
Modelling Network Memory Servers with Parallel Processors, Break-downs
and Repairs

O Gemikonakli, G Mapp, E Ever, and D Thakker
Middlesex University, London UK

o.gemikonakli, g.mapp, e.ever, d.thakker@mdx.ac.uk

Abstract

This paper presents an analytical method for the

performability evaluation of a previously reported
network memory server attached to a local area
network. To increase the performance and availability
of the proposed system, an additional server is added
to the system. Such systems are prone to failures. With
this in mind, a mathematical model has been developed
to analyse the performability of the proposed system
with break-downs and repairs. Mean queue lengths
and the probability of job losses for the LAN feeding
the Network Memory Server is calculated and
presented.

1. Introduction

Increases in computing power and network speeds
have enabled the development of new types of network
services. A Network Memory Server (NMS) is one
such service which is being developed here at
Middlesex University [10]. The motivation for this
effort is the observation that the cost of Dynamic
Random Access Memory (DRAM) has been
continuously falling over the last few years so building
very large memory servers is no longer prohibitively
expensive. In addition, increasing network speeds now
make it possible to access data from the memory of
another machine on a High-Speed Local Area Network
or HSLAN faster than accessing that same data on the
local hard disk.

These observations make it possible to build a new
global storage model based on specialised servers.
Though efforts to build such a system over wired
networks have been reported [1] [2], a new application-
space for this type of service is now being explored

because in the near future, these systems will be
needed to provide high-performance storage facilities
for mobile devices such as cell-phones, PDAs and Thin
Clients which tend to have minimal storage capacity.
So at Middlesex University we are developing network
memory servers as part of an overall architecture to
provide central storage facilities for mobile
environments [10].

The rise of wireless networking has been rapid and
sustained. Bandwidth has also been increasing as well
as the area of coverage which is set to continue with
the deployment of WiMax. However, the deployment
of network memory services in such an environment
requires careful planning and analysis as the success of
the proposed system will depend heavily on the
characteristics of the network on which it is deployed.
Hence, it is important to evaluate the performance of
the proposed system with a view to investigating how
the system would perform over a wide range of
network and server characteristics. In particular, issues
of system stability and optimum performance must be
addressed to ensure the development of a successful
design.

The performability of such a system has previously
been reported [7]. However, in [7], a single NMS with
no back-up, and no break-downs was considered. This
was due to the state space explosion problem inherent
to most analytical solutions to two-dimensional
Markov processes. In this paper, a new solution for a
mathematical model based on a three-dimensional
Markov process used to evaluate the performance of
two-processor network memory servers with break-
downs, and repairs is presented. The model allows
detailed analyses to be performed on the interaction
between the server and the network. In particular,
results are generated when the throughput of the

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

network relative to the server is high as would be the
case in Gigabit networks, and also when the
throughput of the network is similar to that of the
server. This condition is likely to be true in wireless
networks which offer lower bandwidth and increased
latency compared to wired systems.

Secondly, the model is also attempting to look at the
effect of other LAN traffic on the performance of the
Network Memory Server. In both wired and wireless
cases, we are primarily interested in systems based on
Ethernet technology. Hence requests from different
clients form a distributed network queue which can be
modelled as a large capacity queue with exponential
service times.

Another key issue in the composition of network
memory servers is that of client-caching. Since it will
always be relatively cheaper to access local memory
rather than going over a network – no matter how fast
the network - client caching appears sensible.
However, in environments such as mobile phones and
PDAs, where memory is at a premium, selective
caching strategies may be required. The proposed
model helps to address this issue.

The effects of back-up, break-downs and repairs are
also demonstrated.

2. The Network Memory Server

Figure 1. Network memory architecture for

memory server

The Network Memory Architecture being deployed
is shown in Figure 1. The main principle used in the
design of the NMS was to keep the design as simple as
possible because any unnecessary complicity would
make this networked system difficult to debug as
shown in similar architectures [9]. This led to several
important characteristics of the system which can be
stated as follows: Firstly the NMS is transparent to

end-users of the machines in the system. Secondly, the
NMS is stateless. It therefore treats requests
independently and keeps no record of previous
interactions with its clients. Thirdly the NMS deals
only with blocks of data. It assumes nothing about how
data is referenced and accessed by the relevant users of
that data. It is therefore more basic than remote file
systems such as NFS. However, this simplicity means
that the NMS can be used by many applications
including remote paging [5], storage for database
applications [1] and better access models for datasets
that do not fit well into a file-structured format such as
multimedia data, etc.

The clients of the NMS are machines and
applications that would like to make use of Network
Storage. The NMS receives requests to create, read,
write or delete blocks of data of various sizes. Each
client is identified by a unique clientid. Each block of
data is represented by a blockid, which is generated
when the block of memory is assigned by the NMS. A
blockid is a 64-bit number comprising a 48-bit index
number and a 16-bit security tag. This tag allows the
NMS to detect a modified or invalid blockid.

Requests from clients are therefore sent to the NMS
using TCP/IP as it provides reliable communication
between processes on different machines. Each client
machine establishes TCP connections to the NMS
when the driver is loaded. Thus the requests to the
server along these connections form a distributed input
queue. The system is a client/server interaction where
the client waits for a reply from the server before
proceeding. In addition, the server uses the socket
abstraction to handle each connection. Each socket has
a finite buffer associated with it. When this buffer is
full, no more requests can be sent to the server (which
can be modelled as the network no longer serving
requests to the NMS) until those already in the queue
have been processed. The TCP windowing mechanism
prevents packets from being thrown away when the
buffer is full. This means that it is safe to model the
system as a finite queue whose exact length will vary
according to size of the buffers allocated to sockets.

The design uses a multi-threaded approach where
each connection, which represents a client, is managed
by a thread. All requests to the server from that client
are handled by that thread in a sequential fashion.
Since we are assuming a single processor system,
threads will have to be scheduled before they can
service clients’ requests. So in effect we have a
distributed contention system which can be modelled
as a single server with exponential service times.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

The system has been engineered such that each
client can send a packet containing multiple requests to
the NMS. So for analytic purposes, it is possible to
treat such a packet as one job – though made up of
many small ones. It is worth pointing out that as far as
the NMS is concerned, reading and writing involves
the same basic operation namely: taking a request and
finding the corresponding block. If the operation is to
write then data is written from the incoming network
buffer to that block in memory. If a read operation is
requested then the data from the block is copied to an
outgoing network buffer.

However, from a network traffic point of view, the
situation is also interesting but different. In terms of
volume, most of the traffic going to the server will
consist of requests to write blocks. This is because the
request headers of the NMS are quite small compared
to the data being transferred, so write requests will
cause a lot of data to be transferred from the client
machines to the NMS. In the opposite direction, most
of the traffic moving from the NMS to client machines
will be due to read requests. This can be modelled as a
feedback loop going from the NMS Server back to its
clients.

Network memory servers hold data that would
normally be held on hard disk such as the operating
system of a machine, hence it is necessary to consider
backup and repair provision for such environments. In
addition, since the NMS is stateless and deals only in
blocks using client calls, the use of parallel servers
should be extremely desirable.

In order to facilitate the parallel operation of this
service with backup and repair capability, it is
necessary to enhance the memory architecture. A
global memory storage unit needs to be added which is
accessible by all the NMS servers using shared
memory techniques. The global storage unit contains
blocks of data as well as the supporting data structures
including a hash table which stores the block
management structure (bms) for a given block.

When a block needs to be created, a unique blockid
is obtained, the memory for the block is acquired from
the global storage unit and the bms structure is created
and placed in the hash table. Locking is provided using
distributed locking techniques.

3. The System, The Model, And The
Solution

The system under consideration consists of a LAN,
a number of clients, two network memory servers (i.e.
main and back-up servers) and various other servers

(e.g. file server, database server, e-mail server etc.).
The servers both store data coming from clients to have
duplicate copies for improved availability. The
memory servers serve read requests when operative.
All the devices attached to the LAN share a
transmission medium and compete for LAN bandwidth
using some form of access method (e.g. carrier-sense
multiple access with collision detection). The traffic
generated can be destined for any of the hosts attached
to the LAN.

The LAN and the memory server can be thought as
two tandem queues each serving arriving jobs. A
model representing the NMSs together with the
underlying network is shown in Figure 2. Here, Lj is
much larger than Li. Li represents the queuing capacity
of the proposed NMSs. Hence, this is a blocking
network. The LAN and the memory server operate at
mean service rates of µ1 and µ2 respectively. The mean
service times 1/µ1 and 1/µ2 are assumed to follow
exponential distributions as discussed above. The LAN
serves the NMSs at a mean rate of µ1(1- θ1), where 0 ≤
θ1 ≤ 1, and the remaining traffic is directed to other
hosts attached to the LAN. Each NMS writes data at a
mean rate of µ2(1- θ2) and data is read on request and
fed back to the LAN at a mean rate of kµ2θ2, where 0 <
θ2 < 1 and k is the number of operative NMSs. σ1 is the
mean arrival rate of jobs generated by sources other
than the NMSs (which may be destined for the NMS),
creating traffic on the LAN.

The LAN is assumed to be highly reliable. The
memory servers are prone to failures. ξ and η are the
failure and break-down rates respectively.

When the common queue for the NMSs is full, or
both servers are broken, the LAN stops serving this
queue, and resumes service when spaces are free in the
queue and at least one of the servers is ready to accept
more jobs. This network is an extended version of the
tandem network studied by Konheim and Reiser [8]
with the addition of a second server running in parallel,
break-downs and repairs.

3.1. Three Dimensional Markov
Representation of the Proposed Model

Figure 2 shows the system under consideration. In
this system, Lj and Li represent the queuing capacities
of the first and second stages respectively. Lj and Li are
both finite and Lj can be a lot larger than Li. Jobs arrive
at stage 1 at a mean arrival rate of σ1, following a
Poisson distribution. The mean service rates are µ1 and
µ2 per server for stages one and two respectively.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Figure 2. The system considered

The first stage is a LAN modelled as a single server
with a queuing capacity Lj. Network memory servers
of the second stage are homogeneous with mean break-
down rate ξ, and mean repair rate η. The first stage is
assumed to be highly reliable. θ1 and θ2 represent the
fraction of serviced jobs leaving the system after stage
1 and fed back to first stage respectively. The total
number of servers at stage 2 is two, k is the number of
the operative servers and i represents the number of
jobs, both at stage two at time t. When both servers at
stage 2 are broken, or the queue is full, stage 1 stops
sending jobs to stage 2.

The proposed method models the system shown in
Figure 2 as a three-dimensional Markov process and
solves the resultant model using a spectral expansion
solution together with an iterative process. Then, the
steady state probabilities of the three-dimensional
Markov chain are calculated. Consider a discrete time,
two-dimensional Markov process on a finite or semi-
infinite lattice strip. The Markov Process can be
defined as X={In, Jn; n=0, 1, …} with a state space of
({0, 1, 2, …, Lj}x{0, 1, 2, …, Li}). Then, i=0, 1, 2, …,
Lj, and j=0, 1, 2, …, Li can be used to represent all
possible states, (i,j) on the lattice strip. This system can
be solved using existing approaches where most
popular ones are explained in [3] and [4]. The limiting
factor here is the size of In, i.e. Li. When more than one
homogeneous servers with breakdowns are considered
for stage 2, the size of In becomes (K+1)Li, where K is
the total number of servers. Clearly, when K>1, only
small queuing capacities for stage 2 can be assumed to
avoid the state space explosion problem. In practice
however, larger queuing capacities exist. By modeling
such networks using three dimensional processes, In
becomes independent of K. The Markov process can
now be defined as Y={In, Jn, Pn; n=0, 1, …} with a
state space of ({0, 1, 2, …, Li}x{0, 1, 2, …, Lj}x{0, 1,
2, …, K}). This can be considered as (K+1) two-
dimensional processes, X, let’s say Xk, where k = 0, 1,
2. Each Xk can be considered an independent two-

dimensional Markov process. Defining the sum of the
steady state probabilities of these two-dimensional
processes lead to the following sums:

∑∑
= =

=
i jL

i

L

j
kjik pS

0 0
,, and ∑

=
=

2

0
1

k
kS , k=0, 1,

2

(1)

It is important to calculate Sk for all k. For the

system considered on each lattice representing Xk,
while one-step downward transition rates are a function
of µ1, one step upward transition rates are a function of
µ2θ2 and σ1. Lateral transitions are determined by µ1(1-
θ1), σ2 and µ2. Transitions between Xk,s occur with
rates ξ, andη, and each Sk can be expressed as follows:

.2,1,0,
!
)/(!

1
2

0

=















=

−

=

−

∑ k
l

kS
l

kl

k
ξη

 (2)

Let’s define matrices uks for all i, j and k, as

[]kjik p ,,=u Then, for 0<j<Lj, 0<i<Li, k=1 and

σ2=0, pi,j,1s can be calculated as

[]ηξµµσ
θµθµ

θµ
θµσ

ηξ

++++

−++

−+

++

+=

+−+

+

−+−

211

1,1,1111,1,11

1,,122

1,1,1221,1,1

0,,2,,1,,

/
])1(

)1(

2[

jiji

ji

jiji

jijiji

pp

p
pp

ppp

 (3)

For each uk, 0≤k≤2, the transition matrices are

defined in terms of σ1, µ1, µ2, θ1, and θ2. From this, the
approximate pi,j,ks can be obtained using a spectral
expansion solution [3] for each k. Since the steady state
probabilities for lattice k are initially calculated
independent of lattices k-1 and k+1 (as appropriate), it
is important to use a technique to compensate for the
unaccounted effects of the latter two lattices on lattice
k. This can be achieved through the use of the balance
equation in (3) and the ones derived from that. If tx,,y
represents transitions from lattice x to lattice y where x
≠ y and x, y = 0, 1, 2, then, the transitions can be
summarized as follows:

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

[] [] []2
1,2

2,1
1

0,1

1,0
0 uuu

←←
→→

←←
→→

t
t

t
t

.

Since (3) is for 0<j<Lj, 0<i<Li, k=1 only, it is

important to obtain balance equations for k=1 with j=0
and Lj, i=0 and Li, as well as for all possible
combinations of k=0 & 2 for all i and j. These can all
be deduced from (3). All approximate steady state
probabilities, uk, can be calculated for k operative
servers, where k = 0, 1, 2 as long as there is a spectral
expansion solution. These probabilities are
approximate because lateral transitions have not been
taken into account. Once the approximate steady state
probabilities are calculated, the balance equation for
0<j<Lj, 0<i<Li, 0<k<2, given in (3) can be used
together with all other balance equations derived from
this to calculate the steady state probabilities more
accurately. Then, an iterative procedure can be
followed to accurately calculate pi,j,ks. The procedure
can be given as follows:
1. uks are calculated for k = 0, 1, 2 using a spectral

expansion solution together with (2).
2. The balance equation given in (3) together with

the derived ones are used to calculate the correct
steady state probabilities.

3. Mean queue length is calculated for the queuing
system considered.

4. Steps 2 and 3 are repeated until the mean queue
length converges sufficiently.

Once the correct state probabilities are obtained,
various performability measures can be calculated.

The state of the system at time t can be described
by a pair of integer valued random variables, I(t) and
J(t) specifying the number of jobs present at time t for
the NMSs and the LAN respectively. Hence, I(t) = 0, 1,
…, Li and J(t) = 0, 1, … , Lj.

Here, lateral transitions of process X can be defined
by matrix A showing instantaneous transition rates
from state i to state l with zeros on the main diagonal.
Let’s define matrices B and C as transition matrices for
one-step upward and one-step downward transitions
respectively. When the transition rate matrices depend
on j for j ≥ M, where M is a threshold having an integer
value, the process X evolves with the following
instantaneous transitions:

Aj: Purely lateral transition rate, from state (i, j) to state
(l, j), (i=0,1,…, Li, l=0,1,…, Lj; i ≠ l; j=0,1, … Lj),
caused by a change in the state of the queue length of
the NMSs (i.e. a job served by the NMSs and leaves
the system (writing is complete)).

Bj: One-step upward transition rate, from state (i, j) to
state (l, j+1), (i=0,1,…, Lj, l=0,1,…, Lj, and j=0,1,…
Lj), caused by a job arrival into the queue which may
also be a job transfer from the main/back-up NMS to
the LAN (i.e. reading from the NMS).

Cj: One-step downward transition rate, from state (i, j)
to state (l, j-1), (i=0,1,…, Lj, k=0,1,…, Lj, and j=0,1,…
Lj), caused by the departure of a serviced job from the
LAN.

Therefore, the transition matrices A, Aj, B, Bj, C,
and Cj, for this model can be expressed as follows:























−

−
−

=

0)1(),min(.00
....

...)1(),min(0
0..0)1(),min(
0..0

22

2

22

22

2

θµ
σ

θµ
θµ

σ

ki

ki
ki

A

where i = 1,2,…, Li and j=i-1 and A=Aj.























==

122

1

22

122

1

),min(.00
....
...),min(0
0..),min(
0..0

σθµ
σ

θµ
σθµ

σ

ki

ki
ki

BB j

and























−

−

==

11

11

11

1111

0.00
)1(....

...00
0..0
0..)1(

θµ
θµ

θµ
θµθµ

jCC

with C0 = 0, and threshold M=1.

4. Numerical Results And Discussions

We used the model and the solution presented in
the previous section to show the validity of the model
and evaluate the performance of the proposed system
for specific cases. First, we assumed that the service
rates of the LAN and the NMSs are equal (i.e.
µ1=µ2=2), and then we obtained results for the case
where µ1>µ2 for a specific case (i.e. µ1=5µ2). Break
down and repair rates have been taken as ξ=0.001 and
η=0.5 respectively.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Since the LAN serves other hosts as well as the
NMS, θ1 becomes an important parameter too. We
assumed a finite set of values for θ1. θ2 shows the share
of read and write operations carried out by the NMS. It
should be noted that, a read operation may result in
further write operation (e.g. reading a record, editing
and re-writing). Hence, various values have been
considered for θ2 as well. Figures 3-6 show the mean
queue length (MQL) of the first stage (i.e. the LAN) as
a function of σ1, and for various µ1, µ2, θ1, θ2, and Li
values. Lj=1000 ξ=0.001, η=0.5 is used for all
calculations.

Legend for Figures 3-8 is as follows: : θ1=0, _
_: θ1=0.75, --: θ1=0.25, +: θ2=0.75, *: θ2=0.5, and ○:
θ2=0.25:

Figure 3. MQL for the LAN, for µ1=µ2 = 2, and

Li=10

In Figures 3 and 4, µ1=µ2=2, and µ1=10, µ2=2
respectively. Lj=10 for both cases. MQLs are shown
for various combinations of θ1 and θ2. Results clearly
show that the MQL closely relates to the combination
of θ1 and θ2 values and not just one of these
parameters. θ1=0.75 (25% of jobs processed by the
LAN are transferred to the NMSs) and θ2=0.25 (25%
of NMS activities are for reading) gives the best MQL
performance for both µ1=µ2=2 and µ1=10, µ2=2. In the
latter case, for most combinations of θ1 and θ2 the
MQL performance changes so abruptly that it was not
possible to get meaningful results for relatively large
mean arrival rates.

Figure 4. MQL for the LAN, for µ1=10, µ2 = 2, and

Li=10

Figure 5. MQL for the LAN, for µ1=10, µ2 = 2, and

Li=40

For Figure 5 the only difference compared to
Figure 4 is the queuing capacity of the NMSs. Here,
L2=40 is assumed. Best performances are achieved for
θ1=0.75, θ2=0.25 as before. Again, in the latter case,
for most combinations of θ1 and θ2 the MQL
performance changes abruptly. Figure 6 compares the
MQL performances of single-and-two-server systems
for θ2=0.75 and various θ1 values. For a loaded
network, for large θ1, the presence of a back-up server
becomes less significant.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

Figure 6. MQL for the LAN, for K=1 & 2,

µ1=10, µ2 = 2, θ2=0.75, and Li=40

Finally, we computed the probability that the jobs
are lost at first stage when µ1=10, µ2 = 2, various θ1
values, and θ2=0.75. Results are presented in Figure 7.
As shown on the diagram, for this performance
measure, for large θ1, a back-up server does not have a
significant contribution.

Figure 7. The probability of job losses for the

LAN

5. Practical Implications From The
Results

It is worth pointing out that servers such as the

NMS tend to be latency sensitive. By this we mean that
the clients of the NMS will react badly to large delays
in the system. This is because in most cases NMS

clients will be blocked, unable to proceed unless the
requested block is retrieved. In this regard, the mean
queue lengths are of particular interest. All the results
suggest that system performance is affected by high
values of θ1, (i.e. the network memory server is
competing with other traffic for the network hence it is
underutilised) while high values of θ2 (there is a lot
more reading than writing). The high θ1 values can be
overcome by network provisioning in wired
environments. The high θ2 values mean that there must
be an attempt to minimize excessive reading from the
NMS. This would suggest that there is a need to look at
intelligent cache strategies for read operations at the
client end [11].

The results were less severe when the relative speed
of the network compared to the server is large
(µ1=10, µ2=2). However, when they are similar
(µ1=µ2=2), the MQLs are much longer. Such an
observation has clear implications in trying to support
wireless systems which tend to have lower bandwidths.
The results show that intelligent client caching as well
as network features such as QoS support will be
needed to provide good storage support for mobile
environments [12]. Queuing capacity of the NMS plays
a critical role in system performance. So much that, for
loaded networks, having a back-up server can easily
loose its significance.

The results clearly highlight the fact that parallel
operation with backup and repair capabilities does
improve the general performance of the system. This
was observed more prominently for lower values of θ1
and emphasizes the need to ensure that θ1 remains
relatively small in such environments.

6. Conclusions

In this paper an analytical model for a local area
network with a main and a back-up network memory
server alongside various other servers is presented. A
three-dimensional Markov model incorporating a
spectral expansion approach is used for the
approximate solution of the proposed model for
evaluating performance measures such as mean queue
length and probability that jobs are lost. Results are
presented and discussed.

In terms of service rates, two cases are considered.
The first case assumes equal service rates for both the
underlying network and the NMS. This better reflects
the case of wireless systems where, compared to wired
systems, the bandwidth is scarce. The second case
considers an underlying network which is much faster

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

than the NMSs in serving jobs; a possible case where
fast LANs can be employed. Various queuing
capacities have also been considered. The results
indicate the importance of the need for intelligent
client caching as well as network features such as QoS
support to provide good storage support for mobile
environments. For wired networks, although “throwing
in extra bandwidth” will have a significant effect on
system performance, parameters such as θ1 and θ2 also
need to be monitored. The contribution of a back-up
server will be higher if the NMS queuing capacity is
increased. Analytical solutions suffer from state space
explosion problem and hence, for most solutions, Lj
can not be increased significantly.

The proposed NMS is prone to failures, just like any
other server. The model assumes break-downs and
repairs of the NMSs considerably extending the
method presented in [3] and [7] and using this together
with a three dimensional model. Without a third
dimension, Lj will be further restricted. The third
dimension increases the state space by 300% (or K+1
times for a K-server system). The system can further be
developed to incorporate rebooting and reconfiguration
delays and performance measures can be computed
following the approach of [3], [7], [8], and [13]
together with the model proposed in this paper.

7. References

 [1] Breuer P. The Enhanced Network Block Device Linux
Kernel Module, December 2003,
http://www.it.u3m.es/ptb/nbd

[2] Flouris M. and E. Markatos “The Network Ramdisk:
Using Remote Memory on Heterogeneous NOWs”. In
Cluster Computing, 2(4): pp. 281-293, 1999.

[3] Chakka, R., “Spectral expansion solution for some finite
capacity queues”. In Annals of Operations Research 79,1998,
pp.27-44.

[4] Ciardo G. and E. Smirni, “ETAQA: An Efficient
Technique for the Analysis of QBD-processes by
Aggregation,”. In Performance Evaluation, 1999,36-37:
pp.71-93,.

[5] Dwarkadas S., N. Hardevellas, L. Kontothanassis, R.
Nikhil and R. Stets, “cashmere-VLM Remote Memory
Paging for Software Distributed Shared Memory”. In
Proceedings, 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed
Processing, IEEE Computer Society Press, April 1999, pp.
153-159.

[6] Gemikonakli O., T. V. Do., R. Chakka, and E. Ever,
(2005), “Numerical Solution to the Performability of a
Multiprocessor System with Reconfiguration and Rebooting
Delays”, In Proceedings of ECMS 2005, Riga, Latvia, June
2005, pp. 766-773

[7] Gemikonakli O, G. Mapp, D. Thakker and E. Ever
“Modelling and Performability Analysis of Network Memory
Servers”. In 39th Annual Simulation Symposium, Huntsville,
Alabama, USA, 2nd - 6th April 2006, pp.127-134.

[8] Konheim, A.G., and M. Reiser, , “A queueing model with
finite waiting room and blocking”, Journal of the ACM,
1976, pp.328-341.

[9] Kubiatowicz J, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W.Weimar, C. Wells and B. Zhao OceanStore: An
Architecture for Global-Scale Persistent Storage. In the
Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2000) November 2000.

[10] Mapp G.E, D. Silcott and D. Thakker, “Network
Memory Servers: An idea whose time has come”. Multi-
Service Networks (MSN) Cosener's House, Abingdon, July
2004.

[11] Thakker D., “Intelligent client caching for Network
Memory Servers”. PhD proposal. School of Computing
Science, Middlesex University.

[12] Shaikh F., Quality of Service Issues in Wireless
Applications. PhD proposal. School of Computing Science,
Middlesex University.

[13] Trivedi, K. S., A.S.Sathaye, , O.C. Ibe, and R.C. Howe,
(1990). “Should I add a processor?” In Proceedings of 23rd
Annual Hawaii International Conference on System Sciences,
IEEE Computer Society Press, (Los Alamos, CA), pp.214-
221.

Proceedings of the 40th Annual Simulation Symposium (ANSS'07)
0-7695-2814-7/07 $20.00 © 2007

