volume, as it starts with a 

difference equation). But in the last article [Traité, 2nd ed, III. 310-311] Lacroix briefly 

refers to Arbogast's counter-arguments, and remarks that Lagrange's final opinion 

was a complete agreement with Monge (that is, the full acceptance of discontinuous 

functions), that Laplace's opinion was first put forward by Condorcet (with a different 

argument), and finally that Poisson had recently expressed an opinion similar to that 

of Laplace. Clearly, Lacroix had not changed his mind about the admissability of 

discontinuous functions; but the presentation of the problem is more balanced in the 

2 8 "when we pass from the finite to the infinitely small, these polygons change into curves, which 
may thus be discontinuous" 

2 9 "on the nature of the arbitrary functions of the integrals of partial differentials" 
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second édition than in the first - even though d'Alembert's case is never described. 

9.5.5 Total differential équations not satisfying the conditions 

of integrability 

The section on "total differential équations that do not satisfy the integrability con

ditions" remains mostly unchanged from the first édition in [Lacroix Traité, 2nd ed, 

II, 690-720]. The most relevant of the small changes are a différent proof of part of 

Monge's correspondence between partial and total differential équations [Traité, 2nd 

ed, IL 707-709] and an increase in caution on statements about generality of solutions: 

Monge's procedure for integrating first-degree équations, which in in the first édition 

led to "la solution la plus générale que l'on puisse obtenir" 3 0 [Traité, II, 625], now sim-

ply provides "une solution remarquable par sa forme et son étendue" 3 1 [Traité, 2nd ed, 

II, 692]; then, when presenting his theory of the formation of thèse équations, Lacroix 

doubts the generality of what in the first édition was the "general integrai" - an ar

gument involving a Taylor séries for z as a function of x makes him think that there 

should be an arbitrary constant independent of the arbitrary function [Traité, 2nd ed, 

IL 703-704]. 

But the most relevant new material occurs in an "addition" in the third volume, 

rather than in the second volume. Between the publication of the first édition and 

that of the second volume of the second édition (1814), no important new work had 

appeared on total differential équations in three variables. [Pfaff 1815], on the other 

hand, was important enough for the name Pfaffian équation to be stili nowadays used 

for first-order linear total differential équations in more than two variables. To over-

come difficulties in the Lagrange-Charpit method, which was not practical with more 

than two independent variables, Pfaff reduced the integration of a partial differential 

équation in n variables to that of a total differential équation in 2n — 1 variables, and 

gave a method to solve the latter [Demidov 1982, 333-334]. In [Traité, 2nd ed, III, 

711-712] Lacroix gives a short, but appréciative, account of [Pfaff 1815}. However, he 

remarks Pfaff's acknowledgement that Monge had suggested total differential équations 

as the "key" for integrating partial differential équations. He also remarks Paul Binet's 

priority, of which Pfaff was certainly unaware, in a fundamental resuit on the number 

of équations in the solution of a total differential équation. 3 2 

3 0 "the most general solution that might be obtained" 
3 1 "a solution remarkable for its forni and extension" 
3 2 B m e t had submìtted a memoir with this resnlt to the Institut in August 1814 [Acad. Se. Inst. PV, 

V, 385]. Lacroix and Poisson had been charged with reporting on it, but Binet had withdrawn it "for 
perfecting". It appears to have never been published. 
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9.6 Aspects of différences and séries 

9.6.1 Indices 

The only noteworthy différence from the first édition that I have noticed in the use of 
subscript indices, is the disappearance of their occurrence in the dérivation of Taylor's 
theorem. This is a conséquence of the loss of importance of the dérivation process, and 
of the adoption of Poisson's proof [1805] (see section 9.2). Indices might stili make it 
easier to read (at least for modem eyes) but not that much. 

9.6.2 The "multiplicity of intégrais1 1 of différence équations 

After the publication of the first édition, Poisson took over Biot's mathematical subjects 
- the multiple intégrais of finite différence équations, and mixed différence équations 
[Grattan-Guinness 1990, I, 189-190, 223-231]. In the second édition, Lacroix reported 
Poisson's new results. 

The section on "multiplicity of intégrais" of différence équations [Lacroix Traité, 
2nd ed, III, 250-267] has a very clear organization. First, we find what is practically a 
reprint of the same section in the first édition (that is, Lacroix's account of Biot's work) 
[Traité, 2nd ed, III, 250-260]. Theshorter remainder is dedicated to [Poisson 1800] and 
[Poisson 1806]. In [Traité, 2nd ed, III, 260-264] Lacroix reports Poisson's conclusion 
[1800] that there are even more intégrais for différence équations than those studied by 
Charles, Monge and Biot; Poisson's new intégrais contain arbitrary functions subject 
only to take integer values when the argument assumes integer values. In [Traité, 2nd 
ed, III, 264-267] Lacroix gives very short accounts of Poisson's arguments in [1806] for 
the existence of those new intégrais, and also for the existence of particular solutions 
of différence équations. No one had noticed the existence of particular solutions, be-
cause they are not obtained by variation of constants (which instead leads to indirect 
intégrais); Poisson arrived at them via his characterization of particular solutions as 
solutions that cannot be completed by arbitrary constants. We have already remarked 
on the good impression of [Poisson 1806] that Lacroix had. 

9.6.3 Mixed différence équations 

As expected, the main modifications to the chapter on mixed différence équations are 
additions drawn from Poisson's work, In 1806 Poisson published a memoir on mixed 
différence équations [Grattan-Guinness 1990, 230-231], where he rejected Lacroix's 
suggestion for solving mixed différence équations in the strict sensé - namely trans-
forming them into indefinite-order differential équations through power-series expan
sions for Ay and A ^ ; Lacroix himself had not been enthusiastic about this method, 
recognizing that it was often difficult to apply. Instead, Poisson applied Laplace's cas
cade method to linear first-order mixed différence équations. And Lacroix reports this 
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[Traité. 2nd ed, III. 579-584]. He also reports Poisson's more thorough treatment of a 
geometrical problem already addressed by Biot [Traité, 2nd ed. Ili, 591-595]. However, 
he maintains unchanged his sole example of a geometrical problem leading to a mixed 
différence équation in the strict sense - thus not using the cascade method, but rather 
the séries expansion of Ay and. alternatively, Charles's solution. 

The only other noteworthy modification is that the article mentioning analytical 
applications is transfonned into a short section [Traité, 2nd ed. Ili , 598-599] on "mixed 
and partial différence équations" - that is, équations involving both partial differentials 
and partial différences. In fact. one of the examples that he had given in the first édition 
of analytical applications of mixed différence équations - the one studied by François-
Joseph Français - led to mixed partial différence équations. He also gives an example 
from [Laplace 1779]. But most of the section is dedicated to one example by Lacroix's 
favorite Italian author Pietro Paoli. 
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Chapter 10 

Final remarks 

10.1 Originalities, both real and misattributed 

10.1.1 Originalities in Lacroix's Traité 

In the Préface of the first édition of the Traité Lacroix made a déclaration of modesty: 

"Parmi beaucoup de choses extraites des ouvrages des grands Géomètres 

de nos jours, il se trouvera peut-être quelques détails qui m'appartiendront; 

mais je ne disputerai pas là-dessus, et je me contenterai de ce qu'on voudra 

bien me laisser."1 [Traité, I, xxviii] 

We have seen that he did not keep this promise entirely. In the Préface of the second 

édition, and in his "Compte rendu (...) des progrès que les mathématiques ont faits 

depuis 1789 [...]" (appendix B) he claimed priority for some détails: his use of indices 

in proving the power-series expansions of transcendental functions (section 7.1.2); the 

change of independent variable without considération of constant differentials (section 

3.2.4); a proof of Newton's theorem on the sums of powers of the roots of an équation 

[Traité, I, 283-286]; remarks on limitations in the number of arbitrary functions in inté

grais of higher-order partial differential équations (section 6,2.2.3); and the analytical 

theory of the différent kinds of intégral of total differential équations in three variables 

that do not satisfy the conditions of integrability (section 6.2.4.2). To this, we can 

also add the section on the "development of curves traced on surfaces" in the second 

édition, adapted from Lacroix's 1790 memoir (appendix A.2). 

A différent kind of original contribution is in terminology. There are a few expres

sions that appear to have been introduced in Lacroix's Traité: "differential coefficient" 

(see section 3.2.2); "partial differential", instead of "partial différence" (see section 

3.2.3); and less successfully, "first-degree differential équations", instead of "linear dif

ferential équations" (see page 32). 

l"Among many things extractcd from the works of the great Geometers of our time, oue may find 
perhaps a few détails belongmg to me; but I will not dispute over them, and I will be content with 
what one is willing to leave me.'; 
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Apart from these, there are a couple of issues in which modera readers see inno-

vations: the systematization of analytic geometry, particularly on the plañe (section 

4.1.2); and the exploration of the conception of the integral as a limit (section 5.2.3). 

It is interesting that these two issues appear now much more relevant than his claimed 

originalities. Perhaps this is so because they are related to what Lacroix did best: to 

expound mathematics, rather than to achieve new results or techniques. 

10.1.2 Misattributions of originality 

Some innovations have been misattributed to Lacroix's Traite. 

We have seen one of these in section 7.1: the introduction (or introduction in France) 

of subscript Índices. Lacroix rnay have contributed to their difTusion; but Laplace liad 

already used them extensively. 

Another situation that might be regarded as a misattribution relates to the so-

called "Faa di Bruno's formula" for the nth derivative of a composite function. The 

Italian Francesco Faa di Bruno (1825-1888) gave that formula in 1855, but he was not 

the first one. In [2002] Warren Johnson unearthed several precursors of Faa di Bruno, 

among which is Lacroix, in the "corrections and additions" at the end of the second 

edition [Traite, 2nd ed, III, 629]. Johnson recognized that Arbogast had given several 

particular cases and a "prose rule for writing the general case". and that Lacroix had 

drawn on Arbogast's work for writing the general formula, but he stated that Arbogast 

seemed never to had "written down Faa di Bruno's formula as such", thus apparently 

giving priority to Lacroix [2002, 230]. Alex Craik has argued convincingly that "'Faa 

di Bruno's formula was first stated by Arbogast in 1800" [2005, 128]. Of course, the 

issue here is semantical: can a "prose rule" qualify as a formula? I believe that nearly 

every historian of mathematics would agree with Craik. 

Our final case is a more clear-cut misattribution. It deals with fractional calculus: 

calculus with derivatives of non-integer order. According to [Ross 1977, 76-77], Leibniz 

toyed with the idea of a differential of order \ ; in [1730-1731] Euler suggested to use 

interpolation to obtain such difierentials; but it was in [Lacroix Traite, 2nd ed. III, 

409-410] that appeared "the first mention of a derivative of arbitrary order in a text" 

- for y = xm, Lacroix writes 

¥V = rn\ xJn_n = T(m + 1) ^ 
áxn (m - 1)! V(m - n + 1) 

(I am copying Ross's use of factorials and Legendre's V symbol; Lacroix actually wrote 
771 

[m] instead of m!, and f dx (l£) instead of T(m + 1)), and putting y = x and n = \ 

he gets 

áhy _ 2 y i 

dx^ 
Two similar but shorter accounts (omitting Euler altogether) have appeared more 
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recently, in educational journals [Doyle 1996, 16; Debnath 2004 , 487-488]; [Doyle 1996} 

even has a section named "Lacroix's formula for D m " . The first point to make is 

that although both Ross and Debnath only cite the second édition of Lacroix's Traité 

(Doyle does not cite Lacroix directly), and indeed ali of thern stress the year 1819, this 

passage is already présent, precisely in the same form. in [Lacroix Traité, Ist ed, III, 

390-391]. But more seriously, it is also présent (modulo notations for factorials and 

7r) in [Euler 1730-1731, 56-57] - a work that Ross knew and cited, and frorn vvhich 

Lacroix acknowledged to have taken this. 

10.2 Impact 

How to assess the impact of a book that did not intend to introduce any major inno

vation? Let us examine some leads. 

First of ail, it is undeniable that Lacroix's Traité élémentaire was hugely successful 

- not only in France (being adopted for some tirne in the École Polytechnique and in the 

Lycées, and having several éditions even after that), but also in several other European 

(and American) countries (see section 8-10). If we take the Traité élémentaire as a by-

product of the large Traité, then the latter must partake of the obvious educational 

influence of the former. 

We can also examine what happened to the terminologica! innovations mentioned 

above. "First-degree differential équations" never had any success - the word "lin

ear" proved too appealing. "Partial differentials" quickly gained ground: compare in 

appendices C.2.2 and C.3.1 the programmes of the École Polytechnique for 1800-1801 

and 1805-1806 - the former has "notion of partial différences" and the latter "no

tions on partial differentials" (the change actually occurred in 1802-1803). True, older 

mathematicians stuck with "partial différences" (for instance, Monge in [Feuilles, 3rd 

ed], published in 1807); but they eventually lost - this was such an obviously sensible 

suggestion... Finalty, "differential coefficient": this expression has disappeared in the 

meantime, but throughout the 19th century it was an extremely popular name for the 

derivative [Anonymous 1900]. Of course, the popularity of "differential coefficient" and 

of "partial differential" probably resuit at least as much from the Traité élémentaire 

as from the large Traité. 

Focusing strictly on the large Traité, we can invoke some pièces of évidence that 

add up to form the picture of a treatise fundamental in the formation of a generation 

or two of mathematicians. 

In [1843, 3] Libri reminded his listeners that for 45 years (that is, since its publica

tion), Lacroix's Traité had been "le compagnon inséparable de tous les géomètres, [...] le 

guide sûr et fidèle de tous ceux qui aspirent à se faire un nom dans les mathématiques" 2 . 

2 : 'the inséparable companioa of ail geometers, [...] the reliable and faithful guide of ail those who 
aspire to acquire a réputation in mathematics" 
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This could be disregarded for being said at a funeral eulogy. But Libri added an anec

dote, about a young would-be scientist in the 1820's, to whom Laplace had said: 

"Vous êtes fort heureux actuellement d'avoir le grand ouvrage de M. Lacroix: 

quand j 'ai commencé à étudier, il m'a fallu dix ans de travaux pour y 

suppléer." 3 

We do not have any assurance that this is a true story, but it certainly is believable. 

In fact, the greatest merit in Lacroix's TYaité is in accomplishing the purpose of 

making the 18th-century calculus, in ail its détails, much more easily accessible and 

fruitful to the 19th-century mathematicians. We have évidence that he succeeded in 

that. Let us give three examples, 

The first example relates to a Portuguese mathematician, Francisco Garçao Stockler 

(1759-1829). A staunch supporter of d'Alembert, Stockler gave in [1805] his opinion 

on the vibrating-string controversy (naturally, he held that the arbitrary functions 

involved had to be "continuons"). The point that interest us hère is that he did not 

fail to express his disagreement with Arbogast's arguments, although he had not had 

access to [Arbogast 1791]. How? He relied on the short account given by Lacroix 

[Stockler 1805, 183]. Thus, through Lacroix a mathematician in 1805 Lisbon had easy 

access, even if second-hand, to an argument published in Saint-Petersburg in 1791. 

The second example has already been mentioned in section 5.2.3: Cauchy's déf

inition of definite integrai cornes from 18th-century techniques for approximation of 

intégrais, particularly Euler's "general method"; although Cauchy had some direct 

knowledge of Euler's work, Grabiner has argued that Lacroix's account was "Cauchy's 

most likely immediate source" [1981, 151]. 

The final example, possibly the strongest évidence for direct influence of Lacroix's 

Traité, was mentioned in page 35: the work of Paul Charpit Connecting two methods 

by Lagrange was known for a long time only through Lacroix's account; if it were not 

for Lacroix, there would not be a "Lagrange-Charpit method". 

Thèse leads and the considérations above on orìginalities seem to confimi that 

Lacroix's Traité did have a significant impact; but that this impact had very little to 

do with its original contributions; rather, what made it so relevant was the non-trivial 

fact that it was a well-organized, truly comprehensive, up-to-date, and advanced-level 

survey of the calculus. 

3 "You are very fortunate to have nowadays the great work of M. Lacroix; when I started my studies, 
it took me ten years of labour to make up for it." 

341 



10.3 Issues of affiliation, style, and method 

10.3.1 Lagrange vs Monge; algebra vs geometry 

It has been noticed that in the late 18th century the dominant approach to the calculus 
was algebraic [Fraser 1989]. This statement does not apply simply to Lagrange's power-
series foundation: algebraic views (usually called "analytical") had been gaining ground 
since the beginning of the century, and were already quite strong in Euler. The typical 
example is the change in the object of the calculus: from curves to functions - that is. 
"analytical expressions". 

The only major mathematician in late 18th century France who took a different 
stand was Monge. We have seen in sections 6.1.3.2, 6.1.3.4, and 6.1.3.5 his application 
of geometrical reasonings to differential equations. 

This distinction between a Lagrangian-algebraic style and a Mongean-geometric 
style poses us a question: what happens in Lacroix's Traité, given that Lacroix was 
a disciple of Monge and that he chose Lagrange's power-series foundation? Was he a 
Lagrangian, or was he a Mongean? An easy answer is to say that Lacroix was both: 
in an eclectic style, he was Lagrangian in the chapter on the principles of the calculus, 
and Mongean in the chapters on geometrical applications. 

But I believe that the situation was not so simple, and that it needs to be desimpli-
fied in order to understand Lacroix's standpoint. The description above passes over the 
fact that the differences between Monge and Lagrange He not only in style, but also in 
subjects. Both studied partial differential equations, but other than that, they usually 
addressed different topics. There is no book by Monge on the calculus, and Lagrange's 
contributions to differential geometry are limited (in [Fonctions, 168, 184, 187] he rec
ommended Monge's works). There is, of course, the creation of "analytic geometry" 
(instead of "application of algebra to geometry"), for which they are jointly credited. 
But this is precisely a case in which they concurred, rather than compete with different 
points of view. We might also recall Monge's appreciation of Lagrange's geometrical 
interpretation of singular integrals. Thus, the Lagrangian and Mongean styles were 
not so incompatible - and in fact they had to be conciliated if one was to address from 
an advanced standpoint both the calculus and its applications to geometry. 

In Lacroix's Traité, for most particular topics, we see a typical late 18th-century 
algebraic-analytical approach - nothing else should be expected from a book intended 
to pave the way for future researchers. And there is ample evidence that Lacroix was 
sympathetic to "analysis". His defense of analytic geometry (and its comparison to 
Lagrange's Méchanique analitique) is one example [Traité, I, xxv]; his description of 
Lagrange's suggestion of foundation for the calculus in [1772a] as "idées lumineuses'"1 

is another [Traité, I, xxiv]; his clear sympathy for Fontaine's conception of forma
tion of differential equations by elimination of arbitrary constants (see chapter 6) is 

4 "brilliant ideas" 
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another; his défense that textbooks should be written so as to ultimately lead to La-
grange's Mécanique analitique and Laplace's Mécanique celeste are yet another [1802a, 
xviii; 1805, 205-206]; finally: "j'ai apporté le plus grand soin à donner aux formules 
cette symétrie qui les fait presque deviner, et dont les écrits de Lagrange offrent tant 
d'examples" 5 [Traité, I, xxviii]. This prédominance of the Lagrangian style is also true 
for the only topic in which the two mathematicians competed, namely partial differen-
tial équations - even when presenting work by Monge (his treatment of second-order 
quasi-linear équations) he sticks to analytical considérations [Traité, II, 524-535]. 

Of course we see Mongean influence in the geometrical sections. But above ail. we 
see it in an aspect of the overall structure: whenever possible, Lacroix tries to give 
geometrical depictions of analytical situations, separate from the "analytical course" 
(see page 88); this is the case for chapters 4 and 5 of the first volume, and for several 
sections and passages on geometrical applications of differential, différence, and mixed 
équations, in the second and third volumes. 6 This attempt at séparation went as fai- as 
Lacroix constructing an analytical theory for a topic that had been given a geometrical 
treatment by Monge: total differential équations in three variables not satisfying the 
conditions of integrability (see section 6.2.4). 

I believe that the resuit is not an eclectic compilation (as Lacroix accused Cousin 
of having done), but rather an effective "rapprochement des méthodes" 7 - an ency
clopédiste approach. 

10.3.2 Encyclopedism and encyclopédisme 

My use of two versions of the same word in the title just above is deliberate. What 
1 intend to argue in this section is that Lacroix's Traité is both encyclopédie in scope 
and encyclopédiste in methodology. 

The encyclopédie scope should not need much arguing for. It is clear from chapter 
2 that it covers every topic in the calculus and differential geometry relevant around 
1800, with a level of détail that could not be matched by smaller works (two examples 
of very différent worth: [Bossut 1798] and [Lagrange Fonctions]). The only impor
tant omission one might point is that of applications other than geometrical (namely, 
applications to mechanics) - but Lacroix chose to remain within the confines of pure 
mathematics. 8 

As for the encyclopédiste methodology, it can be seen in the attempts at systém
atisation, and in the reporting of ali relevant points of view. 

5"I have taken great pains to givo to formulas that syrnmetry which inakes one almost guess them, 
and of which so many examples can be found in the writings of Lagrage" 

6 With the exception of the construction argument for the admissabilfty of discontinuous functions 
in intégrais of partial differential équations. But once again, a situation in which Lagrange himself 
referred to Monge [Truesdell 1960, 295]. 

7 "conciliation of methods" 
8Perhaps some other important omissions might be pointed to the second édition (see page 318). 
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Systématisation is reflected on the existence of a subject index and of a magnif-
icent bibliography, but also in the division into chapters with clearly defined sub-
jects. That this latter characteristic is not so trivial might be seen by comparison with 
[Cousin 1796], and to a lesser extent even [Lacroix 1802a]. In [Cousin 1796, I], much 
of elementary differential and integral calculus is effectively presented in a chapter 
entitled "on the method of the ancient geometers known under the narne of method 
of limits"; later, after applications of the method of limits to mechanics, there is a 
three-page introduction of the differential notation and of the infinitesimal and flux-
ional approaches, followed by a short chapter "on differential calculus", dealing mainly 
with conditions for exact differenti als, and with changes of independent variables; still 
in the first volume, there is a chapter on "integral calculus in general", which gives a 
survey of the whole subject, including partial differential équations and finite différ
ence équations; but [Cousin 1796, II] is entirely dedicated to more advanced results in 
integral calculus - starting with integration of rational functions. Trying to find some 
particular resuit in [Cousin 1796] is not an easy task! Lacroix's D'aite élémentaire is 
of course not so confused, but as we have seen in section 8.4, pedagogical reasons lead 
to have differentiation of functions of more than one variable appear only after the 
applications of differentiation of functions of one variable. 

That Lacroix tries to report ail relevant points of view should be clear from several 
passages above, particularly sections 3.2.7 and 4.2.1.2: Lacroix chose the power-series 
foundation, but he did not exclude limits, nor even infini tesi m als (even if they were "less 
rigorous"), and he used ail of them, especially in geometrical applications. We may 
also recali that he defined the integral as antiderivative, but treated it also as a limit 
of sums, which in addition explained the Leibnizian conception of sum of infinitesimals 
(see section 5.2.3); and let us not forget chapter 2 of the third volume, where he used 
Laplace's generating functions to address subjects already treated in chapter 1 using 
the usuai calculus of différences.9 

One should not assume that ali the relevant points of view are presented with the 
same weight, or the sanie level of detail. This is certainly not the case: power séries are 
more important than limits and limits more important than infinitesimals; the integrai 
is essentially the "primitive function", and can also be seen as the limit of a sum; 
generating functions have one sixth of the space dedicated to the calculus of différences. 
Lacroix actually made choices about the best (or more relevant) approaches. But he 
did not exclude the others. 

This attempt of reporting several approaches is one of the most famous aspects of 
Lacroix's Traité [Grabiner 1981, 79-80; Grattan-Guinness 1990, I, 141-142]. However, 
it has been challenged by Gert Schubring [2005, 374-379] : "the total structure of of the 
work does not take the 'encyclopédie' form suggested". Schubring is concerned only 

9Thcre is the occasionai flaw: in the first édition, the chapter on the calculus of variations omits the 
power-series approach; in [Fonctions] Lagrange had already tried to use it for variations [Fraser 1985, 
181-182]. 
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with the foundations of the calculus (thus overlooking for instance the case of chapter 
2 of the third volume); and he argues that Lacroix bases his whole presentation on 
the method of limits. If I understand it correctly, Schubring's case has three points: 
1 - Lacroix only used infinitesimals in the applications to curves, and even there only 
occasionally; 2 - he explained the use of infinitesimals as an abbreviation for the method 
of limits; and more importantly 3 - the Introduction in the first volume "develops the 
limit method as a precondition and basis for applying the development into series" 
(that is, Lacroix's discussion of convergence of series was a precondition for the use of 
the power-series foundation). Let us analyze them in turn. 

1 - Schubring seems not to recognize the presence of infinitésimal considerations un
less one of the expressions "infinitesimal" or "infinitely small" appears explicitly. Thus, 
he overlooks considerations of "consecutive normals" (to a surface) [Lacroix Traité, I, 
478] and similar situations. He also overlooks the explanation for the integral as an 
infinite sum (see the quotation in page 164 above), and the use of "consecutive values" 
to obtain the basic rules of the calculus of variations [Lacroix Traité, II, 657]. 1 0 It is 
true that Lacroix did not develop a full version of the calculus based on infinitesimals, 
parallel to one based on limits and one based on power series; but he did give its basic 
elements, and used infinitesimals when it seemed appropriate. 

2 - Yes, Lacroix regarded the method of infinitesimals as inferior in principle, and 
suggested that its proper understanding was as an abbreviation of the method of limits 
(quoting Leibniz) [Traité, I, 423-424]. But he did not develop this suggestion (unlike, 
say, Cauchy [1821, 26-34]). So, where Schubring sees a metaphysical dismissal of 
infinitesimals, I see simply a "rapprochement des méthodes". 

3 - The most critical point (the one where I think Schubring is most mistaken) is 
the supposed grounding of the power-series foundation on the convergence of series. 
Lacroix regarded a series expansion of a function as representing the function even if 
it was not convergent; it had to be convergent only if one wanted to use its value (see 
the quotation in page 82 above). The differential, being simply the first term in the 
series expansion of the increment of the function, appears quite unrelated to particular 
values, and therefore to matters of convergence: convergence of the series is relevant-
only for applications (calculations). Moreover, Schubring does not explain why Lacroix 
claimed to be following different foundational approaches in the large Traité and in the 
Traité élémentaire. 

Schubring classifies Lacroix as "propagator of the méthode des limites" [2005, 372]. 
1 0 I t is not only in reference to Lacroix that Schubring misses uses of infinitesimals: he claims that 

the discussion on curves of double curvature in [Monge Feuilles] has "absolutely no reference to the 
infiniment petits11 [Schubring 2005 , 379]. Compare with [Monge Feuilles, n° 32; 3rd ed ; 343-344]: 
"Par un point A de cette courbe, soit mené un plan MNOP perpendiculaire à la tangente en A; par 
le point a infiniment proche, soit pareillement mené un plan mnOP perpendiculaire à la tangente en 
o [...] tous les points de l'arc infiniment petit Aa [...]" ("Let a plane MNOP be drawn through a 
point A of that curve, and perpendicular to the tangent in A: let a plane mnOP be similarly drawn 
through the infinitely close point a, and perpendicular to the tangent in a [...] all the points in the 
infinitely small arc Aa [...]"). 
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This is correct, as far as the Traité élémentaire goes; less so in the second édition of 

the large Traité; and even less in the first édition. 

The best way to understand Lacroix :s encyclopédisme is probably to compare his 

approach to Lagrange's and Cauchy's. While Lagrange and Cauchy each picked a 

principle and tried to construct the calculus on it, Lacroix clearly agreed with Laplace 

that "the reconciliation of methods [...] serves to clarify them mutually" (see section 

3.2.8). He also had a more conjunctural reason for adopting this approach, a reason 

best explained in the Préface of the second édition: when discussing which foundation 

to adopt in teaching. he says that the answer was difficult 

"dans l'état actuel de la science, puisqu'une route dont on ne fait qu'apper-

cevoir l'entrée, peut conduire à des découvertes importantes, et que chacun 

des points de vue sous lequel on a envisagé le passage de l'Algèbre au 

Calcul différentiel, donne à ce calcul des formes qui, pour le moins, of

frent des facilités particulières dans la solution de certains problèmes" 1 1 

[Lacroix 'Traité, 2nd ed, I, xxiv]; 

and when justifying the duplication in volume 3 caused by considering calculus of 

différences and generating functions: 

"dans l'état actuel de la science, où elle est circonscrite de tous côtés par des 

limites qu'on cherche à franchir, on ne sait sur quoi doivent s'appuyer les 

considérations qui lèveront les difficultés où l'on est maintenant arrê té" 1 2 

[Lacroix Traité, 2nd ed, I, xlvi]. 

One might argue that this is the normal state of science. But it is certainly true 

that in 1810 one could not foresee the road that would be taken by men such as Cauchy. 

10.4 Contributions of this thesis and some remain-

ing questions 

10.4.1 Contributions of this thesis 

This thesis is, as far as I know, the first global and detailed study of Lacroix's Traité. 

Through this detailed analysis I believe I have confirmed and strengthened some 

opinions about it. It truly was encyclopédie (and encyclopédiste). It was in touch 

with the then current trends of research: Lagrange's studies of power séries; Monge's 

1 1 "in the présent state of science, since a road whose entry is only glimpsed may lead to important 
discoveries. and each point of view that has been used for the passage from algebra to the differential 
calculus gives this calculus forms that, at the least, offer particular facilities in solving some problems" 

1 2 "in the présent state of science, where it is surrounded from ail sides by obstacles that one tries 
to overcome, we do not know on what should lean the considérations that will remove the difficultics 
where one is halted" 

346 



differential geometry and its relation to differential equations; classifications of solu

tions of differential and finite difference equations in types (general, complete, particu

lar/singular, indirect); Laplace's generating functions; several ("anomalous") methods 

using definite integrals. 

I have also tried to highlight or clarify some aspects of the Traité that had not been 

sufficiently addressed before. One is that Lacrofx's research activities, reduced as they 

were, are reflected in his Traité: he incorporated there the works on analysis that he 

had read at the Société PhilomatiqueP Associated with this, I have tried to identify 

the originalities contained in the Traité, and those that have been wrongly identified as 

such. I have also tried to clarify the complicated relationships between Lagrange's lec

tures at the École Polytechnique, [Lacroix Traité], and [Lagrange Fonctions]. Finally, 

I think that the path from the large Traité to the Traité élémentaire is now clearer. 

I have had to study and expound many aspects of late 18th-century calculus. In 

these expositions, there may be some new details; I would mention here Euler's strange 

remark on constant differentials, and the role of the concept of construction of partial 

differential equations, which may have been more important than previously thought. 

10.4.2 Some remaining questions 

There are several questions that remain unanswered. 

In this thesis I have focused mainly on the composition of the first edition of the 

Traité. The reflections above on impact do not intend to have the same strength that 

any of the conclusions about the book itself. A particular question that would be 

interesting to pursue more thoroughly is the influence of the Traité in research in the 

period 1800-1820- I suspect that much of the research carried out by people like Poisson 

and Ampère referred to Lacroix's Traité as background, and in some cases may have 

been triggered by passages in it. But so far this is only a suspicion. 

Another issue that has not been fully explored here is the second edition. Was it as 

up to date in 1819 as the first edition in 1800? I suspect not. But once again, this is 

not more than a suspicion. In order to answer this question, one would probably have 

to choose other aspects than those I picked for studying the first edition. 

Apart from these, there are of course many questions about Lacroix to be explored. 

A good biography is still to be written. His teaching at the Faculté des Sciences and 

at the Collège de France has not been studied, as far as I know. His textbooks still 

offer many opportunities of research. 

Some studies of his textbooks and of [Lacroix 1805] have stressed the philosophi

cal context [Lamandé 2004; Panteki 2003, 284-290]: influences from d'Alembert and 

1 3Namely, his observations on the number of arbitrary functions in integrals of higher-order partial 
differential equations, his analytical theory of particular solutions of total differential equations that 
do not satisfy the conditions of integrability. and (in the second edition) his work on curves traced on 
developable surfaces. 
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Condillac, seen in his "rnoderate sensualism" and in the importance given to algebra as 

a language. Thèse studies might profit from considering also the large Traité: Lacroix's 

care with notation and terminology is very marked; and his encyclopédisme may echo 

not only the [Encyclopédie], but more specifically d'Alembert's rejection of the esprit 

de système [Lamandé 2004, 58] - that is, the use of one single principle to explain 

everything (precisely what Lagrange had done in [Fonctions]). 
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Appendix A 

Two memoirs by Lacroix 

A. l "Mémoire sur le Calcul intégral aux différences 

partielles", 1785 

This memoir was sent to Monge from Rochefort in July 1785, and presented to the 

Académie Royale des Sciences of Paris in the meeting of 14 December 1785. The 

manuscript is in the Archive of the Académie, in the pochette for that meeting. 

Bound with the manuscript there is an alternative version for the two first pages. 

This was ignored in this transcription. 

There is also a complete (but quite shorter) alternative version of the memoir, kept 

in the same pochette, but clearly dating from a few years later. In the first page, we can 

read the following footnote: "Note ce mémoire a ete presenté en 1785, et est antérieur 

de plusieurs années a ceux que M. Monge a donné sur le même sujet dans les mémoires 

de l'académie des sciences pour 1786" (the memoirs for 1786 were published in 1788). 

This alternative version was not transcribed. 

Condorcet and Monge were charged with reading the memoir and reporting on it. 

Their report was presented and approved in the meeting of 11 February 1786 (it can be 

found both in the pochette for that meeting and in the procès-verbal [Acad. R. Sc. PV, 

CV, 28r-30v]; a transcription may be found here, just after the memoir). According to 

that report the memoir should have been published in the Mémoires de Mathématiques 

et de Physique, présentés à l Académie Royale des Sciences, commonly known as Sa

vants Etrangers, dedicated to memoirs submitted by non-members. But this never 

happened: the publication of this collection slowed down and halted precisely in 1786; 

many other works shared the fate of this one [Acad. Sc. Paris Guide, 121]. 
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Mémoire sur le Calcul 

intégral aux différences 
partielles^ 

par M. Lacroix 
Professeur à Rochefort 

1785. 
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Mémoire sur le calcul intégral aux différences partielles 

Je me propose dans ce mémoire de ramener l'intégration des équations aux différ

ences partielles qui ne sont pas linéaires à l'intégration des équations linéaires de ce 

genre; et de trouver une forme générale qui puisse représenter l'intégrale de ces sortes 

d'équation. [Crossed out: ensuite je tacherai d'apliquer ces formules à la Géométrie 

dans l'espace pour obtenir des constructions pour chacune de mes résultats; disciple de 

M. r Monge c'est à lui que je dois les connoissances que j 'ay pû acquérir dans ces parties 

de la Géométrie transcendante dont il est un des inventeurs; heureux si en m'occupant 

d'objets pareils je ne reste pas[?] audessous(?] de mon modèle.] 

Pour procéder avec ordre je reprend les déffinitions qui doivent servir de base à ces 

méthodes: 

Le calcul intégral aux différences partielles est l'art de trouver la composition des 

fonctions de variables quelconques par la relation donnée entre leurs coefficiens différ

entiels. 1 

(1) Si l'on à une fonction z de deux variables x, y; de cette forme z = ip : (ax-\-y); il est 

évident qu'il doit exister entre les coefficiens différentiels de cette fonction une relation 

telle qu'ils ne puissent appartenir qu'à des fonctions composées de cette manière; or 

voici comment on peut trouver cette relation: en differentient une fois par rapport 

devient la fonction <p après la différentiation. Si on élimine entre ces deux équations 

ip' : (ax + y) on aura p — aq = 0. équation qui ne renferme plus qu'une relation entre 

les coefficiens différentiels p et q; et qu'on peut regarder comme un caractère auquel 

reconnoitra se telle ou telle quantité peut être fonction de (ax + y). 

Remonter de la relation différentielle que nous venons d'obtenir a la fonction z = 

<p : (ax 4- y) voila le calcul intégral aux différences partielles. 

(2) Il est évident que toute fonction de deux variables de quelque manière qu'elle 

soit composée aura toujours pour différentielle dz = pdx + qdy\ c'est donc dans cette 

formule qu'il faudra substituer une valeur de p en q ou de q en p tirée de l'équation 

donnée, et alors on intégrera la proposée comme une équation différentielle ordinaire; 

mais il se présente une méthode plus naturelle, l'équation différentielle p — aq = 0. 

ou toute autre, peut toujours être envisagée comme produite par 1 élimination d'une 

fonction arbitraire. Cette méthode est celle de M. Monge, et s'applique avec élégance 

aux équations linéaires de tous les ordres: c'est aussi celle dont nous nous servirons à 

1 J'apelle coefficiens différentiels les termes jj^, ^ ; de manière que la différentielle l . r e d'une fonction 

z composée de deux variables sera dz — ̂ d z - i - Hjdy: nous ferons pour abréger dans le courant de ce 

mémoire jj§ = p et jj^ = q, on aura donc dz = pdx + qdy. 

autre par rapport exprime ce que 
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peu près dans la suite de ces recherches; je ne sache pas que l'auteur ait rien publié sur 

les équations non linéaires. 

Problème. 

(3) Trouver la relation des coefficiens différentiels d'une fonction d'une quantité in

connue donnée par deux équations. 

Soient z = M + ip(u) et ^ = —ip'(u))\ w est la quantité inconnue; M est une 

fonction connue de x,ytu. Si on différentie par rapport a x et a y, M étant composée 

de x, y et u-', sa différentielle contiendra trois termes, savoir la différentielle par rapport 

à x, que nous représenterons ainsi, <5M; sa différentielle par rapport a y, sera dM; et 

sa différentielle par rapport à o>, dM; on aura donc: 

ôM dM . , sduJ 
P = ^ + ^ + ^ H d ï 

dM dM , . .du 

dy dy dy 

en employant la seconde des équations primitives on réduira les 2. équations précédentes 

à celles-ci: 
ÔM 

P ~ dx 
dM 

Q = -r~ dy 

équations dans lesqu'elles il restera x,y,w, combinés avec des quantités constantes; 

c'est [sic] équations peuvent donner par l'élimination de u des équations de tous les 

degrés; c'est ainsi que je suposerai produites toutes les équations que j 'aurai à traiter. 

[Margin note: n t e a mettre au bas. Il existe encore des équations élevées, celles où la 

quantité qui est sous la fonction est connue et où cette dernière se trouve a différentes 

puissances] 

Cette manière d'envisager les équations aux différences partielles peut se rendre par 

la géométrie d'une façon très claire; si on pose dans z = M 4- tp(u>), u> = const., cette 

équation sera celle d'une surface courbe dont eu serait le paramètre et la 2 e , ip.(i*)) = 

exprime ce qvie deviendrait la surface courbe posée ci-dessus si le paramètre u> variait, 

[crossed out: unreadable] il s'en suit que le système de ces deux équations représente la 

surface engendrée par les intersections consécutives d'une surface courbe donnée avec 

elle même, changeante par la variation d'un paramettre. 

[Crossed out: On voit aisément qu'il n'y à aucune surface courbe qui ne puisse être 

engendrée de cette manière ce qui confirme l'assertion que jai fait plus haut.] 

Cette forme contient l'intégrale de l'équation linéaire du premier ordre. Car lorsque 

P = ¥- 1 
les équations ^ > sont linéaires par rapport a u, l'équation qui en resuite sera 

3 = "dû" J 
linéaire par rapport aux différentielles p et ç; dans ce cas io n'entrera pas dans 
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on aura donc en appellant L ce que devient cette quantité (p'.(tj) = L ou w = 

et par conséquent z = wL 4- <p(uj). ou 2 = M . ( L ) 4- (p.{^.(L)}\ on remarquera que 

y>' dépend de tp, $ en dépendra aussi et parconséquent cette expression se réduira a 

z = K + <p(w): K est fonction connue de x,y seulement. On sait d'ailleurs que cette 

forme est celle de l'intégrale des équations linéaires du premier ordre. 

(4.) On pourra toujours par le moyen des formules posées précédemment réduire l'in

tégration des équations aux différences partielles de quelque degré qu'elles soient à celle 

des équations différentielles ordinaires ainsi qu'on va le voir. 

En effet si on décompose l'équation aux différences partielles proposée en deux 

autres par l'introduction d'une nouvelle indéterminée qu'on supose avoir été éliminée; 

il s'agit donc d'intégrer ^ dx 4- ^ dy pour avoir Ai; ayant substitué son expression 

dans la formule générale on aura l'intégrale demandée exprimée par deux équations si 

la proposée n'est pas linéaire. 

Je remarquerai ici que l'intégrale demandée pourra se présenter sous différentes 

formes ce qu'il est aisé d'expliquer, car la décomposition de l'équation proposée pourra 

toujours se faire de plusieurs manieres, ainsi chacune d'elles donnera une intégrale 

différente; mais il est toujours possible de ramener ces résultats les uns aux autres 

[crossed out: unreadable]. 

[Crossed out: (5) Je ne m'arrêtterai gueres aux équations de l . c r ordre que M. r Euler 

à traité dans le 3 . e volume de son calcul intégral avec beaucoup d'étendue; les con

structions géométriques étant le seul motif pour le quel j 'a i parlé de cet ordre.] 

(5) Je choisirai pour premier exemple de cette méthode l'équation p 2 + apç-i-bp+cç4-

hq2 = m. tous les coefficiens sont des quantités constantes. Il faut décomposer cette 

équation en deux autres, telles qu'éliminant de ces nouvelles équations une indéterminé 

uj il en résulte la proposée; il y a plusieurs manieres de remplir cette condition; et c'est 

dans le choix de ces moyens que consiste l'addresse du calcul. 

Nous suposerons que la proposée a été produite par ces deux équations: 

comparant cette équation terme à terme avec la proposée, on en déduira les suivantes 

a = B 4- B\ b = C + C, c = B'C + C'B, h = B'B, m = A - CC'\ suposant 

qu'on ait tiré de ces équations les valeurs des indéterminées qu'elles renferment: on 

alors on tirera les valeurs de p et de q, qu'on substituera dans les équations 

p 4- Bq 4- C = u) 
p + B'q + C' = à 

on aura par l'élimination 

p2 + (B 4- B')pq + {C + C)p 4- {B'C + C'B)q + B'Bq2 + CC = A 
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B'C -BC' + B u - ^ a - C + w - 4 

B~-
sera réduite à intégrer 

aura, p = — —. et q = — par conséquent la question 
B — B B — B' 

ÔM J dM , {B'C - BC 4- - ^ } { C - C + w - A } 
— d z + —dy = ± — ^-dx 4- ^ - d y , 
dx dy B~ B' B- B' u 

en regardant u comme constant; substituant l'intégrale de cette quantité dans la for-

. , , . í z = M 4- (p : (ut) \ 
mule genérale < ... > on aura l % = J 

{ B ' C - B C ' + B w - - ^ } { C ' - C + w - ^ } 

* = 1 fllff ~ * + B - B' UÍV + V-M 

on voit aisément pourquoi je n'ai pas ajouté de constante. 

Les équations pq = 1, p2 4- q2 = 1, et d'autres semblables traitées par M. Euler ont 

leurs intégrales comprises dans les équations précédentes. 

(6) Auparavant d'aller plus loin dans cette matière je remarquerai ici que toutes les 

équations aux différences partielles qu'on pourra donner entre p q et des quantités 

constantes, auront pour intégrales deux équations de cette forme: 

z = xF:(u>) + yf:[iü) + <p:{u)) 1 

xF' :(u) + yf :(uj)-r<p' :(LÜ)=0 J * 

dans lesquelles F et / sont des fonctions connues de w, et F ' . / ' leur différentielles par 

rapport à cette variable. Cela est évident d'après le procédé développé dans l'article 

précèdent; on peut encore s'en assurer de la maniere suivante: toutes les équations 

que renferme la classe dont nous venons de de parler peuvent être réduites à cette 

forme Q = 0, Q exprimant une fonction connue de p,q et de quantitités constantes; 

soient p = F ; (UJ), q = f : (w), les deux équations desquelles éliminant UJ il resuite la 

proposée; j 'aurai en substituant dans les formules générales: 

z = xF.(w) + yf :(uj) + (p:(u>) 

xF':{w) + yf :{w) + <p':{w) = 0 

(7) C'est là l'équation des surfaces developables; ainsi nous pouvons conclure que la 

classe d'équations dont nous venons de parler appartient aux surfaces de ce genre. Je 
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puis écrire les équations précédentes sous cette forme 

z = x 7T : (z') + yij> : (z1) + z' 1 

xv' :(z')+yf :{z') + l = 0 J ' 

Je fais </? ^ (^) = et j 'entends par cette dernière indéterminée la coordonnée d'un 

certain point de l'espace. La l e r e de ces deux équations en regardant z' comme con

stant . . . est l'équation d'un plan qui passerait par le point dont z' est la coordonnée 

et l'origine les coordonnées se trouve au point du plan de x,y qui est le pied de la 

coordonnée z' 

Soit Q le point d'où partent les coordonnées QM = z'\ pour rapporter les coor

données au point A par exemple, il suffira de mettre dans les équations ci dessus pour 

x, x — x'\ et pour y, y — y'; x' et y' étant les cordonnées Q'R et Q'S du point Q: on 

aura par cette substitution 

z-z' = {x-x')it:{z') + {y-y')i>:(z') 

(x-x')7r':(z') + (y-y')iP':(z') + \ = 0 

Supposons que M'M" soit l'élément d'une courbe a double courbure, la l e r e des équa

tions précéndente [sic] appartiendra au plan normal L"K"H"G" et la 2 e sera celle du 

plan consécutif L'K"H"G' et les projections de cette courbe à double courbure seront 

ïj2L = 7T : (z'), jjjj — yj : (z')\ l'assemblage de ces deux équations appartiendra donc à la 

surface formée par les intersections K'H', K"H"hc.,. des plans normaux consécutifs 

de la courbe à double courbure MM'M" on sçait que cette surface est toujours devel-

oppable. 

La classe particulière d'équations dont nous nous occupons dans ce moment ren

ferme toutes les surfaces formées par les intersections des plans normaux des courbes à 
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double courbure dont la relation des deux projections est donnée; car dans la transfor-

f z = x F : (UJ) + y f : (UJ) + < (̂w) Ì , , , s 
mation des équations < > , j ai fait <p : (a;) = z 

on en peut conclure LO = A : (z') et parconséquent les équations ci-dessus deviennent 

[z - z') = {x- x')F: {A: ( / ) } + (?y - 3/')/':{A: ( 2 ' ) } 

0 = 1 + (x - x') F' : {A : (z1)} + (y - y') f : {A : (z1)} 

On remarquera que F et f sont des fonctions connues, A reste arbitraire par ce 

qu'il dépend de (p. 

(8) Il suit de là que déterminer la fonction arbitraire de l'intégrale précédente c'est 

se proposer ce Problème de Géométrie dans l'espace: connaissant la relation des pro

jections d'une courbe à double courbure sachant de plus que la surface formée par les 

intersections consécutives des plans normaux de cette courbe doit passer par une autre 

courbe a double courbure donnée, trouver les équations de la l . e r e courbe. Soit RO 

la courbe cherchée et MM' la courbe à double courbure donnée; la solution de cette 

question se réduit à déterminer les coefficiens de l'équation z — z' = c (x — x')-\-d(y—y')\ 

du plan ADBC qui est normal à la courbe RO, de manière que ce plan passe par la 

{ x = K\(z) 1 
> les équations des pro-

V = L • W j 
jections de la courbe donnée MM'; il faudra chercher la coordonnée PM,z", du point 

de rencontre de la courbe MM' avec le plan ABCD; alors on formera pour ce point 

les équations des deux projections GH et NK de la tangente TI; représentons les par 

z - z" = J ^ ( X - x") (1) 

* - = vfcilv - if) (2) 
M, je puis écrire ainsi son équation z — z" = c(x — x") +d(y — y") (3) il est évident que 

mettant pour (x —x"), sa valeur prise de l'équation (1) dans (3) on doit retrouver pour 

le plan ABCD passant nécessairement par le point 
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d 1 
z - z", l'équation (2). ce qui donne . = ; mais c = F : (A : ( 2 ' ) ) , 

1 — c i \ : (z J X/ : (z J 
d = f : (A : (z')) ainsi mettant dans cette dernière équation la valeur de d et de c, celle 

de z" qui a été trouvée précédemment, on aura l'expression de la fonction arbitraire 

A : (z1). D'après ce procédé il est aisé de voir que la surface représentée par l'intégrale 

passera par la courbe MM', car les deux plans normaux consécutifs a la courbe OR 

passant par les deux tangentes consécutives de la courbe MM', les intersections de ces 

plans passeront toutes par cette courbe. 

Quoi que je n'aye pas employé la 2 e équation comme elle est différentielle de l'autre 

par rapport à z' seulement, il n'en est pas moin clair que le plan normal suivant qu'elle 

représente doit passer par la tangente consécutive, les fonctions F : (A : (z')) et 

f : (A : (z')) ayant été déterminées pour cela: on pourra moyennant les équations 

précédentes combinées avec > qui représentent les projections de la 

courbe à double courbure dont les intersections des plans normaux consécutifs forment 

la surface demandée, on pourra dis-je résoudre à la fois ces deux questions trouver la 

surface demandée avec cette condition qu'elle passe par une courbe donnée; et en même 

tems déterminer la nature de la courbe génératrice. 

T,. , , • ç [ z = xF:(uj) + yf(uj) + ip{uj) 
L intégrale proposée sous sa première torme < 

[ i F ' : ( a ; ) + y / ' : H + ¥ / H = 0 
appartient à la surface formé par les intersections continuelles d'un plan mobile par la 

variation d'une quantité (to); en la considérant sous ce dernier point de vue on pourra 

en déterminer la fonction arbitraire de même que nous l'avons fait ci devant en la 

transformant ainsi . . . 

z-z' = xF;{A(z)} + yf:{A:(z')} 

xF':{A:(z')} + yf':{A:(z')} + l = 0 

d 1 
on aura toujours l'équation -——- = -——-, seulement elle ne contiendra plus 

J M 1 - cK'-{z") L':{z") -
que z'. 

(9) Soit l'équation plus générale XP+YQ — 0, dans la quelle X, Y sont des fonctions 

de x et de y; P et Q représentent des fonctions de p et de q; on séparera l'équation 

en deux autres en faisant XP = UJ; parconséquent p = F : (^) [crossed out: unread-

able] et q = / : (y), substituant dans les formules du N.° (3) on aura pour intégrale 

z = J d x F : ( f ) + J d y / : + 

J(f<ixF:t%)+féyM%)\ „ , n I d x F : ^) e t
 fdV : (x)> s e rapporteront 

dY ^ * - j = 0 

toujours aux quadratures; si l'on s'était proposé l'équation YP + XQ — 0 on la ramèn

erait à la précédente en la mettant sous cette forme ^ -f- ^ = 0. 

L'équation P + Q = 0, P étant fonction de p et a;, Q de g et y ne présente aucune 357 



difficulté, on fera dans ce cas P = UJ et Q = u), donc p = F : (UJ,x), q = j : (co,y). 

lïntégrale sera de la même forme que la précédente et se rapportera de même aux 

quadratures. 

Si P était fonction de p et y, et Q de, q et x alors il faudrait chercher les moyens de 

rendre —— dx H—-—dy = dx F : (UJ. y) 4- dy f : (UJ, X) différentielle coinplette. 
dx dy 

Soit enfin l'équation N = 0, N étant composée depqx, y. on voit qu'en y appliquant 

la méthode employée précédemment son intégration se rapportera à celle de la formule 
SM , dM, SM , ÔM , , J r 

——dx -\—¡—dy: ——dx et —-—dy contenant tous les deux x. y et u crossed out: 
dx dy dx ày 

nous reviendrons par la suite sur cet objet; en attendant] Nous remarquerons que si 

l'équation N = 0 ne contenait que p, q et x ou p, q et y elle s'intégrerait très facilement 

en résolvant l'équation dans le l . e r cas par rapport a p et dans le 2. e rapport q, [alors] 

p ou q seront les indéterminées 2. 

(10) La forme posée N.° (3) renferme toutes les intégrales des équation aux différences 

partielles entre p, q, x et y mais lorsque la 3 . e variable z, y entre ou qu'elles s'y trouvent 

toutes il est évident qu'il faut avoir recours a une forme plus générale, et on apperçoit 

f F:(z) = M + <¿:(u;) ' 
aisément que cette forme se saurait être autre que celle-ci < 

pour le cas ou z se trouve séparé des autres variables; car alors la fonction arbitraire 

ne saurait contenir que x, y et des quantités constantes. Enfin si l'équation proposée 

contenait x, y, z d'une maniere à ne pouvoir être séparées alors la forme générale serait 

S + V>:{L>)=Q ] 

dS {• elle contient les deux autres, il est a remarquer que dans ce cas 
- + ^ ) = 0¡ 

la fonction arbitraire pourra contenir les 3 variables x, y et z. 

Cherchant par la différentiation la relation des coefficiens différentiels p et q de z 

F':{z).p= — 
dans ces deux formules on aura pour la l . r o { } et pour la seconde 

F ' ' ( z ) - q = ^y-

dz I , „ _, , ÔM dM , 

r,n >; dans 1 un de ces résultats et contiennent X,V,UJ; dans l'autre 
_ = o dx dy 
ày ) 

2 S¡ on multiplie l'équation N = 0 par un facteur y, on aura fiN = 0 et décomposant cette équation 
en 2 autres p = F(uj,p), q = f(w,p), on aura donc à intégrer dx F : (ÙJ,(X) + dy f :(uj,p) = dz, mais 
pour que le prem.G r membre de cette équation soit [crossed out: immédiatement] integrable il faut 
qu'on ait 

d{F(u,p)} = d { / ( a ; , / i ) } 

dy dx 
les différences partielles de ¿¿ dans cette équation n'y monteront qu'au l . e r degré; j'aurai donc réduit 
l'intégration de l'équation M = 0 à celle d'une équation linéaire aux différences partielles du l . e r ordre. 

En appliquant à l'équation Vpn-i-Tqh = 0 on aurap = 9 — \J~JÎT> d z ~ ^^+ày ^J—^p-. 

p sera donné par l'équation ^ " = " "^ l ïP^ ' ^ n n e Peu*" dissimuler que la difficulté ne soit 
quelquefois aussi grande que [crossed out: dans] pour l'équation proposée. 
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SS dS 
— . et — renferment x y z et tu. 
dx ' dy 

F:{Z)'P=^X~ 
(11) Nous allons nous occuper d'abord de l'usage des équations: l 

Il est évident qu'on obtiendra par l'élimination de LU entre celles-ci une équation d'un 

degré quelconque par rapport a p et q [crossed out: unreadable] Si on se propose 

l'équation N = 0, qui contienne p, q, x, y et z les deux équations précédentes donnent 

F': (z) • pdx + F': (z) qdx = ^ d x + ^dy = F' : (z)dz. 
dx dy 

Ainsi l'intégration de la proposée sera réduite comme ci devant à l'intégration de 

——dx -ï—-—dy. dans laquelle u est regarde comme constant; ce qui donnera M; et 
dx dy 

substituant cette valeur dans la l r e formule N.° (10) on aura l'intégrale demandée; il 

ne sagit donc que de composer i'equation aux différences partielles proposée en deux 

autres et déterminer les valeurs de p, et q: il faut faire en sorte que les valeurs puissent 

être de cette forme \ P ^ ^ ^ ^ 1 nous allons en donner quelques exemples. 
\ q = F':(z)k:{u1) / 

Soit PQ = Z, je supposerai la fonction Z formée du produit Z' x Z". alors je 

ferai P — ~ et Q = LUZ", il faudra décomposer ces équations en facteurs de la forme 

ci dessus; on remarquera qu'on peut déterminer Z' ou Z" a cet effet puisqu'il n'y a 

qu'une équation donnée entr'elles. Substituant dans ^-dx 4- ^j-dy on aura a intégrer 

K : (cj)dx 4- k : (to)dy et l'intégrale de la proposée sera 

/ jFf:(z)àz = J{K:(u)dx + k:[u,)ây} + v:{u) \ 

Les intégrales des équations Z = pnqh et pnqHXYZ = A sont comprises dans celle ci; 
f =xîfuj- + ^ + ip:(uj) ) 

pour la l r e on a l d{z^û+-^} 1 f ) J °n c ^ e r m m e
 ^' P a r c e ^ e condition: 

Z = Z'N+B. 
\ (Z'dz= / { d x < / f + ûytf&}+<p:{«>) 1 

L'intégrale de la 2 e est < J , J t __ . } > on a pour 

Z' la même équation que précédemment. 

Quand on aurait Z = fonc. transcendante on pourrait se servir de cette méthode: 

soit pour exemple Z = Log.i? et Z = sin.R. En passant aux nombres, on aura pour la 

l r c équation ez = R ou e7' = pnqHXY, parconsequent son intégrale sera 

r ^ h/~r\\ ( e t : e s t donne par l'équation suiv-
" j j \dx y y 4- dy yj Y^)j 

V dcu 
ante hZ' + nZ' = Z. 

4- tp' : (u) = 0 

La I e équation proposée étant mise sous cette forme Log.(y/t — Z2-\- Z\f^ï) \/—ï = 
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pnqhXY, je ferai L.(v/l - Z2+Z^/^ï)sJr-[ = alors l'intégrale générale deviendra 

L . t v ^ + ^ v ^ î } dz = j { d x ^ + dytf^} + ip-.(Lu) 

d{j{dx^ + dy^)} 

d ^ + ^ ) = 0 

Toutes ces intégrales se rapporteront aux quadratures ainsi on pourra y parvenir au 

moins par approximation. 

Nous n'insisterons pas d'avantage sur les équations qui peuvent se rapporter a cette 

forme; nous en citerons seulement quelques unes; ap3 + bpq2 4- cpq2 4- eq:i = z s'intègre 

aisément en la supposant produite par l'élimination de u entre ces deux équations . . . 

J Az'p 4- Bz'q -1- w + ^ = 0 1 
\ A'z'p + B'z'q + u = 0 j 

Toutes les équations différentielles partielles qu'on pourra comparer avec celles qui 

résulteraient de l'élimination de u) entre les équations suivantes . . . 

f Az'p + Bz'q + K:Uu) + C = 0 1 , , , 
< > leur intégrale pourra se rapporter a 1 intégrale 
\ A!z'p + B'z'q 4- k : (tu) + C = 0 J 
générale posée précédemment. Si les coefriciens de la proposée sont des constantes et 

des fonctions de z elle s'intégrera sans aucune restriction, ou bien si les variables x 

et y sont séparées dans les équations linéaires qu'on obtiendra par la décomposition, 

hormis ce cas il faudra satisfaire à la condition d'intégrabilité requise pour la fonction 

(12) Si l'équation N = 0 ne pouvait pas être décomposée ainsi que nous l'avons dit ci-

{ s 4- ip : (LU) = 0 1 
, > la quantité 

s qui entre dans cette formule se détermine par l'intégration de J jdx 4- ^dy = 0 ce qui 

se voit par les deux équations ^ = 0, fjdy = 0 auxquelles on arrive après avoir fait 

disparaître la fonction arbitraire. 

Pour faire usage de ce résultat il faut obtenir par l'introduction de l'indéterminée 

LU, deux équations où p et q soient au 1 e r degré ou en tirer les valeurs de ces quantités 

que nous désignerons ainsi [crossed out: et on aura 
9 - | = ° 

p = M, q = N 

parconséquent on intégrera [crossed out: pdx — ^dx 4- qdy — ~dy = 03] dz -

Mdx — Ndy = 0 comme une équation à trois variables, en observant que [crossed over: 

^dx 4- f | d y = dz] pdx 4- qdy = dz, alors on aura .s; substituant cette valeur dans 

3[Crosscd-out footnote: On pourrait faire sur ces équations une opération analogue a celle qui est 
indiquée dans la note du n° 9; mais le résultat m'a paru [crossed out: unreadable] fort compliqué et 
fort loin de faire espérer quelque succès.] 
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l'intégrale générale posée plus haut, on aura celle de l'équation différentielle proposée. 

L'intégrabilité de ^dx + ^dy = dz est assujettie aux mêmes conditions que celle 

des équations à trois variables dont elle dépend, [sidenote: après qu'on a mis pour 

pdx 4- qdy sa valeur dz\ Aussi se trouve-t'il très peu de cas desquels on puisse obtenir 

la solution. 

(13) Pour déterminer par le calcul la fonction arbitraire généralement dans toutes 

les équations aux différences partielles du 1 e r ordre il faut avoir recours aux con

sidérations géométriques; or nous savons que le sistême des deux équations qui repré

sentent l'intégrale [crossed out: signifie ] appartient à une surface courbe formée par 

les intersections consécutives d une autre surface courbe, changeante par la variation 

d'un paramètre, avec elle même; la condition qu'on se propose pour déterminer cette 

surface est quelle doit passer, par une courbe à double courbure donnée; et par un 

procédé analogue à celui du N.° (8) nous allons en déterminer la fonction arbitraire: 

> les projections de cette courbe [crossed out; unreadable] je fais 
y = H*) J 

LU = c par conséquent (pu = d et l'équation de ça surface [crossed out: vient] devient 

{ s _|_ d — o 1 
ds >i 0 J ' J e c n e r c n e r a l [crossed out: 1'] son intersection [crossed out: de la sur

face] [crossed out: de la courbe?] [crossed out: l e r e équation] avec la courbe à double 

courbure [added: n'employant la l ? e r e équation] et j 'aurai z", je chercherai pour ce 

point les équations des projections de la tangente de la courbe a double courbure qui 

f z - *" = irai* - x") \ ( 1 ) 

seront { f'z"y 

{ Z ' - Z " = ^(y^y") J (2) 

Posant l'équation du plan tangent de [crossed out: ma] la surface courbe j 'aurai alors 

z - z" = P(x - x") 4- Q(y — y") (3) mais P et Q sont des fonctions de tu.x".y" qui sont 

elles même des fonctions de c, c', on aura donc en mettant dans l'équation (3) pour x—x' 

sa valeur (z - z")f'(z") prise dans l'équation (1), (x - x")(l - Pf'{z")) = Q(y - y"), 
équation qui doit être dentique avec (2), ce qui donne ^ = ; d'où 

1 — Pf :{z ) F :{z ) 

on peut tirer d = H(c) ou <p(cu) = H : (LU); substituant dans la proposée on aura 

f s 4- H : (w) - 0 1 
< . > équation qui ne renferme plus que des fonctions connues de tu, et 
1 £ + flV) = o J 
éliminant cette arbitraire on aura l'intégrale particulière cherchée. 

Il est évident que la surface ainsi trouvée remplira les conditions requises car elle est 

formée par la suite des intersections consécutives d'une surface sur laquelle la courbe 

à un de ses elemens. 

Je n'ai point parlé dans cette détermination de la 2 e équation, car comme elle 

n'est que la différentielle de la l . e r e en regardant eu comme variable, elle passera 

nécessairement par la courbe à double courbure donnée au point infiniment voisin. 

Il peut arriver que la valeur de z" ne soit pas toujours réelle; mais on déterminera 

pour la rendre telle la constante arbitraire ajoutée pour l'intégration et dont je n'ai 
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point paie [sic] jusqu à présent parce que je l'ai toujours regardée comme comprise dans 

la fonction arbitraire. 
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Essai sur les équations aux différences 
partielles du 2 e ordre et des ordres supérieures. 

ô Q S $ 
(14) Si nous faisons — = r, — = s = —. — = £; nous aurons pour la différentielle 

dx dx dy ' dy 
genérale du 2. e ordre d'une fonction z de deux variables, d2z = r dx2 + 2s dx dy 4-t dy2: 

dy et dx sont regardés comme constans. Cela posé nous avons regardé les équations du 

l . e r ordre comme provenues par l'élimination d'une fonction arbitraire; cette maniere 

d'envisager les équations aux différences partielles peut s'appliquer à tous les ordres. 

Si la variable z était exprimée par l'assemblage de deux fonctions différentes il faudrait 

pour éliminer ces fonctions differentier deux fois et l'on obtiendrait une équation entre 

les coefficiens différentiels r, s, t du 2 e ordre et ceux du l . e r ordre; cette relation peut 

être regardée comme un caractère auquel on reconnaîtra quelles sont les quantités qui 

peuvent se rapporter a la fonction z. 

La forme des intégrales premieres de cet ordre se découvre aisément d'après ce qu'on 

vient de dire: M-\-tp(V) = 0 est l'intégrale première de toutes les équations du 2. e ordre 

ou r, s,t ne passent pas le 2 degré; car cette équation ne donnera par l'élimination de 

<p{V) que des équations linéaires entre r, s, et £, si V ne contient que xy ou z\ et si V 

renferme p ou q, il en résultera des équations du 2. e degré entre r, s et t; mais [??] cette 

forme n'en produira de plus élevées. Il est encore aisé d'appercevoir que si p et q sont 

linéaires dans M et qu'ils n'entrent point dans V, non plus que z, ils seront aussi au l . e r 

degré dans 1 équation différentielle resultante: quant aux équations ou r, s et t passent 

le 2. e degré leur intégrale peut-être représentée par le sisteme de deux équations ainsi 

qu'on l'a vu pour le l . e r ordre. 

J'élimine <p(V) en differentiant l'équation M = <p(V) (a); et j 'a i 

. 5MdV dMôV n , , , , 
et ennn — -— = 0 (0 ) ; équation qui peut représenter généralement les 

dx dy dy dx 

équations aux différences] partielles de 2. e ordre, pourvu que les coefficiens différentiels 

de cet ordre ne passent pas le 2. e degré ainsi que nous l'avons remarqué. 

(15) Nous tirerons des formules précédentes le moyen d'intégrer les équations du 2. e 

ordre qui s'y rapportent. Si on sépare l'équation (b) en deux autres au moyen de la 

nouvelle indéterminée w. on fera : ^- = to et : —— = LU: équation de la forme 
dX dX á y ¿y 

S M dM ÔV dV 
(1) et (2), on aura donc —— d x + —;—dy = u>(—dx + -r—dv); l'intégrale de la proposée 

dx dy dx dy 

dépendra par conséquent de celle de deux formules différentielles ordinaires. Soit pour 

exemple l'équation Ar + Bs + Ct = 0, pour la ramener à la forme précédente il faut 
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£^ Ô 
observer que le terme Bs provenant de — et — doit renfermer deux parties: je ferai 

dy dx 
donc ^ = a 4- a', alors la proposée sera changée en celle ci, r -1- as 4- a's 4- ^ = 0, et 

se décomposera de maniere suivante r 4- as = 10 et a' (s 4- ^ ) = — w parconséquent 
6M dM ôV dV 
—-—dx H—-— = dp 4- ado. et ——dx H dy = tj(a'dx — du); l'intégrale de la proposée 
dx dy dx dy 

sera donc réduite a celle de 

dp 4 adq = 0 et a'dx - dy = 0, 

a et a' seront données par les équations B = a 4- a' et § = oa ' ¡ ou ce qui revient au 

même ils seront les racines de l'équation Aa2 — Ba 4- C = 0: Nous remarquerons a ce 

sujet qu'on sera maitre d'échanger a et a' dans les formules dp 4- adq = 0 et a 'dx - dy; 

il peut en résulter quelque fois des simplifications. 

D'après ce qui précède on voit clairement que Ar 4- Bs + Ct = 0 sera integrable 

toutes les fois que dp 4- adq = 0 et a'dx — dy ne renferment que les variables dont-ils 

contiennent les différentielles; ce qui aura lieu lorsque l'équation Aa2 — Ba 4- C = 0 

sera décomposable en deux facteurs a' — F : (x, y) = 0 et a — f : (p, q) = 0 et dans ce 

cas, si dp 4- adq = 0 et a'dx - dy ne sont pas integrables par eux-mêmes, on pourra 

toujours trouver deux facteurs p et p', l'un fonction de p et q et l'autre de x et y; qui 

les rendront integrables; nommant udp 4- apdq = dp, et p'a'dx — p'dy = dT l'intégrale 

de la proposée sera P ~ tp(T). 

L'équation vP'r 4- {vQ' — ttp}s — uQ't = 0 contient celles qui satisfont à la condition 

posée ci-dessus: v et u sont deux fonctions de x et y; Q', P' contiennent p et q; l'équation 

Aa2-Ba + C = 0 devient vP'a2 4- {uP' -vQ'}a-uQ' = 0, les facteurs sont a + f = 0 

et a — ̂ 7 = 0 , prenant le premier pour la valeur de a', on aura P'dp 4- Q'dq = 0 et 

u dx + v dy = 0; d[onc?) l'intégrale sera f {P'dp + Q'dq} = <p : f {udx + vd\y}.] 

[Crossed out: Si on prenait a' = ^ et a = ^ on aurait t; dp — udy = 0 et Q'dy -

P 'dx = 0 équation qu'on ne peut pas intégrer généralement; l'analyse dans ce cas 

ne saurait fournir d'autre résultat car siFon intégrait ces deux dernières formules on 

trouverait pour la proposée deux intégrales premieres; on pourrait donc parvenir par 

l'élimination a une intégrale finie représentée par une seule équation ce qui est contraire 

à ce qu'on a vu ci-dessus.] 

Il y a quelques équations qui ne sont pas comprises dans celle que nous venons de 

traiter et qu'on intégre par une réduction particulière; telles sont q2r — 2pqs + p2t = 0 

et x'r + 2xys + y2t. On a pour la l . e r e a et a' = — ̂ , parconséquent qdp — pdq = 0 et 

pdx 4- qdy = 0[?]; si on observe que pdx + qày = dz, on aura pour intégrale première 

2 = tp(z). La 2. e traitée de la même maniere donne x dq 4- y dq = 0 et x dy — y dx = 0; 

et a pour intégrale première px 4- qy — z = ¡p: (-): dans ces deux cas les valeurs de a 

étant égales on ne peut pas arriver à l'intégrale finie par l'élimination. 

(16) Soit l'équation Ar 4- Bs 4- Ct 4- W = 0 j 'aurai en opérant comme précédemment 
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r 4-as 4- 7f = to, et a' {s + ^ 7 } = —w; l'intégration de la proposée sera donc réduite à 

celle de dp 4- a d</ 4- = 0 et a'âx - dy = 0. Si on suppose A, B, C constantes et W 

fonction de x et y, la proposée s'intégrera complettement en faisant s{a'dx — dy} = X; 

on en tirera une valeur de y en T, x et constantes, on substituera cette valeur dans 

W, le terme s'intégrera alors par les quadratures, T, devant y être regardé comme 

constant: si W était composé seulement de p et q on métrait l'équation dp+a d f / 4 - ^ 1 = 

0 sous cette forme d * y ? + <k = o, la difficulté serait alors d'intégrer la quantité d ^ d ? ; 

et toutes les fois que cela sera possible l'intégrale de la proposée sera P+~ = ip(ax — y). 

Si A, B, C sont des fonctions de £,y ,p et q, et que W ne contienne que a; et y il se 

présente alors une classe d'équations qui peut se ramener au cas précédent; c'est celle 

qui rend Aa2 - Ba + C = 0 décomposable en deux facteurs de la forme a — F{x, y) = 0 

et a—/(p. q) = 0; elle donne dp+ / (p , q)àq+^£ = 0 et F(x, y)dx—dy = 0; il est aisé de 

voir que si le terme renferme seulement x, y, la difficulté sera seulement d'intégrer 

la quantité p + / : (p. (?)dq étant composée de p et q on aura d p + / ^ ' g ) d 9 4- ^ = 0 et 

F : (x, y)dx — dy = 0 

La formule X r 4 ( 7 4 A"iV)s 4- y.Wi = W dans laquelle X, y sont des fonctions 

de x,y: N et W contiennent p et q, est une de plus générales de cette classe; on a 

a = 4/ et a = N. les formules à intégrer sont ^ ~\—— H—— = 0, Ydx — Xdy = 0, 

si l'intégrale de la quantité ^ est _P, celle pYdx — pXdy, T; l'intégrale de la 
W 

proposée sera P+f *y = <p{T)\ J ^ se réduira toujours aux quadratures par le procédé 

employé ci-dessus: on trouverait de même l'intégrale de Nr 4- {NX 4- M}s 4- MXt = 

W, M, N étant fonction de p q et X de x,y, W de x,y, ou de p et g; et celle de 

MYr + {NY + M X } s 4- 7VX£ = W. 

Enfin soit l'équation Ar 4- Bs 4- Ci 4- W = 0 dans laquelle A, B, C, soient des 

fonctions de p,q,x,y. et que W contienne en outre z: je ferai W = W + W", je 

comprendrai dans W tous les termes dont la forme indiquera qu'ils proviennent d'une 

différent i at ion par rapport a xt et W" renfermera ceux produits en differentiant par 
rapport a y; l'équation étant séparée en deux autres ainsi qu'on à toujours fait dans 

W'dx W"dy 
le courant de ce mémoire; on aura a intégrer dp 4- adq H ; 1 ; = 0 et 

A Aa' 
B C 

a'dx — dy = 0; on aura entre a et a' les équations suivantes — = a 4- a' et ——• = a: 
A Aa 

on est bien éloigné de pouvoir résoudre ce cas généralement. 

17. Je ne m'arrêterai pas davantage sur cette classe d'équations qui à été traitée par 

plusieurs géomètres, je passe a celle dont l'intégrale peut être comprise dans la formule 

M = <p(V)\ V renfermant p ou q. Si on differentie cette équation pour éliminer la 
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fonction on aura 4 

fdV dV\ d{M) dM 

dp dz 

d(M) dM (dV dV] 
et 

enfin 

dM dV dM dV 2 d M d V ¿ d M d ì / 

dp d g r dp d ç 5 dz dg ^ dz dq ^S 

dM dV dM dV dMdV dM dV . . 
r t~s + —— — p — — g = 0.(5) dp dy dp dx dz dy dz dx 

Pour intégrer cette équation il faut faire 

dM dM 1 \dV dV] f dM dM 1 f dV dV\ 
r + — p } : <̂  — 5 + — > = w et ^ - — s 4- — g } : ^ — t + — } = tu dp dz J \ dg dx J \ dp dz J \ dg dx J 

alors on aura ^ d p - h ̂ t / z = to [%dq -f- f ^ d x 4- %ày \ et parconséquent M = tp(V). 

[crossed out: unreadable] 

Avant d'embrasser les équations qui se rapportent à ces formules générales sup

posons que la fonction arbitraire ne doive contenir que la variable q et que M renferme 
d M . 2 l d M . , dM dM n ^ c J 

p,x,y, z, alors on aura —-—{ri — s \ + —— \pt — qs\ 4- ——t ;—s = 0. b t il faudra 
dp dz dx dy 

pour intégrer les équations de ce genre les décomposer en deux autres de la maniere 

suivante I { ^ r + ^ p + ^ } = 0 et { ^ s + ^ g + ^ } I = 0 ce qui donnera M = (p(q). 

Si on se propose d'intégrer l'équation A{rt—s2}-\-B{pt — qs} + Ct—C's = 0, on voit 

, »-w A *• Ar + Bp + C -As-Bg-C 
aisément qu il faudra faire = w et = —w; on en tirera 

s t 
parconséquent /Idp4-B.dz4-Cdx-|-C7'd?/ = w.dq et si le premier membre est integrable 
immédiatement on aura M = <p(q) pour l'intégrale l . r e complette de la proposée. 

L'équation differentio-differentielle des surfaces developpables, rt — s2 = 0, est un cas 

particulier de la proposée. Son intégrale première sera parconséquent p = <p(g); on a 

vu (5) comment on arrivait à l'intégrale finie de cette équation. Je ne m'étendrai pas 

sur les différens cas d'intégrabilité de la quantité Adp + Sdz 4- Cdx 4- C'dy. 

Si on se fut proposé l'équation A{s2—rt}+B{ps—qr}+Cs—C'r = 0, on l'intégrerait 
As 4- Bp + C -At ~Bq-C „. , , 

comme la precedente en laisant = w, = u/; et 1 intégrale 
r s 

sera }{Adq 4- B.dz 4- dx 4- C'dy} — <p{p). 

Soit proposée l'équation A{rt — s2} + B{pt — qs} + Cr — C's 4- Np — N'q = 0 qui se 

rapporte a la forme générale (g) posée plus haut; pour la traiter nous la supposerons 

produite par l'élimination de tu dans ces deux équations ° r ¿ ^ = w et = tu, et 
'[Sidenote:] J'ai supposé que M contienne p et z V,x,y, e t q 
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comparant l'équation resultante avec la proposée nous aurons: 

A = aa' B = a'b C = ea C = e'a N = be N' = 6e' 

ces équations étant au nombre de six et ne renfermant que cinq inconnues il en résultera 

des équations de condition pour que la proposée puisse être décomposée ainsi et si elles 

sont satisfaites on aura à intégrer adp 4- bdz = oj{a'dq 4- e'dx 4- edy}: on tire des 

équations que nous a donné lidentification de l'équation resultante avec la proposée, 

4 — £ 4 = si A — ai M. — si JL _ ai Q_ — a _ QL- n'on il resulte entre IPS 

coefficiens A, S , C, les équations de condition; 

AN - BC = 0 - BC = 0 CW - C'iV = 0 

les deux premieres étant vérifiées la 3. e s'ensuit, on pourra alors négliger les deux 

N = be ) 
dernières équations de la l - e r e suite > et se donnant à volonté une des cinq 

N' = be' j 
A = aa' 

B = a'b 
inconnues a, a , 6, e, e , on déterminera les quatre autres au moyen de >; 

C — ea 
C = e'a 

on remarquera que a' doit toujouts être fonction de q,x,y et a, 6, ne doivent con

tenir que p et z pour qu'on puisse intégrer adp 4- bdz = u){a'dq 4- e'dx 4- edy}; a et 6 

étant des fonctions quelconques de p et z, on pourra rendre le l . c r membre adp 4- bdz 

integrable en le multipliant par un facteur. Si on a(?] e' ou e = 0, et que a' et 

e ou e' renferment seulement q et x ou q et y, alors la proposée serait réduite a 
A{rt - s2} 4- B{pt -qs} + Cr = Q 
ou A{rt - s2} + B{pt - qs} 4- C"s = 0 

différentielles ordinaires a deux variables < a ^ ~*~ ^ 2 ^ , M 
I a'dç 4- e'dx = 0 ou a'dç -I- edy = 0 

étant l'intégrale de la l . e r e et V celle de la 2. e, on aura pour intégrale de la proposée 

M = tp(V). On trouvera d'ailleurs beaucoup d'autres cas où on obtiendra la solution 

complette de l'équation A{rt - s2} 4- B{pt - qs} + Cr - C's + Np~ N'q = 0. Si on 

proposait A{s2 - rt} 4- B{ps - qr} + Cs — C't 4- Np - N'q = 0, en la traitant de la 

même maniere on obtiendrait M = (p(V) pour intégrale, en faisant attention que dans 

ce cas M contiendrait q et z\ V serait composé de p. i , y. 

Reprenons la formule M = <p(V) et supposons que M et V contiennent x y z p et 

q, ce qui est le cas le plus général; en différentiant et éliminant la fonction arbitraire on 

obtiendra une équation qu'on pourra envisager comme produite par l'élimination de u 

entre deux équations de la forme suivante JrWsVjt+f = 10 e t a™+vt+Vt+f' ~ 10 a l o r s 

r ^ ^ ¡, on aurait à intégrer les deux équations 
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on aura à intégrer 

a dp + b dq + c dz + e dx 4- e'dy = w{a'dp4- 6'dç + c'dz 4- f dx 4- / ' d y } ; 

les équations qui pourront se rapporter à ce cas seront comprises dans celle qui suit 

A{rt - s2} 4- B{pt - qs} 4- C{ps - qr} + Dt - D'r + Es + Np- N'q = 0; identifiant 

la résultante avec cette équation proposée on obtiendra des équations pour déterminer 

les coefficiens. [Crossed out: Je crois être fondé a dire que toute équation qui ne 

pourra pas être ramenée aux formes précédentes soit en la multipliant par un facteur 

ou autrement, n'aura pas son intégrale première représentée par une seule équation.] 

Quant a Fintégrale complette des équations que nous venons de traiter la difficulté 

pour l'obtenir se réduit à intégrer généralement l'équation du l . e r ordre M = <p{Y), qui 

représente l'intégrale première de ce genre d'équations; en y appliquant les procédés 

qu'on à donné précédemment pour le l . c r ordre on réduira la question à l'intégration de 

formules différentielles ordinaires; il y aura sans doute beaucoup de cas dans les quels 

on ne pourra pas avoir l'intégrale complette. 

(18) Les équations aux différences partielles du 2. e ordre qui ne sont pas comprises 

dans les précédentes, auront pour intégrale l . r e un système de deux équations entre 

lesquelles il reste à éliminer une indéterminée, ainsi qu'on l'a dit (14); elle pourra 

. , , , , f M = <p(u)) 1 , . , 
être généralement représentée par cette forme \ d M , >: on obtiendra en 

t duj ^ J 
différentiant et en éliminant la fonction arbitraire < d p d q d z ^ > 

1 dM , d M . , d M , d M _ n [ 

l dp tf + dq 1 ^ dz y + dy ~ U ) 

ces deux équations des quelles u) étant éliminé il résultera une équation aux différences 

partielles du 2. e ordre dont le degré dépendra de la manière dont UJ entrera dans les 

équations précédentes. 

Cela posé on voit aisément que pour traiter une équation dans laquelle r, s et 

t passent le 2. e degré, ou qui ne peut pas se rapporter aux précédentes il faut la 

décomposer en deux autres par l'introduction d'une nouvelle indéterminée u: ou bien 

déterminer les coefficiens de deux équations où r, s, t soient au premier degré telles 

qu'éliminant d'entrelles l'indéterminé UJ il resuite la proposée: pour faire usage de ces 

équations il faut qu'on en puisse tirer deux autres de cette forme 

{ ar -f 65 4- cp + e = 0 1 

a's + b't + c'q + e' = 0 J 
et qu'on ait entre les coeffciens les relations suivantes - = = 4 : les conditions 

^ a a • a a • 

étant remplies on aura a intégrer dp -\- Bdq + Cdz 4- E'dy = 0 équation différentielle 

ordinaire dans laquelle UJ est regardé comme constant. 

En suivant ce procédé l'intégration des équations aux différences partielle [sic] du 

2. e ordre sera ramenée à celle des équations différentielles ordinaires. Nous ne nous 
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étendrons pas davantage sur l'application de cette méthode qui se voit assez d'après ce 

qu'on à dit pour le l . e r ordre. 

19 Nous terminerons en disant un mot sur la détermination des fonctions arbitraires 

dans le cas ou l'intégrale complette sera représentée par deux équations. Si elle est 

f z = M + N<p{u>) + Mu)?} 
de cette forme < ... ... la condition sera qu'elle doit 

passer par deux courbes a double courbure données. Par un procédé analogue a celui 

du numéro (13.) et qu'on déduira aisément de ce dernier, on obtiendra deux équations 

telles que ^pf,.^ = F,\zll) et ] j P ^ . ( g W ) = je suppose les équations de projec-

{ x = k:(z) 1 
> ; z"1 sera la coordonnée du point 

y = K:{z) y 

d'intersection de la surface représentée par z = M + Ne' + c", avec la deuxième courbe 

a double courbure, et cette quantité sera déterminée comme z" dans l'article cité; du 

reste les dénominations y seront les mêmes: au moyen des deux équations précédentes 

on trouvera la valeur de tp(uj) = c1', ip(u) = c" en to = c et autres quantités, ce qui 

donnera la composition de ces fonctions. 

20 En traitant les équations du 3 e et celles des ordres supérieures ainsi que nous venons 

de faire pour le 1 e r et le 2 e , on obtiendrait des résultats analogues a ceux qui se trouvent 

dans ce mémoire: nous observerons cependant que le nombre des cas qui échappent a la 

Méthode augmente a mesure qu'on s'occupe des ordres plus élevés. Lorsqu'on passe le 

premier ordre, en traitant les cas généraux on tombe dans des équations différentielles 

ordinaires dont le nombre de variables devient plus grand d'une unité a chaque ordre 

ou l'on s'eleve; il peut arriver que ces équations soient immédiatement integrables; 

ou en les multipliant par des facteurs; ce dernier cas conduit a des équations aux 

différences partielles, le plus souvent aussi compliqués que ta proposée; pour écarter 

ces difficultés on fait des restrictions qui ne mènent qu'a des cas très particuliers: enfin 

les équations peuvent être absurdes. Les intégrales successives présentent encore des 

difficultés insurmontables dans beaucoup de cas. Tel est a peu près l'état du calcul 

aux différences partielles dont on ne s'est gueres occupé jusqu'à présent que parraport 

aux applications qu'on avait en vue. Il y a plusieurs points sur la fin de ce mémoire 

que leur étendue ne m'a pas permis de développer, tels que l'application aux ordres 

supérieurs; si ces recherches peuvent ne par déplaire j ' y reviendrai par la suite. 
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A.1.1 Report by Condorcet and Monge 

M. M. De Condorcet et Monge 

11 février 1786 

Nous Commissaires nommés par L'académie avons examiné un mémoire, sur le Calcul 

intégral des Equations aux différences partielles qui ne sont pas linéaires, présenté par 

M. r La Croix. 

Lorsque les fonctions arbitraires, qui se trouvent dans une équation intégrale sont 

toutes linéaires, et que les quantités qui entrent sous ces fonctions sont toutes données 

immédiatement, l'équation aux différences partielles, à la qu'elle on est conduit en 

fesant évanouir les fonctions arbitraires, est elle même toujours linéaires; Mais 1.° si 

les fonctions arbitraires sont élevées à différentes puissances dans l'intégrale, 2.° si les 

quantités sous les fonctions ne sont données que par d'autres équations et que dans ce 

cas elles ne soient pas linéaires partout, l'équation aux différentes partielles à la qu'elle 

on arrive, est toujours élevée. 

On peut donc dire qu'il y a deux espèces d'équations aux différences partielles qui ne 

sont pas linéaires. Les unes ont pour intégrale finie une équation unique, l'intégrale des 

autres ne peut être exprimée en quantités finies, que par le système de deux équations 

entre les qu'elles il faut éliminer une indéterminée qui se trouve sous les fonctions 

arbitraires. Les équations de la première espèce sont en général plus faciles à traiter 

que celles de la seconde, k, c'est de celles ci que M. r La Croix s'occupe dans le mémoire 

dont il sagit. 

Le procédé qu'il employé pour le 1 e r ordre, consiste en général à regarder la proposée 

comme le résultat de l'élimination d'une certaine indéterminée entre deux équations; il 

cherche ces deux équations, qui lui fournissent les valeurs des deux différences partielles, 

et les valeurs substituées dans la forme générale dz = pdx + qdy, donnent une équation 

aux différences ordinaires; il intègre cette équation en regardant comme constante 

l'indéterminée dont les différences ne sont pas employées, et il complète l'intégrale en 

ajoutant une fonction arbitraire de cette constante. En suite pour exprimer que cette 

quantité a été regardée comme constante dans l'intégration, il différencie l'intégrale en 

ne fesant varrier que l'indéterminée, et le résultat qui est toujours en quantités finies, 

est la seconde équation qui sert à éliminer l'indéterminée. 

On voit par la que le résultat au quel on est conduit dans ce cas n'est pas d'une forme 

nécessaire, car il y a plusieurs systhêmes d'équations dont le résultat de lelirnination 

est le même; aussi nous connaissons deja plusieurs familles de surfaces courbes, telles 

que les surfaces dévelopables qui peuvent être exprimées en quantités finies de plusieurs 

manières très différentes; ce qui est un avantage. Chacune de ces expressions énonce en 

effet un caractère particulier de ces sortes de surfaces et par conséquent une manière 

distincte de les engendrer. 

L'auteur suppose ensuite à l'intégrale certaines formes particulières, et donne pour 
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chacun de ces cas des équations qui par l'élimination de l'indéterminé reproduisent la 

proposée, ce qui le conduit a l'intégration de certaines équations non linéaires assez 

générales. 

Pour les équations du second ordre, M . R La Croix s'occupe d'abord de celles dont 

l'intégrale première peut être exprimée par une équation unique; il donne un caractère 

auquel on peut les reconnaître dans un très grand nombre de cas: et d'après certaines 

formes qu'il suppose à cette intégrale, il trouve quelles sont les équations à coëfhciens 

variables qu'il peut intégrer par un moyen analogue a celui que nous venons de rap

porter. 

Enfin il passe aux équations dont l'intégrale première ne peut être exprimée que 

par le systhême de deux équations. Entre lesquelles il faut éliminer une indéterminée. 

Il regarde pareillement la proposée comme le résultat de l'élimination de cette indé

terminée entre deux autre équations quil trouve et lorsque ces deux équations sont les 

différentielles d'une même équation prises par rapport à chacune des variables prin

cipales, ou peuvent être ramenée à cet état, il intègre la proposée et la réduit aux 

différences premières. 

Nous pensons que ce mémoire mérite l'approbation de l'académie et d'être imprimé 

dans le recueil de ceux des savants étrangers. 

Fait au Louvre le 11 février 1786. 

Signé le M . 1 8 D E CONDORCET. et M O N G E 
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A.2 "Mémoire sur les surfaces développât)les et les 

équations aux différences ordinaires a trois vari

ables", 1790 

According to the procès-verbaitx (minutes) of the meetings of the Académie Royale des 

Sciences (of Paris), this memoir was read by Lacroix himself on the lst September 

1790 (the indication in the title page that it was read in August 1790 must therefore 

be a mistake). Lacroix had been a correspondent member of the Académie for a y car. 

Lagrange, Condorcet and Monge were charged with reporting on the memoir, but 

apparently never did. 

The manuscript is in the Archive of the Académie, in the pochette of the session of 

1 September 1790. There are some références to figures in the text, but unfortunately 

none is found in the manuscript. 

The introductory paragraph is a second version, glued over the original one. 

This manuscript is much rougher than that of the 1785 memoir. In this transcrip

tion, words and sentences between angle brackets < > stand for additions written on 

the margin of the manuscript. Most of the crossed-out passages have been left out. 

A revised and somewhat shortened version of the first part of the memoir (up to 

article XI) was eventually published as a section "on the development of curves traced 

on surfaces" in [Lacroix Traité, 2nd ed, I, 636-652], 
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Mémoire sur les surfaces developpables 
et les équations aux différences ordinaires 

a trois variables* 

par M. De La Croix, Correspondant de l'académie, 
Professeur de Mathématiques de l'Ecole d'artillerie 

a Besançon 

*Lu au mois d'août 1790 
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Mémoire sur les surfaces developpables 
et sur les équations différentielles a trois variables 

Plusieurs géomètres se sont occupes des surfaces developpables; M. Monge a donné 

le premier leur équation aux différences partielles et son intégrale, il a fait des applica

tions très intéressantes de ces recherches a la théorie des ombres et des pénombres, et a 

montré comment on pouvait déterminer celles de ces surfaces qui doivent passer par des 

courbes a double courbure données. J'ai cru que les questions suivantes compléteraient 

cette théorie, et leur solution fait l'objet de ce mémoire que j 'ai terminée par quelques 

remarques sur les équations différentielles a trois variables. Voici ces questions: 

Etant donnée une courbe quelconque sur une surface developpable, trouver ce qu'elle 

devient dans le développement de cette surface et réciproquement une courbe étant 

donnée sur un plan trouver ce quelle devient lorsqu'on l'enveloppe sur la surface donnée. 

On peut toujours reconnaître par l'équation aux différences partielles si une surface pro

posée est developpable ou non, et la solution des questions précédentes donne les moyens 

d'en développer une portion quelleconque terminée de toute part par des courbes con

nues. 

art I. 

On sait que toute surface developpable doit être considérée comme l'assemblage d'une 

infinité de plans infiniment longs <infiniment etroits>, et que si chacun de ces plans 

tourne autour de sa commune intersection avec son consécutif, comme sur une charnière 

on pourra étendre cette surface sur un plan sans qu'il y ait aucun pli ou aucune solution 

de continuité. J'appellerai dans le cours de ce mémoire arrêtes de la surface proposée, 

les lignes qui sont les intersections de deux plans consécutifs qui la forment. Ces lignes 

sont tangentes a la surface dans toutes leur étendue et comme elles sont deux a deux 

dans le même plan elles se coupent réciproquement; leurs points d'intersection forment 

une courbe a double courbure appellée arrête de rebroussement par M. Monge. Elle est 

remarquable en ce qu'elle peut seule déterminer la surface proposée. Nous diviserons 

toutes les surfaces developpables en trois classe savoir 

1.° les surfaces cilindriques ou celle dont les arrêtes sont parallèles 

2.° les surfaces coniques, dont les arrêtes concourrent toutes a un même point. 

3.° les surfaces developpables dont les arrêtes se coupent deux a deux suivant une 

courbe 

a double courbure. 

Et nous nous occuperons de chacune de ces classes en particulière, la dernière donnera 

lieu a la solution générale qui renfermera toutes les precendentes. 
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II Lemme. 

. _ z — zf = a(x — x') ] z — z' ~ a'(x - x') ] , , , , . 
boientr > > les équations de deux droites 

z-2f = b(y-y') j z-zJ = b'{y-T/) J 

qui se coupent dans un point dont les coordonnées sont x',y' et z'. Si on imagine que 

ces droites se meuvent parallèlement a elles mêmes jusqu'à ce que le point d'intersection 
. . . , , , z = ax z ~ a'x 1 

soit a 1 origine des coordonnées leurs équations se réduiront en >. 

z = by z = b'y J 
En décrivant de ce point comme centre et d'un rayon = r, une sphère <dont l'équation 
sera x2 + y2 4- z2 = r2> elle coupera ces droites en deux points pour lesquels on aura 

r v 
z = — =, z" = — = . Leur distance sera la corde de l'angle formé 

\A?+£+1 v £ + & + 1 

par les deux droites, et elle aura pour expression y/{x — x")2 + (y — y")2 4- (z - z")2 = 

\J(z — z")2 4- - + (f — fr) 2 - en mettant pour z et leurs valeurs il viendra 

{ 2 ( J 7 + — + 1) ] 

^ ( ¿ + ¿ + 1 ) ( ¿ + ¿ + 1 ) 1 

formules de trigonométrie on a 4 sin \ A = 2 - 2 cos A en prenant le rayon = 1 parcon-

sequent —y

 Q a ' b y = sera le cosinus de l'angle formé par les droites 

£ + ¿ + 1) (¿ + £ + 1) 
, , y so'6 a f ) + (a' a ) ( i &) , 

données et = en sera le sinus. 
¿ + ¿ + 1) ( ¿ + £ + 1) 

III 

Cela posé, toute courbe a double courbure tracée sur une surface cilindrique quelle-

conque, aura pour développement une courbe plane faisant avec des ordonnées paral

lèles dans chacune de ces points des angles égaux <a ceux> que font ses elemens sur 

la surface cilindrique avec les arrêtes de cette surface. Cela est évident. 

Les surfaces cilindriques étant formées de lignes droites parallèles entr'elles 

i ! i- u ^ z — z' = a(x — x') 1 
les équations de l'une quelleconque de ces droites seront > 

z~z' = b(y-]/) j 
celles de la tangente de la courbe a double courbure proposée seront 

dx' 

z - z'= %(y - y') 
on aura pour le cosinus de l'angle forme par ces deux lignes 

dx dy' 
1 _J_ 1 , 71 -T TT77T T 

=, en faisant pour abréger À = + p 4- 1, ou bien 

~dxJ 4- \dy' + dz' , , 
— . :. Il n'est pas besoin d'avertir que rfi,^i ne sont point des 
X sj dxn 4- dya 4- dza y 

5I1 faudra prendre X X, f/̂  z.) \ par ce moyen on évitera les fractions. 
y-y = b(z - 2 ' ) J 
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différences partielles de z' mais seulement les rapports des différentielles des coor

données prises dans les équations de projection de la courbe a double courbure pro

posée. D'ailleurs lorsque nous aurons a parler de différences partielles nous ferons 

dz = pdx 4- qdy, p et q exprimeront alors les coefficiens différentielles du premier 

ordre. 

Si on désigne par u et v des coordonées planes et rectangulaires le cosinus de l'angle 

formé par une courbe et ses ordonnées a pour expression ^ d ^ , et lare de cette 

courbe est représente par v7dv'2 4- du2 on aura donc les deux équations 

^Jdx12 4- dy'[2\ 4- dz12 = Jdv2 4- du2 1 

~dx' 4- \dy' 4- dz' dv > le premier membre de la première se réduira 

yjdx12 + dyn 4- dz'2 ~ s/dv2 4- du2 ) 
toujours a une fonction de x' et dx' en employant les équations de projection de la 

courbe proposée et celui de la seconde a une fonction de x' seulement: on parviendra 

par l'élimination de cette variable a l'équation du développement cherché. 

Si les arrêtes du cilindre étaient perpendiculaires au plan des x',y['] on aurait alors 

- , r = 0 et la seconde de nos équations se réduirait à . dz' = ., îv

 J ». 

Lorsque le développement est une ligne droite on a j^+^t — Const. d'où il suit 

^dx' 4- \dy' 4- dz' = Const. x yjdx12 4- dy/2 4- dz12 équation élevée a trois variables, qui 

ne satisfait pas aux conditions d'integrabilité et qui appartient a toutes les courbes 

a double courbure tracées sur les surfaces cilindriques, dont le développement est 

une ligne droite. Lorsque £ = 0 le résultat précèdent se change dans cet autre 

dz' = Const. x Jdxa + dy12 + dz12 ) 
r _ > qui appartient a toutes les hélices tracées sur 

ou dxa 4- dy['}2 = Const. x dza J ^ 
des surfaces cilindriques quelleconques. 

IV 

On peut résoudre la même question de la manière suivante. 

Si l'on mené un plan perpendiculaire aux arrêtes de la surface cilindrique proposées 

il la coupera dans une courbe dont le développement sera une ligne droite perpendicu

laire a ces arrêtes: cela est évident par soi même. Si Ton rapporte la courbe proposée 

a celle-ci en prenant pour coordonnées les portions des arrêtes de la surface cilindrique 

comprise entre les deux courbes, et les arcs de la seconde, on aura l'équation du dével

oppement de la courbe proposée en coordonnées rectangulaires. 

Nous allons exprimer cette solution analytiquement: pour cela nous désignerons 

par u lare de la section perpendiculaire et par v la coordonnée prise sur le[s] arrêtes: 

l'équation du plan dans le quel se trouve cette section sera z + ^ + ^ = Const. 

y - y' = p(x - x') } 
> étant les équations d'une arrête en éliminant y entre l'équation 

z - z ~ ct(x — x') J 
de la surface cilindrique et celle du plan posé plus haut on aura z" = f(x"), pour 

l'équation de lune des projections de la section perpendiculaire. Mais la distance d'un 

point quelconque de cette courbe au point de la proposée qui lui correspond dans la 
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direction de l'arrête a pour expression v = (x" — x')2 4- (y" — y')2 4- (z — z")2 qui 

devient (x" — x')y/\ + a2 4- 01 en mettant pour y" — y' et z" — z1 leur valeur. Enfin 

si nous représentons par z' = F(x') l'une des équations de projection de la courbe 

a double [sic] proposée nous aurons entre x' et x" considérées comme cordonnées de 

deux points pris sur la même arrête <l'equation suivante> f{x") — F(x'} — a[x" — x'): 

parconsequent on arrivera a celle du développement cherché en u et v en éliminant x' 

et x" entre 

u = (x,f-x')^l + a2 + {32 

f(x") - F(x') = a(x" - x') 

du ~ k'dx" ou u = k:(x"). Si la section perpendiculaire 

aux arrêtes du cilindre est rectifiable 

V 

La méthode de 1 article III s applique également aux courbes tracées sur une surface 

conique, mais alors le résultat est présenté en coordonnées polaires et l'on peut se 

dispenser d'employer lare de la courbe proposée comme on va le voir. Léquation gén

érale des surfaces coniques est = ) d'où il suit qu'on peut avoir a la fois 

~ J = Const et ^ f f = Const: on en tirera pour les équations des projections de 

l'arrête qui passe par le point dont les coordonnées sont x' y' et z' 

z'-j z-z' y'-P y-y' z - z' = fe) (x - x') \ 
— = — = -, ou > , < >: parconsequent le 

x'-a x-x' x'-a x-x>' z z> = (j^) { y _ y>) J 
cosinus de l'angle formé par les elemens de la courbe a double courbure proposée et 

x'-a . dxi _j_ y'-fi . àL + \ 
l'arrête de la surface conique sera 2 - 7 2 - 7 d z -

z'-l 

(x' - g)dx' 4- (y' - p)dj/ + (z' - -y)dz! 

v/{(x' - a)2 4- (y' - (3)2 4- (z1- -y)2}{dx'2 4- dy12 4- dz12) 

d.y/{xf - a)2 4- (y' - 0)2 + [z'^ff 

y/dx* 4- dy*2 4- dz12 

On aura en nommant v la partie de l'arrête interceptée entre le sommet du cone et la 

courbe proposée, u I arc de cercle décris de ce point comme centre avec un rayon = 1, on 

v = y/@ - a)2 4- (y['] - p)2 4- (T^jf \ 
aura dis-je les deux équations suivantes ±^J(x'-a)2+(y'-p)2+(z''--y)2

 rfL, ) la 
^/dx'ï+dy'i+dz1? _ Vdv2+v2du2 ) 

première équation sera entièrement algébrique entre v et x', le premier membre de la 

seconde le sera parapport a x et l'élimination conduira a une équation différentielle 

du premier ordre entre v et u qui sera celle du développement cherché. On aurait 

pu arriver directement a l'expression du cosinus de l'angle formé par un élément de 

la courbe cherchée et une arrête quelleconque de la surface conique en remarquant 

que le cosinus de 1 angle ZW/.(fig2) = = ^ - n f i ^ ^ ! . Dans le 
4 & V & 1 d(arcNF.) ^dx'2+dy'2+dz'2 
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d \/(x'—a^+ly' —0}2+(z' ~y)2 

cas ou cet angle serait constant on aurait —* , = Const: équation 

élevée a trois variables qui appartient a toutes les courbes a double courbure tracées sur 

une surface conique [crossed out: quelleconque et dont le développement est une ligne 

droite] qui font le même [angle?] avec toutes les arrêtes. <Toutes les courbes contenues 

dans cette équation auraient pour développement une spirale logarithmique. > 

S il était droit on aurait d.\f{x' — a)2 4- (y' — p)2 + (z' — y)2 = 0 ce qui fait voir 

que la courbe proposée serait l'intersection de la surface conique avec la sphère décrite 

de son sommet comme centre, et qu'elle aurait pour développement un arc de cercle, 

[crossed out: unreadable] 

[crossed out: VI 

Nous tirerons de ce qui vient d'être dit une manière d'arriver a la solution du problème 

analogue a celle de l'article IV. Pour cela nous rapporterons la courbe proposée a 

celle que fournirait l'intersection du cône avec la sphère décrite de son sommet comme 

centre et dont nous venons de voir que le développement est un cercle en prennant 

pour coordonnées l'arc de cette dernière et la ligne de l'article précèdent.] 

On peut présenter les deux équations qui contiennent la solution du Problème sous 

cette forme qui peut être commode dans quelques cas 

v = ^(x> - a ) 2 + (yt - p)2 + {z^jp 

Jdx12 + dyP + dza - dv2 

du = — • 
v 

l'élimination de x' se fera en arc ici avec la plus grande facilité en partant de la première 

équation. 

< N t e au lieu des calculs préliminaires pour cette formule il suffira d'observer qu'on 

y peut arriver par les expressions du mémoire et la [?] tout de suite d'après M. Monge.> 

VI 

Nous allons passer au cas des surfaces developpables en gênerai, et nous commencerons 

par chercher l'équation du développement de l'arrête de rebroussement de ces surfaces. 

Soit NN'N"N'"fkc (fig 3) cette courbe, puisqu'elle est formée par les intersections 

des arrêtes consécutives PN, P'N', P"N"Szc l'angle <(NN'N")> deux quelconques 

de ses elemens sera supplément de celui qui font entr'elles les deux arrêtes qui leur 

repondent. On voie de plus que lorsqu'on développe la surface donnée cet angle ne 

change pas, mais seulement les angles consécutifs qui étaient dans differens plans sont 

ramenés au même. Il suit de la que le rayon de courbure absolu de la courbe proposée 

[ne ch]ange point. 

En nommant x',f/ et z' les coordonnées d'un point quelconque de 1 arrête de re-

z-z' = %{x-x') \ 
broussement, f, > seront les équations des projections de sa 

tangente ou ce qui revient <au même> celles des arrêtes de la surface developpable 
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donnée; si on imagine, comme dans l'article I e r [sic; should be I I e m e ] , une sphère décrite 

du point dont les coordonnées sont z' x' et y' comme centre et d'un rayon = 1 on 

aura pour le point d'intersection de la tangente de l'arrête de rebroussement et de 

z - z l = , W ... dN 
^dxJ2+dy'2+dz'2 

cette point x - x' = ^/(fa.^_^y,2+dz,2 • • • dM \ e t pour celui de la tangente consecu-

y - y' = . dv' : ... dh 
J y/dx'2+dy'2+dz'2 

tive N + dN, M + dM, h + dh\ parconsequent \fdN2 4- d.M2 + dh2 sera l'expression de 

la corde ou de l'arc infiniment petit compris entre les deux tangentes consécutives de 

l'arrête de rebroussement. En effectuant les calculs on aura 

r—^————-2_ yJ{dx'cPy' - dy'd2x'}2 + {dxftPz1 dz'tfx'}2 + [dy'&z' - dz'cPy'}2 

v dN -\- dM ~\~ dfx — • - - , ~~z •—"r • 
dx12 + dy'2 -i- dzn 

< n t e Je n'ai pas employé la formule de l'article I [sic; should be II] parce [que] en 

différenciant parapport aux quantités a', b' seulement elle se réduit a zéro en y supposant 

en suite a' = a,b' = b. On sent[?] que cela doit être, puisque l'angle étant infiniment 

petit du premier ordre, le cosinus = 1, ou est à son maximum; sa différentielle première 

est nulle. Il faut alors pousser jusqu'aux secondes puissances des différentielles et il 

m'a paru plus simple de chercher le résultat a priori.> Cette expression nous conduira 

aisément a celle du rayon de courbure. En effet considérons deux elemens consécutifs 

MM" et MM' qui sont toujours dans un même plan, et soient menés les rayons de 

courbures absolues MC et M'C et décris le cercle osculateur qui se confondra avec les 

deux elemens de la courbe; on voit que l'angle M'CM est égal a LN'M formé par le 

cote MM' et le prolongement de M'M" si l'on prend Cm = 1 on aura les deux secteurs 

semblables MCM' et mCm' qui formeront 1 : mm! :: MC : MM' d'où il suit MC ou 

le rayon de courbure = [sic] et a cause que l'angle MCM' est infiniment petit 

l'expression du quarré du rayon de courbure absolu sera 

{dx'2 + dy'2 + dz'2f 

{dx'&y' - dy'dïx')2 + {dx'cPz' - dz'(Px')2 + {dy'dïz' - dz'cPy')2 

Nous représenterons comme dans les articles précedens les coordonnées rectangu

laires sur le plan du développement par u et v et en ne prennant aucune différentielle 

pour constante, nous aurions pour arriver au développement cherché les équations 

suivantes: 

{dudïv-dvd'u}2 _ {dx'êy' - dy'a?x'}2 + {ds'rfV - dz'd2x'}2 + {dy'tfz' - dz'tfy'Y 

{du2 + dv2)3 ~ {dx12 + dy12 + dzflY 

du2 + du2 = dx'2 4- dy12 + dza 

Les secondes membres de ces équations pourront toujours être réduits a des fonctions 

de x' et de ses différences et par l'élimination on obtiendra un résultat en u,v et 
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leurs différences. Il suit de ce qui précède que toutes les courbes a double courbure 

dont le rayon est constant, considérées comme arrête de rebroussement de surfaces 

developpables ont un cercle pour développement et que leurs équation est 

{rfs'rffyfl - dy'd?x'}2 + {dx'tfz' - dz'd?x'}2 + {dy'tfz' - dz'tPy'}2 

{dxa + dy* + dz*2)3 

VII 

L'équation générale des surfaces developpables peut être mise sous cette forme 

z — = xip(q) + y{q) I 
> C'est ainsi qu'elle resuite de 1 intégration de 1 équation aux 

- f f l = V W + ï j 

différences partielles p = <p(q): 4>'{q) et (p'[q) représentent Si on fait dans 

ce système d'équations q = const, il appartiendra a une ligne droite et si l'on suppose 

qu'elle passe par un point de la surface dont les coordonnées soient x' y' et z' les 
z-z' = ^^{x-x') ' équations de ses projections seront _^ > en mettant p au lieu 

V ~ 1/= H?(x ~ ) 
de <p(q) et ^ au lieu de <p'(q)-

Si le point dont les coordonnées sont accentuées est pris sur l'arrête de rebrousse

ment l'arrête qui passera par ce point sera tangente a cette courbe les équations de 
2 _ z> — &Li% - X') 1 pdq-qdp _ dz^ \ 

ces projections seront df', > d'où il suit d5 . f*' > <bien en-
y-y' = d£[x-x') J = % J 

tendu qu'il faudra accentuer les variables dans p , q. puisque ces formules supposent 

tacitement que le point est sur l'arrête de rebroussement.> Tune quelleconque de ces 

deux équations jointe a celle de la surface developpable donnée fera connaître 1 arrête 

de rebroussement. On les déduirait l'une de l'autre en employant dz = pdx + qdy. 

On peut encore arriver a ce résultat d'une autre manière. Si l'on prend l'équation 

du plan tangent a la surface proposée z — z' = p(x - x') + q(y — y') en la differentiant 

deux fois de suite parapport a x' y' et z' en observant que —dz' = —pdx'—q dy' il viendra 
y'dq-Vdx'd 

/ _ dy'dq+dx'dp 

. V d ( J G ) 
0 = y-y'+${x-x') , dpjdy'dq+dx'dp] 

0 - ~dy' - %dx' + d ( * ) (x - X') 
? . . _ . .. d'où on tire < V V aq ^ . d ( | e ) 

/ _ /pdg-qdp\ i dy'dg+dx'dp I 

V ^ i l W J 
< n t e s on observera qu'en regardant les arrêtes de la surface comme couchées[?] dans 

toute leur etenduep] sur le plan tangent et sur la surface on aura cPz = 0 ou 

dpdx + dqdy = 0 en prenant dy et dx constantes.> 

Mais si le point d intersection des trois plans tangents consécutifs est pris sur la surface 

courbe, ou ce qui revient au même si les coordonnées z, x, y sont les mêmes que z' x' y' 

on aura alors dy'dq + dx'dp = 0. Cette supposition ne peut avoir lieu que pour l'arrête 

de rebroussement de la surface developpable proposée; on a <donc> pour cette courbe 

^ 7 = — |jÊ comme on l'a vu plus haut. 
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VIII 

Quand on a l'arrête de rebroussement d'une surface developpable, et le développe

ment de cette courbe, il est facile d'obtenir l'équation du développement d'une courbe 

quelleconque tracée sur cette surface. Il ne faut pour cela que rapporter l'une de ces 

courbes a l'autre, en coordonnées qui ne soient pas susceptibles de changer de valeur 

das le passage de la surface courbe au plan. Soient donc x'.y', z' les coordonnées de la 

courbe proposée. x",y", z" celle de l'arrête de rebroussement ^f'„ > 
y-v" = d^(x-x") i 

seront les équations des projections de sa tangente tangente ou de 1 arrête de la surface 

qui passe par le point dont les coordonnées sont x",y" et z": représentons encore par 

y" = et y — F{x) les équations des projections sur le plan des x,y de l'arrête de 

rebroussement et de la courbe proposée. On aura pour le point de cette dernière qui 

se trouve sur le prolongement de l'arrête y' — y" = ^¿{x' — x") ou 

F(x') - f(x") = ^ ( x ' - x") (1) : 

de plus v étant la partie de 1 arrête interceptée entre la courbe proposée et l'arrête 

de rebroussement. on aura v = \J[x1 — x")2 + (y' — y")2 + {z' — z")2 ou en chassant 

(y - y') et {z - z") 

,A , dy"2 dz"2 

enfin désignant par du l'arc de l'arrête de rebroussement on aura 

du = y/dx"2 + dy"2 4- dz"2 (3). 

En employant les projections de l'arrête de rebroussement on réduira les équations 

(1) (2) et (3) a ne renfermer que les variables x",x',u et v et en éliminant les deux 

premières on aura un résultat exprimé par les deux dernières, qui sera l'équation du 

développement cherché. L équation qu'on obtiendra se construira en prenant sur la 

tangente MM' <(fig 5)> de l'arrête de rebroussement développée MX une partie 

MM' = 0 et le point M' appartiendra au développement cherche: il serait d'ailleurs 

très aisé de changer les coordonnées u et v en coordonnées rectangulaires, et nous 

aurons occasion de le faire dans la suite. 

IX 

On pourrait demander d'arriver a l'équation du développement d'une courbe a double 

courbure tracée sur une surface developpable sans employer l'arrête de rebroussement 

de cette surface. On y parviendra en cherchant l'expression de l'angle M M'A (fig 6) 

formé par une élément de la courbe a double courbure et par l'arrête correspondante 

AB. En faisant varier les quantités relatives a la courbe a double courbure seulement 
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on aura l'angle AM'I. formé par le prolongement de l'élément consécutif de la courbe 

et la même arrête; la différence MM'I. de ces deux angles, qui ne changent point 

lorsqu'on les étend sur un même plan, se trouve <etre> alors l'angle des deux tangentes 

consécutives du développement cherché. 

Pour mettre cette solution en calcul nous rappellerons ici les formules de l'article 
4- ^ 4- 1 

VII. le cosinus de l'angle MM'A a pour expression — a a ' w et les 

y^ + ^ + iK^ + ̂  + i) 
équations des droites MM' et AB sont 

z-z' = %{x - x ! ) \ z-z! = (^^B)(x - x') \ fr } ^ a ? v art VII 
y-V'=%{x-x') j y - y'= ( î ^ ) ( X - x') j 

nous ferons pour abréger pdq — qdp ~ dn et la formule du cosinus se changera dans la 

suivante 

êid%] ~~ \\% + 1 dqdx' - dpdy' + dz'dn 

^ ( ^ 1 + f^ + + f£ + 1) ^/(dq2 + dp2 + dn2) x ^(dx12 4- dyn + dz'2) 

Cette formule étant differentie en regardant dp,dq,dn comme constans ainsi que le 

comporte l'état de la question, et faisant \Jdxa 4- dyp- 4- dz12 = ds on aura 

1 _ f ds\dqd2x' — dpd?y' 4- dnd?z] — d2s[dqdx' — dpdy' 4- dndz] 1 

yjdq2 4- dp2 + dn2 ~ \ ds2 J ' 

nous passerons ensuite de la différentielle du cosinus a celle de l'arc en prenant la 

première avec un signe contraire et divisant par le sinus, dont 1 expression donnée a la 

fin de 1 article II se change par les substitutions convenables en 

^{dx'dp + dy'dq)2 4- (dx'dn - dz'dq)2 4- (dy'dn 4- dz'dp)2 

sjdq2 4- dp2 4- dn2 x yjdx12 4- dyn 4- dz12 

et il viendra pour la différentielle de l'arc 

{dqdx' - dpdy' 4- dndz'}d?s - {dqcPx' — dpd2y' 4- dnd?z'}ds 

dssj(dx'dp 4- dy'dq)2 4- (dx'dn - dz'dq)2 + {dy'dn 4- dz'dp)2 
(dW) 

En employant les équations de la courbe proposée cette formule se réduira a a [sic] une 

fonction de x' seulement car on voit qu il faudra mettre dans dp, dq et dn au lieu de y' 

et z' leur valeur en x' tirée de ces équations, pour que l'arrête que Ion considère soit 

celle qui passe par le point pris sur la courbe proposée. 

Si l'on met au lieu de ds et (fis leur valeur Jdx12 4- dy12 4- dz'2, <J*'d*xp+dy'd2y'+dz'd2z> 
v a ^dx^+dy^+dz'2 

on aura après les réductions 
/ A\yl\ (dx'dp+dy'(ig){dy'd7x'-dx'd2y'} + (dx'dn-dz'dq){dx'd2z'dz'd2x'}+(dtf 

^ ' {dx'2+dy^+dz'2)y/(dx'dP+dy'dq)2+(dx'dn-dz'dq)2+(dy'dn+dz'dp)2 

Dans le cas ou la courbe proposée serait elle même 1 arrête de rebroussement de la 

surface developpable a cause = = = - % (art VII) la formule 
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precedente se réduit a et cela doit avoir lieu nécessairement comme dans la remar

que de l'article VI, puisqu alors la ligne MM' tombe sur la ligne AB et qu'on a le 

cos M M'A = 1 sa différentielle première = 0 et le sinus du même angle = 0. Nous 

reprendrons l'expression <de la differentielle> du cosinus de 1 angle M M'A trouvée 

plus haut et après y avoir mis pour ds et d?s leur valeur nous la différencions en regar

dant dp dq dn et les différences secondes comme constantes a fin d'arriver au second 

terme de la différence genérale des cosinus lequel sera en faisant abstraction des formes 

qui s'évanouissent 

J _ j (dpd2x'+dqd2y'){dv'd2x'-dxld2y')+(dnd2x'-dgd2z')[dx'd2z^ 

et en faisant les substitutions relatives au cas proposé on a 
(dy'cfx' - dx'tfy'Y + {dx'cfz' - dz'cfx')2 + [dy'êz' - dz'cPy')2 

x . 2 [ d x a ^ d y a + d z a ?

 : mais cette quantité 

est le sinus verse du petit angle cherche, sa corde ou l'arc qui le mesure étant moyenne 

proportionnelle entre le diamètre et la quantité precedente, on sera conduit par ces 

considérations au résultat de l'article (VI). 

Pour achever la solution de la question genérale qui nous occupe dans ce moment 
, f dud?v - dvd?u) . , „ , , . , 

nous égalerons < — — — >. expression de 1 angle forme par deux tangentes 
^ dv¿ + du¿ J ' 

consécutives de la courbe plane dont les coordonnées sont u et v, et nous l'égalerons a 

(dW). Il ne faudra plus qu'éliminer x' entre les deux équations suivantes 

du o9v - dvd?u , „„. 

du2 + dv2 = { d W ) 

Vdu2 + dv2 = yjdx12 + dyn 4- dz'2 

pour arriver a l'équation du développement cherché. On pourrait mettre la première 
. . . . . du<Pv — dvd?u (dW) 

des équations ci dessus sous cette forme s— = —. alors 
{du2 + du 2 ) i yjdx12 + dy'2 + dz'2 

son premier membre pourrait toujours être ramené a une fonction de x' seul et sans 

différentielles. 

Si la courbe proposée avait pour développement une ligne droite, on aurait alors 

dudv2 ~ dvcfu = 0 et par conséquent le numérateur de la quantité {dW) doit être 

nul ce qui donnera toujours une équation <elevée> du second ordre a trois variables 

qui appartiendra a toutes les courbes a doubles courbures tracées sur une <famille 

de> surfaces developpables et qui deviennent une ligne droite lorsque cette surface est 

étendue sur un plan. <I1 faudra éliminer p et q ainsi que leurs différentielles au moyen 

de l'équation différentielle partielle de la surface proposée et de dz = p dx 4- qdy.> 

< n t e Si l'on chasse p dans le numérateur de l'expression qui est au bas de la page 9 

[the expression marked (<fW)] a l'aide de dz = p dxA-q dy et que l'on fasse \Jdx2 + dy2 = 

ds' = ccmst l'équation dW = 0 se change en cette autre {ds'2 + dz2)d?y = (dydz — 

qds2)d?z qui appartient a la courbe que forme un fil plie librement[?] sur une surface. 

Elle est la plus courte de toutes celles qu'on peut mener entre ses extrémités. Elle a 
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ete donnée sous ce dernier point de vue par J. Bernoulli dans le tome IV de ses oeuvres 

et en suite sous lautre par M. Monge dans le tome X des Savans étrangers.> 

X 

Nous pouvons a l'aide des formules précédentes résoudre les différentes questions rela

tives au développement des surfaces courbes et de leurs parties. En effet le cas le plus 

gênerai est celui du développement d'une portion de surface developpable terminée de 

toutes parts par des courbes a double courbure données. On arrivera a la solution en 

rapportant ces courbes a l'arrête de rebroussement de la surface proposée, cette dernière 

étant développée, il sera facile de construire le développement des autres et l'espace 

compris entre les nouvelles courbes qui en résulteront sera lui même le développement 

cherché. 

Nous allons parcourrir succinctement quelques cas particuliers qui offrent des fa

cilités. 

l.° Les surfaces cilindriques se développeront ainsi que les courbes tracées sur elles 

de la manière la plus facile en employant la méthode de l'article IV, cest < a dire> 

en rapportant les courbes proposées a la section perpendiculaire aux arrêtes dont le 

développement est une ligne droite. 

On pourrait encore employer dans la question qui nous occupe, la courbe qui sert 

de base a la surface proposée sur l'un quelconque des plans coordonnées, celui des x, y 

par exemple, les équations qui terminent 1 article III deviennent 

et lorsqu'on aura le développement de cette courbe, il sera très aise d'y rapporter toutes 

celles qu'on pourra proposer sur les surfaces cilindriques, en prenant pour coordonnées 

ses arcs, et les arrêtes de ces surfaces. 

2? Pour les surfaces coniques l'arrête de rebroussement se réduit a un point; mais 

toutes les courbes tracées sur ces surfaces, pourront être rapportées aux mêmes coor

données polaires comme on l'a indique dans 1 article V. A l'égard de leur bases on aura 

les équations nécessaires pour arriver a son développement en effaçant tous les termes 

affectes de z' dans les équations qui terminent 1 article V. 

3? Nous n'ajouterons rien à ce qui a été dit au commencement de cet article, sur 

les surfaces developpables en gênerai relativement a l'arrête de rebroussement, nous 

nous bornerons a observer que dans le cas où l'on voudrait développer directement la 

courbe qui sert de base a ces surfaces sur l'un quelconque des plans coordonnées, celui 

des x,y par exemple il faudra faire z' et dz' = 0 dans les équations qu'on a trouvées 

dans l'article précèdent. En opérant la même réduction dans l'expression du cosinus de 

l'angle formé par une arrête et par l'élément de la courbe proposée, elle conviendra a 

l'angle formé par la tangente a chaque point du développement, et l'arrête de la surface 

qui passe par ce point - cette formule pouvant toujours être ramenée a une fonction de 
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x' et parce-nsequent a ne renfermer que les coordonnées u et v du développement, il sera 

donc aisé de mener pour chaque point de la base développée l'arrête correspondante: 

si l'on rapporte ensuite aux arcs de cette base et aux arrêtes de la surface proposée 

toutes les courbes qui seront tracées sur elle on en aura les developpemens avec facilite. 

XI 

Nous avons donné dans les articles precedens les moyens de trouver pour tous les cas 

ce que devient une courbe tracée sur une surface developpable. En partant des mêmes 

formules on pourra résoudre la question inverse: celle de trouver ce que devient une 

courbe tracée sur un plan qu'on enveloppe autour d'une surface developpable. 

1.° Pour les surfaces cilindriques il ne faudra qu'éliminer u et v entre entre [sic] 

l'équation de la courbe plane et les équations de l'article III. on aura pour résultat une 

équation en x', y', z' et leurs différentielles, qui sera celle de la courbe cherchée. Ce que 

je viens de dire suppose que la courbe plane soit rapportée a des coordonnées rectan

gulaires, dont les arrêtes de la surface cilindrique fassent partie, et cela est toujours 

possible. 

En employant la section perpendiculaire aux arrêtes du cilindre on aura a éliminer 

x",u et v entre les équations de 1 article IV et l'équation de la proposée. 

2.° Pour les surfaces coniques, en joignant aux équations de l'article V celle de la 

courbe plane rapportée aux coordonnées polaires u et v, et éliminant entre elles trois 

ces quantités, on aura pour résultat une équation qui exprimera conjointement avec 

celle de la surface conique, la nature de la courbe cherchée. 

3? La question se réduit aux mêmes termes ainsi que la solution pour les surfaces 

developpables en gênerai, en employant les équations de l'article IX. Si l'on voulait 

faire usage de l'arrête de rebroussement il faudrait alors avoir recours aux équations 

de 1 article VIII; mais elles supposent que la courbe plane soit rapportée aux arcs et 

aux tangentes du développement de l'arrête de rebroussement. Cette transformation, 

quoique sans difficulté, n'étant par très ordinaire, nous allons en donner ice les formules. 

Supposons, comme cela est toujours possible, qu'on ait les équations de la courbe 

plane proposée et celle du développement de l'arrête de rebroussement en coordonnées 
Y' — F(X') 1 

rectangulaires qui leur soient communes, soient > ce [sic] deux expres-
Y" = }(X") J 

sions. Celle [sic] de la tangente a la première courbe sera Y — Y' = ^(X — X'), et la 

partie de cette droite interceptée entre les deux courbes aura pour expression 
I dY'2 

v = {X" — X')y 1 + ^ (1) mais parce que le point de la seconde courbe 
qu'on considère doit se trouver sur la tangente de la première on aura nécessairement 

dY' 
f{X") - F{X') = —(X - X') (2) enfin l'arc de la première est 

dX' 

du = VdYa + dXa (3). Ces trois équations pourront être réduites a ne 

renfermer que u,v,X' et X". on en pourra déduire par l'élimination un résultat en u 

et v qui sera l'équation cherchée. 
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[crossed out: XII. 

Une courbe plane étant regardée comme le développement de l'arrête de rebroussement 

d'une surface developpable, on peut demander l'équation de cette surface. Le problème 

est indéterminé et la même courbe appartient a une infinité de surfaces mais il est 

toujours possible d'arriver a 1 équation aux différences partielles du premier ordre que 

les représente.] 
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XII 

Remarques sur les équations aux différences ordinaires a trois variables 

La différentielle de toute fonction a trois variables étant représentée par dz = p dx+q dy, 

il peut arriver que les coefficiens p et q soient donnés a priori en fonction de x, y et z 

ou qu'on [crossed ont: ait entre eux] des relations entr'eux et ces variables. Le premier 

cas appartient aux différences ordinaires et le second aux différences partielles. 

Si l'on a deux équations entre p et q et les variables x,y,z on en pourra tirer 

une équation aux différences ordinaires a trois variables, la quelle appartiendra a une 

surface courbe lorsqu'elle satisfera a l'équation de condition et a une infinité de courbes 

a double courbure si elle n'y satisfait pas. Les considérations géométriques rendent bien 

évident ces faits deja connues par l'analyse. 

On sait que les équations aux différences partielles peuvent être rapportées a la 

génération des surfaces courbes et expriment des propriétés qui appartiennent a toutes 

celles d'une même famille. Lors donc qu'on regardera p , q, x, y et z comme des quantités 

communes entre deux équations aux différences partielles du premier ordre, ou ce qui 

revient au même lorsqu'on supposera que les surfaces courbes auxquelles elles apparti

ennent ont le même plan tangent, s'il existe une surface courbe qui jouisse a la fois des 

propriétés caractéristiques des deux familles, elle sera le lieu de l'équation résultante 

puis qu'elle aura dans toute son étendue le même plan tangent. Mais on sent qu'il 

y a telles générations de surfaces courbes ou telles propriétés que ne sauraient avoir 

lieu simultanément: alors tous les points qui satisfont a la question ne sont pas lies 

entr'eux par la loi de continuité, mais ils ont cela de remarquable qu'ils appartiennent 

a l'assemblage des courbes de contact des surfaces proposées. 

Nous allons vérifier ces faits par des exemples. 

En éliminant p , et q entre ces deux équations et dz = p dx + q dy on a pour résultat 

[x(x — a) -f- y(y — b)]dz = (z — c){xdx 4- ydy}\ et l'équation de condition devient 

(z — c){ay — bx} = 0 qui ne saurait être identique a moins qu'on n'ait ou z — c 

ou a, et b = 0. La première solution appartient au plan paralle[le] a celui des x,y 

et il nexiste pas dautre surface qui jouisse < a la fois> des propriétés exprimées par 

les deux équations aux différences partielles, puisque l'une appartient aux cônes qui 

ont leur sommet au point dont les coordonnées sont a, 6, c et l'autre aux surfaces de 

révolution dont l'axe coïncide avec celui des z. Mais lorsque a et b sont nuls, le résultat 

aux différences ordinaires devient ~ = x ^ ? £ v dont l'intégrale z - c = k^Jx2 4- y2 

appartient au cone droit qui a son sommet dans laxe des z, M. Monge dans les 

Mémoires de l'académie pour 1784 a traité cette équation qui appartient, lorsque a 

et b se sont pas nuls, a toutes les courbes formées par les contacts des surfaces de la 

famille des cônes avec celles de révolution, et qui ne sont pas liées entr'elles par loi 

de continuité, tandis qu'en supposant le sommet de ces cônes dans l'axe des z, toutes 

1.° Soient les deux équations aux différences partielles 

p (x - a) 4- q (y - b) = z - c 
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les courbes de contact se trouvent assujetties <a cette loi> puisque leur assemblage 

constitue la surface du cône droit que nous venons de trouver. 

p x + qy = G I 
2.° Soient encore proposées les deux équations n 2 > qu on suppose 

appartenir a la même surface courbe. Si <on> met dans dz ~ pdx-\-qdy les valeurs de 

p et de q tirées de ces équations on aura pour résultat jj^g = xdy — ydx; l'équation 

de condition n'est pas identique, elle devient z\Za2 — z2[(x2 + y2) — z[x2 + y 2)] = 0. La 

question que nous traitons ne saurait appartenir a d'autre surface qu'au plan paralle[le] 

a celui des x,y et pour lequel on o 2 — z2 = 0. En effet il s'agit de trouver la surface 

qui jouit a la fois des deux proprietées suivantes, I o detre formée de lignes droites 

parallèles au plan des x,y et assujetties a passer toujours par l'axe des z: 2° d'avoir 

toutes les normales constantes parapport a ce plan. 

3.° Nous prendrons pour dernier exemple de ce genre les équations py — qx = 0 1 

1 + p2 + q2 = a2 J 
En opérant comme précédemment on obtient -JZT = xt^+y<íVj qU[ a pour intégrale 

= \ / x 2 +• y2: équation qui appartient au cone droit dont l'axe coïncide avec 

celui des z et qui est la seule surface comprise a la fois dans la famille des surfaces de 

révolution ayant pour axe celui des z, et dans celle dont l'aire d'une partie quelleconque 

est dans un rapport constant avec sa projection. 

XIII 

Lorsque l'équation resultante de l'élimination des coefficiens différentiels, ne peut ap

partenir a une surface courbe, ou que son intégrale ne peut pas être exprimée par une 

seule équation finie a trois variables, on sait qu'elle represente une infinite de courbes a 

doubles courbures qui ont toutes une propriété commune; si l'on se donne a volonté une 

relation entre deux quelconques des variables, ou même entre les trois et qu'on l'employé 

pour simplifier la proposée; il arrivera, ou qu'on aura une équation qui tombant sur des 

quantités constantes fera voir qu'il y a impossibilité de satisfaire a la question par la 

relation qu'on a choisie a moins que des conditions particulières ne soient remplies; ou 

bien cette équation étant a deux variables aura une intégrale transcendante et le plus 

souvent <echapera> aux méthodes connues. Ce procédé d'ailleurs ne conduit qu'a une 

seule solution et il faut ainsi les chercher Tune après l'autre sans appercevoir d'autre 

liaison entrelles que l'équation différentielle proposée. 

Le point de vue sous lequel nous avons envisagé les équations a trois variables mené 

a des solutions qui reunissent a la plus grande généralité l'avantage de renfermer dans 

deux équations toutes les solutions algébriques que peuvent avoir les proposées. C'est 

M. Monge qui le premier les a présentées dans les mémoires de l'académie année 1784. 

Lorsqu'on regarde ces équations comme appartenant a des courbes qui soient[?] le 

lieu de tous les contacts qui peuvent exister entre deux familles de surfaces courbes, 

cette considération fait disparaître les différentielles et donne le moyen de satisfaire < a 
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la question> en prenant des fonctions algébriques, sans être assujetti a de nouvelles 

intégrations lorsqu'on veut passer d'une solution a une autre. 

La méthode se presente d'elle même, il faut intégrer l'une quelleconque des équations 

aux différences partielles qui représentent la proposée et assujettir le résultat a satisfaire 

a l'autre. C'est ainsi qu'on aura pour le 1 e r exemple 

z = tp{x2 + y2) 1 

2ip'{x2 + y2}- {x{x-a) + y(y-b)} = ip{x2+y2) - c ) 

(Jai cru devoir designer ces systèmes d équations sous le nom d'ensemble des solutions 

de la proposée) 

Pour le 2. e 

Pour le 3 e on aurait 

z = (fi(x2 + y2) 1 

1 + W + y2) • {x2 + y2} = a2 J 

d'où on tirerait ip'(x2+y2) = "/a2~1, et multipliant les deux membres par 2x dx+2y dy 
2(x2+y2)2 

il en résulterait <p(x2 + y2) = {y/o? — Vjyjx2 + y2, résultat qui s'accorde avec celui de 

l'article précèdent. 

Ces équations sont aussi generales que les équations différentielles qu'elles représen

tent puisqu'elles n'en sont que des transformations et qu'on reviendra au dernières en 

éliminant la fonction arbitraire introduite par 1 integration aux différences partielles. 

D'ailleurs si on voulait d[et]erminer cette fonction arbitraire en se donnant[?] une rela

tion telle que y = JPdx on retomberait encore dans la proposée. On voit encore qu'en 

prenant pour tp - une fonction algébrique on arrivera toujours a un résultat algébrique. 

<Lorsqu'on determine la forme de (p, alors on considere seulement une des surfaces 

de la premiere famille, et il s'en suit la [?] détermination de celle de la seconde qui 

touche l'autre dans une des courbes a double courbure cherchée. On voir par la que 

les surfaces sont liées deux a deux par l'équation différentielle proposée.> 

J'ai donc cru devoir présenter cette nouvelle question sur les équations a trois ou 

un plus grand nombre de variables qui ne satisfont pas aux équations de condition, 

"trouver parmi le nombre infini de solutions dont elles sont susceptibles celles qui sont 

algébriques": et si nous nous bornons a trois variables '''trouver autant de courbes 

algébriques qu'on voudra qui satisfassent au problème proposé". On apperçoit ici une 

analogie entre cette partie du calcul integrai et l'analyse algébrique indéterminée, où 

on limite le nombre des solutions en exigeant qu'elles soient en nombres entiers. 
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XIV 

390 

Je vais exposer ici quelques remarques qui pourront conduire a la solution des problêmes 

que je viens d'indiquer dans beaucoup de cas. 

Prenons l'équation M dz -f- P dx -f- Q dy = 0; si on y substitue pour dz, pdx + qdy 

elle pourra être représentée par les deux équations suivantes qui sont aux différences 

Mp + P = Q ] 
partielles > et si Ton elimine M entre les deux dernières on aura Pq -

Mq + Q = 0 f 
Qp = 0. (M. Monge a donné ces équations dans les Meui. de l'académie pour 1784.) Si 

l'on integre l'une quelleconque d'entre'elles et qu'on assujetisse le résultat a satisfaire 

a Tune des des deux autres on aura l'ensemble des solutions de la proposée, qui sera 

sous une forme algébrique si 1 équation qui aura de intégrer a pu l'être algébriquement. 

Mais l'intégration des équations aux différences partielles que nous venons de poser 

dépend par le théorème de M. Delagrange de celle des équations a deux variables 

Mdz + Pdx = 0 | 

Mdz + Qdy = 0 >. Si l'une d'entr'elles a une intégrale algébrique on déterminera 

Pdx + Qdy = 0 J 
l'ensemble des solutions de la proposée sous une forme algébrique. 

Au reste je ne crois pas qu'on puisse conclure de cequ'aucune des équations prece

dentes n'aurait une intégrale algébrique, que la proposé ne saurait avoir de solutions 

algébriques, car le système d'équations que nous avons employé pour la représenter 

n'est pas d'une forme nécessaire; on peut prendre a sa place deux autres équations aux 

différences partielles, telles qu'étant combinées avec dz = pdx-\- qdy elles produisent 

la proposée par l'élimination de p et de q. 

, • Mp + P = Q } , , 
11 peut arriver qu en éliminant entre > quelque fonction commune 

Mg + Q = 0 J 4 

on obtienne un résultat integrable algébriquement. 

Si la proposée ne renferme pas de radicaux, on peut prendre pour la représenter 

deux équations linéaires aux différences partielles, avec des coefficiens indéterminées 
Kp + Gq + h = 0 ) J n ,. . 

telles que > desquelles éliminant p et q conjointement avec dz = 
K'v + Qq + h' = 0 J H 

pdx + qdy on obtiendra un résultat qu'on comparera avec la proposée mise sous la 

forme suivante dz = ~^dx — j^dy. Il viendra deux équations et on pourra essayer 

, , _ Kdz + hdx \ 
de déterminer les coefficiens qui resteront arbitraires pour que > ou 

K dy — Gdx I 

K'dz + h'dx 1 
> soient integrables algébriquement puisque c'est a ces équations que 

K dy - G'dx I 
se réduit l'intégration de celles qu'on vient de poser aux différences partielles. 

XV 

Les équations élevées a trois variables qu'on peut mettre sous une forme linéaire rela

tivement aux différentielles appartiennent aux courbes de contact des familles de sur

faces courbes. En effet si on a deux équations algébriques entre p,q,x,y et z et qu'on 



en tire les valeurs de p et de q pour les substituer ensuite dans dz = pdx 4- qdy 

on aura un résultat qui pourra se présenter sous une forme élevée <en raison de> 

1 évanouissement des radicaux, mais qui sera toujours susceptible d'être remis sous une 

forme linéaire relativement aux différentielles. L'équation z2{(ydx — xdy)2 + (ydz — 

zdy)2 + (zdx — xdz)2}2 — a2{ydx —xdy}2 = 0 est dans ce cas. En la resolvant parap-
z(y dy + x dx) f ydx — xdy 

port a dz on aura dz = ——- —- ± < —-— — } J~zA 4- (a 2 - z2)(y2 4- x2) et 
yz + x2 { z{yl + or) J 

oarconseouent - " , * y / _ zy , \y/-z*+(«*-*2W+**) parconsequent - M - ^ 2 , - ï r f t r ± ^f£p 

Si nous mettons au lieu de — ~ ; —Q les coeffîciens différentiels p et g nous aurons 

pour représenter la proposée des équations analogues a celles de l'article précèdent. 

Elles se présentent sous une forme très compliquée et qui probablement échapperait 

aux méthodes, mais si on élimine le radical on arrivera cette équation très simple 

z = px 4- qy qui appartient aux surfaces coniques dont le sommet est a l'origine. Si on 

assujettie l'intégrale de cette dernière a satisfaire a l'une des équations en p ou en q on 

aura 1 ensemble des solutions de la proposée sous la forme suivante: 

* = M*) 1 
a /—4, / 2 ,2\i 2. 2\ } niais on peut obtenir un résultat sans radi-

eaux en ajoutant ensemble les valeurs de p 2 et de q2 prises[?] dans les équations prim

itives on a alors p2 + q2 = ° 2 T/ 2 . L'équation proposée peut donc être regardée comme 

appartenant a toutes les courbes de contact des deux familles de surfaces courbes 

représentées par „ „ 2 >: ce qui donne pour l'ensemble de ses solutions 
l + p 2 + g 2 = « • 

P% + qy = z 
par 

1 + «p(t.\ _ i_ _ sL^sL^2

 = a2 >• E n Panan t pour tp des fonctions al-

gebriques on aura autant de solutions algébriques de la proposée qu'on le voudra. La 

question qui nous occuppe maintenant ne peut être résolue par d'autre surface que 

par le plan des x',y; car c'est la seule qui soit commune a la famille des cônes dont 

le sommet est a l'origine, et a celle des surfaces courbes dont toutes les normales sont 

constantes parapport au plan des 2, y. 

Quant aux équations élevées qui ne peuvent être ramenées a la forme linéaire, il 

suit de ce qu'on a vu au commencement de cet article qu'elles ne sauraient appartenir 

a des courbes de contact, et l'on n'est pas encore parvenu a trouver généralement les 

ensembles de leurs solutions. Mais M. Monge a donné dans le mémoire deja cité des 

théorèmes, qui dans beaucoup de cas font connaître l'ensemble des solutions de ce 

genre d'équation sous une forme algébrique. Il a remarqué de plus une correspondance 

singulière entr'elles et les équations aux différences partielles, telle que lorsqu'on a sous 

une forme donnée l'intégrale de celles-ci on arrive a l'ensemble des solutions des autres 

et réciproquement. 

Les moyens sont encore plus bornés pour les équations des ordres supérieures et 

M. Monge a traité celles qui appartiennent aux courbes que nous avons remarquées 
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a la fin de 1 article VI et dont la courbure est constante. Les questions que nous 
avons indiqués sur les courbes tracées sur des surfaces developpables conduisent a des 
équations différentielles a trois variables, élevées ou des ordres supérieures dont il serait 
peutetre intéressant de connaître l'ensemble des solutions sous une forme algébrique. 
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Appendix B 

Lacroix's historical appraisal of his 

own Traité 

Sometime around 1803 Lacroix wrote a "Compte rendu à la section de Géométrie de 

l'Institut national, des progrès que les mathématiques ont faits depuis 1789 jusqu'au 

l . e r Vendémiaire an 10" (that is, a "report to the Geometry section of the Institut 

National, on the progress made in mathematics from 1789 to Vendémiaire 1st, year 10 

[= September 23rd, 1801]").1 At some point Lacroix revised it and changed its title 

to "Essai sur l'histoire des Mathématiques, pendant les dernières années du 1 8 m e siècle 

et le [sic] premieres du I 9 e m e " 2 . It was never published under any of these titles, but 

most of it was incorporated in [Delambre 1810]3; Delambre [1810, 43] admitted that 

all that concerned "pure mathematics and transcendental analysis" had been taken 

from Lacroix's work. 4 

One of the interesting points in Lacroix's report is that it had to address his own 

Traité, pointing out the aspects that "should find a place in the history of science" (see 

page 395 below). Transcribed below (from the manuscript kept in Lacroix's dossier 

biographique at the archive of the Paris Académie des Sciences) are the four references 

to the Traité: a short one in the chapter on algebra, fi. 5v [Delambre 1810, 90]; a long 

one in the chapter on differential and integral calculus, fis. 23r-25v [Delambre 1810, 

lAn order of the consular government demanding such a report was read by Laplace to the 
Physical and Mathematical Sciences class of the Institut in 16 Ventose year 10 (7 February 1802) 
[Acad.Sc. Inst. PV, II, 476]. It is likely that Lacroix prepared the report between 1 Germinal year 
10 (22 March 1802) and 11 Pluviôse year 11 (31 January 1803), that is, while he was secretaire of 
the Mathematical Sciences section of the Institut [Acad. Sc. Inst. PV, II, 479, 625], Still, the original 
title suggests that it was only ready after this, as the "Geometry section" appeared only in the re
organization of 1803. presented to the class precisely in the session of 11 Pluviôse year 11 (Acad. Sc. 
Inst. PV, 619-625; Grattan-Guinness 1990, I, 79]. 

2 "Essay on the history of mathematics during the final years of the 18th century and the first of 
the 19th" 

3 That is, the eventual compliance with the 1802 demand. Delambre was secretaire perpétuel since 
1803. 

4For the question of other contributions to [Delambre 1810], and some comparisons between 
Lacroix's manuscript and the corresponding sections in [Delambre 1810], see the Introduction and 
endnotes by Jean Dhombres to the 1989 edition. 
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100-102]; two in the chapter on finite différences and séries - a long one, fis. 31r-32v 

[Delambre 1810, 109-111], and a short one, fl. 35r [Delambre 1810, 116]. Sentences 

or expressions omitted in [Delambre 1810) are within braces {} here (when a footnote 

mark is within braces, ail of its text was omitted). 

Algèbre 

[5v] La considération des fonctions symétriques des racines, offrant le moyen {le 

plus clair et} le plus fécond pour traiter le résolution des équations {et l'élimination}, 

{ce n'est peut être pas sans quelque avantage pour la science, au moins pour en faciliter 

l'étude que, dans ces derniers tems, on a donné} 5 du théorème de Newton sur la somme 

des puissances semblables des racines qui sert de base à cette théorie, une démonstration 

indépendante des séries{, et qu'on peut regarder avec quelque fondement comme la plus 

simple qu'il soit possible de former}. 6 

Calculs différentiel et intégral 

[23r . . . ] Les travaux dont je vais parler maintenant remontent à un mém. r e inséré 

dans le vol. de Berlin pour 1772, où le C . e n Lagrange donnait au calcul différentiel et 

intégral une origine purement analytique, à la fois simple, rigoureuse, reposant sur les 

formes du développement des fonctions en séries, et assez analogue à la manière dont 

Newton présenta dans le livre des principes sa méthode des fluxions. 

Le désir de populariser des considérations aussi élégantes, de rapprocher sous un 

même point de vue, et de réduire pour ainsi dire à la même échelle, tous les procédés 

dont l'analyse transcendante s'étoit enrichi depuis la publication des traités généraux 

d'Euler, donna naissance à un traité du calcul différentiel et [23v] du calcul intégral,{7} 

médité pendant longtemps et dont le l . e r volume parut en l'an V. {Pour le rattacher 

aux élemens existans lors de sa publication,} on les fit précéder d'une introduction dans 

laquelle le développement des fonctions exponentielles, logarithmiques et circulaires, en 

séries, est déduit de considérations entièrement indépendantes des notions d'infini, de 

limites; et par le moyen d'un calcul simple effectué sur les indices des coëfficiens à 

déterminer, on est parvenu à vérifier toutes les équations de condition dont on se de-

barassait ordinairement en assignant des valeurs particulières aux variables introduites 

dans le calcul.8 

5[Delambre 1810. 90]: étoit donc important de donner 
6Voyez le 1 e r vol. du Traité du calcul différentiel et du calcul intégral de Lacroix, ou le Complément 

des Elem. d'alg. [In [Delambre 1810, 90] an équivalent référence is included in the main text. followed 
by "ouvrages qui ont opéré une révolution heureuse dans l'enseignement, et ont mérité d'être adoptés 
pour les lycées et l'École polytechnique" .] 

7 en 3 vol in 4° par S F Lacroix 
s In [Delambre 1810, 101] therc is a change in the division of sentences which I think alters the 

intended meaning: "[...] est déduit de considérations entièrement indépendantes des notions d'infini, 
de limites, et par le moyen d ;un calcul simple effectué sur les indices des coëfficiens à déterminer, 
L'auteur, M. Lacroix, est parvenu à vérifier toutes les équations de condition [...]". 
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{La généralité de cette méthode rachette bien, à ce qu'il semble, un peu de longueur 

sans la quelle d'ailleurs on ne parvient jamais à satisfaire entièrement les esprits difficiles 

sur l'exactitude des démonstrations.} 

[24r] Les mêmes procédés s'appliquent avec autant de succès au théorème de Taylor, 

qui forme la base du calcul différentiel, et qui en fait l'introduction, lorsqu'on s'appuye 

sur les {notions lumineuses} qu'en a données le C. Lagrange. et citées plus haut. 

{Il serait déplacé dans le compte que [crossed out: nous rendons] je remis à la 

¡crossed out: classe] section, de parler de tous les perfectionnemens de détail que doit 

exiger un Traité fondé sur une nouvelle manière d'envisager le calcul différentiel et 

intégral, et dans le quel on a rassemblé sous un même point de vue, et} assujetti à un 

enchaînement méthodique les divers résultats ou procédés analytiques, épars dans les 

colletions académiques{ 9; nous citerons ici [24v] quelques points qui semblent devoir 

trouver place dans l'histoire de la science.} 

L'auteur s'empressa d'exposer dans son ouvrage et de ramener à des formes pure

ment analytiques l'espèce d'intégration des équations différentielles à trois variables qui 

ne satisfont par aux conditions d'intégrabilité, que le C . e n Monge avait déduites de la 

considération des courbes à double courbure et des surfaces, et rendit évidente la liaison 

de ces intégrales avec la théorie g. l e des intégrales et des solutions particulières que le 

C. Lagrange a fait connaître le premier dans les mém. r e s de l'académie de Berlin pour 

l'année 1774, et il rapprocha cette théorie d'une classe de questions dont Euler s'occupa 

{dans plusieurs mémoires particuliers} et qu'il nomma calcul intégral indéterminé, [25r] 

{parcequ'il s'agit d'établir entre une fonction, et la variable indépendante, des relations 

qui rendent integrables algébriquement certaines expressions différentielles relatives, 

soit aux arcs ou aux aires des courbes, aux aires ou aux volumes des surfaces. 1 0} C'est 

à ce genre de questions que se rapporte le problême de la voûte quarrable, proposé par 

Viviani, et un théorème nouveau que le C. Bossut a communiqué en l'an IV à l'Institut, 

{et dont voici l'énoncé: Si on perce une sphère perpendiculairement au plan de l'un de 

ses grands cercles, par deux cylindres droits, en forme de tarrière, dont les axes passent 

9 Par exemple, après avoir montré que les accroissements eux-mêmes n'entraient pour rien dans le 
but et les applications du calcul différentiel, il fallait expliquer ce que signifiaient, dans le nouvel ordre 
des propositions, les transformations qui servent à rendre variable une différentielle qu'on regardait 
comme constante, et vice versa. Cet objet a paru assez important, au C. Lagrange pour qu'il s'en soit 
occupé dans la Théorie des fonctions analytiques; [24v] mais on observera que l'article du traité dont 
on parle ci dessus était composé, imprimé, et entre les mains de plusieurs personnes, entrautres du 
C. Prony, avant que le C. Lagrange fit à l'école polytechnique les leçons qui ont donné naissance à la 
théorie des fonctions. Il en est de même des autres endroits du Traité du calcul différentiel et du calcul 
intégral, où la théorie des fonctions analytiques n'est pas citée. Le premier de ces ouvrages projette 
et preparé 10 ans avant sa publication et reposant sur le mém. r e contenant le germe du second, a 
du nécessairement mener à des développemens analogues. La lenteur de l'impression ayant permis 
d'enrichir la notation différentielle usitée des choses nouvelles que lUlustre Géomètre, auteur de la 
théorie des fonctions, avait publiées dans un algorithme particulier, le C. Lacroix l'a fait, mais en 
citant avec le plus grand soin la source d'où il avait tiré ces précieuses additions. 

1 0[Sidenote, difficult to read: L'acad. de Petersbourg a publiée dans ses derniers volumes deux 
mémoires d'Euler sur ce sujet, restés inédits, et notamment sur les courbes dont les arcs peuvent 
être exprimés par des arcs dellipse, de parabole: il[?] n'[?] [?] réussit à en trouver que [?] des arcs 
d'hyperbole, M. Fuss en a indiqué de cette espèce (dans le T. XIV des nova acta)] 
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par les milieus de deux rayons qui composent un diamètre de ce grand cercle, les deux 

portions qu'on enlèvera par là, du solide entier de la sphère, laisseront un reste égal 

aux 2/9 du cube du diamètre de la sphère.}11 

{L'introduction des fonctions arbitraires dans les intégrales des équations différen

tielles, ne parait pas suivre les mêmes loix que celles des constantes arbitraires dans les 

intégrales [25v] des équations différentielles totales. Dans le second ordre et les ordres 

supérieures, on ne peut introduire en général sous la forme finie et faire disparaitre 

successivement à chaque ordre de différentiation. une nouvelle fonction arbitraire, de 

même qu'on fait évanouir une constante. Ces remarques, qui n'avaient pas encore été 

publiées, se rattachent aisément avec la théorie g l e des intégrales dont elles sont le 

complément.} 

Du calcul aux différences (finies) et des series 

[31r . . . ] La convenance qu'il y avait à séparer des premiers principes du calcul 

différentiel, le calcul aux différences afin de ne pas le morceler, et de n'en faire qu'un 

seul corps avec la doctrine des series, résulte bien nécessairement du mémoire de 1772 

sur l'origine du calcul différentiel et intégral, et fut saisie par l'auteur du Traité du 

Calcul différentiel et du calcul intégral, qui rassembla en un seul volume, sous le titre 

de Traité des différences et des séries tout ce qui concernait ces deux branches de 

l'analyse et quelques méthodes pour ainsi dire anomales, qu'on ne pouvait rapporter que 

difficilement aux procédés d'intégration déduits du renversement de la différentiation. 

C'est le premier ouvrage dans lequel on trouve toutes les méthodes relatives aux 

séries réunies en un seul [31v] corps de doctrine et liées entr'elles. L'auteur y a présenté 

de la manière la plus générale l'interpolation des séries, dont il a rapporté les diverses 

formules tant anciennement connues que récemment publiées dans les leçons que le 

C. Prony a données à l'Ecole polytechnique sur le calcul des différences; les divers 

procédés pour intégrer les équations aux différences et pour obtenir le terme général 

des séries recurrentes; l'usage des intégrales définies dans la sommation des séries, et 

pour l'intégration des équations différentielles et différentielles partielles; et {a cette 

occasion} l'auteur rend compte du procédé du C. Parseval, {publié par le C. Prony 

dans la mécanique philosophique}. Enfin, il a donné avec beaucoup de détails la théorie 

des intégrales directes et indirectes des équations aux différences. En remarquant 

ces dernières, et en poussant trop loin les conséquences de l'analogie quelles ont avec 

les [32r] solutions particulières des équations différentielles, feu Charles tomba dans 

des paradoxes très singuliers, que le C . e n Biot a éclaircis dans un mém r c {présenté à 

l'Institut et imprimé} dans le { l l . e m e cahier du} journal de l'Ecole polytechnique. Le 

C. [crossed out: Brisson] Poisson ayant considéré ensuite ce même sujet sous un point 

de vue purement analytique a donné une explication très simple et très générale de la 

1 1[Sidenote: M. Fuss (dans le T XIV des Nova acta. Petrop), {a demontre ce théorème dont il ne 
connaissait que l'énonce, et} en a découvert un grand nombre d'autres sur le même sujet] 
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multiplicité des intégrales dont une équation aux différences est susceptible et de leur 

nature. 

Les CC. Laplace et Condorcet avaient imaginé de considérer des équations contenant 

à la fois des coëfficiens différentiels et des différences. Je les a[i] fait connaitre sous le 

nom d'équations aux différences mêlées, dans le traité des séries et des différences, et 

j ' y ai inséré l'extrait d'un mém r e {présenté} par le C . e n Biot {à l'Institut}. Ce mém r e 

où l'on trouve quelques principes généraux sur la nature des intégrales aux différences 

mêlées, contient en outre la solution de plusieurs [32v] questions géométriques qu'Euler 

avait résolues dans un mém r e ayant pour titre de insigni promotione methodi tangen-

tium inversœ, mais qui se rapportent plus naturellement aux équations aux différences 

mêlées, dont la nature est d'exprimer les propriétés des courbes qui établissent en même 

temps des relations entre plusieurs points infiniment voisins, et entre des points placés 

à des distances finies. 

[ • • • ] 

[35r Arbogast traite aussi] les produits de facteurs equidifferens - aux quels il donne 

le nom de factorielles. 

Ce genre de fonctions, que les géomètres ont eu de fréquentes occasions de considérer 

et que Vandermonde a représenté par une notation très ingénieuse et très expressive, 

qui met en évidence leur analogie avec les puissances, a été traité presqu'en même tems 

sous ce point de vue, sous le nom de facultés numériques, dans l'analyse des réfractions 

astronomiques de M. Krampt [sic] et dans le Traité des différences et des séries, servant 

d'appendice au Traité du calcul différentiel et du calcul intégral. 
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Appendix C 

Syllabi of Lacroix's course of 
analysis at the Ecole Polytechnique 

C l Lacroix's lectures on differential and integral 
calculus at the École Polytechnique in 1799-
1800 

The Wellcome Library for the History and Understanding of Medicine, in London, 
possesses a set of notebooks which once belonged to Aimé Marie Gaspard, marquis de 
Clermont-Tonnerre (1779-1865), a student at the École Polytechnique (entry of 1799 
[Fourcy 1828, 408]). These notebooks (mss. 1663-1670) contain notes from lectures at 
the Polytechnique dated from Frimaire to Thermidor, year 9 (November 1800 to August 
1801) - Clermont-Tonnerre's second year there; as the library catalogue indicates, these 
notes (at least the mathematics ones) are "very rough pencilled notes", and it is not 
easy at all to follow them. 1 

Happily, included in ins. 1668 is also a four-page set of summaries of first-year 
calculus lectures, in ink (much easier to read than the second-year notes). These 
summaries should then refer to Clermont-Tonnerre's first year, that is 1799-1800 -
Lacroix's first year as an instituteur at the Ecole Polytechnique. 

Next to each lecture there is an indication of several numbers which clearly corre
spond to the relevant articles in Lacroix's large Traité. This is a precious source for 
Lacroix's pedagogical use of his large Traité du calcul... before the publication of the 
Traité élémentaire de calcul.... 

This set of summaries is incomplete: the lectures on differential calculus are num
bered from 1 to 19 and those on integral calculus from 1 to 10; but an extra numbering 

1 Ms. 1666 seems to be the only one containing some lectures by Lacroix. The little 1 could 
understand from them is consistent with second-year lectures in analysis: they are mostly on integral 
calculus, but there is also one (21 Frimaire) on the roots of xm — 1 = 0 and probably on Cotes 1 

theorem. 
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next to the first and last of each of them suggests that there h ad been 25 lectures 

before the first one on differential calculus. Those 25 missing lectures were certainly 

on algebraic analysis. 

[Cours d'?] analyse[? 

Calcul Integral et différentiel 

Calcul différentiel 

26e Leçon { 1 ere définition des fonctions et leur division en 
explicites et implicites; distinction entre 
le développement et la serie qui donne 
la valeur 

définition du mot limite 
Expressions algébriques susceptibles de 

limites 
Propositions fondamentales de la théorie 

des Limites 
forme du développement d'une fonction de 

x. lorsqu'on change x en x + k. 

N. o s 

1,2 ,3 
4, 5, 6 
7, 11, 12 
13. 
de l'introduction 
1 ,2 ,3 
du Calcul différentiel 
excepté ce qui regarde 
les fonctions circulaires 
dans le N.° 2 

Indication de la manière dont les 
coefficients des puissances de 
l'accroissement sont liés entreux. 

Le 1 e r exprime la limite du rapport des 
accroiss m t s de la fonction et de 
la variable indépendante. C'est par 
cette considération qu'on l'obtient 
lorsqu'on n'a pas l'expression 
analytique de la fonction proposée 

Explication[?] de la notation 
indépendamment d'aucune hypothèse 
sur l'origine du calcul 

Regle[s?) pour differentier 

N . 0 8 

3, 9?, 13 
14, 15, 16, 
17, 18. 

Differentiation des fonctions transcendantes 
développement d'une fonction en série par 

des differentiations répétées. 
Application aux fonctions sinx.cosx; 
impossibilité de développer ainsi \ogx. 

N. o s 

19, 20, 21, [22]2 

93, 109[, 10]3 

103 ( l e r e alinea) 

Théorème de Taylor 
Son usage pour développer en série 
développement des fonctions rationelles au 

moyen des différentielles logarithmiques 

2Crossed out (?) in pencil. 
3 In pencil. 

N. o a 

109, 100, 98 
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5 e L. 

6 e L. 

7 e L. 

8 e L. 

9 e L. 

Développement des fonctions de deux variables 
Définitions des différences et des différent. e , l e s partielles, 
formation successive des différentielles des fonctions de 

plusieurs variables. 
Propriété des fonctions homegenes. 

Différentiation des Equations 
de l'Elimination des constantes et des transcendantes 

Passage des coefficients différentiels d'une variable à ceux 
de l'autre, c'est à dire dans les équations du 
second ordre, prendre pour constante telle 
différentielle que l'on voudra 

Différentielle de l'arc au moyen du sinus du cosinus 
et de la tangente 

diverses séries qui expriment l'arc 
Notions générales sur la liaison des lignes et des 

Equations à deux indéterminées. 

Correspondance de l'Intersection des Courbes avec 
l'Elimination et la Resolution des Equations. 
Recherche des lignes osculatrices des courbes 
formules des soutangentes, tangentes, sousnormales et 

normales 
réponse à quelques objections faites contre l'application 

de la méthode des limites 

N _ o s 

24, 25, 26 
28, 29, 30 
31. 91. 

N. 0 5 

40, 42, 43 
45, 46 : 47 
48, 50, 51 
52, 53, 55. 

56 ( l € r e alinea) 
57 (2 e alinea) 
56 (3 e alinea) 

N os 

23, 104, 
Note de la page 202 
Introd. page 64 ([?]) 
195. 

N.™ 
283, 284 
240. 241 

10e L. Continuation de la Méthode des Tangentes 
Recherche des asymptotes 

N . 0 3 

242, 243, 
240, 246, 24[4?] 
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11 e L. Suite de la recherche des asymptotes N.0*3 

des Coefficients différentiels qui deviennent 0 ou oo. 247, 24l[?] 
de Ceux qui deviennent des Points multiples 130, 131. 135 

136, 142. 

12e L. des Points d'inflexion, des Points de rebroussement N."5 

des Limites, des Maxima et minima 249, 250, 
252, 253, 148 
149. 

13 e L. Exemples de Maxima et de Minima; N. 0 8 151, 152, 153. 

14e L. Rebroussement de la 2 e Espèce; Théorie des Cercles N. 0 8 

oscillateurs ; des Rayons de courbure et des 251, 283 
développées. 260, 

245 ( l r e alin.) 
261, 262, 263, 
264. 

15e L. Suite de la Théorie des Rayons de courbure. N. 0 3 265 
application de cette Théorie 266 ( l r e et 3 m e [?] 

Idée de la Manière dont Leibnitz envisageait le Calcul 26[7?] [...?] 
différentiel, et son application à la Géométrie. 97. 

16e L. La logarithmique et la Cycloide N. 0 8 270, 271, 272 
273, 274. 

17e L. Les spirales et les coordonnées polaires N . 0 3 275, 276, 277 
278. 

18e L. de la développée de la spirale logarithmique. N. 0 8 278 
analogie des sinus et des cosinus [des arcs multiples'1] Int. 37, 38, 39, 40 

avec les Exponentielles imaginaires 

4 4 e 19e L. Développement des sinus et des cosinus des arcs Int. N . 0 8 42 
multiples par les puissances du sinus et du 43 
cosinus de l'arc simple (et vice versa) 

4Crossed out. 
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Calcul Integral 

os 45 e t l e r e
 de l'Integration des fonctions rationelles N. ( 

et entières, et commencement de celle 358. 359, 360 
des fractions rationelles 361. 362, 363 

364. 

2 e L. Continuation de L'Integration des fractions N. o s 366, 367 
rationelles. 

3 e Leç. de L'Integration des fractions irrationelles N. 0 8 376. 377, 
contenant le y/(A + Bx + Cx2) 378, 379 ( l r e , 3 e et 

4 e alin.) 

4 e L. de l'Integration des différentielles Binômes. N . o s 385, 387, 388, 389 

5 e L. de l'Integration par les series N. 0 8 406, 407, 408, 
409, 410, (3 Prem, alin.) 
439 ( l r e et 2 e alin.) 

6 e L. de la détermination des Constantes dans N . o s 470, 471, 476, 
les Intégrales, de la quadrature des 477, 478, 490. 
courbes. 

7 e L. suite de la quadrature des courbes et [de5] N. 0" 491, 492, 493, 
leur Rectification 495, 496, 498. 

8 e L. suite de la rectification des courbes, de N. o s 501, 513, 
l'Evaluation des Volumes et des aires 514, 515, 516, 
des corps engendrés par la Revolution 517. 
d'une courbe plane autour d'un axe 

9 e L. de l'Integration des Equations du 1 e r ordre N. 0 8 

à 2 variables; de la séparation des 543, 544, 545 
variables dans les Equations 546, 547 
homogenes; des Equations 552, 553. 
immédiatement integrables; du facteur 
et sa détermination lorsqu'il ne doit 
renfermer qu'une des variables. 

10 e et der I l i t í r c L. Continuation de l'integration des N . 0 3 554, 555, 556 
Equations différentielles du 1 e r ordre; 567, 568, 
principe de celle des Equations du 609, 610, 61[1?] 
second. 615 

°Crossed ou t. 
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C.2 The establishment of the first programme of 

analysis of the Ecole Polytechnique 

C.2.1 Lacroix's views on the syllabus of analysis in 1800 

The following text is kept at the Archives of the École Polytechnique [Éc. Pol. Arch, 

III3b]. It is unsigned. The handwriting is much better than that of Lacroix - possibly 

professional. But there are some corrections and additions, and thèse are unmistakably 

in Lacroix's hand. Moreover, the ideas expressed here are consistent with those in 

[Lacroix Î805\. The context is the discussion on the first officiai programme of analysis 

at the École Polytechnique [Belhoste 2003, 248-249]. 

Crossed out: 

Sur le cours d'analyse de l'Ecole Polytechnique 

New title 

Bases proposées par le Conseil d'Instruction de l'Ecole Poly
technique au Conseil de perfectionnement, pour servir à la for
mation des programmes de l'analyse a fournir aux Examina
teurs pour l'examen des deux divisions 

ÍI est constaté que dès qu'on a passé les premiers élémens, il faut s'élever très haut 

pour pouvoir trouver dans l'analyse des objets d'une application vraiement utile. Il suit 

de là qu'un cours d'analyse fait à des élèves qui savent déjà leurs élémens, et dans la 

vue de les initier dans les principales théories des sciences physiques et mathématiques, 

doit être assés étendu. 

Les efforts des Géomètres ont multiplié beaucoup les méthodes pour parvenir au 

même résultat; les unes paraissent plus directes, les autre, plus rigoureuses; mais toutes 

sont a peu près arrêtées par les mêmes difficultés. Si la connaissance de ces diverses 

méthodes importe à celui qui se propose d'enseigner ou qui veut se livrer exclusivement 

aux mathématiques, dans la vue de les perfectionner, elle ferait perdre beaucoup de 

tems à l'élève qui doit diriger tout son travail vers la méchanique. Celui-ci préfera 

sans doute la connaissance d'un résultat qu'il ignore à celle d'un nouveau chemin pour 

arriver à l'un de ceux qu'il possède déjà. 

Le cours d'analyse de l'École Polytechnique ne doit donc renfermer aucun dou

ble emploi, soit dans les objets qu'il embrasse soit dans ceux qui on été exigés pour 

l'admission. 

Avant qu'on se fût autant familiarisé avec le calcul différentiel et intégral qu'on l'a 

fait dans ces derniers tems, on s'efforçait de faire entrer dans l'algèbre le plus de choses 

qu'il était possible. On sacrifice souvent à cette vue la brièveté des démonstrations. 
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Il serait convenablep] d'en user[?] encore ainsi par rapport à des élèves à qui l'on 

n'enseignerait que l'algèbre; puisqu'il n'aurait que cet instrument entre les mains, il 

faudrait leur apprendre à en tirer le meilleur parti. Il n'est pas de même pour les élèves 

de l'École Polytechnique; le cours de leurs études embrassant le calcul différentiel et 

le calcul intégral, la vraie place d'une proposition ou d'un résultat est celle où ils se 

présentent le plus facilement et se lient avec un plus grand nombre d'autres. 

Cela posé on doit exiger pour l'admission les élémens d'algèbre complets, en les 

réduisant néanmoins à ce qui est utile, et parconséquent en substituant la résolution 

générale des équations numériques, à la résolution particulière des équations littérales 

du troisième et du 4. e degré qui est si compliqué que même pour les équations numériques 

de ce degré on a recours à la première. 

Il ne faut pas non plus exiger la démonstration du binôme pour le cas de l'exposant 

fractionnaire ou négatif, ni les séries des fonctions logarithmiques et circulaires, parceque 

le développement des fonctions se lie naturellement au calcul différentiel, comme une 

application spéciale du théorème de Taylor. 

On ne laisserait pas néanmoins ignorer aux élèves les principales circonstances de 

la résolution des équations littérales, mais elle ne ferait pas la matière de l'examen non 

plus que quelques autres digressions que l'on pourrait seulement indiquer aux élèves 

studieux que leur goût ou d'heureuses dispositions porteraient vers les mathématiques 

pures. 

On commencerait donc le cours d'analyse de l'École Polytechnique par les premiers 

élémens du calcul différentiel présentés ainsi qu'il suit: 

l e r e année. 

1.° La théorie purement analytique du calcul différentiel des fonctions à une seule 

variable, et des fonctions à deux variables, autant seulement qu'il en faut pour la 

diiférentiation des équations à deux variables. 

Ce calcul serait présenté par la méthode des limites [crossed out: comme il est 

indiqué dans le Programme que j 'ai donné cette année]. 

On se hâterait de parvenir au théorème de Taylor qu'on peut prouver de plusieurs 

manières qui ne supposent la connaissance du développement des puissances du binôme 

que pour le cas de l'exposant entier. On montrerait ensuite que les deux premiers termes 

du développement de (1 + z ) ^ et de (l + z ) _ T n sont 1 + ^ 2 et 1 — mz et delà on déduirait 

par le théorème de Taylor l'expression générale du développement de (1 + 2 ) m . 

Le même théorème conduirait au développement des fonctions circulaires et loga

rithmiques, lorsqu'on aurait obtenu leurs différentielles premières en prenant la limite 

du rapport de leurs accroissement à celui de leur variable. 

On passerait à l'examen des valeurs particulières que prennent les coëfficiens différen

tiels dans certains cas, à la recherche des fonctions qui se présentent sous la forme de 
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et à la théorie des maxima et de minima des fonctions d'une seule variable, soit 

explicites soit implicites. 

Viendrait ensuite l'application du calcul différentiel à la théorie des courbes. 

1.° A la recherche des osculations, et en particulier de celle de la tangente, & des cercles 

oscillateurs. 

2.° A la recherche des points singuliers, comprenant celle des inflexions, des rebrousse-

mens et des limites des courbes, ou des maxima et des minima de leurs coordonnées. 

[2.°?] On passerait de là aux premiers élémens du calcul intégral. On a pensé 

qu'il ne fallait pas exposer d'abord tout ce qu'on doit dire sur le calcul différentiel, 

non seulement dans le dessein de donner assez de calcul intégral pour mettre les élèves 

en état de suivre les élémens de mécanique de la première année, mais encore pout 

diminuer la sécheresse de l'étude de l'analise pure, en faisant connaitre les applications 

dont elle est susceptible, avant de s'enfoncer dans ce qu'elle offre de plus transcendant. 

Voici ce qu'on pourrait enseigner cette année: 

L'intégration des fonctions rationnelles et entières. 

L'intégration des fonctions rationnelles, n'indiquant pour la décomposition des frac

tions proposées en fractions simples que la méthode des coëfficiens indéterminées. 

L'intégration des fonctions rationnelles [sic] contenant le radical y/a + bx + ex2. 

Les transformations pour rendre rationnelles, quand cela est possible la différentielle 

binôme. xm~ldx(a-\-bxn)%. 

Les formules pour réduire cette différentielle à d'autres plus simples (soit relative

ment à l'exposant de x hors de la parenthèse, soit à celui de la parenthèse) déduites de 

l'intégration par parties. 

L'intégration des formules comprises dans la différentielle binôme, au moyen des 

séries, et obtenir par ce moyen le logarithme, l'arc par son sinus et par sa tangente. 

La détermination des constantes dans les intégrales. 

La quadrature des courbes et leur rectification. 

L'évaluation des volumes et des aires des corps engendrés par la révolution d'une 

courbe plane autour de son axe. 

L'intégration des équations différentielles à deux variables du premier ordre, I o 

lorsque ces variables sont séparées, 2° lorsque les équations sont homogènes. 

Le caractère des équations différentielles du 1 e r ordre qui sont immédiatement 

integrables. 

La détermination du facteur propre à rendre une équation différentielle du 1 e r ordre 

integrable, lorsque ce facteur ne doit renfermer que l'une des variables. 

L'intégration des équations différentielles du 2. e ordre qui ne referment que le 

coefficient différentiel de cet ordre et l'une des variables ou qui ne contiennent que 

les coefficients différentiels du l . e r et du 2. e ordre et des quantités constantes. 
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[Crossed out: On a fait voir] Montrer aussi que l'équation J^f + + Qy = R se 

ramène à l'équation Ĵr + P^ + Qy = 0. 

2. e année. 

On donnerait dans cette année les développemens du calcul différentiel, savoir: la 

diffèrentiation des fonctions de deux et d'un plus grand nombre de variables, l'élimi

nation des fonctions arbitraires, les maxima et les minima des fonctions de deux et 

d'un plus grand nombre de variables, les équations de condition (pour le l . e r ordre 

seulement). 

Les développemens du calcul intégral des fonctions d'une seule variable. 

Quelques notions sur la transcendante qui donne les oscillations du pendule conique. 

La théorie complète des équations différentielles du l . e r degré d'un ordre quelconque 

(équations linéaires). 

L'intégration des équations simultanées. 

Une idée succinte des méthodes d'approximation qu'on employé pour intégrer les 

équations différentielles du second ordre et notamment celles qui se rapportent aux 

mouvemens des corps. 

La théorie des solutions particulières. 

2 leçons Quelques notions purement analytiques sur l'intégration 

des équations différentielles partielles du l . e r ordre et sur 

les équations du l . c r degré du 2. ordre 

3 leçons L'abrégé de la méthode des variations. 

3 leçons L'intégration des fonctions aux différences (finies) les plus 

simples, et des équations du premier degré à deux vari

ables et a coëfficiens contans. 

Ceci ne serait 

pas exigé 

à l'examen. 

Approuvé par le Conseil d'Instruction pour être soumis a l'approbation du Conseil 

de Perfectionnement. Le 15 Brumaire an 9 

[Crossed out: Le 27 Vendémiaire an 9] 

C.2.2 The approved programme of analysis for 1800-1801 

The following is the programme of analysis that was approved by the Conseil de Per

fectionnement in 1800. It is reproduced from [Éc. Pol. Rapport, an 9, 28-34]. 
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PROGRAMMES D'ANALYSE. 

l . r e DIVISION. 

ANALYSE ALGÉBRIQUE. 

M O N T R E R qu'une équation peut se décomposer en autant de facteurs x — a, x — b, 

&a, qu'il y a d'unités dans le plus haut exposant de l'inconnue. 

Composition des équations, ou expression des coèfficiens en fonction des racines. 

Démontrer, tant par l'analyse que par la considération des courbes, que, si deux 

valeurs substituées à la place de x, dans le premier membre d'une équation, donnent 

deux résultats de signes contraires, il y a une racine comprise entre ces deux valeurs. 

Conclure de là que les équations de degré impair ont toujours une racine réelle, et 

que celles de degré pair, dont le dernier terme est négatif, en ont toujours deux. 

Méthode d'élimination réduite à la partie la plus élémentaire. 

Equation qui a lieu concurrement avec la proposée, dans le cas où celle-ci a des 

racines égales. (On démontrera, dans le calcul différentiel, que le commun diviseur de 

ces deux équations contient les racines égales de la proposée, élevées chacune à une 

puissances moindre d'une unité.) 

Faire voir quels sont les cas dans lesquels le premier membre d'une équation ne peut 

jamais changer de signe, quelquer valeur qu'on attribue à x. 

Démontrer, au contraire, que, lorsqu'il y a des racines réelles et inégales dans la 

proposée, on parviendra toujours à des résultats de signe contraire, en substituant à 

la place de x les termes successifs d'une progression arithmétique dont la raison est 

moindre que la plus petite différence des racines. 

Faire voir comment on trouverait, par l'élimination, l'équation aux différences des 

racines, et quel est son degré. 

Exposer ce qu'il y a de plus simple sur les limites des racines. 

Reprendre en peu de mots la méthode des diviseurs commensurables pour les 

équation numériques, ainsi que la méthode qui sert à trouver les racines approchées. 

Développement de quelques fonctions en séries, par la méthode des coèfficiens 

indéterminés. 

Loi générale des suites récurrentes, observée dans le développement des fractions 

rationnelles. 

Les progressions géométriques sont des suites récurrentes dont l'échelle de relation 

n'a qu'un terme; les progressions arithmétiques sont des suites récurrentes dont l'échelle 

de relation est composée des deux termes 2 et —1. 

Examen particulier des suites récurrentes, dont l'échelle de relation a deux termes. 

Leur décomposition en deux progressions géométrique, et de là leur terme général. 

Notions générales et succinctes des suites à différences constantes. 

407 



Faire voir comment on trouve le terme général d'une suite dont les différences 

secondes sont constantes. 

Application à diverses interpolations, et particulièrement à celle des tables de sinus 

et de logarithmes. 

Sommer les carrés, les cubes, &c, des nombres naturels, par une méthode simple; 

par exemple, par la méthode des coèfHciens indéterminés, et d'après le principe que 

le nombre des termes est élevé à une puissance plus grande d'une unité dans le terme 

sommatoire que dans le terme général. 

Application à différentes piles de boulets. 

Revue des formules trigonométriques les plus utiles, et de l'équation exponentielle 

qui a lieu entre un nombre et son logarithme. 

Déduire de cette équation les propriétés générales des logarithmes; comparer les 

différens systèmes entre eux, et faire voir comment on peut passer de l'un à l'autre. 

Quelques notions sur les fonctions en général, et sur leur division en fonctions 

entières, rationnelles, &c. 

CALCUL DIFFÉRENTIEL. 

Etablir les notions des différentielles sur la théorie des limites. Règles de la diffé

renciation pour un nombre quelconque de variables, et pour des fonctions explicites 

et implicites. (On donnera la différentielle de xm en général, d'après la formule du 

binôme, démontrée seulement pour le cas de l'exposant entier.) 

Différentielles des fonctions circulaires, logarithmiques et exponentielles, tant sim

ples que combinées. 

Différences secondes, troisièmes, &c. 

Démonstration du théorème de Taylor par une méthode simple, telle que la méthode 

des coèfficiens indéterminés. 

Démonstration de le formule du binôme dans le cas de l'exposant fractionnaire ou 

négatif. 

Complément de la théorie des racines égales. ( Voyez ci-dessus le théorème à 

démontrer.) 

Développement des séries qui donnent les logarithmes, les exponentielles, les sinus et 

cosinus en fonctions de l'arc, et réciproquement; le tout pouvant être considéré comme 

des applications du théorème de Taylor. 

Ce même théorème étendu à deux variables, c'est-à-dire, au développement de 

F(x + i.y + k). 

Loi du résultat. Conséquence qu'on tire par rapport à l'égalité des coèfficiens 

différentiels 

Condition pour que Mdx + Ndy soit une différentielle complète; 

Item, pour que Mdx + Ndy + Pdz en soit une. 

Notion des différences partielles. 
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Théorie des máxima et des mínima pour les fonctions d'une et de deux variables. 

Manière de distinguer le maximum du minimum. Application à des exemples choisis. 

Formules des sous-tangentes, sous-normales, tangentes. &c., déduites de la con

sidération des limintes. Détermination des asymptotes. 

D'un point donné hors d'une courbe, mener une tangente ou une normale à cette 

courbe. 

Expression du rayon de courbure, par une méthode facile et qui mène promptement 

au résultat- Propriétés générales de la dévelopée; manière d'en trouver l'équation. 

Application aux sections coniques, à la cycloïde, &c; donner la développée de la 

parabole, et la rectification de cette développée. 

Traiter sommairement des exceptions que présente le calcul différentiel, c'est-à-dire, 

des cas où, pour une abscisse déterminée x = a, les coèfficiens différentiels ^ , , &:c. 

deviennent § ou infinis. Il suffira de faire x = a + u>, en considérant u comme très-

petit, et de déterminer par l'analyse algébrique, la valeur de y, qui sera de la forme 

y = b + cum: alors, suivant les valeurs particulières de c et de m, on connaîtra si 

la courbe a un point multiple, un point d'inflexion ou de rebroussement. Deux ou 

trois exemples suffisent pour expliquer cette théorie, qui d'ailleurs ne doit occuper que 

très-peu de place dans le cours. 

On démontrera de même succinctement que la fraction ^ , dont les deux termes 

sont supposés s'évanouir lorsque x = a, est égale à ce qui suffira presque toujours 

pour en déterminer la valeur. 

CALCUL INTÉGRAL. 

Notions sur l'intégration en général. 

Intégration des différentielles monômes, et des fonctions entières. 

Cas d'intégrabilité des différentielles binômes. 

Intégration des fractions rationnelles, dans les cas les plus simples, et par la méthode 

des coèfficiens indéterminés. (On réservera pour la seconde année le développement des 

cas plus composas.) 

Manière de rendre rationnelles les différentielles affectées du radical *J{a+bx+cxx). 

Intégration des formules qui contiennent des sinus ou des exponentielles, dans les 

cas les plus simples. 

Réduction des différentielles binômes, appliquée principalement aux formules qui 

s'intègrent par les arcs de cercle. 

Montrer quelles sont ces formules principales auxquelles on rapporte les autres, et 

comment on en exprime l'intégrale. 

Intégration par séries. 

Formules pour la quadrature des courbes, leur rectification, les surfaces et les so

lidités des solides de révolution: insister, dans les applications, sur la détermination 

des constantes. 
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Integration des équations différentielles du premier ordre, dans les cas les plus sim

ples, savoir, ceux des équations séparables, des équations pour lesquelles la condition 

d'intégrabilité est satisfaite, des équations homogènes, et des équations linéaires. 

Intégration des équations différentielles du second ordre, dans quelques-uns des cas 

les plus simples, qui sont nécessaires pour le cours de mécanique. 

DEUXIÈME DIVISION. 

ANALYSE ALGÉBRIQUE. 

RÉSOLUTION des équations du troisième et du quatrième degré, par les méthodes 

les plus directes et les plus simples. 

Manière de déterminer la somme des carrés, celle des cubes, et autres fonctions 

invariables des racines d'une équation donnée. 

Démonstration du théorème qui fait connaître le nombre des racines positives et 

celui des racines négatives d'une équation dont toutes les racines sont réelles. 

Démontrer que toute équation de degré pair est décomposable en facteurs réels du 

second degré. 

Établir les formules (cos .x + \/(—l) sin .x)m = cos .mx + y/ ( -1) sin .ma;, epx^~^ = 

cos .x + y/ (—1) sinus x. 

Usage de la premiere, pour avoir toutes les racines des équations x™ — 1 = 0, 

xm + 1 = 0, ce qui conduit au théorème de Cotes. (On pourra démontrer aussi ce 

théorème par la voie des constructions géométriques.) 

Faire voir comment on peut résoudre, par la table des sinus, toute équation du 

troisième degré qui tombe dans le cas irréductible. 

Démontrer, sur quelques exemples pris dans les fonctions algébriques circulaires et 

logarithmiques, que toute quantité imaginaire se réduit toujours à la forme a + by/— 1, 

a et b étant réels. 

CALCUL INTÉGRAL. 

Complément de la méthode donnée dans la première partie, pour intégrer les frac

tions rationnlles. Manière de trouver directement les coèfficiens des fractions partielles. 

Développemens sur l'intégration des formules qui contiennent des fonctions circu

laires, logarithmiques ou exponentielles. 

Formule générale de l'aire d'une surface courbe quelconque, avec des applications à 

la sphère, au cône droit, &c. 

Déterminer, dans quelques cas particuliers, la solidité d'un corps terminé par une 

surface courbe donnée, et par des plans donnés de position; application aux solides con

sidérés par Mascheroni, dans son petit ouvrage intitulé. Problemi per gli agrimensori, 

con varie soluzioni; in Pavia, 1793. 

Integration de l'équation différentielle y — px = f:p; p étant égal à 
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Intégration de l'équation différentielle linéaire du second ordre, avec le développement 

du cas où les coèfficiens sont constans. 

Faire voir comment une équation différentielle du second ordre, où l'on a supposé 

une différentielle première constante, peut être changé en une autre qui ne suppose 

aucune différence constante. 

Intégrer par approximation les équations différetentielles du premier et du second 

ordre. 

Intégration des équations linéaires simultanées du premier et du second ordre, à 

coèfficiens constans. 

Faire voir quelle doit être la relation entre P et Q, pour que dz — pdx - qdy = 0 

soit l'équation différentielle d'une surface continue. 

Donner une idée du calcul aux différences finies, et des élémens du calcul des vari

ations. 

C.3 The syllabus of Lacroix's course of analysis at 

the Ecole Polytechnique in 1805-1807 

C.3.1 The officiai programme 

Thèse are the officiai programmes of analysis for the first year in 1805-1806 and second 

year in 1806-1807. Both are for the "lst division", because it was in 1806 that that 

expression started to apply to the second year instead of the first. 

They are reproduced from [Éc. Pol. Ârch, an 14, 39-42; year 1806, 25-26]. They 

are also in [Gilain 1988, 97-99], because thèse happen to be the years when a certain 

Augustin-Louis Cauchy studied at the École Polytechnique. 

1805-1806 

PROGRAMME D'ANALYSE 

l . r e DIVISION. 

ANALYSE ALGÉBRIQUE. 

DÉVELOPPEMENT de quelques fonctions en séries, par la méthode des coèfficiens 

indéterminés. 

Loi générale des suites récurrentes observée dans le développement des fractions 

rationnelles. 

Les progressions géométriques sont des suites récurrentes dont l'échelle de relation 

n'a qu'un terme; les progressions arithmétiques sont des suites récurrentes dont l'échelle 

de relation est composé de deux termes 2 et —1. 
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Examen particulier des suites récurrentes dont l'échelle de relation a deux termes; 

leur décomposition en deux progressions géométriques, et de là leur terme général. 

Revue des formules trigonométriques les plus utiles, et de l'équation exponentielle 

qui a lieu entre un nombre et son logarithme. 

Déduire de cette équation les propriétés générales des logarithmes; donner les séries 

qui servent à les calculer; comparer les difîérens systèmes entre eux; et faire voir com

ment on peut passer de l'un à l'autre. 

Quelques notions sur les fonctions en général, et sur leur division en fonctions 

entières, rationnelles. Sec. 

CALCUL DIFFÉRENTIEL. 

Établir les notions des différentielles sur la théorie des limites. 

Donner les différentielles des formules xm, xy, ^, d'après lesquelles on trouve aisément 

celles de toute fonction algébrique proposée d'une ou de plusieurs variables, implicite 

ou explicite. 

Différentielles des fonctions circulaires, logarithmiques et exponentielles, tant sim

ples que combinées. 

Différentielles seconde, troisième, &c. 

Démonstration du théorème de Taylor. 

Démonstration de la formule du binôme, dans le cas de l'exposant fractionnaire ou 

négatif. 

La théorie des racines égales, par le calcul différentiel. 

Application du théorème de Taylor, au développement des séries qui donnent les log

arithmes, les exponentielles, les sinus et cosinus en fonctions de l'arc, et réciproquement. 

Ce même théorème étendu à deux variables. 

Notions des différentielles partielles. 

Théorie des maxima et des minima pour les fonctions d'une et de deux variables. 

Manière de distingues le maximum du minimum. 

Application des exemples choisis. 

Formules des sous-tangentes, sous-normales, tangentes, & c , déduites de la con

sidération des limites. Détermination des asymptotes. 

Expression du rayon de courbure. 

Propriétés générales de la développée; manière d'en trouver l'équation. 

Application aux sections coniques, à la cycloïde, &c; donner la développée de la 

parabole, et la rectification de cette développée. 

Changer une fonction ou une équation différentielle du second ordre, où une diffé

rentielle première a été supposée constante, en une autre qui ne suppose aucune 

différentielle constante. 

On démontrera succinctement que la fraction ~, dont les deux termes s'évanouissent 

lorsque x = a, est égale à ~ : ce qui suffira presque toujours pour en déterminer la 

valeur. 
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CALCUL INTÉGRAL. 

Notions sur l'intégration en général. 

Intégration des différentielles monômes, et des fonctions entières. 

Cas d'intégrabilité des différentielles binômes. 

Intégration des fractions rationnelles, dans les cas les plus simples et par la méthode 

des coèfhciens indéterminés. (On réservera pour la seconde année le développement des 

cas les plus composés.) 

Manière de rendre rationnelles les différentielles affectées du radical y/ (a+bx+cxx). 

Réduction des différentielles binômes, appliquée principalement aux formules qui 

s'intègrent par les arcs de cercle et les logarithmes. 

Montrer quelles sont les formules principales auxquelles on rapporte les autres, et 

comment on en exprime l'intégrale. 

Intégration par séries. 

Formules pour la quadrature des courbes, leur rectification, les surfaces et les so

lidités des solides de révolution; insister, dans les applications, sur la détermination des 

constantes. 

1806-1807 

PROGRAMME D'ANALYSE 

l . r e DIVISION. 

ANALYSE ALGÉBRIQUE. 

RÉSOLUTION algébrique des équations du troisième et du quatrième degré. 

Établir les formules [cos. a;+\/(—l)sin. x]m = cos.mx+\/(—l) sin. mz; et e^v^ - 1 ) = 

cos. x + \/{— 1) sin. x. 

Usage de la première, pour avoir toutes les racines des équations xm — 1 = 0, xm + 1, 

ce qui conduit au thérème de Côtes. 

Faire voir comment on peut résoudre, par les tables des sinus, toute équation du 

troisième et du quatrième degré. 

CALCUL INTÉGRAL. 

C O M P L É M E N T de la méthode donnée dans la première partie, pour intégrer les 

fractions rationnelles. Manière de trouver directement les coèfficiens des fractions par

tielles. 
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Intégration des formules qui contiennent des fonctions circulaires, logarithmiques 

ou exponentielles. 

Formules générales du volume et de l'aire d'un corps terminé par une surface courbe 

quelconque, avec des applications à la sphère; au cône droit, hc. 

Condition pour que Mdx + Ndy soit une différentielle complète, et pour que Mdx + 

Ndy + Pdz en soit une aussi. 

Intégration de ces différentielles lorsqu'elles satisfont à ces conditions. 

Intégration de l'équation linéaire du premier ordre. 

Théorème des fonctions homogènes. 

Intégration des équations homogènes du premier ordre. 

Intégration de l'équation différentielle y — px = f.p, p étant égal à ^ . 

Intégration de l'équation différentielle linéaire d'un ordre quelconque dans les cas 

oè les coèfficiens sont constans. 

Nombre des constantes arbitraires qui doivent entrer dans l'intégrale complète d'une 

équation différentielle d'un ordre quelconque. 

Intégrer par approximation les équations différentielles du premier et du second 

ordre, à coèfficiens contans. 

Donner les élémens du calcul des différences finies, et les formules d'interpolation; 

insister sur cette dernière partie. 

Application de ces formules à la rectification des courbes, à la quadrature des sur

faces, et à la cubature des solides, par approximation. 

C.3.2 Summaries of lectures 

From the year 1805-1806 onwards the inspecteur des élèves Gardeur-Lebrun kept records 

of the lectures given at the Ecole Polytechnique (as well as of interrogations made to 

the students). In 1808 he used thèse to make a table summarizing Lacroix's first-year 

course of 1805-1806 for Ampère's benefit - Ampère was going to be responsible for the 

first-year course for the first time. This table is kept at [Ampère AS, cart. 5, chap. 4, 

chem. 100), and is reproduced below. 

After that cornes a table made by me, modelled on Gardeur-Lebrun's, summarizing 

the records of Lacroix's second-year lectures in 1806-1807 [Éc. Pol. Arch, X2c/6]. 
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Cours d'analyse de l'année 14 - 1806 

Marche du Cours d'analyse fait par M. r Lacroix 
pour la 2. e Division 

Indication des matières nombre des leçons 

Analyse 
Des séries recurrentes 4. 
Revue des principales formules trigonométriques 1. 
Usage de ces formules 1. 

Calcul différentiel 
Notions préliminaires et principes du Calcul différentiel (du 

N.° 1 au N.° 17 du cours de M. Lacroix) 3. 
Des différentiations successives (de 17 a 23) 2. 
De la différentiation des fonctions transcendantes (de 23 à 38) _ 6. 
De la différentiation des équations quelconques à deux variables 

(de 38 à 47) 5. 
Recherche des Máxima et des Mínima des fonctions d'une seule 

variable (de 47 à 52) , 2. 
Des valeurs que prennent dans certains cas les coëfficiens diffé

rentiels, et des expressions qui deviennent 0/0 (de 52 à 60) 4. 
Application du calcul différentiel à la théorie des courbes (de 60 

à 77) 6. 
Recherche des points singuliers des courbes (de 77 à 87) 2. 
Exemple de l'analyse d'une courbe (de 87 à 94) 3. 
Des courbes osculatrices (de 94 à 101) 4. 
Des courbes trancendantes (de 101 à 115) 7. 
Du changement de la variable indépendante (de 115 à 120) 1. 
De la différentiation des fonctions de deux ou d'un plus grand 

nombre de variables (de 120 à 133) 4. 
Recherche des Mínima et des Máxima des fonctions de deux 

variables (de 133 à 137) , , 2. 

Calcul intégral 
Intégration des fonctions rationnelles d'une seule variable (de 

145 à 160) 4. 
De l'intégration des fonctions irrationnelles (de 160 à 169) 2. 
De l'intégration des différentielles binômes (de 169 à 175) 1. 
De l'intégration par les séries (de 175 à 181) 1. 
De la quadrature des courbes, de leur rectification; de la qua

drature des surfaces courbes, et de l'élévation6 des volumes 
qu'elles comprennent (de 222 à 243) 2. 

t o t a l du n o m b r e des leçons 67. 

6Sic; should be "évaluation", as in [Lacroix 1802a, xxxvhi; 2nd ed, ix] and in the original lecture 
record. 
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1806 - 1807 

Marche du Cours d'analyse fait par Lacroix 
pour la l . e r e Division 

Indication des matières nombre 

Calcul intégral 
Suite de l'intégration des fonctions rationelles d'une seule varia

ble, depuis ou on a quitté cette matière dans le cours de la 
l . e année (de 155 à 160) 

De l'intégration des fonctions irrationnelles (de 160 à 169) 
De l'intégration des quantités logarithmiques et exponentielles 

(de 181 à 192) 
De l'intégration des fonctions circulaires (de 192 à 209) 
Méthode générale pour obtenir la valeur approchée des intégra

les (de 209 à 222, et le 384) 
De la cubature des corps terminés par des surfaces courbes &c. 

(de 243 à 253) 
De l'intégration des équations différentielles à 2 variables. De la 

séparation des variables dans les équations différentielles du 
l . e r ordre (de 253 à 261) 

Recherche du facteur propre à rendre integrable une équation 
différentielle du l . e r ordre (de 261 à 268) 

Des équations du l . e r ordre dans lesquelles les différentielles 
passent le l . e r degré (de 268 à 271) 

De l'intégration des équations différentielles du 2. d ordre et des 
ordres supérieurs (de 271 à 287) 

Méthode pour résoudre par approximation les équations diffé
rentielles du l . e r et du 2. d ordre (de 288 à 293) 

Des solutions particulières des équations différentielles du l . e r 

ordre (de 293 à 300 inc.) , , 
Résolution de quelques problêmes géométriques, dependans des 

équations différentielles (le 304) 
De l'intégration des fonctions de deux ou d'un plus grand nom

bre de variables (de 305 à 311; Mdx + Ndy = 0 &c.) 
De la méthode des variations (de 323 à 330) 
Des máxima et des minima des formules intégrales indétermi

nées (de 331 à 340) 
Du calcul direct des différences (de 340 à 346) 
Application du calcul des différences à l'interpolation des suites 

(de 349 à 356) 
Du calcul inverse des différences, par rapport aux fonctions ex

plicites d'une seule variable (de 356 à 361, 363 et 366) 
Application du calcul des différences à la sommation des suites 

(le 367) 
Application au calcul des piles de boulets fin du cours 
De la solution générale des équations des 3 e et 4 e degré (Ampè-

re) . 

total du nombre des leçons 
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Appendix D 

Biographical data on a few obscure 

characters 

Many mathematicians are mentioned in this thesis. Most of them have entries in the 

Dictionary of Scientific Biography [Gillispie DSB\. A few more obscure ones do not. 

In this appendix I give some biographical data on the most relevant ones who are in 

the latter case. 

Jacques Charles, le geometre 

Charles is the most obscure of these characters, having been often confused with his con-

temporary, the physicist and balloonist Jacques-Alexandre-César Charles; both Charles 

were members of the Académie des Sciences de Paris (although not simultaneously) 

and in its archives the distinction is made by referring to our Charles as "Charles, 

le géomètre". Charles, le geometre appears to have been born in Cluny (Burgundy), 

possibly in 1752. When he was 20 years old he became a teacher of mathematics in a 

school in Nanterre (on the outskirts of Paris), and a few years later he moved to the 

capital. He started submitting works to the Académie des Sciences in 1770 - very ele-

mentary at first, but of increasing sophistication over the years. He was finally elected a 

member in 1785. The following year Bossut, who held a chair of hydrodynamics at the 

Louvre, appointed Charles as his assistant. But just a few years later he was affected 

by serious health problems, including hand paralysis. He died in 1791. Most of his 

scientific work was on integral calculus, and especially on finite différence équations. 

He collaborated in the Encyclopédie Méthodique. [Gough 1979; Hahn 1981} 

Jacques-Antoine-Joseph Cousin 
Cousin was born in Paris on 29 January 1739. He was professor of physics at the Collège 

Royal de France from 1766 onwards; he was also a teacher at the Ecole Royale Militaire 

from 1769. In 1772 he became a member of the Académie des Sciences de Paris. After 

the Revolution Cousin got involved in politics: he was elected a municipal officer in 

1791, member of the Corps Législatif in 1798, and became a senator in 1799. Düring 

the Terror, he was imprisoned for eight and a half rnonths. Cousin published several 
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textbooks, including one on physics written in jail. His most famous book is the Leçons 
de Calcul Différentiel et de Calcul Intégral [1777] - known especially for its second, 
enlarged édition, hearing the title Traité de Calcul Différentiel et de Calcul Intégral 
[1796]; according to Lacroix, this second édition was also prepared while he was in 
prison [Delambre 1810, 96j. Cousin died on 29 December 1800. [Michaud Biographie, 
X, 127-128] 

Jean-Guillaume Garnier 
Garnier was born in Reims (Champagne) on 13 September 1766. He was above all a 
teacher. After studying in Reims and Paris, Garnier taught for a year in the military 
school at Colmar (Alsace), where he met Arbogast. This school being closed in 1789, he 
returned to Paris. There. he worked for six years at Prony's industriai project for con
struction of logarithmic and trigonometrie tables [Grattan-Guinness 1990, I. 179-183]; 
apparently this was his only job not related to éducation. From year 3 to year 8 (1794-
1795 to 1799-1800) he was an examiner of candidates to the École Polytechnique. But 
he also established a private residential school for preparing those candidates. It was 
as examiner that he went in year 3 to Auxerre where, he later claimed, he discovered 
Fourier, later arranging for his acceptance at the École Normale [Quetelet 1867, 210], 
In 1798, when Fourier went in the Egyptian campaign, Garnier was employed as tem-
porary replacement, teaching analysis at the Ecole Polytechnique. But when Fourier 
returned and was appointed prefect at Grenoble, the minister of the interior Laplace 
appointed Poisson, rather than Garnier, to Fourier's post at the École Polytechnique; 
Poisson had been staying for some years at Garnier's school. For the next 13 years 
Garnier dedicated himself exclusively to his preparatory school. From 1800 to 1814 
he also published several textbooks, from arithmetic to integral calculus. Following 
difficulties with his school in the final period of the Empire and early Restoration, he 
was invited in 1816 to become professor of mathematics at the University of Gand, in 
the newly-formed kingdom of united Netherlands; he aeeepted and never returned to 
France. In Gand he met Adolphe Quetelet, whom he helped be awarded the doctorate, 
and in 1825 they jointly launched a journal called Correspondance mathématique et 
physique. In Gand he also published new éditions of some of his textbooks; but he left 
manuscripts of several other books unpublished. For some reason, when the Belgian 
universities were reformed in 1835 (following the independence in 1830), Garnier was 
excluded from the teaching body; but at least this time he got a pension. He died in 
Brüssels on 20 December 1840 or 1841. [Quetelet 1867, 203-243] 

Pietro Paoli 
Paoli was born in Livorno (Tuscany) on 2 March 1759. He studied first in a Jesuit 
college in Livorno, and then in the University of Pisa, where he graduated in Law 
in 1778, studying mathematics and physics at the sanie time. He taught from 1780 
to 1782 at a school in Mantua, from 1782 to 1784 in the University of Pavia, and 
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from 1784 to 1814 at the University of Pisa. After 1814 he held administrative posts 

related to éducation in the Grand Duchy of Tuscany. He published many research 

memoirs, from 1780 to 1836, mostly on differential and/or finite différence équations, 

but also on séries, definite intégrais, and other topics. Nearly ail of thèse memoirs were 

published by the Società Italiana, a scientific society of which Paoli was a founding 

member (1782). However, Iiis most successful work was not a research memoir, but 

rather a treatise on analysis, the Elementi d'Algebra (1794); this is not a book on 

algebra only. as the title suggests - its first volume covers lower algebra and algebraic 

analysis, but the second volume is on differential and integrai calculus (paying much 

attention to differential équations, and including the calculus of variations and eveu 

finite différence équations); this book was much praised by Lacroix and by Lagrange. 

Paoli died in Florence (the capital of the Grand Duchy of Tuscany) on 21 February 

1839. [Nagliati 1996, 80-82, eh. 3; 2000, 828-830] 
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By default, internet références appear as <url> (date of access). However, there are 

cases where this would not be appropriate. because: 1 - there is not a précise url 

for the document (which may be divided into several files, typically one image per 

page); 2 - the document was accessed several times, often with long intervais of time in 

between. Below I use the following abbreviations to indicate that a digitalized version 

of a document is available at an online library. and that this version was consulted 

during the préparation of this work (althoug usually also the original, paper version 

was consulted). Only stable libraries are included (Google Book Searck, for instance, 

is not). In the case of memoirs, it is the corresponding volume of the journal that is 

available. 

BBAW: <http://bibliothek.bbaw.de/bibliothek-digital/digitalquellen/schriften> 

Gallica: <http://gallica.bnf.fr> 

GDZ: <http://gdz.sub.uni-goettingen.de> 

Notes on 18th-century académie collections 

Dates of 18th-century académie collections are notoriously confusing. Here, uMém. 

Acad. Berlin, 1786 (1788)" refers to the volume for 1786, which was published in 1788; 

"Commentarii Academiae Scientiarum Petropolitanae 5 (1730-1731), 1738" refers to 

volume 5, which is for 1730-1731, but was publised only in 1738; generally speaking, 

years in roman type are publication dates, while years in italic are those to which the 

volumes refer (and which, in a sensé, are part of the title). 

A few titles of académie collections have been abbreviated: 

Mcm. Acad. Berlin, <year> stands for 1 - Histoire de V'Académie Royale des Sciences 

et Belles Lettres, Année <year>. Avec les Mémoires pour la même Année, 

Berlin (1745 < year < 1769); 2 - Nouveaux Mémoires de lAcadémie Royale 

des Sciences et Belles-Lettres, Année <year>, avec l'Histoire pour la même 

année, Berlin (1770 < year < 1786); 3 - Mémoires de lAcadémie Royale des 

Sciences et Belles-Lettres, Berlin (1786 — 1787 < year < 1804); often, the 

pages indicated are in the second pagination (the first being dedicated to the 

history of the academy, rather than the memoirs). 

420 

http://bibliothek.bbaw.de/bibliothek-digital/digitalquellen/schriften
http://gallica.bnf.fr
http://gdz.sub.uni-goettingen.de


Mém. Acad. Paris, <year> stands for Histoire de l'Académie Royale des Sciences. 

Année <year>. Avec les Mémoires de Mathématique & de Physique, Paris. 

2nd pagination. 

Savans Étrangers stands for Mémoires de Mathématique et de Physique, présentés 

a l Académie Royale des Sciences, par divers Savans, et lus dans ses As

semblées, Paris. 

Archivai sources 

[Acad. R. Se PV] Registre [or Procès-verbaux] de l'Académie Royale des Sciences, 

Archives de l'Académie des Sciences de l'Institut de France (Paris, France) 

[Gallica, as "Procès-verbaux"]. 

[Ampère AS] Papiers de Adrien-Marie Ampère, Archives de l'Académie des Sciences 

de l'Institut de France (Paris, France). 

[Arbogast 1789] Louis-François-Antoine Arbogast, "Essai sur de nouveaux Principes 

de Calcul différentiel et de Calcul intégral", Biblioteca Medicea Laurenziana 

(Florence, Italy), Ashburnham Appp. 1840 [photocopies supplied by Marco 

Panza]. 

[Éc. Pol. Arch] Archives de l'École polytechnique (Palaiseau, France). 

[Garnier 1800-1802) Jean-Guillaume Garnier, Leçons [or Cours] d'Analyse algébrique, 

différentielle et intégrale, printed set(s) of lecture notes distributed to stu-

dents of the Ecole Polytechnique; a few copies (partial or bound in wrong 

order) are kept in [Éc. Pol. Arch]; 6 parts, each composed of numbered leaves 

with (usually four) unnumbered pages: I - Cours d'Analyse Algébrique fait 

en l'an 9, II - Cours d'Analyse différentielle fait in l'an 9, III - Cours de Cal

cul intégral fait en l'an 9, IV - Cours d'Analyse algébrique fait en l'an 10, V 

- Cours d'Analyse différentielle fait in Pan dix, VI - Cours de Calcul intégral 

fait en l'an dix; parts LUI also exist as a set. with préface and titlepage, 

Paris: Baudouin, Floréal year 9 (April-May 1801) [the full set of six parts is 

announced as one complète work in Journal de l'École Polytechnique, Tome 

IV, l lème cahier, (Messidor year 10 = June/July 1802), p. 358]. 

[Lacroix ^45] Dossier biographique de Sylvestre-François Lacroix, Archives de 

l'Académie des Sciences de l'Institut de France (Paris, France). 

[Lacroix IF\ Papiers de Sylvestre François Lacroix, Bibliothèque de l'Institut de France 

(Paris, France), ms. 2396-2403. 

[Lacroix LH] Dossier of Silvestre François de Lacroix as a mernber of the Légion 

d'Honneur, Centre Historique des Archives nationales (Paris, France), 

LH1429073. 

421 



Published sources 

[Acad. Berlin 1786} "Prix", Mém. Acad. Berlin, 1786 (1788), Ist pagination, pp.8-9 

[BBAW]. 

(Acad. Se. Paris Guide) Eric Brian and Christiane Demeulenaere-Douyère (eds.), His

toire et mémoire de l'Académie des sciences; Guide de recherches, Paris, 

London and New York: Lavoisier Tee et Doc, 1996. 

[Acad. Se. Iiist. PV\ Institut de France - Académie des Sciences, Procès-verbaux des 

scéances de l'Académie tenues depuis la fondation de l'Institut jusqu'au mois 

d'août 1835, 10 vols., Hendaye: Observatoire d'Abbadia, 1910-1922; 1 vol. of 

index ("Tables générales alphabétiques"), Paris: Imprimerie nationale, 1979 

[Gallica). 

[Ackerberg-Hastings 2004] Amy Ackerberg-Hastings, "From Cambridge to Cam

bridge: The Mathematical Significance of John Farrar's European So jour ns", 

Proceedings of the Canadian Society for History and Philosophy of Mathe-

matics / Société Canadienne d'Histoire et Philosophie des Mathématiques 17 

(2004), pp. 6-15. 

[Aggarwal 2006] Abhilasha Aggarwal, British higher éducation in mathematica for and 

in India, 1800 - 1880, PhD thesis, submitted in November 2006 to Middlesex 

University. 

[Ampère 1806] Adrien-Marie Ampère, "Recherches sur quelques points de la théorie 

des fonctions dérivées qui conduisent à une nouvelle démonstration de la 

série de Taylor, et à l'expression finie des termes qu'on néglige lorsqu'on 

arrête cette série à un terme quelconque", Journal de l'École Polytechnique, 

vol. VI, 13ème cahier (April 1806), pp. 148-181. 

[Ampère 1815] Adrien-Marie Ampère, "Considérations générales sur les intégrales des 

équations aux différentielles partielles", Journal de l'Ecole Polytechnique, vol. 

X, 17ème cahier (January 1815), pp. 549-611. 

[Anonymous 1818] Ot., "Lacroix (Silvestre-François)", Biographie des Hommes Vi

vants, vol. 4, Paris: Michaud, 1818, pp. 24-25. 

[Anonymous 1900) "[Anfrage] 88. On the technical terms „Differential Quotient, Def

inite Integral".", Bibliotheca Mathematica (3rd series) 1 (1900), p.517. 

[Arbogast 1791) Louis-François-Antoine Arbogast, Mémoire sur la nature des Fonc

tions Arbitraires qui entrent dans les intégrales des équations aux 

différentielles partielles. St. Pétersbourg: Imprimerie de l'Académie Impériale 

des Sciences. 1791. 

422 



[Banionis 2001} Juozas Banionis, Matematinê mintis Lietuvoje (istorinê apzvalga iki 

1832 m.), Vilnius: Vilniaus Peclagoginis Universitetas, 2001 [available online 

<http://www.vpu.lt/bibl/elpvu/28097.pdf> (27 December 2006)]. 

[Beckers 2000] Danny J. Beckers. "Positive Thinking. Conceptions of Negative Quan

t i t és in the Netherlands and the Réception of Lacroix's Algebra Textbook", 

Revue d'Histoire des Mathématiques 6 (2000). pp. 95-126. 

[Belhoste 1992] Bruno Belhoste. "Sylvestre-François Lacroix et la géométrie descrip

tive", appendix 18 to J. Dhombres (ed.), L'Ecole normale de l'an III — 

Leçons de mathématiques, Paris: Dunod, 1992. pp. 564-568. 

[Belhoste 1995] Bruno Belhoste (ed.), Les sciences dans l'enseignement secondaire 

français - textes officiels, Paris: Institut national de recherche pédagogique 

and Éditions Économica, 1995. 

[Belhoste 2003} Bruno Belhoste, La Formation d'une Technocratie - L'Ecole polytech

nique et ses élèves de la Révolution au Second Empire, Paris: Belin, 2003. 

[Belhoste & Taton 1992] Bruno Belhoste and René Taton, "L'invention d'une langue 

des figures", in J. Dhombres (ed.), L'École normale de l'an III — Leçons de 

mathématiques, Paris: Dunod, 1992, pp. 269-303. 

[Jac. Bernoulli 1696] Jacob (I) Bernoulli, "Problema Beaunianum universalius concep-

tum", Acta Eruditorum, Jul. 1696. pp. 332-337 = Jacobi Bernoulli Basileensis 

Opera, vol. II, Geneva: Cramer, 1744, pp. 731-739. 

[Jac. Bernoulli Séries] Jacob (I) Bernoulli, "Tractatus de Seriebus Infinitis", in Ars 

Conjectandi..., Basilea: Thurnisii fratres, 1713, pp. 241-306. 

[Joh. Bernoulli 1694] Johann (I) Bernoulli, "Modus generalis construendi omnes asqua-

tiones différent!aies primi gradus", Acta Eruditorum, Nov. 1694, pp. 435-437 

= Johannis Bernoulli Opera Omnia, vol. I, Lausanna Sc Geneva: Marcus-

Michael Bousquet, 1742, pp. 123-125. 

[Joh. Bernoulli Integralium] Johann (I) Bernoulli. "Lectiones Mathernaticaü de 

Methodo Integralium", in Johannis Bernoulli Opera Omnia, vol. III, Lau

sanna & Geneva: Marcus-Michael Bousquet, 1742, pp. 385-558 [composed in 

1691-1692]. 

[Nie. Bernoulli 1720} Nicolaus (II) Bernoulli, "Exercitatio geometrica de Trajectoriis 

Orthogonalibus", Ist part Acta E-ruditorum, May 1720. pp. 223-237, 2nd part 

Actorum Eruditorum Supplementa 7 (1721), pp. 303-326, 3rd part Actorum 

Eruditorum Supplementa 7 (1721). pp. 337-353; also in Johannis Bernoulli 

Opera Omnia, vol. II, Lausanna h Geneva: Marcus-Michael Bousquet, 1742, 

pp. 423-472 [page références are to this later édition]. 

423 

http://www.vpu.lt/bibl/elpvu/28097.pdf


[Bézout Î779] Etienne Bézout, Théorie générale des équations algébriques, Paris: Pier

res, 1779. 

[Bézout 1796} Etienne Bézout, Cours de Mathématiques, à l'usage des Gardes du 

Pavillon et de la Marine, 6 vols., Paris: Baudelot & Eberhart, year IV (1796) 

[first ed. is from 1764-1769]. 

[Bézout 1824] Etienne Bézout. First Principies of the Differential and integral Calcu-

lus [...], Cambridge, Massachusetts: University Press, 1824. 

[Binet 1809] Paul René Binet, "Mémoire sur la fonction dérivée, ou coefficient 

différenciel du premier ordre", Nouveau Bulletin des Sciences, par la Société 

Philomatique, Vol. I, n. 16 (Jan 1809), pp. 275-278. 

[Biot 1797} Jean-Baptiste Biot. "Considérations sur les Intégrales des Équations aux 

différences finies", Journal de l'École Polytechnique, vol. IV, l lème cahier 

(1802), pp. 182-198 [submitted to the Institut national on 6 Ventôse year 5 

= 24 February 1797]. 

[Biot 1799\ Jean-Baptiste Biot, "Mémoire sur les équations aux différences mêlées", 

Mémoires présentés à l'Institut des Sciences, Lettres et Arts par divers Savans 

et lus dans ses Assemblées. Sciences Mathématiques et Physiques I (1806), 

pp. 296-327. 

[Biot 1800} Jean-Baptiste Biot, "Considérations sur les équations aux différences 

mêlées", Bulletin des Sciences, par la Société Philomatique, vol.II, n.°35 

(Pluviôse year 8 = Jan.-Feb. 1800), pp. 86-88 \Gallica}. 

[Blanc 1957] Charles Blanc, "Préface des volumes II/6 et II /7", [Euler Opera, series 

2, VI. vii-xxxv], 

[Bos 1974] Henk J. M. Bos, "Differentials, higher-order differentials and the derivative 

in the Leibnizian calculus", Archive for History of Exact Sciences 14 (1974), 

pp. 1-90. 

[Bos 1980} Henk J. M. Bos, "Newton, Leibniz and the Leibnizian Tradition", in Ivor 

Grat tan-Guinness (ed.). From the Calculus to Set Theor-y, London: Duck

worth, 1980; 2nd ed.: Princeton, New Jersey: Princeton University Press, 

2000, pp. 49-93. 

[Bos 1984} Henk J. M. Bos, "Arguments on Motivation in the Rise and Decline of 

a Mathematical Theory; the 'Construction of Equations', 1637 - ca. 1750", 

Archive for History of Exact Sciences 30 (1984), pp. 331-380. 

424 

file:///Gallica}


[Bos 1986} Henk J. M. Bos, "The Concept of Construction and the Representation of 
Curves in Seventeenth-Century Mathematics" (invited lecture at the Inter
national Congress of Mathematicians at Berkeley, CA, USA, 1986), Lectures 
in the History of Mathematics, American Mathematical Society and London 
Mathematical Society, 1993. pp. 23-36. 

[Bos 2001] Henk J. M. Bos, Redifining geometrical exactness: Descartes' transforma
tion of the early modem concept of construction, New York: Springer, 2001. 

[Bos 2004] Henk J. M. Bos, "The rôle of the concept of construction in the transi
tion from inverse tangent problems to difTerential équations", Oberwolfach 
Reports 1 (2004), pp. 2735-2736 [extended abstract of a talk given at the 
Workshop The History of Differential Equations, 1670-1950, Mathematisches 
Forschungsinstitut Oberwolfach, October 31st - November 6th, 2004). 

[Bossut 1798] Charles Bossut, Traités de Calcul Différentiel et de Calcul Intégral, 2 
vols.. Paris: de l'Imprimerie de la République, An VI (1798). 

[Boyer 1939} Carl B. Boyer, The Concepts of the Calculus — A Critical and Historical 
Discussion of the Derivative and the Integral, New York: Columbia Univer-
sity Press, 1939; 2nd printing with minor corrections, 1949; fac-similé reprint 
under the title The History of the Calculus and its Conceptual Development, 
New York: Dover, 1959. 

[Boyer 1956] Carl B. Boyer, History of Analytic Geometry, New York: Scripta Math-
ematica, 1956; fac-similé reprint, Mineola, New York: Dover, 2004. 

[Brezinski 1991} Claude Brezinski, History of Continued Fractions and Padé Approx-
imants, Berlin: Springer, 1991. 

[Cajori 1919] Florian Cajori, A History of Mathematics, New York: MacMillan, 1919 
(2nd. ed.). 

[Cajori 1928-1929} Florian Cajori, A History of Mathematical Notations, 2 vols., 
Chicago: Open Court, 1928, 1929; reprinted, 2 vols, bound as one, New 
York: Dover, 1993. 

[Cantor 1879} Moritz Cantor, "Gruson: Johann Philipp G. : auch Grüson", All
gemeine Deutsche Biographie, X, Leipzig: Duncker & Humblot, 1879, 
pp. 65-66; <http://mdz.bib.bvb.de/digbib/lexika/adb/images/adb010@ebt-
link?target =idmatch(entyref,adb0l00067)> (21 January 2007). 

[Carnot 1797} Lazare Carnot, Réflexions sur la Métaphysique du Calcul Infinitésimal, 
Paris: Duprat, An V (1797); also in Oeuvres Mathématiques du Citoyen 
Carnot, Basle: J. Decker, 1797, pp. 125-204. 

425 

http://mdz.bib.bvb.de/digbib/lexika/adb/images/adb010@ebt-?link?target%20=idmatch(entyref,adb0l00067)
http://mdz.bib.bvb.de/digbib/lexika/adb/images/adb010@ebt-?link?target%20=idmatch(entyref,adb0l00067)


[Cauchy 1821} Augustin-Louis Cauchy, Cours d'Analyse de l'École Royale Polytech

nique. lre Partie: Analyse Algébrique, Paris: Debure. 1821; fac-similé reprint, 

Paris: Jacques Gabay, 1989. 

[Cauchy 1823} Augustin-Louis Cauchy. Résumé des leçons donnés à l'Ecole Royale 

Polytechnique sur le calcul infinitésimal, Paris: Debure, 1823; fac-similé 

reprint, Paris: ACL-éditions, 1987. 

[Cauchy 1981] Augustin-Louis Cauchy. Équations Différentielles Ordinaires, Paris and 

Saint-Laurent: Études Vivantes / New York and London: Johnson Reprint, 

1981 (reprint of an incomplète set of notes from lectures given to second-year 

students of the École Polytechnique in the 182Û's, with an introduction by 

Christian Gilain). 

[Chabert 1999] Jean-Luc Chabert (éd.), A History of Algorithms — From the Pebble 

to the Microchip, Berlin: Springer, 1999. 

[Charles 1785a] Jacques Charles, "Recherches sur les intégrales des équations aux 

différences finies, et sur d'autres sujets", Savans Etrangers 10 (1785), pp. 573-

588. 

[Charles 1785b] Jacques Charles, "Théorème sur les équations en différences finies", 

Mém. Acad. Paris, 1783 (1786), pp. 560-562 [read on 23 November 1785; 

Gallica]. 

[Charles 1785c] Jacques Charles, " INTÉGRAL (Calcul intégral des équations en 

différences finies)", Encyclopédie Méthodique - Mathématiques, vol. II, Paris: 

Panckoucke and Liège: Plomteux, 1785, fac-similé reprint, Paris: ACL-

éditions, 1987, pp. 221-225 [Gallica]. 

[Charles 1785d] Jacques Charles, " INTÉGRAL (Calcul intégral des équations en 

différences mêlées)", Encyclopédie Méthodique - Mathématiques, vol. Il, 

Paris: Panckoucke and Liège: Plomteux, 1785, fac-similé reprint, Paris: 

ACL-éditions, 1987, pp. 225-226 [extracted from [Charles 1785a, 584-585]; 

Gallica]. 

[Charles 1788] Jacques Charles, "Recherches sur les Principes de la différenciation, et 

sur les Intégrales connues jusqu'ici sous le nom d'Intégrales particulières" and 

"Suite du Mémoire sur les Principes de la différenciation, &c" , Mém. Acad. 

Paris, 1788 (1791), pp. 115-139. 

[Clairaut 1731] Alexis Claude Clairaut, Recherches sur les courbes à double courbure, 

Paris, 1731 [Gallica]. 

426 



[Clairaut 1734] Alexis Claude Clairaut, "Solution de plusieurs Problèmes où il s'agit 

de trouver des Courbes dont la propriété consiste dans une certaine relation 

entre leurs branches, exprimée par une Equation donnée", Mém. Acad. Paris, 

1734 (1736), pp. 196-215 [Gallica]. 

[Clairaut 1740] Alexis Claude Clairaut, "Sur l'Intégration ou la Construction des 

Équations différentielles du premier ordre", Mém. Acad. Paris, 1740 (1742), 

pp. 293-323 [Gallica]. 

[Condorcet 1765} [Marie-Jean-Antoine-Nicolas de Caritat,] Marquis de Condorcet, Du 

Calcul Intégral, Paris: Didot, 1765. 

[Condorcet 1768} [Marie-Jean-Antoine-Nicolas de Caritat,] Marquis de Condorcet, Le 

Marquis de Condorcet à M. d'Alembert, sur le système du monde et sur le 

calcul intégral [part of Essais d'Analyse, vol. I (and only)], Paris: Didot, 

1768. 

[Condorcet 1770} [Marie-Jean-Antoine-Nicolas de Caritat.] Marquis de Condorcet, 

"Mémoire sur les équations aux différences partielles", Mém. Acad. Paris, 

1770 (1773), pp. 151-178 [Gallica]. 

[Condorcet 1771] [Marie-Jean-Antoine-Nicolas de Caritat,] Marquis de Condorcet, 

"Sur la détermination des fonctions arbitraires qui entrent dans les intégrales 

des équations aux différences partielles", Mém. Acad. Paris, 1771 (1774), 

pp. 49-74 [Gallica]. 

[Condorcet 1770-1773] [Marie-Jean-Antoine-Nicolas de Caritat,] Marquis de Con

dorcet, "Sur les solutions particulières des équations différentielles", Mélanges 

de Philosophie et de Mathématique de la Société Royale de Turin 5 (1770-

1773), 2nd pagination (classe mathématique), pp. 12-15. 

[Coolidge 1940} Julian Lowell Coolidge, A history of geometrical methods, Mineola, 

New York: Dover, 2003 [reprint of the 1940 OUP édition]. 

[Cousin Ì777] Jacques-Antoine-Joseph Cousin, Leçons de Calcul Différentiel et de Cal

cul Intégral, Paris: Jombert, 1777. 

[Cousin 1796] Jacques-Antoine-Joseph Cousin, Traité de Calcul Différentiel et de Cal

cul Intégral, 2 vols., Paris: Régent & Bernard, year 4 - 1796. 

[Craik 1999} Alex D. D. Craik, "Calculus and Analysis in Early 19th-Century Britain: 

The Work of William Wallace", Historia Mathematica 26 (1999), pp. 239-267. 

[Craik 2005} Alex D. D. Craik. "Prehistory of Faà di Bruno's Formula", American 

Mathematical Monthly 112 (2005), pp. 119-130. 

427 



[Cramer 1750] Gabriel Cramer, Introduction à l'analyse des lignes courbes algébriques, 

Genève: frères Cramer & Cl. Philibert. 1750. 

[d'Alembert 174.7] Jean le Rond d'Alembert, "Recherches sur la courbe que forme une 

corde tendue mise en vibration" and "Suite des Recherches sur...", Mém. 

Acad. Berlin. 1747 (1749), pp. 214-219 and 220-249 [BBAW]. 

[d'Alembert 1750] Jean le Rond d'Alembert, "Addition au Mémoire sur la courbe que 

forme une corde tendue, mise en vibration", Mém. Acad. Berlin. 1750 (1752), 

pp. 355-360 [BBAW]. 

[d'Alembert 1754-1756) Jean le Rond d'Alembert, Recherches sur différens points im

portant du système du Monde, 3 vols., Paris: David, 1754. 1754, 1756. 

[d'Alembert 1761] Jean le Rond d'Alembert, "Recherches sur les vibrations des Cordes 

Sonores". Opuscules Mathématiques I, Paris: David, 1761, pp. 1-64 [Gallica]. 

[d'Alembert 1768] Jean le Rond d'Alembert, "Réflexions sur les suites divergentes 

ou convergentes", Opuscules Mathématiques V, Paris: Briasson, pp. 171-183 

[Gallica]. 

[d'Alembert 1780} Jean le Rond d'Alembert. "Sur les Fonctions discontinues", Opus

cules Mathématiques VIII, Paris: Claude-Antoine Jombert, 1780. pp. 302-308 

[Gallica]. 

[Deakin 1985] Michael A. B. Deakin. "Euler's Invention of Intégral Transforms", 

Archive for History of Exact Sciences 33 (1985), pp. 307-319. 

[Debnath 2004] Lokenath Debnath, "A brief historical introduction to fractional calcu-

lus", International Journal of Mathematical Education in Science and Tech

nology 35 (2004), pp. 487-501. 

[Delambre 1810} Jean Baptiste Joseph Delambre, Rapport historique sur les progrès 

des sciences mathématiques depuis 1789, et sur leur état actuel, Paris: Im

primerie Impériale; fac-similé reprint, Amsterdam: B. M. Israël, 1966; mod

em édition with preface by Denis Woronoff and introduction and notes by 

Jean Dhombres, Rapports à l'Empereur sur le progrès des sciences, des lettres 

et des arts depuis 1789: 1. Sciences mathématiques, Paris: Belin. 1989. 

[Demidov 1982] Serguei S. Demidov, "The Study of Partial Differential Equations of 

the First Order in the 18 t h and 19 t h Centuries", Archive for History of Exact 

Sciences 26 (1982), pp. 325-350. 

[De Morgan 1836-1842] Augustus De Morgan, The Differential and Intégral Calculus, 

London: Baldwin, 1836-1842 [published in 25 parts]. 

428 



[Descartes Géométrie] René Descartes, La Géométrie, appendix to Discours de la 

méthode. 1637, pp. 297-413; fac-similé reprint, with a translation into English 

by David Eugène Smith and Marcia L. Latham, as The Geometry of René 

Descartes, Chicago and London; Open Court, 1925 [page références up to 241 

are to the English translation, while frorn 297 upwards refer to the original 

page numbers, included in the fac-similé). 

[Dhombres 1985} Jean Dhombres, "French Mathematical Textbooks from Bézout to 

Cauchy", Historia Scientiarum 28 (1985), pp. 91-137. 

[Dhombres 1986} Jean Dhombres, "Quelques aspects de Fhistoire des équations fonc

tionnelles liés à l'évolution du concept de fonction", Archive for History of 

Exact Sciences 36 (1986), pp. 91-181. 

[Dhombres 1987} Jean Dhombres, Introduction ("L'Ecole polytechnique et ses histo

riens") and "Annexes", accompanying a fac-similé reprint of [Fourcy 1828], 

Paris: Belin, 1987 [the pagination is independent from that of the reprint, 

which is placed between pages 70 and 71). 

[Dhombres &, Pensivy 1988] Jean Dhombres and Michel Pensivy, "Esprit de rigueur et 

présentation mathématique au X Y i I I è m e siècle: le cas d'une démonstration 

d'Aepinus", Historia Mathematica 15 (1988), pp.9-31. 

[Domingues 2004] J °à° Caramalho Domingues, "Variables, limits, and infinitesimals 

in Portugal in the late I8th century", Historia Mathematica 31 (2004), pp. 15-

33. 

[Domingues 2005} Joâo Caramalho Domingues, "S.F. Lacroix. Traité du calcul 

différentiel et du calcul intégral, first édition (1797-1800)", in Ivor Grattan-

Guinness (éd.), Landmark Writings in Western Mathematics, 1640-1940, 

Amsterdam: Elsevier, 2005, pp. 277-291. 

[Doyle 1996] J. F. Doyle, "Some Thoughts on Fractional Calculus and the Abolition of 

Intégration Formulae", Teaching Mathematics and ils Applications 15 (1996), 

pp. 16-19. 

[Ec. Pol. Concours 1802] "Programme des connaissances exigées des Candidats qui 

se présenteront au concours pour l'École Polytechnique, ouvert le l . e r 

complémentaire de l'an 10", Journal de l'École Polytechnique, vol. IV. l lème 

cahier (Messidor year 10 = June-July 1802), p. 381. 

[Éc. Pol. Extraits Conseil] Conseil de l'École Polytechnique, "Extraits des Registres", 

transcribed by E. L. Dooley. Bulletin de la Société des Amis de la Bibliothèque 

de l'Ecole polytechnique 12 (November 1994), pp. 9-63. 

429 



[Éc. Pol. Cours 1804} "Tableau qui indique l'ordre des Cours, leur durée, et les insti

tuteurs qui en sont chargés", Correspondance sur l'Ecole Impériale Polytech

nique I. n. 1 (April 1804). pp. 3-7. 

[Éc. Pol. Rapport] Conseil de Perfectionnement de l'École polytechnique, Rapport sur 

la situation de l'École polytechnique [published annually from year 9 (1800-

1801) onwards; there are slight variations in the title]. 

[Encyclopédie} Denis Diderot and Jean le Rond d'Alembert (eds.), Encyclopédie ou 

Dictionnaire Raisonné des Sciences, des Arts et des Métiers. 28 vols., Paris, 

1751-1780. 

[Engelsman 1980] Steven B. Engelsman, "Lagrange's early contributions to the theory 

of first-order partial differential équations", Historia Mathematica 7 (1980), 

pp. 7-23. 

[Engelsman 1984} Steven B. Engelsman, Families of Curves and the Origins of Partial 

Differentiation, North-Holland Mathematics Studies 93, Amsterdam: Else

vier, 1984. 

[Enestrôm 1899] Gustaf Enestrôm, "Sur la découverte de l'équation générale des lignes 

géodésiques", Bibliotheca Mathematica (2nd séries) 13 (1899), pp. 19-24. 

[Enros 1988] Philip C. Enros, "The Analytical Society (1812-1813): precursor of the 

renewal of Cambridge mathematics", Historia Mathematica 10 (1983), pp. 24-

47. 

[Euler Opéra] Leonhard Euler, Opéra Omnia, 4 séries, 29 + 31 + 12 + 4 vols, [at least 

6 more vols, in séries 4 are planned], Leipzig and Berlin: Teubner [early 

volumes], Zurich: Orell Fùssli [mid volumes], Basel: Birkhàuser [récent vol

umes], 1911-[in progress). 

[Euler Diffei^entialis] Leonhard Euler, Institutiones Calculi Differentialis, St. Pcters-

burg: Academia Imperialis Scientiarum, 1755 [two parts in one volume; ar

ticles numbered separately in each part] = [Euler Opéra, séries 1. X]; 2nd 

éd., posthumous, with asupplement ("Dilucidationes" and "Adnotationes"), 

2 vols., Ticinum: Petrus Galeatius, 1787. 

[Euler Integralis] Leonhard Euler, Institutionum Calculi Integralis..., 3 vols., St. Pe-

tersburg; Academia Imperialis Scientiarum, 1768. 1769,1770 = [Euler Opéra, 

séries 1, XI-XIIIj; 2nd éd., posthumous, with a fourth volume collecting sev-

eral memoirs of Euler on the subject, St. Petersburg: Academia Imperialis 

Scientiarum, 1792, 1792, 1793, 1794 [références are usually to article, but 

when page références are required, they are to the second édition]. 

430 



[Euler Introductio] Leonhard Euler, Introductio in Analysin Infinitorum, 2 vols., Lau
sanna: Marcus-Michael Bousquet. 1748 = [Euler Opera, séries 1, IX]; fac-
simile reprint, Bruxelles: Culture et Civilisation. 1967 [Gàllica]. 

[Euler 1730-1731} Leonhard Euler, "De progressionibus transcendentibus, seu quarum 
termini générales algebraice dari nequeunt", Commentarii Academiae Sci-
entiarum Petropolitanae 5 (1730-1731), 1738, pp. 36-57 [also available 
at <http://math.dartmouth.edu/~euler/docs/originals/E019.pdf> (26 Sep
tember 2006)] = [Euler Opera, séries 1, XIV, 1-24]. 

[Euler 1736] Leonhard Euler, Mechanica sive Motus Scientia Analytice Exposita, 2 
vols., St. Petersburg: Academia Scientiarurn, 1736 = [Euler Opera, séries 2, 
I-II] [Gallica]. 

[Euler 17Ą8] Leonhard Euler, "Sur la Vibration des Cordes", Mém. Acad. Berlin, 17Ą8 
(1750), pp. 69-85 [BBAW] = [Euler Opera, séries 2, X, 63-77]. 

[Euler 1756] Leonhard Euler, "Exposition de quelques Paradoxes dans le Cal
cul intégral", Mém. Acad. Berlin, 1756 (1758), pp. 300-321 [BBAW] = 
[Euler Opera, séries 1, XXII, 214-236]. 

[Euler 1760} Leonhard Euler, "Recherches sur la courbure des surfaces", Mém. Acad. 
Berlin, 1760 (1767), pp. 119-143 [53>W] = [Euler Opera, séries 1, XXVIII, 
1-22]. 

[Euler 1764] Leonhard Euler, "De motu corporis ad duo centra virium fixa 
attracti", Novi comentańi academiae scientiarurn Petropolitanae 10 
(¿76'^), 1766, pp. 207-242 [also available at <http: / /math.dartmouth.edu/ 

~euler/docs/originals/E301.pdf> (8 August 2005)] = [Euler Opera, séries 2, 

VI, 209-246]. 

[Euler 1765a] Leonhard Euler, "De usu funetionum discontinuarum in analysi". 

Novi comentarii academiae scientiaj-um Petropolitanae 11 ( 1765 ) , 

1767, pp. 3-27 [also available at <http: / /math.dartmouth.edu/~euler/ 

docs/originals/E322.pdf> (12 February 2006)] = [Euler Opera, séries 1, 

XXIII, 74-91]. 

[Euler 1765b) Leonhard Euler, "Sur le mouvement d'une corde qui au commencement 

n'a été ébranlée que dans une partie", Mém. Acad. Berlin, 1765 (1767), 

pp. 307-334 [BBAW] = [Euler Opera, séries 2, X, 426-451]. 

[Euler 1765c] Leonhard Euler, "Eclaircissemens plus détaillés sur la génération et la 

propagation du son et sur la formation de l'écho", Mém. Acad. Berlin, 1765 

(1767) pp. 335-363 [SÄAW] = [Euler Opera, séries 3, I, 540-567]. 

431 

http://math.dartmouth.edu/~euler/docs/originals/E019.pdf
http://math.dartmouth.edu/~euler/docs/originals/E301.pdf
http://math.dartmouth.edu/~euler/docs/originals/E301.pdf
http://math.dartmouth.edu/~euler/docs/originals/E322.pdf
http://math.dartmouth.edu/~euler/docs/originals/E322.pdf


[Euler 1771] Leonhard Euler. "Evolutio formulae integralis f x^~Ydx(lx)~^, intégra-
tione a valore x = 0 ad x = 1 extensa", Novi cornentarii academiae scien-
tiarum Petropolitanae 16 (1771), 1772, pp. 91-139 = [Euler Integralis, IV, 
78-121] = [Euler Opera, séries 1, XVII, 316-357]; [page références are to 
(Euler Integralis, IV]]. 

[Euler 177Ąa] Leonhard Euler, "De valore formulae integralis / ^'^±¿1^ '^(^ZY c a s u 

quo post integrationem ponitur z = 1", Novi cornentarii academiae scien-

tiarum Petropolitanae 19 (177Ą), 1775, pp. 30-65 = [Euler Integralis, IV. 
122-154] = [Euler Opera, séries 1, XVII, 384-420]; [page références are to 
[Euler Integralis, IV]]. 

[Euler 1774b] Leonhard Euler. "Nova Methodus quantitates intégrales determinandi", 
Novi cornentarii academiae scientiarum Petropolitanae 19 (1774), 1775, 
pp. 66-102 = [Euler Integralis, IV, 260-294] = [Euler Opera, séries 1, XVII, 
421-457]; [page références are to [Euler Integralis, IV]]. 

[Euler 1775} Leonhard Euler, "Methodus inveniendi formulas intégrales quae certis 
casibus datarn inter se teneant rationem", in Opuscula analytica, vol. II, St. 
Petersburg: Academia Imperialis Scientiarum, 1785, pp. 178-216 [presented 
to the St. Petersburg Academy in September 1775] = [Euler Integralis, IV, 
378-415] = [Euler Opera, séries 1, XVIII, 209-243]; [page références are to 
[Euler Integralis, IV]]. 

[Euler 1776] Leonhard Euler, "Comparatio valorum formulae integralis / - ^ = = = = : 
a termino x = 0 vsque ad x = 1 extensae", Nova acta academiae scientiarum 
Petropolitanae 5 (1787), 1789, pp. 86-117 [presented to the St. Petersburg 
Academy in October 1776] = [Euler Integralis, IV, 295-326] = [Euler Opera, 
séries 1, XVIII, 392-423]; [page références are to [Euler Integralis, IV]]. 

[Euler & Lagrange Correspondance] Adolf P. Juskevic and René Taton (eds.), "Corre
spondance d'Euler avec J. L. Lagrange", [Euler Opera, séries 4A, V, 359-518]. 

[Ferraro 1998] Giovanni Ferraro, "Some aspects of Euler's theory of séries: inexplicable 
f mictions and the Euler-Maclaurin summation formula", Historia Mathemat-
%ca 25 (1998), pp. 290-317. 

[Ferraro 2000] Giovanni Ferraro, "Functions, Functional Relations, and the Laws of 
Continuity in Euler", Historia Mathematica 27 (2000), pp. 107-132. 

[Fontaine 1764} Alexis Fontaine [des Bertins], Mémoires donnés à l'Académie Royale 
des Sciences, non imprimés dans leur temps, Paris: Imprimerie Royale, 1764 
= Traité de calcul différentiel et intégral, Paris: Imprimerie Royale, 1770. 

432 



[Fourcy 1828} A. Fourcy, Histoire de l'École polytechnique, Paris: "chez l'auteur, à 
l'Ecole polytechnique", 1828; fac-similé reprint, with an introduction and 
appendices by Jean Dhombres, Paris: Belin, 1987. 

[Fourier 1796} Jean-Baptiste Joseph Fourier, Leçons d'un cours d'analyse rédigées par 
G L. Donop, transcription by Anne-Marie Lorrain of a manuscript of lectures 
given at the École Polytechnique in the year IV, with an introduction by 
Anne-Marie Lorrain and Luigi Pepe, Ferrara: Dipartamento di Matematica 
dell'Universitâ di Ferrara, 1989. 

[Frankel 1978} Eugene Frankel, "Career-making in post-revolutionary France: the case 
of Jean-Baptiste Biot", The British Journal for the History of Science 11 
(1978), pp. 36-48. 

[Fraser 1985} Craig G. Fraser, "J. L. Lagrange's Changing Approach to the Founda
tions of the Calculus of Variations", Archive for History of Exact Sciences 
32 (1985), pp. 151-191. Reprinted in Craig G. Fraser, Calculus and Analytical 
Mechanics in the Age of Enlightenment, Variorum Collected Studies Series, 
Aldershot, England and Brookfield, Vermont: Ashgate, 1997. 

[Fraser 1987} Craig G. Fraser, "Joseph Louis Lagrange's Algebraic Vision of the Cal
culus", Historia Mathematica 14 (1987), pp. 38-53. Reprinted in Craig G. 
Fraser, Calculus and Analytical Mechanics in the Age of Enlightenment, Var
iorum Collected Studies Series, Aldershot, England and Brookfield, Vermont: 
Ashgate, 1997. 

[Fraser 1989] Craig G. Fraser, "The Calculus as Algebraic Analysis: some observations 
on mathematical analysis in the 18th century", Archive for History of Exact 
Sciences 39 (1988-1989), pp. 317-335, Reprinted in Craig G. Fraser, Calculus 
and Analytical Mechanics in the Age of Enlightenment, Variorum Collected 
Studies Series, Aldershot, England and Brookfield, Vermont: Ashgate, 1997. 

[Fraser 1992} Craig G. Fraser, "Isoperimetric Problems in the Variational Calculus of 
Euler and Lagrange ", Historia Mathematica 19 (1992), pp. 4-23. Reprinted in 
Craig G. Fraser, Calculus and Analytical Mechanics in the Age of Enlighten
ment, Variorum Collected Studies Series, Aidershot, England and Brookfield, 
Vermont: Ashgate, 1997. 

[Fraser 1994} Craig G. Fraser, "The Origins of Euler's Variational Calculus", Archive 
for History of Exact Sciences 47 (1994). pp. 103-141. Reprinted in Craig G. 
Fraser, Calculus and Analytical Mechanics in the Age of Enlightenment, Var
iorum Collected Studies Series, Aldershot, England and Brookfield, Vermont: 
Ashgate, 1997. 

433 



[Friedelmeyer 1993] Jean-Pierre Friedelmeyer. Le calcul des dérivations d'Arbogast 

dans le projet d'algébrisation de l'analyse à la fin du XVÏIF siècle, Cahiers 

d'histoire et de philosophie des sciences, nouvelle série. n° 43, Nantes: Presses 

de l'Université de Nantes. 1994 [publication of a 1993 doctoral thesis]. 

[Garnier 1800} Jean-Guillaume Garnier, Notes sur le Calcul différentiel et sur le Calcul 

intégral, faisant suite à la Méchanique de Bezout, Paris: Courcier, year IX 

[because of (abandoned) plans for binding these notes to the fourth and fifth 

volumes of an edition of Bézout's Cours, the pages of differential calculus 

were numbered 367-501 and those of integral calculus 403-662; there is also 

an edition dated of the same year but with the title omitting the reference 

to Bézout's Méchanique, some differences in the text, and pages numbered 

consecutively 367-826; page references are to the latter edition]. 

[Gamier 1801] Jean-Guillaume Garnier, "Discours préliminaire" and "Notes 

d'algèbre", in Alexis-Claude Clairaut, Elémens d'Algèbre, 6th ed, Paris: 

Courcier, year X = 1801, pp.vii-ix and 221-449; also printed independently 

as Cours d'Analyse Algébrique, Paris: Courcier, year X = 1801. 

[Garnier 1811} Jean-Guillaume Garnier, Leçons de calcul différentiel, Paris: V e 

Courcier, 1811 [presented as 3rd edition, the first being [Gamier 1800,1]; and 

the second being [Gamier 1800-1802, II and V] - see above under Archival 

sources]. 

[Gamier 1812) Jean-Guillaume Gamier, Leçons de calcul intégral, Paris: V e Courcier, 

1812 [continuation of [Gamier 1811); presented as 3rd edition, the first being 

[Gamier 1800, II]; and the second being [Gamier 1800-1802, III and VI] -

see above under Archival sources]. 

[Gauss 1814-lSl5a) Carl Friedrich Gauss, "Methodus nova integralium valores per ap

proximation em inveniendi", Commentationes Societatis Regiae Scientiarum 

Gottingensis recentiores 3 (1814-1815), 1816, 4th pagination, pp. 39-76 

[GDZ). 

[Gauss 1814-1815b] Carl Friedrich Gauss, ''Demonstratio nova altera theorematis om-

nem functionem algebraicam rationalem integram unius variabilis in factores 

reales primi vel secundi gradus resolvi posse", Commentationes Societatis 

Regiae Scientiarum Gottingensis recentiores 3 (1814-1815), 1816, 4th pagi

nation, pp. 107-134 [GDZ]. 

[Gauss 1814-i815c] Carl Friedrich Gauss. "Theorematis de resolubilitate functionum 

algebraicarum integrarum in factores reales demonstratio tertia. Supplemen-

tum com ment at ion is praecedentis", Commentationes Societatis Regiae Scien-

434 



tiarum Gottingensis recentiores 3 (1814-1815), 1816, 4th pagination, pp. 135-

142 [GDZ]. 

[Gilain 1981] Christian Gilain, "Introduction". [Cauchy 1981, xiii-lvi]. 

[Gilain 1988} Christian Gilain. "Condorcet et le Calcul intégral", in Roshdi Rashed 

(éd.), Sciences a l'Époque de la Révolution Française - recherches historiques, 

Paris: Albert Blanchard, 1988, pp. 87-147. 

[Gilain 1989} Christian Gilain, "Cauchy et le Cours d'analyse de l'Ecole polytech

nique", Bulletin de la Société des Amis de la Bibliothèque de l'Ecole poly

technique, 5 (July 1989). 

[Gilain 2004) Christian Gilain, "Équations différentielles et systèmes différentiels: de 

d'Alembert à Cauchy", in Oberwolfach Report 51/2004 (The History of Dif-

ferential Equations, 1670-1950), Oberwolfach Reports 1 (2004), pp. 2743-2745. 

[Gilain to appear] Christian Gilain, "Mathématiques mixtes et mathématiques pures 

chez d'Alembert: le cas des systèmes différentiels linéaires", Studies in His

tory of Mathematics dedicated to A. P. Yushkevich, Académie internationale 

d'histoire des sciences, to appear. 

[Gillispie DSB] Charles Coulston Gillispie (éd.), Dictionary of Scientific Biography, 16 

vols., New York: Charles Scribner's Sons, 1970-1980. 

[Gillispie 1971] Charles Coulston Gillispie, Lazare Camot Savant, Princeton, New Jer

sey: Princeton University Press, 1971. 

[Gillispie 1997} Charles Coulston Gillispie (with the collaboration of Robert Fox and 

Ivor Grattan-Guinness), Pierre-Simon Laplace, 1749-1827: a life in exact 

science, Princeton, New Jersey: Princeton University Press, 1997; 2nd print-

ing, Princeton, New Jersey: Princeton University Press, 2000. 

[Goldstine 1977] Herman Heine Goldstine, A History of Numerical Analysis from the 

16th through the 19th Century, New York: Springer, 1977. 

[Goudin & du Séjour 1756] [Anonymous, in fact Mathieu-Bernard Goudin h Achille-

Pierre Dionis du Séjour], Traité des courbes algébriques, Paris: Jombert, 

1756. 

[Gough 1979} J. B. Gough, "Charles the obscure", Isis 70 (1979), pp. 576-579. 

[Grabiner 1966} Judith V. Grabiner, The Calculus as Algebra: J.L. Lagrange, 1736-

1813, Harvard Dissertations in the History of Science, New York and London: 

Garland, 1990 [publication of a 1966 PhD thesis]. 

435 



[Grabiner 1981} Judith V. Grabiner, The origins of Cauchy's rigorous calculus, Cam
bridge, Massachusetts and London, England: The MIT Press, 1981. 

[Grattan-Guinness 1970} Ivor Grattan-Guinness, The Development of the Foundations 
of Mathematical Analyisis from Euler to Riemann, The MIT Press, 1970. 

[Grattan-Guinness 1972} Ivor Grattan-Guinness (in collaboration with J. R. Ravetz), 
Joseph Fourier, 1768-1830, Cambridge, Massachussets and London. England: 
MIT Press, 1972. 

[Grattan-Guinness 1980} Ivor Grattan-Guinness, "The Emergence of Mathemati
cal Analysis and its Foundational Progress, 1780-1880", in Ivor Grattan-
Guinness (ed.), From the Calculus to Set Theory, London: Duckworth, 1980; 
2nd ed.: Princeton, New Jersey: Princeton University Press. 2000, pp. 94-
148. 

[Grattan-Guinness 1990] Ivor Grattan-Guinness, Convolutions in French Mathemat
ics, 1800-1840, 3 vols., Basel, Boston and Berlin: Birkhauser, 1990. 

[Grattan-Guinness 1994) I v o r Grattan-Guinness, "Functional equations", in Ivor 
Grattan-Guinness (ed.), Companion Encyclopedia of the History and Phi
losophy of the Mathematical Sciences, vol. 1, New York and London: Rout-
ledge, 1994; 2nd ed.: Baltimore and London: Johns Hopkins Press, undated, 
pp. 557-562. 

[Grattan-Guinness 1997] Ivor Grattan-Guinness, "Laplace's Integral Solutions to Par
tial Differential Equations", in [Gillispie 1997, 259-269]. 

[Grattan-Guinness 2002} Ivor Grattan-Guinness, "The End of Dominance: The Diffu
sion of French Mathematics Elsewhere, 1820-1870", in Karen Hunger Parshall 
&; Adrian C. Rice (eds.), Mathematics Unbound: The Evolution of an Inter
national Mathematical Research Community, 1800-1945, American Mathe
matical Society and London Mathematical Society, 2002, pp. 17-44. 

[Grattan-Guinness &c Engelsman 1982} Ivor Grattan-Guinness and Steven B. Engels-
man, " The manuscripts of Paul Charpit", Historia Mathematica 9 (1982), 
pp. 65-75. 

[Greenberg 1981] John L. Greenberg, "Alexis Fontaine's 'Fluxio-differential Method' 
and the Origins of the Calculus of Several Variables", Annals of Science 38 
(1981), pp. 251-290. 

[Greenberg 1982] John L. Greenberg, "Alexis Fontaine's Integration of Ordinary Dif
ferential Equations and the Origins of the Calculus of Several Variables", 
Annals of Science 39 (1982), pp. 1-36. 

436 



[Grison 1996] Emmanuel Grison, L'étonnant parcours du républicain J.H. Hassenfratz 

(1755-1827), Paris: Les Presses de l'École des Mines, 1996. 

[Gruyter History] Anonymous, "The history of the five publish-

ing houses which became Walter de Gruyter publishers" 

<http://www.gruyter.de/downloads/verlagsgeschichteJang_e.pdf> (22 

January 2007). 

[Gua de Malves 1740] Jean-Paul de Gua de Malves, Usages de l'Analyse de Descartes, 

Pour découvrir, sans le secours du Calcul Différentiel, les Propriétés, ou 

Affections principales des Lignes Géométriques de tous les Ordres, Paris: 

Briasson, 1740. 

[Guicciardini 2008} Niccolô Guicciardini, "Newton's Method and Leibniz's Calculus", 

in Hans Niels Jahnke (éd.), A History of Analysis, History of Mat hémat

ies, vol. 24, Providence, Rhode Island: American Mathematical Society and 

London Mathematical Society, 2003, pp. 73-103. 

[GV] Peter Geils, Willi Gorzny, and Hilmar Sehmuck (dir.), Gesamtverzeichnis des 

deutschsprachigen Schrifttums (GV) 1700-1910, 161 vols., Mùnchen: Saur, 

1979-1987. 

[Gyachyauskas 1979] É. Gyachyauskas, "Mathematics at Vilnius University before 

1832", Lithuanian Mathematical Journal 19 (1979), pp. 165-171. 

[Hahn 1964) Roger Hahn, "L'enseignement scientifique des Gardes de la Marine au 

XVIII e siècle", in René Taton (éd.), Enseignement et diffusion des sciences 

en France au XVIIF siècle, Paris: Hermann, 1964, pp. 547-558. 

[Hahn 1981] Roger Hahn, "More light on Charles the obscure", Isis 72 (1981), pp. 83-

86. 

[Houtain 1852] Louis Houtain, "Des solutions singulières de équations différentielles", 

Annales des Universités de Belgique, années 1851 et 1852, Bruxelles: Th. 

Lesigne, 1854, pp. 971-1323. 

[Inocencio DBP] Inocencio Francisco da Silva, Brito Aranha, Gomes de Brito, Alvaro 

Gomes and Ernesto Soares, Diccionario Bibliographico Portuguez, 23 vols., 

Lisboa: Imprensa Nacional. 1858-1958; fac-simile reprint. Lisboa: Imprensa 

Nacional - Casa da Moeda, 1973. 

[Itard 1973} Jean Itard, "Lacroix, Sylvestre François", in [Gillispie DSB, VII, 549-

551]. 

437 

http://www.gruyter.de/downloads/verlagsgeschichteJang_e.pdf


[Jahnke 1993] Hans Niels Jahnke, "Algebraic Analysis in Germany, 1780-1840: Some 

Mathematical and Philosophical Issues", Historia Mathematica 20 (1993), 

pp. 265-284. 

[Johnson 2002} Warren P. Johnson, "The Curious History of Faà di Bruno's Formula", 

American Mathematical Monthly 109 (2002), pp. 217-234. 

[Jordan 1947} Charles Jordan, Calculus of finite différences, 2nd ed, New York; 

Chelsea, 1965 (reprint of the 1947 édition). 

[Kline 1972] Morris Kline, "Mathematical Thought from Ancient to Modern Times", 

3 vols.. New York and Oxford: Oxford University Press. 1990 (2nd ed.; first 

ed., in one vol., is from 1972). 

[Knobloch 1994} Eberhard Knobloch, "Déterminants", in Ivor Grattan-Guinness 

(ed.), Companion Encyclopedia of the History and Philosophy of the Math

ematical Sciences, vol. 1, New York and London: Routledge, 1994; 2nd ed.: 

Baltimore and London: Johns Hopkins Press, undated, pp. 766-774. 

[La Caille 1764} Nicolas Louis de la Caille, Leçons Élémentaires d'Astronomie, Paris: 

Guerin & Delatour, 1764 (first édition is from 1746). 

[La Caille k. Marie 1772} Nicolas Louis de la Caille k, Joseph François Marie, Leçons 

Élémentaires de Mathématiques, Paris: Desaint, 1772 [new édition, highly 

revised and enlarged by Marie, of a book first published by La Caille in 1741; 

many other éditions]. 

[Lacroix Traité] Silvestre François Lacroix, Traité du calcul différentiel et du calcul 

intégral, 3 vols., Paris: Duprat, year V = 1797, year VI = 1798, year VIII = 

1800; 2nd ed.: 3 vols., Paris: Courcier, 1810, 1814, 1819; in the Ist ed. vol. 

III bears the title Traité des Différences et des Séries [Gallica). 

[Lacroix 1795} Silvestre François Lacroix, Essais de Géométrie sur les plans et les 

surfaces courbes, 2nd ed. Paris: Duprat, an X - 1802 (Ist ed. is from 1795) 

[tins book also bears the subtitle Élémens de Géométrie descriptive and is 

often referred to as Complément des Elémens de Géométrie (namely as a 

part of Lacroix's Cours élémentaire de Mathématiques pures)]. 

[Lacroix 1798a] Silvestre François Lacroix, "Supplément à la théorie des solutions par

ticulières des équations différentielles", Bulletin des Sciences, par la Société 

Philomathique I (2nd part), n.° 11 (Pluviôse year 6 = Febr. 1798), pp.86-88 

[Gallica]. 

[Lacroix 1798b] Silvestre François Lacroix, Traité élémentaire de trigonométrie rec-

tiligne et sphérique, et d'application de l'algèbre à la géométrie, Paris: 

Courcier, 1813 (6th ed; first ed. is from 1798) [Gallica: 4th ed, 1807]. 

438 



[Lacroix 1799} Silvestre François Lacroix. Élémens d'algèbre, Paris: Courtier, 1807 

(6th ed; first ed. is from year 8 - 1799-1800) [Gallica: 6th ed, 1807). 

[Lacroix 1799-1800] Silvestre François Lacroix, Lehrbegriff des Differential- und Inte-

gralcalculs, 2 vols., Berlin: F .T . Lagarde. 1799, 1800; German translation of 

[Lacroix Traité, I] by Johann Philipp Grüson. 

[Lacroix 1800) Silvestre François Lacroix, Complément des élémens d'algèbre, Paris: 

Courtier, year XIII = 1804 (3rd ed; first ed. is from year 8 = 1799-1800). 

[Lacroix 1802a) Silvestre François Lacroix, Traité élémentaire de calcul différentiel et 

de calcul intégral, Paris: Duprat, year X = 1802; 2nd ed., Paris; Courtier, 

1806; 3rd ed., Paris: Courtier. 1820; 4th ed., Paris: Bachelier. 1828; 5th ed., 

Paris: Bachelier, 1837. 

[Lacroix 1802b] Silvestre François Lacroix, "Note sur la résistance des fluides", Bulletin 

des Sciences, par la Société Phüomathique, III, n.° 69 (Frimaire year 11 = 

Nov.-Dec. 1802), pp. 161-163 [Gallica]. 

[Lacroix 1805} Silvestre François Lacroix. Essais sur l'enseignement en général, et sur 

celui des mathématiques en particulier, Paris: Courtier, 1805; 2nd ed., Paris: 

Courcier, 1816; 3rd ed., Paris: Bachelier, 1828; 4th ed., Paris: Bachelier, 

1838 [Gallica: 4th ed]. 

[Lacroix 1812-1814] Silvestre François Lacroix, Tratado Elementar de Calculo Différ

enciai, e Calculo Integral, 2 vols., Rio de Janeiro: Impressäo Regia, 1812, 

1814; Portuguese translation by Francisco da Silva Torres of parts 1 and 2 

[minus the rnethod of variations] of [Lacroix 1802a, Ist ed]. 

[Lacroix 1813) Silvestre François Lacroix, "Notice historique sur la Vie et les Ouvrages 

de C O N D O R C E T " , Magasin Encyclopédique, 1813, n .6 ; pp. 54-77 [Gallica], 

[Lacroix 1816] Silvestre François Lacroix, An elementary treatise on the differential 

and integral calculas, Cambridge: J. Deighton and sons, 1816; English trans

lation by Charles Babbagc. George Peacock, and William Herschel of parts 

1 and 2 of [Lacroix 1802a, 2nd ed], with notes by Peacock and Herschel and 

an appendtx on "différences and séries" by Herschel. 

[Lacroix 1829] Silvestre François Lacroix, Trattato Elementare del Calcolo Differen

ziale e del Calcolo Integrale, Firenze: Francesco Cardinali, 1829; Italian 

translation of [Lacroix 1802a, 4th ed]. 

[Lacroix h Bézout 1826} Silvestre François Lacroix & Etienne Bézout, An Elementary 

Treatise on Plane and Spherical Trigonometry, and on the Application of Al

gebra to Geometry; from the Mathematics of Lacroix and Bézout, Cambridge, 

439 



Massachussets: Hilliard and Metcalf, at the University Press. 1826 (2nd ed.; 

first ed. is from 1820). 

[Lagrange Œuvres] Joseph-Louis Lagrange, Œuvres de Lagrange, 14 vols.. Paris: 

Gauthier-Villars, 1867-1892: fac-simile reprint, Hildesheim and New York: 

Georg Olms, 1973 [Gallica]. 

[Lagrange Calcul] Joseph-Louis Lagrange, Leçons sur le calcul des Joutions, 2nd ed. 

Paris: Courcier, 1806 [Gallica] = [Lagrange Œuvres, X] (first ed. isfrom 1801, 

reprinted with slight changes in 1804 in the Journal de VEcole Polytechnique, 

vol. V, 12ème cahier) [page références are to the 1806 printing]. 

[Lagrange Fonctions) Joseph-Louis Lagrange, Théorie des fonctions analytiques, Paris: 

Imprimerie de la République, Prairial year 5 (May/June 1797) = Journal de 

VEcole Polytechnique, vol. III, 9ème cahier [Gallica]; 2nd ed. Paris, 1813 = 

[Lagrange Œuvres, IX] [page références to the 2nd ed. are to the Œuvres 

printing]. 

[Lagrange 1759a] Joseph-Louis Lagrange, "Recherches sur la Méthode de Maximis et 

Minimis", Miscellania Philosophico-Mathematica Societatis Privatae Tauri-

nensis I (1759), 2nd pagination, pp. 18-32 = [Lagrange Œuvres, I. 3-20]. 

[Lagrange 1759b) Joseph-Louis Lagrange, "Sur l'intégration d'une équation 

différentielle à différences finies, qui contient la théorie des suites ré

currentes" , Miscellanea Philosophico-Mathematica Societatis Privatae 

Taurinensis I (1759), 2nd pagination, pp. 33-42 = [Lagrange Œuvres, I, 

23-36]. 

[Lagrange 1759c] Joseph-Louis Lagrange, "Recherches sur la Nature et la Propagation 

du Son", Miscellania Philosophico-Mathematica Societatis Privatae Tauri

nensis I (1759), 3rd pagination, pp. i-112 = [Lagrange Œuvres, I, 39-148]. 

[Lagrange 1760-61a] Joseph-Louis Lagrange. "Nouvelles Recherches sur la Nature 

et la Propagation du Son", Miscellania Taurinensia II (1760-1761) = 

[Lagrange Œuvres, I. 151-316]. 

[Lagrange 1760-6lb] Joseph-Louis Lagrange, "Note sur la Métaphysique du Calcul In

finitésimal", Miscelania Taurinensia II (1760-1761) = [Lagrange Œuvres, 

VIL 597-599]. 

[Lagrange 1766) Joseph-Louis Lagrange. "Recherches sur les inégalités des satellites 

de Jupiter", Recueil des Pièces qui ont remporté les Prix de VAcadémie 

Royale des Sciences [de Paris], IX (1777) [winning entry for the 1766 prize] 

= [Lagrange Œuvres, VI, 67-225]. 

440 



[Lagrange 1772a] Joseph-Louis Lagrange, "Sur une nouvelle espèce de calcul relatif à la 

différentiation et à l'intégration des quantités variables". Mém. Acad. Berlin, 

1772 (1774), pp. 185-221 [BBAW] = [Lagrange Œuvres., III, 441-476], 

[Lagrange 1772b] Joseph-Louis Lagrange, "Sur l'intégration des équations a différences 

partielles du premier ordre", Mém. Acad. Berlin, 1772 (1774), pp. 353-372 

[BBAW] = [Lagrange Œuvres, III, 549-575]. 

[Lagrange 1773a] Joseph-Louis Lagrange, "Sur l'attraction des sphéroïdes elliptiques", 

Mém. Acad. Berlin, 1773 (1775), pp. 121-148 [55.4IV] = [Lagrange Œuvres., 

III, 619-658]. 

[Lagrange 1773b] Joseph-Louis Lagrange, "Solutions analytiques de quelques 

problèmes sur les pyramides triangulaires", Mém. Acad. Berlin, 1773 (1775), 

pp. 149-176 [BBAW] = [Lagrange Œuvres, III, 661-692]. 

[Lagrange 1774] Joseph-Louis Lagrange, "Sur les intégrales particulières des équations 

différentielles", Mém. Acad. Berlin, 1774 (1776), pp. 197-275 [BBAW] = 

[Lagrange Œuvres, IV, 5-108]. 

[Lagrange 1775] Joseph-Louis Lagrange, "Recherches sur les suites récurrentes dont 

les termes varient de plusieurs manières différentes, ou sur l'intégration des 

équations linéaires aux différences finies &; partielles; & sur l'usage de ces 

équations dans la théorie des hasards", Mém. Acad. Berlin, 1775 (1777), 

pp. 183-272 [BBAW] = [Lagrange Œuvres, IV, 151-251]. 

[Lagrange 1776] Joseph-Louis Lagrange, "Sur l'usage des fractions continues dans le 

Calcul Intégral", Mém. Acad. Berlin, royale des Sciences et Belles-Lettres, 

Année 1776 (1779), pp. 236-264 [BBAW] = [Lagrange Œuvres, IV, 301-332]. 

[Lagrange ¿779] Joseph-Louis Lagrange, "Sur différentes questions d'analyse relatives 

à la théorie des intégrales particulières", Mém. Acad. Berlin, 1779 (1781), 

pp. 121-160 [BBAW] = [Lagrange Œuvres, IV, 585-634]. 

[Lagrange 1781] Joseph-Louis Lagrange, "Théorie des variations séculaires des élémens 

des Planètes: Première Partie. Contenant les principes et les formules 

générales pour déterminer ces variations", Mém. Acad. Berlin, 1781 (1783), 

pp. 199-276 = [Lagrange Œuvres, V, 125-207]. 

[Lagrange 1783] Joseph-Louis Lagrange, "Sur la manière de rectifier les méthodes or

dinaires d'approximation pour l'intégration des équations du mouvement 

des Planètes", Mém. Acad. Berlin, 1783 (1785), pp.224-243 [BBAW] = 

[Lagrange Œuvres, V, 493-514]. 

441 



[Lagrange 1784-1785] Joseph-Louis Lagrange, "Sur une nouvelle méthode de calcul 

intégral pour les différentielles affectées d'un radical carré sous lequel la vari

able ne passe pas le quatrième degré", Mémoires de l'Académie royale des 

Sciences de Turin I (1784-1785), 1786 = [Lagrange Œuvres, IL 253-312]. 

[Lagrange 1785} Joseph-Louis Lagrange. "Méthode Générale pour intégrer les 

équations aux différences partielles du premier ordre, lorsque ces différences 

ne sont que linéaires", Mém. Acad. Berlin. 1785, (1787), pp. 174-190 [BBA W] 

= [Lagrange Œuvres, V. 543-562]. 

[Lagrange 1792-1793} Joseph-Louis Lagrange, "Sur l'expression du terme général des 

séries récurrentes, lorsque l'équation génératrice a des racines égales", Mém. 

Acad. Berlin, 1792-1793 (1798), pp. 247-257 [BBA W] = [Lagrange Œuvres, 

V, 627-641). 

[Lamandé 1988] Pierre Lamandé, "Deux manuels mathématiques rivaux: le Bézout 

et le Lacroix. Ancien contre nouveau régime en calcul infinitésimal", Wis

senschaftliche Zeitschrift der Wilhelm-Pieck-Universität Rostock, G-Reihe37 

(1988), pp. 16-25. 

[Lamandé 1988-1989] Pierre Lamandé, La mutation de l'enseignement scientifique en 

France (1750-1810) et le rôle des écoles centrales: l'exemple de Nantes, Sci

ences et Techniques en Perspective, vol. 15, Nantes: Université de Nantes -

Centre d'Histoire des Sciences et des Techniques. 1988-1989. 

[Lamandé 1998] Pierre Lamandé, "Les traités de calcul du Marquis de l'Hôpital et 

de Sylvestre François Lacroix. Une même mathématique?", Contribution à 

une approche historique des mathématiques. Actes de la T université d'été 

interdisciplinaire sur l'histoire des mathématiques, Nantes: IREM des pays 

de la Loire, 1998, pp. 207-236. 

[Lamandé 2004] Pierre Lamandé. "La conception des nombres en France autour de 

1800: l'œuvre didactique de Sylvestre François Lacroix", Revue d'histoire 

des mathématiques 10 (2004), pp. 45-106. 

[Langins 1981] Janis Langins, "Une lettre inédite de Fourier sur l'enseignement destiné 

aux ingénieurs en 1797", Revue d'histoire des sciences 34 (1981), pp. 193-207. 

[Langins 1987a] Jänis Langins, La République avait besoin de savants - Les débuts 

de l'Ecole polytechnique: l'École centrale des travaux publics et les cours 

révolutionnaires de l'an III, [Paris:] Belin, 1987. 

[Laplace Œuvres] Pierre-Simon Laplace, Œuvres complètes de Laplace, 14 vols., Paris: 

Gauthier-Villars, 1878-1912 [Gallica]. 

442 



[Laplace 1772a] Pierre-Simon Laplace, "Mémoire Sur les Solutions particulières des 

Équations différentielles, et sur les inégalités séculaires des Planètes", Mém. 

Acad. Paris, 1772 part 1 (1775), pp. 343-377 and 651-656 [GalHca] = 

[Laplace Œuvres, VIII. 325-366]. 

[Laplace 1772b] Pierre-Simon Laplace, "Recherches sur le Calcul intégral et sur le 

Système du Monde", Mém. Acad. Paris, 1772 part 2 (1776), pp. 267-376 

and 533-554 [GalHca] = [Laplace Œuvres, VIII, 369-477]. 

[Laplace 1773a] Pierre-Simon Laplace, "Recherches sur l'intégration des Équations 

différentielles aux différences finies, et sur leur usage dans la théorie des 

hasards", Savans Étrangers 7 (1773), 1776, pp.37-162 = [Laplace Œuvres, 

VIII, 69-197]. 

[Laplace 1773b] Pierre-Simon Laplace, "Mémoire sur l'inclinaison moyenne des orbites 

des comètes; sur la figure de la Terre, et sur les Fonctions", Savans Etrangers 

7 (¿775), 1776, pp. 503-540 = [Laplace Œuvres, VIII, 279-321]. 

[Laplace ¿775c] Pierre-Simon Laplace, "Recherches sur le calcul intégral aux 

différences partielles", Mém. Acad. Paris, 1773 (1777), pp.341-402 [GalHca] 

— [Laplace Œuvres, IX, 5-68]. 

[Laplace 1774] Pierre-Simon Laplace, "Mémoire sur les suites récurro-récurrentes et 

sur leurs usages dans la théorie des hasards", Savans Étrangers 6 (1774), 

pp. 353-371 [GalHca] = [Laplace Œuvres, VIII, 5-24]. 

[Laplace ¿777] Pierre-Simon Laplace, "Mémoire sur l'intégration des équations 

différentielles par approximation", Mém. Acad. Paris, ¿777 (1780), pp. 373-

397 [GalHca] = [Laplace Œuvres, IX, 357-379]. 

[Laplace 1779] Pierre-Simon Laplace, "Mémoire sur les suites", Mém. Acad. Paris, 

1779 (1782), pp. 207-309 [GalHca] = [Laplace Œuvres, X, 1-89]. 

[Laplace 1782} Pierre-Simon Laplace, "Mémoire sur les approximations des Formules 

qui sont fonctions de très-grands nombres", Mém. Acad. Paris, 1782 (1785), 

pp. 1-88 [GalHca] = [Laplace Œuvres, X, 209-291]. 

[Laplace 1812] Pierre-Simon Laplace, Théorie analytique des probabilités, Paris: 

Courcier, 1812; 2nd ed, 1814; 3r ed, 1820 = [Laplace Œuvres, VII] [page 

références are to the Œuvres printing of the 3rd ed]. 

[Legendre 1787] Adrien-Marie Legendre, "Mémoire sur l'intégration de quelques 

Equations aux différences partielles", Mém. Acad. Paris, 1787 (1789), 

pp. 309-351. 

443 



[Legendre 1790] Adrien-Marie Legendre, "Mémoire sur les intégrales particulières des 

équations différentielles". Mémoires de VAcadémie des Sciences, année MD-

CCLXXXX, Paris: Imprimerie de Du Pont, year V (1797), pp. 218-241 [ac-

cording to the "Avertissement". the memoirs contained in this odd volume 

of Mém. Acad. Paris were already printed in July 1794], 

[Leibniz 1694] Gottfried Wilhelm Leibniz, "Constructio propria problematis de curva 

isochrona paracentrica", Acta Eruditorum, Aug. 1694. pp. 364-375; French 

translation by Marc Parmentier in G. W. Leibniz, La naissance du calcul 

différentiel, Paris: Vrin, 1989, pp. 287-305. 

[Leibniz 1700] Gottfried Wilhelm Leibniz, "Responsio ad Dn. Nie. Fatii Duillerii lm-

putationes. Accessit nova Artis Analytica promotio specimine indicata; dum 

Designatione per numéros assumtitios loco literarum, Algebra ex Combina

toria Arte lucem capit". Acta Eruditorum, May 1700, pp. 198-208; French 

translation by Marc Parmentier in G. W. Leibniz, La naissance du calcul 

différentiel, Paris: Vrin, 1989, pp. 368-382. 

[l'Hospital 1696] [Anonymous, in fact G u ili au me-François-Antoine, Marquis de 

l'Hospital], Analyse des infiniment petits, Paris: Imprimerie Royale, 1696; 

fac-similé reprint, Paris: ACL-éditions, 1988 [Gallica]. 

[l'Huilier 1786] Simon l'Huilier, Exposition Élémentaire des Principes des Calculs 

Supérieurs, Berlin: Georges Jacques Decker, [1786?; Gallica}. 

[l'Huilier 1795] Simon l'Huilier, Principiorum Calculi Differentialis et Integralis Expo-

sitio Elementaris, Tubinga: J. G. Cottam, 1795. 

[Libri 1843} "Discours de M. Libri, membre de l'Académie, prononcé aux funérailles 

de M. Lacroix, le 27 mai 1843", [Lacroix AS]. 

[Lorgna 1786-87] Anton Mario Lorgna, "Théorie d'une nouvelle espèce de calcul fini 

et infinitésimal", Mémoires de lAcadémie Royale des Sciences de Turin III 

(1786-1787), 1788, pp. 409-448. 

[Lützen 1982} Jesper Lützen, The prehistory of the theory of distributions, New York: 

Springer, 1982. 

[Lützen 1983} Jesper Lützen, "Euler's Vision of a General Partial Differential Calcu-

lus for a Generalized Kind of Function", Mathematics Magazine 56 (1983), 

pp. 299-306; reprinted in M. Anderson, V. Katz and R. Wilson (eds.), Sher

lock Holmes in Babylon, Washington, DC: The Mathematical Association of 

America, 2004, pp. 354-360. 

444 



[Lycées 1802} "Arrêté concernant l'organisation de l'enseignement dans les lycées. Du 

19 frimaire an 11 (10 décembre 1802)", Recueil de lois et réglemens concer

nant l'instruction publique, 1ère série, tome 2nd, Paris: Brunot-Labbe, 1814, 

pp. 304-311 [relevant excerpts also in [Belhoste 1995, 77-78]]. 

[Lycées 1803} "[Ouvrages proposés pour l'enseignement des Lycées.] Série 

mathématique" [dated 20 germinal an 11 — 10 April 1803], Recueil de 

lois et réglemens concernant l'instruction publique, séries 1. vol. 2. Paris: 

Brunot-Labbe, 1814, pp. 398-401 = [Belhoste 1995, 78-81]. 

[Meusnier 1785} Jean-Baptiste Meusnier de la Place. "Mémoire sur la courbure des 

surfaces", Savans Etrangers 10 (1785), pp.477-510. 

[Michaud Biographie} Biographie Universelle, Ancienne et Moderne, 52 vols., Paris: 

Michaud, 1811-1828. 

[Monge Feuilles] Gaspard Monge, Feuilles d'Analyse appliqué à la Géométrie à l'usage 

de l'Ecole Polytechnique, 2nd ed. Paris: Baudouin, Thermidor year 9 (Jul-

Aug 1801); fac-similé reprint on demand, Ann Arbor, Michigan: UMI [com-

posed of 34 numbered leaves ("feuilles") of 4 pages each, plus one (n° 3 bis) 

of 2 pages; within each leaf pages are not numbered, but are referred here in 

lowercase roman]. First édition (never published as a volume) is from 1795-

1796. Later éditions under the title Application de l'Analyse à la Géométrie: 

3rd ed., Paris: Bernard, 1807 (fac-similé reprint, Paris: Ellipses, 1994); 4th 

ed., Paris : Bernard, 1809; 5th ed. (with additions by Liouville and Gauss), 

Paris: Bachelier, 1850; [4th and 5th ed. exclude the preliminary section on 

analytic geometry (leaves n œ 1 — Sbis in the 2nd ed.); 3rd ed. replaces it with 

a much larger "first part" on "application de l'algèbre a la géométrie"]. 

[Monge Stéréotomie] Gaspard Monge, "Stéréotomie", Journal Polytechnique, vol. I, 

1er cahier (Germinal year 3 = Mar/Apr 1795), pp. 1-14. 

[Monge 1771} Gaspard Monge, "Réflexions sur les équations aux différences par

tielles", in [Tatou 1950, 49-58] [second part of a memoir read by Monge 

to the Académie Royale des Science de Paris in 27 November 1771, but not 

published at the time; the first part seems to be lost]. 

[Monge 1770-1773] Gaspard Monge, "Mémoire sur la détermination des fonctions ar

bitraires dans les intégrales de quelques équations aux différences partielles", 

Mélanges de Philosophie et de Mathématique de la Société Royale de Turin 

5 (1770-1773), 2nd pagination (classe mathématique), pp. 16-78. 

[Monge 1773a] Gaspard Monge, "Mémoire sur la Construction des Fonctions arbi

traires qui entrent dans les intégrales des Equations aux différences par

tielles", Savans Étrangers 7 (1773), 1776, pp. 267-300. 

445 



[Monge 1773b] Gaspard Monge, "Mémoire sur la Détermination des Fonctions arbi

traires qui entrent dans les intégrales des Équations aux différences par

tielles", Savans Étrangers 7 (1773), 1776, pp. 305-327. 

[Monge 1780] Gaspard Monge, "Mémoire sur les Propriétés de plusieurs genres de Sur

faces courbes, particulièrement sur celles des Surfaces développables, avec une 

Application à la Théorie des Ombres et des Pénombres", Savans Étrangers 

9 (1780), pp. 382-440. 

[Monge 1781] Gaspard Monge, "Mémoire sur la théorie des déblais et des remblais". 

Mém. Acad. Pans, 1781 (1784), pp. 666-704 [Gallica]. 

[Monge 1785b] Gaspard Monge, "Mémoire Sur une méthode d'intégrer les Équations 

aux Différences ordinaires, lorsqu'elles sont élevées, k dans les cas où leurs 

Intégrales complètes sont algébriques", Mém. Acad. Paris, 1783 (1786), 

pp. 719-724 [dates from 1785, according to [Taton 1951, 288-289]; Gallica}. 

[Monge 1785c] Gaspard Monge, "Mémoire Sur l'intégration des Équations aux 

différences finies, qui ne sont pas linéaires", Mém. Acad. Paris, 1783 (1786), 

pp. 725-730 [read on 30 November 1785; Gallica]. 

[Monge 1784a] Gaspard Monge, "Mémoire sur l'expression analytique de la génération 

des surfaces courbes", Mém. Acad. Paris, 1784 (1787), pp.85-117 [Gallica]. 

[Monge 1784b] Gaspard Monge, "Mémoire sur le calcul intégral des équations aux 

différences partielles", Mém. Acad. Paris, 1784 (1787), pp. 118-192 [Gallica]. 

[Monge 1784c] Gaspard Monge, "Supplément où l'on fait voir que les Équations aux 

différences ordinaires, pour lesquelles les conditions d'intégrabilité ne sont pas 

satisfaites, sont susceptibles d'une véritable intégration, et que c'est de cette 

intégration que dépend celle des équations aux différences partielles élevées", 

Mém. Acad. Paris, 1784 (1787), pp. 502-576 [Gallica]. 

[Monge 1784-1785] Gaspard Monge, "Sur l'expression analytique de la génération des 

surfaces courbes", Mémoires de lAcadémie Royale des Sciences [de Turin]. 

1784-1785, 1786, pp. 19-30. 

[Monge 1785a] Gaspard Monge, "Mémoire sur les développées, les rayons de courbure, 

et les différens genres d'inflexions des courbes à double courbure". Savans 

Etrangers 10 (1785), pp. 511-550 [submitted on 31 August 1771, but probably 

modified between 1776 and 1785 [Taton 1951, 114]]. 

[Monge 1795] Gaspard Monge, "Leçons de Monge" [on descriptive geometry], in J. 

Dhombres (ed.), L'École normale de l'an III — Leçons de mathématiques, 

Paris: Dunod, 1992, pp. 305-453 [first published in 1795 in Séances des écoles 

normales]. 

446 



[Monge &: Hachette 1799} Gaspard Monge and Jean Nicolas Pierre Hachette. "Des 

courbes à double courbure (extrait des ouvrages du C. e n Gaspard Monge)", 

Journal de l'Ecole Polytechnique, vol II, 6ème cahier, Thermidor year VII 

(July-August 1799), pp. 345-363. 

[Montucla & Lalande 1802} J. F. [in fact. Jean-Etienne] Montucla, Histoire des 

Mathématiques, 2nû éd., vol. 3 [of 4), completed and edited by Jérôme de 

Lalande. Paris: Henri Agasse, an X (May 1802). 

[Nagliati 1996] Iolanda Nagliati, Le radici della scuola matematica pisana - La matem

atica nell'Università di Pisa dal 1799 al 1860, doctoral thesis, consorzio delle 

Università di Pisa, Bari, Ferrara, Lecce, Parma, 1996. 

[Nagliati 2000} Iolanda Nagliati, "Aspetti della matematica", in Stona dell'Università 

di Pisa 2 {1737-1861), Pisa: Plus, 2000, pp. 823-837. 

[Newton Fluxions] Isaac Newton, "Methodus Fluxionum et Serierum infinitarum", in 

J. Castiglione (ed.), Isaaci Newtoni [...] Opuscula Mathematica, Philosophica 

et Philologica, I, Lausanna and Geneva: Bousquet, 1744, pp. 29-199 [this is 

a Latin translation by Castiglione from Colson's English translation, pub-

lished in 1736 as the first édition of Newton's Method of Fluxions, of a Latin 

originai]. 

[Newton Principia] Isaac Newton, Philosophie Naturalis Principia Mathematica, Lon

don: Royal Society. 1687 [Gallica]; 2nd ed, 1713; 3rd ed, 1726 [many reprints 

and several translations]. 

[Nieuport Mélanges] [Charles François Le Preud'homme-d'Hailly,] Commandeur de 

Nieuport, Mélanges Mathématiques, 2 vols. + 1 suppl. Bruxelles: Lemaire, 

1794, year VII = 1799, year x = 1802. 

[NUC] Library of [USA] Corigress, National Union Catalog, pre-1956 imprints, 754 

vols., London: M angeli, 1968-1981. 

[Olivier 1843] Théodore Olivier, Cours de Geometrie Descriptive. Première partie. Du 

point, de la droite et du plan, Paris: Carilìan-Gceury & V o r Dalmont, 1843. 

[Panteki 1987] Maria Panteki, "William Wallace and the Introduction of Continental 

Calculus to Britain: A Letter to George Peacock", Historia Mathematica 14 

(1987), pp. 119-132. 

[Panteki 2003} Maria Panteki, "French 'logique' and British 'logie': on the origins of 

Augustus De Morgan's early logicai inquiries, 1805-1835", Historia Mathe

matica 30 (2003), pp. 278-340. 

447 



[Panza 1985] Marco Panza, "Il manoscritto del 1789 di Arbogast sui principi del cal

colo differenziale e integrale", Rivista di storia della scienza voi. 2 n. 1 (Marzo 

1985), pp. 123-157. 

[Paoli 1792] Pietro Paoli. "Riflessioni sull'integrazione di quell'equazioni, le quali 

non soddisfanno alle condizioni d'integrabilità", Memorie di Matem

atica e Fisica della Società Italiana VI (1792), pp. 501-533 [available 

at <http://www.accademiaxl.it/Biblioteca/Pubblicazioni/browser.asp> (23 

October 2006)]; also in Pietro Paoli, Memorie sul calcolo integrale e sopra 

alcuni problemi meccanici, Verona: Dionigi Rarnanzini, 1793, pp. 1-33. 

[Pedersen 1980] Kirsti M0ller Pedersen, "Techniques of the Calculus, 1630-1660", in 

Ivor Grattan-Guinness (ed.). From the Calculus to Set Theory, London: 

Duckworth, 1980; 2nd ed.: Princeton, New Jersey: Princeton University 

Press, 2000, pp. 10-48. 

[Pepe 2006} Luigi Pepe, "Insegnamenti matematici e libri elementari nella prima 

metà dell'Ottocento. Modelli francesi ed esperienze italiane", <bs-

d.unife.it/museologia/matematica/fìlemat/pdf/libri elementari.pdf> (26 Au

gust 2006); also in Livia Giacardi (ed.), Da Casati a Gentile. Momenti di 

storia dell'insegnamento secondario della matematica in Italia, Lumières In

ternationales, 2006, pp. 65-98. 

[Pfaff 1815] Johann Friedrich Pfaff, "Methodus generalis, aequationes differentiarum 

partialium, nec non aequationes differentiales vulgares, utrasque primi or-

dinis, inter quotcunque variabiles, complete integrandi", Abhandlungen der 

Königlichen Akademie der Wissenschaften in Berlin. Aus den Jahren 1814' 

1815, 1818, 3rd pagination (mathematische Klasse), pp. 76-136 [submitted in 

May 1815; BBA W]. 

[Phili 1996] Christine Phili, "La reconstruction des mathématiques en Grece: l'apport 

de Ioannis Carandinos (1784-1834)", in Catherine Goldstein, Jeremy Gray 

and Jim Ritter (eds.), L'Europe mathématique / Mathematical Europe, Paris: 

Maison des sciences de l'homme, 1996, pp. 305-319. 

[Philips 2006} Christopher Philips, "Robert Woodhouse and the evolution of Cam

bridge mathematics", History of Science 44 (2006), pp. 69-93. 

[Poisson 1800] Simeon Denis Poisson, "Memoire Sur la pluralité des Integrales dans 

le calcul des Differences", Journal de V Ecole Poly technique, vol. IV, Heme 

Cahier (1802), pp. 173-181 [submitted to the Institut national on 16 Frimaire 

year 9 = 7 December 1800]. 

448 

http://www.accademiaxl.it/Biblioteca/Pubblicazioni/browser.asp


[Poisson 1805} Simeon Denis Poisson, "Démonstration du théorème de Taylor", Cor

respondance sur l'École Imperiale Polytechnique, vol. I, n. 3 (Pluviôse year 13 

= Jan-Feb 1805), pp. 52-55. 

[Poisson 1806] Simeon Denis Poisson, "Mémoire Sur les Solutions particulières des 

Équations différentielles et des Équations aux différences" and "Addition au 

mémoire précédent", Journal de l'Ecole Polytechnique, vol. VI, 13ème cahier 

(April 1806), pp. 60-116 and 117-125. 

[Prony 1795a] Gaspard-François-Marie Riche de Prony, "Cours d'analyse appliqué à 

la mécanique", Journal [de l'École] Polytechnique, vol. I, part I - 1er cahier, 

pp. 92-119; part II - 2ème cahier, pp. 1-23; part III - 3ème cahier, pp. 209-273; 

part IV - 4ème cahier, pp. 459-569. 

[Prony 1795b] Gaspard-François-Marie Riche de Prony, "Notice sur un cours 

élémentaire d'analyse fait par Lagrange", Journal de l'Ecole Polytechnique, 

vol. I, 2ème cahier, Paris: Imprimerie de la République, Nivose year IV (Dec 

1795 - Jan 1796), pp. 206-208. 

[Prony 1799] Gaspard-François-Marie Riche de Prony, "Introduction aux Cours 

d'Analyse pure et d'Analyse appliquée à la Mécanique", Journal de l'Ecole 

Polytechnique, vol. II, 6ème cahier, Thermidor year VII (July - August 1799), 

pp. 213-218. 

[Quetelet 1867] Adolphe Quetelet, Sciences Mathématiques et Physiques au com

mencement du XIXe siècle, Bruxelles: Muquardt, 1867. 

[Ross 1977} Bertram Ross, "The development of fractional calculus 1695-1900", His-

toria Mathematica 4 (1977), pp. 75-89. 

[Rothenberg 1908] Siegfried Rothenberg, "Geschichtliche Darstellung der Entwicklung 

der Theorie der singulären Lösungen totaler Differentialgleichungen von der 

ersten Ordnung mit zwei variablen Grössen", Abhandlungen zur Geschichte 

der Mathematischen Wissenschaften... 20 (1905-1908), pp. 315-404. 

[Sarton 1936) George Sarton, "Montucla (1725-1799): his life and works". Osiris 1 

(1936), pp. 519-567. 

[Schubring 1987\ Gert Schubring, "On the Methodology of Analysing Hstorical Text-

books: Lacroix as Textbook Author", For the Leaming of Mathematics 7, 3 

(November 1987), pp. 41-51. 

[Schubring 2005] Gert Schubring, Conflicts between Généralisation, Rigor and Intu

ition, New York: Springer, 2005. 

449 



[C.P.Silva 1992] Clövis Pereira da Silva, A Matemâtica no Brasil - Uraa Histôria de 

seu Desenvolvimento, Curitiba: Editora UFPR, 1992. 

[C.M.S- Silva 1996} Circe Mary Silva da Silva Dynnikov, "O conceito de derivada no 

ensino da Matemâtica no Brasil do século XIX", in proceedings of Histöria 

e Educaçao Matemâtica (2ème Université d'Eté Européenne sur Histoire et 

Epistémologie dans l'Education Mathématique / ICME-8 sattelite meeting 

of HPM, 24-30 July 1996, Braga, Portugal) vol. II, pp. 80-87. 

[Simson 1776] Robert Simson, Opera Quaedam Reliqua, Glasgow. 1776. 

[Soc. Phil. Rapp] Augustin-François de Silvestre et al., Rapports Généraux des Travaux 

de la Société Philomathique de Paris, 4 vols. ; Paris, 1792-1800 [from the 

second volume onwards the title is Rapport Général des Travaux de la Société 

Philomatique de Paris). 

[Stirling 1730] James Stirling. Methodus Differentialis: sive Tractatus de Summatione 

et Interpolatione Serierum Infinitarum, London: Bowyer, 1730. Annotated 

English translation by Ian Tweddle, James Stirling's Methodus differentialis, 

London: Springer, 2003. 

[Stockler 1805] Francisco de Borja Garçâo Stockler, "Nota (m)" [endnote to an eulogy 

of d'Alembert, on vibrating strings and continuity of arbitrary functions], in 

Ohas, vol. I, Lisboa: Academia Real das Sciencias, 1805, pp. 129-188. 

[Struik 1933] Dirk J. Struik, "Outline of a history of differential geometry", part I, 

Isis 19 (1933), pp. 92-120. 

[Taton 1947] René Taton, "Une correspondance mathématique inédite de Monge", La 

Revue Scientifique, 85 e année (1947), pp. 963-989. 

[Taton 1950] René Taton, "Un texte inédit de Monge: Réflexions sur les équations 

aux différences partielles", Osiris 9 (1950), pp. 44-61. 

[Taton 1951) René Taton, L'Œuvre Scientifique de Monge, Paris: Presses Universi

taires de France, 1951. 

[Taton 1953a) René Taton, "Sylvestre-François Lacroix (1765-1843), mathématicien, 

professeur et historien des sciences", Actes du VIIe Congrès International 

d'Histoire des Sciences (4-12 Août 1953), Paris: Acad. Int. d'Hist. Sei. & 

Hermann, pp. 588-593. 

[Taton 1953b] René Taton, "Laplace et Sylvestre-François Lacroix". Revue d'histoire 

des sciences, 6 (1953), pp. 350-360. 

450 



[Taton 1959] René Taton, "Condorcet et Sylvestre-François Lacroix", Revue d'histoire 

des sciences 12 (1959), pp. 127-158 and 243-262. 

[Taton 1972] René Taton, "Fontaine (Fontaine des Bertins), Alexis", in 

[Gillispie DSB, V, 54-55]. 

[Taton 1990} René Taton, "La Société Philomathique de Paris et les sciences ex

actes: Premier tiers du XIXème siècle", in André Thomas (ed.). La 

Société philomathique de Pans et deux siècles de la Science en France, 

Paris: Presses Universitaires de France, 1990, pp. 37-54; also available 

at <http://philomathique.org/modules/news/article.php?storyid=20> (11 

March 2007). 

[Taylor 1715] Brook Taylor, Methodus Incrementorum Dircela et Inversa, London, 

1715. 

[Tinseau 1780a) Charles Tinseau, "Solution de quelques problêmes relatifs à la Théorie 

des Surfaces courbes, et des Courbes à double courbure", Savons Etrangers 

9 (1780), pp. 593-624. 

[Tinseau 1780b) Charles Tinseau d'Amondans de Gennes. "Sur quelques propriétés 

des Solides renfermés par des Surfaces composés de Lignes droites", Savans 

Étrangers 9 (1780), pp. 625-642. 

[Tisserand 1894] François-Félix Tisserand, Traité de Mécanique Céleste - Tome III: 

Exposé de l'ensemble des théories relatives au mouvement de la Lune, Paris: 

Gauthier-Villars, 1894; fac-similé reprint, Paris: Jacques Gabay, 1990. 

[Todhunter 1861] Isaac Todhunter, A history of the progress of the calculus of vari

ations during the nineteenth Century, Cambridge and London: MacMillan, 

1861. 

[Torlais 1964} Jean Torlais, "Le Collège Royal", in René Taton (ed.), Enseignement 

et diffusion des sciences en France au XVIIP siècle, Paris: Hermann, 1964, 

pp. 261-286. 

[Tournés 2003} Dominique Tournés, "L'intégration graphique des équations 

différentielles ordinaires", Historia Mathematica 30 (2003), pp.457-493. 

[Tournés 2004} Dominique Tournés, "Vincenzo Riccati's treatise on integration of 

differential équations by tractîonal motion (1752)", Oberwolfach Reports 1 

(2004), pp. 2740-2742 [extended abstract of a talk given at the workshop The 

History of Differential Equations, 1670-1950, Mathematisches Forschungsin

stitut Oberwolfach, October 3 Ist - November 6th. 2004]. 

451 

http://philomathique.org/modules/news/article.php?storyid=20


[Trembley 1790-91] Jean Trembley, "Recherches sur les équations différentielles du 

premier degré". Mémoires de l'Académie Royale des Sciences [de Turin]. 

1790-91, 1793, 2nd pagination ("mémoires présentés à l'académie"), pp. 1-

52. 

[Troux 1926] Albert Troux, L'École Centrale du Doubs à Besançon, Bibliothèque 

d'Histoire Révolutionnaire (nouvelle série - IX), Paris: Librairie Félix Al-

can, 1926. 

[Truesdell i960] Clifford Ambrose Truesdell III, The Rational Mechanics of Flexible or 

Elastic Bodies, 1638-1788, (Etiler Opera, séries 2, XI, part 2] (Zürich: Orell 

Füssli, 1960). 

[Univ. Coimbra Estatutos 1772] Estatutos da Universidade de Coimbra do anno de 

MDCCLXXII, 3 vols., Lisbon: Regia Ofîicina Typografica, 1772; fac-similé 

reprint, Coimbra, 1972. 

[Venclova 1981] Tomas Venclova. "Four Centuries of Enlightenment - a historié 

view of the University of Vilnius, 1579-1979", Lituanus 27, n. 1 (1981); 

<http://www.lituanus.org/1981_2/81_2_01.htm> (26 December 2006). 

[Wagener Lacroix] Wagener, "Lacroix (Sylvestre-François)", Biographie Universelle 

(Michaud), 2nd ed, vol. 22, Paris: Desplaces and Leipzig: Brockhaus, un-

dated [c. 1856, according to the catalogue of the Bibliothèque nationale de 

France], pp. 396-398. 

[Wallace 1815] William Wallace, "Fluxions", in David Brewster (ed.), Edinburgh En-

cyclopœdia, vol. IX, pp. 382-467. 

[Wallner 1908] C. R. [Karl Raimund] Wallner, "Totale und partielle Differen

tialgleichungen. Differenzen- und Summenrechnung. Variationsrechnung", 

in Moritz Cantor (ed.), Vorlesungen über Geschichte der Mathe

matik, IV, Leipzig; Teubner, 1908, pp. 871-1074 [available online at 

<http://www.hti.umich.edu/u/umhistmath> (26 August 2006)]. 

[Wilson 1994] Curtis Wilson, "The dynamics of the solar System", in Ivor Grattan-

Guinness (ed.), Companion Encyclopedia ofthe History and Philosophy of the 

Mathematical Sciences, vol. 2, New York and London: Routledge, 1994; 2nd 

ed.: Baltimore and London: Johns Hopkins Press, undated. pp. 1044-1053. 

[Yla 1981} Rev. Stasys Yla, "The Clash of Nationalities at the University of Vilnius", 

Lituanus 27, n. 1 (1981); <http://www.lituanus.org/1981_2/81_2_03.htm> 

(26 December 2006). 

452 

http://www.lituanus.org/1981_2/81_2_01.htm
http://www.hti.umich.edu/u/umhistmath
http://www.lituanus.org/1981_2/81_2_03.htm


[Youschkevitch 1971] A. P. Youschkevitch, "Lazare Carnot and the Compétition of 
the Berlin Academy in 1786 on the Mathematical Theory of the Infinite", in 
[Gillispie 1971, 149-168]. 

[Youschkevitch 1976} A. P. Youschkevitch, "The Concept of Function up to the Middle 
of the 19 t h Century", Archive for History of Exact Sciences 16 (1976), pp.37-
85. 

453 


