Using multi-agent systems to go beyond temporal patterns
verification

Franco Raimondi, Department of Computer Science
Middlesex University, London
Email: fraimondi@mdx.ac.uk

A key step in formal verification is the translation of requirements into logic formulae. Various flavours of
temporal logic are commonly used in academia and in industry to capture, among others, liveness and safety
requirements. In the past two decades there has been a substantial amount of work in the area of verification
of extensions of temporal logic. In this column I will provide a high level overview of some work in this area,
focussing in particular on the verification of temporal-epistemic properties, showing how temporal-epistemic
logics can be used to capture requirements that are common in many concrete systems, and describing a
model checker for multi-agent systems called MCMAS.

1. INTRODUCTION

Expressing properties such as mutual exclusion and deadlock freeness using temporal
logics such as LTL or CTL [Baier and Katoen 2008] is nowadays considered a standard
skill for software engineers and computer science graduates, especially when they are
working on safety- and mission-critical projects. Several model checking tools, such as
Spin [Holzmann 2003] and NuSMV [Cimatti et al. 2002], support the verification of
temporal properties and are now mature enough to be incorporated into the develop-
ment lifecycle of industrial products. A detailed study of property specifications [Dwyer
et al. 1999] has built a repository of patterns, encoding desired behaviours of systems
in the most common temporal logics.

Temporal logics belong to the more general class of modal logics [Hughes and Cress-
well 1996], which extend propositional logic with modalities. In addition to temporal
logics, other examples of modal logics include doxastic logic with modalities to reason
about beliefs, deontic logic to reason about obligations, and epistemic logic to reason
about knowledge. The proposal of using temporal logic to reason about the correct-
ness of programs has been put forward in [Pnueli 1977] and since then temporal logic
has gained wide acceptance in software engineering. However, other modalities have
not “transitioned” in a similar way outside the more theoretical venues in Computer
Science.

Modal logics have been used routinely in artificial intelligence and multi-agent sys-
tems. In particular, there has been a substantial amount of work in the past 20 years
in the area of verification for multi-agent systems. On the other hand, the software
engineering community and the certification authorities seem to have focussed mainly
on temporal specifications. The current trend in integrating automation and humans,
for instance in creating autonomous cars and a mixed airspace with autonomous and
human-controlled aircraft, gives rise to systems whose requirements can be easily cap-
tured by multi-modal logics [Gabbay et al. 2003] that extend temporal-only logic.

In this paper I will focus mainly on temporal-epistemic logic with the aim of showing
that the tools and the techniques available can capture in a natural and efficient way
several patterns that require reasoning about knowledge and its temporal evolution
in a system composed of multiple components. I will show how multi-agent systems
(MAS) provide a suitable abstraction for this kind of reasoning and I will provide an
overview of MCMAS [Lomuscio et al. 2015], a model checker dedicated to extensions
of temporal logic.

The rest of the paper is organised as follows: I discuss Kripke semantics for exten-
sions of temporal logic in Section 2. I will then present a computationally grounded

ACM SIGLOG News 1 0000, Vol. 0, No. 0



formalism for multi-agent systems in Section 3, describe the tool MCMAS in Section 4
and introduce some examples in Section 5.

2. KRIPKE SEMANTICS FOR TEMPORAL-EPISTEMIC LOGICS

In this section I introduce the syntax and the semantics of temporal-epistemic logic.
I start with a quick overview of temporal logics and then I introduce epistemic logic,
discussing the notions of knowledge, group knowledge, distributed and common knowl-
edge.

2.1. Temporal logics
The two most common flavours of temporal logic are LTL (Linear Temporal Logic) and
CTL (Computation Tree Logic). The syntax of LTL is as follows:
pu= p | ~¢ | oVe | Xo | Go | Fo | ¢Uo

where the other propositional connectives for conjunction and implication can be de-
rived as usual. The temporal operators X, G, F express, respectively, that something is
true in the neXt state, Globally, and at some point in the Future. The binary operator
U requires that the second formula v must become true at some point in the future,
and until that point ¢ has to remain true. The syntax of CTL is similar, but it prefixes
each temporal operator with a path quantifier:

pu= p | ¢ | ¢Ve | EXé | EG | EF¢ | E[pUy]

(the dual quantifier A for “All paths” can be obtained in a standard way).

Given a set of atomic propositions AP, temporal logic formulae are interpreted in
Kripke structures M = (S,t,L,I), where S is a set of states, ¢t C S x S is a temporal
transition relation, L : S — 247 is a labelling function for states, and I C S is a
set of initial states. In the reminder, I will use the term Kripke structure and model
interchangeably. A path 7 is a sequence of states 7 = (sg, s1,...) such that (s;,s;41) €t
for all i > 0. A state s; in a path 7 is denoted by = (i). CTL formulae are evaluated
in a state of a model, while LTL formulae are evaluated over paths. In particular, the
semantics of temporal CTL operators is defined by (Boolean connectives being defined
in an obvious way in terms of the labelling function L):

M,s = EX¢ iff there exists a path 7 s.t. s = 7(0) and M, 7(1) E ¢
M, s = EG¢ iff there exists a path 7 s.t. s = 7(0) and M, 7 (i) = ¢ foralli >0
M, s = E[¢pU4)] iff there exists a path 7 s.t. s = 7(0) and there exists a j s.t.

M,7(j) = andforall0 <i<j M (i) E ¢

The semantics of LTL operators is defined in terms of paths, as follows:
M,s = X¢ iff M,xi] = ¢
M,s=Go iff M,n[i]}=¢ foralli>0
M, s = [pUv] iff there existsa j s.t. M,n[j] E+¢ andforall 0 <i < j M, n[i] = ¢
(where 7[i] is the suffix path of 7 starting at state ).
2.2. Epistemic and temporal-epistemic logics
The syntax of single-agent epistemic logic is given by the following grammar:

¢pu= p | ¢ | ove | K¢

!The semantics of EF can be defined in term of EU, as EF¢ = E[TU¢).

ACM SIGLOG News 2 Vol. 0, No. 0, 0000



in which propositional logic operators are extended with the operator K. The formula
K¢ is read as “knows that ¢” and is normally used to express the epistemic state of an
agent (more on this later).

Epistemic formulae are interpreted in Kripke structures M = (S, ~, L) in which, as
in the previous section, S is a set of states, L is a labelling function and ~C S x S is an
accessibility relation that is serial, transitive and symmetric. The accessibility relation
~ is thus an equivalence relation encoding the set of states that are indistinguishable
for an agent. The semantics of the K operator is given in terms of ~, as follows:

M,s = K¢ iff M,s' = ¢ for all s’ s.t. (s,s") e~

Intuitively, an agent consider K¢ true in a state s if and only if ¢ is true in all
the states that the agent cannot distinguish form s. This is a very strong notion of
“knowledge”: not only it implies that an agent knows all tautologies, it also implies
positive and negative introspection, in the sense that, if the agents knows something,
then it knows that it knows it, and if an agent does not know something, then the
agent knows that it does not know it. Nevertheless, this characterisation of knowledge
is appropriate for a range of scenarios [Fagin et al. 2003], such as when reasoning
about security properties and other epistemic states of agents.

Temporal and epistemic logics can be fused (in a technical sense, see [Gabbay et al.
2003]), resulting in a multi-dimensional modal logic in which the temporal and epis-
temic components are evaluated separately. In fact, one could consider multiple agents,
each of them with their own epistemic accessibility relation. Consider n agents: a
temporal-epistemic Kripke structure is defined as

M = (Svta {Ni}lﬁn’L)

This Kripke structure has n + 1 relations: a temporal one and n epistemic accessibility
relations, one for each agent. This model allows the interpretation of formulae defined
by the following syntax, in addition to propositional and temporal operators:

¢:=Ki¢p | Er¢ | Dro | Cro

where i is an index ranging from 1 to n, I' C {1,...,n} is a group of agents, Er¢ de-
notes that everybody in a group knows ¢, Dr¢ denotes that ¢ is distributed knowledge
in the group, and Cr¢ denotes that ¢ is common knowledge in the group. To clarify the
difference between these three group operators, consider the following example: Alice
is the teenage daughter of Bob. Alice smokes cigarettes but she has always kept this
secret from her father, so she thinks that he does not know that she smokes. However,
one day Bob could see Alice smoking in a corner, without being noticed by her. Addi-
tionally, Alice keeps cigarettes in a drawer in her bedroom, and Bob does not know
about this. In this situation, everybody knows that Alice smokes. Also, the location of
the cigarettes is distributed knowledge between Alice and Bob (this is the knowledge
that could be achieved if epistemic states where shared). However, the fact that Alice
smokes is not common knowledge because Alice does not know that her father knows
that she smokes. Suppose now that one day Bob enters Alice’s room while she is smok-
ing: at this point the fact that Alice smokes is common knowledge between Alice and
Bob. I refer to [Fagin et al. 2003] for the formal semantics of epistemic group operators
in terms of the epistemic accessibility relations of each agent.

3. MULTI-AGENT SYSTEMS

One of the reasons for temporal patterns to be more widely used than epistemic or
other modalities is probably the clear link between the temporal evolution of a program

ACM SIGLOG News 3 Vol. 0, No. 0, 0000



and the temporal relation ¢ defined in the previous section. A possible execution of a
program path is a possible path in a model, and the set of all possible executions is the
model. To make verification of temporal-epistemic properties viable it is necessary to
make clear the link between "real” executions and Kripke structures. This is exactly
the notion of computationally grounded semantics introduced in [Wooldridge 2000].

3.1. Interpreted systems

In this section I describe the formalism of interpreted systems [Fagin et al. 2003], show-
ing how they link both to executions of "real” systems and to Kripke structures. For a
given set of n agents Agt = {Ag1, Aga, ... Agn}, an interpreted system is a tuple:

IS = ({L’M ACt’iv Pivti}iGAgta Ia h)

where L; is a finite set of local states for agent Ag;, Act; is a finite set of actions that
agent Ag; can perform, P, : L; — 24 is a function, called a protocol, that specifies
which actions are enabled in each local state for agent Ag;, and ¢; : (L; x Act; x -+ X
Act,) — L; is a local temporal relation that describes the evolution of the local states
of Ag; in terms of its current local states and of the actions of all the other agents. This
implies that agents can only “see” the actions of the other agents, but not their local
states. The characterisation of an interpreted system is completed by a set of initial
states I C Ly x --- x L,, and by an evaluation function % : (L; x --- x L,) — 247, where
AP is a set of atomic propositions.

Each interpreted system gives rise to an induced multi-dimensional Kripke struc-
ture Mrs = (S,t,{~i}ticagt, L), as follows:

— The set S is the set of of reachable global states: this is the set of states S C (L; x
-+- x L,) that are reachable from I according to the local temporal relations.

— The temporal relation ¢ is defined by the composition of the temporal relations ¢; that,
in turn, take into account the protocols of each agent.

— The epistemic accessibility relations are defined by equivalence of local states. For-
mally, two global states g = (I1,...,l,) and ¢’ = (I}, ...1},) are epistemically equivalent
for agent 7 iff I; = I.. This is a key point, as it allows to define epistemic accessibility
relations as the byproduct of the temporal evolution and the structure of the overall
system, thereby providing a computationally grounded semantics.

— The evaluation function L is identical to the evaluation function h.

As a result, it is possible to use all the known results for standard Kripke structures
in interpreted systems. In particular, traditional model checking algorithms can be
employed for the verification of temporal-epistemic formulae in interpreted systems,
as discussed in the next section.

3.2. Model checking multi-agent systems

Several approaches have been developed to verify multi-agent systems using model
checking. In general, and at a very high level, most of the model checking tech-
niques [Baier and Katoen 2008] for temporal logics transfer to model checking multi-
agent systems. Examples of model checkers for multi-agent systems include:

— VerICS [Kacprzak et al. 2008; Meski et al. 2011]: this is a model checker that sup-
port the verification of CTL and LTL extended with knowledge. It implements model
checking techniques based on Ordered Binary Decision Diagrams (OBDDs [Bryant
1986]) and reduction to SAT for bounded model checking.

— MCK [Gammie and van der Meyden 2004; MCK 2016]: this is a model checker that
supports the verification of epistemic and CTL* properties, including support for per-

ACM SIGLOG News 4 Vol. 0, No. 0, 0000



Agent SampleAgent

Vars:
vl : { a,b,c }; — This is a comment
v2 : boolean;
end Vars
Actions = { actionl, action2, action3 };
Protocol:

vl=a and v2=false : {actionl};
vl=b : {action2,action3};
Other : {action3};
end Protocol
Evolution:
(v2=true) if (v2=false) and
(AnotherAgent. Action=someAction) ;
end Evolution
end Agent

Fig. 1. A minimal ISPL example: an Agent.

fect recall semantics [van der Meyden and Shilov 1999] for some specific patterns of
formulae.

— Other approaches have reduced the model checking problem for multi-agent system
to a temporal-only model checking problem using NuSVM [Su et al. 2007; Lomuscio
et al. 2007].

In this column I will focus mainly on the model checker MCMAS [Lomuscio et al.
2015]. This model checker supports the verification of CTL properties extended with
epistemic operators (both for individual and for group of agents), in addition to ATL
operators [Alur et al. 2002], implementing OBDD-based verification. MCMAS imple-
ments the standard model checking algorithm for CTL, which is based on the fix-point
characterisation of temporal operators [Baier and Katoen 2008]. This algorithm is ex-
tended to epistemic operators for individual agents by taking into account that the
K operator behaves like the AX operator, but over the epistemic transition. The op-
erator for common knowledge, instead, is computed as a fix-point of the operator for
“everybody knows” Er , building on the observation that Cr¢ = Er(¢ A Cro).

4. THE MODEL CHECKER MCMAS

MCMAS [Lomuscio et al. 2015] is a Model Checker for Multi-Agent Systems, released
for the first time in 2004. It allows the verification of CTL formulae extended with epis-
temic modalities (both individual and groups), the verification of ATL properties [Alur
et al. 2002] and it supports fairness conditions and counter-example/witness genera-
tion. In its default configuration MCMAS implements the standard labelling algorithm
for CTL extended to epistemic and strategic operators. The verification engine makes
use of OBDDs [Bryant 1986] to represent states and transitions symbolically.

MCMAS semantics is based on interpreted systems and its input language is called
ISPL (Interpreted Systems Programming Language). Figure 1 provides an example to
encode an agent called SimpleAgent. The local states of an agent are defined by the
variables it controls: in this example, two variables are declared, an enumeration and
a boolean variable, for a total of 6 possible local states. The data types supported by
MCMAS are boolean, enumerations, and bounded numeric ranges. Actions are defined
as a simple list of labels, while the protocol section allows the introduction of non-
determinism in the model (see the protocol line assigning two possible actions to the
case vl = b). The evolution function is encoded using a NuSMV-like syntax: the evolu-
tion line in Figure 1 is read as “The next value of v2 is true if the current value is false
and the action of AnotherAgent is someAction.”

ACM SIGLOG News 5 Vol. 0, No. 0, 0000



1=Agent Environment m ‘Agent Environment

Obsvars: Obsvars
First : boolean; first : boolean
second : 1..4; second : bounded integer
third : { a, b, c}k; third : enumeration

end Obsvars Vars

Vars: fourth : boolean
fourth : boolean; RedStates

end Vars Actions

RedStates: Protocol

1 end RedStates item 0

Actions - { al, a2, a3, a4, a5 }; item 1

Protocol item 2
First=true and second=3 and third=b : {a3}; Evolution

5 First-true and second-4 and third-c : {al,a2}; item 0
6 Other : {ad}; item 1
7 end Protocol
8 Evolution: Vars
) Firstetrue and second=3 and third-b if first-false and secondel; first - boolean
0 First-true and second-4 and third-c if fourth-false and TestAgent.Action - a2; second : bounded integer
21 end Evolution third : enumeration
22 end Agent fourth : boolean
23 Redstates
24=Agent TestAgent Actions.
25 Vars: Protocol
26 First : boolean; item 0
2 second : 1..4; item 1
third 1 { b, <, d} item 2
29 Fourth : boolean; Evolution
30 end Vars o item 0
315 RedStates: item 1
32 Fourth - false; item 2

end RedStates Evaluation

Actions = { a1, a2, a3, a4 }; happy

Protocol InitStates

First-true and second-3 and third-b : {a2}; Groups
First-true and second-4 and third-c : {al,a3}; ol

Other : {ad}; Fairness
end Protocol Formulae
Evolution: formula 0

a1 First-true and second-3 and third-b if first-false and second-Z;

2 First-fourth and second-2+Environment.second and third=third if first=false and second * 2<2+Environment.second;
First=true and second=Enviranment.second and third=c if fourth=false;
end Evolution
5 end Agent

7=Evaluation

example.ispl | Interactive Mode | Model Checking

Fig. 2. MCMAS GUT: editor window (taken from [Lomuscio et al. 2015])

MCMAS is available for download from http://vas.doc.ic.ac.uk/software/mcmas/. The
tool is released as open source and it includes a graphical interface based on an Eclipse
plug-in. A screenshot of the editor window is shown in Figure 2. Formulae to be verified
are listed at the end of the ISPL file and the tool can generate a witness/counter-
example for temporal and epistemic/strategic formulae. These are displayed as a tree
and can be exported as an image. The tool is built using standard C/C++, Flex and
Bison and it has been compiled on Windows, Mac, and Linux. I refer to [Lomuscio
et al. 2015] for a more detailed description and for performance considerations.

5. EXAMPLES

As mentioned at the beginning of this column, the key feature of temporal-epistemic
logic is that it allows the encoding of several requirements that may be difficult
to express using temporal-only formulae. Examples of domains in which temporal-
epistemic logic have been employed are the verification of authentication proto-
cols [Boureanu et al. 2009], the verification of BPEL web-service composition [A. Lo-
muscio 2012], the verification of a confidential conference management system [Kanav
et al. 2014], etc.

In this section I provide two simple examples to show how temporal-epistemic logic
can express the key properties of two systems in a compact and intuitive form: the pro-
tocol of the dining cryptographers [Chaum 1988] and a characterisation of situational
awareness using a temporal-epistemic pattern [Chen et al. 2015].

5.1. The protocol of the Dining Cryptographers

The original wording of this example is as follows:

“Three cryptographers are sitting down to dinner at their favourite three-star restau-
rant. Their waiter informs them that arrangements have been made with the maitre
d’hotel for the bill to be paid anonymously. One of the cryptographers might be paying
for the dinner, or it might have been NSA (U.S. National Security Agency). The three
cryptographers respect each other’s right to make an anonymous payment, but they won-

ACM SIGLOG News 6 Vol. 0, No. 0, 0000



der if NSA is paying. They resolve their uncertainty fairly by carrying out the following
protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the
cryptographer on his right, so that only the two of them can see the outcome. Each
cryptographer then states aloud whether the two coins he can see — the one he flipped
and the one his left-hand neighbour flipped — fell on the same side or on different sides.
If one of the cryptographers is the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer is paying; an
even number indicates that NSA is paying (assuming that the dinner was paid for only
once). Yet if a cryptographer is paying, neither of the other two learns anything from the
utterances about which cryptographer it is.”[Chaum 1988]

This protocol is the basic building block for the definition of more complex infras-
tructures enabling anonymous communication over public networks; moreover, notice
that the protocol works for any number of cryptographers greater or equal to three.

The key property of this example can be formalised by the following formula

n

AG <( /\ c;_announced N ﬁcl,paid) — (Kcl (/"\ —¢; _paid)V
i=1

=1

(Ke, (\”/ i _paid) A /”\ -K., (Cipaid»))

=2 =2

where AG is the CTL temporal operator expressing that the formula is true in all
states, n is the number of cryptographers, c¢;_announced represents the announcement
made by cryptographer i, and ¢;_paid encodes the fact that cryptographer i paid the
bill. Anonymity is captured by the fact that, if a cryptographer did not pay and there is
an odd number of “different” utterances, then the cryptographer knows that someone
paid for the dinner (expressed as a disjunction), but the cryptographer does not know
who actually paid.

5.2. Situational awareness as a temporal-epistemic formula

As stated in [Chen et al. 2015], “/i/nformally, situational awareness is the ability of
an agent (typically human) to determine the correct internal state of some component
(or some other agent) based on his/her current beliefs. Situational awareness is a key
factor for decision makers in safety-critical situations, such as airplane pilots, medical
doctors, firemen, etc”.

The work in [Chen et al. 2015] introduces an extension of epistemic logic that al-
lows to count the number of states of an epistemic equivalence class in which a given
formula is true. In turn, this allows for the definition of a doxastic operator B¢,
which is true if the ratio of states in an equivalence class in which ¢ is true is < ¢.
The work in [Chen et al. 2015] models an avionic scenario and it defines the lack of
situational awareness of a situation ¢ if there exists a state in which ¢ is true, but
an agent believes it to be true with certainty less than 5% (this limit is arbitrary and
can be modified). Specifically, consider a stall situation characterised by the proposi-
tion actualStall, and consider that a Pilot can be represented by an agent. Then, the
fact that it is possible for a pilot to have lack of situational awareness of a stall can be
characterised by the following formula:

EF (actualstau A BPilt (actualStall))

ACM SIGLOG News 7 Vol. 0, No. 0, 0000



A tool like MCMAS can be used to verify whether this formula is true in a model of the
cockpit of an airplane, thus enabling the detection of potentially dangerous flaws very
early in the design stages of a project.

6. CONCLUSION

In this column I have discussed how the extension of temporal logic with epistemic op-
erators enables the formalisation of requirements from a range of domains. After intro-
ducing some basic concepts, I have discussed the notion of computationally grounded
semantics for multi-agent systems and I have presented MCMAS, a tool that supports
the verification of extensions of the temporal logic CTL in multi-agent systems.

My opinion is that an understanding of extensions of temporal logic should be part
of the skills of everyone involved in verification of critical systems, as these extensions
enable the formalisation of a range of requirements that may be difficult to express
otherwise. I have only sketched some of the research in this area and I refer the in-
terested reader to the proceedings of conferences such as AAMAS and IJCAI for more
in-depth results.

Acknowledgements
I gratefully acknowledge Giuseppe Primiero for his comments and feedback.

REFERENCES

M. Solanki A. Lomuscio, H. Qu. 2012. Towards verifying contract regulated service composition. Autonomous
Agents and Multi-Agent Systems 24, 3 (2012), 345-373.

R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal Logic. J ACM 49, 5 (2002),
672-713.

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Representation and Mind Se-
ries). The MIT Press.

I. Boureanu, M. Cohen, and A. Lomuscio. 2009. A compilation method for the verification of temporal-
epistemic properties of cryptographic protocols. Journal of Applied Non-Classical Logics 19, 4 (2009),
463-487.

R. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transaction on Com-
puters 35, 8 (1986), 677-691.

D. Chaum. 1988. The dining cryptographers problem: Unconditional sender and recipient untraceability.
Journal of Cryptology 1 (1988), 65-75.

Taolue Chen, Giuseppe Primiero, Franco Raimondi, and Neha Rungta. 2015. A Computationally Grounded,
Weighted Doxastic Logic. Studia Logica (2015), 1-25.

Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco
Roveri, Roberto Sebastiani, and Armando Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proceedings of the 14th International Conference on Computer Aided Verification
(CAV ’02). Springer-Verlag, London, UK, UK, 359-364. http://dl.acm.org/citation.cfm?id=647771.734431

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in Property Specifications for
Finite-state Verification. In Proceedings of the 21st International Conference on Software Engineering
(ICSE "99). ACM, New York, NY, USA, 411-420. DOI: http://dx.doi.org/10.1145/302405.302672

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. 2003. Reasoning About Knowledge.
The MIT Press.

Dov M Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. 2003. Many-dimensional modal
logics: theory and applications. Vol. 148. North Holland.

P. Gammie and R. van der Meyden. 2004. MCK: Model Checking the Logic of Knowledge. In Proceedings of
CAV 2004 (Lecture Notes in Computer Science), Vol. 3114. Springer, 479-483.

Gerard Holzmann. 2003. Spin Model Checker, the: Primer and Reference Manual (first ed.). Addison-Wesley
Professional.

G.E. Hughes and M. J. Cresswell. 1996. A New Introduction to Modal Logic. Routhledge, London.

M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pélrola, M. Szreter, B. Wozna, and A. Zbrzezny.
2008. VerICS 2007 - a Model Checker for Knowledge and Real-Time. Fundamenta Informaticae 85, 1-4
(2008), 313—-328.

ACM SIGLOG News 8 Vol. 0, No. 0, 0000



Sudeep Kanav, Peter Lammich, and Andrei Popescu. 2014. Computer Aided Verification: 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings. Springer International Publishing, Cham,
Chapter A Conference Management System with Verified Document Confidentiality, 167-183.
DOI:http://dx.doi.org/10.1007/978-3-319-08867-9_11

A. Lomuscio, C. Pecheur, and F. Raimondi. 2007. Automatic Verification of Knowledge and Time with
NuSMV. In Proceedings of IJCAIO7. 1384—-1389.

Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2015. MCMAS: an open-source model checker for
the verification of multi-agent systems. International Journal on Software Tools for Technology Transfer
(2015), 1-22. DOI : http://dx.doi.org/10.1007/s10009-015-0378-x

MCK 2016. MCK. (2016). http://cgi.cse.unsw.edu.au/ mck/pmck/.

Artur Meski, Wojciech Penczek, and Agata Pélrola. 2011. BDD-based Bounded Model Checking for Temporal
Properties of 1-Safe Petri Nets. Fundamenta Informaticae 109, 3 (2011), 305-321.

A. Pnueli. 1977. The temporal logic of programs. In Foundations of Computer Science, 1977., 18th Annual
Symposium on. 46-57. DOI : http://dx.doi.org/10.1109/SFCS.1977.32

K. Su, A. Sattar, and X. Luo. 2007. Model Checking Temporal Logics of Knowledge Via OBDDs. Computer
Journal 50, 4 (2007), 403-420.

R. van der Meyden and N. Shilov. 1999. Model Checking Knowledge and Time in Systems with Perfect
Recall. In Conf. on Foundations of Software Technology and Theoretical Computer Science (Lecture Notes
in Computer Science), Vol. 1738. Springer, 432-445.

M. Wooldridge. 2000. Computationally Grounded Theories of Agency. In Proceedings of the Fourth Interna-
tional Conference on Multi-Agent Systems (ICMAS 2000), E. Durfee (Ed.). IEEE Press.

ACM SIGLOG News 9 Vol. 0, No. 0, 0000



