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ABSTRACT

Accurate daily rainfall predictions are becoming increasingly important, particularly in the era of changing
climate conditions. These predictions are essential for various sectors, including agriculture, water resource
management, flood preparedness, and pollution monitoring. This study delves into the complex relationship
between meteorological data, with a focus on the accurate forecasting of rainfall by identifying the impact of
temperature variations on rainfall patterns in different regions of the United Kingdom (UK). The meteorological
data was collected from the National Aeronautics and Space Administration (NASA) and covers daily
observations from January 1, 1981, to July 31, 2023, in four distinct regions of the UK: England, Wales,
Scotland, and Northern Ireland. The main objective of this research is to introduce hybrid deep learning
models, namely Convolutional Neural Networks (CNN) with Long Short Term Memory (LSTM) and Recurrent
Neural Networks (RNN) with Long Short Term Memory (LSTM), for predicting daily rainfall using time-series
data from the four UK countries, specifically designed for daily rainfall forecasting of four regions in the
UK. The models are fine-tuned using the hyperparameter optimisation method. Comprehensive performance
evaluations, including Loss Function, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),
are employed to compare the effectiveness of our proposed hybrid models with established baseline models,
including LSTM, stacked LSTM, and Bidirectional LSTM. Additionally, a visual analysis of actual and predicted
rainfall data is conducted to identify the most proficient forecasting model for each region. Results reveal that
the proposed hybrid models consistently outperform other models in terms of both quantitative performance
metrics and visual assessments across all four regions in the UK. This research contributes to improved rainfall
forecasting methodologies, which are critical for sustainable agricultural practices and resource management.

1. Introduction

The impact of human-induced greenhouse gas emissions on global
temperatures is widely acknowledged, resulting in significant temper-

Rainfall is a pivotal meteorological factor, and the UK is renowned
for its frequent and often excessive precipitation. This weather phe-
nomenon significantly impacts the UK’s economy and agriculture, as it
can lead to devastating floods or crippling droughts (Trenberth, 2005).
Wetter regions in the UK experience over 200 rainy days per year,
encompassing more than half of the calendar, while drier areas witness
an annual average of 150 to 200 rainy days (GOV.UK, 2023). Over the
past decade, the UK has seen an increase in the number of heavy rain
days, surpassing the thresholds set at 95% and 99% of the average
rainfall from 1961 to 1990. Furthermore, occurrences of rainfall ex-
ceeding 50 mm have become more frequent, signalling intensification
and increased frequency of precipitation across the UK (Cotterill et al.,
2021).

* Corresponding author.

ature increases in the UK over the past few decades, particularly in
the last 20 years (GOV.UK, 2023). As human activities contribute to
climate change, it becomes imperative to investigate the relationship
between temperature changes and rainfall in different regions in the UK
for efficient adaptation and disaster mitigation strategies (Nakicenovic
et al., 2000). Rainfall is a complex process influenced by various meteo-
rological factors and conditions over different time scales, ranging from
one day to several days (Barrera-Animas et al., 2022). A comprehensive
understanding of these factors is critical for managing and predicting
rainfall accurately.

The prediction of rainfall is a crucial element of weather forecast-
ing. In earlier studies, this has been accomplished by using statistical
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techniques that attempt to correlate rainfall with geographic coordi-
nates and various atmospheric factors. However, these methods often
struggle to accurately predict rainfall patterns due to their inherent
complexity and nonlinearity (Wu and Chau, 2013). In recent years, ad-
vanced techniques such as Singular Spectrum Analysis, Empirical Mode
Decomposition, and Wavelet analysis have been explored to address
these challenges (Gan et al., 2018). However, these approaches can be
computationally intensive and may only yield limited improvements in
forecast accuracy (Singh and Borah, 2013).

Previous studies conducted to predict rainfall in the UK have pre-
dominantly concentrated on specific forecasts and have not sufficiently
delved into the regional diversity of the country (Barrera-Animas et al.,
2022). This drawback underscores the necessity for a more exhaustive
methodology that takes into account the distinct geographical and
meteorological attributes present in different regions across the UK.
The emergence of Artificial Neural Networks (ANNs) has revolutionised
rainfall forecasting by offering a more flexible and adaptable approach.
Among various types of ANNs, Recurrent Neural Networks (RNNs) have
become popular due to their ability to address temporal dynamics
that are present in meteorological time-series data (Liu et al., 2019).
However, traditional RNNs have limitations in learning and making
accurate long-term forecasts (Ni et al., 2020). Variants of RNNs, such
as Long Short-Term Memory (LSTM) Networks, have been developed to
overcome their limitations. LSTM Networks are equipped with memory
cells that retain information over extended time periods and have
shown better performance in multi-step ahead predictions compared
to traditional RNNs, as demonstrated by various studies (Greff et al.,
2016; Kratzert et al., 2018; Yunpeng et al., 2017).

Rainfall forecasting using ANNs has promising potential, but chal-
lenges still exist, especially in capturing regional rainfall patterns’
spatial and temporal variations (Hossain et al., 2020). To enhance fore-
casting accuracy, advanced architectures such as Bidirectional LSTM
Networks have been proposed, which leverage information from both
past and future sequential data (Balluff et al., 2020). Design decisions
and model implementation play a critical role in determining the
effectiveness of ANN-based forecasting models, despite advancements
in this field (Hutter et al., 2019). This study aims to bridge existing
gaps in rainfall forecasting methods, ultimately improving accuracy and
enhancing understanding of the impact of temperature variations on
rainfall patterns across the UK. In this study we provide the following
main contributions:

Investigate the impact of various meteorological parameters, with
a focus on temperature, on rainfall, and explore trends and an-
tecedent effects.

Adapt three LSTM-based models, used as benchmarks — namely
LSTM, Stacked-LSTM, and Bidirectional LSTM Networks — using
time-series data from the four UK countries to predict daily
rainfall.

Propose two hybrid models, CNN with LSTM (CLSTM) and RNN
with LSTM (RLSTM), for predicting daily rainfall using time-series
data from the four UK countries.

Evaluate the performance of each model in terms of their ability
to forecast daily rainfall amounts using time-series data from the
four UK countries.

This study reveals that both CLSTM and RLSTM hybrid models
offer consistent superiority over LSTM, Stacked LSTM, and Bidirectional
LSTM in UK rainfall prediction across all UK regions. Specifically,
RLSTM adeptly captures sequential dependencies and long-term pat-
terns, offering reliable forecasts adaptable to diverse weather dynamics.
In contrast, LSTM, stacked LSTM, and Bidirectional LSTM encounter
limitations in handling intricate temporal patterns. RLSTM emerges as
the top choice due to its robustness and adaptability.

The rest of this paper is structured as follows: First, the detailed
background and previous studies are discussed in Section 2. The Sec-
tion 3 provides an in-depth exploration of Neural Networks, Recurrent
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Fig. 1. Percentage of datasets categorised by their projected time frame (Hussein et al.,
2022).

Neural Networks, including CNN, RNN, LSTM, and Bidirectional LSTM,
which form the basis of the models in this research. Section 4 details
the study area, dataset description, and methodology employed for
exploratory data analysis, feature selection, and the development of
the proposed hybrid deep learning models. This includes the steps for
pre-processing data, the rationale for proposed architectures, and hy-
perparameter tuning. Subsequently, Section 5 is devoted to presenting
and discussing the obtained results. Finally, Section 6 encapsulates
the conclusions drawn from the findings and outlines future research
endeavours.

2. Related work

Over the last two decades, an extensive body of research has been
dedicated to the prediction of rainfall time series utilising machine
learning and deep learning techniques. During the period from 1996
to 2014, researchers frequently employed various iterations of ANNs to
enhance prediction accuracy. These ANN models encompassed a range
of input parameters, including Min-Max temperature, relative humid-
ity, average humidity, average wind speed, wind direction, latitude—
longitude coordinates, sea surface pressure, and rainfall (Parmar et al.,
2017). Notably, among these parameters, Min—-Max temperature and
humidity played a prominent role in rainfall prediction modelling.

Between 2016 and 2020, deep learning models such as CNN, LSTM,
Convolutional LSTM (ConvLSTM), and RNN garnered substantial at-
tention in the field of rainfall time series forecasting due to their
heightened predictive accuracy. Temperature, humidity, wind speed,
and air pressure emerged as the most frequently considered param-
eters for forecasting purposes (Hussein et al., 2022). The short-term
forecasting of precipitation involves predicting future rainfall within
a relatively brief timeframe, ranging from a few hours to several
days. ConvLSTM, renowned for its ability to integrate spatio-temporal
information, proves highly suitable for addressing such forecasting
challenges (Wu et al., 2022). Conversely, long-term forecasting extends
beyond the short-range, encompassing periods of weeks to months or
even years (Markuna et al., 2023). Fig. 1 illustrates that a majority of
the datasets assessed in prior research predominantly exhibit monthly
temporal granularity. Input features employed in these investigations
can be broadly categorised into two groups: 1D input features, where
each time lag corresponds to one or more geophysical parameters
recorded at established, fixed locations such as weather stations, and
2D input features, where each time lag encapsulates a 2D spatial
representation of precipitation values across the geographical study
area, often collected through satellite imaging.

The process employed in earlier studies focused on rainfall predic-
tion involves several key stages. The initial step involves collecting
meteorological data from various monitoring sites situated within the
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target region. The raw data is subsequently subjected to rigorous
cleansing and filtration procedures to ensure its quality and reliability.
This preparatory phase plays a pivotal role in laying the foundation
for subsequent analysis. Following data cleansing, researchers typically
proceed to the feature selection stage, employing techniques such as
correlation analysis to identify the most relevant meteorological pa-
rameters and variables. The selection of pertinent features is a crucial
decision, as it directly influences the accuracy and performance of
forecasting models. Subsequent to feature selection, the chosen features
are incorporated into machine learning techniques for rainfall predic-
tion. Deep learning models, particularly LSTM and its derivatives, are
frequently employed for short-term rainfall forecasting tasks, owing
to their proficiency in capturing temporal patterns and dependencies,
rendering them well-suited for short-range predictions. In the context of
longer-term forecasting, researchers often opt for alternative machine
learning techniques, including ANN, Support Vector Regression (SVR),
and Random Forest (RF). These models offer robust capabilities for
modelling complex, protracted rainfall trends and patterns. It is note-
worthy that hybrid models, such as Auto-Regressive Integrated Moving
Average (ARIMA), RNN, and CNN, have also garnered attention in the
literature, harnessing the strengths of diverse modelling techniques to
enhance the accuracy and versatility of rainfall forecasts (Hussein et al.,
2022).

Kim and Bae (2017) proposed a model based on LSTM for the
Gangneung region in Korea, utilising weather data from 2012, which
included temperature, wind speed, humidity, and sea surface pres-
sure. This model also took into consideration the lag characteristics
of past and current hours’ observations of rainfall amounts as fea-
tures. Comparative analysis between the LSTM-Networks model and
the ANN model revealed superior performance in terms of the RMSE
evaluation metric for the proposed LSTM model. In a study conducted
by Chao et al. (2018), five models were juxtaposed for predicting
rainfall amounts in the Wuhan region of China, comprising ARIMA, RF,
Backpropagation Neural Networks, Support Vector Machine (SVM), and
LSTM-Networks. These models were evaluated using weather data from
2015 and 2016, encompassing features such as wind speed, wind direc-
tion, temperature, humidity, pressure, rainfall amount, and radiation.
The LSTM-Networks model outperformed the other models in terms of
both RMSE and MAE metrics. Kumar et al. (2019) conducted a study
that compared two models utilising RNNs and LSTM-Networks for fore-
casting monthly rainfall in India from 1871 to 2016. They employed a
climate dataset containing the average monthly rainfall, incorporating
lag features of rainfall for the preceding 12 months. Through compre-
hensive evaluation, it was established that the LSTM-Networks model
exhibited superior performance across multiple evaluation metrics,
including RMSE, correlation coefficient (R), Nash—Sutcliffe Efficiency
(NSE), and MAE.

Historically, previous studies have encountered challenges in ac-
curately predicting precipitation, leading to issues such as overfitting,
inaccurate predictions on test and validation datasets, and an inability
to capture peak values. Consequently, this research endeavours to fine-
tune prediction models to narrow the disparity between predicted and
actual values. It is imperative to discern the relationship between
temperature variables and rainfall during the data analysis phase to
identify pertinent features effectively. Meteorological datasets typi-
cally furnish temperature values, encompassing minimum, maximum,
and average temperatures, albeit prior studies have variably adopted
distinct temperature values. Some have utilised maximum tempera-
ture values (Venkata Ramana et al., 2013; Haidar and Verma, 2016),
while others have relied on average values (Hernandez et al., 2016).
Some studies have amalgamated minimum and maximum tempera-
tures (Ramsundram et al., 2016; He et al., 2022), while others have
incorporated all three (Saikhu et al., 2017; Xu et al., 2020). Never-
theless, conclusive evidence is lacking regarding the temperature value
possessing the utmost significance in forecasting. To ascertain the cor-
rect temperature value and its antecedent impact on rainfall prediction,
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a region-specific analysis will be undertaken in this proposed study.
The central aim of this research is to conduct an exhaustive analysis
aimed at identifying the most appropriate temperature features and
their antecedent effects, with the overarching objective of enhancing
rainfall forecasting precision.

3. Deep learning models

This section provides an overview of essential neural network con-
cepts, specifically focusing on RNNs, LSTM networks, Stacked-LSTM
networks, and Bidirectional LSTM networks. Previous studies have
demonstrated the efficacy of neural networks, particularly LSTM-based
networks, in rainfall forecasting tasks (Barrera-Animas et al., 2022;
Chao et al., 2018; Kim and Bae, 2017; Kratzert et al., 2018; Kumar
et al., 2019; Poornima and Pushpalatha, 2019). These neural networks
provide a robust framework for weather forecasting due to their abil-
ity to handle uncertainty, capture spatiotemporal dependencies, and
efficiently model discrete distributions.

3.1. CNN

CNNs were developed for processing and analysing data in a grid-
like format, particularly suited for tasks involving images or sequences
of data (Krizhevsky et al., 2012; Wang et al., 2017). CNNs have had
a profound impact on the field of computer vision, demonstrating
exceptional performance in tasks such as image classification, object
detection, and image segmentation. Fig. 2 illustrates a typical deep CNN
architecture, which consists of essential components such as convolu-
tional layers, pooling layers, and a fully connected layer. Among these
components, convolutional layers are of greater importance (Haidar
and Verma, 2016). These convolutional layers enable CNNs to learn hi-
erarchical features from data by connecting neurons with local regions
in preceding layers, rather than all neighbouring neurons, rendering
CNNs highly effective for processing visual information as well as
time series data. CNN effectively captures local patterns and spatial
dependencies in time series data. It can automatically learn hierarchical
features from raw data and is robust to noise while being invariant to
translations in the time domain.

CNNs s use a filter (or kernel) matrix to analyse images or sequences
of data. This matrix slides through blocks of the input layer, forming
the convoluted layer. The resulting pixel of the convoluted layer is
calculated using the following equation (Ojo et al., 2019):

Co=flx*W+b) @

where C is the kth pixel of the convoluted layer, x is the corresponding
pixel value, W is the coefficient vector, f(-) is the activation function
and b is the bias. The pooling layer is responsible for down-sampling
an image. To calculate the kth value of the pooling layer, the following
formula is used:

P, = f(f * down(C) + a) (2)

In this equation P, is the kth value in the pooling layer matrix, C
is the value vector from the convoluted layer, g is the coefficient, and
«a is the bias.
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The pooling layer is used to down-sample an image. One commonly
used method for pooling is called Max Pooling, where the maximum
value is calculated for a block in the matrix. The calculation for the
Max Pooling value is as follows:

down(C) = max {Cy, | |s] < % |1 < %,s,l ISYAR! 3)

In this equation Cy, is the pixel value at C of the matrix, m is the
size for sub-sampling, Z* represents the set of positive integers.

3.2. RNN

RNNs have proven invaluable in various fields, including machine
translation, sentiment analysis, speech recognition, and weather fore-
casting, owing to their capacity to handle sequential input. By intro-
ducing a hidden state and preserving a relationship between previ-
ous and current observations, RNN cells capture data dependencies.
Eq. (4) illustrates how these dependencies are maintained in time-series
sequences:

hy = (h_y, Xp) @

where h, and h,_, are hidden states at times ¢ and ¢ — 1, respectively;
X, is the current input value at time 1.

While RNNs excel at learning sequential data, they encounter chal-
lenges in grasping long-range dependencies, resulting in vanishing error
gradients during backward propagation. However, variants such as
LSTM-Networks have emerged to address this issue. LSTM networks
incorporate memory cells and gating mechanisms, enabling them to
effectively manage long-term dependencies, making them valuable for
processing sequential data (Singh et al., 2015; Barrera-Animas et al.,
2022).

3.3. LSTM

Among the various RNN variants, LSTM Networks are the most
popular due to their ability to capture longer dependencies within
sequential data. They have been successful in diverse research domains,
including weather prediction, speech recognition, traffic forecasting,
and human trajectory prediction. LSTMs employ three gates — input,
output, and forget gates — to learn dependencies from the most recent
two states and the current state, effectively addressing the vanishing
gradient problem. The input gate controls the amount of new state in-
formation used, the output gate determines information retention from
earlier states, and the forget gate regulates information flow within the
internal state. The core LSTM definitions are provided in Eq. (5), and
the LSTM block diagram is represented in Fig. 3.

input gate (i) = (W;h,_; +U;x; + Vici—1)
output gate (o) = (W,h,_; + U,x; + Voer—1)
forget gate (f) = (Wih_ +Uyx, + Vyci-1)

)
internal hidden state (g) = tanh(W,h,_, + U,x,)

current cell state ¢, = (f * ¢,_;) + (g * i)

current hidden state 4, = tanh(c,) * o

where W, U,V represent different weight matrices, ¢ is current time
and 7 — | refers to the preceding time step.

The Stacked-LSTM Networks extend this architecture by sequen-
tially connecting several LSTM Networks to achieve a deeper represen-
tation of time-series data as illustrated in Fig. 4 (Cui et al., 2018). The
stacked LSTM can capture complex temporal patterns through multiple
layers of recurrent units. This allows for a hierarchical feature repre-
sentation, where each layer captures different levels of abstraction. The
stacked LSTM also provides flexibility in model architecture, allowing
for the incorporation of domain-specific knowledge.
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3.4. Bidirectional LSTM

Bidirectional RNNs are a variant of traditional RNNs that excel
in capturing dependencies from both past and future states, mak-
ing them particularly effective in natural language processing, speech
recognition, time series forecasting, and handwriting recognition. This
architecture employs two types of RNN cells: one captures data from
left to right (standard RNN cells), and the other captures data in
reverse. This combined approach enhances the model’s ability to com-
prehend sequential data comprehensively (Cui et al., 2018; Cheng et al.,
2019). When LSTM cells replace the RNN cells in a Bidirectional RNN, it
becomes a Bidirectional LSTM Network. The structure of a Bidirectional
LSTM network is depicted in Fig. 5. The Bidirectional LSTM is effective
in capturing long-term dependencies. This is due to its memory cell
structure which enables it to process both past and future information
through forward and backward processing. It is especially suitable for
sequential data such as time series where past and future context is
important (Barrera-Animas et al., 2022).

4. Materials and methods

This section describes a detailed overview of the methodology (il-
lustrated in Fig. 6) utilised to predict rainfall in four distinct regions of
the UK: England, Wales, Scotland, and Northern Ireland. The process
includes collecting meteorological data from four regions of UK, pre-
processing, conducting exploratory data analysis, feature selection, and
developing rainfall prediction models using deep learning.
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4.1. Study area and data description

The study focuses on the data from four geographical regions or con-
stituent countries of the UK: England, Scotland, Wales, and Northern
Ireland, all located in the British Isles. Northern Ireland features a mild,
humid climate with mild winters and cool summers, while Scotland is
known for its cold and rainy conditions, particularly in mountainous
areas. England experiences an unstable climate with occasional fogs
and stormy winds, and Wales shares a similar climate with variations
in rainfall. Coastal areas in the UK are susceptible to sea fog due to
the interaction of the Gulf Stream and cold Atlantic air, rendering the
region’s weather one of the most unpredictable in Europe (Neagh and
Lomond, 2014). The study explores the unique climatic conditions and
variations in these four UK regions.

Historical data spanning from 1st January 1981 to 31st July 2023
for the four UK regions, was obtained from NASA Power Data Viewer
for this study (Power, 2023). The dataset is accessible from the link:
https://power.larc.nasa.gov/data-access-viewer/. The dataset
comprises 24 columns, including year, month, and date of the month
columns, encompassing 15,551 rows of entries in four separate dataset
for each region and the description of each field is given in Table 1. It
encompasses daily recorded weather measurements, including rainfall,
temperature, various temperature parameters, surface pressure, relative
and specific humidity, as well as wind speed and direction. The tem-
perature parameters at 2 m above ground level is a standard measure
in meteorology because it reflects the near-surface air temperature
that humans and ecosystems experience. This standard measurement
is widely employed in weather prediction and climatological studies
due to its direct influence on evaporation rates, atmospheric stability,
and cloud formation processes (Quej et al., 2022; Ben Bouallegue
et al., 2022). Additionally, the current study concentrated on the wind

speed and direction at both 10-m and 50-m heights for precipitation
forecasting due to their vital importance in evaluating evaporation,
surface heat fluxes, momentum transfer, and atmospheric dynamics,
which are particularly significant in areas with diverse terrains.The
entire data can be categorised into six primary parameters for better
understanding:

* Precipitation parameter: Rainfall.

Temperature parameters: T2M, T2MDEW, T2MWET, TS,
T2M_RANGE, T2M_MAX, and T2M_MIN.

Humidity parameters: QV2M and RH2M.

Pressure parameter: PS.

Wind speed parameters: WS10M, WS10M_MAX, WS10M_MIN,
WS10M_RANGE, WS50M, WS50M_MAX, WS50M_MIN, and
WS50M_RANGE.

Wind direction parameters: WD10M and WD50M.

Standard preprocessing steps were applied, beginning with the in-
tegration of the year, month, and day fields into a single “Date”
column to streamline the temporal data format. Redundant original
separate columns were then removed. Subsequently, a comprehensive
examination of the dataset was conducted to identify and address issues
such as duplicates, null entries, missing values, and outliers.

4.2. Exploratory data analysis

The analysis of rainfall patterns across the four regions reveals
several salient trends. When examining the monthly distribution of
rainfall, a conspicuous pattern emerges wherein England experiences
its most substantial rainfall during the months of October, November,
December, and January (Fig. 7). This noteworthy trend is consistently
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Table 1

Description of data fields.
Variable names Description
PS Surface Pressure (kPa)
WS10M Wind Speed at 10 Metres (m/s)
WS10M_MAX Wind Speed at 10 Metres Maximum (m/s)
WS10M_MIN Wind Speed at 10 Metres Minimum (m/s)
WS10M_RANGE Wind Speed at 10 Metres Range (m/s)
WD10M Wind Direction at 10 Metres (Degrees)
QV2M Specific Humidity at 2 Metres (g/kg)
RH2M Relative Humidity at 2 Metres (%)
PRECTOTCORR Precipitation Corrected (mm/day)
T2M Temperature at 2 Metres (C)
T2MDEW Dew/Frost Point at 2 Metres (C)
T2MWET Wet Bulb Temperature at 2 Metres (C)

TS Earth Skin Temperature (C)

T2M_ RANGE Temperature at 2 Metres Range (C)
T2M MAX Temperature at 2 Metres Maximum (C)
T2M_MIN Temperature at 2 Metres Minimum (C)
WD50M Wind Direction at 50 Metres (Degrees)
WS50M_RANGE Wind Speed at 50 Metres Range (m/s)
WS50M_MIN Wind Speed at 50 Metres Minimum (m/s)
WS50M_MAX Wind Speed at 50 Metres Maximum (m/s)
WS50M Wind Speed at 50 Metres (m/s)
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E
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Fig. 7. Monthly average of rainfall.
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Fig. 8. Seasonal rainfall of 4 regions in 1981-2023.

observed in the other three regions as well. In terms of monthly
averages, all regions, except for England, exhibit a consistent pattern,
with October consistently being the wettest month and April consis-
tently being the driest throughout the entire study period. England has
the lowest monthly average during the February months, indicating a
spatial heterogeneity influence on the dataset.

Fig. 8 depicts the seasonal rainfall patterns across England, Wales,
Scotland, and Northern Ireland. England consistently experiences its
highest rainfall during autumn, closely followed by summer. Con-
versely, Wales and Scotland exhibit peak rainfall during winter, with
autumn closely trailing. Scotland consistently has the highest rainfall
across all seasons among the four regions. Northern Ireland witnesses
substantial rainfall during autumn, followed by winter. Overall, the
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transition from mid-autumn to mid-winter emerges as the period of
peak rainfall across all regions, highlighting a consistent pattern.

Our investigation into seasonality’s influence on rainfall patterns
aligns with previous studies (Praveen et al., 2020; Manandhar et al.,
2019; Zahran et al., 2023). These studies emphasise the significance
of incorporating seasonal variations into rainfall prediction models.
Recognising seasonality as a pivotal factor in the UK’s rainfall dynam-
ics, we have integrated it as a feature in our dataset.

A coherent wave-shaped trend can be observed in the yearly cu-
mulative rainfall across all regions as shown in Fig. 9. This trend is
characterised by gradual increases over several years, reaching specific
peaks, and then gradually declining in subsequent years. Notably, a
distinct decreasing trend in cumulative rainfall has been observed in
all regions since 2020. The gap between the latest annual values across
the regions varies significantly from the annual average of the last ten
years, with the Wales region showing the highest gap among them.

A detailed analysis was conducted to investigate the impact of
temperature on rainfall and humidity by examining the percentage
increase observed in the first and last five years of the period 1981-
2023 for these regions as shown in Fig. 10. Scotland, the region with the
lowest temperatures, exhibited the highest increase in temperature at
19.49%, surpassing the other regions, with England following closely.
Surprisingly, this rise in temperature in the Scottish region had an
inverse effect on rainfall, resulting in a lower increase in rainfall
in that region. Conversely, regions with higher temperatures, such
as England and Wales, experienced the most significant increases in
rainfall percentages. The increase in temperature had varying effects
on different regions. Specifically, Scotland, the coldest among the four
regions, witnessed a substantial rise in temperature, but this rise had an
inversely proportional impact on rainfall, leading to a lower increase.
In contrast, the warmer regions, England and Wales, experienced the
highest increases in rainfall. Furthermore, the rise in temperature had
a direct influence on humidity in the Scotland region, leading to the
highest percentage increase in humidity. In England, in contrast, the
increase in temperature was associated with a rise in rainfall but the
lowest increase in humidity. The UK as a whole region is experiencing
a substantial rise in temperature, ranging from 10% to 20%. However,
the impact of this temperature rise varies significantly depending on
the geographical location.

4.3. Feature selection

Feature selection in rainfall forecasting serves as a validated tech-
nique to diminish dimensionality and augment model efficacy by
pinpointing and retaining the most influential meteorological vari-
ables (Roster et al.,, 2022; Zhang et al., 2023). This method has
proved to mitigate overfitting and enhance computational efficiency
by eliminating redundant features, ensuring that deep learning models,
particularly LSTM, operate optimally (Barrera-Animas et al., 2022; Sun
et al., 2020). Guided by the correlation matrix, our selection process
prioritises critical variables like temperature and humidity, pivotal for
accurate rainfall prediction (Kim et al., 2023). The correlation matrix
results for the England region dataset are depicted in Fig. 11. During
feature selection, feature pairs with a correlation value of +0.7 or less
are retained for each region individually (Barrera-Animas et al., 2022),
while features exhibiting high correlations across all four regions are
assessed for potential removal.

Our analysis reveals the following:

» Temperature-related features emphasise the primary temperature
feature (T2M) as the most relevant. T2M is retained, while re-
dundant features, such as those containing maximum, minimum,
earth skin, wet temperature, dew point, and temperature range
values, are excluded (Quej et al., 2022).

» Humidity-related measurements exhibit notable correlations. The
primary humidity feature (RH2M) is retained, and the specific
humidity feature is eliminated.
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Fig. 10. Impact of temperature increase on rainfall and humidity from 1981-2023.

» Wind speed measurements show significant correlations. The
main wind speed feature (WS10M) is retained, while related
features are excluded.

» Wind direction features display strong correlations. The primary
wind direction feature (WD10M) is retained, and WD50M is
excluded.

The final dataset after feature engineering contains date, rainfall,
surface pressure, wind speed (10M), wind direction (10M), relative
humidity (2M), temperature (2M), and season. Among them all features
except date fed into the deep learning model for forecasting.

To address variations in feature values, dataset normalisation is
applied alongside feature selection (Kim and Bae, 2017). Specifically,

Fig. 11. Correlation matrix of England dataset.

the MinMaxScaler' has been used for data normalisation, transforming
features to a 0-1 range. Normalisation is particularly critical when
implementing the LSTM model to preserve data distribution and main-
tain consistent scales for numerical columns (Shanker et al., 1996).
These structured datasets, following pre-processing, feature engineer-
ing, and normalisation, are employed for training and testing the
rainfall prediction models.

4.4. Modelling

LSTM-based models

The first goal of this study is to adapt classic LSTM-based models
for predicting daily rainfall. We consider three LSTM-based models as
benchmarks: LSTM, Stacked-LSTM, and Bidirectional LSTM Networks.
Since the effectiveness of these machine learning algorithms heavily
depends on parameter and hyperparameter selection, we conducted a
hyperparameter grid search following recommendations from Young
et al. (2015).

To systematically explore the hyperparameter space and identify
optimal configurations for each model, we employed a grid search tech-
nique. Key hyperparameters such as time steps, activation functions,
number of hidden units, learning rate, optimiser functions, number of
hidden layers, and number of epochs were meticulously varied across

! The formula used by MinMaxScaler to scale each feature x is: Xgeq =
x—min(x)
max(x)—min(x) "
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Table 2
Configuration of each tuned model.
LSTM model
Parameter England Wales Scotland Northern Ireland
Time steps 4 4 4 4
Activation function swish ReLU ReLU swish
Units 128 128 128 128
Learning rate 0.001 0.01 0.1 0.1
Optimiser SGD SGD SGD SGD
Number of hidden layers 1 1 1 1
Number of epochs 50 50 50 50
Stacked LSTM model
Parameter England Wales Scotland Northern Ireland
Time steps 4 4 4 4
Activation function tanh ReLU tanh ReLU
Units 64 64 64 64
Learning rate 0.001 0.001 0.001 0.1
Optimiser adam SGD SGD SGD
Number of hidden layers 1 1 1 1
Number of epochs 50 50 50 50
Bidirectional LSTM model
Parameter England Wales Scotland Northern Ireland
Time steps 4 4 4 4
Activation function swish tanh tanh tanh
Units 64 64 128 128
Learning rate 0.001 0.01 0.001 0.001
Optimiser adam SGD SGD SGD
Number of hidden layers 1 1 1 1
Number of epochs 50 50 50 50

predefined ranges (Kumar et al., 2019; Kim and Bae, 2017; Aswin et al.,
2018). For instance, learning rates were tested over logarithmically
spaced values ranging from 10~* to 10~1, while batch sizes were ex-
plored from 32 to 128 samples per batch. The number of hidden units in
the LSTM layers was varied from 64 to 256 units. Furthermore, various
activation functions including ReLU, tanh, and sigmoid were evaluated
to assess their impact on model performance. Each combination of
hyperparameters was exhaustively evaluated by dividing the data into
training, validation, and test sets, accounting for 67%, 17%, and 16%
of temporal data, respectively.

The grid search process was computationally intensive but essential
for identifying configurations that minimise the loss function across
different datasets and model architectures. The significance of these
hyperparameters was evident through observed performance variations
during testing. Minor adjustments, such as modifying batch size or
optimiser, notably affected LSTM network performance. Following this
tuning phase, we successfully identified the optimal hyperparameters
for each dataset, as illustrated in Table 2.

Hybrid models

In addition to the three LSTM-based models serving as a base-
line, we introduce two hybrid models aimed at potentially enhancing
baseline performance.

The initial proposed hybrid model, illustrated in Fig. 12, combines
CNN with LSTM layers — abbreviated as CLSTM - to effectively process
sequential data, particularly in time series forecasting. CNNs excel at
extracting spatial features from input time series, which are then used
by LSTM to capture temporal dependencies. This approach is well-
suited for tasks where both local patterns and long-term dependencies
are crucial.

The model commences with a 1D convolutional layer featuring 10
filters and a tanh activation function with a kernel size of 3, tailored
for localised pattern recognition. Following this, a max-pooling layer
with a pool size of 2 is employed to reduce spatial dimensions while
preserving crucial information.

Two LSTM layers are incorporated into the model. The first LSTM
layer comprises 128 units with a sigmoid activation function configured
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Fig. 12. Proposed CLSTM.

to return sequences, enabling it to capture long-term dependencies. To
mitigate overfitting, a dropout layer with a rate of 0.2 follows this LSTM
layer. A second hidden LSTM layer follows, comprising 64 units with
a sigmoid activation function, incorporating a dropout layer with a 0.2
rate for regularisation. The model culminates with a dense layer serving
as the output layer for regression tasks, consisting of a single neuron
with a tanh activation function. During training, the Mean Squared
Error (MSE) loss function is employed, with optimisation conducted
using the Adam optimiser set to a learning rate of either 0.01 or
0.001, contingent on the dataset’s characteristics within their respective
regions. The selection of optimiser, activation functions, learning rate,
and epoch settings is informed by insights gleaned from a review of
existing models.

The data is first fed into the CNN network, producing an output
as described in Eq. (1). The CLSTM method can be represented using
Egs. (1), (2), and (4) as follows Kim and Cho (2019):

input gate (i) = (W;P, + h,_; + U;x; + Vici—1)
output gate (o) = (W, P, + h,_1 +U,x; + Vyci_1)

forget gate (f) = (W P, +h_y +Urx, +Vici—y) ©)
internal hidden state (g) = tanh(W,h,_; + U, x,)

current cell state ¢, = (f = ¢,_;) + (g * i)
current hidden state 4, = tanh(c,) * o

where P, is the value of the pooling layer. The predicted rainfall y, is
given by:

Ve =f(Wy * hy)

The second hybrid model proposed, depicted in Fig. 13 and ab-
breviated as RLSTM, combines RNN and LSTM layers to leverage the
unique advantages of both architectures. The RLSTM model capitalises
on the sequential processing capabilities of RNNs, making it effective
in capturing sequential patterns. Meanwhile, LSTMs address issues like
vanishing gradients and excel at capturing long-term dependencies.
This model is particularly well-suited for tasks involving input data
with sequential dependencies, requiring the capture of both short-term
and long-term patterns.

The architecture initiates with a Simple RNN layer comprising
128 units utilising the sigmoid activation function. Following this, a
dropout layer with a 20% dropout rate is introduced for regularisation.
Subsequently, an LSTM layer is integrated into the RNN layer, featuring
128 units with a sigmoid activation function aimed at capturing long-
range dependencies within the sequential data. Another dropout layer,
maintaining a 20% dropout rate, follows for further regularisation.
Finally, a dense layer with a tanh activation function and a single unit
is added to produce the model’s output. During training, the Adam
optimiser is employed with a learning rate set to 0.001, with the
objective of minimising the MSE loss.

As an initial step, the data is fed into RNN network, and obtain the
output OR by using Eq. (7).

OR = f(W x h, +b) %)
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Table 3

Configuration of the two hybrid models.
CLSTM model

Parameter England Wales Scotland Northern Ireland
Time steps 30 30 30 30

Activation function tanh tanh tanh sigmoid

Units 64 64 64 64

Learning rate 0.001 0.001 0.001 0.1

Optimiser adam adam adam adam

Number of hidden layers 1 1 1 1

Number of epochs 100 100 100 100

RLSTM model

Parameter England Wales Scotland Northern Ireland
Time steps 15 30 30 15

Activation function tanh tanh tanh sigmoid

Units 64 64 64 64

Learning rate 0.001 0.001 0.001 0.1

Optimiser adam adam adam adam

Number of hidden layers 1 1 1 1

Number of epochs 100 100 100 100

OR is the output/predicted value from RNN, b is the bias term and
W is the weight; h, is the hidden state for the current input value X,
at current time ¢. The OR is then pass to the LSTM layer to get the final
prediction y.
input gate (i) = (I/I/[Of +Uix: +Viciz1)
output gate (0) = (W,08 + Uy, + Vyci-1)
forget gate (f) = (W, 08 + U,x, + Ve, 1)

(8)
internal hidden state (g) = tanh(W,Of + U,x,)
current cell state ¢, = (f = ¢,_;) + (g * i)
current hidden state 4, = tanh(c,) * o
And finally, the predicted rainfall y, is given by:
yi = f(Wy = hy) 9

where 4, is the current hidden state and W, is the weight matrix of the
output gate.

It is worth noting that the choice of optimiser, activation functions,
learning rate, and the number of training epochs were adapted from
the findings in the literature, as discussed in the previous section. This
proposed hybrid architecture effectively leverages the capabilities of
both RNN and LSTM layers to model both short-term and long-term
dependencies in sequential data while mitigating overfitting through
dropout regularisation.

Table 3 presents the optimal hyperparameter configurations for the
two hybrid models across each region of the UK.
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Table 4
Performance of each tuned model.

LSTM-based models

Model Region Loss RMSE MAE
England 0.013 0.114 0.068
LSTM Wales 0.025 0.157 0.095
Scotland 0.015 0.121 0.083
Ireland 0.012 0.108 0.071
England 0.011 0.107 0.063
Stacked Wales 0.028 0.167 0.105
LSTM Scotland 0.015 0.121 0.086
Ireland 0.012 0.108 0.075
England 0.017 0.130 0.074
Bidirectional Wales 0.025 0.158 0.099
LSTM Scotland 0.013 0.116 0.077
Ireland 0.012 0.111 0.077

Hybrid models

Model Region Loss RMSE MAE
England 0.012 0.107 0.063

CLSTM Wales 0.024 0.154 0.093
Scotland 0.014 0.119 0.079
Ireland 0.011 0.107 0.070
England 0.011 0.107 0.062

RLSTM Wales 0.022 0.150 0.088
Scotland 0.013 0.115 0.077
Ireland 0.011 0.104 0.068

4.5. Accuracy matrix

The following metrics were used to evaluate the effectiveness of the
trained rainfall prediction models:

* Loss: this metric measures the error rate of the model in producing
accurate results. It is calculated as follows:

1 if error occurs
Loss = X
0 otherwise

» RMSE: it evaluates the square root of the average of the squared
differences between the model’s predictions and the actual values.
The formula for RMSE is:

Z;’:] (zpi — Zgi)?

RMSE;, = ;

where f represents model outputs, o represents observations, and
n is the sample size.

+ MAE: it assesses the average of the absolute differences between
the model’s predictions and the actual values. Its formula is:

n
2,’:] |Zfi - Zoil

MAE,, = ;

By using these metrics together, we can assess and compare the
accuracy and performance of the trained rainfall prediction models.

5. Results

We segment this section into distinct parts. Initially, we computed
the accuracy measures of all tuned models, including the three LSTM-
based models and the two proposed hybrid models, using the unseen
test data to quantitatively evaluate their ability to fit unseen rainfall
data. Following this, we visualised the training and validation loss
for different epochs to qualitatively assess whether our models are
exhibiting signs of overfitting or underfitting. Finally, we conducted an-
other visualisation to depict the actual and predicted rainfall values for
each model, aiming to identify patterns or trends in their performance.
This analysis helps discern whether certain models excel under specific
weather conditions or in particular regions, while others may struggle
to accurately predict rainfall across various scenarios.
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Fig. 14. Train and validation loss of LSTM-based models.

5.1. Accuracy measures of all tuned models

Table 4 provides an overview of the training outcomes for all
five tuned models using unseen rainfall data. Across all four regions,
the proposed hybrid RLSTM consistently outperforms the other mod-
els, boasting lower loss, RMSE, and MAE metrics. However, results
reveal region-specific performance disparities: specifically, in the Eng-
land region, the stacked LSTM model performs comparably to the
RLSTM, surpassing other models. Similarly, the Bidirectional LSTM
model matches the RLSTM’s performance in the Northern Ireland re-
gion. For Wales and Scotland, the three LSTM-based models exhibit
comparable loss values. Notably, both Bidirectional LSTM and Stacked
LSTM excel in the Wales and Northern Ireland regions in terms of MAE
values, while Bidirectional LSTM achieves the lowest MAE values for
England and Scotland.

5.2. Training and validation loss

Figs. 14 and 15 illustrate the training and validation loss plots
for LSTM-based and hybrid models, respectively. These plots serve as
visual indicators of the model’s performance throughout the training
process, allowing for the detection of potential issues like overfitting,
underfitting, and dataset representativeness. The objective of this anal-
ysis is to identify an optimal learning curve where the training and
validation loss curves converge to a stable point while minimising the
generalisation gap (Goodfellow et al., 2016).

10

Fig. 14 shows that classic LSTM model consistently achieve the best
performance across all four regions of the UK, with the lowest training
and validation losses and a stable convergence with a minimal gap
between the curves. In contrast, the Stacked LSTM and Bidirectional
LSTM models show larger gaps between their training and validation
losses, indicating potential overfitting, particularly noticeable in the
case of Stacked LSTM. Bidirectional LSTM performs relatively well with
the Northern Ireland dataset, initially displaying a small training and
validation gap that stabilises after 15 epochs. The observed differences
in performance among the models suggest that LSTM is a more suitable
choice for rainfall prediction, given its superior handling of overfitting
(see Fig. 14).

Fig. 15 illustrates that RLSTM generally surpasses CLSTM in min-
imising the generalisation gap, except in the England region where the
gap is marginally larger for the RLSTM model. RLSTM demonstrates
remarkable performance, with training and validation loss curves con-
verging to a stable point, especially in the Wales region.

5.3. Actual and predicted rainfall values

Figs. 16 and 17 illustrate the comparison between actual and pre-
dicted rainfall values generated by each model, focusing on a selected
portion of unseen data. These visualisations aid in identifying models
that perform well under specific weather conditions or in particular
regions, while also highlighting models that may face challenges in
accurately predicting rainfall across different scenarios.
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Fig. 15. Train and validation loss of hybrid models.

Fig. 16 shows that the classic LSTM and Bidirectional LSTM models
manage to provide nice fitting predicted values for the Scotland and
Wales regions and are also able to capture some peak values. When
considering Stacked LSTM, it is able to capture some peaks in the
data with minimal gaps between the predicted and actual rainfall data,
especially for the Scotland region.

Fig. 17 focuses on the hybrid models instead. It shows that the
CLSTM model predicts rainfall with minimal errors and performs better
for rainfall prediction in the Wales and Scotland regions. However,
among the five models, the RLSTM predicts the values more accurately,
especially for the Wales and Scotland regions. The RLSTM captures
some of the peak values of all four regions, especially in Scotland,
England, and Wales regions.

The comparative analysis of Figs. 16 and 17 reveals that, overall, the
CLSTM and RLSTM models outperform the three LSTM-based models in
predicting rainfall across all four regions of the UK using meteorological
data. However, among all tested models, RLSTM stands out as the top
performer, surpassing even the CLSTM model. Specifically:

+ RLSTM demonstrates great capabilities in capturing sequential
dependencies inherent in meteorological time series data, a crit-
ical aspect in rainfall forecasting tasks that rely on historical
weather patterns to predict future rainfall. We speculate that
its effectiveness lies in its ability to model the temporal evolu-
tion of meteorological variables over time intervals, making it
particularly suitable for the dynamic and intricate weather pat-
terns observed in all UK regions, highlighting the importance of
considering temporal aspects when modelling weather patterns.
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+ In contrast, the CLSTM model emphasises the extraction of spatial
features from meteorological data using CNNs before employing
LSTM networks for temporal modelling. While CNNs are adept
at capturing spatial patterns such as temperature distributions
or wind patterns, they may not comprehensively capture the
complex temporal dependencies inherent in meteorological data,
especially in regions characterised by highly variable weather
conditions like those in the UK.

6. Discussion and conclusion

The research conducted in this study aims to fill existing gaps in
rainfall forecasting methodologies, with the overarching objective of
improving accuracy and deepening our understanding of temperature
variations’ impact on rainfall patterns across all regions of the UK,
including England, Wales, Northern Ireland, and Scotland.

This study offers several contribution, specifically:

« It optimise three distinct LSTM-based models — LSTM, Stacked-
LSTM, and Bidirectional LSTM Networks — using time-series data
from the four UK countries to predict daily rainfall.

« It introduces two hybrid models — CNN with LSTM (CLSTM) and
RNN with LSTM (RLSTM) - for predicting daily rainfall using
time-series data from the four UK countries.

« It evaluates the performance of each model in terms of their
ability to forecast daily rainfall amounts using time-series data
from the four UK countries.

The proposed rainfall forecasting models present invaluable in-
sights and predictions that can profoundly influence decision-making
processes in agriculture, water resource management, and disaster
preparedness. Through accurate and timely forecasts, these models
empower farmers to make informed decisions regarding planting sched-
ules, irrigation management, and crop protection measures, thereby
optimising agricultural productivity. Furthermore, water resource man-
agers can utilise these forecasts to more effectively allocate water re-
sources, mitigate the risks of floods or droughts, and plan infrastructure
projects. Additionally, timely predictions support disaster preparedness
efforts by enabling authorities to implement proactive measures such
as evacuation plans, emergency response strategies, and resource allo-
cation, thereby minimising the impact of extreme weather events on
communities and infrastructure. Overall, the adoption of these fore-
casting models enhances resilience and fosters sustainable development
across various sectors.

The results of the comprehensive UK rainfall forecasting study
reveal a complex interplay between meteorological parameters, deep
learning models, and regional rainfall patterns. Notably, temperature
affects rainfall differently across UK regions, with Scotland experi-
encing decreasing rainfall despite rising temperatures, while England
and Wales see increased precipitation. These findings underscore the
importance of considering regional disparities in model selection.

Among the five machine learning models evaluated, the hybrid
RLSTM consistently outperformed others in all regions across various
evaluation metrics, including loss, MAE, and RMSE. Visual analysis
of training and validation loss curves revealed that classic LSTM per-
formed well in all regions, while Stacked LSTM produced less ac-
curate results. Bidirectional LSTM exhibited potential overfitting in
most regions. Both RLSTM and CLSTM, incorporating hybrid LSTM
networks, displayed favourable loss curves, with RLSTM excelling in
minimising the generalisation gap. However, the comparison of actual
and predicted rainfall values highlighted the challenge of forecasting
peak rainfall events. Although CLSTM and RLSTM showed promise,
particularly in Wales and Scotland, they encountered difficulties in
forecasting sudden precipitation variations, suggesting the need for
further refinement.

We posit that the challenge of forecasting peak rainfall events stems
from the absence of crucial features in the existing data. Parameters
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Fig. 16. Actual and predicted rainfall on a portion of unseen data using LSTM models.

such as specific cloud characteristics, humidity levels, and snow pres-
ence could play pivotal roles in precise rainfall prediction (Hemavathi
et al., 2021; SS, 2023). These components are integral to the intricate
climate system, particularly in regions like the UK, where weather
patterns are highly variable and influenced by diverse meteorological
factors. Incorporating multi-modal data, including vegetation cover and
other environmental variables that significantly impact rainfall pat-
terns (Wu and Li, 2023), could be essential for improving predictions.
Hence, addressing these data gaps and enhancing data representation
could lead to more precise rainfall forecasting in the future.

While these findings hold promise, they also highlight the challenge
of generalisation in LSTM-based models. To address this challenge,
future research could explore the integration of uncertainty measures
into predictions. Techniques such as bootstrap methods or deep quan-
tile regression could serve as viable tools for quantifying the inherent
uncertainty and variability in rainfall prediction, thereby enhancing
the reliability and interpretability of model predictions. Additionally,
leveraging hourly data and incorporating additional meteorological
variables, such as snow and cloud data, could further improve model
performance. Efforts should also be directed towards developing mod-
els capable of accurately predicting peak rainfall values, which are
often underestimated by current deep learning models. Ultimately,
future research should prioritise enhancing forecast accuracy and ex-
ploring the application of models in flood and drought warning sys-
tems, thereby bolstering resilience to climate-related hazards, safe-
guarding vital resources, and fostering sustainable development efforts
worldwide.
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Fig. 17. Actual and predicted rainfall on a portion of unseen data using hybrid models.
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