
A Semantics for Object-Oriented DesignNotationsTony Clark (a.n.clark@comp.brad.ac.uk)Formal Methods GroupDepartment of ComputingUniversity of BradfordWest Yorkshire BD7 1DPMarch 4, 1999AbstractCurrent graphical object-oriented design notations are syntax-boundand semantic-free since they tend to focus on design representation ratherthan on the meaning of the design. This paper proposes a meaning forobject-oriented designs in terms of object behaviours represented as con-structions in category theory. A new design language is proposed, basedon �-notation, whose semantics is given by object behaviours. An exam-ple application is constructed as both a graphical design and using thedesign language.Submitted to BCS FACS Journal January 1999.1 IntroductionCurrent object-oriented design notations such as OMT [Run91], Booch [Boo94]and UML [UML98] are syntax-bound and semantic-free in the sense that theytypically employ a large and rigorously enforceable collection of constructionrules, but rarely provide a model to explain what is being constructed. Whilstthis omission clearly does not prevent such notations being used e�ectively inthe development of object-oriented software systems, it must raise questionsregarding the long-term viability of notations which are not adequately anchoredin a semantic theory.The aims of this work are to provide a semantic framework suitable for suchnotations and which can form a basis for rigorous object-oriented development.Our approach is to take as a starting point the computational behaviour ofobjects and to provide a semantic model of incremental system development.1



A system is de�ned as the solution to a set of simultaneous equations whichspecify its computational behaviour and structure. We use category theory[Bar90] [Ryd88] [Gog89] as a tool to express the equations since this theory pro-vides standard constructions and results which conveniently express semanticswithout getting unnecessarily entangled in issues of syntax.This approach has the bene�t of focussing on the semantics of object-orientedsystems, unlike other approaches which propose particular languages, for exam-ple Z or modal logic, as their starting point. We claim that this leads to a funda-mental model of object-oriented systems behaviour which can be denoted usinga variety of languages, including Z, modal logics and concrete programminglanguages, which are chosen to suit the development method or application.The approach is highly compositional which allows the semantics of systemcomponents to correspond very closely to the design elements which are usedto denote them. This is in contrast to other approaches, for example thosebased on �rst order logic, in which the distinction between system componentsis blurred.Although the proposed semantic model can be denoted by any suitable lan-guage, this paper proposes a �-notation for object designs. The semantics ofthe notation is given in terms of a category of object behaviours.This paper is structured as follows. Section 2 identi�es a number of keyfeatures which are common to all object-oriented design notations. These fea-tures are the motivation for the design of a behavioural object model describedin section 3. The model expresses behaviour as objects in a category. A nota-tion based on the �-calculus is proposed for denoting behaviours in section 4.Systems are built from collections of behaviour descriptions expressed as stan-dard categorical constructions de�ned in section 5. A system is a collection ofconstraints on possible object behaviours. The overall system behaviour mustsatisfy all of the constraints. A standard result from category theory is de-scribed in section 6 which provides an algorithm for �nding a system behaviour.Section 7 shows an example object-oriented design which uses all the designfeatures which have been de�ned in the paper. Finally, section 8 analyses thework, discusses related work and outlines future research.The paper aims to be self contained with respect to the necessary categorytheory. Readers are directed to [Pri97] for an overview of graphical object-oriented design notations and to [Fie88] for an overview of �-notation and func-tional programming.2 Object-Oriented Design FeaturesObject-oriented designs, as expressed using a typical design notation such asUML, consist of a number of di�erent models. Each model is used to expressa di�erent feature of the required system. Although the design notations di�ersyntactically, we propose that there are a number of characterising features2



which are common to all object-oriented systems. This section discusses thesefeatures which are then formalised in the rest of the paper. A more detailedanalysis of object-oriented features can be found in [Weg87], [Mey88], [Cla96],[Cla94].Most object-oriented design notations provide models for expressing staticand dynamic properties of the required system. The static properties of anobject include a description of its state space. At any given time an object is inexactly one state consisting of a collection of named values:Design Feature 1 Objects have state consisting of names and values.Objects perform computations in response to messages. A message is exchangedbetween a sender and a receiver which are both objects. Often the designnotation will require that the exchange occurs via a named associations:Design Feature 2 Computation occurs through messages passed via named as-sociations.On receiving a message, an object performs a computation. The actions dependon the current state of the object when the message is received. On completion,the object is left in a new state and sends a collection of output messages:Design Feature 3 Computation at an object is described by state transitionsinvolving input messages and output messages.Objects, even those with the same state and behaviour, can di�er in two re-spects. Firstly, objects with the same behaviour are grouped into classes; theyare referred to as instances of the class. Secondly, two instances of the sameclass always di�er with respect to their identity:Design Feature 4 A class represents a collection of objects with the same be-haviour.Design Feature 5 Two instances of the same class di�er with respect to theiridentity.Typically, a design is underspeci�ed in the sense that it may express morethan one sequence of events for every message. Indeed, this feature providesa characteristic di�erence between a design and a program. UML provides theObject Constraint Language (OCL) which is based on �rst order logic; the OCLcan be used to de�ne computations in terms of conditions on the pre- and post-states of objects, thereby leaving the how of computation to a later stage ofdevelopment:Design Feature 6 Object-Oriented designs are (possibly) non-deterministic.One of the key features of the object-oriented paradigm is inheritance which isa relationship between classes. Inheritance occurs in designs and supports reuseand polymorphism: 3



Design Feature 7 Object-Oriented designs support inheritance.Most object-oriented design notations recognise that compositionality is a keyfeature in developing large systems. Designs are typically composed of a collec-tion of sub-systems. Many notations allow di�erent views of the same system tobe expressed as di�erent models, for example computation in terms of messagesequences between objects or in terms of state transitions at a single object:Design Feature 8 Object designs are compositional.Designs often provide a view of system execution in terms of the response ofa single object to a given message. UML provides object interaction diagramswhich express sequences of messages which occur between a collection of objects.Such views of computation are often dependent on the current state of compu-tation, several views may be used to describe the messages arising from thesame initial message in di�erent system states. Each view represents a partialde�nition of the receiver's response to the initial message; a complete de�nitionis formed through composition:Design Feature 9 Object designs may be partial.Static object models express object states and associations. The associationsprovide a communication medium through which object interactions take place.Communication occurs through message passing which may be synchronous orasynchronous:Design Feature 10 Execution requires message communication which may besynchronous or asynchronous.Object designs place restrictions on the behaviour of single objects. Objectbehaviour is further restricted by design composition, especially when di�erentviews of the same computation are merged. One view may leave an objectfeature underspeci�ed whilst the other makes it deterministic:Design Feature 11 Object designs can be inter-dependent.The behaviour of an object-oriented system is described by a collection of mod-els. Each model represents a collection of constraints on the behaviour of thesystem at various points during computation. The overall system behaviour isthe result of �nding a solution to all of the constraints:Design Feature 12 The global behaviour described by an object-oriented de-sign satis�es all of the locally speci�ed behavioural constraints.The rest of this paper provides a semantic model based on the features whichhave been identi�ed above. 4



3 Object BehaviourObject-Oriented designs denote the structure and behaviour of systems. Thissection de�nes a semantic model of object structure and behaviour. Objectbehaviour is a graph which is labelled with object states and messages.3.1 Object StatesAt any given moment in time, an object exists in a particular state. The stateof an object provides a complete description of its type, its identity and itsattributes.All objects have a class (feature 4) which de�nes the behaviour of the object.It is possible to distinguish between instances of two di�erent classes which bothde�ne the same attributes. Class identity is represented as a type tag � whereeach class is allocated a di�erent tag.All objects have an identity (feature 5). An object's identity distinguishesit from all other instances of the same class in the same state. Object identityis represented as an object tag � where each object has a di�erent tag.All objects have attributes which are named values (feature 1). The at-tributes of an object determine the behaviour of the object when it receives amessage. The attributes of an object may change when a message is processed.The attributes of an object are represented as a partial function � from attributenames to values. An attribute j is renamed i in � to produce a new attributefunction �[i=j] de�ned as follows:�[i=j](k) = � �(i) when k = j�(k) otherwiseA state is <�; �; �> and represents a partial view of an object. Two di�erentviews of the same object must have the same type and identity but may di�erwith respect to the attributes providing that the attribute views are consistent.Consistency is de�ned as follows. Let � (is more de�ned than) be a partialorder on attribute descriptions such that �1 � �2 when �1(a) = �2(a) for allattributes a 2 dom(�2). Any two attribute descriptions are consistent whenthere is a greatest lower bound attribute description �1 u �2.The partial order on attribute descriptions can be extended to states byrequiring that <�1; �1; �1> � <�2; �2; �2> holds if and only if �1 = �2, �1 = �2and �1 � �2.Object-oriented systems consist of sets of object states. A set is well formedwhen it contains only one state for a given object identity. We can de�ne apartial order on well formed sets of object states as follows. Let �1 and �2 betwo well formed sets of object states. The relation �1 � �2 holds when for eachobject state in �2 there is an object state in �1 which is consistent. This canbe stated formally as:8<�2; �2; �2> 2 �2 � 9<�1; �1; �1> 2 �1 � �1 = �2 ^ �1 = �2 ^ �1 � �25



Given two well formed sets �1 and �2 of object states the greatest lower bound�1 u�2 is the smallest set which contains all of the object states from both �1and �2 where di�erent views of the same object have been merged consistently.3.2 Object Calculation GraphsSystems are constructed as a collection of objects. Each object is a separatecomputational system with its own state (feature 1) which is modi�ed in re-sponse to handling messages (feature 2). A message is a package of informationsent from one object to another.The computation which is performed when a message is handled by an objectdepends on the object's current state and causes the object to change state andproduce output messages (feature 3). If we observed an object over a period oftime we would see a sequence of messages and state changes:: : : �1 (I1;O1)7�! �2 (I2;O2)7�! �3 : : :where each �j is an object state, Ij are input messages, and Oj are outputmessages. Such a sequence is an object calculation and describes a single objectin state �j receiving messages Ij causing a state change to �j+1 and producingoutput messages Oj .A message consists of a source object, a target object and some messagedata. The source and target objects are identi�ed by their object identity tags.For a given object system, the data items which can be passed as messages willbe de�ned for each type of target object. A message, whether input or output,is represented as <�s; �t; �> where �s identi�es the source object, �t identi�esthe target object and � is the message data.Object systems are constructed from multiple objects which interact by pass-ing messages. The state of an object system is a well formed set of object states�. Computation in an object system occurs when the messages in set I are sentto the objects in � producing a new set of object states �0 and a collection ofoutput messages O: : : : 7�! � (I;O)7�! �0 7�! : : :Object-oriented designs represent non-deterministic computational systems (fea-ture 6). We can therefore de�ne all the possible object calculations which areperformed by an object system O in response to handling sequences of inputmessages of length n.Object calculations are represented as a calculation graph O(n) where thenodes of the graph are labelled with well formed sets of states and the edges are
6



labelled with pairs of input and output message sets. An example graph Gx is:
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4Starting in state �1, the graph Gx can produce the following possible objectcalculations of length 2: �1 (I1;O1)7�! �3 (I4;O4)7�! �4�1 (I2;O2)7�! �2 (I3;O3)7�! �3A graph G = (N;E; s : E ! N; t : E ! N) is a set of nodes N , a set of edgesE and a pair of mappings s which maps an edge to its source node, and t whichmaps an edge to its target node. A graph homomorphism (�n; �e) : G1 ! G2is a mapping from graph G1 to graph G2 consisting of a pair of mappings�n : N1 ! N2 and �e : E1 ! E2 such that the following diagrams commute:E1?t2 E2?t1-�eN1 N2-�n
E1?s2 E2?s1-�eN1 N2-�nConsider the following graph Gy:
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8 8We can de�ne a graph homomorphism � : Gx ! Gy such that �n = f�1 7!�5;�2 7! �6;�3 7! �6;�4 7! �7g and �e = f(I1; O1) 7! (I5; O5); (I2; O2) 7!(I5; O5); (I3; O3) 7! (I6; O6); (I4; O4) 7! (I7; O7)g so that �(Gx) is included inGy.3.3 Object SemanticsThe meaning of an object is de�ned to be the calculation graph which describesall of its possible behaviours. We will give a precise object semantics using simple7



constructions from category theory. In order to be self contained we includede�nitions of category, terminal object, functor, and natural transformation.3.3.1 CategoriesA category consists of:� A collection of objects1. Upper case letters A, B, : : : are used to rangeover objects; and� A collection of arrows. Lower case letters f , g, : : :, are used to range overarrows. Each arrow has a domain object A and a range object B and iswritten f : A! B; and� A binary associative operator � which maps a pair of arrows f : A ! Band g : B ! C to an arrow g � f : A! C.� Every object A in a category has an identity arrow idA : A! A which isthe left and right identity of �.An example category is Int whose objects are integers. There is an arrowf : n! m in Int for every pair of integers n and m such that n � m. Anotherexample category isCalc whose objects are calculation graphs and whose arrowsare graph homomorphisms.3.3.2 Terminal ObjectsA terminal object in a category is an object A such that for all objects B in thecategory there is an arrow f : B ! A. The terminal object in Calc is a graphwith a single node labelled ; and a single edge (from ; to ;) labelled with (;; ;).For each object in Calc there is exactly one arrow which maps all nodes to ;and all edges to (;; ;).3.3.3 FunctorsA functor consists of:� A source category C and a target category D; and� A function F1 which maps objects of C to objects of D; and� A function F2 which maps arrows of C to arrows of D such that thefollowing conditions hold:{ For every C arrow f : A! B, F2(f) : F1(A)! F1(B) in D; and{ For every C object A, F2(idA) = idF1(A); and{ For every pair of composable C arrows g�f , F2(g�f) = F2(g)�F2(h)in D.1The term object is used in the mathematical rather than the software sense.8



3.3.4 Natural TransformationsGiven two functors F : C ! D and G : C ! D a natural transformation : F ! G is de�ned as a family of arrows A indexed by objects A of C suchthat A : C(A) ! D(A) for every object A of C and the following diagramcommutes for all C arrows f : A! B:C(A)?C(F ) D(A)?D(f)-AC(B) D(B)-B3.3.5 Objects as FunctorsAn object O is described in terms of its calculations. A collection of graphsO(0); O(1); O(2); : : : ; O(n) describe calculations arising out of sequences of mes-sages of length 0; 1; 2; : : : ; n. Consider two integers n and m such that n � m.Both integers produce calculation graphs O(n) and O(m). If the object O iswell-behaved then there must be a graph homomorphism � : O(n)! O(m).This leads us to de�ne objects as functors from the category Int, whoseobjects are integers and morphisms f : n ! m hold when n � m, to thecategory Calc, whose objects are object calculation graphs and morphisms aregraph homomorphisms.Let Obj be a category whose objects are functors from Int to Calc andwhose arrows are natural transformations between functors. An object in Objwill be referred to as a behaviour and an arrow as a behaviour morphism.Object-oriented design notations provide models which express objects interms of states, associations and messages. The semantics of these models isprovided by objects in Obj which are de�ned using standard categorical con-structions.4 Object-Oriented Design NotationRather than use a graphical design notation such as UML to denote behaviours,a textual design language is de�ned whose semantics is given by constructionsin Obj. Although the language is more expressive than current object-orienteddesign notations, section 7 shows a correspondence with graphical notations.In principle, there are many di�erent possible choices of language to denoteconstructions in Obj. One possibility is to use a form of modal logic wherestatements in the logic express properties about multiple worlds. A world cancorrespond to a set of object states and relationships between worlds correspondto transitions arising due to messages. 9



A problem with this approach is that formal logic tends to have a at struc-ture and does not lend itself to modular system construction. In addition, oneof the strengths of formal logic, namely its ability to describe systems by ab-stracting away from computational detail, can be a weakness when we know thecomputational model which must be used.Following Landin [Lan64] we take a di�erent approach which is to use anextension of �-notation as our design language. Since �-calculi are the canonicalprogramming languages this allows us to express the computational features ofthe design whilst the extensions abstract away from unnecessary computationaldesign choices.4.1 Behaviour FunctionsA family of behaviours can be represented as a function with the following form:M = �i1:�i2:�i3:�i4:Nwhere i1 { i4 are parameters and N is the body. The parameters are suppliedwith values as follows:1. The �rst parameter is supplied with a type tag �. The result is a functionwhich describes the behaviour of a class of objects.2. The second parameter is supplied with an object tag � . The result is afunction which describes the behaviour of a single object in all possiblestates.3. The third parameter is supplied with a value v which is the state of anobject. The result is a function which describes the behaviour of a singleobject starting with a particular initial state v.4. The fourth parameter is supplied with a set of messages I . The result isa set of pairs: M(�)(�)(v)(I) = [i=1;nf(P 0i ; Oi)gwhere P 0i are replacement behaviours and Oi are corresponding outputmessages. The replacement behaviours are functions which determine theresponse to subsequent messages. Actor theory [Agh91] uses exactly thesame approach to functionally model concurrent systems.Suppose that �1 is a set of states described by P , �2i is the set of statesdescribed by P 0i for i = 1; 3 then the calculation graph which is described by
10



the application of P is:
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23Subsequent components of the graph are constructed using the appropriate re-placement object P 0i .The body N of behaviour function handles messages by performing caseanalysis on the value of m. The body is of the form:case m ofp1 ! e1p2 ! e2: : :pn ! enelse eendwhere m is an expression whose value is a set of input messages, pi are patternswhich match sets of input messages, ei and e are transition expressions whosevalues are pairs of replacement object behaviour functions and sets of outputmessages.The operational semantics of case is as follows: m is evaluated and matchedagainst all of the patterns pi. Pattern matching produces a collection of vari-able bindings whose scope is the corresponding transition expression ei. Foreach pattern which matches, the transition expression is evaluated to producea collection of pairs (P;O). If no pattern matches then the optional defaulttransition expression is evaluated. The result of evaluating case is the set ofpairs resulting from evaluating transition expressions whose patterns match theinput messages.A transition expression denotes a collection of pairs of the form (P;O). Inprinciple a transition expression can be of arbitrary complexity, however thefollowing forms are frequently used:e when c where e is a transition expression and c is aboolean expression. The boolean expression actsas a guard on the transition.e whererec b where e is a transition expression and b is a collec-tion of mutually recursive bindings whose scope ise.(P;O) where P is an expression denoting a replacementbehaviour function and O is an expression denot-ing a set of output messages.11



A case expressions of the form case m of else e end is equivalent to just theexpression e.4.2 Example Behaviour FunctionsA terminal object in Obj has no state and can respond only to an empty set ofmessages. It is de�ned below and is unique up to isomorphism since we do notspecify a type or object tag:letrec empty(;) = f(empty; ;)gConsider describing the behaviour of a single cell which stores a value. A cellobject can be sent a message set which changes the value of its value and amessage get which retrieves its value. The behaviour is as follows:letrec cell(�)(�)(v)(m) =case m off<� 0; �; set(v0)>g [m0 !(cell(�)(�)(v0); ;)f<� 0; �; get>g [m0 !(cell(�)(�)(v); f<�; � 0; v>g)else (cell(�)(�)(v); ;)endA class is created by sealing the type tags which occur in the object calculations.Suppose that �1 is a type tag for a class of cell objects:let cellClass = cell(�1)A cell object is created by supplying the values of the attributes and the objecttag: let c1 = cellClass(�1)(0)Suppose that we wish to set the contents of cell c1 to 1 and then to retrieveits value. This is achieved by sending it messages from a hypothetical sourceobject �0: c1(f<�0; �1; set(1)>g) = f(c2; ;)gc2(f<�0; �1; get>g) = f(c2; f<�1; �0; 2>g)g4.3 System ExecutionA variety of system execution mechanisms are possible using object designs inthe format described above. Typically we wish to inject a single message into asystem and then observe the messages which emerge from the system. Supposethat, given a system of objects o and a set of messages m that: o=m is a set of12



messages produced by restricting m to those whose targets are in o; and, onmis m� (o=m), i.e. the messages in m whose targets are not in o. The functionexec is supplied with a system of objects o and a set of initial messages m andproduces a sequence of messages which emerge:letrec exec(o)(m) =let (o0;m0) = o(m)in (m0no0) : (exec(o0)(m0=o0))4.4 Semantics of Behaviour FunctionsThe meaning of a behaviour function is de�ned by a partial mapping from �-terms to behaviours. Before de�ning the semantics we establish the followingterminology:� A set of behaviours which di�er only with respect to object tags is referredto as a class behaviour.� A set of class behaviours which di�er only with respect to the class tagsis referred to as a family of behaviours.Suppose that M is a behaviour function:M = �i1:�i2:�i3:�i4:Nthen let [[M(�)(�)(v)]] be the behaviour constructed by supplying all possiblesequences of messages to object � in state v. Let [[M(�)(�)]] be the behaviourconstructed by supplying the object � with all possible message sequences inall possible states. Let [[M(�)]] be the class behaviour formed by supplying allpossible instances of � in all possible states with all possible message sequences.Finally, let [[M ]] be the family of behaviours constructed by supplying M withall possible class tags, object tags, states and message sequences.4.5 Behaviour MorphismsArrows in Obj are families of graph homomorphisms which must be well-behaved with respect to message sequences (see section 3.3.5). This is expressedby stating that behaviour morphisms are natural transformations. Let O1 andO2 be behaviours (i.e. functors from Int to Calc). A morphism  : O1 ! O2from O1 to O2 is a family of graph homomorphisms n for each object in Intsuch that for any arrow f : n! m in Int the following diagram commutes:O1(n)?O1(f) O2(n)?O2(f)-n
O1(m) O2(m)-m13



An arrow is de�ned in the design language as a homomorphism implementedas a pair of functions (f; g) where f maps sets of states and g maps pairs ofsets of messages. Behaviour transformation is performed by applying an arrowto a behaviour to produce a new behaviour. The application of (f; g) to thebehaviour function M1 produces a behaviour function M2 which makes thefollowing diagram commute for any �, � and v:M1(�)(�)(v)?[[:]] M2(�)(�)(v)?[[:]]-(f;g)
G1 G2-(f;g)Application of arrows to produce class behaviours and families of behaviours fol-lows from an extension of the above de�nition. Given a homomorphism betweengraphs we can uniquely extend this to a homomorphism between sets of graphs(class behaviours) and then sets of sets of graphs (families of behaviours).For example, suppose that we wish to produce a new behaviour cellx whichstores a value called x, and responds to messages setx and getx. This is achievedas follows, where pair(p; q)(v1; v2) = (p(v1); q(v2)):let ctox = (map(f); pair(map(g1);map(g2)))wheref(<�1; �2; �>) = <�1; �2; �[x=v]>g1(<�1; �2; set(v)>) = <�1; �2; setx(v)>g1(<�1; �2; get>) = <�1; �2; getx>g2(<�1; �2; �>) = <�1; �2; �>let cellx = ctox(cell)A behaviour celly can be produced by applying morphism ctoy to cell. Themorphism ctoy is de�ned by renaming v to y, set to sety and get to gety.For each behaviour function there is exactly one possible morphism to theterminal behaviour function empty:let term = (K(;);K(;; ;))5 SystemsObject-oriented systems are compositional (feature 8). Composition can occurin order to extend the possible system behaviour and also occur in order torestrict possible system behaviour. Extension can occur when new methods orattributes are added to a class. Extension also occurs when partial behaviours14



are combined to produce a \larger" behaviour (feature 9). Restriction occurswhen behaviours are composed and required to behave consistently (feature 11).This section shows how systems are constructed from sub-systems. The sys-tem building operations are de�ned in terms of standard constructs from cat-egory theory. The design language is extended with system building operatorsand we give examples of their use.5.1 ProductsGiven objects A and B, a product is an object A�B together with two arrows�1 : A�B ! A and �2 : A�B ! B such that for any object C with morphismsf : C ! A and g : C ! B there is a unique arrow u : C ! A�B such that thefollowing diagram commutes: CAAAAAAAAAAUg����������� f ?uA�B@@@@R�2����	 �1A B5.1.1 Behaviour ProductsFollowing the standard product construction for two graphs (see [Bar90]), prod-ucts in Calc are constructed as follows. Given two calculation graphs G1and G2, a product G1 � G2 is a calculation graph whose nodes and edgesare labelled with pairs of labels from G1 and G2 respectively. For every noden 2 G1 and node n2 2 G2 there is a node n 2 G1 � G2 such that label(n) =(label(n1); label(n2)). For every edge e1 2 G1 and edge e2 2 G2 there is an edgee 2 G1 � G2 such that label(e) = (label(e1); label(e2)). The source and targetnodes of e correspond to the pairing of the corresponding source and targetnodes of e1 and e2. The projection arrows are graph homomorphisms whichproject onto the �rst and second co-ordinates of the labels respectively.This leads us to de�ne product of two behaviours O1 and O2 for all n asfollows: (O1 �O2)(n) = O1(n)�O2(n)Unfortunately, this leads to inconsistent system states. A product state couldbe formed by composing two views of the same object:(f<�; �; fx 7! 1g>g; f<�; �; fx 7! 2g>g)15



in which the object � associates the attribute x simultaneously with the values1 and 2. Furthermore, a tree structure is imposed on system states which isundesirable since system composition becomes non-associative: (O1�O2)�O3 6�O1 � (O2 �O3).We propose a structure for system composition which ensures consistentstates. When two systems are composed, the resulting behaviour has the largestconsistent state.Let merge be the calculation graph homomorphism (merge1;merge2) whichis de�ned as follows:merge1(�1;�2) = �1 u �2merge2((I1; O1); (I2; O1)) = (I1 [ I2; O1 [ O2)The composition of behaviour functions is de�ned by a design language operator� as follows: [[M1 �M2]] = merge([[M1]]� [[M2]])The combination of behaviour composition and consistency allows a systemdevelopment technique to be compositional. For example we may de�ne twoviews of the same object. Each view is speci�c with respect to a di�erent aspectof the object's behaviour, otherwise each view leaves the object free to performany behaviour. The composition of the two views, as de�ned by a product,allows each view to constrain the free behaviour of the other.The following shows how the product operator is used to construct a twodimensional point behaviour from components cellx and celly:let (point; �x; �y) = cellx� cellyThe resulting function point describes a family of behaviours. All object stateshave attributes x and y. The messages which can be sent to the objects are: setx;sety; getx; and gety. Notice that the product operator � forces the x attributeto be left unchanged when a sety message is received because the function cellxdoes not recognise the message. Similarly, the y attribute is una�ected by thesetx message.5.1.2 Combining Partial BehavioursObject-oriented design notations de�ne partial object behaviours (feature 9). Apartial behaviour describes the state changes and messages which occur when amessage is sent to an object. The description is partial because it does not applyto all possible system states. A total description is constructed by composing asu�ciently complete collection of partial descriptions.For example, suppose that we want to describe a cell which can respond totwo messages: set and get. The get message retrieves the current value in the16



cell. The set message supplies a value v and causes the cell to change to v=2 ifthe value is even and v if the value is odd. This can be expressed as follows:let cellEven(�)(�)(v)(m) =case m off<� 0; �; get>g [m0 !(cellEven(�)(�)(v); f<�; � 0; v>g)f<� 0; �; set(w)>g [m0 !(cellEven(�)(�)(w=2); ;) when even(w)f<� 0; �; set(w)>g [m0 !(cellEven(�)(�)(>); ;) when odd(w)else (cellEven(�)(�)(v); ;)endThe behaviour cellEven handles the message set(w) in two mutually exclusiveways. Firstly, if the value w is even the current value of the state variable vis updated to w=2. Secondly, if the value of w is odd then the state variable vbecomes >. The value > is special in the design notation and represents thenon-deterministic selection of a value from all possible values. In e�ect, we donot know what cellEven will do when it receives an odd value and therefore weallow any possible state change.A behaviour cellOdd de�nes the behaviour of a cell when it is supplied withan odd value: let cellOdd(�)(�)(v)(m) =case m off<� 0; �; get>g [m0 !(cellEven(�)(�)(v); f<�; � 0; v>g)f<� 0; �; set(w)>g [m0 !(cellOdd(�)(�)(>); ;) when even(w)f<� 0; �; set(w)>g [m0 !(cellOdd(�)(�)(w); ;) when odd(w)else (cellOdd(�)(�)(v); ;)endFinally, a deterministic behaviour is constructed by forming a product of cellEvenand cellOdd: let (cellEvenOdd; �e; �o) = cellEven� cellOdd5.1.3 Object CommunicationObject-oriented execution occurs by means of message passing. Design notationsexpress the potential for message passing between objects using associations.Associations are modelled in Obj as a named attribute whose value containsthe object identity of the associated objects.17



Message passing occurs when a behaviour produces an output message whosetarget is given by the value of an association. Messages may be synchronousor asynchronous (feature 10). An asynchronous message is sent and the sourceobject does not wait for a reply. In the case of synchronous messages, an objectmust arrange to wait for a reply before continuing to process any incomingmessages.For example, a cashpoint machine is associated to a number of accounts. Theobject identity tags of the accounts are maintained in the machine database.A customer can make an enquiry regarding the balance of their account bysupplying their pin number:letrec cashpoint(�)(�)(db)(m) =case m off<� 0; �; enquire(pin)>g [m0 !(wait; f<�; lookup(pin)(db); balance>g)whererec wait(m) =case m off<� 00; �; balance(n)>g [m0 !(cashpoint(�)(�)(db); f<�; � 0; n>g [m0)else (wait;m)endelse (cashpoint(�)(�)(db); ;)endThe cashpoint behaviour shows how replacement behaviours are used to handlesynchronous messages. On receiving an enquire message, the replacement waitis used to store up messages until a balance is returned by the appropriateaccount.5.2 CoproductsGiven two objects A and B, a coproduct is an object A+B together with twoobject morphisms �1 : A! A+B and �2 : A! A+B such that for any objectC and arrows f : A! C and g : B ! C there is a unique arrow u : A+B ! C
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such that the following digram commutes:AAAAAAAAAAAUf@@@@R�1 B����������� g����	�2A+B?uC5.2.1 Behaviour CoproductsA coproduct of two calculation graphs G1 and G2 in Calc is a calculation graphG1 + G2 which contains all of the nodes and edges of G1 and G2. The nodesand edges are labelled in order to record whether they originated from G1 orG2. This allows the arrow u to test the origin of a node or edge in order toapply the appropriate arrow f or g. Behaviour coproducts are de�ned for all nas follows: (O1 +O2)(n) = O1(n) +O2(n)Coproducts ensure that the calculations performed by the component objectsare represented separately by labelling the states and edges. In an object designwe will often not be interested in the origin of a transition and can thereforelose the labels which encode this information. The result is a restriction on thecoproduct which produces an object for which we cannot necessarily guaranteea unique arrow u.The implication of a non-unique arrow u is that the design is non-deterministicwhich is a required feature (feature 6) of object-oriented design systems. Thisleads to an operator + which is used to merge two objects to produce a (possi-bly) non-deterministic composite object.Suppose that G1 + G2 is a coproduct of G1 and G2 such that nodes andedges from G1 and G2 are labelled pink and blue respectively. A de-labellingoperation can be expressed as a morphism delabel de�ned as a forgetful graphhomomorphism (strip; strip) which is de�ned:strip(pink(v)) = vstrip(blue(v)) = vGiven object calculation functions M1 and M2 then we de�ne the operator +as follows: [[M1 +M2]] = delabel([[M1]] + [[M2]])19



5.2.2 Non-Deterministic BehavioursSuppose a cell is to be designed which can be sent a message mod causing it tomodify its value. Modi�cation can be de�ned to add 1 to the value:letrec cellInc(�)(�)(v)(m) =case m off<� 0; �;mod>g [m0 !(cellInc(�)(�)(v + 1); ;)else (cellInc(�)(�)(v); ;)endAlternatively, modi�cation can be de�ned to subtract 1 from the value:letrec cellDec(�)(�)(v)(m) =case m off<� 0; �;mod>g [m0 !(cellDec(�)(�)(v � 1); ;)else (cellDec(�)(�)(v); ;)endIf we wish to leave the choice between increment and decrement open as a designchoice then the cell can be de�ned as non-deterministic using the + operator:let cellNonDet = cellInc+ cellDec5.3 EqualizersObject-oriented design notations often allow the engineer to produce di�erentviews of the same component using di�erent modelling notations. The behaviourof the resulting system is constructed as the largest set of behaviours consistentwith all possible views.Consistency between views is achieved using equalizers. Let A and B betwo objects and let f : A ! B and g : A ! B be two object morphisms. Anequalizer of the arrows is an object E together with a morphism e : E ! Asuch that f � e = g � e and for any object E0 and arrow h : E0 ! A such thatf �h = g�h there is a unique arrow u such that the following diagram commutes:E A B-e -f -gE0 �����h6u
20



5.3.1 Behaviour EqualizersIn Calc an equalizer between two graph homomorphisms f : G1 ! G2 andg : G1 ! G2 is a graph G and a homomorphism e : G ! G1 such that epicks out the largest sub-graph of G1 which produces the same image under fand g. If the equalizer is de�ned in terms of the largest sub-graph then thehomomorphism u is unique up to isomorphism.The design language provides a builtin operator eq which constructs equal-izers. If M1 is a function implementing an object and f , g are pairs of functionsfrom M1 to another object M2 then:(N; e) = eq(M1)(f)(g)such that [[N ]] and e is an equalizer for [[M1]], [[M2]], f and g.5.3.2 Consistent BehavioursEqualizers can be used to make two ways of viewing the same behaviour con-sistent. For example, a two-dimensional point behaviour can be mapped ontoa single cell so that the x or the y co-ordinate becomes the value of the cell.Suppose that we de�ne point as follows:let point(�)(�)(x; y)(m) =case m of; ! (point(�)(�)(x; y); ;)f<� 0; �; getx>g [m0 ! point(�)(�)(x; y)(m0)
 f<�; � 0; x>gf<� 0; �; gety>g [m0 ! point(�)(�)(x; y)(m0)
 f<�; � 0; y>gf<� 0; �; setx(v)>g [m0 ! point(�)(�)(v; y)(m0)f<� 0; �; sety(v)>g [m0 ! point(�)(�)(x; v)(m0)else (point(�)(�)(x; v); ;)endwhere (P;O1) 
 O2 = (P;O1 [ O2). The following pair of arrows de�ne homo-morphisms which map point onto cell. Arrow f maps the x co-ordinate ontothe value of the cell, getx to get, setx to set and all other messages to unknown.Arrow g maps the y co-ordinate onto the value of the cell and, gety to get, setyto set and all other messages to unknown. Arrow f is de�ned below:let f = (map(f1); pair(map(f2);map(id)))wheref1(<�; �; �>) = <�; �; �=fxg>f2(<�1; �2; getx>) = <�1; �2; get>f2(<�1; �2; setx(v)>) = <�1; �2; set(v)>f2(<�1; �2; gety>) = <�1; �2; unknown>f2(<�1; �2; sety(v)>) = <�1; �2; unknown>21



An equalizer for f and g will require that the x and y co-ordinates are alwaysthe same value, i.e. any changes which are made to an object described by theequalizer must a�ect both the x and the y co-ordinate in tandem:let (tandem; e) = eq(point)(f)(g)The object tandem describes object calculations whose message input sets areelements of the following inductively de�ned set M : ; 2 M ; fgetxg 2 M ;fgetyg 2M ; fsetx(v); sety(v)g 2M ; if m1;m2 2M then m1 [m2 2M .6 System BehaviourA system is composed of multiple objects. Each object is designed by providingmultiple views of its behaviour. The di�erent views of an object's behaviourare not independent. The dependencies are constraints which hold betweenthe di�erent views and which serve to rule out possible combined behaviours.The constraints can be viewed as simultaneous equations a�ecting the overallbehaviour of the system. A solution to the equations is a system behaviour(feature 12). This section describes how constraints on system componentsare expressed as diagrams in Obj, de�nes system behaviour as a limit on asystem diagram and describes an algorithm for constructing limits in the designlanguage.6.1 System DiagramsThe behaviour of a system is described by an object in Obj. Objects in Objare non-deterministic partial views of object systems. Consistent with currentobject-oriented development processes, we claim that the meaning of an object-oriented design is the composition of the meanings of the constituent designmodels.Systems consist of a collection of co-ordinated objects. An overall systemtransition will typically involve a collection of controlled individual object tran-sitions. Such co-ordination implies a constraint on the free behaviour of theindividual objects. The constraints can be expressed as behaviour morphismswhich express how one behaviour can be interpreted in terms of another.A single behaviour may be the source of multiple morphisms. This maybe used to \glue" together individual behaviours and also to require them tointeract. A single behaviour may be the target of multiple morphisms. This maybe used to require individual morphisms to behave consistently under certaincircumstances.A system is expressed as a collection of Obj objects and morphisms betweenthem. A system diagram is a graph whose nodes are labelled with behavioursand whose edges are labelled with behaviour morphisms.22



6.2 Limits of DiagramsIn order to solve the equations we use the categorical construct of limits whichhas been proposed by Goguen in [Gog90] as a means for expressing the behaviourof a system. In general, a diagram � is a graph with a mapping from the nodesof � to objects and a mapping from the edges of � to morphisms between thesource and target objects. Let �n represent an object N in the diagram � and�e represent a morphism. A cone on a diagram � is an object A (which isnot necessarily in the diagram) together with, for each object �n a morphismn : A ! �n such that for all edges e : n ! m in � the following diagramcommutes: A @@@@Rm����	n�n �m-�eA cone on a system expressed as a diagram is a composite behaviour which isconsistent with the behaviours on the diagram. Notice however, the there is nocondition on which particular behaviour to pick for the cone. There are manypossible choices for cones including the behaviour with no states or transitions(this is an initial object which can always be mapped to another behaviour usingthe empty morphism).A cone arrow on a diagram � from cone n : A ! �n on � to cone0n : A0 ! �n is an object morphism  : A0 ! A such that for all nodes n in �the triangle below commutes:A @@@@Rn A0����	 0n� 
�nCone arrows allow us to place restrictions on cones. For example if there is acone arrow  : A0 ! A we know that the behaviour described by A0 is morerestricted than that described by A.A limit on a diagram � is a cone A, on � such that for any other cone A0 on� there is a unique cone arrow u : A0 ! A. The de�nition of a limit capturesthe behaviour of a system because it must contain all of the behaviours on thediagram and must obey all of the constraints on the diagram.
23



6.3 Constructing LimitsA standard result of category theory is that any category having a terminalobject, binary products and equalizers of pairs of arrows has all �nite limits[Ryd88]. This result allows the construction of a limit on a diagram providingthat these simple properties hold in the appropriate category.This section provides an algorithm for constructing limits on a diagram andgives an example. The algorithm is derived from a proof in [Ryd88] which showshow a colimit can be constructed on a diagram.Let � be a diagram on a category with a terminal object, all �nite productsand �nite equalizers. If the diagram has no edges (and consists only of nodes)then the limit is constructed by forming the product of all node labels on thediagram. If the diagram is empty then the limit is a terminal object of thecategory.If the diagram contains edges then let e : p! q be an edge with an associatedarrow f : �p ! �q and let �0 be � with e removed. Assume inductively thatthe diagram �0 has a limit �n : A ! �n. Consider a parallel pair of arrows:�q : A ! �q and f � �p : A ! �q . Let the equalizer of these arrows beh : B ! A which is shown on the following diagram:B?hA @@@R�q���	�p�p �q-fWe wish to show that �n = �n � h : B ! �n is a limit on the diagram �.We show that for any other cone there must be a unique arrow to B. Let�0n : B0 ! �n be another code on �. By de�nition, since �n is a limit theremust be a unique arrow � : B0 ! A such that for all nodes n 2 � �n � u = �0n.Also, by the de�nition of equalizers since f � �p � u = �q � u then there must be
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a unique arrow v : B0 ! B which makes the following diagram commute:B?h B0HHHY v���� u �������	 �p ?�qA @@@@@R�q�������p�p �q-fSince v is unique and �n : B0 ! �n is an arbitrary cone on the diagram wemust conclude that �n : B ! �n is a limit on the diagram �.Suppose that we are constructing a library system. The system consistsof two behaviours. The library behaviour describes library objects in terms ofbook titles, borrowers, copies on shelves and records of books currently on loan.The person behaviour describes people who may or may not be members of thelibrary. We wish to express the constraint that all borrowers are people butnot all people are borrowers. We sketch the design and show how the limit isconstructed.The library and person behaviours are de�ned as functions:letrec library(�)(books; borrowers; copies; onloan)(m) = : : :letrec person(�)(name; age; sex)(m) = : : :The constraint is expressed as a pair of mappings with a simple common targetbehaviour unit which stores a single value v and ignores all messages:letrec unit(v)(m) = f(unit(v); ;)gThe behaviour morphism f : library ! unit projects multiple library objectsto a single unit object whose attribute v is the union of all borrowers. Themorphism g : person ! unit maps all people to a single unit object whoseattribute v a sub-set of the people object tags non-deterministically selectedfrom all possible sub-sets. In both cases f and g map messages to (;; ;) sincewe are not interested in the dynamic behaviour of libraries and people. This isexpressed on the following diagram:library@@@@Rf person����	 gunit25



Figure 1 shows how a limit is constructed for this diagram as a process involv-ing 8 steps. Nodes on the diagram are labelled with behaviours or X whichdenotes behaviour product. Edges on the diagram are labelled with behaviourmorphisms.The initial diagram (i) is empty and the limit is therefore a terminal objectempty. When library is added in (ii) the limit is the object library. In (iii) theunit object is added and a limit is constructed as a product library� unit. Thearrow f is added in (iv) and an equalizer is used to construct a limit obj in (v).The object person is added and the limit in (vi) is constructed as a productobj � person. The arrow g is added in (vii) and �nally a limit of the originaldiagram is constructed as an equalizer limit in (viii).The limit L is constructed in the design language using the operators � andeq as follows: let (o1; �1; �2) = library � unitlet (obj; e1) = eq(o1)(f � �1)(�2)let (o2; �3; �4) = obj � personlet (limit; e2) = eq(o2)(�2 � e1�3)(g � �4)7 An Example DesignThis section shows how the design language can be used to give a meaningto a small object-oriented design expressed as a static class diagram and acollection of dynamic object interaction diagrams. We present a requirementfor the example application, produce a collection of object-oriented models andthen construct the corresponding behaviours.7.1 Software RequirementsSoftware is required to control a chemical factory. Lorry-loads of chemicals xand y arrive at the factory and are stored in tanks. Each tank has a storagecapacity which must not be exceeded. Single measures of x and y are transferredto a mixer tank where they are mixed to produce a single unit of chemicalz. Chemical z is transferred from the mixer tank to a storage tank awaitingcollection and distribution.7.2 Static ModelAnalysis of the requirements leads to the identi�cation of two classes: factoryand tank. Further analysis of tank identi�es two sub-classes: storage and mixer.The class factory has the following methods:� addx which adds chemical to a storage tank containing chemical x. Thismethod returns true when the operation succeeds.� addy which is the same as addx but uses a di�erent storage tank.26
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addx:int->bool

addy:int->bool

mix:()->bool

stop:()->bool

m

on:bool

add:int->bool

l:int

c:int
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start:()->bool

stop:()->boolFigure 2: Static class diagram for the factory application� mix which transfers 1 unit of x and 1 unit of y from the storage tanks tothe mixer tank and starts the mixing process. The method returns truewhen the operation succeeds.� stop which stops the mixing tank and transfers the contents to a storagetank for chemical z. This method returns true when the operation issuccessful.To support these operations, factory has three associations named x, y and zwith storage and a single association named m with mixer.The class tank has a state consisting of c which is an integer representingthe current tank contents, and l which is the capacity limit. The class tankhas a single method called add which adds chemical to the tank. The methodreturns true when the operation is successful. Chemical is removed from a tankby supplying a negative value to add.The class mixer has a boolean state variable on and two methods start andstop which both return true when they are successful.Graphical object-oriented design notations such as UML express this infor-mation on a static class diagram. The static diagram for the factory applicationis shown in �gure 2.7.3 Dynamic ModelsEach of the factory methods leads to a collection of object interaction diagrams.Each diagram expresses the sequence of messages which occur under a particularcondition. A message is expressed as follows:[b]n : e = m(e1; : : : ; en)28



:Factory :Storagex

:Factory :Storagex

1:true=addx(n)
2:true=add(n)

(i) addxt

1:false=addx(n)
2:false=add(n)

(ii) addxfFigure 3: Object interaction diagrams for addxwhere b is a conditional expression which acts as a guard on the message; n isan integer which determines the message ordering on the diagram; e is a valueexpression representing the return value of the message; m is the name of themessage; and, ei are the arguments of the message. A ground interaction isproduced by consistent substitution for all variables on a diagram.� The method addx can be described using two behaviours. The �rst isnamed addxt and describes the successful behaviour of addx. The secondis named addxf and describes the unsuccessful behaviour. The objectinteraction diagrams are shown in �gure 3.� The method addy is described in the same way as addx. The result is twobehaviours addyt and addyf.� The method mix is described using a single interaction diagram shown in�gure 4. Note that mix is only successful when the x and y tanks are notempty and the mixing tank is not full or currently mixing. Variables aand b are true when units of x and y are available. Variables c and d aretrue when the mixing tank can be loaded and then started.� The method stop is described by a single interaction diagram shown in�gure 5. The operation is successful when the mixing tank can be stopped,emptied and the unit of chemical z can be transferred to the z tank.Variables a and b are true when the mixing tank can be stopped andunloaded. Variable c is true when the chemical can be loaded into tank z.
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Figure 5: Object interaction diagram for stop
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Figure 6: A factory design diagram7.4 Factory BehavioursFigure 6 shows the component behaviours of the factory design and how they arecombined using products and equalizers to produce a single factory behaviour.A limit limit is constructed from the behaviours and products shown on thediagram and an equalizer constructed from the following two arrows: f � �4 ��3 � �2 � �1 and g � �5 � �3 � �2 � �1. This section describes how the behavioursare de�ned as functions in the design language.7.4.1 Addx and addyThe behaviour for addx is decomposed into two sub-behaviours addxt and ad-dxf which describe the success and failure of the operation respectively. The
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behaviour addxt is de�ned as follows:let addxt(�)(�)(x)(m) =case m off<� 0; �; addx(n)>g [m0 ! (wait; f<�; x; add(n)>g)whererec wait(m) =f<x; �; true>g [m0 ! (addxt(�)(�)(x); f<�; � 0; true>g [m0)f<x; �; false>g [m0 ! (addxt(�)(�)(>);m0)else (wait;m)else (addxt(�)(�)(x); ;)endThe behaviour addxt receives a message addx(n) from object � 0 and uses areplacement behaviour called wait to implement synchronous method call andreturn. The behaviour wait processes messages until it receives true or falsefrom the x tank. If it receives true then the behaviour reverts to addxt andreturns a message to � 0. Otherwise, if the return from x is false, the behaviourof wait is unde�ned. If addxt receives any message other than addx the result isunde�ned.The behaviour addxf is de�ned in the same way as addxt above except thatthe de�nition of wait for addxf is de�ned when x returns false and unde�nedwhen it returns true.Together, addxt and addxf de�ne all possible behaviours for which occurwhen a factory receives addx. The behaviour addxt forces the correct behaviourwhen the x tank reports success and permits any behaviour when the x tankreports failure. The behaviour addxf forces the correct behaviour when the xtank reports failure and permits any behaviour when the x tank reports success.The behaviour for addy is de�ned in exactly the same way as addx exceptthat all occurrences of x are replaced with y. Note that this could be achievedusing a renaming behaviour morphism.7.4.2 MixThe behaviour of mix is decomposed into the following sub-behaviours: mix,mixx and mixy. From the design in �gure 4 we know that mix succeeds whentanks x and y are not empty and tank m is not full or currently mixing. Oneway of expressing this on a behaviour diagram is to de�ne a single behaviourmix for mixing from a single arbitrary tank. Then two behaviours mixx andmixy specialise mix for the x and y tanks respectively. Behaviour morphismstranslatemixx and mixy ontomix. A limit on the diagram will force mixing fromx and y to succeed simultaneously in order for the mix operation to succeed.The behaviour mix is shown in �gure 7. The value of t1 is a storage tank objecttag and the value of t2 is a mixer tank object tag.32



letrec mix(�)(�)(t1 ; t2)(m) =case m off<� 0; �;mix>g [m0 ! (wait; f<�; t1; add(�1)>g)whererec wait(m) =case m off<t1; �; true>g [m0 ! (wait; f<�; t2; add(1)>g)whererec wait(m) =case m off<t2; �; true>g [m0 ! (wait; f<�; t2; start>g)whererec wait(m) =case m off<t2; �; true>g [m0 !(mix(�)(�)(t1 ; t2); f<�; � 0; true>g [m0)f<t2; �; false>g [m0 !(mix(�)(�)(t1 ; t2); f<�; � 0; false>g [m0)else (wait;m)endf<t2; �; false>g [m0 !(mix(�)(�)(t1 ; t2); f<�; � 0; false>g [m0)else (wait;m)endf<t1; �; false>g [m0 ! (mix(�)(�)(t1; t2); f<�; � 0; false>g [m0)else (wait;m)endelse (mix(�)(�)(t1 ; t2); ;)end Figure 7: The behaviour function mix
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letrec stop = stopt+ stopfwhererecstopt(�)(�)(m; z)(f<� 0; �; stop>g [ n0) = (wait; f<�;m; stop>g)whererecwait(f<m; �; true>g [ n0) = (wait; f<�;m; add(�2)>g)whererecwait(f<m; �; true>g [ n0) = (wait; f<�; z; add(1)>g)whererecwait(f<z; �; true>g [ n0) =(stopt(�)(�)(m; z); f<�; � 0; true>g)stopf(�)(�)(m; z)(f<�; �; stop>g [ n0) = (wait; f<�;m; stop>g)whererec wait(n) =case n off<m; �; false>g [ n0 ! (stopf; f<�; � 0; false>g)f<z; �; false>g [ n0 ! (stopf; f<�; � 0; false>g)f<z; �; true>g [ n0 ! (stopf; f<�; � 0; true>g)else (wait; ;)end Figure 8: The behaviour stop7.4.3 StopThe behaviour of stop succeeds when the mixing tank can be stopped, two unitsof chemical can be removed from the mixing tank and a single unit of chemicalcan be added to the z tank. If any of these operations fail then the stop operationfails. The behaviour function for stop provides an example of using + and isshown in �gure 8.7.4.4 TanksThe behaviour of tank and storage are de�ned as a single function which issupplied with di�erent type tags for the two classes. The function is as follows:letrec tank(�)(�)(c; l)(m) =case m off<� 0; �; add(n)>g [m0 !(tank(�)(�)(c; l); f<�; � 0; false>g)when (n+ c < 0) or (n+ c > l)(tank(�)(�)(n + c; l); f<�; � 0; true>g)when (n+ c � 0) and (n+ c � l)else (tank(�)(�)(>); ;)end 34



Finally, the behaviour mixer is a sub-class of tank (feature 7). Sub-classes arede�ned using behaviours by extending the inherited behaviour. The extensionis achieved as a product of tank and a new behaviour ext. The behaviour ext isan extension which de�nes just the behaviour for the methods start and stop:letrec ext(�)(�)(on)(m) =case m off<� 0; �; start>g [m0 !(ext(�)(�)(on); f<�; � 0; false>g) when on(ext(�)(�)(true); f<�; � 0; true>g) when not(on)f<� 0; �; stop>g [m0 !(ext(�)(�)(false); f<�; � 0; true>g) when on(ext(�)(�)(on); f<�; � 0; false>g) when not(on)else (ext(�)(�)(on); ;)end8 Conclusion8.1 ReviewThe aims of this work are to de�ne a semantic framework which is suitable forcurrent object-oriented design notations. In order to do this, we have taken abehavioural view of object-oriented systems and de�ned object behaviour as agraph of states and transitions arising from message passing.Object behaviours have been de�ned using standard constructions in cat-egory theory allowing the focus of attention to be placed on semantic ratherthan syntactic issues. Systems are de�ned to be behaviours arising from thesolution to a collection of simultaneous equations which constrain a collectionof freely de�ned object behaviours. We have shown that such constraints can beexpressed as behaviour morphisms on a diagram whose solution is constructedas a limit.A notation for expressing object designs has been proposed as a �-notationextended with built-in operators for system construction. The semantics of thenotation is given by constructions in category theory. The notation has beenused to express a small but representative object-oriented design.The design notation is highly expressive and facilitates a variety of ap-proaches to system design. In particular it allows systems to be designed usingmodular units and then composed using the operators � and +. The systemconstraints are enforced using an operator eq.Section 2 lists a collection of features which are essential to object-orienteddesign. Current graphical object-oriented design notations o�er these featureswhich are the motivation for the behavioural model of object systems de�ned insection 3. This leads to the claim that the semantics of current object-oriented35



design notations are represented by the model and therefore the design notationwhich is de�ned in this paper.8.2 AnalysisThe model which is proposed for object-oriented systems is universal and repre-sentative of other approaches to the semantic de�nition of dynamic systems. Inparticular, concurrent object systems are often expressed as labelled transitiongraphs. The use of such a semantic model to express the semantics of currentgraphical design notations is new and o�ers potentially fruitful feedback for theinvention and modi�cation of such notations.There is always a tension between the simplicity of an informally de�nednotation (as represented by the class of graphical design notations) and thenotational overload of a rigorously de�ned notation (as represented by the designnotation used in this paper). The use of �-notation can o�er some help in thisregard since it is higher-order (and can therefore encode very high-level controlabstractions) and has a distinguished history of being sweetened through theuse of syntactic sugar.A question arises regarding the expressiveness of the proposed notation withrespect to logic notations. Certainly with respect to complex control issues,�-based approaches permit the construction of respectable control abstractionssuch as replacement behaviours, which are not readily available in standard log-ics. By making the �-notation non-deterministic, either as part of the executionmechanism or by encoding it using sets, we claim that many of the useful prop-erties relating to logic based abstraction from computational mechanisms areinherited by a notation such as that proposed in this paper.It is envisaged that the semantic model and notation which is de�ned in thispaper would be used in conjunction with the graphical design notations currentlyavailable. The bene�ts of graphical notations lie in their ease of assimilation,a property which arises directly from their approximate nature. A suitabledevelopment process may be to use graphical notation as a �rst attempt atdesigning a system and then to clarify the meaning of system components andsystem composition using the model and notation proposed here.8.3 Related WorkThe analysis and semantic foundations of object-oriented designs and develop-ment is currently an active research area [Rui95]. For example [Cit95] showshow message diagrams (equivalent to UML collaboration diagrams) can be givena semantics in terms of a partial order on events; [Bou95] shows how the speci-�cation language Larch can be used to give a formal semantics to static objectdiagrams; and, [Mor96b] [Mor96a] can be used to produce executable object-oriented designs. 36



The use of category theory to capture the essential characteristics of systemsdates back to Goguen [Gog75] who updated the approach to address concurrentobject-oriented systems in [Gog90]. Sheaf theory is a general mechanism formaking global observations about locally de�ned phenomena. In addition toGoguen, sheaves are used in [Mal96] and [Ehr91]. Category theory is used toexpress static properties of object-oriented designs in [Pie96].A related approach which addresses object-oriented system execution is theuse of modal logics; examples are Object Calculus [Bic97], [Cla97] and [Lan98].This approach di�ers from that taken here in that it uses a modal logic frame-work to express and analyse object execution. By abstracting away from no-tational issues we are able to select a notation (executable or otherwise) asappropriate.A number of researchers such as [Dup97] have used �rst order logical nota-tions for expressing the semantics of object-oriented design notations. Althoughthis approach will capture the behaviour of abstract systems, these notations donot have an executable semantics and are weak at capturing temporal systemproperties.8.4 Future PlansA next step in this work is to develop a proof theory for the design notationwhich can be used to establish system properties. The theory will be used as thebasis of an interpreter for the language since design animation can be viewed asa restricted form of proof. Other types of property include: querying whether ornot a particular message is ever generated, identifying the circumstances underwhich a system state arises, and establishing that the system is deterministicand therefore ready for translation to a concrete programming language. Thework described in [Cla99] discusses how properties of behaviour diagrams canbe established.A proof theory is also required in order to establish a rigorously de�neddevelopment process. This could take the form of a re�nement relation betweensystem diagrams. One diagram can be viewed as a re�nement of another whendeterminacy and execution detail is increased whilst remaining consistent withthe original behaviour. The work described in [Cla99] gives an example of howan object-oriented design expressed as a collection of �-function behaviours canbe re�ned.References[Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In pro-ceedings of REX School/Workshop on Foundations of Object-OrientedLanguages, Lecture Notes in Computer Science 489, Springer-Verlag, 1991.37
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