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Abstract—Deployment and maintenance of large smart in-
frastructures used for powering data-driven decision making,
regardless of retrofitted or newly deployed infrastructures, still
lack automation and mostly rely on extensive manual effort.
In this paper, we focus on the two main challenges in the life
cycle of smart infrastructures: deployment and operation, each
of which is rather generic and apply to all infrastructures. We
discuss the existing technologies designed to help improve and
automate deployment and operation for for smart infrastructures
in general and use smart grid as a guiding example to ground
some examples across the paper. Next, we identify and discuss
opportunities where the broad field of artificial intelligence (AI)
can help further improve and automate the life cycle of smart
infrastructures to eventually improve their reliability and drive
down their deployment and operation costs. Finally, based on the
usage of AI for web and social networks as well as our previous
experience in AI for networks and cyber-physical systems, we
provide decision guidelines for the adoption of AI.

Index Terms—smart infrastructure, artificial intelligence, de-
ployment automation, operation automation.

I. INTRODUCTION

Cheaper and more reliable computing devices and improved
connectivity solutions are enabling near real-time remote mon-
itoring and control of points of interest, such as the climate
in a smart home or the progress of production on individual
factory floors. The artificial intelligence (AI)-driven industrial
revolution [1], fed by machine-generated data flowing through
the global communications infrastructure, is advancing pro-
cess automation and data-driven decision making to increase
production efficiency and overall quality of life. In addition,
AI-powered automation is also being considered for core
communication networks, sometimes referred to as intent-
based networking [2].

A report commissioned by the Committee on Artificial
Intelligence in a Digital Age [3] on ”how AI applications
can be used in urban mobility and smart cities and how their
deployment can be facilitated” found that optimised deploy-
ment, operation, and maintenance of infrastructure, including
waste and water management, transportation, energy grids, and
urban lighting, are key enablers for smart city implementation.
For example, smart city lighting is considered a solution
for developing a smart city by equipping lampposts with
IoT devices to collect and analyse data gleaned from traffic,
pedestrians and environmental factors to improve quality of
life. However, the report [3] also suggests that there are many
technological challenges to overcome, especially in terms of
deployment and operation. Furthermore, a recent study related

to adopting AI in operations research [4] highlights that ”a
multidisciplinary approach to AI design and evaluation is
recommended” as also noted in [5]. To explicitly illustrate
the challenges of the life cycle of smart infrastructures, and
present how they can be automated, we consider smart grid
as a guiding example of such infrastructure throughout the
paper since they; (i) represent a very mature sector requiring
retrofitting with heterogeneous smart devices; (ii) are by nature
very large and extremely distributed, and (iii) require contin-
uous monitoring for the provision of very high reliability of
operation in spite of vulnerability to different external effects.

Figure 1a depicts in the Energy Infrastructure with the
traditional and green centralized generation, transmission, dis-
tribution and the traditional consumers that are now becoming
prosumers, thus also able to push energy obtained from their
small distributed generation capabilities to the grid. To support
this process towards improved sustainability, the traditional
infrastructure is already being extended and enhanced also
with new information and communication technology (ICT)
devices for improved observability and management repre-
sented in Figure 1b. The deployment of the ICT inevitably
brings significant additional costs in terms of:

Challenge-1: Deployment
The deployment of smart devices tends to be human

labour intensive. Each device needs to be manually picked,
configured, physically positioned and then provisioned as
symbolically depicted in Figure 1b. When large numbers of
devices are deployed, the required time and costs may become
significant. For example, according to a recent whitepaper
from a device manufacturer, provisioning ten thousand smart
light bulbs in a factory can take nearly 2 years before they can
actually commence data streaming [6]. According to another
manufacturer, the deployment represents 30% of the costs of
a smart metering project [7]. Both examples gleaned from the
state-of-the-art expose the excessive costs and delays incurred
by massive deployments of smart devices. In Section III we
discuss traditional approaches, the current state of the art and
identify further AI-aided automation that could enable even
more simple and rapid deployment, initial configuration and
out-of-the-box operational provisioning.

Challenge-2: Operation
One of the most fundamental operational challenges of

smart devices is to ensure scheduled maintenance as recom-
mended by the manufacturer. For example, as the lifespan of



Fig. 1: Overview of emerging smart infrastructures on an energy use-case.

a smart meter is estimated to be 10+ years, most vendors
and businesses expect no associated regular physical main-
tenance [7]. However, over such a long lifespan, various con-
textual aspects in which the the smart device operates might
change. For instance, the mobile operator might bankrupt, a
cheaper operator may become available for the served area
or simply, the network coverage may vary depending on the
changes in network planning. Furthermore, previously unde-
tected malfunctioning in the embedded smart meter software
may arise, old versions of software may require upgrades to
keep up with the emerging sophisticated technologies or new
regulations may require software updates.

From the perspective of the long term operation of the
network, we focus on two sub-challenges that i) have been
subject to major progress in the last few years, ii) are specific
to control centres [8] and iii) are related to monitoring and
control operations as follows a) ensuring remote network
reconfiguration and software updates as depicted on the left of
Figure 1c and b) ensuring automated detection of anomalous
system behaviours occurring during the lifespan of devices
as depicted on the right of Figure 1c. In Sections IV, we
discuss traditional approaches, the current state of the art and
identify further AI-aided automation that could enable even
more efficient remote updates and monitoring. As identified in

[9] there exist other important infrastructure challenges such as
security [10] and sustainability [11], however these are beyond
the scope of this already broad paper.

In this paper, commencing with the two aforementioned
challenges that are faced by all stakeholders involved in
greenfield deployments or brownfield retrofitting, we discuss
existing technologies designed to help improve and automate
some aspects related to the two challenges. Increased automa-
tion for smart devices involves recent advances in the areas of
network virtualization, cloud computing and AI, in addition to
expertise in industrial electronics, embedded devices, wireless
communications and targeted application domain [5], thus the
findings of this paper are relevant to a broad community. The
main contributions of this paper are as follows:

1) We systematically analyse the two main phases in the life
cycle of smart infrastructures that concern all involved
stakeholders and discuss future directions enabled by AI.

• With respect to deployment, we analyse the current
practices and show the benefit of new emerging
zero-touch provisioning methods and identify further
promising automation through human friendly AI-
powered voice assistants in Section III.

• With respect to operation, we first analyze solutions
for development and operation (DevOps) automation



and identify further promising automation using data-
driven AI models and knowledge-driven AI tech-
niques in Section IV-A.

• As part of operation, we also analyse the current
practices in fault and anomaly detection and show
the benefit of more expressive approaches in Sec-
tionIV-B2.

2) We provide practical guidelines that can be used to
employ AI technologies in solving automation problems
as symbolically depicted in Figure1d and sicussed in
Section V.

The paper is structured as follows. Section II provides
the related work, Sections III and IV provide an analysis
of existing and emerging automation solutions while also
identifying the possible role of AI for increased automation
for the identified challenges. Section V provides guidelines
on when to employ artificial intelligence technologies for
realizing automation. Finally, Section VI concludes the paper.

II. RELATED WORK

Considering the two challenges identified in Section I, there
is only a paucity of contributions in the literature, mostly
focusing on smart city IoT infrastructure challenges and/or
data collection, processing and decision making aspects. Cor-
chado et al. [12] proposes a cyber-physical platform for
efficient management of smart territories, which solely focuses
on data acquisition, classification, clustering, optimization and
visualization that are mainly adopted for better decision-
making. This paper indeed brings about better decision making
for operational aspects, while it assumes that a system has
already been deployed, where we fill this gap with deployment
automation strategies, development and operations automation
(DevOps) and AI enhancements as per Figure 1b, left of c and
d, respectively.

In [13] they introduce a digital twin in Industry 4.0, where
any industrial process produced by a physical object is assisted
with digital replicas in the cyber space. More explicitly, the be-
haviour of a physical device is replicated, where an industrial
machine becomes a software-enhanced object incorporating
self-management capabilities. This concept of digital twin is
also suitable for data analyses and better decision making,
focused mainly on operational aspects in addition to monitor-
ing, remote control, predicting behaviours of machines, which
can ultimately aid in optimizing an already deployed factory
floor. However, deployment automation, DevOps automation
and specific AI enhancements are kept outside the focus of this
concept. Next, Sotres et al. [14] mainly focused on the large-
scale deployment of IoT infrastructure. Their practical field
implementation proved that the manual deployment of such
infrastructure is costly and time-consuming, which in return
supports our hypothesis of the need for deployment automa-
tion. The authors of [14] summarized practical lessons from
their on-site smart city implementation, where the significance
of operational aspects, such as real-time monitoring of the
devices and efficient management of data, was also stressed
on, which again indicates the vast need for more attention on
the automated deployment and operations that are the main
contributions of our paper.

III. TOWARDS DEPLOYMENT AUTOMATION

Traditional devices in various domains, even if comprised
of embedded systems for their control and operation, were not
supporting connectivity to the internet and remote monitoring
and management, but were in best case restricted to SCADA
systems [16]. To benefit the life cycle automation, they need
to be complemented by additional sensing, actuation and
connectivity capabilities.

As identified in Challenge-1 the initial deployment of smart
devices to upgrade the capabilities of an existing infrastructure
comes with considerable initial provisioning and configura-
tion efforts [6]. As depicted in Figure 2a, when deploying
embedded devices without standard I/O capabilities, such as
touchscreen or keyboard, the traditional way of connecting
them to an access point was via a universal serial bus (USB)
or joint test action group (JTAG) cable to a computer [15]. This
physical connection was followed by manual configuration
using wireless credentials. Then, once being connected to the
local network, not necessarily to the Internet, the devices are
flashed and/or a configuration file with network credentials
is transferred to them over a secure shell (SSH) connection.
Finally, the access to the local network and/or to the Internet
is tested.

The above-mentioned traditional provisioning method could
prove tedious, particularly if the user is not familiar with such
highly technical process. Therefore, each new device to be on-
boarded into the network tends to bring additional deployment
delays, possibly leading to such substantial deployment times
and costs as identified under Challenge-1. To this end, new
deployment automation solutions are needed to speed up the
deployment during infrastructure enhancement, as depicted in
Figure 1b.

A. Zero-touch automation for deployment

The current state of the art with respect to deployment
automation is represented by zero-touch provisioning (ZTP)
methods [15] that do not only help reduce human-induced
errors and deployment related delays, but also contribute to the
efficiency of the work schedule of users or technicians. The
main idea behind ZTP methods is to remove the necessity
of physical connection for the configuration process and to
minimize human interactions. More explicitly, the physical
connection is replaced by a wireless connection that the
devices allow upon boot-up and the configuration files are
automatically fetched, as portrayed in Figure 2b.

ZTP methods can be realized either by leveraging existing
industry standards, such as WiFi and Bluetooth, or by hinging
on vendor-specific proprietary software and hardware solu-
tions [17]1. The main industry standards for a ZTP method in-
clude WiFi protected setup (WPS) [18], Push-Button-Connect
(PBC) [18], software-enabled access point (Soft-AP) [19]
and QR code [20]. WPS and PBC may require an external
interface and a close proximity to the devices to be configured.
With Soft-AP, the credentials need to be entered manually,
while a QR code can be scanned by the mediator device to

1Commercial ZTP solutions are already available on the market from Cisco,
Juniper, Apple and Texas Instruments as discussed in [15] Section II-B.



Fig. 2: Traditional vs. zero-touch provisioning vs voice assisted mass provisioning deployment scenarios.

Fig. 3: Distribution of time-to-provision (TTP) evaluation tests is portrayed in [15] for two ZTP automated solutions and one
manual expert provisioning of 15 times, while 15 non-experts manually provision relying on a device provisioning guideline
without any previous knowledge.

create a reliable connection so as to transfer configuration
files. As indicated, these standards require additional hardware
components, such as a camera for scanning the QR code, close
proximity to the devices and minor manual interactions.

Figure 3 reproduced from [15] provides outcomes of pre-
liminary survey on how automated ZTP solutions can shorten
the deployment time of smart devices compared to manual
provisioning solutions. For example, it can be seen that a
person using Bluetooth-based ZTP solution can be more
efficient than networking expert, who manually provisions a
device, by up to 4.3 times, while this performance increases up
to nearly 12.2 times when compared to a non-expert. Using
Soft-AP based ZTP solution provides smaller improvement
compared to the Bluetooth counterpart, but still it can realize
the provisioning of a device nearly up to 1.6 times faster
compared to an expert and up to 4.6 times faster than a non-
expert.

According to the process detailed in Figure 2b and results

in Figure 3, the ZTP approach has the potential to shorten the
deployment time of the light bulbs exemplified in Challenge-1
and symbolically illustrated in Figure 1b, from 2 years to about
half a year. However, both processes presented in Figure 2 a
and b assume that the human needs to provide configuration
details directly or through a mediator.

B. AI automation for voice-assisted provisioning

To further decrease the deployment effort, rather than man-
ually clicking to trigger the connection/pairing as in Figure 2b,
the human could trigger such actions automatically by giving
instructions to a voice assistant as depicted in Figure 2c. While
verbally controlling the provisioning process, the human could
in parallel work on other physical node deployment tasks as
per Figure 1b.

Voice-assistants are mostly general purpose [21] , however
efforts to adapt an existing general purpose voice assistant to



Fig. 4: Traditional vs. remote/over the air vs DevOps enabled software updates and reconfigurations.

enable voice driven configuration of software defined networks
has been proposed in [22]. Furthermore, very recent research
[23] investigating the role of voice assistants with respect
to productivity confirms that ”there is a positive relationship
between satisfaction with voice based digital assistants and
individuals productivity”.

Given the potential of this proposed automation step, to
serve the purpose as envisioned in this section, the existing
speech-to-text engine of the voice assistants would need to
be optimized to understand technical configuration commands
or infer them from higher level, non-technical, requests. They
would also need to be very robust to various industrial noises.
The speech-to-text engine is the core of a voice assistant
and for adapting an existing one or developing a new one,
a relevant corpus of speech recordings needs to be generated
and a machine learning (ML) model needs to be adapted to
perform the translation as per the guidelines in Section V-A.
The text to executable command mapping could be done using
predefined rules, however, especially when the need to infer
more technical configuration commands from more generic
talk, these could be enhanced by reasoning engines based
on symbolic AI [24] to guide the configuration process as
discussed Section V-B1.

IV. TOWARDS OPERATION AUTOMATION

In this section, we discuss the two operations related sub-
challenges identified in Section I starting from the current
state-of-the-art, followed by beyond the state-of-the-art AI
supported automation solutions that can push automation to
the next level.

A. Automating the remote reprogramming infrastructure

As discussed in the introduction of Section III, early devices
used in smart infrastructure were not supporting connectivity
to the internet. In order to update their configurations such
as sensor sampling rates, upgrade their firmware or software,
the maintainers traditional process was manually intensive
and involved physically connecting to each of them and typi-
cally updating the entire embedded software using monolithic

software updating approaches [25] as depicted in Figure 4a.
Conceptually and process-wise, this is analogous to Figure 2a
and the related discussion in Section III.

As modern smart devices are connected to the internet
or an intranet, remote reconfiguration/reprogramming [26]
techniques were developed. This way, the process could be re-
motely triggered from the control room as depicted on the left
side of Figure 1c. As the smart devices increasingly became
connected via wireless technology, rather than wired, such
updates were also referred to as over the air reprogramming
as illustrated in Figure 4b. Due to decreased bandwidth and
reliability or wireless communications, techniques to reduce
the amount of data sent over the air were developed and
referred to as partial updates [27] rather than monolithic.

1) DevOps automation: The modern pipelines supporting
remote updates are automated by DevOps tools [28] initially
developed for the management and automation of large cloud
systems. Their development was triggered by the need to
scale such capacity in a cost-efficient way with low human
involvement and enabled largely by moving from monolithic
software architecture to service oriented architectures of which
microservices are an example [29]. Similar automation ap-
proaches have been proposed for networking, including cellu-
lar networks, and is referred to as Networking DevOps [30].
DevOps-inspired automation for smart devices, especially the
ones falling into the category of embedded systems have
also been recently proposed [31], [32] and are commercially
available as surveyed and compared in [33].

Let us consider the smart grid scenario portrayed on the left
side of Figure 1c, where developers prepare new code or mod-
els and system administrators put together new configurations
for enabling reliable operation of the network of smart devices.
These software artifacts are stored in an appropriate repository
of code, configurations or binaries. Using DevOps automation,
the manually triggered and custom scripts previously used for
control as illustrated at the top of Figure 4b, are replaced by
the automation system as illustrated in Figure 4c. Additionally,
due to containerization technologies [34], that represent a
popular way to pack and deploy microservices, also individual



applications on smart nodes can be replaced independently of
any other changes.

2) AI-aided automation: Along the various segments of the
energy infrastructure depicted in Figure 1a tens of different
types of energy services [35] will be deployed and maintained.
For example consumption and production estimation services
may be deployed at each transformer station in the distribution
network to enable more agile demand-response. The demand-
response estimators will then provide short and long term
estimates. The deployment and update of the thousands of in-
stances (i.e. software artifacts) of the energy services requires
careful consideration. By looking at similar transformations
taking place in the networking community, that is currently
migrating to a software-defined paradigm, we notice that also
in that case, the number of software modules (i.e. micro-
services) that need to be managed and deployed is increasing.
To manage such high number of services and their various
versions and regulatory compliance, catalogues and app stores
that host them are developed [36]. A similar approach will
also be pursued for smart infrastructures.

To manage the plethora of software artifacts, efficient auto-
mated search [37] and recommendation based on compatibility
checks will come useful. Rather than manually writing service
chaining and configuration files that control the deployment of
the software artifacts, the meta-data accompanying them can
be provided in a standardized manner that enables automatic
compatibility checks and recommendation. To enable that,
the standard for representing the meta-data should provide a
representation that is suitable for reasoning using symbolic AI,
such as using lightweight semantic schemes as discussed in
Section V-B2. This way, all the meta-data would be connected
inside the machine as a large scale structured representation
of information, also referred to as knowledge graph [38],
on which a symbolic AI reasoning engine, as described in
Section V-B3, could operate and infer suitable chaining and
configurations.

While finding relevant, compatible and regulatory-compliant
software artifacts is an important operational aspect, often also
the needed to configure some of these artifacts according to
operator or client needs. For instance, an energy trading plat-
form may require data with certain frequency and reliability be
provided by their subscribers while a demand-response service
may want certain control reliability guarantees. In many such
cases, threshold based rules, such as ”if the connectivity
capacity of the network is at 80% usage, upgrade to a new
plan with higher capacity” might suffice. However, in other
cases, non-symbolic AI for automated short and long term
capacity dimensioning of the IT infrastructure as proposed in
[39] are likely to be used as support tools for an informed
decision making rather than ”built-in” autonomous control
loop elements. Such approach can automate repetitive manual
planning as per the decision process and guidelines provided
in Section V-A.

Finally, to make the overall process of controlling and
configuring aspects of the network during the operation as
symbolically depicted in Figure 1c, a specialized voice assis-
tant, similar to the one discussed in Section IIIc, could be
used to provide a more human-friendly interaction modality.

Rather than requiring a human operator to check and manually
edit the content of the automatically generated configuration
files, the voice assistant could initiate a conversation related
to the proposed set-up that would lead to and improved and
approved version. This kind of AI automation is proposed
for telecommunication networks in Vivonet [22] and intent-
based networking [2]. Furthermore, in the last decade, various
flavours of AI technologies have been considered as the
solution for completely automated and autonomous network
management that would replace manual decision makers in
the loop [40]. AI-aided DevOps for increased automation has
also been considered and is recently being referred to as
AIOps [41].

TABLE I: Performance of supervised and unsupervised meth-
ods to detect the four link layer anomalies defined in [42].

Anomaly Approach Method F1 score
type [%]

SuddenD

Supervised

Logistic Regression (LR) 100
LR + Autoencoder 100
Random Forest (RF) 100
RF + Autoencoder 100
Support Vector Machine (SVM) 100
SVM + Autoencoder 100

Unsupervised

Local Outlier Factor (LOF) 76
LOF + Autoencoder 38
Isolation Forest (IF) 83
IF + Autoencoder 97
One-Class SVM (OCSVM) 98
OCSVM + Autoencoder 99

SuddenR

Supervised

Logistic Regression (LR) 100
LR + Autoencoder 100
Random Forest (RF) 99
RF + Autoencoder 100
Support Vector Machine (SVM) 100
SVM + Autoencoder 100

Unsupervised

Local Outlier Factor (LOF) 98
LOF + Autoencoder 74
Isolation Forest (IF) 75
IF + Autoencoder 98
One-Class SVM (OCSVM) 95
OCSVM + Autoencoder 84

InstaD

Supervised

Logistic Regression (LR) 97
LR + Autoencoder 98
Random Forest (RF) 97
RF + Autoencoder 97
Support Vector Machine (SVM) 98
SVM + Autoencoder 98

Unsupervised

Local Outlier Factor (LOF) 89
LOF + Autoencoder 38
Isolation Forest (IF) 70
IF + Autoencoder 92
One-Class SVM (OCSVM) 90
OCSVM + Autoencoder 93

SlowD

Supervised

Logistic Regression (LR) 97
LR + Autoencoder 100
Random Forest (RF) 99
RF + Autoencoder 100
Support Vector Machine (SVM) 100
SVM + Autoencoder 100

Unsupervised

Local Outlier Factor (LOF) 36
LOF + Autoencoder 24
Isolation Forest (IF) 63
IF + Autoencoder 91
One-Class SVM (OCSVM) 71
OCSVM + Autoencoder 95



B. Automating fault/anomaly detection
Operational networks need to be constantly monitored to

ensure their reliable and SLA compliant functioning also for
the edge devices. As they can be large in size and complex
in terms of the forming elements and their interconnection,
providing automated alerts for faults or anomalies [43] is
a desired feature. As it can be seen on the right side of
Figure 1c, monitoring data from smart devices should be
collected, passed through fault/anomaly detection system,
which then selects and presents detected anomaly events to
a manual decision marker. The respective decision maker then
decides whether the presented anomaly or fault is indeed a
relevant anomaly rather than a misdetection, and decides on
the appropriate course of action for handling.

Traditional fault/anomaly detection systems are reactive
by nature assuming that the fault is noticed and reported
by humans and the system is consulted to understand the
cause of the fault and plan mitigation actions. Additionally,
traditional systems ingested data in batches, sometimes daily,
therefore immediate insight into a fault was not available to
the operators.

1) Big data and AI aided automation: Current fault and
anomaly detection tools mostly rely on big data, streaming
databases and standard visualization dashboards that have
emerged in the last few years [44]. Unlike with legacy systems,
the steaming databases enable constant data ingestion and the
operator is able to check and have a near-real time report
of the situation. However, these tools tend to also be mostly
reactive in nature and mostly enable visualizations of the raw
time-series, simple aggregates and threshold based detection.
Manually searching through dashboard-based visualizations to
find a problem in a large software network with tens of thou-
sands of software artifacts can take hours to weeks depending
on the complexity of the system and gravity of the fault. Users
still need to manually find the correct device for faults, check
the dashboard for various metrics, understand the issue, check
the status of other related devices and subsequently decide on
the next step.

While automatic fault/anomaly detection is far from be-
ing a solved problem [45], various machine learning-based
techniques for outlier [46] or motif [47] detection have been
proposed. When an anomaly or fault is identified by such tech-
niques, a near real-time warning can be sent to the operations
control room, as depicted on the right side of Figure 1c, to
inform and trigger remediation actions even before used or
customer complaints are filed. Such a mechanism can change
fault/anomaly detection from reactive to proactive, increase
the efficiency of planning the remediation and decrees the
overall remediation time. To develop such as system, sufficient
training data for the target problem needs to be collected in
order to train the ML algorithm as per the guidelines discussed
in Section V-A. Attempts for automating fault and anomaly
detection using algorithms from the realm of AI, such as
ML mostly rely on offline models and synthetic data are also
discussed more in depth in [40].

2) AI for more expressive and online fault detection: Faults
or anomalies can also be defined in a more specific way that is
suitable for a specific application. Once detected, such faults

can already indicate the malfunctioning that causes them and
ease the anomaly remediation from Figure 1c. The motif detec-
tion approaches identifying such faults can use both supervised
and unsupervised, depending on the amount of labelled data
that is available. For instance, [42] defines four wireless
link level anomalies observed on edge devices: sudden link
degradation (SuddenD), sudden link degradation with recovery
(SuddenR), instantaneous link degradation (InstaD) and slow
link degradation (SlowD). As it can be seen in Table I, the
supervised methods generally yield better performance than
the unsupervised counterparts for the respective anomalies.

V. AI ADOPTION GUIDELINES FOR LIFE CYCLE
AUTOMATION

The field of AI is comprised of efforts to develop synthetic
mechanisms that mimic the intelligence found in nature. For
instance, some AI approaches attempt to mimic the intelli-
gence of simple organisms while others mimic human-like
intelligence leveraging the ability of learning and problem
solving. On high level, we distinguish between non-symbolic
and symbolic AI [24]. We refer to non-symbolic or data-driven
AI as the set of techniques that only use data to automatically
develop a model. We refer to symbolic or knowledge-driven
AI as a body of structured knowledge (i.e. Wikipedia) that
can complement and enhance the models resulted from non-
symbolic AI.

In this section we provide practical guidelines for adopting
non-symbolic and symbolic AI, as depicted in on the right side
of Figure 1d, that we visually compress on a decision diagram
aimed at quickly guiding the decision makers in the adoption
process. These guidelines were compiled based on existing ex-
periences and best practices gleaned from other areas such as
AI for cloud computing and data centres, telecommunication
networks, human computer interaction and the experience of
the authors of developing AI-driven automation solutions for
cyber-physical systems. An alternative, more complex study
that focuses on AI adoption is presented in [48] while a
per firm-level AI readiness study is presented in [49]. Other
drivers, barriers and social considerations of AI adoption have
been recently studied in [4].

A. Non-symbolic AI

In Figure 5, we provide a decision diagram that serves as a
guideline for when to adopt a data-driven AI technique to solve
an automation problem. First, one should identify knowledge
tasks that have to be repeatedly done by a human, as illustrated
in the top decision element numbered with 1. Then, either the
task can be automatized reliably by writing a set of rules or
it can be supported by the collected sufficient data (labelled
or unlabelled). For instance, consider the wireless link layer
anomaly example of [42] discussed in Section IV-B2. If a
person is able to look at a time series coming from a smart
meter and recognize a specific anomaly within, then such task
is worth automating if it needs to be performed regularly and
at scale. In such case, one needs to see if there is a set of rules
as per decision 2 in Figure 5 that can be used to accurately
and automatically realize the device recognition performed by



Fig. 5: Decision diagram guiding the decision process of AI
adoption.

a human. If the answer is positive, then the set of rules will
suffice and AI is likely not needed.

For the case when rules for detection do not suffice and
enough data can be collected as per decision 3 in Figure 5, a
ML model can be developed to automatize the recognition
task. If the performance of the model is satisfactory and
complies with the business requirements as per decision 4, then
the manual process can be replaced by the model developed
using ML. In such case, the learnt model can be deployed to
the production system.

B. Symbolic AI

The decision process for the adoption of the less popular
knowledge-driven or symbolic AI is more straightforward.
There are essentially three cases when it should be employed.

1) Case1: If a business aspect uses a set of rules and meta-
rules that have evolved to become too complex and hard to
maintain, they should be swapped for a knowledge-driven AI
system that includes knowledge representation and reasoning
components.

2) Case2: When the internal data or meta-data is becoming
large and difficult to maintain, lacks schema inter-operability
and is perhaps not even machine-readable, scalable inter-
interoperability rules as discussed in the previous case are
not even possible before a standard descriptive representation
language is employed.

3) Case3: One might want to develop an expressive and
comprehensive digital representation of the network and all its
elements and their interconnections, sometimes referred to also
as the network’s digital twin. The state-of-the-art realization,
management and exploitation of such digital twin is repre-
sented by the knowledge graph that uses structured knowledge-
driven AI for describing and representing its various entities.

VI. SUMMARY

In this paper, we analyzed the two main challenges that
hinder the large scale enhancement of legacy infrastructures
such as smart grids, i.e., deployment and operations. We
then discussed the state of the art in automating aspects of

deployment and operation to increase efficiency and reduce
costs. Furthermore, we analysed the role of AI in automating
deployment, software update and anomaly detection in the
emerging smart infrastructures, provided future directions and
guidelines on how to approach the adoption of AI.
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