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Abstract

Current graphical object-oriented design notations are syntax-bound
and semantic-free since they tend to focus on design representation rather
than on the meaning of the design. This paper proposes a meaning for
object-oriented designs in terms of object behaviours represented as con-
structions in category theory. A new design language is proposed, based
on A-notation, whose semantics is given by object behaviours. An exam-
ple application is constructed as both a graphical design and using the
design language.
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1 Introduction

Current object-oriented design notations such as OMT [Run91], Booch [Boo94]
and UML [UML98] are syntax-bound and semantic-free in the sense that they
typically employ a large and rigorously enforceable collection of construction
rules, but rarely provide a model to explain what is being constructed. Whilst
this omission clearly does not prevent such notations being used effectively in
the development of object-oriented software systems, it must raise questions
regarding the long-term viability of notations which are not adequately anchored
in a semantic theory.

The aims of this work are to provide a semantic framework suitable for such
notations and which can form a basis for rigorous object-oriented development.
Our approach is to take as a starting point the computational behaviour of
objects and to provide a semantic model of incremental system development.



A system is defined as the solution to a set of simultaneous equations which
specify its computational behaviour and structure. We use category theory
[Bar90] [Ryd88] [Gog89] as a tool to express the equations since this theory pro-
vides standard constructions and results which conveniently express semantics
without getting unnecessarily entangled in issues of syntax.

This approach has the benefit of focussing on the semantics of object-oriented
systems, unlike other approaches which propose particular languages, for exam-
ple Z or modal logic, as their starting point. We claim that this leads to a funda-
mental model of object-oriented systems behaviour which can be denoted using
a variety of languages, including Z, modal logics and concrete programming
languages, which are chosen to suit the development method or application.

The approach is highly compositional which allows the semantics of system
components to correspond very closely to the design elements which are used
to denote them. This is in contrast to other approaches, for example those
based on first order logic, in which the distinction between system components
is blurred.

Although the proposed semantic model can be denoted by any suitable lan-
guage, this paper proposes a A-notation for object designs. The semantics of
the notation is given in terms of a category of object behaviours.

This paper is structured as follows. Section 2 identifies a number of key
features which are common to all object-oriented design notations. These fea-
tures are the motivation for the design of a behavioural object model described
in section 3. The model expresses behaviour as objects in a category. A nota-
tion based on the A-calculus is proposed for denoting behaviours in section 4.
Systems are built from collections of behaviour descriptions expressed as stan-
dard categorical constructions defined in section 5. A system is a collection of
constraints on possible object behaviours. The overall system behaviour must
satisfy all of the constraints. A standard result from category theory is de-
scribed in section 6 which provides an algorithm for finding a system behaviour.
Section 7 shows an example object-oriented design which uses all the design
features which have been defined in the paper. Finally, section 8 analyses the
work, discusses related work and outlines future research.

The paper aims to be self contained with respect to the necessary category
theory. Readers are directed to [Pri97] for an overview of graphical object-
oriented design notations and to [Fie88] for an overview of A-notation and func-
tional programming.

2 Object-Oriented Design Features

Object-oriented designs, as expressed using a typical design notation such as
UML, consist of a number of different models. Each model is used to express
a different feature of the required system. Although the design notations differ
syntactically, we propose that there are a number of characterising features



which are common to all object-oriented systems. This section discusses these
features which are then formalised in the rest of the paper. A more detailed
analysis of object-oriented features can be found in [Weg87], [Mey88], [Cla96],
[Cla94].

Most object-oriented design notations provide models for expressing static
and dynamic properties of the required system. The static properties of an
object include a description of its state space. At any given time an object is in
exactly one state consisting of a collection of named values:

Design Feature 1 Objects have state consisting of names and values.

Objects perform computations in response to messages. A message is exchanged
between a sender and a receiver which are both objects. Often the design
notation will require that the exchange occurs via a named associations:

Design Feature 2 Computation occurs through messages passed via named as-
sociations.

On receiving a message, an object performs a computation. The actions depend
on the current state of the object when the message is received. On completion,
the object is left in a new state and sends a collection of output messages:

Design Feature 3 Computation at an object is described by state transitions
involving input messages and output messages.

Objects, even those with the same state and behaviour, can differ in two re-
spects. Firstly, objects with the same behaviour are grouped into classes; they
are referred to as instances of the class. Secondly, two instances of the same
class always differ with respect to their identity:

Design Feature 4 A class represents a collection of objects with the same be-
haviour.

Design Feature 5 Two instances of the same class differ with respect to their
identity.

Typically, a design is underspecified in the sense that it may express more
than one sequence of events for every message. Indeed, this feature provides
a characteristic difference between a design and a program. UML provides the
Object Constraint Language (OCL) which is based on first order logic; the OCL
can be used to define computations in terms of conditions on the pre- and post-
states of objects, thereby leaving the how of computation to a later stage of
development:

Design Feature 6 Object-Oriented designs are (possibly) non-deterministic.

One of the key features of the object-oriented paradigm is inheritance which is
a relationship between classes. Inheritance occurs in designs and supports reuse
and polymorphism:



Design Feature 7 Object-Oriented designs support inheritance.

Most object-oriented design notations recognise that compositionality is a key
feature in developing large systems. Designs are typically composed of a collec-
tion of sub-systems. Many notations allow different views of the same system to
be expressed as different models, for example computation in terms of message
sequences between objects or in terms of state transitions at a single object:

Design Feature 8 Object designs are compositional.

Designs often provide a view of system execution in terms of the response of
a single object to a given message. UML provides object interaction diagrams
which express sequences of messages which occur between a collection of objects.
Such views of computation are often dependent on the current state of compu-
tation, several views may be used to describe the messages arising from the
same initial message in different system states. Each view represents a partial
definition of the receiver’s response to the initial message; a complete definition
is formed through composition:

Design Feature 9 Object designs may be partial.

Static object models express object states and associations. The associations
provide a communication medium through which object interactions take place.
Communication occurs through message passing which may be synchronous or
asynchronous:

Design Feature 10 FEzecution requires message communication which may be
synchronous or asynchronous.

Object designs place restrictions on the behaviour of single objects. Object
behaviour is further restricted by design composition, especially when different
views of the same computation are merged. One view may leave an object
feature underspecified whilst the other makes it deterministic:

Design Feature 11 Object designs can be inter-dependent.

The behaviour of an object-oriented system is described by a collection of mod-
els. Each model represents a collection of constraints on the behaviour of the
system at various points during computation. The overall system behaviour is
the result of finding a solution to all of the constraints:

Design Feature 12 The global behaviour described by an object-oriented de-
sign satisfies all of the locally specified behavioural constraints.

The rest of this paper provides a semantic model based on the features which
have been identified above.



3 Object Behaviour

Object-Oriented designs denote the structure and behaviour of systems. This
section defines a semantic model of object structure and behaviour. Object
behaviour is a graph which is labelled with object states and messages.

3.1 Object States

At any given moment in time, an object exists in a particular state. The state
of an object provides a complete description of its type, its identity and its
attributes.

All objects have a class (feature 4) which defines the behaviour of the object.
It is possible to distinguish between instances of two different classes which both
define the same attributes. Class identity is represented as a type tag a where
each class is allocated a different tag.

All objects have an identity (feature 5). An object’s identity distinguishes
it from all other instances of the same class in the same state. Object identity
is represented as an object tag 7 where each object has a different tag.

All objects have attributes which are named values (feature 1). The at-
tributes of an object determine the behaviour of the object when it receives a
message. The attributes of an object may change when a message is processed.
The attributes of an object are represented as a partial function p from attribute
names to values. An attribute j is renamed i in p to produce a new attribute
function pi/j] defined as follows:

vl = { )

A state is <a, T, p> and represents a partial view of an object. Two different
views of the same object must have the same type and identity but may differ
with respect to the attributes providing that the attribute views are consistent.
Consistency is defined as follows. Let < (is more defined than) be a partial
order on attribute descriptions such that p; < po when p;(a) = pa2(a) for all
attributes a € dom(p2). Any two attribute descriptions are consistent when
there is a greatest lower bound attribute description p; I ps.

The partial order on attribute descriptions can be extended to states by
requiring that <aq, 7, p1> < <@g, T, p2> holds if and only if a3 = as, 11 =™
and p; < po.

Object-oriented systems consist of sets of object states. A set is well formed
when it contains only one state for a given object identity. We can define a
partial order on well formed sets of object states as follows. Let ¥; and Xy be
two well formed sets of object states. The relation ¥; < Y5 holds when for each
object state in X5 there is an object state in ¥; which is consistent. This can
be stated formally as:

when k = j
otherwise

V<ag, Ty, pe> € Yo @ Iy, T, p1> €EX10a; =as ATy =T A pr < po



Given two well formed sets ¥; and X5 of object states the greatest lower bound
Y1 M35 is the smallest set which contains all of the object states from both ¥,
and Y5 where different views of the same object have been merged consistently.

3.2 Object Calculation Graphs

Systems are constructed as a collection of objects. Each object is a separate
computational system with its own state (feature 1) which is modified in re-
sponse to handling messages (feature 2). A message is a package of information
sent from one object to another.

The computation which is performed when a message is handled by an object
depends on the object’s current state and causes the object to change state and
produce output messages (feature 3). If we observed an object over a period of
time we would see a sequence of messages and state changes:

(I1,01) (I2,02)
.01 V> 09 +—— 03...

where each o; is an object state, I; are input messages, and O; are output
messages. Such a sequence is an object calculation and describes a single object
in state o; receiving messages I; causing a state change to 041 and producing
output messages O;.

A message consists of a source object, a target object and some message
data. The source and target objects are identified by their object identity tags.
For a given object system, the data items which can be passed as messages will
be defined for each type of target object. A message, whether input or output,
is represented as <7y, 7y, v> where 74 identifies the source object, 7; identifies
the target object and v is the message data.

Object systems are constructed from multiple objects which interact by pass-
ing messages. The state of an object system is a well formed set of object states
3. Computation in an object system occurs when the messages in set I are sent
to the objects in ¥ producing a new set of object states ¥’ and a collection of

output, messages O:

( }i)))

— 2 Yo— ...

Object-oriented designs represent non-deterministic computational systems (fea-
ture 6). We can therefore define all the possible object calculations which are
performed by an object system O in response to handling sequences of input
messages of length n.

Object calculations are represented as a calculation graph O(n) where the
nodes of the graph are labelled with well formed sets of states and the edges are



labelled with pairs of input and output message sets. An example graph G,, is:

Starting in state ¥;, the graph G, can produce the following possible object
calculations of length 2:

s, Gy, Gl s,

v, 2%y, %y,
A graph G = (N,E,s: E = N,t: E — N) is a set of nodes N, a set of edges
FE and a pair of mappings s which maps an edge to its source node, and ¢ which
maps an edge to its target node. A graph homomorphism (¢, ¢.) : Gi — Gs
is a mapping from graph G to graph G5 consisting of a pair of mappings
¢n : N1 = Ny and ¢, : E; — E5 such that the following diagrams commute:

E; e . B, Ey e . B,
to i1 82 81
N] N2 N] T’ N2

Consider the following graph G:

Ve 1,0 @
@ (,0) e
0,9 @

We can define a graph homomorphism ¢ : G, — G, such that ¢, = {£; —
25722 — 26723 — 26724 — 27} and ¢e = {(11,01) — (15,05),([2702) —
(I5,05), (I, 03) = (Is,Og), (I4,04) = (I7,07)} so that ¢(G,) is included in
G,.

3.3 Object Semantics

The meaning of an object is defined to be the calculation graph which describes
all of its possible behaviours. We will give a precise object semantics using simple



constructions from category theory. In order to be self contained we include
definitions of category, terminal object, functor, and natural transformation.

3.3.1 Categories

A category consists of:

e A collection of objects!. Upper case letters A, B, ... are used to range
over objects; and

e A collection of arrows. Lower case letters f, g, ..., are used to range over
arrows. Each arrow has a domain object A and a range object B and is
written f: A — B; and

e A binary associative operator o which maps a pair of arrows f : A - B
and g: B— C toanarrow go f: A— C.

e Every object A in a category has an identity arrow id4 : A — A which is
the left and right identity of o.

An example category is Int whose objects are integers. There is an arrow
f:n — m in Int for every pair of integers n and m such that n < m. Another
example category is Calc whose objects are calculation graphs and whose arrows
are graph homomorphisms.

3.3.2 Terminal Objects

A terminal object in a category is an object A such that for all objects B in the
category there is an arrow f : B — A. The terminal object in Calc is a graph
with a single node labelled §) and a single edge (from 0 to 0) labelled with (0, ).
For each object in Calc there is exactly one arrow which maps all nodes to
and all edges to (0,0).

3.3.3 Functors
A functor consists of:
e A source category C and a target category D; and
e A function F; which maps objects of C to objects of D; and

e A function F» which maps arrows of C to arrows of D such that the
following conditions hold:
— For every C arrow f: A — B, F5(f) : F1(A) — Fi(B) in D; and
— For every C object A, Fy(ida) = idp, (4); and
— For every pair of composable C arrows go f, Fy(go f) = Fx(g)o Fa(h)
in D.

IThe term object is used in the mathematical rather than the software sense.




3.3.4 Natural Transformations

Given two functors F : C — D and G : C — D a natural transformation
v : F — (G is defined as a family of arrows 4 indexed by objects A of C such
that y4 : C(A) — D(A) for every object A of C and the following diagram
commutes for all C arrows f: A — B:

3.3.5 Objects as Functors

An object O is described in terms of its calculations. A collection of graphs
0(0),0(1),0(2),...,0(n) describe calculations arising out of sequences of mes-
sages of length 0,1,2,...,n. Consider two integers n and m such that n < m.
Both integers produce calculation graphs O(n) and O(m). If the object O is
well-behaved then there must be a graph homomorphism ¢ : O(n) — O(m).

This leads us to define objects as functors from the category Int, whose
objects are integers and morphisms f : n — m hold when n < m, to the
category Calc, whose objects are object calculation graphs and morphisms are
graph homomorphisms.

Let Obj be a category whose objects are functors from Int to Calc and
whose arrows are natural transformations between functors. An object in Obj
will be referred to as a behaviour and an arrow as a behaviour morphism.

Object-oriented design notations provide models which express objects in
terms of states, associations and messages. The semantics of these models is
provided by objects in Obj which are defined using standard categorical con-
structions.

4 Object-Oriented Design Notation

Rather than use a graphical design notation such as UML to denote behaviours,
a textual design language is defined whose semantics is given by constructions
in Obj. Although the language is more expressive than current object-oriented
design notations, section 7 shows a correspondence with graphical notations.

In principle, there are many different possible choices of language to denote
constructions in Obj. One possibility is to use a form of modal logic where
statements in the logic express properties about multiple worlds. A world can
correspond to a set of object states and relationships between worlds correspond
to transitions arising due to messages.



A problem with this approach is that formal logic tends to have a flat struc-
ture and does not lend itself to modular system construction. In addition, one
of the strengths of formal logic, namely its ability to describe systems by ab-
stracting away from computational detail, can be a weakness when we know the
computational model which must be used.

Following Landin [Lan64] we take a different approach which is to use an
extension of A-notation as our design language. Since A-calculi are the canonical
programming languages this allows us to express the computational features of
the design whilst the extensions abstract away from unnecessary computational
design choices.

4.1 Behaviour Functions

A family of behaviours can be represented as a function with the following form:
M = Xiy.Nig.Aig.Aig. N

where iy 44 are parameters and N is the body. The parameters are supplied
with values as follows:

1. The first parameter is supplied with a type tag a. The result is a function
which describes the behaviour of a class of objects.

2. The second parameter is supplied with an object tag 7. The result is a
function which describes the behaviour of a single object in all possible
states.

3. The third parameter is supplied with a value v which is the state of an
object. The result is a function which describes the behaviour of a single
object starting with a particular initial state v.

4. The fourth parameter is supplied with a set of messages I. The result is
a set of pairs:

M (a)(7)(w)(I) = [ (P}, 00}

i=1,n

where P/ are replacement behaviours and O; are corresponding output
messages. The replacement behaviours are functions which determine the
response to subsequent messages. Actor theory [Agh91] uses exactly the

same approach to functionally model concurrent systems.

Suppose that ¥; is a set of states described by P, Y,; is the set of states
described by P/ for i = 1,3 then the calculation graph which is described by

10



the application of P is:

PN

(1,0)
o

Subsequent components of the graph are constructed using the appropriate re-
placement object P/.

The body N of behaviour function handles messages by performing case
analysis on the value of m. The body is of the form:

case m of
P11 — el
P2 — €2

Pn — €n
else e
end

where m is an expression whose value is a set of input messages, p; are patterns
which match sets of input messages, e; and e are transition expressions whose
values are pairs of replacement object behaviour functions and sets of output
messages.

The operational semantics of case is as follows: m is evaluated and matched
against all of the patterns p;. Pattern matching produces a collection of vari-
able bindings whose scope is the corresponding transition expression e;. For
each pattern which matches, the transition expression is evaluated to produce
a collection of pairs (P,0). If no pattern matches then the optional default
transition expression is evaluated. The result of evaluating case is the set of
pairs resulting from evaluating transition expressions whose patterns match the
input messages.

A transition expression denotes a collection of pairs of the form (P,0). In
principle a transition expression can be of arbitrary complexity, however the
following forms are frequently used:

e when ¢ where e is a transition expression and c¢ is a
boolean expression. The boolean expression acts
as a guard on the transition.

e whererec b where e is a transition expression and b is a collec-
tion of mutually recursive bindings whose scope is
e.

(P,0) where P is an expression denoting a replacement
behaviour function and O is an expression denot-
ing a set of output messages.

11



A case expressions of the form case m of else e end is equivalent to just the
expression e.

4.2 Example Behaviour Functions

A terminal object in Obj has no state and can respond only to an empty set of
messages. It is defined below and is unique up to isomorphism since we do not
specify a type or object tag:

letrec empty(B) = {(empty, )}

Consider describing the behaviour of a single cell which stores a value. A cell
object can be sent a message set which changes the value of its value and a
message get which retrieves its value. The behaviour is as follows:

letrec cell(af)‘(r)(v)(m) =
{<7', 1, set(v')>} Um' —
(cell(a)(r)(v"), D)
{<7',1,get>}um’ —
(cell(a)(T)(v), {<T, 7", v>})
else (cell(a)(7)(v), D)

end

A class is created by sealing the type tags which occur in the object calculations.
Suppose that a; is a type tag for a class of cell objects:

let cellClass = cell(a)

A cell object is created by supplying the values of the attributes and the object
tag:
let ¢ = cellClass(m1)(0)

Suppose that we wish to set the contents of cell ¢; to 1 and then to retrieve
its value. This is achieved by sending it messages from a hypothetical source
object 7p:

Cq ({<T07T],S€t(1)>}) = {(027@)}
er({<70, 71, get>}) = {(c2, {<m,70,2>})}

4.3 System Execution

A variety of system execution mechanisms are possible using object designs in
the format described above. Typically we wish to inject a single message into a
system and then observe the messages which emerge from the system. Suppose
that, given a system of objects o and a set of messages m that: o/m is a set of

12



messages produced by restricting m to those whose targets are in o; and, o\m
is m — (o/m), i.e. the messages in m whose targets are not in 0. The function
ezec is supplied with a system of objects o and a set of initial messages m and
produces a sequence of messages which emerge:

letrec ezec(o)(m) =
let (o', m") = o(m)
in (m'\o') : (exec(o')(m'/0"))

4.4 Semantics of Behaviour Functions

The meaning of a behaviour function is defined by a partial mapping from A-
terms to behaviours. Before defining the semantics we establish the following
terminology:

e A set of behaviours which differ only with respect to object tags is referred
to as a class behaviour.

e A set of class behaviours which differ only with respect to the class tags
is referred to as a family of behaviours.

Suppose that M is a behaviour function:
M = Xiy Nig. Aig. Xig. N

then let [M (a)(7)(v)] be the behaviour constructed by supplying all possible
sequences of messages to object 7 in state v. Let [M («)(7)] be the behaviour
constructed by supplying the object 7 with all possible message sequences in
all possible states. Let [M(«)] be the class behaviour formed by supplying all
possible instances of « in all possible states with all possible message sequences.
Finally, let [M] be the family of behaviours constructed by supplying M with
all possible class tags, object tags, states and message sequences.

4.5 Behaviour Morphisms

Arrows in Obj are families of graph homomorphisms which must be well-
behaved with respect to message sequences (see section 3.3.5). This is expressed
by stating that behaviour morphisms are natural transformations. Let O; and
O be behaviours (i.e. functors from Int to Calc). A morphism v : O; — O,
from O; to O is a family of graph homomorphisms -, for each object in Int
such that for any arrow f :n — m in Int the following diagram commutes:

O1(n) ——= Os(n)

O1(f) O2(f)



An arrow is defined in the design language as a homomorphism implemented
as a pair of functions (f,g) where f maps sets of states and g maps pairs of
sets of messages. Behaviour transformation is performed by applying an arrow
to a behaviour to produce a new behaviour. The application of (f,g) to the
behaviour function M; produces a behaviour function M, which makes the
following diagram commute for any «, 7 and v:

M, ()(1)(v) “LLh My (a)(7)(v)
[ [

Gh

(£.9) @
Application of arrows to produce class behaviours and families of behaviours fol-
lows from an extension of the above definition. Given a homomorphism between
graphs we can uniquely extend this to a homomorphism between sets of graphs
(class behaviours) and then sets of sets of graphs (families of behaviours).

For example, suppose that we wish to produce a new behaviour cellz which
stores a value called z, and responds to messages setz and getz. This is achieved
as follows, where pair(p, q)(v1,v2) = (p(v1), q(v2)):

let ctoz = (map(f), pair(map(g), map(g»)))
where
f(<m, 12, p>) = <7, T2, plz/v]>
91(<11, 79, set(v)>) = <11, T2, setz(v)>
91 (<11, T2, get>) = <71, T2, getz>
gg(<7’] , T2, U>) =<T1,T2, V>

let cellz = ctoa(cell)

A behaviour celly can be produced by applying morphism ctoy to cell. The
morphism ctoy is defined by renaming v to y, set to sety and get to gety.

For each behaviour function there is exactly one possible morphism to the
terminal behaviour function empty:

let term = (K(0), K(0,0))

5 Systems

Object-oriented systems are compositional (feature 8). Composition can occur
in order to extend the possible system behaviour and also occur in order to
restrict possible system behaviour. Extension can occur when new methods or
attributes are added to a class. Extension also occurs when partial behaviours

14



are combined to produce a “larger” behaviour (feature 9). Restriction occurs
when behaviours are composed and required to behave consistently (feature 11).

This section shows how systems are constructed from sub-systems. The sys-
tem building operations are defined in terms of standard constructs from cat-
egory theory. The design language is extended with system building operators
and we give examples of their use.

5.1 Products

Given objects A and B, a product is an object A x B together with two arrows
m : AX B — A and m : Ax B — B such that for any object C' with morphisms
f:C — Aand g:C — B there is a unique arrow u : C' — A x B such that the
following diagram commutes:

5.1.1 Behaviour Products

Following the standard product construction for two graphs (see [Bar90]), prod-
ucts in Calc are constructed as follows. Given two calculation graphs G;
and G2, a product G; x G, is a calculation graph whose nodes and edges
are labelled with pairs of labels from G; and G5 respectively. For every node
n € GG; and node ny € Gy there is a node n € GG X Gy such that label(n) =
(label(ny), label(ns)). For every edge e; € Gy and edge ex € G there is an edge
e € G X GGy such that label(e) = (label(eq), label(ez)). The source and target
nodes of e correspond to the pairing of the corresponding source and target
nodes of e; and es. The projection arrows are graph homomorphisms which
project onto the first and second co-ordinates of the labels respectively.

This leads us to define product of two behaviours O; and O, for all n as
follows:

(01 X 02)(77) = 01 (11) X 02 (17)

Unfortunately, this leads to inconsistent system states. A product state could
be formed by composing two views of the same object:

({<a, 7. {z —» 1}>},{<a,1,{z —» 2}>})

15



in which the object 7 associates the attribute x simultaneously with the values
1 and 2. Furthermore, a tree structure is imposed on system states which is
undesirable since system composition becomes non-associative: (O x09)x O3 #
O] X (Oz X 03)

We propose a structure for system composition which ensures consistent
states. When two systems are composed, the resulting behaviour has the largest
consistent state.

Let merge be the calculation graph homomorphism (merge, , merge,) which
is defined as follows:

merge; (X1, 32) = X1 M X,

merge,((I1,01), (I2,01)) = (11 ULz, 01 U Os)

The composition of behaviour functions is defined by a design language operator
x as follows:
[My x M>] = merge([M1] x [M-])

The combination of behaviour composition and consistency allows a system
development technique to be compositional. For example we may define two
views of the same object. Each view is specific with respect to a different aspect
of the object’s behaviour, otherwise each view leaves the object free to perform
any behaviour. The composition of the two views, as defined by a product,
allows each view to constrain the free behaviour of the other.

The following shows how the product operator is used to construct a two
dimensional point behaviour from components cellx and celly:

let (point, m,,my) = cellz x celly

The resulting function point describes a family of behaviours. All object states
have attributes x and y. The messages which can be sent to the objects are: setz;
sety; getz; and gety. Notice that the product operator x forces the x attribute
to be left unchanged when a sety message is received because the function cellx
does not recognise the message. Similarly, the y attribute is unaffected by the
setr message.

5.1.2 Combining Partial Behaviours

Object-oriented design notations define partial object behaviours (feature 9). A
partial behaviour describes the state changes and messages which occur when a
message is sent to an object. The description is partial because it does not apply
to all possible system states. A total description is constructed by composing a
sufficiently complete collection of partial descriptions.

For example, suppose that we want to describe a cell which can respond to
two messages: set and get. The get message retrieves the current value in the

16



cell. The set message supplies a value v and causes the cell to change to v/2 if
the value is even and v if the value is odd. This can be expressed as follows:

let cellEuen(;)z)(T)(v)(m) =
{<T", T,get>}Um' —
(cellEven(a)(T)(v), {<T, 7", v>})
{<r', 1, set(w)>} Um' —
(cellEven(a)(t)(w/2),0) when even(w)
{<r', 1, set(w)>} Um' —
(cellEven(a)(T)(T),0) when odd(w)
else (cellEven(a)(7)(v), D)

end

The behaviour cellEven handles the message set(w) in two mutually exclusive
ways. Firstly, if the value w is even the current value of the state variable v
is updated to w/2. Secondly, if the value of w is odd then the state variable v
becomes T. The value T is special in the design notation and represents the
non-deterministic selection of a value from all possible values. In effect, we do
not know what cellEven will do when it receives an odd value and therefore we
allow any possible state change.

A behaviour cellOdd defines the behaviour of a cell when it is supplied with
an odd value:

let cellOdd(af)(T)(v)(m) =

{<Tl’,7', get>YUm' —
(cellEven(a)(T)(v), {<T, 7", v>})

{<7', 7, set(w)>}Um' —
(cellOdd(a)(7)(T),0) when even(w)

{<7', 1, set(w)>}Um' -
(cellOdd(a)(7)(w),0) when odd(w)

else (cellOdd(a)(7)(v), )

end

Finally, a deterministic behaviour is constructed by forming a product of cellFven
and cellOdd:

let (cellEvenOdd, we,w,) = cellEven x cellOdd

5.1.3 Object Communication

Object-oriented execution occurs by means of message passing. Design notations
express the potential for message passing between objects using associations.
Associations are modelled in Obj as a named attribute whose value contains
the object identity of the associated objects.
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Message passing occurs when a behaviour produces an output message whose
target is given by the value of an association. Messages may be synchronous
or asynchronous (feature 10). An asynchronous message is sent and the source
object does not wait for a reply. In the case of synchronous messages, an object
must arrange to wait for a reply before continuing to process any incoming
messages.

For example, a cashpoint machine is associated to a number of accounts. The
object identity tags of the accounts are maintained in the machine database.
A customer can make an enquiry regarding the balance of their account by
supplying their pin number:

letrec cashpoint(a)(7)(db)(m) =
case m of
{<7', 1, enquire(pin)>} Um' —
(wait, {<T, lookup(pin)(db), balance>})
whererec wait(m) =
case m of
{<7", 7, balance(n)>} Um' —
(cashpoint(a)(T)(db), {<T, 7" ,n>}Um’)
else (wait, m)
end
else (cashpoint(a)(7)(db), ()

end

The cashpoint behaviour shows how replacement behaviours are used to handle
synchronous messages. On receiving an enquire message, the replacement wait
is used to store up messages until a balance is returned by the appropriate
account.

5.2 Coproducts

Given two objects A and B, a coproduct is an object A + B together with two
object morphisms ¢; : A - A+ B and 15 : A — A+ B such that for any object
C and arrows f: A — C and g : B — C there is a unique arrow u: A+ B — C
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such that the following digram commutes:

A

L1

5.2.1 Behaviour Coproducts

A coproduct of two calculation graphs G; and G5 in Calc is a calculation graph
G1 + G4 which contains all of the nodes and edges of G and GG5. The nodes
and edges are labelled in order to record whether they originated from G or
G>. This allows the arrow u to test the origin of a node or edge in order to
apply the appropriate arrow f or g. Behaviour coproducts are defined for all n
as follows:

(O] + 02)(71) = O] (n) + 02 (n)

Coproducts ensure that the calculations performed by the component objects
are represented separately by labelling the states and edges. In an object design
we will often not be interested in the origin of a transition and can therefore
lose the labels which encode this information. The result is a restriction on the
coproduct which produces an object for which we cannot necessarily guarantee
a unique arrow u.

The implication of a non-unique arrow u is that the design is non-deterministic
which is a required feature (feature 6) of object-oriented design systems. This
leads to an operator + which is used to merge two objects to produce a (possi-
bly) non-deterministic composite object.

Suppose that G; + G5 is a coproduct of G; and G5 such that nodes and
edges from G, and G4 are labelled pink and blue respectively. A de-labelling
operation can be expressed as a morphism delabel defined as a forgetful graph
homomorphism (strip, strip) which is defined:

strip(pink(v)) = v
strip(blue(v)) = v

Given object calculation functions M; and M, then we define the operator +
as follows:
[[Ml + MQ]] = delabel([[Ml]] + [[MQ]])

19



5.2.2 Non-Deterministic Behaviours

Suppose a cell is to be designed which can be sent a message mod causing it to
modify its value. Modification can be defined to add 1 to the value:

letrec cell]n(;(a)(r)(v)(m) =
{<7‘I’, 7, mod>}Um' —
(cellInc(a)(T)(v + 1),0)
else (celllnc(a)(7)(v), 1)

end
Alternatively, modification can be defined to subtract 1 from the value:

letrec cellDe;(a)(T)(v)(m) =
{<T", T, mod>} Um' —
(cellDec(a) (1) (v — 1), 0)

else (cellDec(a)(r)(v), D)

end

If we wish to leave the choice between increment and decrement open as a design
choice then the cell can be defined as non-deterministic using the + operator:

let cellNonDet = celllnc + cellDec

5.3 Equalizers

Object-oriented design notations often allow the engineer to produce different
views of the same component using different modelling notations. The behaviour
of the resulting system is constructed as the largest set of behaviours consistent
with all possible views.

Consistency between views is achieved using equalizers. Let A and B be
two objects and let f: A — B and g : A — B be two object morphisms. An
equalizer of the arrows is an object E together with a morphism e : £ — A
such that foe = goe and for any object E' and arrow h : E' — A such that
foh = goh there is a unique arrow u such that the following diagram commutes:

E A—I - B

u
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5.3.1 Behaviour Equalizers

In Calc an equalizer between two graph homomorphisms f : G; — G2 and
g : Gi — G5 is a graph GG and a homomorphism e : G — G such that e
picks out the largest sub-graph of G; which produces the same image under f
and g. If the equalizer is defined in terms of the largest sub-graph then the
homomorphism u is unique up to isomorphism.

The design language provides a builtin operator eq which constructs equal-
izers. If M is a function implementing an object and f, g are pairs of functions
from M; to another object M, then:

(N, e) = eq(M1)(f)(9)

such that [N] and e is an equalizer for [M;], [M2], f and g.

5.3.2 Consistent Behaviours

Equalizers can be used to make two ways of viewing the same behaviour con-
sistent. For example, a two-dimensional point behaviour can be mapped onto
a single cell so that the x or the y co-ordinate becomes the value of the cell.
Suppose that we define point as follows:

let point(a)(;)(a;y)(m) =
0 — (point(a)(7)(x,y),0)
{<7', 7, geta>} Um' — point(a)(7)(x,y
{<7', 1, gety>} Um' — point(a)(7)(z,y
{<7', 1, setz(v)>} Um' = point(a)(T)(v,y
{<7', 1, sety(v)>} Um' — point(a)(1)(z,v
(;else (point(a)(1)(z,v), )

—

z,y)(m") @ {<r, 7" 2>}
z,y)(m') @ {<7, 7", y>}
)) ")

(m
(m')

where (P,01) ® Oy = (P,01 U O»). The following pair of arrows define homo-
morphisms which map point onto cell. Arrow f maps the x co-ordinate onto
the value of the cell, getz to get, setz to set and all other messages to unknown.
Arrow g maps the y co-ordinate onto the value of the cell and, gety to get, sety
to set and all other messages to unknown. Arrow f is defined below:

let f = (map(f1), pair(map(f2), map(id)))
where

fil<a,1,p>) = <a,7,p/{z}>
fo(<T1, T2, getx>) = <11, T2, get>
fo(<11, 12, seta(v)>) = <71, To, set(v)>
f2(<7'1,7'2, gety>) = <1y, Ty, unknown>
fa( )

2 (<71, T2, sety(v)>) = <71, T2, unknown>
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An equalizer for f and g will require that the z and y co-ordinates are always
the same value, i.e. any changes which are made to an object described by the
equalizer must affect both the  and the y co-ordinate in tandem:

let (tandem,e) = eq(point)(f)(g)

The object tandem describes object calculations whose message input sets are
elements of the following inductively defined set M: @ € M; {getz} € M;
{gety} € M; {setz(v), sety(v)} € M; if my,my € M then my Umsy € M.

6 System Behaviour

A system is composed of multiple objects. Each object is designed by providing
multiple views of its behaviour. The different views of an object’s behaviour
are not independent. The dependencies are constraints which hold between
the different views and which serve to rule out possible combined behaviours.
The constraints can be viewed as simultaneous equations affecting the overall
behaviour of the system. A solution to the equations is a system behaviour
(feature 12). This section describes how constraints on system components
are expressed as diagrams in Obj, defines system behaviour as a limit on a
system diagram and describes an algorithm for constructing limits in the design
language.

6.1 System Diagrams

The behaviour of a system is described by an object in Obj. Objects in Obj
are non-deterministic partial views of object systems. Consistent with current
object-oriented development processes, we claim that the meaning of an object-
oriented design is the composition of the meanings of the constituent design
models.

Systems consist of a collection of co-ordinated objects. An overall system
transition will typically involve a collection of controlled individual object tran-
sitions. Such co-ordination implies a constraint on the free behaviour of the
individual objects. The constraints can be expressed as behaviour morphisms
which express how one behaviour can be interpreted in terms of another.

A single behaviour may be the source of multiple morphisms. This may
be used to “glue” together individual behaviours and also to require them to
interact. A single behaviour may be the target of multiple morphisms. This may
be used to require individual morphisms to behave consistently under certain
circumstances.

A system is expressed as a collection of Obj objects and morphisms between
them. A system diagram is a graph whose nodes are labelled with behaviours
and whose edges are labelled with behaviour morphisms.

22



6.2 Limits of Diagrams

In order to solve the equations we use the categorical construct of limits which
has been proposed by Goguen in [Gog90] as a means for expressing the behaviour
of a system. In general, a diagram A is a graph with a mapping from the nodes
of A to objects and a mapping from the edges of A to morphisms between the
source and target objects. Let A,, represent an object N in the diagram A and
A, represent a morphism. A cone on a diagram A is an object A (which is
not necessarily in the diagram) together with, for each object A, a morphism
Y+ A = A, such that for all edges e : n = m in A the following diagram
commutes:

A

Tn Tm

Ap,

A cone on a system expressed as a diagram is a composite behaviour which is
consistent with the behaviours on the diagram. Notice however, the there is no
condition on which particular behaviour to pick for the cone. There are many
possible choices for cones including the behaviour with no states or transitions
(this is an initial object which can always be mapped to another behaviour using
the empty morphism).

A cone arrow on a diagram A from cone 7y, : A - A, on A to cone
v, A" — A, is an object morphism 7y : A" — A such that for all nodes n in A
the triangle below commutes:

A U A

Cone arrows allow us to place restrictions on cones. For example if there is a
cone arrow v : A’ = A we know that the behaviour described by A’ is more
restricted than that described by A.

A limit on a diagram A is a cone A, on A such that for any other cone A’ on
A there is a unique cone arrow u : A’ — A. The definition of a limit captures
the behaviour of a system because it must contain all of the behaviours on the
diagram and must obey all of the constraints on the diagram.
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6.3 Constructing Limits

A standard result of category theory is that any category having a terminal
object, binary products and equalizers of pairs of arrows has all finite limits
[Ryd88]. This result allows the construction of a limit on a diagram providing
that these simple properties hold in the appropriate category.

This section provides an algorithm for constructing limits on a diagram and
gives an example. The algorithm is derived from a proof in [Ryd88] which shows
how a colimit can be constructed on a diagram.

Let A be a diagram on a category with a terminal object, all finite products
and finite equalizers. If the diagram has no edges (and consists only of nodes)
then the limit is constructed by forming the product of all node labels on the
diagram. If the diagram is empty then the limit is a terminal object of the
category.

If the diagram contains edges then let e : p — ¢ be an edge with an associated
arrow f: Ap = A, and let A’ be A with e removed. Assume inductively that
the diagram A’ has a limit 7, : A — A,. Consider a parallel pair of arrows:
ng : A — Ajand fon, : A - A,. Let the equalizer of these arrows be
h : B — A which is shown on the following diagram:

B
\h
A
LU w\
v
Ap» 7 Ay

We wish to show that v, = n, 0oh : B = A, is a limit on the diagram A.
We show that for any other cone there must be a unique arrow to B. Let
v, : B - A, be another code on A. By definition, since 7,, is a limit there
must be a unique arrow p : B’ — A such that for all nodes n € A np, ou =v),.
Also, by the definition of equalizers since f o, ou = 1, o u then there must be
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a unique arrow v : B’ — B which makes the following diagram commute:

B

Ap

Since v is unique and v, : B’ — A, is an arbitrary cone on the diagram we
must conclude that v, : B — A, is a limit on the diagram A.

Suppose that we are constructing a library system. The system consists
of two behaviours. The library behaviour describes library objects in terms of
book titles, borrowers, copies on shelves and records of books currently on loan.
The person behaviour describes people who may or may not be members of the
library. We wish to express the constraint that all borrowers are people but
not all people are borrowers. We sketch the design and show how the limit is
constructed.

The library and person behaviours are defined as functions:

letrec library(T)(books, borrowers, copies, onloan)(m) = ...

letrec person(t)(name, age, sex)(m) = ...

The constraint is expressed as a pair of mappings with a simple common target
behaviour unit which stores a single value v and ignores all messages:

letrec unit(v)(m) = {(unit(v),0)}

The behaviour morphism f : library — wunit projects multiple library objects
to a single wunit object whose attribute v is the union of all borrowers. The
morphism ¢ : person — wnit maps all people to a single unit object whose
attribute v a sub-set of the people object tags non-deterministically selected
from all possible sub-sets. In both cases f and g map messages to (f,0) since
we are not interested in the dynamic behaviour of libraries and people. This is
expressed on the following diagram:

library person,



Figure 1 shows how a limit is constructed for this diagram as a process involv-

ing 8 steps. Nodes on the diagram are labelled with behaviours or X which
denotes behaviour product. Edges on the diagram are labelled with behaviour
morphisms.

The initial diagram (i) is empty and the limit is therefore a terminal object
empty. When library is added in (i7) the limit is the object library. In (iii) the
unit object is added and a limit is constructed as a product library x unit. The
arrow f is added in (iv) and an equalizer is used to construct a limit obj in (v).
The object person is added and the limit in (vi) is constructed as a product
obj x person. The arrow g is added in (vii) and finally a limit of the original
diagram is constructed as an equalizer limit in (viii).

The limit L is constructed in the design language using the operators x and
eq as follows:

let (01,m,m) = library x unit

let (o0bj, e1) = eg(o1)(f o m1)(m2)

let (09,73, m4) = 0bj X person

let (limit, ea) = eq(o2)(ma 0 e1m3)(g 0 74)

7 An Example Design

This section shows how the design language can be used to give a meaning
to a small object-oriented design expressed as a static class diagram and a
collection of dynamic object interaction diagrams. We present a requirement
for the example application, produce a collection of object-oriented models and
then construct the corresponding behaviours.

7.1 Software Requirements

Software is required to control a chemical factory. Lorry-loads of chemicals z
and y arrive at the factory and are stored in tanks. Each tank has a storage
capacity which must not be exceeded. Single measures of = and y are transferred
to a mixer tank where they are mixed to produce a single unit of chemical
z. Chemical z is transferred from the mixer tank to a storage tank awaiting
collection and distribution.

7.2 Static Model

Analysis of the requirements leads to the identification of two classes: factory
and tank. Further analysis of tank identifies two sub-classes: storage and mizer.
The class factory has the following methods:

e addz which adds chemical to a storage tank containing chemical x. This
method returns true when the operation succeeds.

e addy which is the same as addz but uses a different storage tank.
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Figure 1: Constructing a Limit on a Diagram
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?

X
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start:()->bool
stop:()->bool

m

Figure 2: Static class diagram for the factory application

e miz which transfers 1 unit of z and 1 unit of y from the storage tanks to
the mixer tank and starts the mixing process. The method returns true
when the operation succeeds.

e stop which stops the mixing tank and transfers the contents to a storage
tank for chemical z. This method returns ¢rue when the operation is
successful.

To support these operations, factory has three associations named z, y and z
with storage and a single association named m with mizer.

The class tank has a state consisting of ¢ which is an integer representing
the current tank contents, and [ which is the capacity limit. The class tank
has a single method called add which adds chemical to the tank. The method
returns true when the operation is successful. Chemical is removed from a tank
by supplying a negative value to add.

The class mizer has a boolean state variable on and two methods start and
stop which both return ¢rue when they are successful.

Graphical object-oriented design notations such as UML express this infor-
mation on a static class diagram. The static diagram for the factory application
is shown in figure 2.

7.3 Dynamic Models

Each of the factory methods leads to a collection of object interaction diagrams.
Each diagram expresses the sequence of messages which occur under a particular
condition. A message is expressed as follows:
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2true=add(n)

Ltrue=addx(n)

() addt

2fdse=aad(n)

Lfdse=atitu()

(i add

Figure 3: Object interaction diagrams for addz

where b is a conditional expression which acts as a guard on the message; n is
an integer which determines the message ordering on the diagram; e is a value
expression representing the return value of the message; m is the name of the
message; and, e; are the arguments of the message. A ground interaction is
produced by consistent substitution for all variables on a diagram.

e The method addz can be described using two behaviours. The first is
named addzt and describes the successful behaviour of addz. The second
is named addzf and describes the unsuccessful behaviour. The object
interaction diagrams are shown in figure 3.

e The method addy is described in the same way as addz. The result is two
behaviours addyt and addyf.

e The method miz is described using a single interaction diagram shown in
figure 4. Note that miz is only successful when the z and y tanks are not
empty and the mixing tank is not full or currently mixing. Variables a
and b are true when units of = and y are available. Variables ¢ and d are
true when the mixing tank can be loaded and then started.

e The method stop is described by a single interaction diagram shown in
figure 5. The operation is successful when the mixing tank can be stopped,
emptied and the unit of chemical z can be transferred to the z tank.
Variables a and b are frue when the mixing tank can be stopped and
unloaded. Variable ¢ is true when the chemical can be loaded into tank z.
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Figure 5: Object interaction diagram for stop
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Figure 6: A factory design diagram

7.4 Factory Behaviours

Figure 6 shows the component behaviours of the factory design and how they are
combined using products and equalizers to produce a single factory behaviour.
A limit limit is constructed from the behaviours and products shown on the
diagram and an equalizer constructed from the following two arrows: f omy o
w3 0 oy and g o s o w3 o w9 o 1. This section describes how the behaviours
are defined as functions in the design language.

7.4.1 Addx and addy

The behaviour for addx is decomposed into two sub-behaviours addzt and ad-
dzf which describe the success and failure of the operation respectively. The
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behaviour addzt is defined as follows:

let addzi(a)(7)(z)(m) =
case m of
{<7', 7, addz(n)>} Um' = (wait, {<7,z, add(n)>})
whererec wait(m) =

{<z, 7, true>} Um' = (addzt(a)(7)(z), {<7, 7', true>} Um')
{<z, 7, false>} Um' — (addat(a)(T)(T), m")
else (wait,m)

else (addzt(a)(T)(z), D)

end

The behaviour addzt receives a message addz(n) from object 7' and uses a
replacement behaviour called wait to implement synchronous method call and
return. The behaviour wait processes messages until it receives true or false
from the z tank. If it receives true then the behaviour reverts to addxt and
returns a message to 7'. Otherwise, if the return from z is false, the behaviour
of wait is undefined. If addzt receives any message other than addz the result is
undefined.

The behaviour addzf is defined in the same way as addzt above except that
the definition of wait for addzf is defined when z returns false and undefined
when it returns true.

Together, addzt and addzf define all possible behaviours for which occur
when a factory receives addz. The behaviour addxt forces the correct behaviour
when the = tank reports success and permits any behaviour when the = tank
reports failure. The behaviour addzf forces the correct behaviour when the z
tank reports failure and permits any behaviour when the x tank reports success.

The behaviour for addy is defined in exactly the same way as addz except
that all occurrences of z are replaced with y. Note that this could be achieved
using a renaming behaviour morphism.

7.4.2 Mix

The behaviour of miz is decomposed into the following sub-behaviours: miz,
mizx and mizy. From the design in figure 4 we know that miz succeeds when
tanks x and y are not empty and tank m is not full or currently mixing. One
way of expressing this on a behaviour diagram is to define a single behaviour
miz for mixing from a single arbitrary tank. Then two behaviours mizz and
mizy specialise miz for the £ and y tanks respectively. Behaviour morphisms
translate mizz and mizy onto miz. A limit on the diagram will force mixing from
z and y to succeed simultaneously in order for the miz operation to succeed.
The behaviour miz is shown in figure 7. The value of #; is a storage tank object
tag and the value of t5 is a mixer tank object tag.
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letrec miz(a)(7)(t1,t2)(m) =
case m of
{<7', 7, miz>} Um’ = (wait, {<7,t1, add(—1)>})
whererec wait(m) =
case m of
{<tr, 7, true>} Um' — (wait, {<7,t2, add(1)>})
whererec wait(m) =
case m of
{<ta, T, true>} Um' — (wait, { <1, tq, start>})
whererec wait(m) =
case m of
{<ty, T, true>}Um' —
(miz(a)(7)(t1,t2), {<T, 7', true>} Um')
{<ty, T, false>} Um' —
(miz(c) (T)(t1, t2), {<T, 7', false>} Um')
else (wait,m)
end
{<ty, T, false>} Um' —
(miz(c)(T)(t1, t2), {<T, 7', false>} Um')
else (wait,m)
end
{<t1, 7, false>}Um' — (miz(a)(7)(t1,t2), {<7, 7', false>} Um')
else (wait,m)
end
else (miz(a)(7)(t1,12), D)
end

Figure 7: The behaviour function mixz
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letrec stop = stopt + stopf

whererec
stopt(a)(7)(m, 2)({<T', T, stop>} Un') = (wait, {<T,m, stop>})
whererec
wait({<m, 7, true>} Un') = (wait, {<7,m, add(—2)>})
whererec
wait({<m, 7, true>} Un') = (wait, {<7, z, add(1)>})
whererec

wait({<z, T, true>} Un') =
(stopt(a)(T)(m, z),{<T, 7', true>})
stopf(a)(7)(m, 2)({<T, T, stop>} Un') = (wait, {<T, m, stop>})
whererec wait(n) =
case n of
{<m, T, false>} Un' — (stopf, {<7, 7', false>})
{<z, 1, false>} Un' — (stopf, {<,7', false>})
{<z, 7, true>} Un' — (stopf,{<7, 7', true>})
else (wait, ()
end

Figure 8: The behaviour stop

7.4.3 Stop

The behaviour of stop succeeds when the mixing tank can be stopped, two units
of chemical can be removed from the mixing tank and a single unit of chemical
can be added to the z tank. If any of these operations fail then the stop operation
fails. The behaviour function for stop provides an example of using + and is

shown in figure 8.

7.4.4 Tanks

The behaviour of tank and storage are defined as a single function which is
supplied with different type tags for the two classes. The function is as follows:

letrec tank(ofz')(T)(c,l)(m) =
{<T//, T, add(n)>} Um' —
(tank(a)(7) (e, 1), {<T, 7', false>})
when (n+c¢<0)or (n+c¢>1)
(tank(a)(T)(n + ¢, 1), {<7, 7', true>})
when (n+c¢>0) and (n+ ¢ <)
else (tank(a)(7)(T),0)

end
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Finally, the behaviour mizer is a sub-class of tank (feature 7). Sub-classes are
defined using behaviours by extending the inherited behaviour. The extension
is achieved as a product of tank and a new behaviour ezt. The behaviour ezt is
an extension which defines just the behaviour for the methods start and stop:

letrec emt(a)f(r)(on)(m) =
{<r', 1, start>} Um' —
(ext(a)(7)(on), {<1, 7', false>}) when on
(ext(a)(T)(true), {<7, 7', true>}) when not(on)
{<7', 1, stop>tum’ —
(ext(a)(7)(false), {<T, 7', true>}) when on
(ext(a)(7)(om), {<T, 7', false>}) when not(on)
ctlalse (ext(a)(7)(on), )

8 Conclusion

8.1 Review

The aims of this work are to define a semantic framework which is suitable for
current object-oriented design notations. In order to do this, we have taken a
behavioural view of object-oriented systems and defined object behaviour as a
graph of states and transitions arising from message passing.

Object behaviours have been defined using standard constructions in cat-
egory theory allowing the focus of attention to be placed on semantic rather
than syntactic issues. Systems are defined to be behaviours arising from the
solution to a collection of simultaneous equations which constrain a collection
of freely defined object behaviours. We have shown that such constraints can be
expressed as behaviour morphisms on a diagram whose solution is constructed
as a limit.

A notation for expressing object designs has been proposed as a A-notation
extended with built-in operators for system construction. The semantics of the
notation is given by constructions in category theory. The notation has been
used to express a small but representative object-oriented design.

The design notation is highly expressive and facilitates a variety of ap-
proaches to system design. In particular it allows systems to be designed using
modular units and then composed using the operators x and +. The system
constraints are enforced using an operator eq.

Section 2 lists a collection of features which are essential to object-oriented
design. Current graphical object-oriented design notations offer these features
which are the motivation for the behavioural model of object systems defined in
section 3. This leads to the claim that the semantics of current object-oriented
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design notations are represented by the model and therefore the design notation
which is defined in this paper.

8.2 Analysis

The model which is proposed for object-oriented systems is universal and repre-
sentative of other approaches to the semantic definition of dynamic systems. In
particular, concurrent object systems are often expressed as labelled transition
graphs. The use of such a semantic model to express the semantics of current
graphical design notations is new and offers potentially fruitful feedback for the
invention and modification of such notations.

There is always a tension between the simplicity of an informally defined
notation (as represented by the class of graphical design notations) and the
notational overload of a rigorously defined notation (as represented by the design
notation used in this paper). The use of A-notation can offer some help in this
regard since it is higher-order (and can therefore encode very high-level control
abstractions) and has a distinguished history of being sweetened through the
use of syntactic sugar.

A question arises regarding the expressiveness of the proposed notation with
respect to logic notations. Certainly with respect to complex control issues,
A-based approaches permit the construction of respectable control abstractions
such as replacement behaviours, which are not readily available in standard log-
ics. By making the A-notation non-deterministic, either as part of the execution
mechanism or by encoding it using sets, we claim that many of the useful prop-
erties relating to logic based abstraction from computational mechanisms are
inherited by a notation such as that proposed in this paper.

It is envisaged that the semantic model and notation which is defined in this
paper would be used in conjunction with the graphical design notations currently
available. The benefits of graphical notations lie in their ease of assimilation,
a property which arises directly from their approximate nature. A suitable
development process may be to use graphical notation as a first attempt at
designing a system and then to clarify the meaning of system components and
system composition using the model and notation proposed here.

8.3 Related Work

The analysis and semantic foundations of object-oriented designs and develop-
ment is currently an active research area [Rui95]. For example [Cit95] shows
how message diagrams (equivalent to UML collaboration diagrams) can be given
a semantics in terms of a partial order on events; [Bou95] shows how the speci-
fication language Larch can be used to give a formal semantics to static object
diagrams; and, [Mor96b] [Mor96a] can be used to produce executable object-
oriented designs.
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The use of category theory to capture the essential characteristics of systems
dates back to Goguen [Gog75] who updated the approach to address concurrent
object-oriented systems in [Gog90]. Sheaf theory is a general mechanism for
making global observations about locally defined phenomena. In addition to
Goguen, sheaves are used in [Mal96] and [Ehr91]. Category theory is used to
express static properties of object-oriented designs in [Pie96].

A related approach which addresses object-oriented system execution is the
use of modal logics; examples are Object Calculus [Bic97], [Cla97] and [Lan98].
This approach differs from that taken here in that it uses a modal logic frame-
work to express and analyse object execution. By abstracting away from no-
tational issues we are able to select a notation (executable or otherwise) as
appropriate.

A number of researchers such as [Dup97] have used first order logical nota-
tions for expressing the semantics of object-oriented design notations. Although
this approach will capture the behaviour of abstract systems, these notations do
not have an executable semantics and are weak at capturing temporal system
properties.

8.4 Future Plans

A next step in this work is to develop a proof theory for the design notation
which can be used to establish system properties. The theory will be used as the
basis of an interpreter for the language since design animation can be viewed as
a restricted form of proof. Other types of property include: querying whether or
not a particular message is ever generated, identifying the circumstances under
which a system state arises, and establishing that the system is deterministic
and therefore ready for translation to a concrete programming language. The
work described in [Cla99] discusses how properties of behaviour diagrams can
be established.

A proof theory is also required in order to establish a rigorously defined
development process. This could take the form of a refinement relation between
system diagrams. One diagram can be viewed as a refinement of another when
determinacy and execution detail is increased whilst remaining consistent with
the original behaviour. The work described in [Cla99] gives an example of how
an object-oriented design expressed as a collection of A-function behaviours can
be refined.
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