
Detection of Unsolicited Web Browsing with

Clustering and Statistical Analysis

by

Pawel Chwalinski

Thesis

Submitted to the University of Middlesex

for the degree of

Doctor of Philosophy

School of Science and Technology

September 2013

Contents

List of Tables iv

List of Figures v

Abbreviations viii

Notations xi

List of Publications xiv

Acknowledgments xv

Declarations xvi

Abstract xvii

Chapter 1 Introduction 1

1.1 Access Matrix as Interest Measurement 3

1.2 Research Question . 5

1.3 Contribution to Knowledge . 6

1.4 Organisation of the Thesis . 7

Chapter 2 Theoretical Background 8

2.1 Different Types of Denial of Service Attack 9

2.2 Scenario of Denial of Service Attack 12

2.3 Location of Detection Systems . 15

2.4 Victim Types of DDoS Attack . 17

2.5 Application Layer Attacks and Flash Crowds 18

2.6 Performance of Intrusion Detection Systems 20

2.7 Different Approaches to Intrusion Detection Systems 24

i

Chapter 3 Literature Review 28

3.1 Approaches to Detect Unsolicited Browsing 28

3.1.1 Related Work - Learning systems 29

3.1.2 Learning systems - Sequence-Oriented Methods 29

Sequence-Oriented Methods - Brief Outline 30

Sequence-Oriented Methods - Data Collection 34

Sequence-Oriented Methods - Malicious Behaviour 36

Sequence-Oriented Methods - Detection Performance 38

3.1.3 Learning systems - Protocol-Oriented Methods 38

Protocol-Oriented Methods - Brief Outline 39

Protocol-Oriented Methods - Data Collection 40

Protocol-Oriented Methods - Malicious Behaviour 45

Protocol-Oriented Methods - Detection Performance 47

3.1.4 Related Work - Technical Solutions 47

Technical Solutions - Brief Outline 48

Technical Solutions - Data Collection 51

Technical Solutions - Malicious Behaviour 51

Technical Solutions - Detection Performance 52

3.1.5 Analysis of Previous Approaches 52

3.2 Motivation for Research . 53

3.2.1 Summary . 58

Chapter 4 Methodology 60

4.1 Data Collection - Two Approaches to Web Interest 62

4.1.1 Data Collection - Macro-Interest of Web Users 62

4.1.2 Data Collection - Micro-Interest of Web Users 63

4.2 Data Preprocessing - Micro-Interest 65

4.3 Sequence Length Distribution in Data Sets 68

4.4 Clustering . 69

4.5 Entropy as a Measure of Interest Groups 70

4.6 Calculating the Number of Clusters 73

4.6.1 Dynamically Changing the Number of Clusters 74

Re-clustering . 74

Merging . 74

Partitioning . 75

4.6.2 Summary of the Algorithm 75

4.6.3 Fixed Number of Clusters . 76

ii

4.6.4 Reallocation of Sequences for Micro-Interest 77

4.7 Soft and Hard Detection Ranges . 78

4.8 Allocation of Attacking and Validating Sequences 79

4.9 Strategies of Attacking Hosts Against Macro-Interest Approach . . . 80

4.9.1 Rarely-changing Hosts . 80

4.9.2 Frequently-changing Hosts . 81

4.10 Strategies of Attacking Hosts Against Micro-Interest Approach . . . 81

4.11 Detection of Attacking Hosts Against Macro-Interest Approach . . . 82

4.11.1 Mahalanobis Distance . 82

4.11.2 Mutual Information and Statistical Independence as Anoma-

lous Measurement . 83

4.11.3 Likelihood of the Same-category Segment 84

4.12 Detection of Attacking Hosts Against Micro-Interest Approach . . . 85

4.12.1 Detection Based on Bayes Factors 85

4.12.2 Detection Based on Likelihood Analysis 86

4.13 Summary . 86

Chapter 5 Results 89

5.1 Sequence Distribution for Macro-Interest Approach 89

5.2 Intention Classification for Macro-Interest Approach 91

5.2.1 Result Analysis . 92

5.3 Clustering Results for Micro-Interest Approach 93

5.3.1 Stability of Clustering Algorithm 93

5.3.2 Sequence Distribution for Micro-Interest Approach 94

5.4 Intention Classification for Micro-Interest 97

5.4.1 Intention Classification with Bayes Factors 97

5.4.2 Length-Dependent Detection Analysis 99

5.4.3 Intention Classification with Likelihood Analysis 102

5.5 Summary and Discussion . 105

Chapter 6 Conclusion 106

6.1 Contribution to Knowledge . 107

6.1.1 Clustering Algorithm . 108

6.1.2 Statistical Measures . 109

Chapter 7 Future Work 110

iii

List of Tables

2.1 Possible outcomes of IDS’s decision 22

3.1 Detection performance of Sequence-Oriented Methods 38

3.2 HTTP protocol heuristics used as features in intrusion detection. . 43

3.3 Detection performance of Protocol-Oriented Methods 47

4.1 Comparison of Micro and Macro Approach 87

iv

List of Figures

1.1 Cluster C1 . 4

1.2 Access Matrix . 4

1.3 Cluster C2 . 4

1.4 Cluster C3 . 4

1.5 Division of access matrix into a number of clusters. 4

2.1 Internet attackers have learned to manually modify packets, to run

SYN Flood attack. As a result, they reserve resources with non-

existent IP addresses exhausting the server’s resources. 10

2.2 Simple scenario of DDoS attack. 13

2.3 The application of Reflectors introduces challenging level of detection

difficulty. 14

2.4 Packet traversal from attacking hosts to victim. 15

2.5 Receiver Operating Characteristic curve for three IDS’s systems, per-

forming at different . 23

3.1 Transmission of requests (denoted with r1:5) and in-line object re-

quests (denoted with i1:6) made by legitimate users. Observe that

there are large time differences (marked with OFF) between two con-

secutive requests (i.e. activity time), and denoted with ON. However,

time differences between two in-line object requests are fairly shorter. 30

3.2 Transmission of requests (denoted with r1:4) and in-line object re-

quests (denoted with i1:7) performed by attacking hosts. Observe

that there are similar time differences between two consecutive re-

quests, regardless of the type. Clearly, irregular object requests, and

shorter inactivity time (marked with OFF), creates deviation from

behaviour denoted in Fig. 3.1 . 31

v

3.3 Once the structure of a website and requests rate boundaries have

been learned (see Algorithm 1), zombies are able to avoid unde-

sired links. These can be seemingly unpopular web objects, or traps

planted by web administrators (marked with black colour). As a re-

sult, while making transitions bots are instructed to request extracted

links (marked with blue and violet colour), and remain within time

boundaries to make their presence legitimate. 56

4.1 Organisation of this Chapter. 61

4.2 This Figure depicts a narrower version of the website presented in

Listing 4.1. Observe that the number of existing web objects is rela-

tively larger than logical categories. 64

4.3 Length distribution of sequences inside traces. 68

5.1 CDF of sequence assignment in MSNBC trace. Observe that training

and validating distribution of legitimate users are very similar, and

approach the maximum faster, comparing to attacking sequences . . 90

5.2 Performance curve of the detection algorithm against validating and

frequently-changing hosts. 91

5.3 Performance curve of the detection algorithm against validating and

rarely-changing hosts. 92

5.4 Performance curve of the detection algorithm against validating and

rarely-changing hosts. 94

5.5 CDF of sequences in CLARKNET before reallocation 95

5.6 CDF of sequences in NASA data set before reallocation 95

5.7 CDF of sequences in ESHOP data set before reallocation 95

5.8 CDF of sequences in CLARKNET after reallocation 96

5.9 CDF of sequences in NASA data set after reallocation 96

5.10 CDF of sequences in ESHOP data set after reallocation 96

5.11 Performance curve for CLARKNET data set 98

5.12 Performance curve for NASA data set 98

5.13 Performance curve for ESHOP data set 98

5.14 Length-dependent detection for CLARKNET data set 100

5.15 Length-dependent detection for NASA data set 100

5.16 Length-dependent detection for ESHOP data set 100

5.17 Length-dependent detection for CLARKNET data set, and smaller

number of attacking hosts . 101

vi

5.18 Length-dependent detection for NASA data set, and smaller number

of attacking hosts . 101

5.19 Length-dependent detection for ESHOP data set, and smaller number

of attacking hosts . 101

5.20 Acceptance rate for CLARKNET before reallocation 103

5.21 Acceptance rate for NASA before reallocation 103

5.22 Acceptance rate for ESHOP before reallocation 103

5.23 Acceptance rate for CLARKNET after reallocation 104

5.24 Acceptance rate for NASA after reallocation 104

5.25 Acceptance rate for ESHOP after reallocation 104

vii

Abbreviations

Attacks - There are two main attack trends focused at in this thesis:

DoS - DoS stands for Denial of Service, and it constitutes popular computer

attack against legitimate targets. The result of the attack is some form

of preventions of the legitimate users from accessing a network service.

DDoS - DDoS stands for Distributed Denial of Service. The attack is spread

across a number of machines. Often, the volume of traffic generated by

the attacking hosts is large enough to cause services unresponsive.

RDDoS - RDDoS stands for Reflector DDoS. This attack is modification of stan-

dard DDoS where network communication is not essentially established

between an attacking host and a target. On the contrary, the RDDoS

attack takes place when a number of “reflectors” send packets to other le-

gitimate machines, called reflectors, and inserts the source address as the

address of the target. As a result, the reflectors establish communication

channel with the target, and attempt to resolve the lost communication

between each other, that has never taken place.

Detailed description of the attacks has been complied in Section 2.1.

Datasets - Throughout this thesis the following four datasets are considered:

CLARKENT - CLARKNET dataset spans two weeks (in August-September, 1995) of

activity, and contains 3,328,587 requests.

ESHOP - ESHOP dataset has been kindly provided by Giralte et al. [28]. Inside

this web-log there are only 64,044 different sessions observed during one

viii

day in 2009. The data set has been obtained to validate the proposed

approach for a relatively smaller and newer data set.

MSNBC - MSNBC dataset has been obtained during a day-long activity of a web

server, on the 28th of September, 1999. It consists of 989,818 sequences

of requests.

NASA - NASA dataset has been recorded in two weeks in (in July-August, 1995),

and contains 3,461,612 requests.

Packets - Typical three way handshake during TCP/IP connection establishment con-

sists of the following packets:

SYN - Initially, a first step of the handshake procedure begins with a SYN syn-

chronisation packet. Clients generates its own sequence number seqc = x,

used for the order control of transmitting packets.

SYN, ACK - The availability of the target service and confirmation of the SYN packet

arrival is carried out by transmission of SYN, ACK packet. The target

machine replies with its own sequence number seqt = y, and acknowl-

edgement number of the client first packet ackt = x+ 1

ACK - Client confirms the handshake completion by incrementing its own ac-

knowledgement number ackc = y + 1

IDS Performance - The performance of IDS’s is measured by analysis of the following parameters

True Positive - is an event when actual illegitimate activity is correctly recognised

False Negative - denotes an event when malicious activity is marked as legitimate at-

tempt

True Negative - is an event when legitimate activity is marked correctly as harmless

attempt

False Positive - false positive alarm describes misclassification of legitimate activity as

malicious

ix

ROC Curve - In addition, the performance of IDS can be represented with Receiver

Operating Characteristic (ROC) curve that provides insight into overall

classifier’s accuracy. This curves depicts a trade-off between FP and TP .

x

Notations

Dataset the following notation is used to described datasets and what they consist of

D - denotes a dataset. Each dataset consists of ordered requests generated

from an IP address, as they appeared during dataset recording. Detailed

description can be found in Section 3.1.2. Obtained datasets are split

into two datasets:

T - a subset of D dataset for training purposes

V - a subset of D dataset for validating patterns obtained having analysed

T.

Bi - in some cases, T is split into partitions Bi, 1≤i≤p to improve computa-

tional speed of the resource-intensive algorithm.

A - In addition, there are datasets with manually generated sequences of

requests for a given website, and denoted with A. These are further

categorised into the following various browsing strategies:

ACR
- denotes hosts Rarely-Changing categories and is fully described in Sec-

tion 4.9.1.

ACF
- denotes hosts Frequently-Changing categories and is fully described in

Section 4.9.2.

AH - denotes a datasets consisting of requests generated by hosts that browse

website similarly to human agents, and is described Section 4.10.

AN - denotes a set of strategies generated by naive attackers, and is fully

described in Section 4.10.

xi

AR - denotes a dataset of hosts browsing a website in a random-walk fashion

and is described in Section 4.10.

si - denotes a sequence of i-th user inside a dataset.

r∧ - denotes a minimum number of requests observed in a dataset for a user.

r∨ - denotes a maximum number of requests observed in a dataset for a user.

Cj - denotes j-th cluster, and 1≤j≤k.

Ω - all unique requests observed inD, are stored inside set Ω. In a particular

case, set Ω is extended by one element (see Section 4.2 for details).

Pj(a, b) - denotes a joint distribution between two consecutive requests a, b such

that a, b ∈ Ω.

L(si|Cj) - given probability distribution of a cluster, likelihood of observance tran-

sitions in si inside cluster Cj is denoted with L(si|Cj).

KL - differences between two distributions are calculated with Kullback-

Leibler divergence [41].

JSD - However, KL divergence is not symmetric, nor does it satisfy triangle

inequality. As a result, Jensen-Shannon divergence (JSD) is used; see

[20] for details.

ηj,t - is a threashold of JSD, under which two clusters are merged together

(i.e. when JSD(Pj ||Pt)≤ηj,t), and and 1≤j<tleqk.

dM (vi,µj) - denotes a Mahalanobis distance between a vector of average categorical

requests vi observed inside sequences of requests si, and an average vector

of categorical requests µj , observed in cluster Cj.

mi - denotes a vector of average Mahalanobis distances in cluster Ci.

I(a;b) - represents a value of mutual information between two different consec-

utive requests, such as a, b ∈ Ω and a 6=b.

xii

ij - stands for a two dimensional vector of maximum and minimum value

of mutual information observed in cluster Cj .

ΛL
A

- denotes a value of Bayes Factor, in other words, a ratio of evidence sup-

porting legitimate nature of a sequence (i.e L), comparing to the counter

evidence (i.e. anomalous nature denoted with A)

λ· - λ· is a threshold above which a connection is marked as anomalous. In

general there are two thresholds depending on range Bayes factors are

measured. λS is used during “soft” classification, while λH is used during

“hard” classification (see below for details).

HH - denotes a set of clusters for which “hard” detection techniques are ap-

plied (i.e. more legitimate hosts are classified as attacking). These clus-

ters should be frequently visited by attacking hosts, therefore the negative

impact on legitimate users is of less importance.

HS - denotes a set of clusters for which “soft” detection techniques are applied

(i.e. more malicious hosts are classified as legitimate). These clusters are

populated by legitimate users, therefore detection thresholds should be

relaxed there.

ℓj,r - it is a matrix containing log-likelihood values for each cluster (i.e.

1≤j≤k) and between r∧ and r∨ requests.

xiii

List of Publications

1. Pawel Chwalinski, Roman Belavkin, and Xiaochun Cheng. Detection of Appli-

cation Layer DDoS Attack with Clustering and Likelihood Analysis. In Globe-

com 2013 Workshop - First International Workshop on Security and Privacy

in Big Data (GC13 WS - BigSecurity), Atlanta, USA, December 2013.

2. Pawel Chwalinski, Roman Belavkin, and Xiaochun Cheng. Detection of Ap-

plication Layer DDoS Attacks with Clustering and Bayes Factors. In Inter-

national Conference on Systems, Man, and Cybernetics (SMC), 2013 IEEE,

October 2013.

3. Pawel Chwalinski, Roman Belavkin, and Xiaochun Cheng. Detection of HTTP-

GET Attack with Clustering and Information Theoretic Measurements. In

Proceedings of the 5th international conference on Foundations and Practice

of Security, FPS12, pages 45-61, Berlin, Heidelberg, 2013. Springer-Verlag.

xiv

Acknowledgments

First and foremost, I wish to thank my advisor and mentor Dr Roman Belavkin,

who has given me great inspiration in virtually everything I have done at Middlesex

University. Roman has had a tremendous influence on my perception of intrusion

detection and statistical analysis. We have spent together numerous evening, and

he has always had time for reading mine yet-another report.

Similarly, I am greatly indebted to Dr Xiaochun Cheng for his creative ideas

and contributions. The encouraging criticism at the early stage of this research

allowed me to understand the shortcoming of my preliminary work.

Also, I would like to express my gratefulness to the Middlesex Research

Office, and especially to Professor Richard Comley, for showing belief in me and

offering a studentship. My research would have been impossible without the help I

have received from the University.

Moreover, I would like thank you Luis Campo Giralte from University Rey

Juan Carlos. Luis was the only author working on similar problem who agreed on

sharing his data set with me. Therefore, his contribution to this research is greatly

appreciated.

I am grateful to all my Friends from TG22 who have shared the moments of

happiness and disappointment with me throughout the four years I have spent at

Middlesex University.

Moreover, I am grateful to Michal (feksio) who has taught me more about

programming over beer and during night chats, than any other teacher.

Lastly, I would like to thank my fiancée Marta for her truly and loving

support during time when I could not really be there for us.

xv

Declarations

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others. This

copy has been supplied on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement.

October, 2013

Pawel Chwalinski

xvi

Abstract

Unsolicited web browsing denotes illegitimate accessing or processing web content.

The harmful activity varies from extracting e-mail information to downloading en-

tire website for duplication. In addition, computer criminals prevent legitimate

users from gaining access to websites by implementing a denial of service attack

with high-volume legitimate traffic. These offences are accomplished by prepro-

grammed machines that avoid rate-dependent intrusion detection systems.

Therefore, it is assumed in this thesis that the only difference between a

legitimate and malicious web session is in the intention rather than physical char-

acteristics or network-layer information.

As a result, the main aim of this research has been to provide a method

of malicious intention detection. This has been accomplished by two-fold process.

Initially, to discover most recent and popular transitions of lawful users, a cluster-

ing method has been introduced based on entropy minimisation. In principle, by

following popular transitions among the web objects, the legitimate users are placed

in low-entropy clusters, as opposed to the undesired hosts whose transitions are un-

common, and lead to placement in high-entropy clusters. In addition, by comparing

distributions of sequences of requests generated by the actual and malicious users

across the clusters, it is possible to discover whether or not a website is under attack.

Secondly, a set of statistical measurements have been tested to detect the ac-

tual intention of browsing hosts. The intention classification based on Bayes factors

and likelihood analysis have provided the best results.

The combined approach has been validated against actual web traces (i.e.

datasets), and generated promising results.

xvii

Chapter 1

Introduction

There is a handful of different types of attacks designed for almost each layer of OSI

network model. In principle, network communication employs seven abstract layers:

Physical, Data Link, Network, Transport, Session, Presentation and Application. In

this thesis, the focus is put on the application layer and Hypertext Transfer Protocol

(HTTP) protocol.

HTTP protocol is used to make information stored on web servers readable

for human users. In parallel with great usefulness, the openness of HTTP put In-

ternet users in jeopardy of being victim of an attack generated by hackers. One of a

Distributed Denial of Service (DDoS) attack is HTTP-GET attack, also referred to

as Application-Layer attack. This attack is based on the transmission of GET re-

quests, sent by computer hosts. In theory, web-browsing is based on GET requests

generated by sender. For two-node communication, sender repeats sending GET

requests to receiver who replies with requested data. This simplicity provides a way

of exhausting physical limitation of a web server. Computer criminals might open

a large number of connections in order to reach the maximum number of available

slots at the server.

Scenario for running the HTTP-GET attack is similar to other standard

techniques used by attackers performing DDoS attack. At first, a number of hosts

are infected with a computer virus, and attackers take control over the number of

zombies (i.e. infected machines). Subsequently, attackers generate a large volume

of traffic directed at victim’s website with the application of infected hosts, which

continue to send GET requests. While the number of compromised systems grows,

hackers manage a network of computers called bot net. Moreover, this network can

be used to provide personal and sensitive information (e.g. bank records) by eaves-

dropping on one’s activity. In fact, bot nets can store up to 70GB of sensitive data

1

(i.e. user-names and corresponding passwords, bank details etc.) within one week

[85]. Besides, popular security company Symantec has recently reported that hiring

a bot net of nearly 6,000 machines costs only 350$ per week [34].

Therefore, it is assumed in this thesis that computer viruses will prevail and

remain present. It stems from the fact that security policies are either not imposed

or ignored. As it has been observed, viruses make up for the underlying mechanism

that helps computer attackers pursue their actions. In addition, outburst of com-

puter viruses is reported on a daily basis, leading to the conclusion that a chance of

creating a bot net by criminals is reasonably high. Moreover, the flaws in popular

operating systems and software application are discovered on a daily basis as well.

Thus, infection is an inseparable factor of networked computer systems, and should

be stated as a fact. The problem that is tackled in this thesis is not related to virus

detection or prevention; neither it is related to malicious code propagation. On the

contrary, a potential detection of flooding hosts has been investigated. If a web

server is exposed to this attack, it experiences a surge of legitimate GET requests.

The difficulty in detection of this behaviour stems from legitimate nature of attack-

ing hosts. Rather than sending ill-formatted network packets, attackers make their

zombies comply with computer network regulations, and mimic genuine activity.

Indeed, some researchers claim that the intention is the only difference among

connections [102]. In addition, because of stealthy appearance of the zombies, their

activity becomes indistinguishable from legitimate data flow [80]. Moreover, detec-

tion mechanisms based on traffic characteristics become invalid [101]. Yet another

obstacle with HTTP-GET attack is a ubiquitous problem in intrusion detection

called flash crowd effect. It is a situation when many legitimate users visit a website

in a short time. As a result, the web-server experiences the influx of new hosts, but

it should be recognised as lawful activity.

Moreover, another branch of research closely related to Application-layer at-

tack is detection of unsolicited crawlers. In general, crawler is a reference to an

automatic process of extracting information from a website. Numerous business

rely on popularity of their website. As a result, bots (i.e. crawlers) from popular

web search engines (e.g. Google bots) are more than welcome, as their visits increase

popularity in the corresponding search engines (i.e. Google). Moreover, there are

link-checkers, that validate web structure saved by web administrators. However,

there are multiple instances of unwanted bots. Tan et al. [88] divides malicious

crawlers as: (i) shop-bots, (ii) e-mail address collectors and (iii) off-line browsers.

The first group is used to automatically process information at shopping website

for different purposes. Evidently, these might be betting crawlers (i.e. searching for

2

best offers of different products) or deal searchers. Similarly, (ii) search for e-mail

addresses to build a spam database. Lastly, (iii) are used to download entire website

contents. Sometimes, (iii) are referred to as applications for site mirroring. Observe

that crawlers do not attempt to exceed or harm servers. On the contrary, by legiti-

mately accessing a website, their harmful act is the result of their lawful activity.

Therefore, in order to detect anomalous activity the following are assumed:

1. The focal point of this work states that it is possible to distinguish among legit-

imate and illegitimate sessions by looking at patterns of browsing behaviour.

In other words, during a session, human agents visit different categories in

similar pattern.

2. Attackers do not have access to the log of a website, and are unable to repeat

valid (i.e. popular) legitimate transitions.

The above conditions imply the following postulate. Essentially, it is assumed that

current interest (i.e. frequently observed transitions between hyper-links in most

recent past) of actual users varies in time, and following (2) from above, it provides

basis for distinction of malicious agents. As it transpires in this thesis, actual users

visit the same pages, at similar times. As a result, because the interest changes,

and the legitimate users generate that process, their transitions will correspond to

the actual interest of users browsing a website. Therefore, by concealing web log

from attackers , their preprogrammed machines fail to replicate the. This process

is described in the following section.

1.1 Access Matrix as Interest Measurement

Based on the assumptions introduced above, the following scenario is presented.

Supposed there is a website with 4 hyper-links only, namely: home.html, download.php,

about.html, email.php. Having analysed a log of clicks generated by actual users,

an access matrix has been obtained representing how often a pair of consecutive

requests is observed. This is presented in Fig. 1.2. One can note that home.html,

about.html and email.php are more frequently visited comparing to download.php.

However, patterns recorded and presented in Fig. 1.2 are not distinctive enough

to provide classification. In other words, randomly selecting bots could easily be

perceived as a legitimate user, as the distribution of requests in Fig. 1.2 is almost

flat.

Therefore, suppose there is a way to split the access matrix in to a number

of clusters. In the scenario above the access matrix is divided into three clusters.

3

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

0
10
20
30
40
50
60
70
80
90

100

Figure 1.1: Cluster C1

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

0
10
20
30
40
50
60
70
80
90

100

Figure 1.2: Access Matrix

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

0
10
20
30
40
50
60
70
80
90

100

Figure 1.3: Cluster C2

HOME.HTML
DOWNLOAD.PHP

ABOUT.HTML
EMAIL.PHP

HOME.HTML

DOWNLOAD.PHP

ABOUT.HTML

EMAIL.PHP

0
10
20
30
40
50
60
70
80
90

100

Figure 1.4: Cluster C3

Figure 1.5: Division of access matrix into a number of clusters.

Clearly, patters of requests observed in Fig. 1.1,1.3,1.4 provide more insight into

actual interest of legitimate users. Therefore, the main aim of this thesis is to de-

velop an algorithm that forms unique and popular interest groups (i.e. patterns,

as the ones presented in Fig. 1.1,1.3,1.4). Subsequently, a measurement should be

introduced that on a per-cluster basis, detects the malicious or legitimate intention

of a host depending on information encoded in the set of clusters.

These aims formulate research question presented in the following subsection.

4

1.2 Research Question

Having introduced the attack and its intention dependency, this research tries to

address the following question: Can unsolicited web browsing be detected without

temporal information by means of clustering and statistical measurements ?

In general, the above question can be broken into the following questions:

1. Is there a clustering algorithm that allows for discovery of recent patterns of

interest of legitimate users?

(a) Is there a metric that explains the relation among visiting pages?

(b) Is the clustering good enough for attackers not to discover it?

(c) Can clustering provide insight whether there is a malicious attempt taking

place at the server?

2. What kind of statistical test can be used to detect whether or not one connec-

tion is attacking or legitimate, regardless of strategies chosen by attackers?

3. Can an attack be detected in real time?

These questions have been studied in this thesis, and the answers are provided as

the contribution to knowledge. To provide answers to the formulated questions, the

large task has been divided into following stages:

1. Data Collection (Acquisition) - For the purpose of this research four data

sets have been obtained (described in detail in the following chapters). Specif-

ically, given different ways that web data sets have been recorded, web interest

is broken into two types: (i) macro-interest and (ii) micro-interest approaches.

While (i) analyses interest among web categories, (ii) is a more detailed ap-

proach, and considers relations among hyper-links.

2. Data Preprocessing - It is observed that current web pages contain numer-

ous web objects, each identified by its Uniform Resource Identifier. As a result,

before analysis of (ii) is performed, a method of dimensionality reduction is

introduced, based on popularity of object requests.

3. Feature Selection - Given the assumptions about the regular transitions of

legitimate users, the main feature to consider will be a transition between ob-

ject of interest during session. As a result, it has been shown that a change

in the expected order or number of transitions is indicative enough for classi-

fication.

5

4. Clustering - A clustering algorithm is introduced to group users sequences

of HTML requests, which express similar interest. The algorithm allows for

discovery of recent pattern of behaviour that remain unknown to attackers. As

a result, by failing to adapt to the clustering scheme, attacking hosts indicate

their presence by making unlikely transitions inside a cluster.

5. Anomaly Measurement / Classification - Once the clustering scheme

has been violated, and the attacking attempt discovered at a server, a set

of statistical measurements is introduced to measure whether one sequence of

requests is malicious or lawful. Ideally, it is expected to have one measurement

that should suffice for intention detection, regardless of different browsing

strategies, implemented by attackers. Moreover, this measure should be scale-

independent (i.e. undesired browsing by a single crawler should be notified as

well).

6. Results Analysis - The only techniques for improving performance of clas-

sification are either by extension of feature space or improved data set decom-

position, or both [46]. As a result, discussion of both is provided to picture

future ways of research to improve this work.

1.3 Contribution to Knowledge

In general, the detection of unsolicited web browsing comes down to intention clas-

sification, and in fact it is the main problem of this research. In general, there

are two main approaches based on authentication [80] and profile based approaches

[102, 82]. The authentication methods attempt to recognise malicious user by pro-

tocol modification or presenting various challenges for arriving connections [4]. On

the contrary, the other methods focus on recent patterns of activity and compare

incoming connections against the profile.

This research falls into the latter category, and a clustering approach is intro-

duced to group sequences of requests representing similar behaviour. The algorithm

is motivated by the work of Barbará [3], where entropy minimisation algorithm has

been used for categorical data streams. However, in the original form, the algorithm

does not allow for clustering of sequences, which are built on a sample space with

numerous events (e.g. visiting a link on a e-commerce website), due to computa-

tional constraints. Therefore, the modified version of the algorithm is the main

contribution that allows to detect whether or not the arriving traffic contains any

attacking sequences.

6

In addition, a measurement based on likelihood analysis is introduced. This

measure is: attack-strategy independent (i.e. is able to detect different browsing

strategies chosen by attackers), and attack-scale independent (i.e. regardless of the

number of browsing bots, the attempt is discovered, especially when this number is

very small).

1.4 Organisation of the Thesis

The above mentioned considerations have been organised in the following structure

• Chapter Two - Theoretical Background - an introduction to intrusion

detection field is given in this chapter. Moreover, the exact scenario of running

an Application-Layer attack is provided.

• Chapter Three - Literature Review - in this chapter, the gaps of current

detection techniques identified, and the research question is formulated.

• Chapter Four - Methodology - the mathematical apparatus applied in

the clustering mechanism and statistical measurements are described in the

methodology chapter. Mathematical formulation and implementation of the

algorithm is described here. Moreover, statistical measurements have been

introduced to measure intention of arriving hosts.

• Chapter Five - Results Analysis - in this chapter, analysis of the clustering

algorithm and detection performance of statistical measurements are provided.

• Chapter Six -Discussion and Future Work - advantages and disadvan-

tages of the approach, and comparison against existing solutions are given in

this chapter. Moreover, this thesis concludes with analysis of work that should

be done to improve this research.

7

Chapter 2

Theoretical Background

An Intrusion Detection System (IDS) is a tool that attempts to discover intrusion

that it is taking place in a system. Suppose that IDS analyses current activity of

users in an arbitrary system. Users’ actions can be thought of as packets sent from

one host to another, web pages visited during a web session, Structured Query Lan-

guage (SQL) queries sent to a database server, and others. Note that each entity

belongs to a set with unique elements. For example, entity web page belongs to a

set with domain relatively different than a set containing possible SQL queries. As

a result, IDS monitors sequences of entities generated from each set, and searches

for suspicious activity. Moreover, users’ actions are represented as sequences of

actions, and are grouped in a data set D of current activity in a system. Each

variable-length tuple si, 1≤i≤|D| inside D, denotes a sequence of i-th agent, such

that si = (s1i , s
2
i , . . . , s

j
i , . . . , s

ni

i), where ni denotes a number of actions that i-th

user took. Each sji should be thought of as information related to j-th action inside

sequence si (e.g. j-th request of web page, j-th packet in a network stream, etc). It

is assumed that information encoded in sequences of requests is sufficient for classi-

fication.

Note that the intention of activity could be either peaceful or harmful. As

a result, for the binary intention, IDS employs a classification function f : D →

{−1,+1} that assigns a label y = +1 to a potentially legitimate sequence, and

y = −1 is assigned to malicious sequences. N represents the maximum length of

sequences inside D. Thus, given input data si, IDS tries and assigns the class yi ∈

{−1,+1}. In addition, given the proportion of pairs {(s1, y1), (s2, y2), . . . , (s|D|, y|D|)}

assigned to one class or the other, it is possible to evaluate whether a system is ex-

periencing the attack, or whether the current users are legitimate.

Observe that the motivation behind using IDS is existence of legitimate pat-

8

terns inside D, and their regularity. Traditionally, it is assumed that Denning [13]

introduced the concept of IDS, which was based on searching for deviations from

a regular pattern of legitimate users. On he other hand, attacking hosts differ in

behaviour. In general, IDS searches for hosts that send multiple request, resource-

intensive SQL queries, or even attempt to download heaviest images from a website.

These actions, are rarely observed in D, and are blindly assumed as deviations.

Surprisingly, the ideas formulated by Denning in 1987, have not changed at all, and

current IDS’s follow the concepts introduced in [13]. However, as it transpires in

this chapter, it is very challenging to define what malicious really is, in the area of

unsolicited web browsing.

In the following section, a detailed description of the attack is provided. Ini-

tially, it is shown how the attack was brought to life. Specifically, different types of

attack and its targets are presented; followed by typical victims, and deployment of

their IDS’s. Moreover, difficulties related to the attack detection are demonstrated.

In principle, a sample of code is provided from the actual bot net to show how easily

the attack can be triggered. This concludes theoretical description of the attack.

Subsequently, the focus is put on research in IDS domain. Initially, a com-

parison is drawn among other approaches against unsolicited web browsing. The

chapter concludes with identification of existing gaps in the contemporary field, and

motivation for the current research.

2.1 Different Types of Denial of Service Attack

It is well known that network communication can be divided into 7 abstract layers

with ISO/OSI model [90]. These are: Physical, Data link, Network, Transport,

Session, Presentation, and Application layer. In general terms, data created (with

some computer software, i.e. application) by user in Application layer is subjected

to different form of formatting and encapsulation, before it is received (in the cor-

responding application) by receiver. As it has been mentioned in Chapter 1, HTTP

protocol is located in Application layer. However, historically, DDoS attacks origi-

nated from the lower layers, because popular application (e.g. web browsers) were

introduced later in time. One of the very popular DDoS attacks, SYN Flood (explic-

itly described in RFC 49871[17]), is based on large volume of TCP SYN packets sent

to receiver, and taking place in Transport layer. SYN Flood was formally introduced

in 1994 [17], and research community started working on counter measurements in

1997, when pioneered by Schuba et al. [75]. In general, the attack misuses a re-

1http://www.ietf.org/rfc/rfc4987.txt

9

http://www.ietf.org/rfc/rfc4987.txt

quired step in TCP/IP transmission establishment. The establishment process for

TCP/IP and is referred to as TCP three-way handshake [90].

H

V

H

V

SYN

SY
N-
AC

K

ACK

A

A

A

V

V

V

SYN

SYN

SYN

SY
N
-A
C
K

SY
N
-A
C
K

SY
N
-A
C
K

Legitimate

Establishment

SYN

Flood

Figure 2.1: Internet attackers have learned to manually modify packets, to run SYN
Flood attack. As a result, they reserve resources with non-existent IP addresses
exhausting the server’s resources.

A human agent (denoted with H in Fig. 2.1) sends a synchronising packet

(i.e. SYN), that is confirmed by the victim (denoted with V in Fig. 2.1) (with a

SYN-ACK), and the agent starts sending data with a subsequent confirmation (with

ACK) of the first victim’s packet. This scenario is presented on the left-hand side of

Fig. 2.1. The Internet attackers (denoted with A in 2.1) can violate this mechanism

by opening multiple slots at the victim site, and never confirming them, what has

been presented on the right-hand side of Fig. 2.1. Note that if the victim knows the

network address of attackers, then the addresses might be taken note of, and stored

as malicious. However, attackers might randomly generate arbitrary addresses, and

send packets to the victim. This way, the victim keeps the resources reserved for a

non-existent address. In addition, this might lead to exhaustion of resources, and

success of the attackers.

The way that the DDoS attack against the HTTP protocol is run, is alike

with the scenario described above. To understand attackers’ behaviour a copy

of Agobot virus [63] has been analysed. It is one of the most famous virus in-

stances that has been studied by the research community. The most interesting

features of the code has been presented in Listing 2.1. Note that the code por-

tion is just a small excerpt from numerous functions, and for presentation only.

10

Listing 2.1: Portion of Agobot’s code

1 /∗ . ∗/

2 REGCMD(m cmdUDP, ”ddos . udpflood ” , ” s t a r t s a UDP f l ood ” , f a l s e , t h i s) ;

3 REGCMD(m cmdSyn , ”ddos . syn f l ood ” , ” s t a r t s an SYN f l ood ” , f a l s e , t h i s) ;

4 REGCMD(m cmdHTTP, ”ddos . h t t p f l o od” , ” s t a r t s a HTTP f l ood ” , f a l s e , t h i s) ;

5 REGCMD(m cmdStop , ”ddos . stop ” , ” s top s a l l f l o o d s ” , f a l s e , t h i s) ;

6 /∗ . ∗/

7 g pMainCtrl−>m cIRC . SendFormat (m bSilent , m bNotice , m sReplyTo . Str () ,

8 ”%s : f l o od in g %s port %u , %u times , %d ms delay . ” , m sDDOSName. CStr () ,

9 uURL. sHost . CStr () , uURL. iPort , m iNumber , m iDelay) ;

10 /∗ . ∗/

11 char ∗ g szUserAgents []={

12 ”Googlebot /2 .1 (+http ://www. googlebot . com/bot . html) ” ,

13 ”Moz i l l a /4 .0 (compat ib le ; MSIE 4 . 0 1 ; Windows 95) ” ,

14 /∗ . ∗/

15 int iUserAgent=brandom(0 , iNumUserAgents) ;

16 /∗ . ∗/

17 DoHTTPRequest(sSendBuf . CStr () , uURLTemp) ;

18 /∗ . ∗/

19 int i S l e ep ; i f (! m iDelay) i S l e ep=brandom(3600000 , 86400000) ; else

i S l e ep=m iDelay ;

20 /∗ . ∗/

Once complied, the bot master is allowed to pick what type of attacks to perform

(lines 2-5). Subsequently, a command is sent over a hidden chat channel indicating

which host should be attacked (lines 7-9). Note that parameters like the number

of requests or delay can be specified (line 8). Subsequently, a bot picks up the

parameters of the attack and begins initial configuration. Initially, a bot will try

to mask its presence and choose a random (line 15) agent configuration (e.g. as a

Googlebot, or a popular web browser; see lines 12-13). As a result, the victim host

will believe that transmission is carried out with a valid host. Subsequently, the bot

can request different objects (images, scripts, HTTP pages, etc.) in a loop. Once

the number of requests has been exhausted (specified in line 8) the bot remains

idle. This inactivity time can be set up manually (line 9), or is predefined as a time

period between 1 (3600000 milliseconds) and 24 (86400000 milliseconds) hours (line

19).

The design of the code implies the following issues. First of all, the attack is

run by sending HTTP request. As a result, transmission is always established, and

confirmed by both parties. Therefore, the victim knows the network location of a

bot. Secondly, attackers can specify physical parameters of actual connection. As a

result, it is trivial to run the attack at a lower rate, so that bots are not detected

11

by a rate-dependent IDS. In addition, the bots are programmed to act as legitimate

users. Therefore, there are no deviations in semantic network regulations. Lastly,

the most appalling argument is the inactivity period set by the attackers. If not

chosen manually, it is being drawn from 1 to 24 hours. This implies that attackers

assume to have a large bot net and each of their zombies “can afford” to remain

inactive for up to 24 hours.

It is difficult to estimate the number of bots that a bot net consists of, as

discussed by Rajab et al. [69]. One of the reasons is the fact that infected hosts can

be members of different bot nets, as observed by Zhuge et al. [120]. In addition, bot

masters keep on changing their command and control (C&C) channels [85]. Indeed,

one of the possible medium for a C&C channel is application of Internet Relay Chat

(IRC) protocol. Observe, that bots using Agobot application will communicate with

the bot master using an IRC channel (see line 7 in Listing 2.1). Nevertheless, de-

pending on activity of actual hosts (i.e. being either on or off), the number of hosts

participating in attack can vary from few thousands to several hundred thousands

[85]. Therefore, suppose that bots have been programmed to visit a page every ten

minutes on a day or around 144 times per day. Assuming a 500,000 strong bot net,

a victim website might experience around 833 connections constantly browsing its

content. Obviously, these assumptions are very benign, and as Gu et al. [29] have

pointed out, traffic generated by bot nets can reach up to few Gigabytes in few

minutes.

Having analysed actions taken by attackers, the following sections explain the at-

tack, once the bot net has been activated. In principle, different approaches to

running the attack are presented. Moreover, different deployment locations of IDS

are considered.

2.2 Scenario of Denial of Service Attack

Paxson [65] observed that there are two main approaches to the attacks, defined

by the types of nodes that attackers might use. The first one is the previously

introduced DDoS attack, and depicted in Fig. 2.2. The other one is Reflector DDoS

(RDDoS), and presented in Fig. 2.3. In order to judge whether or not the attack is

taking place, IDS is placed in different physical location of a networked environment.

In the subsequent session, a network design is provided with description of where

detection can take place. In addition, different DDoS targets (i.e. victims) are

described in detail.

12

A

M M M

Z Z Z Z Z

Packet

Source:V

Destination:Z

Packet

Source:Z/S

Destination:V

I N T E R N E T

V

Victim

Figure 2.2: Simple scenario of DDoS attack.

From Figure 2.2 one can understand the difficulty of DDoS attack detec-

tion. Initially, attackers infect and take control over a number of computer hosts.

Subsequently, a smaller portion of the nodes is transformed into master nodes (de-

noted with M). These are used by attackers to remain anonymous, and refrain

from directly communicating with zombies (denoted with Z). On the other hand,

the remaining nodes are used for performing the attack, and are transformed into

zombies. Because of the way TCP/IP protocol is designed, attackers are able to

manually fill up arbitrary fields of packets. Therefore, master slaves transmit many

packets to zombies with source field set up to the victim address, and destination

set the a particular zombie’s address. This process directs following replies at the

victim. In principle, according to the protocol regulations, zombies reply to the

victim to revoke communication. Moreover, zombies might be programmed to spoof

(i.e. randomly generate) their physical address (denoted with capital S in the source

field). By doing so, victim replies to likely non-existing destination, and awaits for

incoming packets. In addition, the resources are being reserved at the victim’s site

for some limited time in case the transmission is valid, and with an actual node.

Note that if address is not spoofed, then victim is able to locate attacking hosts.

However, if attackers manage an enormous bot net, and anonymity of their hosts is

not required, they prefer to establish communication with the victim.

13

A

M M M

Z Z Z Z Z
Packet

Source:V

Destination:R

Packet

Source:R

Destination:V

R R R R R

I N T E R N E T

V

Victim

Figure 2.3: The application of Reflectors introduces challenging level of detection
difficulty.

Another form of the attack incorporates an additional layer of zombies called

reflectors, and is presented in Figure 2.3. In this scenario, attackers are happy to

reveal the identity of reflectors. As it has been noted reflector can be any host that

returns a packet, if sent a packet [65]. Therefore, the attack might utilise any server,

and any machine that can provide two-way communication.

As for now, it becomes obvious that detection of RDDoS is extremely chal-

lenging. Clearly, it can be based on the approach that requests sent by zombies

are regular enough to implement semantic classification, which assumes traffic reg-

ularity [65]. In addition, detection of spoofed addresses can be resource-intensive.

Ferguson et. al. [22] observed that by monitoring traffic in centralised locations

it should be possible to filter out malicious traffic. Clearly, if a router observes a

randomly generated address field that cannot be coming from its address pool, then

the packet should be dropped. This form of attack prevention is called egress filter-

ing [16]. Yet another method for detection of spoofed addresses might follow simple

logic, and the following condition. Suppose that every incoming packet comes from

a spoofed-address host. Therefore, any resource reservation takes place once a con-

nection has been established (i.e. a receiver knows that a sender is a valid host, and

they have exchanged packets with confirmation of their authenticity). This method

has been developed by Brenstein et. al. [12], it is called SYN-COOKIE, and its

implementation has been introduced into FreeBSD Unix [48].

Note that detection can take place at different points of network topology.

14

Clearly, from a source of attacks to the victim’s destination there are multiple lo-

cations at which detection can be performed. These are described in the following

section

2.3 Location of Detection Systems

According to Mirkovic at. al. [56] defence mechanism can be placed in three main

locations: victim network, intermediate network and source network. Figure 2.4

shows the scenario of RDDoS attack and possible deployment locations. Chang et.

al. [8] breaks intermediate network into: upstream ISP network and victim’s ISP

network.

A

M M M

Z Z Z Z Z

OUTGOING

TRAFFIC

INCOMING

TRAFFIC

Packet

Source:V

Destination:R
R R R R R

B A C K B O N E (INTERNET)

⊗ Upstream

ISP

⊗

Victim’s ISP

⊗

Victim’s ISP

⊗

Victim’s ISP

⊗

Victim’s WAN(Core) Router

IN

IN

IN

OUT

OUT

OUT

Packet

Source:R

Destination:V

V

Victim

Figure 2.4: Packet traversal from attacking hosts to victim.

Clearly, because victim network is always the ultimate target of the attack,

15

it should be relatively easy to discover malicious activity. This deployment should

be placed at victim’s Wide Area Network (WAN) router in Figure 2.4. Below the

router there are two streams of packets denoting incoming (denoted with IN) and

outgoing (denoted with OUT) packets. Note that the addressing scheme is the same

for: (i) outgoing traffic from Z nodes to R nodes; for (ii) incoming traffic from R

nodes to victim V; (iii) and the outgoing traffic from victim V to reflectors. It stems

from the fact that zombies trigger transmission by sending a response to reflectors,

which reply to the victim with actual packets. The arriving packets are correctly

marked from reflectors to the victim (see purple packets in Figure 2.4). The vic-

tim replies, and outgoing packets are denoted with the victim’s source address and

destination of a reflector’s address. The victim’s WAN router let packets through

because of their legitimate nature (i.e. the packets follow network regulations), and

because the source address corresponds to the memory-stored address of the victim.

Therefore, to some extent one should argue that the easiest (yet relatively difficult)

detection process should take place at the victim’s core router.

As it has been described in the previous section and referred to as egress

filtering, detection could take place close to the source network. This is just before

the backbone network denoted with blue rectangle in Figure 2.4. Again, egress fil-

tering should readily filter out the packets with spoofed source addresses. However,

reflectors are physical machines with valid addresses, and therefore this method

fails. The only solution is to assume there are some similarities in attacking traffic

of reflectors before it enters the backbone network.

The main problem with filtering traffic among routers inside backbone net-

works stems from speed and amount of data. Current Internet traffic, at Gigabyte

level with million of computers around the world, makes filtering implausible [8, 56].

For example, one can come up with opposite of the egress filtering, and block all

packets whose source addresses have never been seen at routers, or are not allowed

to travel between two nodes. This process is referred to as ingress filtering [22].

Because it protects backbone autonomous systems, it has to be planted in the back-

bone network. However, the computational cost related to detection at this level,

makes it difficult for implementation; moreover, it slows down router performance

significantly as observed by Geng et al. [26]. Therefore, these solutions yet effec-

tive are impractical because of the overhead in computations. Therefore, most of

the learning systems are placed very close to the victim’s site. However, technical

solutions presented in Section 3.1.4 vary from local to global solutions.

16

2.4 Victim Types of DDoS Attack

There are 5 main targets of network criminals [56]: 1.Host, 2.Resource, 3.Network,

4.Infrastructure, 5.Application. The methods and specifications of each attack have

been provided below:

1. Host attacks are targeted at a single host in order to reboot it or freeze it for

some time. There are many reasons behind attacking a single host. Mainly, the

attacks targeted at one host are part of a larger-scale operation. A host could

be a Linux-based server with multiple users that access multiple applications

in a shell environment (i.e. by typing in commands). Yeung et al. [108]

developed a method of users discrimination based on statistical analysis of the

sequence of commands and their likelihood of occurrence. Similarly to Yeung,

Ye et al. [107] have performed statistical analyses of system events. Therefore,

in general, detection for host based system comes down to two main sections:

building profiles of legitimate behaviour from past data (e.g. system log), and

feature selection that allow for user discrimination.

2. Resource attacks are targeted at crucial resources of a fretwork, for example

by halting a database server, access to a website will be limited. The solu-

tions vary from resource replication [56], through implementation of intrusion-

tolerant protocols as developed by Cachin at al. [7], to honey pots against

DDoS introduced by Weiler [96] (i.e. traps for scanning or attacking hosts).

3. Network attacks are against a portion of network subnet. Historically, it was

possible to detect these attacks at edge routers (see WAN router in Figure

2.4) by using application support. One of the first solutions of these types

was Snort, developed by Roesch [73] that is still one of the most famous IDS.

Subsequently, because of the amount of network traffic, the solutions have

moved from a centralised point to a more distributed approach as explained

by Vigna et al. [92]. However, in reality, detection and prevention mechanisms

are deployed at the backbone level as noted by the authors of[8, 56], and

victims are required to seek help from ISP.

4. Infrastructure attacks are directed at the key components of the backbone

network - the Internet. These involve attacks against global routers or do-

main name servers (DNS), as reported by Kambourakis et al [37]. Essentially,

switching off DNS servers enforces using physical addressing (e.g. http://

123.123.123.123) instead of a “name” encoded in DNS server (e.g www.

google.co.uk). However, the counter measurements involve cooperation of

17

http://123.123.123.123
http://123.123.123.123
www.google.co.uk
www.google.co.uk

backbone ISP administrators [56]. On the other hand, there are methods to

develop a new architecture against Infrastructure DDoS attack, as initially

proposed by Wan et al. [93].

5. Application attacks are attacks against one particular application running on a

system. As a result, by disabling application attackers prevent legitimate users

from accessing its resources (e.g. website content). As it has been described

in Section 1, and reported in [56] application attacks are the most difficult to

detect because of the legitimate nature of the attack. In principle, a victim ob-

serves incoming legitimate traffic that follows network regulations. Therefore,

the only way to stop the attack is by discovering patterns of legitimate users,

and hoping that attacking hosts are unable to repeat legitimate behaviour.

Historically, the attacks were deployed against ICMP protocol[56], a diagnos-

tic protocol used to communicate on errors existing in networks. However,

Moore et al. [57] have observed that attacks against ICMP make up for only

2% of all DDoS conduct observed in the wild. The other Application attack

is HTTP-GET attack, that has been analysed in this thesis. Moreover, El

Defrawy et al. [19] have shown that there is another attack that is using dif-

ferent types of reflectors. In their work, they have presented how to direct Bit

Torrent (i.e. popular P2P application for sharing purposes) traffic at arbitrary

host.

Clearly, victims described above detect attacks by noticing increased resource con-

sumption. Moreover, the research of this thesis is focused on attacks against ap-

plications. The main motivation behind research in the application layer attacks

stems from the legitimate behaviour of attacking hosts, and difficulty of separation

among legitimate and attacking hosts. However, when the increased number of legit-

imate users arrive at a website, their traffic should differ from attacking hosts trying

to overload resources. This phenomenon is described in detail in the subsequent

section.

2.5 Application Layer Attacks and Flash Crowds

Term flash crowd has been introduced by Niven in 1971 [61]. Originally, it described

an event in which a large number of people were transformed into places, where in-

teresting scenes were happening. Transformations were possible by transfer booths.

However, criminals were able to move as well. Therefore, an interesting event might

have attracted a large number of legitimate users, which could have further coin-

18

cided with the arrival of villains.

Similar behaviour takes place at websites. In particular, president elections

[35] or important sport events [101] (e.g. football World Cup) lure multiple users

into visiting a website. Subsequently, the web servers experience the increased num-

ber of hosts, and bandwidth consumption. Nevertheless, the traffic is legitimate,

and should be dealt accordingly.

Comparison of flash crowd and DDoS attack has been provided by Jung et

al. [35]. In [35], the authors have tried and found differences and similarities in

traffic features. Their main conclusions are formulated as follows:

1. Stable traffic of legitimate users during flash crowd - one of the most

useful assumptions in research against attacking bots is the fact that legitimate

traffic displays similar characteristic before, during, and after flash crowd.

As a result, the increased traffic is caused by the increased number of users.

Therefore, the increased rate of requests is not common during the flash crowd

event, on a per-user basis. Clearly, the server notices increase in the net request

per second average. However, it is due to the number of users, rather than

number of clicks. Moreover, legitimate users adapt to a more unresponsive

server, and decrease their rate of requests. This has been confirmed by Chen

at al. [10].

2. Flash crowd is caused by known users - Specifically, Jung has reported

that the number of previously seen subnet ID’s varies from 42.7% to 82.7%. On

the contrary, during DDoS attack (that attempts to mimic flash event) this

number corresponds to 0.6% - 14%. This implies that the attack is caused

by relatively small number of previously seen users. Moreover, during a flash

event the number of Autonomous Systems (i.e. unique IP addresses represent-

ing a subnet of hosts) can involve hundreds of AS’s, as reported by Wendell

et al.[97].

3. File popularity follows legitimate distribution - Pareto distribution has

been used as a standard to provide distribution of interests varying from most

popular to least popular web objects [6]. It is called Zipf distribution when

talking about discreet events. Jung has shown that during the flash event,

requested files follow Zipf-like distribution. In most general case, as pointed

out by Adamic et al. [1], a probability of requesting an i-th documents from

a N -document website is proportional to: P (i) ≈ 1
iα

where α ∈ [0; 1]. On the

contrary, the attacking hosts request distribution deviates from the expected

distribution. Moreover, the attacking hosts request only a small number of

19

web objects [35]. This assumption of the attacking behaviour is crucial to a

definition of strategies chosen in this thesis. Specifically, it will transpire that

this strategy will generate the best results, from the attackers’ point of view.

These conclusions are cornerstone to most of the previous works described in Section

3.1. Especially the first assumptions allows for distinction among user intentions,

as the attacking hosts are assumed to send requests at increased rate.

Moreover, having assumed that known users contribute to flash event, it

is reasonable to focus on new locations. However, the current architecture of the

Internet implies that addresses behind one IP address will be marked anomalous as

well. Clearly, address translation was employed by the overly increasing number of

hosts assigned to a network. As a result, a Network Address Translator2 has been

introduced, and formulated by Egevang [18]. In consequence, hosts behind one IP

address will be marked with the same address, and traffic separation is dealt with

by routers. Therefore, given conclusion (2) from above, it seems reasonable that

attackers infect random hosts, whose subnet address has not been seen before. As a

result, blocking new subnet might unwillingly block a legitimate user that happens

to be a neighbouring host to the attacking host(s).

In addition, given the exemplary zombie’s code (see Section 2.1), attackers

can possibly implement their bots to comply with (1). Furthermore, before running

the attack, they can direct their zombies at a website, to inject attacking subnets

into a set of former visitors. However, they will be unable to repeat (3), because it

is assumed that attackers do not know the actual interest of legitimate users.

Having introduced the attack, its location and deployment of IDS, and difficulty of

flash crowd detection, it is essential to turn attention to IDS and their performance.

Predominantly, standard measures of IDS performance are presented that are used

extensively across literature.

2.6 Performance of Intrusion Detection Systems

One of the ways to measure IDS’s performance is to analyse how often it misclassifies

or correctly recognises agents’ behaviour. Given that intention of each connection

is binary, the system can make a mistake or label it correctly. Note that intrusion

detection has been perceived as a branch of pattern recognition field. As a result,

traditionally, IDS’s performance can be described with four definitions [54] that

correspond to four possible states in Table 2.1, often referred to as a two-by-two

2http://www.ietf.org/rfc/rfc1631.txt

20

http://www.ietf.org/rfc/rfc1631.txt

confusion matrix. Observe that according to its definition, IDS searches for intru-

sions (rather than lawful behaviour). Therefore a hit (i.e. a success of any IDS) is

defined as follows:

Definition 1. True Positive - is an event when actual illegitimate activity is

correctly recognised (i.e. when si is malicious and f(si) = −1).

The opposite to the above denotes misclassification (of the positive), and is

explained in the following way:

Definition 2. False Negative - denotes an event when malicious activity is marked

as legitimate attempt (i.e. when si is malicious and f(si) = +1).

Similarly, for recognition of authentic behaviour, there are two corresponding

terms:

Definition 3. True Negative - is an event when legitimate activity is marked

correctly as harmless attempt (i.e. when si is legitimate and f(si) = 1).

Conversely, misclassification of rightful sequence si is defined as:

Definition 4. False Positive - false positive alarm describes misclassification of

legitimate activity as malicious (i.e. when si is legitimate and f(si) = −1).

Subsequently, rates of the above metrics are defined in the following way [21]:

1. True Positive rate, sometimes called hit rate or recall of IDS is estimated

with the formula

TP rate ≡
of positives correctly recognised

|positives|

where | · | denotes cardinality.

2. False Positive rate is often referred to as false alarm rate. Clearly, in IDS

domain a false alarm denotes a misclassified non-positive, (i.e. see Definition

4)

FP rate ≡
of negatives incorrectly classified

|negatives|

Other terms that often appear in IDS field are [21]:

Definition 5. Specificity denotes proportion of correctly classified negatives in a

test, and calculated as:

Specificity =
True negatives

False positives + True negatives

= 1− FP rate

21

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Actual
Predicted

Normal Intrusion

Normal True Negative False Positive

Intrusion False Negative True Positive

Table 2.1: Possible outcomes of IDS’s decision

Definition 6. Sensitivity is a synonym for recall, i.e. True Positive rate, and

defined as

Sensitivity =
True positives

False negatives + True positives

= 1− TN rate

Definition 7. Precision is defined as positive predictive value, and calculated as:

Precision =
True positives

False positives + True positives

= 1− FN rate

In general, the most important trade-off for IDS is the relation between FP

and TP , and presented in Figure 2.5. A point (0; 0) denotes very “poor” clas-

sification; the IDS never makes a wrong guess on legitimate activity, however, it

misclassifies all illegitimate agents (TP being equal to 0). This situation might cor-

respond to a system with unlimited resources, and able to provide intrusion-reliant

solution. On the other hand, a point (1; 1) represents a very “strict’ system for

which each sequence is illegitimate, regardless of the actual intention (TP , FP be-

ing equal to 1). Clearly, this might correspond to a scenario when the system has

been shut down, and awaits to be up again.

Ideally, one seeks the systems for which TP is close to 100% (i.e. when each

malicious attempt is recognised), and FP is close to 0% (i.e. no legitimate session

is misclassified). This scenario is very difficult to reach, and there are always some

miss-hits present in IDS classification. Nevertheless, the optimum performance of

any IDS is reached at point (0; 1), when IDS has learned many informative features

that allow for perfect classification.

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru
e
P
os
it
iv
e

Random Detection
Improved Detection
The Best Settings
Best Performance (FP: 0.20, TP: 0.75)

Figure 2.5: Receiver Operating Characteristic curve for three IDS’s systems, per-
forming at different

In addition, the performance of IDS can be represented with Receiver Oper-

ating Characteristic (ROC) curve that provides insight into overall classifier’s accu-

racy. Bradley [5] and Fawcett [21] have written exceptional tutorials on application

of ROC curves in the evaluation of machine learning algorithms.

Suppose that there is an arbitrary IDS, and its performance for three different

settings have been presented in Fig. 2.5. Observe, that in this scenario the perfor-

mance is presented as a line (rather than a single point), and it is normally related

with performance conditioned on some parameters θ. This can represent a varying

number of actions stored in a sequence si. Therefore, suppose that θ ∈ {0, N}, where

N again denotes the longest possible sequence, and suppose further that N = 10.

Initially, performance of neither of the systems presented in Fig. 2.5 can classify

incoming connections before they make a first request (i.e. point (0, 0)). For the sys-

tem presented in Fig. 2.5 short legitimate sequences are popular. This corresponds

to a high TP , and relatively low FP . However, the longer the sequences, the more

legitimate sequences are misclassified. Furthermore, this comes with a trade-off of

a higher rate of intrusion detection.

Moreover, suppose that there is extra information, say time-zone, and is di-

vided into three zones; thus three performance curves in Fig. 2.5. Therefore, rates

depicted in Figure 2.5 represent rates conditioned on the parameter θ = {N, tzone}.

The first system has been designed to detect intrusions randomly. Its ex-

pected detection has been presented with a line marked across with •. By looking

at the trend of this line, one can learn that on average TP = FP . For example, for

23

nine-request long sequences the system should be able to recognise on average 90%

of illegitimate sequences, with the same error rate of legitimate classification. Sub-

sequently, suppose there is an improved IDS and its performance has been denoted

with �. For this system, the recognition has been slightly improved. Finally, the

best system for this particular scenario has been denoted with the best settings line

(i.e. the line marked across with �).

Depending on the attack volume, the varying expected behaviour of IDS is

looked for. Essentially, while the number of attacking hosts is relatively large min-

imising the number of FP is crucial. On the other hand, maximising TP , should be

sought if the system is intrusion-tolerant. However, in general, finding the optimum

values of TP and FP at the same time is required.

This corresponds to the point denoted with a star in Figure 2.5. The easiest

way to find such a point is to connect two points (0; 1) and (1; 0) with a straight line

(a dashed line without markers in Figure 2.5). The first intersection with this line

(or a point closest to the intersection) will be the best performance of IDS. Because

the intersection point with the best setting line is not actual performance point, the

point with FP = 0.20, and TP = 0.75 is chosen as the best performance of the IDS

system. Therefore, in order to maximise performance of the IDS, one picks the best

performing IDS, and sets its parameters so that detection is performed after second

request and the particular time zone. This corresponds to the point denoted with

the star.

In the subsequent session, a description is provided of two popular branches

of intrusion detection research: misuse and anomaly techniques. Having introduced

both concepts, research survey is provided on current techniques tackling unsolicited

browsing problem.

2.7 Different Approaches to Intrusion Detection Sys-

tems

The most general division of IDS is into two approaches: anomaly and misuse based

detection systems [36]. Misuse approaches are often referred to as signature-based

solutions because of their dependency on the patterns of known attacks. In general, a

system is secured as long as its attack database is updated with the latest, so-called,

0-day attacks. As a result, they are often referred to as signature-based approaches

in which each si is compared against a database containing suspicious activity. Even

though updating the database is a time-consuming task, these systems generate very

low false positive (i.e normal → normal) ratio. It stems from the fact that harmful

24

activity is describe with very precise definitions of illegitimate behaviour, as reported

by Ghosh et al. [27]. However, even though the database is being instantly updated,

the polymorphic or modified versions of known attacks will not be picked up by the

detector. Thus, these solutions suffer from detection of novel attacks, and should

generate extremely high rate of false negatives (i.e intrusion → normal) [27].

On the other hand, the anomaly approaches attempt to initially learn a

profile of legitimate behaviour. Observe that this is to the contrary with misuse

approach where attacker strategies are modelled. In addition, there is a strong

assumption of the legitimate profile of behaviour being inaccessible for attackers. In

other words, consider an IDS for HTTP-GET attack. It is assumed that attackers

do not know the patterns of transitions among web pages, or frequently sent SQL

queries. Subsequently, if there is any si that deviates from the expected behaviour,

then si is marked suspicious. As a result, it is the attackers who have to learn how to

guess the legitimate behaviour; rather than the network security analysts learning

novel attacks implemented by the attackers. Moreover, because of the dependency

of information hidden to attackers, the anomaly solutions should be able to detect

novel attacks. However, the anomaly solutions might generate higher false negative

rate (i.e intrusion → normal), and the reason is twofold. Firstly, attackers might

guess the legitimate pattern, and once it has happened, random or authorisation-

based detection must be applied. Secondly, attackers might obtain access to the

database with legitimate behaviour. In the worst-case scenario, attackers might

inject their own patterns into the learning database.

To show a difference between the two approaches, suppose that for a misuse

system, a set of detection rules is implemented, and should work in any setting (i.e. a

black-box solution). Sometimes, these rules are referred to as signatures. Therefore,

misuse detection system should be thought of as deterministic, rule-based solutions.

Suppose there are three (misuse) data sets learned by IDS, and defined as follows:

Rm = {any website in the Internet}

Xm = {viruses.com,hackers.com,computerattacks.com}

Ym ≈ any website not in Xm

= R\X

25

Moreover, suppose that a request ri can be of either x ∈ Xm or y ∈ Ym. A deter-

ministic system could develop a detection rule δ(ri), in the following way:

δ(ri) =

report, if ri = x

ignore, if ri 6= x

Therefore, one can argue that in general human beings should avoid visiting websites

related to computer insecurity. Otherwise, an intrusion is reported. To obtain X

a large database of web requests has been analysed, and an analyst has come up

with theory that agent browsing any website encoded in X, should be reported.

Therefore, for misuse systems - data collection denotes analysis of similar activities

(e.g. a relation: website from Xm → suspicious behaviour), and implementing a

decision over it. As it has been mentioned, this process is concentrated at attackers,

and their behaviour. Therefore, the above rule is strongly dependent on attacker-

like websites. Similarly, a threshold-based system (e.g. requested one page more

than λ times in a time unit) are integral to misuse systems [119].

On the other hand, there are anomaly detection systems for which there is a

preliminary data collection part. However, the sets with requests are presented as

follows:

R1 = {any website in the Internet}

R2 = {any website visited by legitimate users}

Xa = R1\R2

Ya = R2

Initially, a set of legitimate website has been trained (i.e. R2). Subsequently, any

website that has not been observed during the learning phase (i.e. R1\R2) is con-

sidered as anomalous. This approach assumes that there is a large database of

legitimate requests. In addition, a very strong assumption of regularity of legiti-

mate users is imposed as well. In other words, it is assumed that the size of the

learning database should cover majority of legitimate behaviour.

Now, suppose that ri = hackers1.com, and the intention of the requesting

person is legitimate. If the misuse system is in use, the request will be processed

(i.e hackers1.com 6∈ Xm). However, if the person intention are malicious the reali-

sation of the request is harmful to the system. Therefore, it is preferable to use the

anomalous system. As a result, regardless of the intention, the request is always

blocked. Obviously, that prevents legitimate users from accessing malicious website

(e.g. intrusion detection scientists). However, it is always possible to allow privi-

26

leged users access the inhibited website. In addition, from the security point of view,

the risk related to a malicious person performing illegal activity is always grater to

a privileged person changing intention from peaceful to harmful (i.e. the scientist

turning into an attacker). Therefore, anomalous systems should be sought in the sys-

tems that are less intrusion-tolerant. Finally, observe that attackers might want to

change the domain (e.g. hackers1.com, hackers2.com, hackers3.com, h4ckers1.com,

h4ck3rs1.com, etc). Subsequently, unless the misuse system has been updated, only

the anomalous system will suspend these domains.

In the subsequent section the survey is provided of current methods on unsolicited

browsing.

27

Chapter 3

Literature Review

3.1 Approaches to Detect Unsolicited Browsing

As it has been noted in Section 1.2 the general process of intrusion detection should

be divided into following sections: Data Collection, Feature Selection, Anomaly

Measurement / Classification, Results analysis. The analysis of approaches starts

with Feature Selection, and gives insight into the system assumptions on legitimate

or attacking behaviour. As it is shown in the next section, some approaches model

legitimate activity, while others focus on attacking patters. Furthermore, different

ways of Data Collection are described. This varies from using data sets obtained at

a website the authors have got access to, to obtaining freely available web traces.

Finally, assumptions towards anomalous behaviour are described. However, it is

presented that access to a trace with attacking activity is not available. As a result,

attacking strategies are being manually generated, violating the assumptions of

legitimate profile.

Research approaches related to unsolicited browsing are divided into the

following categories:

1. Learning systems - these systems involve learning of either legitimate or

malicious behaviour, and applying gained knowledge to perform classification.

In general, they cannot be implemented as black-box solutions, for which

training part is omitted. On the contrary, a training phase is required, in

which a data set containing legitimate or attacking behaviour is processed,

and patterns of behaviour selected. Otherwise, one can obtain a data set with

labelled legitimate and malicious samples. However, this is only the case for

crawler detection, as recorded DDoS attack traces against HTTP protocol are

not common.

28

2. Technical solutions - these methods attempt to implement technical (i.e.

deterministic) means, so-called technical fixes, to achieve near-optimal recog-

nition rate. In general, this is achieved by system modification (e.g. by mod-

ification of a website code, or additional hardware introduction). In addition,

rate-limiting (i.e. based on thresholds) methods are added into this category.

In the subsequent sections, the focus is given on two types of attacks: (i) DDoS

attack caused by different types of flooding, and (ii) detection of malicious crawlers.

Recall that (i) refers to the scenario in which a number of zombies try to overflow one

of system servers. In principle, this might be a database server that has received

a number of complicated queries, or a web server experiencing numerous agents

downloading large files (say, films) from its repository. On the other hand, (ii) refers

to different type of crawlers and their illegitimate activities. There are different types

of crawlers, the most popular are bots that extract websites’ content and store into

Google’s cache. However, there are undesired ones that are trying to extract email

addresses for spam purposes or find out about existing prices of some goods (i.e.

products, tickets, deals, etc.), to improve their owner’s financial position on the

market.

3.1.1 Related Work - Learning systems

The approaches towards detection of attacking hosts are dived further into two

classes. The first class of methods strongly focuses on transitions among web ob-

jects or characteristics of packet arrival. In general, sequences of these entities

provide classification information. Therefore, this group is referred to as sequence-

oriented group. On the other hand, there is another branch of research in which

sequences of protocol heuristics are transformed into vectors. Specifically for this

group, HTTP-specific features are extracted, and used for classification (such as a

number of HTML requests, or a number of times robots.txt file has been requested).

The sequence of request or requests is still important, however, the stronger rele-

vance is given to features that are protocol dependent, and thus the name, protocol-

oriented group.

3.1.2 Learning systems - Sequence-Oriented Methods

In this section, different statistical techniques are surveyed for Sequence-Oriented

methods. Initially, a description is given of chosen methods. Subsequently, the focus

is put on the way that other research collect data of legitimate users. Next, a profile

of malicious users is given.

29

Sequence-Oriented Methods - Brief Outline

Lu et al. [52] were the first ones to introduce Hidden Markov Models (HMM) into

the field of HTTP-GET attack. HMM have found many application, predominately

in speech recognition [68]. The authors of [52] have focused on difference between

sending requests and downloading in-line objects. In principle, when clicking on a

link, many additional web objects (e.g. images, dynamic scripts, etc.) are embedded

into the requested page.

time

ON OFF ON OFF ON OFF ON OFF

r1 r2 r3 r4 r5

i1 i2 i3 i4 i5 i6

Server

Client

Figure 3.1: Transmission of requests (denoted with r1:5) and in-line object requests
(denoted with i1:6) made by legitimate users. Observe that there are large time
differences (marked with OFF) between two consecutive requests (i.e. activity time),
and denoted with ON. However, time differences between two in-line object requests
are fairly shorter.

This scenario is presented in Figure 3.1. From Figure 3.1 one can learn that

there is a large time difference between two consecutive requests (denoted with r),

most presumably for HTML objects. It seldom occurs that there are two requests

in a very short time period (see r4 and r5 in Fig. 3.1). Note that the opposite holds

for in-line object requests (denoted with i). Clearly, in-line objects are downloaded

much faster, than normal requests. This behaviour is triggered by web servers that

pipeline in-line objects, and transmit them as fast as possible. Moreover, inactivity

time (referred to as OFF time), followed by sending a request is larger, comparing

to time when legitimate users click. The OFF time is needed to process information

(by legitimate agent) that has been obtained from the server, thus these periods are

longer.

30

time

ON OFF ON OFF ON OFF ON OFF

r1 r2 i4 i5 r3 i5 i6 i7 r4

i1 i2 i3

Server

Zombie

Figure 3.2: Transmission of requests (denoted with r1:4) and in-line object requests
(denoted with i1:7) performed by attacking hosts. Observe that there are similar
time differences between two consecutive requests, regardless of the type. Clearly,
irregular object requests, and shorter inactivity time (marked with OFF), creates
deviation from behaviour denoted in Fig. 3.1

However, transmission of zombies’ requests do not follow this pattern. It

stems from the fact that preprogrammed machines do not know which objects should

be downloaded faster. Therefore, normal GET requests can be directed at objects

that are normally in-line objects. Nevertheless, initially their transmission can fol-

low some previously observed behaviour (see the beginning of transmission in Fig.

3.2). However, the aim of zombies is to overflow the server with requests. There-

fore, their inactivity time (i.e. OFF time) is shorter. Moreover, during their ON

time, zombies tend to request more objects, comparing to legitimate browsing. This

difference is fundamental to many approaches that follow, and should be taken note

of.

Moreover, it has been assumed in [52] that two-state transition matrix (i.e.

downloading in-line objects or not) is informative enough for detection. Clearly,

legitimate users should occupy the state representing OFF time much longer. How-

ever, the opposite holds for attacking hosts. Therefore, these hosts tend to change

into the state responsible for ON time much often.

Subsequently, Xie has joined the co-author of [52], and extended the previ-

ously described approach. Moreover, the most popular branch of work on Applica-

tion Layer attack based on HMM has been created by Xie et al. [98, 99, 100, 101,

102, 103]. Their work focused on two branches: detecting web proxy based attacks

[98, 103], and detection of Application Layer attacks [99, 100, 101, 102]. Therefore,

for this research [99, 100, 101, 102] are of main interest.

31

Fundamental to Xie’s work [101, 102, 100] is the access matrix (also referred

to as transition matrix), in which rows represent documents and columns correspond

to time units. Each cell represents an average request rate of a web document (row

index) in a time unit (column index), and each row is stochastic. Then, the authors

have analysed a time depended Hidden Semi-Markov Model of transitions among

web objects. Subsequently, in [100], and same as Lu in [53], they assumed that

a legitimate request for a HTML link is followed by a number of in-line objects,

embedded into that website. However, because zombies mostly download large or

random objects [100], they fail to reproduce the actual time-dependent transitions

(i.e. they frequently download the in-line objects that are unrelated and not present

in the web log). Moreover, Xie has attempted to solve the problem of DDoS flooding

attack.

Similarly to Xie, Lu et al. [53] have used HMM for detection of crawlers.

Similarly, the authors of [53] have assumed that the difference between legitimate

and attacking hosts is in the number of requests observed in a time unit. Crawlers

generate requests at lower rate, same as human agents. However, once a human

agent requested a web object, what follows, is the idle time in which the object

is analysed; be it a text or image object. On the other hand, bot requests will

arrive in more regular format, and the time gaps between two consecutive requests

are shorter. Therefore, the above mentioned works are very similar in assumptions

(e.g. transition matrix, HMM application, and formulation of malicious behaviour).

Moreover, differences in both approaches are during training stage. Essentially, Xie

et al. have trained their system on legitimate users, while the authors of [53] have

used bot traces.

In the same manner, Yatagai et al. [106] have introduced legitimate profiles

of legitimate behaviour based on time spent on a page. They have shown that there

is a linear relation between amount of information and time a person reads a page

(i.e. the more text or images on a page, the longer the page is read). Specifically,

they have shown that there is a correlation between the number of objects, and

inactivity time. This allows for detecting fast-requesting hosts that differ from the

expected time scheme.

Another important statistical-based area of research against bots attacking

HTTP websites uses information-theoretic measurements. These have been applied

to intrusion detection problems numerous times. Lee et al. [47] have formally ex-

plained how to use entropy, conditional entropy, relative conditional entropy, infor-

mation gain, and information cost in intrusion detection. Essentially, most authors

have focused on relative entropy, often referred to as Kullback-Leibler (KL) diver-

32

gence [41]. It stems from the fact that KL divergence provides a way to measure

distance between two probability distributions. Therefore, if one knows a legitimate

distribution of packets (or requests) Q, then a distribution P of arriving packets (or

requests) can be compared against Q to measure how different these two are.

This approach has been used by Wang et al. [94] to measure deviations of

incoming requests at websites. Specifically, Wang observed that [94] KL divergence

increases in parallel with arrival of new students (who do not know the website and

randomly visit different categories). Subsequently, the authors have extended their

work with the application of Large Deviations Theory [95].

Similarly, Yu et al. [110] have used KL divergence to measure deviation of

incoming packets comparing to the legitimate profile of actual users. The authors

have assumed a distributed system across more than one router. In addition, they

have assumed that attacks should be generated using the same generating process,

and therefore express similarity. As a result, by measuring arrival patterns across

different routers, it is possible to discover regularities among attacking sequences.

Yu has provided analysis of probability distributions metrics, and their performance

against DDoS attacks [111]. Yu’s research has subsequently focused on attacks

against web servers, methods based on flows correlation [116] and packet padding

[114] have been introduced. Moreover, Yu has presented how to mimic legitimate

behaviour by obtaining partial access to a web-log of a website [117, 112]. Yu pub-

lished a couple of papers introducing and motivating the research in the domain of

application layer attack [115, 113]. Thapngam and Yu et al. [91] have extended

Yu’s previous work based on flow correlations.

KL divergence was also used by Ranjan et al. [70, 71, 72]. The authors have

introduced workload profiles based on resource (i.e. server’s CPU, database server’s

CPU, etc.) usage. Subsequently, they have clustered session based on similarity in

resource consumption, given session requests. Therefore, KL divergence has been

used to calculate deviations from the expected (optimal) resource used in a given

profile.

The previously described works by Xie also utilised entropy to measure reg-

ularity of sequences [101, 102]. Session information is stored in normalised vectors

denoting average interest in particular web object, in a time unit. Because zombies

do not know legitimate transitions, the entropy of their vectors is higher, denoting

less regular behaviour (comparing to the legitimate model). Moreover, it has been

shown that for different values of standard deviation of entropy, the differences be-

tween legitimate and attacking samples of sequences are decisive.

Another statistical method has been introduced by Giralte et al. [28]. Their

33

method is a hybrid method that encompasses a technical solution (based on techni-

cal parameters of web sessions) and a graph theoretical representation of a website

structure. In principle, the authors have analysed statistical parameters of trans-

mission sessions (e.g. average number of packets sent in a session, average number

of sessions per user, etc.). This way, attackers cannot overload website with only

few infected hosts. In addition, they record transitions and minimum time between

requested web objects. Therefore, bots cannot rapidly change among them. More-

over, they observe how often, a particular path has been generated. As a result, an

observation of higher than average path iteration indicates suspicious behaviour.

Sequence-Oriented Methods - Data Collection

Data collection is a key process for IDS to perform successful classification. Recall

there are two types of intrusion detection: misuse and anomaly as stated in Section

2.7. One of the differences between these two approaches is the process of data col-

lection, depending on the preferred solution. Anomaly solutions focus on legitimate

behaviour, while misuse systems try to build profiles of attacking hosts. So far, there

has been no HTTP-GET attack recorded, and stored in a log format. Therefore,

during training stage, researchers try to learn legitimate behaviour of the users, or

parameters of the web servers during legitimate activity. Subsequently, attacking

sequences of requests or packets are generated, based on different approaches de-

scribed below. Observe that this does not hold for crawlers. Clearly, it is very

common to observe crawler activity at website, and train IDS on their activity.

There are numerous different log format of web logs. However, the core for-

mat remains the same, and there are a set of attributes that remain prevalent. In

general, these are listed below:

1. Anonymised host ID - as it has been mentioned (see Section 2.1), HTTP

transmission takes place between valid hosts. This implies that both parties

know their physical addresses. However, these are anonymised in order to

provide anonymity to actual users who visited a website.

2. Time-stamp - exact time of the request

3. Request - Objects at websites can be of different types, for example: images

(.img, .png, etc), text files (.txt, .pdf, etc), and videos among many others.

Each file is identified by a uniform resource identifier (URI) of a requested

object.

34

4. HTTP reply code - a server’s numeric response to the request. Most com-

mon one is 200 and corresponds to “OK”.

5. Bytes in the reply - this value denotes how much data (i.e. its actual size)

was downloaded in the request.

As it has been noted in Section 2.7 anomaly based IDS’s make a strong assumption

about regularity among legitimate users that browse a website. This implies that

users visiting a website will do so, in similar manner. Therefore, users browse alike

pages by making matching transitions. As it has been pointed out in [101], there is

a strong correlation among web flows (i.e. sequences of requests) stored in a log file

containing user requests; sometimes referred to as traces. Independently, the same

observation has been made by Jung et al. [35] for different HTTP traces. Therefore,

most of the researches introduce this assumption, and analyse web logs to discover

characteristic pattern of legitimate users.

Moreover, for academic purpose, a repository with HTTP traces has been

created 1. One of the popular data sets there is a log from an official FIFA Football

World Cup 1998 site. It has been used by, Xie [101], Yu [116], and Thapngam [91].

In addition, there are many other data sets, and the other two frequently used for

web mining techniques are CLARKNET [33, 86], and NASA data set [11, 60].

On the other hand, some scientists have obtained data sets from large organ-

isations, in which the volume of traffic is large enough to build detection scheme. In

addition to using World Cup 1998 data set, Xie [102] used a trace from a University

log. Similarly, Yatagai et al. [106], Wang et al. [94, 95], Lu [53] and Lu et al. [52]

have used traces obtained from their Universities. Giralte et al. [28] has used a

trace from a e-commerce company.

Another approach taken by scientists is manual generation of legitimate be-

haviour. Yu used software-simulated legitimate connections with OPNET[110], and

data set obtained from Massachusetts Institute of Technology and University of

Waikato, [111]. Ranjan et al. [70, 71, 72] have used emulated legitimate behaviour,

specified by a technical standard called TPC-W benchmark2. As a result, it is

possible to generate arrival and request distributions that follow exponential distri-

bution [71], with different parameters. As observed by Paxson, TCP arrival pro-

cess follows this distribution [66]. Similarly, Lu [53] has assumed arrival of human

agent requests that follow Poisson distribution. In addition, Lu is the only author

that has attempted to learn behaviour of the attacking bots, and estimate likeli-

hood of legitimate sequences on the model. Normally, this approach is common for

1http://ita.ee.lbl.gov/html/traces.html
2http://www.tpc.org

35

http://ita.ee.lbl.gov/html/traces.html
http://www.tpc.org

Protocol-Oriented approaches (see Section 3.2). Moreover, Yu [116] has used Pareto

distribution of arrivals at websites. Parteo distribution has been used as a standard

to provide distribution of interests varying from most popular to least popular web

object [6].

Sequence-Oriented Methods - Malicious Behaviour

It is relatively easy to come up with a set of rules for misuse detection systems.

Essentially, once an intrusion or virus infection has been spotted, a set of coun-

termeasures is encoded into a database. This can be accomplished by blocking a

particular host (i.e. by black-listing it), or updating file name in an anti-virus ap-

plication.

However, an anomaly system cannot depend on predefined rules, and should

focus on legitimate behaviour instead. As a result, initially the research commu-

nity has decided to generate (i.e. prepare manually) a data set with legitimate and

unauthorised network traffic [50], which has been developed at MIT Lincoln Labo-

ratory. The growing popularity of the data set has drawn attention of data mining

community, and in 1999 the data set has been chosen to be a “challenge” on the

national 1999 KDD cup machine learning competition3. However, in the next years

the creation process of the data set has been challenged, and critiqued in 2003 by

Mahoney and Chan[55].

As a result, it has been a common practice to generate attacking sequences

manually. Lu et al. [52] followed popular virus behaviour, and defined three different

rates of attacks: increasing, decreasing, pulsing and constant. Moreover, following

the virus description, the rate of requests is higher than normal users, making the

attacking hosts remain in the state of obtaining in-line objects. Moreover, Yatagai

et al. [106] have used the same virus definition, and the authors have assumed that

attacking hosts follow increased rate of requests. Because their model adopts linear

dependence between the amount of received information, and time difference before

consecutive requests, the fast-requesting zombies deviate from the legitimate profile.

Analogous assumptions are introduced in Xie’s work [98, 99, 100, 101, 103,

102] and state that the attackers would run the attack with increased frequency

of requests. As a result, three different attacks have been devised: (i) Constant

Rate Attack, (ii)Increasing Rate Attack, and (iii)Stochastic Pulsing Attacks. For

(i) a zombie randomly sets request rate (that remains constant during transmission),

duration of the attack, and delay from the global attack start. For (ii) the same

parameters are used as in (i). However, zombie can decide when to increase the

3http://kdd.ics.uci.edu/databases/kddcup99/task.html

36

http://kdd.ics.uci.edu/databases/kddcup99/task.html

rate of requests, how long to keep it increased for, and when to decrease the rate.

Therefore, the rate of (i) should be thought of as a linear and constant rate, while

in (ii) it has a trapezoid-like shape. The most difficult attack to detect is (iii). For

(iii), each parameter from (i) and (ii) is randomly generated. Therefore, different

combinations of (decreasing/increasing) rate, duration and delay are considered for

the attacking data set.

Similarly, Ranjan et al. [70, 71, 72] have introduced three types of attack:

(i) Request Flooding Attack, (ii) Asymmetric Workload Attack, and (iii) Repeated

One-Shot Attack. In (i), attacking hosts send requests at increased rate comparing

to non-attacking nodes. Recall that Ranjan et al. have used different parameters of

Poisson distribution to generate their legitimate and attacking flows. In (ii), the rate

of requests generated by attacking hosts is not necessarily higher than legitimate

requests. However, attackers have been informed about resource intensive requests,

and their sessions are mostly filled up with them. In (iii), attackers take advantage

of a large number of zombies, and each of the host is sending one very intensive

request.

Yu et al. proposed three different attacking strategies in [110]: (i) fixed-rate

attack, (ii) increasing rate attack, and (iii) attack based on varying parameters of

Poisson distribution. Observe that (i) and (ii) correspond to the equivalently defined

by Xie, while (iii) is similar to (i) and (ii) defined by Ranjan. In addition, a method

of varying parameters of (iii) has been subsequently used in [111, 116], and extended

by different parameters of Pareto distribution. Moreover, Yu has shown that it is

possible to mimic legitimate behaviour by making bots follow Pareto distribution

[117].

Thapngam and Yu et al. [91] have extended Yu’s previous work based on

flow correlations. Therefore, similar to Yu, Thapngam has introduced the following

attacks: (i) increasing rate attack, (ii) periodical rate attack, (iii) non-predictable

attack rate. Subsequently, it has been shown that by using Pearsons correlation

coefficient, the authors can detect the three attacks.

Giralte et al. [28] assume four types of attacks: (i) random walk, (ii) login

attack, (iii) search access and (iv) POST attack. These attacks imply that attackers

make their zombies requests links or objects as they appear on page (i). In the

other scenario (ii), zombies will generate a high number of invalid login attempts, or

search requests (iii). These might overload a database server, by constantly sending

database queries.

37

Reference TP FP

[52] 98.43% 6.6%

[100, 101, 102] 92.57% 7.5%

[53] 97.60% 0.2%

[106] 100.00% 10%

Table 3.1: Detection performance of Sequence-Oriented Methods

Sequence-Oriented Methods - Detection Performance

In general, results obtained in the sequence-oriented methods are reasonably good.

Most popular way of providing documenting results is by showing the trade-off

between TP rate (i.e. detection rate) and the rate of legitimate users misclas-

sification (i.e. FP rate). These are presented in Table 3.1. Other researchers

[28, 70, 71, 72, 116, 91, 94] do not provide the exact detection rates. On the other

hand, detection results are plotted on charts. However, these plots indicate that

the obtained results are very close to the ones presented in Table 3.1. Essentially,

Ranjan et al. [70, 71, 72] have shown that 30 requests are needed to detect request

flooding attack (very similar to attacking strategies defined in the coming Section

4.10). Wang et al. [94] have shown that entropies of legitimate users are very low,

while random web browsing results in sessions generating high entropy. Yu et al.

[116] have shown that there is a strong correlation between attacking flows, even

though the attacks are delayed in time, and mixed with legitimate traffic.

3.1.3 Learning systems - Protocol-Oriented Methods

In this section, different techniques of IDS are described for Protocol-Oriented meth-

ods. This research group is mainly focused on detection of web crawlers that pretend

to behave as legitimate agents. However, though in minority, there are approaches

to detect flooding hosts.

Moreover, the protocol-oriented methods use features specific for HTTP pro-

tocol. These can be a number of error messages returned by server, a ratio of HTML

to either images or document requests, or information embedded into a HTML re-

quest. Recall that Agobot uses popular web browser names or Google’s bot ID’s

to hide zombies identity. Therefore, agents ID whether known or previously unseen

can be used to improve classification. Therefore, features or vectors of features used

in the subsequent section should be thought as composition of the above mentioned

38

parameters.

Initially, different approaches are described, followed by a set of attributes

employed for recognition. Similarly, as before, this section concludes with the defi-

nition of malicious behaviour.

Protocol-Oriented Methods - Brief Outline

The motivation behind the research in this field has been brought by increasing

statistics of crawlers activities at websites. As Tan et al. [88, 89] have pointed out,

traffic generated by bots might vary daily between 5% and 10%. More recently

Doran et al. [14] have observed that this volume has increased and ranges from

18.5% to 32.6%. Moreover, the total number of downloaded HTML object amounts

to 85% [89]. In this research branch, majority of researchers extract session-related

details into vectors, and train their classification systems with them. Observe that

transition information are subsequently given less weight, and in most of the works,

are not used.

For example, Stevanovic et al. [82, 84] have developed a detection based on

Self Organising Maps (SOM) and Modified Adaptive Resonance Theory 2 (Modi-

fied ART2). In addition, the authors provided analyses of useful features to embed

into detection vectors, and provided their importance for multiple classification al-

gorithms [81, 83]. Similarly to [81, 83], Tan et al. [88, 89] analysed multiple features

(described in detail in the next section) and used C4.5 model for classification.

Park et al. [64] have developed a system that measures mouse movement and

keyboard strokes. However, the system requires software-dependent mechanism. In

addition, they have tried to detect human agents by displaying a CAPTCHA (an

acronym for “Completely Automated Public Turing test to tell Computers and Hu-

mans Apart”). CAPTCHA should be thought of as a “challenge” presented to a

bot. Normally, it is a blurry image that conceals text message to be revoked by a

human agent. Finally, they have used AdaBoost [74] to classify human agents and

zombies.

Moreover, the authors of [31] have introduced their PUBCRAWL system,

which initially builds a database of IP addresses of legitimate users and known

bots (i.e. friendly bots, e.g. Googlebot). Their method is a hybrid method that

combines the sequence-oriented traffic analyses, and support them with protocol-

oriented heuristic. Moreover, when sequences are similar to both classes (i.e. legit-

imate and unlawful), their method embeds CAPTCHA challenges, described more

in Section 3.1.4. Subsequently, the authors have tried to classify the arriving con-

nections based on voting system using three classifiers: naive Bayes, associations

39

rules classifier and Support Vector Machine (SVM). The majority of votes from the

three classifiers are to decide whether a session is coming from a crawler or a human

agent.

Kang et al. [38] have concentrated their research at bots performing browsing

and searching. In principle, it is assumed that actions that follow after search are

crucial for bot detection. Moreover, the system has been developed that is based on

a Bayesian network. They have built their network using spanning tree mechanism

and iterative Expectation Maximisation algorithm to estimate required parameters.

To the contrary with the methods above, Lee et al. [45] have developed a

sequence-independent method for flooding hosts taking part in DDoS attacks. Re-

call that this attack is mostly researched with sequence-oriented methods, described

in Section 3.1.2. However, the authors have focused on sequence-independent at-

tributes to build feature vectors. Subsequently, the vectors have been divided into

clusters using K-mean clustering. Finally, for each cluster, a new feature representa-

tion is obtained with application of PCA, and selection of P-significant components.

The error of estimation, calculated between initial vectors, and vectors obtained by

PCA decomposition is assumed to be small for legitimate behaviour, and larger for

bots.

Protocol-Oriented Methods - Data Collection

Once transitions among web objects are not considered, a number of features are

introduced, which allow for intention classification. These heuristics are related

to HTTP protocol parameters used in transmission among objects. There are nu-

merous heuristics one can look at, but the most popular have been described in

Table 3.2. Specifically, the features listed in Table 3.2, are common among other

researchers. Also, features listed in Table 3.2 are stored in time-varying vectors

compartments.

Feature

Number

Attributed

Name

Remark

1 Click rate provides an average request rate of an agent

2 HTML-

to-Image

Ratio

the ratio allows for detection of agents that request

too many HTML or image objects

Continued . . .

40

Feature

Number

Attributed

Name

Remark

3 % of

PDF/PS

file requests

measures how popular PDF/PS requests are

4 % 4xx error

responses

once a web object is requested with a GET request,

the most common HTTP status code is 200, which

simply denotes OK. Class 4xx errors denote situation

in which request cannot be served, because of the user

mistake. The most common error here is 404, denoting

a request of non-existent object. However, in case of

crawling bots 401 and 403 can often appear and repre-

sent unauthorised and forbidden access, respectively.

The former requires authorisation, while the latter is

returned whether or not, a user has been authorised.

5 % of HEAD

requests

HEAD request behaves the same way as GET re-

quests. However, HEAD requests are used more for di-

agnostic purpose, and returned data does not contain

BODY part of a page (i.e. actual content). Therefore,

it is recommended for bots to mostly generate HEAD

requests [89].

6 % of re-

quest with

unassigned

referrers

this field displays information (commonly a HTTP ad-

dress) about a page that referred (i.e had a link to)

the requested resources. Crawlers are “encouraged”

to leave out any referrer’s information, and keep this

field blank. Moreover, observe that historically this

field is with a missing r in the middle (i.e. referer)

7 robots.txt

request

in practice, each website should have robots.txt file

in their top directory, and it should be requested by

crawlers to obtain information about sections, permit-

ted or forbidden for crawling. For detection purposes,

this feature is binary and shows whether or not the

file was requested in the beginning.

Continued . . .

41

Feature

Number

Attributed

Name

Remark

8 number

of HTML

requests

this number should be relatively smaller comparing

to other request (e.g. comparing to the number of

requested images, or other in-line objects as observed

in [100] and [53]). Observe that this feature denotes a

number of different pages requested during session.

9 Total ses-

sion time

the length of a session provided in seconds.

10 Average

time delay

between

clicks

note that this feature is very similar to (1). However,

when (1) gives an average number of requests, (10)

measures average silence period between consecutive

requests. Observe that same as in (8), (10) should be

irregular for legitimate and more regular for attacking

hosts [31].

11 Number of

downloaded

images

this feature should be useful against bots that tend to

download large image files.

12 No of down-

loaded CGI

scripts

CGI scripts are used to run commands at the server

site. In general, legitimate browsing should not exceed

a threshold on this parameter.

13 Unseen re-

ferrer

similar to (6), however, (13) denotes a referrer address

that has not been seen before by IDS.

14 % of 3xx

error re-

sponses

3xx errors inform user of additional action require-

ment. The most common error is 301 that warns of

a permanently moved object. In general, this error

appears when some objects have been moved, or their

name changed. Bots might follow their own list of

links that has been updated on the server. As a re-

sult, if their list is not renewed, subsequent request

might result in many 3xx errors.

Continued . . .

42

Feature

Number

Attributed

Name

Remark

15 Revisit rate in general, legitimate users should revisit some popu-

lar content of a page quite often [31]. Therefore, low

rate of (15) can indicate a malicious agent.

16 Accepting

cookies

cookies have been introduced to store agent’s past his-

tory. Moreover, these are very useful for hosts using

address translation (see Section 2.5). It is assumed

that bots should not have these feature implemented,

which is not the case for legitimate users equipped

with cookie-compatible web browsers [31].

17 Ordered re-

quests

similar as feature (13), bots can obtain a website’s

structure, and share it with their crawling agents.

These agents, can arrange links in an alphabetical(e.g.

{news/objecta.html, news/objectb.html,weather/})

or a numerical order (e.g. {index.php?get =

1, index.php?get = 2, index.php?get = 10})

18 Script

Parameters

for dynamic websites, users are allowed to send differ-

ent parameters to the server (e.g. index.php?get = 1

or index.php?get = 1&display = news). Sometimes,

these values can be difficult for bots to estimate, and

randomly generated parameters might indicate mali-

cious attempt.

19 Depth of

traversal

different approaches use this feature in different ways.

However, the most common approach is to denote (19)

as the largest number of nested directories visited in

a section (e.g. /news/uk/london/ denotes 3)

20 Number

of Unique

Searches

this feature is especially useful against searching

crawlers that perform multi searches.

Table 3.2: HTTP protocol heuristics used as features in intrusion detection.

In this section (·) denotes application of a field, and ¬(·) denotes application

of the opposite (e.g. (7) denotes opening of robots.txt during session, and ¬(7)

denotes session without request of robots.txt file)

43

Stevanovic et al. [81, 82, 83] have used features: (1)-(7). Clearly, (1) has

been used to detect zombies that request objects at increased rate. Features (2)

and (3) assume legitimate interest regularity in specific files. In addition, the au-

thors monitor error messages that one can come across during HTTP transmission

(features (4) and (6)). Observe that (7) is characteristic for bots, and it follows

a technical standard [89]. More recently Stevanovic et al.[84] have extended their

feature set by introduction of path-traversal parameters: wider (15), and logarithm

of (19). Wider revisiting should be thought of as visiting the same logical category,

say /news/uk/london/ rather than /news/uk/london/news.html. The authors of

[81, 82, 84, 83] have used a trace obtained from their University.

Similarly to [81, 82, 84, 83], the authors of [88, 89] analysed features (1),

(3), (4), (5), (6), (7), and (8), (19) in addition to 17 other features. Furthermore,

the authors have used time-dependent features, namely (9) and (10), which have

been selected to improve classification. The authors obtained a data set from their

University, from which they have extracted required statistics on popular behaviour

(e.g. known bots or known browsers).

Park et al. [64] have used data traces from their University network. For

detection, except for the software-based solution, the authors have extracted similar

features as the authors above. In principle, they have used (4), (5), (6), ¬(7), (11),

(12), (13), (14) and other 4 less relevant parameters. The most useful fields in their

system have turned out to be ¬(7), (13) and (14).

Jacob et al. [31] have defined two blocks for their detection. First block is

heuristic based, as in the works described above, while second depends on time se-

ries analysis. In the heuristic block they have singled out the following features (4),

(9), (7), increased rate of (8) coming from one agent, (12), (15), ¬(16), and (17).

In addition, they have suggested to look at additional parameters, e.g. language

selection that are often ignored by bots. In the time series block, the authors have

focused on statistical analysis of transmitting request and autocorrelation.

Kang et al. [38] have observed that only 81.6% of web users have responded

correctly to CAPTCHA challenges (described in detail in Section 3.1.4). Moreover,

99,9% of the agents do not respond to challenges at all. However, most of these

agents who have refused to take on the challenge, are suspected to be bots. As

a result, initially it is essential to select a group of agents that perceive some fea-

tures, similar to bot behaviour. The authors of [38] have used (1), (8) and (20)

when analysing behaviour of search agents. Some will send many search request

but never visit any of them, while the other visit every returned object. Moreover,

modification of (8) has been used to measure activity of agents including browsing

44

as well (i.e. performance not related to searching only), and referred to as total

number of pages.

The authors of [45] have defined the following metrics: (i) a ratio of total

number of requests seen in a session, to the average number of requests observed

at a server, (ii) an interest vector, whose components denote relative frequency of

request of a given web object, (iii) a fraction of requested unique web objects di-

vided by the total number of web objects of the server, (iv) and highest frequency

extracted from (ii). Therefore, (i), (iii), and (iv) are single-value attributes, and

(ii) is a vector whose number of components is equal to the total number of web

objects stored at a website. In addition, they authors have extended their vector

representation by application of error messages (4), (14), and (18).

Protocol-Oriented Methods - Malicious Behaviour

Tan et al. [88, 89] defined few bots the authors have been interested in: (i) search

engine robots, (ii) offline browsers, (iii) link checkers and (iv) email collectors. They

have discovered that (i) will express broad width of traversal, but will have relatively

shallow depth. It stems from the fact that search bots are oriented on the large

number of files in short time period. That implies that (i) is interested in the main

categories of a website, rather than deep-lying nested links. Similar differences

will be observed for (ii). On the other hand, (iii) and (iv), have large numbers of

unassigned referrer field. Moreover (iv) should have increased number of HEAD

requests. In addition, the authors of [88, 89] expect bots to request robots.txt

file. Moreover, the selected features number (5),(6)(7) and (8), have turned out

to express positive correlation, when analysing attacking crawlers. Moreover, (8)

and (11) have expressed strong anticorrelation, suggesting that crawlers will avoid

images while browsing.

Similarly, Kang et al. [38] have observed difference between legitimate users,

and searching bots. In principle, the authors of [38] have been able to discover that

there is a very weak correlation between search results and media content (e.g. video

or images). In principle, bots are more interested in text content (i.e. information

that should be easier to process by text analysing machines), while human agents

express similar interest in both text and media content.

As it has been pointed out, Park et al. [64] have made very strong software-

reliable assumption. However, if it does not hold (i.e. human agents do not use

JavaScript), then their experiments have been extended with additional statistics to

detect crawlers. In principle, the authors have noticed there is a positive correlation

between the downloads of CSS files (used for graphical design of websites) and

45

JavaScript files, during legitimate sessions. Therefore, the indication of malicious

hosts is based on avoiding JavaScript and CSS files while browsing. Observe that

this is similar to assumptions obtained in [88, 89], and in regards to image files.

Moreover, the authors of [64] are the only group that have not considered depth of

visit (i.e. feature (19) from Table 3.2), to detect crawlers.

Most recently, some of the assumptions described above have been reiterated

by Jacob et al. [31]. First of all, revisiting is very common for human agents. This

implies that the depth and width of crawler traversals are different to human agents.

Clearly, crawlers perform extensive web crawl, rather than visiting popular paths. In

addition, most of the heuristics should not be considered as they are easily faked, and

only few of them should be considered (see previous Section). Moreover, recall that

some sequence-oriented methods have assumed regularities in traffic pattern among

bots, and inactivity time of legitimate users between requests. Similar observations

have been drawn by Jacob et al. [31], when analysed traffic from a popular social

website. In [31], the authors analysed autocorrelation of counting processes in terms

of number of downloaded object in a time unit. Subsequently, they have shown that

there are two different correlations. For legitimate traffic, there are similarities in

a long range. Specifically, when looking at six hour-long and 12 hour-long time

periods. This seems to indicate that after six hours of work, the users of the social

website tend to login in, presumably during the lunch break. Similarly, the same

process appears after 12 hours of work, likely while at home in the evening. On

to contrary, the correlation among bots is observed for short time sequences, and

decays linearly. Moreover, the authors have decomposed the sequences, and have

shown that crawlers traffic is very stable, comparing to legitimate with spikes. As

a result, same as in [100] and [53], the irregularity of legitimate users provides a

detection feature.

On the contrary, Stevanovic et al. [81, 82, 83] have focused on the features

listed in Table 3.2. Firstly, the authors have assumed that human agents will not

request robots.txt file. The class labels are introduced as follows: (i) human visitors

are flows during which robots.txt file was not requested. Otherwise, the flows are

classified as either (ii) well-behaved or (iii) malicious crawler. Otherwise, sessions

with unknown bot id are labelled as (iv) unknown visitors.

Recall that Lee et al. [45] are the only research group that have utilised

sequence-independent parameters to detect flooding hosts. They have assumed three

different attacking strategies: (i) main page, (ii) dominant page and (iii) random

page attack. Their implemented strategies, target: (i) main site of a page, requesting

it constantly; (ii) “popular pages”, requesting them randomly, and a (iii) random

46

page from a set of all the pages. Moreover, (ii) strategy has turned out to generate

lowest TP .

Protocol-Oriented Methods - Detection Performance

Similar, as for Sequence-Oriented methods, a table of popular rates has been ob-

tained, containing results of detection performance

Reference TP FP Recall Precision

[82] 95% 4%

[89] 83% 96%

[31] 95.58% 17.50%

[38] 72% 75%

[45] 91.40% 9.1%

[64] 99% N \A

Table 3.3: Detection performance of Protocol-Oriented Methods

Similarly, as for Sequence-Oriented methods, the results are depicted with

performance metrics defined in Section 2.6. Observe that these systems generate

slightly worse results comparing to the solutions that utilise transitions among ob-

jects.

3.1.4 Related Work - Technical Solutions

Clearly, the easiest method of web users authentication is the application of login and

password combinations. Essentially, passwords are used even in sensitive services,

such as on-line banking or e-shopping. However, while protection is required during

risk-involved browsing, it should not be imposed at pages, where risk factor is not

present. Moreover, security of databases containing passwords might easily fail [23].

All these reasons provide justification for password-free authentication detection

methods. Previously, statistical and learning systems have been described. In this

section, a survey is provided on technical solutions. Most of the methods described

below modify the way that web servers process incoming connections. In addition,

rate-limited and threshold-reliant methods are included in this category

47

Technical Solutions - Brief Outline

In the typical scenario of DDoS attack, a website is a single point of failure. In prin-

ciple, attacking hosts keep on sending GET requests until the website is unable to

service another user. Therefore, because it is difficult to deal with the high volume

of traffic by application of a single website, one can come up with a solution where

a frequently downloaded website’s content (e.g. the in-line objects) is replicated

onto multiple servers. Moreover, as it was explained by Wendell et al. [97], Ama-

zon provides dynamic object distribution as well (e.g. cookie sharing). Decision of

which server should be used is based on some allocation algorithm; most-commonly

a physical location. Therefore, the closest server is elicited from the same country

or continent. On the other hand, depending on the current network performance,

another general approach is based on lowest latency [97]. This method is referred to

as a content delivery network or content distribution network (CDN), and has been

used by Jung et al. [35] and Chen et al. [10]. Clearly, this is a large-scale solutions

that involves multiple server deployment across the globe, and implementation of

transmission protocols (often from scratch), as reported by Wendell et al. [97].

More centralised approaches involve code-modification, and rarely utilise ad-

ditional hardware upgrades. One of the earliest solutions to unsolicited browsing,

were dynamically linked hidden objects. One of the methods described in Section

3.1.2 and developed by Park et al. [64] depended on hidden code to measure mouse

and key stroke performance. Similarly, Gavrilis et al. [25, 24] has introduced meth-

ods based on dynamically adding invisible links. These so-called decoy links, are

added into a page with the background colour or under images. As a result, it

is virtually impossible to click the traps by a human agent operating with mouse.

Observe that crawlers extract URI’s of web objects, and send requests based on the

returned set of HTTP addresses. Eventually, crawlers should request an object that

is a trap, and trigger the alarm. Note that when using text-based web browsers (e.g.

Lynx4, which has been constantly developed and improved for more than 21 years

now, and is still in use) hidden links are displayed. Therefore, a suspicious user

might decide to use it. Moreover, Oikonomou et al. [62] have extended approaches

presented in [25, 24]. Their invisible traps consisted of invisible images, text and

forms, 1-by-1 pixel maps, and hidden objects underneath larger objects.

Note that the introduction of decoy links requires modification at the server

site only. As a result, users do not need to modify their web browsers in order to

access web resources. Moreover, there is no assumption about software compat-

4http://lynx.isc.org/

48

http://lynx.isc.org/

ibility (e.g. requirements of cookie-enabled application). On the contrary, some

solutions require dynamic web language to provide protection (e.g. JavaScript), as

in [64]. Identically, Srivatsa et al. [78, 79, 80] have introduced a two-layer system,

performing user authentication, and providing rate-limiting control. The main mo-

tivation behind their work is a strong argument that traffic statistics cannot help to

distinguish among intention of arriving connections. Clearly, if the attacking hosts

are requesting objects at the rate below the allowable maximum, they will fit in the

statistical pattern of legitimate users. Moreover, this assumption is followed in this

thesis, with the implications drawn in the motivation section (see Section 3.2, for

details).

As a result, the authors have decided to implement a transparent solution

at the server site that requires modification of IP layer. Similar, as in [64], initially

users are presented with a challenge to solve (e.g. CAPTCHA puzzle). Therefore,

this user authentication method requires JavaScript-reliant browser. Once, the chal-

lenge has been solved correctly a system generates and injects 16-bit key into TCP

packets. Therefore, IDS filters out users based on this authenticator (i.e. users who

failed the challenge do not have authenticator present in their packets). In addi-

tion, the rate limiting component regulates the way that users utilise medium (e.g.

remaining bandwidth).

Similarly, Doron et al. [15], introduced new architecture to attenuate DDoS

attacks against web servers. The authors have introduced a system based on two

queues for well-behaving, and malicious users. Their utilisation is similar to rate

limiting solutions mentioned above. In general, users whose packets have been put

into the slow queue, will get their bandwidth reduced further if they continue to

exceed the expected number of downloaded object or requests sent. The authors

of [15], and the same as in [100], [53] have observed that HTTP traffic follows the

“ON-OFF” pattern (see Section 3.1.2 for details). Similar as before, the legitimate

users will download a number of objects (ON), and subsequently remain inactive

(OFF) to analyse obtained information. OFF time is modelled with exponential

moving average. Obviously, long inactivity period is more desired for the system.

Moreover, hosts with long average OFF time, are prioritised. Therefore, once they

change to rapid OFF time, their sessions are not moved to the slow queue instantly.

Rather, they are given some trust and can continue sending requests at increased

rate. However, if the expected OFF time exceeds some threshold value, then trans-

mission with the client will be rate capped. Similarly, a dynamic bandwidth limiter

is imposed during ON period (i.e. during downloading of objects). Moreover, the

authors have used SYN-Cookies [48], to defend against address spoofing. In addi-

49

tion, this is the only approach that concentrate the detection mainly on the weight

of requests (i.e. number of bytes).

Similar to [15], Yu et al. [109] have used exponential decay of suspension

time for blacklisted hosts. Moreover, in a similar manner, Yu et al. [109] have

developed a system based on trust management to measure sessions anomaly. In

principle, the authors of [109] have defined five different and time-varying trust fac-

tors. Specifically, there is (i) a short-term factor considering a short-history request

rate, (ii) the long-term version of (i), (iii) cumulative distrust denoting the number

of times a client has been penalised, (iv) mistrust related with number of times a

client has switched from legitimate to malicious user, and (v) a overall trust based

on the remaining four attributes. In addition to the trust factor, the system stores

identity information, such as IP address to blacklist unwanted hosts. Their method

uses cookie files to store the above mentioned information about clients and their

trust factors. The authors of [109] are assuming (similarly to [78, 79, 80]) that dur-

ing the attack, legitimate users should be granted access to the website. Therefore,

based on the rate related trust factor, their system is able to modify allocated band-

width to rate-violating users. Moreover, long-term trust factors allow for detection

of attackers that have taken over machines, which previously have been classified as

system friendly.

Finally, there are methods based on CAPTCHA using image-based challenges

to authenticate web users. As pointed out by Basso et al. [4], there are different

groups of CAPTCHA using challenges based on: (i) text, (ii) image, and (iii) sound.

In general, for (i), a blurry or written with a mixed or twisted font text is presented.

One of the oldest and most commonly applied solutions is Gimpy5. However, cur-

rent text-based solutions can be solved by attackers, as reported by Mori et al. [58].

For (ii), an image is displayed containing an object, and user is asked to give the

name of it. However, this method might produce some false positive because some

object can be described by a number of synonyms (e.g. apple and fruit are correct

description of an apple). The last method (iii) assumes that human agents are able

to decode an audio message, since bots should not be able to do that. However good

the approach is, it might not be applicable to some users with audible difficulties.

Therefore, the motivation behind the work of [4] is the potential solutions of existing

problems with (i), (ii) and (iii). As a result, a method has been introduced based on

drag-and-drop images or definitions. In particular, users are asked to place images

on text descriptors, or the other way round. Observe that it is extremely difficult

to move objects that are put on top of each other, let alone group them according

5http://http://www.captcha.net/captchas/gimpy/

50

http://http://www.captcha.net/captchas/gimpy/

to their definitions. Especially, if a programmed machines is asked to do that.

Technical Solutions - Data Collection

Observe that for technical solutions data collection is not precisely defined. It stems

from the fact that these solutions are deterministic, and provide close to perfect

classification. Moreover, these solutions should be thought of as misuse detection.

As a result, as soon as attackers have found a way around, the system is not pro-

tected. Specifically, for systems based on decoy links [24, 25] and [62], website

administrators are not required to perform any activities, and their task is limited

to code modification. However, Oikonomou et al. [62] have used real traces to define

realistically attacking strategies, which do not deviate in temporal statistics from

legitimate traffic. Identically, the drag-and-drop CAPTCHA method assumes in-

ability of zombies to encrypt the challenges. However, for threshold based solutions,

it is essential to measure traffic parameters to specify realistic threshold values.

Therefore, the dual-queue system developed by Basso et al. [4] requires the learning

time of half a million sessions to minimise FP (i.e. legitimate user → attacking

attempt), and keep it around 1%.

Technical Solutions - Malicious Behaviour

Main approach of CDN [10, 35, 97] are the fact that attacking hosts are unable to

discover which server will serve their request. Moreover, the volume of traffic is

shared by a number of servers, and the attack is distributed.

Gavrilis et al. [24, 25] introduced three different attacking strategies: (i) same

page attack, (ii) random page attack (constant request of a random page), and (iii)

attack based on random walk (i.e. requesting random objects, as they appear at

the requested pages). Recall that (i) and (ii) very similar definitions of attacking

strategies, as in [45], which has been presented in Section 3.2. Moreover, the authors

have observed that (i) and (ii) are easily detected with then implemented software

solutions. Essentially, by slight modification of the server’s code, the attacks are

easily detected. However (iii) was missed by the software detectors. As it has been

mentioned, Oikonomou et al. [62] used real traces to devise a realistic attacking

model. As a result, attacking session length varies between 5 and 50 request, and

the gap between two consecutive requests varies from 1/10 second to 1/60 second.

Srivatsa et al. [78, 79, 80] have assumed 0-think time, of attacking hosts.

They have shown that assuming a competition between legitimate users and at-

tacking hosts for a limited-bandwidth medium, their approach has shown improved

51

performance compared to other technical solutions (e.g. SYN-Cookie [12], see Sec-

tion 2.2).

Doron et al. [15] have implemented three different attacking strategies: (i)

simple flooding, (ii) high-burst slow attackers, and (iii) high-burst slow attackers.

The easiest attack to detect is (i) that constantly requests random objects at in-

creased rate, and occupies the slow bandwidth queue. On the other hand, zombies

of (ii) type, introduce random portion of inactivity to (likely) be assigned to the fast

queue. Moreover, these attacking zombies will know the maximum number of bytes

observable at the server, and subsequently do not exceed it. The opposite applies

to (iii), in which attacking hosts repeat multiple requests, followed by inactivity

period, once the observable minimum portion of data is reached.

Yu et al. [109] have developed four attacking strategies: a constant rate

attack without waiting for server response, a random rate attack with adaptation

to a slow-responding server, and a stealthy attack, when a zombie gains trust from

the server, and subsequently increases the rate to of requests.

Technical Solutions - Detection Performance

In general, technical approaches differ from the learning systems, as in most of the

cases, no FP rate is assumed (i.e. there is no error of legitimate user classification).

For example, Srivatsa et al. [78, 79, 80] and Doron et al. [15] presented their results

as the trade-off between number of attacking hosts, and the number of successful

legitimate web sessions. For the system with decoy links, Gavrilis et al. [24, 25]

have shown the relation between the number of traps embedded in a website and

probability of detection of a bot. For the similar system, Oikonomou et al. [62] have

shown that 92% of zombies are detected after 24 requests and all of them after 48

requests.

3.1.5 Analysis of Previous Approaches

Observe that most of the methods described in Section 3.1.2 and Section 3.1.3 as-

sume strong regularity of legitimate users. It often refers to the similar time spent

on pages, or transitions among links. Moreover, detection methods against flooding

hosts assume more frequent than legitimate requests rate. As a result, attacking

hosts are detected by analysing temporal information between two consecutive GET

requests. In addition, the authors of works described in Section 3.1.4 assume that

due to numerous requests, zombies activate traps hidden on a page. Furthermore,

these bots are unable to copy mouse and keyboard operation, nor can they guess

52

randomly-generated port of a multi-port web server [79, 78, 80]. Moreover, flooding

hosts are unable to discover structure of CDN [10, 35, 97], and their distributed

approach centralised at one victim, is split among multiple servers.

Similarly, detection of crawlers depends strongly on information encoded in

HTML semantics, as has been described in Section 3.1.3. Essentially, the authors

assume that crawlers include their identification information (e.g. do not leave agent

field blank). Moreover, it has been shown that crawlers mostly ignore media content

(e.g. images or video content), and never request them. Similarly, robots.txt file

should be mostly requested by bots, and rarely by human agents. Moreover, there

are long-term correlations (i.e. six and 12 hours) observed in traffic of legitimate

users [31]. However, the authors very often acknowledge that it is difficult to detect

crawling or flooding bots, and often tend to implement technical solutions based on

CAPTCHA.

In the subsequent section a constructive critique of current methods is pro-

vided, which leads to formulation of a problem this research is tackling. Moreover,

given the conclusions taken from others works, a set of attacking strategies are

formulated that are difficult to detect by other methods.

3.2 Motivation for Research

In order to draw conclusion on the presented methods, a set of strategies are intro-

duced, which attackers might take before running the attack against a web server.

Initially, a website is thoroughly surveyed by the attackers. This process is divided

into 3 main stages:

1. Technical Recognition - in this stage, a website is analysed to discover

whether there are any technical mechanisms that could lead to bot detection.

Essentially, this refers to any traps in a form of decoy links or objects.

2. Semantic Recognition - in this phase, attackers are building information on

the website’s structure. In particular, they perform random walk to discover

implemented URI’s. Observe that bots do not need to download images, view

embedded films or documents. Rather, they can follow hyper-links as they

appear at pages to pretend to be legitimate users, and store information about

the embedded file and their types.

3. Rate and Time Profiling - in this phase, attackers attempt to discover the

minimum, and maximum rate at which request are allowed to be made. In par-

ticular, it is assumed that the website operates some rate-limiting mechanism

53

against the frequently requesting zombies. Moreover, attackers are trying to

estimate the allowable minimum and maximum time difference, between two

consecutive requests.

Regarding (1), observe that current pattern recognition techniques are able to break

visual CAPTCHA, as it has been shown by Yan et al. [104]. Moreover, website ad-

ministrators might be reluctant to use these methods (i.e. either decoy links or

CAPTCHA challenges), as these are software-reliant solutions. In addition, Lynx,

one of the longest developed text-based browser (see Section 3.1.4), does not sup-

port JavaScript that is essential to run these methods. Therefore, methods based

on keyboard or mouse motion detection fail as well. In addition, popular cookies

applets might not be enabled in the user browsers. In addition, as it has been ob-

served by Kang et al. [38], almost 100% of the web users are put off by solving

CAPTCHA methods, and do not respond to them. Therefore, analysis of (1) can

lead to conclusion that there is no technical prevention mechanism implemented at

the website, because of the user-friendly approach of the administrators towards the

website visitors.

Analysis of (2) allows for building of a structural model, as well as removal

of unwanted links. Observe that a parsing bot can extract links leading to another

page. If used, they can attenuate the attack, as the bots will effectively be redi-

rected to another page. Implementation of (2) is essential for attackers, and as it has

been reported by [35], during the DDoS attack attackers implement their zombies

to request few links only. As a result, during (2), not only the removal of undesired

links takes place. Moreover, attackers attempt to select potentially popular links to

increase validity of their bots behaviour. Clearly, the more popular link has been

requested by a zombie, the higher the chance the zombie will not be spotted.

During (3), attackers are trying to discover whether rate limiting IDS’s are

implemented on the site. Moreover, they are trying to discover the maximum time

a bot is allowed to remain inactive for, before its reserved resources are released.

As a result of the above assumptions, attackers are happy to forfeit a number

of zombies in order to find out time and technical constraints present at the website.

This process is described with Algorithm 1. The positive parameter γ (in line 6 of

Algorithm 1) specifies the speed of decreasing the rate at which requests are sent, to

discover the lower bound of silence time between requests tmin. On the contrary, to

estimate the upper bound tmax, attackers increment the value of ri, by application

of negative parameter γ. Therefore, attackers always sense a website first, before

running the attack. In addition, attackers are able to discover hidden hyper-links

or hyper-links leading to different pages, by simple content analysis. Observe that

54

Algorithm 1 Initial Recognition

1: launch a zombie zi with initial request rate ri, and initial page li
2: repeat
3: parse ln links from the current page li
4: pick arbitrary lj link li = lj
5: if zi not blocked then
6: request li after ri = ri − γ seconds
7: end if
8: until zi blocked

the reason why a zombie has been blocked is either because it has requested the

subsequent link too fast, too slow or has activated a trap. If the rate was within the

legitimate range defined by attackers, the previous link must have been a trap.

To run the attack, attackers are assumed to implement their zombies to send

requests at the legitimate rate, learned with Algorithm 1. The rate varies, is ran-

domly chosen, such that a choice of time delay for next request follows uniform

distribution on a sample space Ω = {tmin; tmax}. Therefore, it remains within the

border of the legitimate rate, as estimated with Algorithm 1.

Moreover, once the website has been chosen and scrutinised, and bots prop-

erly implemented, attackers perform the attack in a manner presented in Algorithm

2. It has been presented in Algorithm 2 that initially zombies randomly pick a start-

ing page from the set of previously selected pages. Subsequently, the bots parse ln

available links, and remove any unwanted link that has been nominated by the bot

master as invalid. Then, a randomly generated link is chosen from remaining links,

and the whole process repeats. It is assumed that the time delay ti in Algorithm 2

is within the acceptable range, discovered while performing the initial recognition

(i.e. Algorithm 1).

Algorithm 2 The attack scenario

1: launch a set Z of zombies at initial starting page li (most likely, homepage)
2: for all zi ∈ Z do
3: repeat
4: parse ln links from the current page li
5: removed undesired links
6: pick arbitrary link lj, such that li = lj
7: if zi not blocked then request li after ti = U(tmin, tmax) seconds
8: end if
9: until zi blocked

10: end for

An example of one attacking session is presented in Fig. 3.3, where a snapshot of

55

the session is presented during which {. . . , l5, l1, l3, l10} have been requested. Sup-

pose, for simplicity, that after each request r, there are always 10 links appearing

at a page. Having run Algorithm 1, blue and violet links have been selected as the

potential popular links. For example, after rn−2-th request, there are 10 links, but

only l1, l5, l7 and l10 are promising for attackers. Subsequently, object l1 is requested

with some time delay equal to tn−2, such that tn−2∈{tmin, tmax}. Once rn−2 request

has been made, there are new links for which, again, there are 10 new objects to

request. The actual path of the zombie has been denoted with solid arrows, while

potential transitions with dashed arrows.

time

. . . rn−2=l5 rn−1=l1 rn=l3 rn+1=l10
tn−2∈{tmin, tmax} tn−1∈{tmin, tmax} tn∈{tmin, tmax} tn+1∈{tmin, tmax}

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

Figure 3.3: Once the structure of a website and requests rate boundaries have been
learned (see Algorithm 1), zombies are able to avoid undesired links. These can be
seemingly unpopular web objects, or traps planted by web administrators (marked
with black colour). As a result, while making transitions bots are instructed to
request extracted links (marked with blue and violet colour), and remain within
time boundaries to make their presence legitimate.

Therefore, given the attack implementation in Algorithm 2, it seems possible

to defend rate-dependent detection methods. Moreover, observe that behaviour

presented in in Fig. 3.3, differs from the previously described approaches that

assume frequently-requesting bots. Therefore, these methods will struggle with bots

that follow the implementation of Algorithm 2. Moreover, recall that according to

Listing 2.1, it is a common practice for attackers to hide their identity, by manual

implementation of HTTP fields required by the protocol. Therefore, methods based

56

on protocol-related information (see Section 3.1.3) will find it difficult to detect

attacking hosts that appear to be legitimate hosts.

Therefore, currently, the largest potential to deal with flooding DDoS zombies

is given to attack-resistant methods. The motivation behind these methods is to

distribute attacking traffic among multiple servers. As it has been described in

Section 3.1.4, these methods are referred to as CDN [10, 35, 97]. In principle,

once the increased number of users is observed, their requests are not directed to

the web server. Rather, they are served by web proxies that should contain up-

to-date version of the website’s content. Observe that CDN is able to deal with

the attack described in Algorithm 2. However, attackers might try and overload

web proxies by running the attack from zombies that are physically close to the

website (e.g. being placed in the same country). Moreover, CDN are commonly

used to host static objects (e.g. in-line objects downloaded with a single request).

However, hosting dynamic objects (e.g. PHP scripts) is challenging because of the

dynamically changing result of each request. Indeed, most recently Wendell et al.

[97] have reported that Amazon have implemented CDN including dynamic content

distribution. However, as it has been reported in [97], estimation of time delays for

CDN using dynamic content might decrease the performance of legitimate users.

Therefore, implementation of dynamic elements into CDN is still an open research

question.

However, in this thesis, it is assumed that interest can be used to measure

intention of arriving hosts. In principle, suppose there is a way to cluster sequences

of requests expressing similar interest in website’s content. Specifically, suppose that

users interested in news and weather could be different from users interested in sport

ans shopping. This assumption holds when visitors from one group (i.e. browsing

news and weather) avoid visiting categories popular in the other group, and vice

versa. As a result, observe that programmed bots can follow hyper links as they

appear at website; so they can request web objects at a lower rate. However, because

the actual interest in existing categories is unknown to the attackers, their bots will

fail to repeat transitions similar to a particular group of users (e.g. interested in

news and weather). Therefore, initially it is required to group sequences from a

trace using some similarity measure, which allows for similar interest elicitation,

and cluster formation. Subsequently, another measure is required to assess validity

of a connection in a cluster. This measure should be: (i) attack-strategy independent

(i.e. should be able to detect different browsing strategies chosen by attackers), (ii)

and attack-scale independent (i.e. regardless of the number of browsing bots, the

attempt should be discovered, especially when this number is very small). Therefore,

57

in the next chapter, approaches are taken to explain methods allowing for grouping

of sequences, and measuring their fit into clusters.

3.2.1 Summary

In this chapter an introduction has been given to the problem of intrusion detection.

It has been shown that the problem is still unsolved, and actively researched. More-

over, different types of victims have been described, and application servers selected

as the basis of further research. However, it has been argued that detection of at-

tacks against application server is very challenging. Indeed, some researchers claim

that intention is the only difference among connections [102]. In addition, because

of stealthy appearance of the zombies, their activity becomes indistinguishable from

legitimate data flow [80]. Moreover, detection mechanisms based on traffic charac-

teristics become invalid [101]. Therefore, the research against unsolicited browsing is

still ongoing; trying to provide more insight into strategies against attacking hosts.

Moreover, an attempt has been taken to compare approaches to detect ma-

licious agents performing unsolicited browsing. The undesired bots can be divided

into two groups: (i) flooding and (ii) crawling agents. In general, attacking hosts of

type (i), attempt to exhaust server resources by sending multiple and

or resource-intensive requests. On the other hand, (ii) follow more legitimate pat-

tern of resource consumption. However, their intention remain malignant, and their

behaviour is often considered harmful.

Moreover, the research of unsolicited browsing is split into two groups: Learn-

ing Systems, and Technical Solutions. While the first group attempts to model either

attacking or legitimate hosts, the other methods implement technical fixes ranging

from simple code implementation to a global solution based on CDN. Learning Sys-

tems are divided further into sequences-oriented, and protocol-oriented methods.

While the former utilised temporal information of web sessions, the later focused on

semantics of HTTP protocol and protocol-specific configuration.

Finally, a scenario of the attack has been presented, having analysed a sam-

ple of Agobot, a very popular bot client. Given the code, it has been shown that

protocol-reliant methods can struggle with detection of malicious bots. This inabil-

ity of detection stems from manually setup of protocol-dependent attributes that

were meant to provide classification. Moreover, simple recognition of website rate-

limiting specification allows for outwitting sequence-dependent methods. Therefore,

research on detection of unsolicited browsing is still progressing.

In the subsequent chapter, methodology of this research is given to detect

different types of attacking hosts. Specifically, different methods are provided that

58

allow for identification of interest of legitimate users that remains unknown to at-

tackers. Specifically, given the actual structure of a website, legitimate connections

visit similar pages in groups. As a result, users interested in similar pages, avoid

browsing other pages that again seem to be interesting to different groups of users.

Thus, because the attackers do not know the actual interest in a website’s content,

it is unlikely that they will reproduce request sequences of actual (legitimate) users.

Moreover, a set of attacking strategies is defined to closely resemble legitimate be-

haviour. As a result, additional methods are provided to discover the attack taking

place at a website, and classification of web sessions into legitimate and attacking.

59

Chapter 4

Methodology

Having defined the research problem in the previous Chapters, and motivation be-

hind the future research (see Section 3.2), a set of approaches is described to provide

detection of unsolicited browsing. Generally, the application of IDS can be divided

into two processes. Initially, IDS starts with discovery of a potential (i) attacking

attempt (i.e. on-going attack). In principle, it is essential to recognise that the be-

haviour of currently browsing hosts is malicious. Subsequently, on a per-connection

basis, (ii) intention classification should be performed.

Description of the methods attempting (i) and (ii) are presented in Fig. 4.1.

Initially, data collection technique is described, in which different web traces are

analysed. This allows for a division of web interest into two types: macro-interest

and micro-interest. The former defines interest in web categories (i.e. more general

approach), while the later denotes URI based interest (i.e. more detailed interest

in actual web objects residing inside web categories). Observe that, once a website

is “wider” (i.e. contains multiple categories, for example any e-commerce website

or news portal), the approach based on the macro-interest might turn out to be

sufficient. However, contemporary website tend to be “deeper”, rather than wider

(i.e. contain multiple links inside a group of very general, and limited categories).

Moreover, it turns out that the focus cannot be put on every single URI of a website.

As a result, a data preprocessing part is required for micro-interest approach.

There is a couple of key components that are overlapping for micro-interest

and macro-interest approaches. However, these are described in a very general way

(i.e. there is no reference to either of the approaches in order to avoid duplication

of description). Therefore, this might hinder the processes of reading this chapter.

As a result, a detailed description of the subsequent Sections is given, in order to

shape the structure of the chapter.

60

Therefore, having analysed the data sets, an insight into technical details of

the traces is given, and more specific information provided (e.g. a distribution of

sequence length in the data sets).

Data Collection Web Interest

Macro-

Interest

Definition

Micro-Interest

Definition

Data Pre-

processing

Data Preprocessing

- Micro-Interest

Sequence Length

Distribution in

Datasets

Clustering

Entropy - The

Measure of In-

terest Groups

Number of

Clusters

Dynamic

Number of

Clusters

Fixed

Number of

Clusters

Allocation of

Attacking and

Validating Se-

quences

Strategies

of At-

tacking

Hosts

Attacking

Hosts Against

Macro-Interest

Approach

Attacking

Hosts Against

Micro-Interest

Approach

Soft & Hard

Detection

Ranges

Detection

Detection of Attacking

Hosts Against Macro-

Interest Approach

Detection of Attacking

Hosts Against Micro-

Interest Approach

Figure 4.1: Organisation of this Chapter.

The above considerations lead to a definition of entropy-based clustering of

sequences of requests. However, because the number of clusters cannot be defined

in advance, two methods of cluster number specification are presented. Once le-

gitimate sequences have been clustered, a method based on maximum likelihood is

introduced that assigns validating and attacking sequences into the clusters. Inter-

estingly, the distribution of the attacking sequences is indicative enough to provide

(i). Recall that, most of the researches define their own sets of attacking strategies

(see Section 3.1.2 for details). Clearly, those strategies challenge the assumption of

the legitimate behaviour. Therefore, a set of attacking strategies is provided that,

again, varies between macro-interest and micro-interest approaches. Moreover, clus-

ters will be divided into ranges to apply different levels of detection techniques. As

it has been noted, sequence distribution will allow for (i). Therefore, strict (i.e.

“hard”) detection techniques are imposed on the clusters mostly populated with

attacking sequences. In contrast, detection thresholds are relaxed for the (“soft”)

clusters experiencing the surge of legitimate users. Once the division of clusters has

61

been accomplished, different statistical measurements are introduced to perform (ii).

4.1 Data Collection - Two Approaches to Web Interest

Before the clustering algorithm is presented, data sets obtained for clustering and

validation of the approach are presented. The reason behind this, stems from the

need to introduce the above-mentioned two approaches to measure user interest.

Initially, interest is measured at a macroscopic scale, and interest in web categories

is considered only. These can be: weather, news, sport, images etc. At this point,

specific information on links, and objects inside each category is not considered.

Therefore, suppose there are two requests inside news category. As a result, whether

a nested link from news category, or a link pointing to news category has been re-

quested, information stored inside a log about both actions will be stored as the

categorical requests (i.e. news, followed by news). On the contrary, measured inter-

est can be more detailed, and centralised at each URI. This time, it is analysed at

a microscopic scale, and information inside data log varies (e.g. news and news/s-

port/football). Initially, macro-interest is explained, followed by micro-interest of

web users.

4.1.1 Data Collection - Macro-Interest of Web Users

To give more insight into this approach, a freely available1 data set has been ob-

tained from a day-long activity of a web server, recorded at then location http://

msnbc.com, on the 28th of September, 1999 . The data set has been used before in

detection of web interest [32],[77] and clustering of web sessions [42]. This data set

is composed of sequences of numbers, corresponding to categories that were visited

by users. During recording of the data set, there were 17 logical categories: (1)front-

page, (2)news, (3)tech, (4)local, (5)opinion, (6)on-air, (7)misc, (8)weather, (9)msn-

news, (10)health, (11)living, (12)business, (13)msn-sports, (14)sports, (15)sum-

mary, (16)bbs, (17)travel. Moreover, the number of URLs inside each category varies

from 10 to 5000. The sequences inside the data set are stored in the following format:

1http://www.http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/

62

http://msnbc.com
http://msnbc.com
http://www.http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/

Listing 4.1: MSNBC data set format

1 Label format :

2 6 9 4 4 4 10 3 10 5 10 4 4 4

3 1 1 1 11 1 1 1

4 12 12

5 1 1

6 Text format :

7 on−a i r msn−news l o c a l l o c a l l o c a l hea l th tech hea l th op in ion hea l th

l o c a l l o c a l l o c a l

8 f ron tpage f ron tpage f ron tpage l i v i n g f ron tpage f ron tpage f ron tpage

9 bus ine s s bus ine s s

10 f ron tpage f ron tpage

From Listing 4.1, one can learn that only categorical requests are stored inside

MSNBC data set. Moreover, observe there is no time information on when a re-

quest was made. Specifically, during first session, six different categories have been

viewed in the 13-request long session: on-air, msn-news, local, health, tech, opinion

(lines 2 and 7 from Listing 4.1). Specific information about requested link inside

each category was not given. Therefore, as it has been mentioned above, only cat-

egorical interest is focused at. Moreover, a depth of each visit is not stored either.

Therefore, most probably second session (lines 3 and 8 from Listing 4.1) visited

category frontpage “deeper”, comparing to the fourth (lines 5 and 10 from Listing

4.1) session; only because of the larger number of frontpage requests during the

second session. However, this assumption cannot be validated.

4.1.2 Data Collection - Micro-Interest of Web Users

Suppose, there is a narrower version of the MSNBC website, and presented in Fig.

4.2. At any page, Top Menu is always present to allow for navigation among cat-

egories. Once a request has been made, a sub menu appears from the requested

category. For the website presented in Fig. 4.2, there are five categories only, and

each containing from 2 to 1,999 links. Observe that, currently, web pages are deeper

rather than wider. As a result, the number of logical categories is smaller compar-

ing to the total number of links. Clearly, most of the links of website presented in

Fig. 4.2 are stored in the sub categories, making some categories densely populated.

Subsequently, one wants to discover connections that expressed similar interest in

links or web objects of any type (i.e links, images, documents, etc.), while browsing

the website.

63

frontpage

fp1

fp2

· · ·

fp4

news

news1

news2

· · ·

news999

tech

tech1

tech2

local

local government

British government

American government

opinion

opinion1

opinion2

· · ·

opinion1999

Top Menu

Submenus

Figure 4.2: This Figure depicts a narrower version of the website presented in Listing
4.1. Observe that the number of existing web objects is relatively larger than logical
categories.

Therefore, suppose that there are four interest groups (i.e. clusters consisting

of frequently requested web objects) created by users interested in the following links:

1. C1 = {fp1, tech2, local government}

2. C2 = {fp4, tech2, local government}

3. C3 = {news234, American government, local government}

4. C4 = {news234, American government, opinion999}

If macro-interest was considered, first two groups would be merged, and represented

by the same categorical representation i.e.: Cmacro = {frontpage, tech, local}. How-

ever, because C1 and C2 appear in the log frequently and independently of each

other, they should be treated as different interest groups. In addition, observe

that it is more difficult for attackers to devise micro-interest group listed above

(i.e. C1−4). Attackers might assume that given the small number of existing web

categories (i.e. 5) there is a specific concentration of users expressed with Cmacro.

Moreover, this information might be guessed with simple brute-force approach (de-

scribed in detail in Algorithm 1, in Section 3.2). However, it is assumed that to

figure out the actual micro-interest of C1−4, access to the actual log recorded at

a website must be granted. Therefore, attackers find micro-interest representation

more challenging to break. However, macro-interest representation provides good

insight into attacking strategies, what will be shown in the next chapter.

To cluster, and scrutinise the micro-interest approach, three data sets have

been obtained, each consisting of sequences of users’ requests. Specifically, as it has

been presented in Section 3.1.2, users ID, exact time information, and requested

object are provided. As a result, it is possible to devise an actual traversal path of

each user. Two of the obtained data sets are available on-line2, and are referred to

2http://ita.ee.lbl.gov/html/traces.html

64

as CLARKNET and NASA. CLARKENT spans two weeks (in August-September,

1995) of activity, and contains 3,328,587 requests. Inside NASA data set, in the

same period (in July-August, 1995), 3,461,612 requests have been recorded. Access

to the third data set, referred to as ESHOP, has been kindly provided by the authors

of [28]. Inside ESHOP data set, there are only 64,044 different sessions observed

during one day in 2009. The data set has been obtained to validate the proposed

approach for a relatively smaller and newer data set. CLARKNET [33, 87] and

NASA [11, 59, 105] have most recently been used in research related to different

aspects of the behaviour of web users’ modelling. Moreover, detailed description of

these data sets should be sought in the relevant literature [2],[28].

4.2 Data Preprocessing - Micro-Interest

Each data set is divided into two subsets for training, and validating purposes. Sub-

sequently, all unique objects and links requested during training are stored inside a

data set L. Subsequently, most popular elements from L, are stored inside Ω. For

the time being, assume that Ω contains all existing links from L. However, it is as-

sumed that objects inside Ω should consist of popular elements, whose frequency of

requests during training should be higher than some threshold λ. The reason behind

doing this is twofold. Firstly, note that current websites can contain multiple links,

causing large overhead. Moreover, as it is explained in the following section, each

cluster is described by a joint distribution whose sample space is defined on a prod-

uct Ω×Ω. Clearly, for a system with multiple clusters, multiple instances of large Ω

can produce too much overhead. Secondly, it has been proven by Kantardzic et al.

[39] that only 10% of popular objects stored at a website are frequently requested.

The implications drawn by the authors of [39] have been subsequently used in the

previously described works of Wang et al [94, 95], and Xie et al. [100, 101, 102].

Moreover, recall that during flash crowd events the legitimate users visit popular

links (see Section 2.5 for details). Nevertheless, if frequency of an object requests is

below λ, transitions from and to this object are rare, and not informative. There-

fore, λ is set to λ = 0.1%. As a result, Ω consists of requests whose frequency is at

least 0.1% inside training data set. It has been empirically tested that values below

λ cannot provide enough information, for the detection techniques presented in the

subsequent sections.

Afterwards, each sequence of requests is transformed into a sequence of nu-

merical labels corresponding to indices of objects stored inside Ω. However, as it

has been noticed, Ω ⊆ L, and therefore objects that belong to a set L \Ω should be

65

accounted for. If a request is unpopular, and not present in Ω, a metric based on

Jaccard distance measure is used to find most similar object inside Ω.

Jaccard coefficient between two arbitrary sets A,B is calculated in the fol-

lowing way:

J(A,B) =
|A ∩B|

|A ∪B|
, (4.1)

and denotes a ratio of the number of the same elements belonging to A and B (i.e.

intersection |A ∩ B|) to all elements containing in A and B (i.e. union |A ∪ B|).

Jaccard distance is defined as

Jd(A,B) = 1− J(A,B) (4.2)

It has been shown that (4.2) is a proper metric [44]. For web domain, elements inside

A and B could be thought of as sets consisting of elements of a single URI (e.g. for

a link website.com/news/sport this data set consists of {website, news, sport}). In

addition, we allow for existence of “others” category (i.e. index |Ω| + 1) for which

Jaccard distance is greater than 1
2 . This threshold is used to single out requests

whose URI’es cannot find an object inside Ω for which at least 50% of URI’es com-

ponents are the same. This value has been taken from literature [30], and is often

used as metric of stability between two clusters. Moreover, suppose there is a un-

popular link lu, and there are two links li, lj , such that 1≤i, j≤, ln+1, i6=j for which

Jd(lu, lj) = Jd(lu, li). In this scenario, a decision is made to select a link with the

lowest popularity, to represent lu. Clearly, that supports the idea that the object

unobserved inside Ω should be represented by the object with the similar-looking

URI, and low popularity percentage.

Recall the narrower version of MSNBC website presented in Fig. 4.2. Ob-

serve that there are 5+4+999+2+3+1999 = 3012 observable links at the object (i.e

5 for the Top Menu, and 3007 in the sub categories). Subsequently, suppose that in-

side Ω there are 3010 links, excluding tech1, and opinion500. Subsequently, suppose

there is the following session si = {tech, tech1, opinion, opinion500, Polish government}.

Clearly, indices of tech, and opinion are inside Ω. However, the second, fourth

and fifth requests are missing. Subsequently, tech2 is chosen to represent tech1

and opinion50 is chosen to represent opinion500. Observe that Jd(tech1, tech) =

Jd(tech1, tech2) (with denoting a white space), however, because tech2 is not re-

siding in the top menu, its popularity factor is much lower than tech. Assuming

that opinion50 obtains the lowest popularity factor during training, it is chosen over

other similar links (e.g. opinion501). Moreover, Polish government is represented

as British government, as its Jaccard distance is the smallest.

66

Therefore, observe that using (4.2) introduces labelling of unpopular links.

Unpopular links are replaced with more popular ones, and requests that are not

inside Ω, are represented by most similar objects. However, observe that this oc-

curs for links whose frequency is very low, and should not introduce much noise

into data. Therefore, objects inside Ω should be thought of as “centroids” of new

“virtual” categories, observed at a website. Subsequently, the concentration of web

users across these centroids (i.e. different combination of visits to the popular cen-

troids) allows for interest group creation. Moreover, the clustering is performed

after the sequences have been transformed into the corresponding indices (i.e. clus-

tering is performed using indices of the categories). Similarly, sequences of requests

coming from validating sequences are transformed into sequences of labels stored in

Ω. Moreover, it is assumed that legitimate sequences make up for the training data

sets. This way, the effect of missing replacements is minimised, and results in the

subsequent sessions indicate that it can be ignored.

Moreover, recall that λlinks = 0.1%. Similarly, Chen et al [9] divided web

sessions into four groups, depending on the number of popular links inside each

session, in the following way:

1. Grade 3, for which 10% < lp ≤ 100

2. Grade 2, for which 1% < lp ≤ 10%

3. Grade 1, for which 0.1% < lp ≤ 1%

4. Grade 0, for which 0% ≤ lp ≤ 0.1%

where lp denotes link popularity. Moreover, object with the highest popularity rank

will have popularity equal to 100%, and popularity of the other objects are obtained

by division of the number of access of the most popular object. The authors of

[9] analysed the World Cup 1998 data set (used frequently by other researchers,

see Section 3.1.2 for details), and have drawn the following conclusion (regarding

Grade 0):

1. Only 1.3% of users start browsing from the Grade 0 link

2. The average popularity of Grade 0 visitors does not change with the number

of requests. Therefore, Grade 0 users will remain inside unpopular links.

Moreover, recall that during flash crowds, legitimate users follow the interest from

the past history, and their interest follows Pareto distribution (see Section 2.5).

Therefore, legitimate users will follow popular links and their request are directed

67

mostly at the most popular links, and thus, objects stored inside Ω. This implies

that representing sequences of actual requests by labelling with the most popular

URI’s should be valid during a flash crowd event. As a result, requests generated

by bots will rarely hit popular objects, and end up requesting objects denoted with

index |Ω|+ 1. The same applies to popular crawlers that visit unrelated pages.

4.3 Sequence Length Distribution in Data Sets

Inside the data sets, most of the users would leave a website after a few requests,

what has been presented in Fig 4.3. Clearly, sequences consisting of 30 requests are

rare for ESHOP and MSNBC data set. Therefore, the more requests users make,

the less likely the sequences appear in data sets. It has been assumed that to learn

properly users behaviour depending on the length, it is required that sequences of

different lengths should appear more than 1% inside data sets. Therefore, the max-

imum number of requests is assumed to be 30 for CLARKNET and NASA data set,

while it is 18 for ESHOP, and 16 for MSNBC. In addition, observe that 30 requests

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
1
3
5
7
9

11
13
15
17
19
21
23
25
27

Number of Requests%
of

S
eq
u
en
ce
s
in

D
at
as
et CLARKNET

NASA
ESHOP
MSNBC

Figure 4.3: Length distribution of sequences inside traces.

for NASA and CLARKNET data set is slightly above 1%, and longer sessions could

be used. However, Ranjan et al. [70, 71, 72] have estimated that 30 requests are

required to learn request flooding attack (see Section 3.1.2 for details), and this limit

is subsequently imposed in this thesis. Moreover, observe that for larger data sets

users will have multiple requests spanned over two weeks (frequent users come and

go, and their requests are identified with the same user ID, presumably IP address).

68

It has been assumed that the standard time-out for a session is 1800 seconds (30

min), as reported by Pitvko [67]. Identically, the time limit of 30 mins has been

used by Stevanovic et al. [82, 84], Lu et al. [52] Jacob et al. [31], and Tan et al.

[89]. Interestingly, this standard was introduced in 1996 [67], and has been in use

ever since.

4.4 Clustering

Clustering algorithm described in this section is a general approach, and applied to

the macro-interest and micro-interest methods explained in Sections 4.1.1 and 4.1.2,

respectively.

Suppose there is a data set D containing n i.i.d. (independently and iden-

tically distributed) sequences of requests s1, s2, . . . , sn. Similar to the previous re-

search approaches, it is assumed that D is composed of legitimate sequences. More-

over, it is assumed that regularity of legitimate user requests is very consistent, and

allows for drawing conclusions on the legitimate behaviour. Subsequently, the data

set is randomly divided into two sets: T for training (i.e. clustering), and V for val-

idating containing nT and nV sequences, respectively. Set T is composed of roughly

three times as many sequences as V . Moreover, attacking sessions are stored in sets

marked with A(·), where (·) denotes different attacking strategies. During validation

phase, both sets V and A(·) are merged, so that V A(·) = V ∪ A(·), containing nV A

numbers of sequences.

The aim of clustering C is to partition T into k clusters Ci, 1≤i≤k, such that

sequences in one cluster are similar to each other, and are different comparing to

sequences in set {C \Ci}. Moreover, for partition C the following two axioms hold:

1. T is partitioned k into disjoint subsets, such that:

C =

k
⋃

i=1

Ci, ∀Ci 6= ∅ (4.3)

2. Union of any two subsets does not result in an empty set:

Ci ∪Cj = ∅, 1≤i, j≤k, i 6= j (4.4)

Recall that, for the binary intention, IDS uses a classification function f : T →

{−1,+1} that assigns a label y = +1 to potential legitimate sequences, and y = −1

is assigned to malicious sequences. Moreover, the length of sequences observed in D

69

varies between r∧ and r∨. Thus, r∧ and r∨ denote minimum and maximum number

of requests, respectively. Therefore, given a sequence si, IDS tries and assigns the

class yi ∈ {−1,+1}, to the input sequences. Moreover, suppose that beforehand,

IDS is given a labelled set of pairs {(s1, y1), (s2, y2), . . . , (s|T |, y|T |)}. In this scenario,

IDS is required to group sequences into two clusters, such that k = 2. Moreover,

IDS infers that there are some common features among {s1:|T |} that are explicit

to legitimate sequences. Obviously, the opposite holds for attacking sequences.

Therefore, the IDS can learn classification. Subsequently, given the input pairs,

IDS tries to estimate the output values ŷ of future sequences. This type of learning

is called supervised.

The opposite to supervised learning is unsupervised learning, where the main

difference is the unknown number of classes, an algorithm needs to assign data

points to. Observe that, one can assume that for MSNBC data set, there are only

17 different interest groups, corresponding to the number of actual web categories.

However, it is believed that a combination of the categorical interest (e.g. popular

interest among 4 categories can be considered as one interest group, rather than

four separate groups) should be sought after. Therefore, in general the number of

clusters (i.e. interest groups) is unknown, and in the subsequent sessions it is shown

how to estimate the number of clusters.

4.5 Entropy as a Measure of Interest Groups

As it has been mentioned before, a sample space Ω = {ω1, ω2, . . . , ωnC
} is introduced,

containing nC numerical labels. Recall that this represents indices of popular links

inside L (for micro-interest approach, described in detail in Section 4.1.2) or actual

categories (for macro-interest approach, described in detail in Section 4.1.1) of a

web server. Observe that in general, the number of web categories or extracted

popular links stored in Ω, does not make up for the number of clusters, such that

nC 6= k. Recall that these are just labels, prepared for the purpose of observing an

event from Ω.

For each i, 1≤i≤n, si is a realisation of a random sequence that takes on val-

ues in Ω. Moreover, each sequence si consists of ni ∈ {r∧, . . . , r∨} numerical labels,

such that si=(s1i , s
2
i , . . . , s

ni

i), and r∧, r∨ denote minimum and maximum number

of requests respectively. r∧ is assumed to be 2, and r∨ has been set separately for

different data sets (see Section 4.1.2 for details).

Furthermore, suppose that si is one of the longest sequences in T , such that

70

ni = r∨. Subsequently, probability of such a sequence could be obtained, such that:

P (si) = P (s1i , s
2
i , . . . , s

ni

i) = P (sni

i |s1i , . . . , s
ni−1
i)P (sni−2

i |s1i , . . . , s
ni−1
i)

. . . P (s2i |s
n1

i)P (s1i)
(4.5)

However, web traces are very limited, and in general it is impractical to obtain

enough knowledge to learn (4.5) (see Section 4.3 for details). Moreover, because

of memory overhead, large matrices corresponding to (4.5) are avoided as well.

Therefore, suppose that (a, b) denotes observing a pair of requests, such that (a, b) ∈

Ω× Ω. As a result, for the purpose of this research a bi-variate joint distribution

Pj(a, b) =
Na,b

N
(4.6)

is used to represent cluster Cj , where j, 1≤j≤k.

To estimate joint distribution Pj(a, b), the following terms are used:

Na,b , a number of times pair (a, b) has been observed

Na ,
∑

b∈Ω

Na,b = total number of transitions starting from a-th object

N ,
∑

a,b∈Ω

Na,b = total number of transitions among web objects

(4.7)

Therefore, given (4.7), a probability of observing a pair of requests (a, b) is ap-

proximated by (4.6), a marginal probability of observing request a is obtained by

summation over each web object:

P (a) =
∑

b∈Ω

P (a, b) ,
Na

N
(4.8)

Subsequently, given Bayes rule, a conditional probability of a given that b was the

previous request is calculated in the following way:

P (a|b) =
P (a, b)

P (b)
(4.9)

Moreover, a probability of sequence is obtained by applying product of (4.8) and

(4.9), and is described in the subsequent sessions. Observe, that the assumption is

made that the above frequency-based formulation can estimate transition probabil-

ities, which follows the Weak Law of Large Numbers.

Moreover, this approach is often used in literature related to intrusion de-

tection for websites. Recall that, Lu et al. [52] introduced system based on HMM

71

between two states defined as (i) requesting a hyper-link or (ii) an in-line objects.

To define transitions between (i) and (ii), a table of counters is introduced, from

which HMM can be estimated. Similarly, Xie et al.[99, 100, 101, 102] introduced a

popularity matrix that is build from frequency of requests. Identical approaches are

observed in different domain of web data mining. For example, Yang et al. [105]

used similar approach when working with NASA data set, and trying to devise a

pre-fetching algorithm.

For the random request a defined on Ω, entropy is calculated as [76]:

h(a)= −
∑

a∈Ω
P (ωi) lnP (ωi) (4.10)

In addition, entropy is bounded, such that

0 ≤ h(a) ≤ ln(|Ω|) (4.11)

Specifically, (4.10) is equal to ln(|Ω|), when (4.5) is uniform, which is sometimes

referred to as a flat distribution.

One approach, for categorical data points clustering, utilises entropy minimi-

sation [3, 49]. Entropy of (4.6) is calculated as [76]:

h(a, b)= −
∑

a,b∈Ω

P (a, b) lnP (a, b) (4.12)

Generally, high entropy corresponds to flatter distribution, whereas smaller en-

tropy denotes skewer distribution. Recall that, Lee et al. [47] formalised usage

of information-theoretic measurements for IDS. Thus, for IDS purposes one seeks

clusters with smaller entropy to group elements representing similar behaviour [47].

Therefore, in order to group sessions stored in T into k clusters, k empirical joint dis-

tributions P1:k(a, b) are obtained by analysing sequences from each cluster. Specifi-

cally, initially each Pj(a, b) is a uniform distribution from which each pair of requests

can be drawn with equal probability equal to 1
|Ω|×|Ω| . Subsequently, Pj(a, b) trans-

forms into a more peaked distribution by application of (4.7).

Following Barbará [3], if there is set C1:k={C1, C2, . . . , Ck} of k clusters, the

goal is to minimise the average entropy of the clusters, which is computed as follows:

E{h}=

k
∑

j=1

(

|Cj |

t+ 1
{hj}

)

(4.13)

72

Therefore, having grouped t, 1≤t≤nT sequences from T given (4.13), every time a

sequence si, t<i≤nT is to be added to the composition of clusters C1:k, a cluster

Cj, 1≤j≤k is picked where assigning sequence si decreases the scaled (i.e. multi-

plied by
|Cj |
t+1) cluster’s entropy the most.

Note that clustering based on (4.13) attempts to solve two problems at once.

Mutually, popularity of behaviour Cj is considered (i.e. the popularity term
|Cj |
t+1 is

calculated), together with minimisation of averaged entropy of cluster composition

C1:k. For sequential processing of data sets the following problems might arrive for

high-dimensional data sets.

Observe that the difference in entropy ∆hj of cluster Cj before and after

adding si, might be very small for data sets containing objects with many features.

In addition, suppose there is a unpopular cluster Cu, 1≤u≤nT , u 6= j for which

|Cj | ≫ |Cu| (i.e. containing relatively fewer sequences comparing to Cj). Subse-

quently, suppose that si reduces entropy of both clusters. However, the reduction

in entropy for the unpopular cluster is larger than for the popular one, so that

∆hu > ∆hj .

Now, the minimisation of (4.13) might lead to assigning a sequence to Cj over

Cu. It stems from the fact that the popularity factor |Cu|
|t+1| might decrease the high

entropy improvement ∆hu. As a result, Cj might be absorbing sequences because

of its high popularity factor.

Therefore, (4.13) is modified by introduction of the following minimisation

function. While partitioning T , a cluster Ci, 1≤i≤k is chosen, for which introduction

of currently processing sequence decreases the entropy of Ci the most, such that

i = argmax∆h1:k (4.14)

Finally, observe that cluster representation and minimisation of 4.14 allows for in-

terest elicitation. Specifically, this unsupervised approach allows for representing

the web interest as peaks of joint distributions. Moreover, sequences of requests are

added to C1:k to increase the heights the of peaks, given (4.14).

4.6 Calculating the Number of Clusters

Recall that, initially, a clustering of sequences is sought to group sequences express-

ing similar interest in a website’s content. Moreover, the number of different interest

groups is unknown, and has to be estimated from data. For this purpose two ap-

proaches are taken. Firstly, a method based on dynamically changing k is presented.

Subsequently, a method is introduced that utilises a fixed k.

73

4.6.1 Dynamically Changing the Number of Clusters

Observe that if k is not fixed, then sometimes creating a new cluster is actually

the best placement for sequence si, given (4.14). Therefore, when k is not fixed, it

changes while adding new sequences to C1:k, and depends on the factors described

below. Moreover, it is important to note that the order of sequences can play a cru-

cial role in the clustering algorithm (i.e. decreasing or increasing its performance).

In order to attenuate the unwanted effect of ordering, the following potentially im-

proving processes have been introduced: Re-clustering, Merging and Partitioning.

Re-clustering

Re-clustering process is proposed to find a better cluster for a sequence si, 1≤i≤b,

including clusters that were not present during initial addition of si, after having

processed b, 1≤b≤nT sequences from T . In other words, suppose that while grouping

si there are k clusters, and si has been added to Cj , 1≤j≤k. It might be the case,

that after having grouped other b sequences, there is a different number of clusters

k′. Subsequently, suppose there exists another cluster Cj′, 1≤j′≤k′, j′ 6= j such that

placing the previously added si inside Cj′ , minimises (4.14) further. Therefore, after

processing a batch of b sequences, the algorithm is stopped, and the whole set C is

re-clustered, moving sequences to another cluster, if there is improvement in (4.14).

Merging

Yet another process that can minimise (4.14) is merging. While connections are be-

ing added to cluster composition C, it might be the case that there are some clusters

that pose similar characteristics, however they exist as two different instances.

One way of comparing two joint distributions Pi(a, b), 1≤i≤k, and Pj(a, b),

1≤j≤k, i6=j is the application of Kullback-Leibler (KL) divergence [41] formula:

DKL(Pi||Pj)=
∑∑

a,b∈Ω

Pi(a, b) log
Pi(a, b)

Pj(a, b)
(4.15)

However, KL divergence is not symmetric, nor does it satisfy triangle inequality. As

a result, Jensen-Shannon divergence (JSD) is used, and calculated in the following

way:

JSD(Pi||Pj) =
1

2
DKL(Pi||M) +

1

2
DKL(Pj ||M),

where M =
1

2
(Pi + Pj)

(4.16)

74

and it has been shown by Endres, et al. [20], the square root of 4.16 is a proper

metric. In addition, the metric is bounded, such that 0 ≤ JSD(Pi||Qi) ≤ 1. Thus,

Ci and Cj are merged when JSD(Pi||Pj)≤ηi,j , and ηi,j is obtained in the following

way:

ηi,j=argmin
{C1:k\Ci}

JSD(Pi||P{C1:k\Ci}) (4.17)

where {C1:k \ Ci} denotes a set of all clusters except for cluster Ci

Partitioning

The clustering approach based on minimisation of (4.14) is computationally expen-

sive [3]. In order to increase the speed of the algorithm, a partitioning of connections

is introduced.

Before the algorithm is applied, data set T is partitioned into a set of parti-

tions B containing a small number of partitions p. Each Bi ∈ B, 1≤i≤p is a range

of the ordered sequences’ indexes, such that Bi={B1
i , . . . B

di
i }, where 1≤Bdi

i ≤nT

denotes the index of a di-th sequence from T corresponding to the last element’s

index from Bi. For two adjacent ranges Bi, and Bj={B1
j , . . . , B

dj
j }, 1≤j≤p, j 6= i,

the following relationship holds: B1
i <Bdi

i <B1
j<B

dj
j ≤ nT .

For each partition Bi, the clustering algorithm is applied with re-clustering

and merging to prepare ki clusters C
B
i ={C1

i , C
2
i , . . . , C

ki
i } for block Bi. When each

partition of indexes has been processed, each set of clusters CB
i contains best ar-

rangements of ki clusters, given (4.14), for its own sample of connections only. After-

wards, the sets of clusters CB
i are merged together. Subsequently, merging and re-

clustering is performed on the newly obtained set of clusters C={CB
1 , CB

2 , . . . , CB
p }

until there is no improvement of (4.14). This process saves time, because merging

and re-clustering are not as computationally expensive as minimising (4.14) for a

large sample of connections, allowing k to dynamically change.

4.6.2 Summary of the Algorithm

In general, the clustering algorithm can be represented with Algorithm 3. Initially,

connections are divided into p same-length blocks. For each block, 10 sequences are

chosen to prepare 10 clusters. For each block, the clustering routine is performed to

minimise its own version of (4.14). Merging and re-clustering are performed as well

after every b connections have been processed within each Bi, 1≤i≤p block. When

clustering of each block Bi has been finished and corresponding sets of clusters have

been prepared, there are many clusters spread across composition B. Thus, the

75

clusters from each Bi are gathered and analysed as one set of clusters C. Subse-

quently, until the value of (4.14) cannot be minimised further, set C is merged and

re-clustered alternately.

Algorithm 3 Clustering algorithm
1: divide connections into p partitions B
2: for all Bi ∈ B, 1≤i≤p do
3: j = B11

i

4: for all sj , j ∈ Bi do
5: no of processed connections=10
6: while no of processed connections<b and j ≤ Bdi

i do
7: if adding sj to Ct

i , 1≤t≤ki minimises (4.14) then
8: assign sj to Ct

i

9: else
10: nk=ki + 1, ki=nk

Create new cluster Cnk

i containing sj
11: end if
12: no of processed connections++, j ++
13: end while
14: Re-cluster Bi, Merge Bi

15: end for
16: end for
17: integrate all C1:k

1:p ∈ B to get C
18: repeat
19: Re-cluster C,Merge C
20: until (4.14) cannot be minimised further

4.6.3 Fixed Number of Clusters

The main reason why a fixed number of clusters is introduced, stems from the

overhead the Algorithm 3 generated for high-dimensional data sets. Initially, the

application of Algorithm 3 worked well for MSNBC data set. Clearly, because

the number of web categories is relatively small (i.e. 17) the algorithm works fast

enough to be implemented in real environment. However, because URI’s (instead

of web categories) are selected from the remaining data set, the cardinality of Ω

is considerably higher. Thus, rather than changing k dynamically, the following

method is proposed.

In this work, k is chosen to be eh(a,b) that is number of clusters needed for

lossless compression [76]. eh(a,b) is obtained by analysing empirical joint distribution

P(a, b) having analysed all connections belonging to T . It should be thought of

as a joint distribution of all sequences from T , when there is only one cluster.

Subsequently, once k = eh(a,b), k different sequences are selected that visit frequently

popular transitions in P(a, b).

76

Having clustered set C1:k, a set of unique patterns of interest is obtained.

However, it is essential that set C1:k is reshuffled, and best placement for already

clustered connections is searched for, based on further minimisation of (4.14). The

main reason behind it is the fact that clustering based on entropy-minimisation

detects many unique patterns that, not necessarily, are popular. Therefore, recall

that when k dynamically changes, the sequences are reallocated as well (see Section

4.6.1). Similarly, reallocation is applied for the algorithm utilising the fixed k, and

is described below.

4.6.4 Reallocation of Sequences for Micro-Interest

For the purpose of this subsection suppose that the set of clusters C1:k has been

ordered, so that C1 contains the lowest entropy, while Ck the highest. This concept

will be analysed again, while looking at soft and hard detection ranges, in the next

section. Moreover, recall that entropy is bounded (see (4.10) in Section).

Suppose that there is t, 1≤t≤k, such that connections inside clusters C1:t are

very regular. As a result, if one calculates entropy of any cluster from C1:t, it is

close to 0. On the contrary, clusters from Ct+1:k are populated with very irregular

sequences; say their requests are distributed randomly on Ω. Subsequently, entropy

of any Cj , t+1≤j≤k is very close to ln(|Ω|2).

Moreover, assume there is an attacking sequence sa, 1≤a≤nV A, and there

are two possible assignments:

1. sequence sa has been assigned to any cluster from C1:t

2. sequence sa has been assigned to any cluster from Ct+1:k

Initially, consider (1) from above. Entropies inside C1:t are peaked at popular

transitions, known to legitimate users only. Subsequently, transitions observed in sa

mostly “avoid” peaks inside C1:t, which results in very low probability of transitions,

and it is reasonably easy to detect sa inside any of the cluster from C1:t.

On the contrary, consider(2) from above. Observe that, making rare transi-

tions for Ct+1:k might have very high probability, comparing to other sequences in

Ct+1:k. Therefore, it is important to minimise the effect of interest groups encoded

in Ct+1:k, by connection reallocation.

In principle, consider two clusters Ci ∈ C1:t, and Cj ∈ Ct+1:k. Moreover,

suppose that Cj contains only one sequence (thus the same index) sj. Subsequently,

suppose that reallocation sj from Cj to Ci decreases entropy of Ci by some factor.

Furthermore, because hi < hj, then sj improves hi by inclusion of sj into Ci. As a

77

result, Cj is being removed as it does not contain any sequence. This process causes

the following (desired) effects:

1. Increases probability of popular transitions

2. Minimises (4.14)

3. Makes detection faster, by decreasing the number of clusters

Therefore, the main advantage of reallocation is further minimisation of

(4.14). Moreover, attacking sequences will be assigned to clusters with peaks, rather

than flat, and their transitions will have lower probability. Finally, detection of se-

quences is faster, as the number of clusters decreases with time.

4.7 Soft and Hard Detection Ranges

As it will be shown in the next Chapter, legitimate sequence tend to be allocated

to low-entropy clusters. Moreover, the opposite holds for the attacking sequences,

which find their allocation in higher-entropy clusters. Therefore, it is assumed that

some of the detection techniques described in the subsequent sections should vary

from cluster to cluster. Essentially, suppose that the set of clusters C1:k has been

ordered, so that C1 contains the lowest entropy, while Ck the highest. Clearly,

because C1 attracts many legitimate users, detection techniques should be relaxed

there (presumably, should not be applied at all). On the contrary, Ck does not

accommodate many legitimate users. Therefore, during the attack detection mea-

surements should be strict (presumably, block each connection).

Therefore, given these consideration, classification region is introduced as

two ranges: “hard” HH={h1, . . . , ht}, 1≤t<k and “soft” HS={ht+1, . . . , hk}, and

H1:k=HH ∪HS. For “soft” clusters less restrictive thresholds are applied, and the

opposite holds for “hard” clusters; as described above. Recall that in Section 2.6,

the application of ROC curve has been explained for IDS performance measure-

ment. Moreover, it has been shown that performance of IDS depends on some

varying parameters. Therefore, in this thesis this parameters will be t, which is the

border between two ranges. Initially, t will be set to k, so that the entire H1:k is

validated with the “soft” methods of detection. This will allow for acceptance of

many legitimate users (i.e. very low FP rate). Conversely, this setting will lead to

numerous instances of attacking sequence misclassification (i.e. relatively low TP).

Subsequently, t will iteratively be moved towards lower-entropy clusters, until the

entire set H1:k is validated with the “hard” detection setting. As a result, IDS will

78

notice the improvement of malicious sequences classification (i.e. relatively higher

TP). However, the stricter detection implies misclassification of the legitimate users

(i.e. relatively higher FP rate).

4.8 Allocation of Attacking and Validating Sequences

In this section, a method is described by application of which, the validating and

attacking sequences are assigned into the set of clusters C1:k. The steps described

in this section apply to macro-interest and micro-interest methods explained in

Sections 4.1.1 and 4.1.2, respectively.

Therefore, having clustered the connections form T , the connections from

V and A should be assigned to the set of clusters C1:k. Subsequently, one can be

interested in the posterior probability of choosing a cluster Cj , 1≤j≤k, given a set

of transitions observed in the sequence si. Observe, that this can be expressed with

Bayes formula as:

P (Cj |si) =
P (Cj , si)

P (si)
=

P (si|Cj)P (Cj)

P (si)
(4.18)

For the composition of clusters C1:k, P1:k(si) is a normalising constant, and is there-

fore omitted. As a result, (4.18) can be rewritten as:

P (Cj |si) ∝ P (si|Cj)P (Cj)

posterior ∝ likelihood × prior
(4.19)

Moreover, having assumed non-informative (uniform) prior distribution of selecting

a cluster, the following holds:

P (Cj |si) ∝ P (si|Cj)

posterior ∝ likelihood
(4.20)

Note that the choice of using uniform prior makes sense for assignment of sequences

into the set of clusters C1:k. Essentially, a weight is not imposed on the choice of

clusters. It stems from the fact that sequences can join any cluster, and “popular”

clusters should not be favoured. On the contrary, if the highly populated clusters

were given more weight, attacking sequences could be mistakenly assigned to these

clusters. Moreover, observe that this is a conventional approach in intrusion de-

tection. For example, Lane et al. [43] or Zanero et al.[118] used non-informative

prior for the problem of detection users, violating expected profile of computer com-

79

mands. While prior in [43] refers to prior beliefs on whether a user is legitimate or

malicious, in [118] prior distribution is used (same as here) to denote probability of

a particular class.

Subsequently, to find a cluster whose residing sequences resemble a sequence

si, 1≤i≤nV A best, a popular technique based on maximum likelihood principle is

introduced [43, 49]. In simple terms, the best model (i.e. cluster) is the one, under

which an observation attains the highest likelihood. The likelihood of connection si

inside Cj , 1≤j≤k should be thought of as:

L(si|Cj)=Pj(s
1
i)

ni
∏

t=2

Pj(s
t
i|s

t−1
i) (4.21)

Subsequently, the probability of generating sequence si is calculated for each cluster,

and then Cj is chosen for which (4.21) attains the highest value:

Cj= argmax
C1,C2,...,Ck

logL(si|C1:k) (4.22)

where L(si|C1:k) is the likelihood of observing connection si inside the set of clusters

C1:k.

4.9 Strategies of Attacking Hosts Against Macro-Interest

Approach

Recall that, when macro-interest approach is considered, the focus is put on the hosts

changing interest among web categories, rather than actual web objects. Moreover,

suppose that having requested a link from category c ∈ Ω, a programmed zombie

faces a decision-making problem whether with probability pR to remain inside the

same category (i.e. request a link from c-th category again), or with probability

pM=1−pR move to any of the remaining categories (i.e. request a link from category

cm ∈ {Ω\c}). Given this decision-making problem, two attacking strategies are

considered: rarely-changing and frequently-changing zombies.

4.9.1 Rarely-changing Hosts

Suppose that one wants to generate attacking sequences A similar to T . Because

information encoded in C1:k remains unknown for attackers, suppose they have found

out how many different categories are visited on average inside T . As a result, while

analysing T , a vector eT has been calculated containing the expected number of

80

visited categories vrc , given the number of requests r ∈ {r∧, · · · , r∨}, such that

eT=[E{vr∧c },E{vr∧+1
c }, . . . ,E{vr∨c }], where E{vr∧+t

c } denotes the expected number

of visited categories after r∧ + t requests. Subsequently, pR=0.92, pM=0.08 have

been estimated to create randomly generated data set ACR
, whose corresponding

eA is similar to eT . Therefore, these zombies will remain for many more requests in

one category, and are similar to sequences inside T .

4.9.2 Frequently-changing Hosts

Frequently-changing hosts are the ones that tend to change categories more fre-

quently comparing to the rarely-changing zombies. Specifically, for this type of

attacking hosts pM=pR=0.5. In other words, while making requests zombies will

stay inside or move to another category with equal probability pM=pR=0.5. Ob-

serve that a frequently-changing host changes categories more frequently, than a

rarely-changing host mentioned above, and thus its behaviour reminds human ac-

tivity less. However, it is not as naive as a bot that could be generated with pM= 1
|Ω| .

Moreover, data set with their visits is denoted with ACF
.

4.10 Strategies of Attacking Hosts Against Micro-Interest

Approach

For many years, low likelihood of any activity has been considered anomalous, as

observed in the pioneered work by Denning et al. [13]. As a result, A could be com-

posed of sequences whose requests are uniformly distributed, and do not requests

objects encoded in Ω. However, it is crucial to define realistically the attacking hosts’

strategies. Therefore, we have decided to introduce additional attacking strategies

that remind human behaviour as follows.

Set AR is introduced containing sequences generated in a random walk fash-

ion. Fundamentally, every time a request is to be made by a bot, a set of possible

choices is presented from Ω (i.e. popular links) that have originally been recorded

for that transitions. As a result, sequences in AR avoid unobserved transitions.

Moreover, this strategy has been chosen, as some of the technical solutions might

miss this attack [25, 24] (see Section 3.1.4 for details).

In addition, there are two sets of sequences generated from the most popular

object that have contributed the most to selection of centroids in Ω. These are two

attacking strategies: naive and more reasonable, resembling human behaviour. For

these two sets, sequences will uniformly request popular objects whose labels are

81

stored in Ω. First of all, reasonable attackers will know the most popular starting

link depending on a number of requests they have decided to browse a website for.

Therefore, these sequences will not wander across a website. Rather, they will re-

quest a small set of very popular objects in a random fashion. In addition, they will

know how many different objects are allowed to use, so that they differ from the

naive hosts. The set containing naive attackers is referred to as AN , while AH de-

notes human-like sequences. Moreover, recall that AN and AH have been motivated

by results of [45], in which these strategies have been most successful (see Section

3.2 for details).

4.11 Detection of Attacking Hosts Against Macro-Interest

Approach

It is assumed that internet attackers cannot have access to the profile generated

by legitimate users. As a result, they cannot know how many times and in which

order the correct categories have been requested. Therefore, it is crucial to develop

a measure to check how “anomalous” one sequence behaves. Moreover, recall that

there are two strategies of attacking hosts: hosts rarely-changing categories and

stored inside ACR
data set, and host frequently-changing categories and stored in

ACF
data set.

4.11.1 Mahalanobis Distance

To measure expected categorical interest among connections within a cluster, one

can use Mahalanobis distance. It scales weights of each attribute, by inclusion of

inverse of variance. This implies that attributes with low variability receive more

weight comparing to components with high variability. Moreover, correlation be-

tween categorical visits is taken into consideration as well.

As a result, for each cluster Ci, 1≤i≤k a corresponding covariance matrix Σi

is calculated, together with a vector of average categorical requests µi=[µ1
i , µ

2
i , . . . , µ

nC

i].

Subsequently, each training connection sj, 1≤j≤|Ci| from Ci, is transformed into a

vector form vj=[v1j , v
2
j , . . . , v

l
j , . . . , v

nC

j], where each vlj denotes how many times l-th

category has been requested during session sj. As a result, training Mahalanobis

distance can be calculated in the following way:

dM (vj ,µi)=
√

(vj − µi)TΣ
−1
i (vj − µi) (4.23)

82

Observe that when Σi = I (Σi ≡ diag(σ1
i , . . . , σ

nC

i)), then the above is just the

Euclidean (weighted Euclidean) distance between the number of categories visited

during a validating sequence sj, and the expected training profile µi. Subsequently,

vectors of Mahalanobis distancesmi=[mr∧
i ,m

r∧+1

i , . . . ,m
r∧+t

i , . . . ,mr∨
i] are obtained,

where each t-th component contains the maximum Mahalanobis value observed in-

side Ci for t-request-long sequences.

Therefore, every time a sequence sj, 1≤j≤nV A has been assigned to cluster

Ci its Mahalanobis distance dM (sj, Ci) will be computed. Recall that nj denotes

number of requests inside sj. As a result, if dM (sj, Ci)≤m
nj

i , then sj will be marked

as legitimate connections. Otherwise, sj will be marked as anomalous.

Observe that sequences inside ACR
are similar to legitimate sequences, which

“remain” inside popular category lt (i.e. keep on requesting objects from lt). This

implies that the number of lt requests, has a larger variance comparing to the

unpopular categories. Specifically, observe that large variance is caused by short

and long sequences, whose total number of lt requests changes with the number

of requests observed during training. Moreover, it is assumed that interest in web

categories can be explained with covariance matrix in (4.23). In other words, le-

gitimate users visit frequently popular categories in a cluster, and refrain visiting

others, in a similar pattern. As a result, detection based on Mahalanobis distance

is more effective against the frequently-changing hosts stored inside ACF
, which fail

to repeat legitimate behaviour measured with (4.23).

4.11.2 Mutual Information and Statistical Independence as Anoma-

lous Measurement

Mutual information between two discrete random variables a, b is defined in the

following way:

I(a; b)=
∑∑

a,b∈Ω

P (a, b) log

(

P (a, b)

P (a)P (b)

)

(4.24)

Mutual information provides a measure of independence between two random vari-

ables. It is equal to zero (i.e. I(a; b)=0) for independent variables, and increases

when knowing realisation of one variable reduces uncertainty of the other. As a

result, a measure is introduced based on statistical independence.

For each cluster Ci a two-dimensional mutual information vector ii is intro-

duced, where each j-th column contains i1,ji minimum and maximum i2,ji value of

mutual information while requesting j-th category.

As a result, while analysing sequences from T , mutual information is cal-

culated between pairs of two consecutive categorical requests. In other words, for

83

a sequence sl=(s1l , s
2
l , . . . , s

t
l , . . . , s

nl

l), 1≤l≤nT , dependencies are calculated in the

following way: I(st−1
l ; stl).

Because it is assumed that human users will follow similar patterns of be-

haviour in V as in T , then it should not be the case that two different categorical

requests from sequence sl, say st−1
l , stl , produce value of mutual information greater

or smaller than the corresponding i
2,st

l

i and i
1,st

l

i . Otherwise, it is assumed that tran-

sition st−1
l , stl has never been observed in Ci, and is anomalous.

Recall that it has been reported that the same-page attack is detected, and

prevented easily with a software-based solution (see Section 3.1.4). Therefore, se-

quences inside ACR
and ACF

do change categories to avoid being detected by the

software solution. However, it is assumed that mutual information of transitions

between categories should fall outside the range of ii. Therefore, this detection

measure should perform well against ACR
and ACF

.

4.11.3 Likelihood of the Same-category Segment

Suppose there is a sequence si=(s1i , s
2
i , . . . , s

l
i, . . . , s

ni

i), 1≤i≤nT assigned to a cluster

Cj, 1≤j≤k. For an arbitrary t 6= 0, r∧≤l<t≤ni, a segment sl:ti = {sli, s
l+1
i , . . . , sti} is

introduced, denoting the longest substring observed inside si after t-th request, and

composed of the same elements sli, such that sli = sl+1
i = . . . = sti. As a result, one

could be interested in the posterior probability of observing the length of segment

sl:ti among other connections from Cj, which can be expressed with the following

formula:

Pj(t− l|t) =
Pj(t, t− l)

Pj(t)
(4.25)

In (4.25) Pj() is used instead of Pj() to make distinction between distributions of

requests in clusters. Subsequently, P(lS , nr) denotes a joint probability of observing

a length of a segment consisting of the same elements lS , after some number of

requests nr. Moreover, the sample space for P(lS , nr) must be defined as

ΩS = {(lS , nr) ∈ A;A={(r∧, r∧), (r∧, r∧+1) . . . , (r∨, r∨−1), (r∨, r∨)} (4.26)

Clearly, given (4.26), it is apparent that different segments sl:ti cannot be longer

than the maximum number of requests r∧.

Subsequently, for each cluster Cj , set Lj={log(Pj(lS |r∧)), log(Pj(lS |r∧+1)),

. . . , log(Pj(lS |r∨))} is introduced, containing minimum logarithmic values of (4.25),

given number of requests. As a result, once a sequence has been analysed, the loga-

rithm of its longest same-element segments posterior probability is checked against

84

Lj. If it is smaller than values in Li, then the sequence is marked illegitimate.

Moreover, observe that this technique performs very well against sequences

inside ACR
, which prefer to frequently request objects from a category. Sequences

inside ACR
might guess which category is popular, but the number of the same-

category request remain to attackers unknown.

4.12 Detection of Attacking Hosts Against Micro-Interest

Approach

In this section, two approaches have been explained against the attacking sequences.

Recall, that in Section 3.2 it has been assumed that measurement of anomaly should

be: (i) attack-strategy independent (i.e. should be able to detect different browsing

strategies chosen by attackers), (ii) and attack-scale independent (i.e. regardless of

the number of browsing bots, the attempt should be discovered, especially when this

number is very small). Initially, a metric based on Bayes Factor (BF) is presented

that is indeed (ii), but can under perform when it comes to (i). Subsequently, a

measurement based on the likelihood analysis that is both (i) and (ii) is described.

4.12.1 Detection Based on Bayes Factors

Having assigned sequences from V,A to C1:k, there are two hypotheses about a

sequence’s intention: L legitimate or A attacking. The odds of one hypothesis

against the other given observation O can be calculated in the following way with

BF [40]:
P (H1|O)
P (H2|O) =

P (O|H1)P (H1)
P (O|H2)P (H2)

. (4.27)

Therefore, suppose that a sequence si, 1≤i≤nA has been assigned to a cluster

Cj, 1≤j≤k, and one wants to measure whether connection si is attacking or le-

gitimate. Recall that Pj(a, b) denotes the training joint distribution for cluster Cj .

Similarly, an empirical joint distribution Ṗj(a, b) is obtained by analysing arriving

sequences from V,A assigned to Cj . In addition, prior distributions πj(Cj), π̇j(Cj)

are introduced, such that πj(Cj) =
fj

fj+ḟj
and π̇j(Cj) =

ḟj

fj+ḟj
, where fj,ḟj denote

relative frequency of sequences in clusters corresponding to Pj(a, b), and Ṗj(a, b)

respectively. As a result, classification of legitimate intention is equivalent to mea-

suring whether the patterns of transitions inside si ∈ V ∪ A are more similar to

Pj(a, b) than to Ṗj(a, b). As a result, because si represents observation, then BF is

85

calculated in the following way:

ΛL
A

=
Pj(si|Cj)

Ṗj(si|Cj)
(4.28)

It has been shown [51] that when 1≤ log10(ΛL
A

)<3 then evidence is barely

worth mentioning, and when 3≤ log10(ΛL
A

)<5 it is substantial, in favour of legitimate

intention. Values below 1 will introduce inverted interpretation supporting attacking

intention [51]. Therefore, two thresholds are chosen λS=-3 and λH=-1. Thus, to

mark connection as attacking, log10(ΛL
A

)<λS and log10(ΛL
A

)<λH will have to be met

for “soft” and “hard” clusters, respectively.

4.12.2 Detection Based on Likelihood Analysis

Having assigned validating and attacking sequences to C1:k, there are two hypotheses

about a sequence’s intention: legitimate or attacking. Therefore, a training log-

likelihood matrix ℓi,j is obtained, such that 1≤i≤k and r∧≤j≤r∨. In other words,

ℓi,j contains log-likelihood values for each cluster (i.e. 1≤i≤k) and between r∧ and

r∨ requests. Each time a host requests an object at a website, her entire session is

assigned to a cluster Ci given (4.22), and likelihood of the sequence calculated. If it

is below the value stored in ℓi,j, the connection is marked anomalous.

4.13 Summary

In this chapter a detailed description has been given of methods applied to the prob-

lem of unsolicited browsing. Initially, it has been shown that web interest can be

divided into two categories: (i) macro-interest and (ii) micro-interest. Specifically,

(i) denotes interest into logical categories of a website, while (ii) denotes interest in

URI’s of web objects inside the categories. Moreover, it has been shown that for

micro-interest a data processing step is required to perform dimensionality reduc-

tion. Detailed description has been provided in Table 4.1.

Subsequently, an entropy minimising clustering approach and two ways of

calculating the number of clusters have been demonstrated. Afterwards, strategies

of the attacking hosts have been presented against the legitimate profiles of actual

users. Moreover, statistical measures have been introduced that could detect con-

nection intention.

In the next chapter, the results obtained by the application of the meth-

ods are presented. Most importantly, it is shown that distribution of sequences

across clusters allows for detection of ongoing attack. Moreover, it is shown that

86

Feature Macro-Interest Approach Macro-Interest Approach

Web Interest monitoring of requests at log-
ical web categories level only,
e.g. how often a user requested
web objects inside weather
category, how often an image
or pdf file was downloaded,
etc.

monitoring of popular unique
URI’s of existing web objects

Dimensionality
Reduction

focus put at categorical level
(instead of all existing URI’s)
provides significant reduction
of space

only popular links are ob-
served, and unpopular repre-
sented by a dummy link (see
details in Section 4.1.2)

Advantages does not require initial stage of
popular link selection, categor-
ical set is fixed and easily ex-
pendable

introduces another level of
difficulty as transitions among
web links are unknown, let
alone among popular links
that are difficult to dis-
cover; performs relatively well
against different attacking
strategies (see next chapter
for details)

Disadvantages as it transpires it the next
chapter, focus at logical cat-
egories is insufficient against
sophisticated attacking strate-
gies

resource intensive, requires
more calculations

Table 4.1: Comparison of Micro and Macro Approach

87

the methods presented for (i) cannot be applied for narrow websites (i.e. containing

a couple of categories, with multiple links). However, they provide promising results

for websites with multiple categories. Finally, it has been presented that analysis

of likelihood of each connection, is a measure that regardless of attacking strategies

and scope, provides reasonable good results of intention classification.

88

Chapter 5

Results

In this chapter, the results of the clustering algorithm and implementation of de-

tection methods are demonstrated. Recall that there are two approaches to data

analysis: (i) macro-interest and (ii) micro-interest. Firstly, (i) is considered and

initially, sequence distribution across the clusters is presented. It is shown that

distribution of legitimate users is very regular, and attacking sequences differ from

training distribution. Subsequently, application of statistical measurements it pre-

sented. Afterwards, (ii) approach is analysed. Initially, stability of the clustering

algorithm is presented. It is shown that for different permutations of training se-

quences, very similar clusters are obtained. Next, it is shown that, again, distri-

bution of sequences across clusters allows for detection of on-going attack. Recall

that there are two methods implemented for the micro-interest approach, based on

Bayes Factors (BF) and likelihood analysis. Initially, the results of BF application

are presented. It is shown that the method performs well against varying brows-

ing strategies chosen by attackers. Subsequently, results of likelihood analysis are

described. It is shown that regardless of strategies and the number of attacking

hosts, the method is able to detect harmful intention. This chapter concludes with

analysis of the obtained results.

5.1 Sequence Distribution for Macro-Interest Approach

As it has been mentioned, it is assumed that if there is a set of new links or files

uploaded on-line that propel, say, “behaviour” Ci, 1≤i≤k, then one could expect a

surge of connections for Ci within a limited time period. Similar assumptions and

observations have been reported in scientific literature [35, 101]. Therefore, it is

expected that regularity of legitimate users is perceived as interests in the same web

89

objects, and the same way these are requested.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1:k

C
D
F

T
V
ACR

ACF

Figure 5.1: CDF of sequence assignment in MSNBC trace. Observe that training
and validating distribution of legitimate users are very similar, and approach the
maximum faster, comparing to attacking sequences

Similarly, the same regularity has been observed for MSNBC data set. Specif-

ically, suppose that C1:k has been ordered as before (see Section 4.7 for details), so

that C1 contains the lowest entropy, while Ck the highest. Afterwards, one could

be interested in an event describing “how fast” a sequence is assigned to the set of

clusters C1:k. Furthermore, one could expect legitimate sequences to be assigned

“faster”, comparing to attacking sequences residing in high-entropy clusters.

For this purpose, a cumulative distribution function has been calculated and

plotted in Fig. 5.1. From Fig. 5.1 one can learn that training and validating

sequence occupy low-entropy clusters. Moreover, distributions of training and vali-

dating sequences are similar. On the contrary, attacking hosts cannot repeat popular

transitions, and end up being allocated into high-entropy clusters. Observe that this

process allows for detection of the incoming attack. Clearly, the currently present

attacking hosts deviate from the expected sequence distribution indicating malicious

activity.

Recall that attacking strategies have been defined to mimic actual browsing

patterns. Therefore, the attacking hosts tend to find themselves in the low-entropy

clusters as well. On the other hand, a fraction of legitimate sequences tend to

populate high-entropy clusters. As a result, there is no cluster Ct, 1≤t<k for which

majority of legitimate sequences populate C1:t, and most of the attacking hosts have

been assigned into Ct+1:k. As a result, it is impossible to classify all sequences vis-

iting C1:t as legitimate, and attacking otherwise (i.e. allocated to Ct+1:k); to obtain

reasonable classification results. Therefore, the statistical measurement of intention

90

classification have been introduced, and the results of their application presented in

the next section.

5.2 Intention Classification for Macro-Interest Approach

Recall that there are three statistical measurements introduced in the previous chap-

ter. These are based on: (i) Mahalanobis distance (see Section 4.11.1), (ii) mutual

information (see Section 4.11.2), and (iii) likelihood of the longest same-category

segment (see Section 4.11.3). Moreover, recall that there are two strategies of at-

tacking hosts: hosts rarely-changing categories and stored inside ACR
data set, and

host frequently-changing categories and stored in ACF
data set. Moreover, recall

that it has been observed in Section 4.11 that (i) and (ii) should detect well se-

quences inside ACF
. In addition, sequences inside ACR

should be detected with (ii)

and (iii). The results of statistical measurements application are presented below.

Moreover, recall that there is a division for “hard” and “soft” clusters (see Section

4.7 for details). In general, in “soft” clusters, (ii) measure is used, and is supported

by (i) and (iii) in “hard” clusters against sequences from ACF
and ACR

, respectively.

0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165
0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

False Positive

T
ru
e
P
o
si
ti
v
e

Performance Curve
FP: 0.1205, TP: 0.7531
FP: 0.1647, TP: 0.8122
FP: 0.1597, TP: 0.8093

Figure 5.2: Performance curve of the detection algorithm against validating and
frequently-changing hosts.

Figure 5.2 depicts the application of statistical measurements against se-

quences inside ACR
and V . One can observe that the more clusters are checked

against the supplementary measure, the more legitimate sequences are misclassified.

At the same time, the number of attacking sequences correctly classified increases.

Specifically, initially t has been set to the smallest entropy value, and the entire

cluster set C1:k (except for the first cluster) has been checked with “soft” detection

91

technique. In this setting 88% of sequences from V , and 75% of sequences from ACR

have been correctly classified (marked with a circle in Fig. 5.2). Subsequently, t has

been iteratively moved to k, when the whole set of clusters has been checked against

“hard” technique. In this setting, 84% of sequences from V , and 81% of sequences

from ACR
have been recognised (denoted with a diamond in Fig. 5.2). Moreover,

the best setting of the algorithm has correctly classified 84% of sequences from from

V , and 81% of sequences from from ACR
(marked with a square in Fig. 5.2). Note

that the performance of the algorithm in Fig. 5.2 shows results for possible values

of t ∈ {1, . . . , k}.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False Positive

T
ru
e
P
o
si
ti
v
e

Performance Curve
FP: 0.0271, TP: 0.2018
FP: 0.2228, TP: 0.8489
FP: 0.2029, TP: 0.8280

Figure 5.3: Performance curve of the detection algorithm against validating and
rarely-changing hosts.

The performance of the algorithm changes against rarely-changing hosts, and

has been depicted in Fig. 5.3. Initially, for t = 1, only around 3% of legitimate users

are misclassified. However, at the same time, only 20% of attacking sequences are

spotted (denoted with a circle in Fig. 5.3). Note that this is expected, as the attack-

ing sequences inside ACR
are very similar to V (see Section 4.9.1 for details). Once

t = k, and the entire cluster set C1:k has been checked against “hard” technique, 83%

of sequences from ACR
, and 78% of sequences from V have been correctly classified

(marked with a diamond in Fig. 5.3). The best performance achieves recognition

rate of legitimate sequences at 80% and 83% of legitimate and attacking sequences,

respectively; (denoted with a square in Fig. 5.2)

5.2.1 Result Analysis

Although the results depicted with ROC curves in Fig. 5.2 and Fig. 5.3 are promis-

ing, there are several issues with their applicability, however. Observe that when

rate-limiting or dropping of attacking sequences is not prioritised (denoted with the

92

circles in Fig. 5.2, and Fig. 5.3), FP rate against ACR
is satisfactory (i.e. around 3%

of legitimate users are misclassified). However, the same does not hold for detection

methods against ACF
, in which 12% of legitimate sequences are misclassified. Fur-

thermore, observe that the best performance of both approaches results in around

20% of misclassified legitimate and attacking sequences.

Thus, a novel approach should be implemented in order to improve perfor-

mance. Recall that it has been mentioned that in general there are two ways of

improving detection performance of IDS’s [46]: by extension of feature space or

improved data set decomposition. As a result, the micro-interest has been defined,

as a way of feature space extension. The results of detection techniques for the

micro-interest approach is described in the following section.

5.3 Clustering Results for Micro-Interest Approach

In this section the application of clustering algorithm and intention classification

methods are described, for micro-interest approach. Initially, a stability of cluster-

ing approach has been described. It is shown that the algorithm arrives at similar

results, in spite of using different permutations of sequences for training. Subse-

quently, sequence distribution in the composition of clusters is presented. Similarly

to the macro-interest approach, the distributions of training and validating legit-

imate sequences are very regular and similar, unlike the attacking sequences. In

addition, the result of sequence reallocation is provided. Specifically, it is shown

that the process of reallocation allows for decreasing the number of clusters, which

result in faster detection.

5.3.1 Stability of Clustering Algorithm

In order to validate whether the algorithm provides similar clustering results, 10

different clustering results C1:j
1:k, 1≤j≤10 have been obtained and containing different

permutations of sequences for each of the analysed data set. Subsequently, one

could be interested to measure differences between probability distributions P j
i and

Qj
i obtained from different batches, for the same cluster Ci. To provide result of

distances among distributions, a cumulative distribution function FJ(JSD) has been

obtained expressing probability of different values of JSD(P j
i ||Q

j
i) given different

pairs of distributions P j
i and Qj

i . From Fig. 5.4 one can learn that most of the

differences between distributions will be below 0.143, which denotes very similar

clusters. Therefore, the empirically obtained results in Fig. 5.4 show that different

permutations of sequences should provide similar clustering results.

93

0 0.012 0.024 0.036 0.048 0.06 0.072 0.084 0.095 0.107 0.119 0.131 0.143 0.155 0.167 0.179
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JSD

C
D
F

CLARKNET
NASA
ESHOP

Figure 5.4: Performance curve of the detection algorithm against validating and
rarely-changing hosts.

5.3.2 Sequence Distribution for Micro-Interest Approach

Recall that once the sequences have been clustered into the set of clusters, there are

many interest groups that are not frequently populated. As a result, the reallocation

of sequences is introduced based on entropy minimisation and likelihood maximisa-

tion (see Section 4.6.4 for details). One of the advantages of the reallocation process

is the decreased number of clusters, which provides the same detection capabilities.

Essentially, the initial sequence distributions have been presented in Fig. 5.5

- Fig. 5.7. Again, given the fact that attacking strategies are very similar to legiti-

mate behaviour (see Section 4.10 for details), their distribution of sequences across

clusters is close to the legitimate profile. However, it still differs from the validating

distribution of legitimate sequence that resembles the training distribution closely.

Subsequently, a distribution of sequences has been presented for reallocated

sequences in Fig. 5.8- Fig. 5.10. Process of reallocation decreases k (i.e. reduces

number of unpopular clusters by reallocation their sequences into more skewer clus-

ters), and is stopped when there is no further change in k. Clearly, if all sequences

from a cluster have been removed to other clusters, then the cluster has to be re-

moved from the collection C1:k. As a result, the smaller space of clusters is obtained

and detection of intention is faster. For each data set the results of reallocation

algorithm have been presented in Fig. 5.8- Fig. 5.10.

Observe that again there is no cluster Ct, that allows for separation of se-

quences into legitimate and attacking. Therefore, again, it is impossible to classify

all sequences visiting C1:t as legitimate, and attacking otherwise (i.e. allocated to

Ct+1:k).

94

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1:k

C
D
F

T
V
AR

AH

AN

Figure 5.5: CDF of sequences in CLARKNET before reallo-
cation

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C1:k

C
D
F

T
V
AR

AH

AN

Figure 5.6: CDF of sequences in NASA data set before real-
location

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1:k

C
D
F

T
V
AR

AH

AN

Figure 5.7: CDF of sequences in ESHOP data set before
reallocation

95

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1:k

C
D
F

T
V
AR

AH

AN

Figure 5.8: CDF of sequences in CLARKNET after reallo-
cation

0 40 80 120 160 200 240 280 320 360 400 440
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1:k

C
D
F

T
V
AR

AH

AN

Figure 5.9: CDF of sequences in NASA data set after real-
location

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1:k

C
D
F

T
V
AR

AH

AN

Figure 5.10: CDF of sequences in ESHOP data set after
reallocation

96

5.4 Intention Classification for Micro-Interest

In this section, intention classification is described based on two approaches: (i)

BF (see Section 4.12.1 for details) and (ii) likelihood analysis (see Section 4.12.2

for details). Description of the results begins with (i), followed by presentation of

results obtained by (ii).

It is shown that approach (i) allows for detection of varying strategies of

web browsing implemented by zombies. However, it cannot detect activity of lone

unwanted crawlers. Therefore, methods using (ii) have been introduced in the pre-

vious section that allow for detection of scope-independent attack. In other words,

regardless of the number of attacking hosts, the method allows for reasonably good

classification.

5.4.1 Intention Classification with Bayes Factors

ROC curves in Fig. 5.11-5.13 have been obtained by iteratively moving t, as de-

scribed in Section 4.7. Initially, each cluster has been validated with “soft” setting.

This setting produces higher number of legitimate users (i.e. low FP), and implies

a higher error of misclassification of attacking hosts (i.e. relatively low number of

TP). Subsequently, t has been moved to higher entropy clusters, when entire C1:k

has been validated with “hard” threshold, when the number of recognised malicious

host increases. Note that validation with “hard” settings produces a high number

of FP for ESHOP that contains relatively small number of training data (see Fig.

5.13). This phenomenon has been investigated further, and it is argued that the

high number of FP stems from insufficient amount of data for training purposes.

Specifically, recall that access to ESHOP data set has been obtained in order to

validate the applied methods for a relatively smaller sample. Therefore, as it is

shown in the subsequent section, higher FP rate stems from insufficient number of

training sequences inside the data set.

97

0.005 0.1 0.5 1
0.68

0.73

0.78

0.83

0.88

0.93

0.98

False Positive Rate

T
ru
e
P
o
si
ti
v
e
R
a
te

ROC for V ∪AR

ROC for V ∪AH

ROC for V ∪AN

Figure 5.11: Performance curve for CLARKNET data
set

0.005 0.1 0.5 1
0.68

0.73

0.78

0.83

0.88

0.93

0.98

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

ROC for V ∪AR

ROC for V ∪AH

ROC for V ∪AN

Figure 5.12: Performance curve for NASA data set

0.07 0.14 0.7 1
0.62

0.67

0.72

0.77

0.82

0.87

0.92

0.97

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

ROC for V ∪AR

ROC for V ∪AH

ROC for V ∪AN

Figure 5.13: Performance curve for ESHOP data set98

5.4.2 Length-Dependent Detection Analysis

To account for slightly higher FP rate for ESHOP data set, length-depended accep-

tance rate has been analysed. Clearly, it is essential to discover how many requests

an attacking session is allowed to last for, before is classified as illegitimate. This

result has been presented in Fig. 5.14-5.16. The three data sets presented in Fig.

5.14-5.16 have been validated with threshold λS only (see Section 4.12.1 for details),

to minimise TP (i.e legitimate users misclassification rate). From Fig. 5.14-5.16

one can learn that with the increased number of requests, the number of attacking

sequences that are let into the system drops. In other words, the more requests

attacking hosts make, the better the system learns how to recognise them, while

keeping high percentage of legitimate users in the system.

Interestingly, for the system with decoy links [62], 24 requests are required

to detect 92% of attacking sequences, and 48 requests are needed for detection of

all malicious hosts. As it stems from in Fig. 5.14 and Fig. 5.15, most attacking

bots are detected after 25th request, even though partial access to web log has been

revealed (see Section 4.10 for details). Similarly, for ESHOP (see Fig. 5.16), after

18th requests most bots are detected. In addition, as it has been observed before,

for low-rate attacks against application servers, the think-time (i.e. time needed

for learning of illegitimate behaviour) increases proportionally to the rate of the

attack (i.e. the lower the rate, the longer it takes to an IDS to recognise attacking

behaviour) [72]. The attacks presented in this work are most similar to request

flooding described in [72], for which 30 requests are needed to discover legitimate

nature of a host.

In addition, as it has been mentioned in Section 3.2, detector should work

well regardless of the number of attacking hosts. Clearly, the more attacking hosts,

the easier it is to learn their behaviour. Therefore, length-depended acceptance rate

has been obtained for smaller attacking sample in case when nA=0.1nV (i.e. the

number of attacking hosts is smaller than legitimate). This is essentially important

because it is hard to discover such a behaviour that can be generated by crawlers

or e-mail address extractors. The results of this experiment have been presented in

in Fig. 5.17-5.19. Again, most of the sequences are correctly classified.

Note sequences encoded in AH give the attackers the best performance. Ob-

serve that this is the case for different data set, and for different scopes. Moreover,

while analysing sequences distributions across the set of clusters for ESHOP (see

Fig. 5.10 and Fig. 5.7) one can notice that distribution of attacking sequences is

very close to the legitimate ones. This also has a negative effect on classification, and

most of the short sequences generated for ESHOP data set have been misclassified.

99

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AR

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AH

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AN

Figure 5.14: Length-dependent detection for
CLARKNET data set

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AR

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AH

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of requests

A
cc
ep

ta
n
ce

R
at
e

V
AN

Figure 5.15: Length-dependent detection for NASA
data set

2 4 6 8 10 12 14 16 18
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AR

2 4 6 8 10 12 14 16 18
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AH

2 4 6 8 10 12 14 16 18
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of requests

A
cc
ep

ta
n
ce

R
at
e

V
AN

Figure 5.16: Length-dependent detection for ESHOP
data set

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AR

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AH

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AN

Figure 5.17: Length-dependent detection for
CLARKNET data set, and smaller number of
attacking hosts

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AR

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AH

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
at
e

V
AN

Figure 5.18: Length-dependent detection for NASA
data set, and smaller number of attacking hosts

2 4 6 8 10 12 14 16 18
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AR

2 4 6 8 10 12 14 16 18
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
AH

2 4 6 8 10 12 14 16 18
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
at
e

V
AN

Figure 5.19: Length-dependent detection for ESHOP
data set, and smaller number of attacking hosts

101

5.4.3 Intention Classification with Likelihood Analysis

In the previous section detection, methods utilising BF have been described. Ob-

serve that “knowledge” is required on strategies chosen by attackers. Therefore,

once IDS has discovered that there is an ongoing attack, it classifies connection in-

tentions based on patterns of actual traffic. Furthermore, it has been shown that

measurement described in the previous section works well (even when attack traffic

volume is not large). Therefore, measurement based on Bayes Factors are strategy-

independent (i.e. achieves reasonably well performance for different attacking strate-

gies).

However, observe that if there is a single crawler browsing through a web-

site, its activity will not be spotted. Essentially, distribution of currently present

sequences in the cluster set C1:k is still very similar to the training distribution.

Furthermore, there is not much deviation in the incoming traffic (as it is caused

by a single bot). Also, recall that detection measure should be strategy and scale

independent, as it has been pointed out in section 1.

Therefore, the method based on likelihood analysis has been introduced in

the previous chapter, and its application is described in this section. Specifically, the

acceptance rate for attacking and legitimate sequences before the reallocation has

been presented in Fig. 5.20 - Fig. 5.22. Having reallocated the sequences, an im-

provement in detection has been achieved, and shown in Fig. 5.23 - Fig. 5.25. This

effect is especially significant for ESHOP data set, where improvement in detection

is considerate (see Fig. 5.25).

102

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AR

AH

AN

Figure 5.20: Acceptance rate for CLARKNET before reallo-
cation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AR

AH

AN

Figure 5.21: Acceptance rate for NASA before reallocation

0 2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AR

AH

AN

Figure 5.22: Acceptance rate for ESHOP before reallocation

103

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AR

AH

AN

Figure 5.23: Acceptance rate for CLARKNET after realloca-
tion

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AR

AH

AN

Figure 5.24: Acceptance rate for NASA after reallocation

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests

A
cc
ep
ta
n
ce

R
a
te

V
AR

AH

AN

Figure 5.25: Acceptance rate for ESHOP after reallocation

104

5.5 Summary and Discussion

In this chapter, results of the methods described in the previous chapter have been

provided. Initially, outcome of the clustering algorithm for MSNBC data set has

been analysed. Afterwards, distribution of sequences across clusters has been pre-

sented. It has been shown that it is possible to detect on-going attack, by analysing

sequence allocation to clusters. However, because legitimate sequences might be

allocated to high-entropy clusters, and similarly, attacking sequences to low-entropy

clusters, statistical methods are essential for intention classification. Subsequently,

it has been shown that the methods applied for macro-interest are too restrictive. As

a result it has been noted that improved classification can be achieved with exten-

sion of feature space. This has been confirmed with improved sequence distribution

across clusters, and detection techniques for micro-interest approach.

Similarly, at the beginning, it has been presented that the distribution of se-

quences is very informative, and allows for attacking attempt detection. Moreover,

legitimate sequence distributions are more similar for micro-interest approach, com-

paring to macro-interest approach. Subsequently, statistical analysis of sequences

inside clusters is required. This is provided by application of (i) Bayes Factors

and (ii) likelihood analysis. Both methods are able to detect variable strategies

implemented in zombies. However, (i) require input from the attackers to perform

detection. On the contrary, it has been shown that (ii) allows for scope-independent

detection of attacking hosts. Specifically, whether the attacking traffic consists of

multiple flooding hosts or rare crawlers, their browsing strategies have been de-

tected. Moreover, reallocation of sequences improves detection of arriving hosts,

especially for smaller data sets, in which data for training might be limited.

105

Chapter 6

Conclusion

In this thesis an attempt has been made to show that detection of different types

of unsolicited web browsing can be achieved by application of clustering and likeli-

hood analysis. Specifically, the term unsolicited web browsing refers to two types

of malicious activity: (i) undesired crawling and (ii) flooding attacks. In general

(i) refers to programmed machines that extracted sensitive information from web-

sites; predominantly e-mail addresses. Moreover, it can also refer to site-mirroring

applications that attempt to download entire website for copy-right infringement

purposes. On the other hand, (ii) denotes unlawful usage of infected hosts, sending

multiple GET requests, to exhaust resources at a web server. However, both, (i)

and (ii) are performed in a legitimate way. Specifically, before running the attack,

attackers attempt to discover existence of rate-limiting IDS, and select potentially

popular web objects to use them during (ii). As a result, programmed machines,

so-called zombies, request popular objects at legitimate rate, making their activity

look as legitimate conduct. Moreover, observe that the difference between (i) and

(ii) comes down to the application of web resources. Specifically, (i) defines mali-

cious usage of website content. On the contrary, content is ignored in (ii), and only

the volume of content possession (resulting in overloaded database or web server,

due to the high rate of requests) is crucial.

As a result, a survey of current techniques has been provided to show that

these methods underestimate the attacking strategies and their legitimate nature.

Moreover, a data set with attacking traffic is unavailable. As a result, researchers end

up generating and validating their approach on the manually obtained data set of at-

tacking traffic. Specifically, there are two main groups of intrusion detection. Firstly,

there are research approaches utilising sequence-dependent information, mainly, on

transitions among web objects. However, it is shown that very often deviations of

106

the legitimate profile is defined as increased frequency of requested objects. On the

other hand, there is research relying on protocol-related heuristic, and information

encoded into Application layer protocol. This can vary from information on popular

HTTP error codes to the ratio of different file types downloaded in a session. In

addition, malicious behaviour violates HTTP heuristics by missing or invalid infor-

mation in HTTP protocol packets or requests generating HTTP error codes.

However, it has been argued that to run attack successfully, attackers im-

plement their zombies intelligently. In particular, it has been shown that there are

existing tools for running either attack, and for the reference purpose, the copy of

popular bot-net application has been analysed. The analysis of the code proves

that legitimate nature of attacking hosts is easily implemented. Moreover, missing

or invalid information of HTTP protocol specification can be straightforwardly set

up. Therefore, one can argue that the only difference between illicit and valid web

browsing is in intention. As a result, the measure of intention has been introduced,

based on the similarity of interest in web objects. Specifically, it is assumed in re-

search community that legitimate users visit similar web objects. Moreover, they

should use similar pages to finally request the popular links. Therefore, a clustering

algorithm is required to group sequences of web requests into classes expressing sim-

ilar interests. In addition, the attacking strategies should be introduced to closely

mimic legitimate patterns. As a result, the clustering algorithm cannot be used as a

distinction between legitimate and attacking sequences. Specifically, because of sim-

ilarity in behaviour, attacking sequences visit popular clusters of legitimate users.

Moreover, legitimate users are assigned to clusters densely populated by attack-

ing hosts. As a result, additional statistical measurement needs to be introduced

to measure anomaly of sequences, on a per-cluster basis. This measure should

be: attack-strategy independent (i.e. should be able to detect different browsing

strategies chosen by attackers), and attack-scale independent (i.e. regardless of the

number of browsing bots, the attempt should be discovered, especially when this

number is very small, such as a lone crawler). Therefore, in the subsequent session

the methods are summarised and their contribution to knowledge described.

6.1 Contribution to Knowledge

In this section the main contributions to knowledge are described. Specifically,

these are: (i) the clustering algorithm, and (ii) the statistical measure that allows

for detection of scale-independent traffic. Specifically, (i) should allow for attempt

detection, and warns system administrators that there is an on-going attack. After-

107

wards, (ii) is introduced that allows for intention detection, regardless of the number

of attacking hosts.

6.1.1 Clustering Algorithm

It is difficult to measure interest among categorical objects. Moreover, it is diffi-

cult to measure similarity of data streams in terms of data points appearing in the

streams. However, if one could measure how “expected” a stream was, then it would

be possible to explain validity of each sequence. Therefore, suppose that there is

a composition of interest groups C1:k containing k clusters, for which each cluster

Ci, 1≤i≤k corresponds to a particular interest group. Subsequently, suppose that

there is a way to measure probability of a web sequence s inside the clusters C1:k.

The cluster, for which s attains the highest probability is chosen so that it describes

the sequence s best.

Theoretical explanation of the algorithm, and sequence allocation have been

described in Section 4.5 and Section 4.8. Specifically, web interest has been divided

into two approaches: macro-interest and micro-interest approach. The former refers

to interest in logical web categories, such as news, weather, for a news portal; or

kitchen appliances and TV sets for an e-shop. On the other hand, micro-approach

considers web objects inside the logical web categories (e.g. physical addresses of

images, documents or other sub-categories inside a main category, say, weather).

Subsequently, the detailed results of the algorithm implementation have been

described in Section 5.1 and Section 5.3.2. It has been shown that legitimate hosts

frequently visit low-entropy clusters, and high-entropy clusters are sparsely popu-

lated with genuine hosts. On the other hand, the attacking hosts fail to discover

the recent and popular pattern of transitions. As a result, the attacking hosts visit

high-entropy clusters more often than the low-entropy ones. This phenomenon al-

lows for detection of the on-going attack. If there is a reasonably large volume of

attacking sequences, their distribution of requests across clusters differs from the

training and validating of legitimate users. Observe that this is very important for

further analysis. Essentially, the clustering algorithm does not take into account any

time information, nor any protocol information is analysed. As a result, the interest

in transitions among web objects allows for detection of the flooding attempt.

However, as it has been noted, the clustering algorithm does not provide clear

distinction between attacking and legitimate users. As a result statistical measures

are required to perform intention classification.

108

6.1.2 Statistical Measures

Initially, three statistical measures have been introduced for the macro-interest ap-

proach, based on: (i) Mahalanobis distance (see Section 4.11.1), (ii) mutual informa-

tion (see Section 4.11.2), and (iii) likelihood of the longest same-category segment

(see Section 4.11.3). In principle, (i) measures deviation from the expected profile

of categorical requests. It performs very well against randomly-requesting zombies

that frequently change a browsing category. Similarly, (ii) should discover unpopu-

lar transitions. Finally, (iii) has been introduced to detect hosts that remain inside

one category for longer period of time.

In general, it has been shown that these statistical measurements provide

satisfactory results against attacking sequences. However, their application turns

out to be too restrictive against legitimate users. Thus, a focus has shifted from

macro-interest into micro-interest. As a result, two statistical approaches have been

introduced, and based on Bayes Factors and likelihood analysis. The former, as-

sumed that there is a way to compare whether s is more similar to the legitimate

profile of training sequences or resembles more the attacking sequences. It turns

out that the application of Bayes Factors allows for such a discrimination, and the

results of this operation have been presented in Section 5.4.1 and Section 5.4.2.

Therefore, the obtained results show that intention classification is possible, and

detection results are satisfactory. However, as it has been noted, the input of the

attacking strategies is required to perform detection. Moreover, if the volume of

attacking sequences is not large enough, then IDS is unable to perform intention

classification correctly.

As a result, the method based on likelihood analysis has been introduced.

This approach allows for intention classification, irrespective of the traffic volume

and browsing strategies chosen by attackers. Specifically, because the input on the

attacking strategies is not required, therefore, IDS is able to spot either a lone

crawler deviating from the expected profile of browsing or flooding hosts with the

same precision.

Furthermore, it has been observed that reallocation of sequences inside clus-

ters allows for a better utilisation of likelihood-based measure. Specifically, once the

clustering algorithm has been completed, there are many clusters that describe nu-

merous interest groups. However, some of them are not very popular and should be

merged with similar and more populated interest groups. As a result, the likelihood

of observing legitimate users inside clusters increases. Moreover, the elimination of

flat (i.e. unpopular) clusters, makes rare transitions encoded in attacking behaviour

visible. The results of this analysis have been described in Section 5.4.3.

109

Chapter 7

Future Work

In general, there are two main areas this research could benefit from: (i) inclusion

of temporal information and (ii) inter-cluster transition. Moreover, an improvement

should be sought of (iii) initial number of clusters specification. Reallocation process

shows that smaller cluster space could account for the same detection performance.

Essentially, recall that only popular links are selected for training the clus-

tering algorithm (see Section 4.2 for details). This should be thought of as the

first defence system against the Internet attackers, as this information is difficult

to guess. As a result, (i) should be thought of as additional layer of defence. In

principle, observe that time related information is not considered at this stage of the

research. It is motivated by the research problem specification. In principle, it is as-

sumed that initially attackers learn the minimum and maximum silence-period that

is allowable by a rate-dependent IDS (see Section 3.2 for details). However, it could

provide another level of defence against frequently-requesting zombies. In principle,

the likelihood of sequences is conditioned on the previous requests. However, this

could be extended by addition of time related information (i.e. silence-time infor-

mation between two consecutive requests). Recall that likelihood of a sequence sj is

obtained as a product of transitions between two consecutive requests (see Section

4.8 for details). The extension of this approach could condition the probability of

the next request not only on the previous, but also on the elapsed time between

two requests. However, this increases space complexity of the system, and should

be investigated further.

Subsequently, (ii) can be achieved with Hidden Markov Models. These mod-

els have been extensively used in intrusion detection domain, specifically the works

of Lu et al.[52] and Xie et al. [99, 100, 101, 102] introduced the concept well. In

principle, recall that every time a host makes a request its sequence of requests is

110

reassigned to a cluster for which the sequence attains highest likelihood of observa-

tion. As a result, as the sequence of requested web objects is observable information.

However, transitions from one cluster to another can be perceived as a sequence of

latent transitions - the transition from cluster to clusters remains hidden. As a

result, the combination of (i) and (ii) should provide improvement to the current

system of detection.

111

Bibliography

[1] Lada A. Adamic and Bernardo A. Huberman. Zipf’s law and the Internet.

Glottometrics, 3:143–150, 2002.

[2] Martin F. Arlitt and Carey L. Williamson. Web server workload characteriza-

tion: the search for invariants. In Proceedings of the 1996 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems,

SIGMETRICS ’96, pages 126–137, New York, NY, USA, 1996. ACM. ISBN

0-89791-793-6. doi: 10.1145/233013.233034. URL http://doi.acm.org/10.

1145/233013.233034.

[3] Daniel Barbará, Yi Li, and Julia Couto. Coolcat: an entropy-based al-

gorithm for categorical clustering. In Proceedings of the eleventh interna-

tional conference on Information and knowledge management, CIKM ’02,

pages 582–589, New York, NY, USA, 2002. ACM. ISBN 1-58113-492-4.

doi: 10.1145/584792.584888. URL http://doi.acm.org/10.1145/584792.

584888.

[4] Alessandro Basso and Stefano Sicco. Preventing massive automated access to

web resources. Computers & Security, 28(34):174 – 188, 2009. ISSN 0167-

4048. doi: http://dx.doi.org/10.1016/j.cose.2008.11.002. URL http://www.

sciencedirect.com/science/article/pii/S0167404808001156.

[5] Andrew P. Bradley. The use of the area under the roc curve in the evaluation

of machine learning algorithms. Pattern Recogn., 30(7):1145–1159, July 1997.

ISSN 0031-3203. doi: 10.1016/S0031-3203(96)00142-2. URL http://dx.doi.

org/10.1016/S0031-3203(96)00142-2.

[6] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar

Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph

structure in the web. Comput. Netw., 33(1-6):309–320, June 2000. ISSN 1389-

112

http://doi.acm.org/10.1145/233013.233034
http://doi.acm.org/10.1145/233013.233034
http://doi.acm.org/10.1145/584792.584888
http://doi.acm.org/10.1145/584792.584888
http://www.sciencedirect.com/science/article/pii/S0167404808001156
http://www.sciencedirect.com/science/article/pii/S0167404808001156
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/S0031-3203(96)00142-2

1286. doi: 10.1016/S1389-1286(00)00083-9. URL http://dx.doi.org/10.

1016/S1389-1286(00)00083-9.

[7] Christian Cachin and Jonathan A. Poritz. Secure intrusion-tolerant replica-

tion on the internet. In Proceedings of the 2002 International Conference on

Dependable Systems and Networks, DSN ’02, pages 167–176, Washington, DC,

USA, 2002. IEEE Computer Society. ISBN 0-7695-1597-5. URL http://dl.

acm.org/citation.cfm?id=647883.738262.

[8] R.K.C. Chang. Defending against flooding-based distributed denial-of-service

attacks: a tutorial. Communications Magazine, IEEE, 40(10):42–51, 2002.

ISSN 0163-6804. doi: 10.1109/MCOM.2002.1039856.

[9] Xin Chen and Xiaodong Zhang. A popularity-based prediction model for

web prefetching. Computer, 36(3):63–70, March 2003. ISSN 0018-9162.

doi: 10.1109/MC.2003.1185219. URL http://dx.doi.org/10.1109/MC.

2003.1185219.

[10] Xuan Chen and John Heidemann. Flash crowd mitigation via adaptive ad-

mission control based on application-level observations. ACM Trans. Internet

Technol., 5(3):532–569, August 2005. ISSN 1533-5399. doi: 10.1145/1084772.

1084776. URL http://doi.acm.org/10.1145/1084772.1084776.

[11] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, and E. Mendes. Apply-

ing support vector regression for web effort estimation using a cross-company

dataset. In Proceedings of the 2009 3rd International Symposium on Em-

pirical Software Engineering and Measurement, ESEM ’09, pages 191–202,

Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-

4842-5. doi: 10.1109/ESEM.2009.5315991. URL http://dx.doi.org/10.

1109/ESEM.2009.5315991.

[12] Bernstein Daniel Julius. Syn cookies, September 1996. URL http://cr.yp.

to/syncookies.html.

[13] Dorothy E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng.,

13(2):222–232, February 1987. ISSN 0098-5589.

[14] Derek Doran and Swapna S. Gokhale. Web robot detection techniques:

overview and limitations. Data Min. Knowl. Discov., 22(1-2):183–210, Jan-

uary 2011. ISSN 1384-5810. doi: 10.1007/s10618-010-0180-z. URL http://

dx.doi.org/10.1007/s10618-010-0180-z.

113

http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dl.acm.org/citation.cfm?id=647883.738262
http://dl.acm.org/citation.cfm?id=647883.738262
http://dx.doi.org/10.1109/MC.2003.1185219
http://dx.doi.org/10.1109/MC.2003.1185219
http://doi.acm.org/10.1145/1084772.1084776
http://dx.doi.org/10.1109/ESEM.2009.5315991
http://dx.doi.org/10.1109/ESEM.2009.5315991
http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://dx.doi.org/10.1007/s10618-010-0180-z
http://dx.doi.org/10.1007/s10618-010-0180-z

[15] Ehud Doron and Avishai Wool. Wda: A web farm distributed denial of ser-

vice attack attenuator. Comput. Netw., 55(5):1037–1051, April 2011. ISSN

1389-1286. doi: 10.1016/j.comnet.2010.05.001. URL http://dx.doi.org/

10.1016/j.comnet.2010.05.001.

[16] Christos Douligeris and Aikaterini Mitrokotsa. Ddos attacks and defense

mechanisms: classification and state-of-the-art. Comput. Netw., 44(5):643–

666, April 2004. ISSN 1389-1286. doi: 10.1016/j.comnet.2003.10.003. URL

http://dx.doi.org/10.1016/j.comnet.2003.10.003.

[17] W. Eddy. RFC 4987:tcp syn flooding attacks and common mitigations, 2007.

[18] K. Egevang and P. Francis. RFC 1631: The IP network address translator

(NAT), 1994.

[19] Karim El Defrawy, Minas Gjoka, and Athina Markopoulou. Bottorrent: mis-

using bittorrent to launch ddos attacks. In Proceedings of the 3rd USENIX

workshop on Steps to reducing unwanted traffic on the internet, SRUTI’07,

pages 1:1–1:6, Berkeley, CA, USA, 2007. USENIX Association. URL http://

dl.acm.org/citation.cfm?id=1361436.1361437.

[20] D.M. Endres and J.E. Schindelin. A new metric for probability distributions.

Information Theory, IEEE Transactions on, 49(7):1858–1860, 2003. ISSN

0018-9448.

[21] T. Fawcett. Roc graphs: Notes and practical considerations for researchers.

ReCALL, 31(HPL-2003-4):1–38, 2004.

[22] P. Ferguson and D. Senie. RFC 2827:network ingress filtering: Defeating denial

of service attacks which employ ip source address spoofing, 2000.

[23] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and don’ts of

client authentication on the web. In Proceedings of the 10th conference on

USENIX Security Symposium - Volume 10, SSYM’01, pages 19–19, Berkeley,

CA, USA, 2001. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1267612.1267631.

[24] D. Gavrilis, I. Chatzis, and E. Dermatas. Flash crowd detection using decoy

hyperlinks. In Networking, Sensing and Control, 2007 IEEE International

Conference on, pages 466–470, 2007. doi: 10.1109/ICNSC.2007.372823.

114

http://dx.doi.org/10.1016/j.comnet.2010.05.001
http://dx.doi.org/10.1016/j.comnet.2010.05.001
http://dx.doi.org/10.1016/j.comnet.2003.10.003
http://dl.acm.org/citation.cfm?id=1361436.1361437
http://dl.acm.org/citation.cfm?id=1361436.1361437
http://dl.acm.org/citation.cfm?id=1267612.1267631
http://dl.acm.org/citation.cfm?id=1267612.1267631

[25] Dimitris Gavrilis, Ioannis S. Chatzis, and Evangelos Dermatas. Detection of

web denial-of-service attacks using decoy hyperlinks. In Communication Sys-

tems, Networks Digital Signal Processing (CSNDSP), 2006 5th International

Symposium on, pages 266–270, 2006.

[26] Xianjun Geng and Andrew B. Whinston. Defeating distributed denial of ser-

vice attacks. IT Professional, 2(4):36–41, July 2000. ISSN 1520-9202. doi:

10.1109/6294.869381. URL http://dx.doi.org/10.1109/6294.869381.

[27] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning program

behavior profiles for intrusion detection. In Proceedings of the 1st conference on

Workshop on Intrusion Detection and Network Monitoring - Volume 1, ID’99,

pages 6–6, Berkeley, CA, USA, 1999. USENIX Association. URL http://dl.

acm.org/citation.cfm?id=1267880.1267886.

[28] Luis Campo Giralte, Cristina Conde, Isaac Martin de Diego, and Enrique

Cabello. Detecting denial of service by modelling web-server behaviour.

Computers & Electrical Engineering, In Press(0):–, 2012. ISSN 0045-7906.

doi: http://dx.doi.org/10.1016/j.compeleceng.2012.07.004. URL http://

www.sciencedirect.com/science/article/pii/S0045790612001292.

[29] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting botnet com-

mand and control channels in network traffic. In Proceedings of the 15th An-

nual Network and Distributed System Security Symposium (NDSS’08), Febru-

ary 2008.

[30] Christian Hennig. Cluster-wise assessment of cluster stability. Computational

Statistics and Data Analysis, 52(1):258–271, September 2007. URL http://

ideas.repec.org/a/eee/csdana/v52y2007i1p258-271.html.

[31] Gregoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. Pub-

crawl: protecting users and businesses from crawlers. In Proceedings of the

21st USENIX conference on Security symposium, Security’12, pages 25–25,

Berkeley, CA, USA, 2012. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=2362793.2362818.

[32] Mehrdad Jalali, Norwati Mustapha, Md. Nasir Sulaiman, and Ali Mamat.

Webpum: A web-based recommendation system to predict user future move-

ments. Expert Systems with Applications, 37(9):6201 – 6212, 2010. ISSN 0957-

4174. doi: 10.1016/j.eswa.2010.02.105. URL http://www.sciencedirect.

com/science/article/pii/S0957417410001442.

115

http://dx.doi.org/10.1109/6294.869381
http://dl.acm.org/citation.cfm?id=1267880.1267886
http://dl.acm.org/citation.cfm?id=1267880.1267886
http://www.sciencedirect.com/science/article/pii/S0045790612001292
http://www.sciencedirect.com/science/article/pii/S0045790612001292
http://ideas.repec.org/a/eee/csdana/v52y2007i1p258-271.html
http://ideas.repec.org/a/eee/csdana/v52y2007i1p258-271.html
http://dl.acm.org/citation.cfm?id=2362793.2362818
http://dl.acm.org/citation.cfm?id=2362793.2362818
http://www.sciencedirect.com/science/article/pii/S0957417410001442
http://www.sciencedirect.com/science/article/pii/S0957417410001442

[33] Liping Ji, Haijin Liang, Yitao Song, and XiaMu Niu. A normal-traffic network

covert channel. In Computational Intelligence and Security, 2009. CIS ’09.

International Conference on, volume 1, pages 499–503, 2009. doi: 10.1109/

CIS.2009.156.

[34] Evers Joris. Hacking for dollars, July 2005. URL http://news.cnet.com/

Hacking-for-dollars/2100-7349_3-5772238.htmll.

[35] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich. Flash

crowds and denial of service attacks: characterization and implications for

cdns and web sites. In Proceedings of the 11th international conference on

World Wide Web, WWW ’02, pages 293–304, New York, NY, USA, 2002.

ACM. ISBN 1-58113-449-5. doi: 10.1145/511446.511485. URL http://doi.

acm.org/10.1145/511446.511485.

[36] Peyman Kabiri and Ali A. Ghorbani. Research on intrusion detection and

response: A survey. International Journal of Network Security, 1:84–102,

2005.

[37] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos

Gritzalis. A fair solution to dns amplification attacks. In Proceedings of the

Second International Workshop on Digital Forensics and Incident Analysis,

WDFIA ’07, pages 38–47, Washington, DC, USA, 2007. IEEE Computer So-

ciety. ISBN 0-7695-2941-0. doi: 10.1109/WDFIA.2007.2. URL http://dx.

doi.org/10.1109/WDFIA.2007.2.

[38] Hongwen Kang, Kuansan Wang, David Soukal, Fritz Behr, and Zijian Zheng.

Large-scale bot detection for search engines. In Proceedings of the 19th in-

ternational conference on World wide web, WWW ’10, pages 501–510, New

York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.

1772742. URL http://doi.acm.org/10.1145/1772690.1772742.

[39] Mehmed Kantardzic. Data Mining: Concepts, Models, Methods and Al-

gorithms. John Wiley & Sons, Inc., New York, NY, USA, 2002. ISBN

0471228524.

[40] Robert E. Kass and Adrian E. Raftery. Bayes Factors. Journal of the American

Statistical Association, 90(430):773–795, June 1995. ISSN 01621459. doi:

10.2307/2291091.

[41] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.

Statist., 22(1):79–86, 1951.

116

http://news.cnet.com/Hacking-for-dollars/2100-7349_3-5772238.htmll
http://news.cnet.com/Hacking-for-dollars/2100-7349_3-5772238.htmll
http://doi.acm.org/10.1145/511446.511485
http://doi.acm.org/10.1145/511446.511485
http://dx.doi.org/10.1109/WDFIA.2007.2
http://dx.doi.org/10.1109/WDFIA.2007.2
http://doi.acm.org/10.1145/1772690.1772742

[42] Pradeep Kumar, P. Radha Krishna, Raju. S. Bapi, and Supriya Kumar

De. Rough clustering of sequential data. Data and Knowledge Engi-

neering, 63(2):183 – 199, 2007. ISSN 0169-023X. doi: 10.1016/j.datak.

2007.01.003. URL http://www.sciencedirect.com/science/article/pii/

S0169023X07000055.

[43] Terran Lane and CarlaE. Brodley. An empirical study of two approaches to

sequence learning for anomaly detection. Machine Learning, 51(1):73–107,

2003. ISSN 0885-6125. doi: 10.1023/A:1021830128811. URL http://dx.

doi.org/10.1023/A%3A1021830128811.

[44] M. Lecandowsky and D. Winter. Distance between Sets. Nature, 234(5323):

34–35, 1971.

[45] Sangjae Lee, Gisung Kim, and Sehun Kim. Sequence-order-independent net-

work profiling for detecting application layer ddos attacks. EURASIP Journal

on Wireless Communications and Networking, 2011(1):1–9, 2011.

[46] Wenke Lee and Salvatore J. Stolfo. A framework for constructing features and

models for intrusion detection systems. ACM Trans. Inf. Syst. Secur., 3(4):

227–261, November 2000. ISSN 1094-9224. doi: 10.1145/382912.382914. URL

http://doi.acm.org/10.1145/382912.382914.

[47] Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly de-

tection. In Proceedings of the 2001 IEEE Symposium on Security and Privacy,

SP ’01, pages 130–, Washington, DC, USA, 2001. IEEE Computer Society.

URL http://dl.acm.org/citation.cfm?id=882495.884435.

[48] Jonathan Lemon. Resisting syn flood dos attacks with a syn cache. In Proceed-

ings of the BSD Conference 2002 on BSD Conference, BSDC’02, pages 10–10,

Berkeley, CA, USA, 2002. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1250894.1250904.

[49] Tao Li, Sheng Ma, and Mitsunori Ogihara. Entropy-based criterion in cate-

gorical clustering. In Proceedings of the twenty-first international conference

on Machine learning, ICML ’04, pages 68–, New York, NY, USA, 2004. ACM.

ISBN 1-58113-838-5. doi: 10.1145/1015330.1015404. URL http://doi.acm.

org/10.1145/1015330.1015404.

[50] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and

Kumar Das. Analysis and results of the 1999 darpa off-line intrusion de-

tection evaluation. In Proceedings of the Third International Workshop on

117

http://www.sciencedirect.com/science/article/pii/S0169023X07000055
http://www.sciencedirect.com/science/article/pii/S0169023X07000055
http://dx.doi.org/10.1023/A%3A1021830128811
http://dx.doi.org/10.1023/A%3A1021830128811
http://doi.acm.org/10.1145/382912.382914
http://dl.acm.org/citation.cfm?id=882495.884435
http://dl.acm.org/citation.cfm?id=1250894.1250904
http://dl.acm.org/citation.cfm?id=1250894.1250904
http://doi.acm.org/10.1145/1015330.1015404
http://doi.acm.org/10.1145/1015330.1015404

Recent Advances in Intrusion Detection, RAID ’00, pages 162–182, London,

UK, UK, 2000. Springer-Verlag. ISBN 3-540-41085-6. URL http://dl.acm.

org/citation.cfm?id=645838.670722.

[51] Tom Lodewyckx, Woojae Kim, Michael D. Lee, Francis Tuerlinckx, Peter

Kuppens, and Eric-Jan Wagenmakers. A tutorial on bayes factor estimation

with the product space method. Journal of Mathematical Psychology, 55(5):

331 – 347, 2011. ISSN 0022-2496.

[52] Wei-Zhou Lu and Shun zheng Yu. An http flooding detection method

based on browser behavior. In Computational Intelligence and Security,

2006 International Conference on, volume 2, pages 1151–1154, 2006. doi:

10.1109/ICCIAS.2006.295444.

[53] Wei-Zhou Lu and Shun zheng Yu. Web robot detection based on hidden

markov model. In Communications, Circuits and Systems Proceedings, 2006

International Conference on, volume 3, pages 1806–1810, 2006. doi: 10.1109/

ICCCAS.2006.285024.

[54] T.F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection

expert system. In Security and Privacy, 1988. Proceedings., 1988 IEEE Sym-

posium on, pages 59–66, 1988. doi: 10.1109/SECPRI.1988.8098.

[55] Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999 darpa/lin-

coln laboratory evaluation data for network anomaly detection. In In Proceed-

ings of the Sixth International Symposium on Recent Advances in Intrusion

Detection, pages 220–237. Springer-Verlag, 2003.

[56] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense

mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, April 2004.

ISSN 0146-4833. doi: 10.1145/997150.997156. URL http://doi.acm.org/

10.1145/997150.997156.

[57] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and

Stefan Savage. Inferring internet denial-of-service activity. ACM Trans. Com-

put. Syst., 24(2):115–139, May 2006. ISSN 0734-2071. doi: 10.1145/1132026.

1132027. URL http://doi.acm.org/10.1145/1132026.1132027.

[58] Greg Mori and Jitendra Malik. Recognizing objects in adversarial clutter:

breaking a visual captcha. In Proceedings of the 2003 IEEE computer soci-

ety conference on Computer vision and pattern recognition, CVPR’03, pages

118

http://dl.acm.org/citation.cfm?id=645838.670722
http://dl.acm.org/citation.cfm?id=645838.670722
http://doi.acm.org/10.1145/997150.997156
http://doi.acm.org/10.1145/997150.997156
http://doi.acm.org/10.1145/1132026.1132027

134–141, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-

7695-1900-8, 978-0-7695-1900-5. URL http://dl.acm.org/citation.cfm?

id=1965841.1965858.

[59] Thi Thanh Sang Nguyen, Hai-Yan Lu, and Jie Lu. Ontology-style web us-

age model for semantic web applications. In Intelligent Systems Design and

Applications (ISDA), 2010 10th International Conference on, pages 784–789,

2010. doi: 10.1109/ISDA.2010.5687169.

[60] Thi Thanh Sang Nguyen, Hai-Yan Lu, and Jie Lu. Ontology-style web us-

age model for semantic web applications. In Intelligent Systems Design and

Applications (ISDA), 2010 10th International Conference on, pages 784–789,

2010. doi: 10.1109/ISDA.2010.5687169.

[61] L. Niven. All the Myriad Ways. Ballantine Books, 1971. ISBN 0-345-24084-7.

[62] G. Oikonomou and J. Mirkovic. Modeling human behavior for defense against

flash-crowd attacks. In Communications, 2009. ICC ’09. IEEE International

Conference on, pages 1–6, 2009. doi: 10.1109/ICC.2009.5199191.

[63] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry

Peterson. Characteristics of internet background radiation. In Proceedings of

the 4th ACM SIGCOMM conference on Internet measurement, IMC ’04, pages

27–40, New York, NY, USA, 2004. ACM. ISBN 1-58113-821-0. doi: 10.1145/

1028788.1028794. URL http://doi.acm.org/10.1145/1028788.1028794.

[64] KyoungSoo Park, Vivek S. Pai, Kang-Won Lee, and Seraphin Calo. Securing

web service by automatic robot detection. In Proceedings of the annual confer-

ence on USENIX ’06 Annual Technical Conference, ATEC ’06, pages 23–23,

Berkeley, CA, USA, 2006. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1267359.1267382.

[65] Vern Paxson. An analysis of using reflectors for distributed denial-of-service

attacks. SIGCOMM Comput. Commun. Rev., 31(3):38–47, July 2001. ISSN

0146-4833. doi: 10.1145/505659.505664. URL http://doi.acm.org/10.

1145/505659.505664.

[66] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson mod-

eling. IEEE/ACM Trans. Netw., 3(3):226–244, June 1995. ISSN 1063-6692.

doi: 10.1109/90.392383. URL http://dx.doi.org/10.1109/90.392383.

119

http://dl.acm.org/citation.cfm?id=1965841.1965858
http://dl.acm.org/citation.cfm?id=1965841.1965858
http://doi.acm.org/10.1145/1028788.1028794
http://dl.acm.org/citation.cfm?id=1267359.1267382
http://dl.acm.org/citation.cfm?id=1267359.1267382
http://doi.acm.org/10.1145/505659.505664
http://doi.acm.org/10.1145/505659.505664
http://dx.doi.org/10.1109/90.392383

[67] James Pitkow. In search of reliable usage data on the www. Comput.

Netw. ISDN Syst., 29(8-13):1343–1355, September 1997. ISSN 0169-7552.

doi: 10.1016/S0169-7552(97)00021-4. URL http://dx.doi.org/10.1016/

S0169-7552(97)00021-4.

[68] Lawrence R. Rabiner. A tutorial on hidden markov models and selected appli-

cations in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

ISSN 0018-9219.

[69] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. My

botnet is bigger than yours (maybe, better than yours): why size estimates

remain challenging. In Proceedings of the first conference on First Workshop

on Hot Topics in Understanding Botnets, HotBots’07, pages 5–5, Berkeley,

CA, USA, 2007. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1323128.1323133.

[70] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly. Ddos-resilient

scheduling to counter application layer attacks under imperfect detection. In

INFOCOM 2006. 25th IEEE International Conference on Computer Commu-

nications. Proceedings, pages 1–13, 2006. doi: 10.1109/INFOCOM.2006.127.

[71] Supranamaya Ranjan. High performance distributed denial-of-service resilient

web cluster architecture. PhD thesis, William Marsh Rice University, Houston,

TX, USA, 2006. AAI3216765.

[72] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, Antonio Nucci, and

Edward Knightly. Ddos-shield: Ddos-resilient scheduling to counter applica-

tion layer attacks. IEEE/ACM Trans. Netw., 17(1):26–39, February 2009.

ISSN 1063-6692. doi: 10.1109/TNET.2008.926503. URL http://dx.doi.

org/10.1109/TNET.2008.926503.

[73] Martin Roesch. Snort - lightweight intrusion detection for networks. In Pro-

ceedings of the 13th USENIX conference on System administration, LISA ’99,

pages 229–238, Berkeley, CA, USA, 1999. USENIX Association. URL http://

dl.acm.org/citation.cfm?id=1039834.1039864.

[74] Robert E. Schapire. A brief introduction to boosting. In Proceedings of the 16th

international joint conference on Artificial intelligence - Volume 2, IJCAI’99,

pages 1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publish-

ers Inc. URL http://dl.acm.org/citation.cfm?id=1624312.1624417.

120

http://dx.doi.org/10.1016/S0169-7552(97)00021-4
http://dx.doi.org/10.1016/S0169-7552(97)00021-4
http://dl.acm.org/citation.cfm?id=1323128.1323133
http://dl.acm.org/citation.cfm?id=1323128.1323133
http://dx.doi.org/10.1109/TNET.2008.926503
http://dx.doi.org/10.1109/TNET.2008.926503
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1624312.1624417

[75] C.L. Schuba, I.V. Krsul, M.G. Kuhn, E.H. Spafford, A. Sundaram, and

D. Zamboni. Analysis of a denial of service attack on tcp. In Security and

Privacy, 1997. Proceedings., 1997 IEEE Symposium on, pages 208–223, 1997.

doi: 10.1109/SECPRI.1997.601338.

[76] C. E. Shannon. A mathematical theory of communication. Bell system tech-

nical journal, 27, 1948.

[77] Michel Speiser, Gianluca Antonini, Abderrahim Labbi, and Juliana Sutanto.

On nested palindromes in clickstream data. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data mining,

KDD ’12, pages 1460–1468, New York, NY, USA, 2012. ACM. ISBN 978-1-

4503-1462-6. doi: 10.1145/2339530.2339758. URL http://doi.acm.org/10.

1145/2339530.2339758.

[78] M. Srivatsa, A. Iyengar, Jian Yin, and Ling Liu. A client-transparent approach

to defend against denial of service attacks. In Reliable Distributed Systems,

2006. SRDS ’06. 25th IEEE Symposium on, pages 61–70, 2006. doi: 10.1109/

SRDS.2006.6.

[79] Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu. A middleware

system for protecting against application level denial of service attacks. In

Proceedings of the ACM/IFIP/USENIX 2006 International Conference on

Middleware, Middleware ’06, pages 260–280, New York, NY, USA, 2006.

Springer-Verlag New York, Inc. URL http://dl.acm.org/citation.cfm?

id=1515984.1516005.

[80] Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu. Mitigating

application-level denial of service attacks on web servers: A client-transparent

approach. ACM Trans. Web, 2(3):15:1–15:49, July 2008. ISSN 1559-1131. doi:

10.1145/1377488.1377489. URL http://doi.acm.org/10.1145/1377488.

1377489.

[81] Dusan Stevanovic, Aijun An, and Natalija Vlajic. Detecting web crawlers

from web server access logs with data mining classifiers. In Proceedings of the

19th international conference on Foundations of intelligent systems, ISMIS’11,

pages 483–489, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-

21915-3. URL http://dl.acm.org/citation.cfm?id=2029759.2029822.

[82] Dusan Stevanovic, Natalija Vlajic, and Aijun An. Unsupervised clustering

of web sessions to detect malicious and non-malicious website users. Proce-

121

http://doi.acm.org/10.1145/2339530.2339758
http://doi.acm.org/10.1145/2339530.2339758
http://dl.acm.org/citation.cfm?id=1515984.1516005
http://dl.acm.org/citation.cfm?id=1515984.1516005
http://doi.acm.org/10.1145/1377488.1377489
http://doi.acm.org/10.1145/1377488.1377489
http://dl.acm.org/citation.cfm?id=2029759.2029822

dia Computer Science, 5(0):123 – 131, 2011. ISSN 1877-0509. doi: http://dx.

doi.org/10.1016/j.procs.2011.07.018. URL http://www.sciencedirect.com/

science/article/pii/S1877050911003437. ¡ce:title¿The 2nd International

Conference on Ambient Systems, Networks and Technologies (ANT-2011) /

The 8th International Conference on Mobile Web Information Systems (Mo-

biWIS 2011)¡/ce:title¿.

[83] Dusan Stevanovic, Aijun An, and Natalija Vlajic. Feature evaluation for web

crawler detection with data mining techniques. Expert Syst. Appl., 39(10):

8707–8717, August 2012. ISSN 0957-4174. doi: 10.1016/j.eswa.2012.01.210.

URL http://dx.doi.org/10.1016/j.eswa.2012.01.210.

[84] Dusan Stevanovic, Natalija Vlajic, and Aijun An. Detection of malicious and

non-malicious website visitors using unsupervised neural network learning.

Appl. Soft Comput., 13(1):698–708, January 2013. ISSN 1568-4946. doi: 10.

1016/j.asoc.2012.08.028. URL http://dx.doi.org/10.1016/j.asoc.2012.

08.028.

[85] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin

Szydlowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna.

Your botnet is my botnet: analysis of a botnet takeover. In Proceedings of

the 16th ACM conference on Computer and communications security, CCS

’09, pages 635–647, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-

894-0. doi: 10.1145/1653662.1653738. URL http://doi.acm.org/10.1145/

1653662.1653738.

[86] Arijit Sur, AnandS. Nair, Abhishek Kumar, Apul Jain, and Sukumar

Nandi. Steganalysis of network packet length based data hiding. Cir-

cuits, Systems, and Signal Processing, pages 1–18, 2012. ISSN 0278-

081X. doi: 10.1007/s00034-012-9497-8. URL http://dx.doi.org/10.1007/

s00034-012-9497-8.

[87] Arijit Sur, AnandS. Nair, Abhishek Kumar, Apul Jain, and Sukumar

Nandi. Steganalysis of network packet length based data hiding. Cir-

cuits, Systems, and Signal Processing, pages 1–18, 2012. ISSN 0278-

081X. doi: 10.1007/s00034-012-9497-8. URL http://dx.doi.org/10.1007/

s00034-012-9497-8.

[88] Pang-Ning Tan and Vipin Kumar. Modeling of web robot navigational pat-

terns, 2000.

122

http://www.sciencedirect.com/science/article/pii/S1877050911003437
http://www.sciencedirect.com/science/article/pii/S1877050911003437
http://dx.doi.org/10.1016/j.eswa.2012.01.210
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://doi.acm.org/10.1145/1653662.1653738
http://doi.acm.org/10.1145/1653662.1653738
http://dx.doi.org/10.1007/s00034-012-9497-8
http://dx.doi.org/10.1007/s00034-012-9497-8
http://dx.doi.org/10.1007/s00034-012-9497-8
http://dx.doi.org/10.1007/s00034-012-9497-8

[89] Pang-Ning Tan and Vipin Kumar. Discovery of web robot sessions based on

their navigational patterns. Data Min. Knowl. Discov., 6(1):9–35, January

2002. ISSN 1384-5810. doi: 10.1023/A:1013228602957. URL http://dx.

doi.org/10.1023/A:1013228602957.

[90] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Techni-

cal Reference, 4th edition, 2002. ISBN 0130661023.

[91] T. Thapngam, Shui Yu, Wanlei Zhou, and G. Beliakov. Discriminating ddos

attack traffic from flash crowd through packet arrival patterns. In Computer

Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference

on, pages 952–957, 2011. doi: 10.1109/INFCOMW.2011.5928950.

[92] G. Vigna and R. A. Kemmerer. Netstat: A network-based intrusion detection

approach. In Proceedings of the 14th Annual Computer Security Applications

Conference, ACSAC ’98, pages 25–, Washington, DC, USA, 1998. IEEE Com-

puter Society. ISBN 0-8186-8789-4. URL http://dl.acm.org/citation.

cfm?id=784589.784632.

[93] K.K.K. Wan and R.K.C. Chang. Engineering of a global defense infrastructure

for ddos attacks. In Networks, 2002. ICON 2002. 10th IEEE International

Conference on, pages 419–427, 2002. doi: 10.1109/ICON.2002.1033348.

[94] Jin Wang, Xiaolong Yang, and Keping Long. A new relative entropy based

app-ddos detection method. In Computers and Communications (ISCC), 2010

IEEE Symposium on, pages 966–968, 2010. doi: 10.1109/ISCC.2010.5546587.

[95] Jin Wang, Xiaolong Yang, and Keping Long. Web ddos detection schemes

based on measuring user’s access behavior with large deviation. In Global

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages 1–5,

2011. doi: 10.1109/GLOCOM.2011.6133798.

[96] N. Weiler. Honeypots for distributed denial-of-service attacks. In Enabling

Technologies: Infrastructure for Collaborative Enterprises, 2002. WET ICE

2002. Proceedings. Eleventh IEEE International Workshops on, pages 109–

114, 2002. doi: 10.1109/ENABL.2002.1029997.

[97] Patrick Wendell and Michael J. Freedman. Going viral: flash crowds in an

open cdn. In Proceedings of the 2011 ACM SIGCOMM conference on Internet

measurement conference, IMC ’11, pages 549–558, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-1013-0. doi: 10.1145/2068816.2068867. URL http://

doi.acm.org/10.1145/2068816.2068867.

123

http://dx.doi.org/10.1023/A:1013228602957
http://dx.doi.org/10.1023/A:1013228602957
http://dl.acm.org/citation.cfm?id=784589.784632
http://dl.acm.org/citation.cfm?id=784589.784632
http://doi.acm.org/10.1145/2068816.2068867
http://doi.acm.org/10.1145/2068816.2068867

[98] Y. Xie, S. Tang, X. Huang, C. Tang, and X. Liu. Detecting latent attack

behavior from aggregated web traffic. Comput. Commun., 36(8):895–907, May

2013. ISSN 0140-3664. doi: 10.1016/j.comcom.2013.01.013. URL http://dx.

doi.org/10.1016/j.comcom.2013.01.013.

[99] Yi Xie and Xiangnong Huang. Http-session model and its application in

anomaly http traffic detection. In Proceedings of the 2010 Sixth International

Conference on Semantics, Knowledge and Grids, SKG ’10, pages 141–148,

Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-

4189-1. doi: 10.1109/SKG.2010.24. URL http://dx.doi.org/10.1109/SKG.

2010.24.

[100] Yi Xie and Shun-Zheng Yu. A large-scale hidden semi-markov model for

anomaly detection on user browsing behaviors. IEEE/ACM Trans. Netw., 17

(1):54–65, February 2009. ISSN 1063-6692. doi: 10.1109/TNET.2008.923716.

URL http://dx.doi.org/10.1109/TNET.2008.923716.

[101] Yi Xie and Shun-Zheng Yu. Monitoring the application-layer ddos attacks

for popular websites. IEEE/ACM Trans. Netw., 17(1):15–25, February 2009.

ISSN 1063-6692. doi: 10.1109/TNET.2008.925628. URL http://dx.doi.

org/10.1109/TNET.2008.925628.

[102] Yi Xie and Shun zheng Yu. A novel model for detecting application layer

ddos attacks. In Computer and Computational Sciences, 2006. IMSCCS ’06.

First International Multi-Symposiums on, volume 2, pages 56–63, 2006. doi:

10.1109/IMSCCS.2006.159.

[103] Yi Xie, S. Tang, Y. Xiang, and J. Hu. Resisting web proxy-based http attacks

by temporal and spatial locality behavior. IEEE Transactions on Parallel

and Distributed Systems, 24(7):1401–1410, 2013. ISSN 1045-9219. doi: http:

//doi.ieeecomputersociety.org/10.1109/TPDS.2012.232.

[104] J. Yan and A.S. El Ahmad. Breaking visual captchas with naive pattern

recognition algorithms. In Computer Security Applications Conference, 2007.

ACSAC 2007. Twenty-Third Annual, pages 279–291, 2007. doi: 10.1109/

ACSAC.2007.47.

[105] Qiang Yang, Joshua Zhexue Huang, and Michael Ng. A data cube model for

prediction-based web prefetching. J. Intell. Inf. Syst., 20(1):11–30, January

2003. ISSN 0925-9902. doi: 10.1023/A:1020990805004. URL http://dx.doi.

org/10.1023/A:1020990805004.

124

http://dx.doi.org/10.1016/j.comcom.2013.01.013
http://dx.doi.org/10.1016/j.comcom.2013.01.013
http://dx.doi.org/10.1109/SKG.2010.24
http://dx.doi.org/10.1109/SKG.2010.24
http://dx.doi.org/10.1109/TNET.2008.923716
http://dx.doi.org/10.1109/TNET.2008.925628
http://dx.doi.org/10.1109/TNET.2008.925628
http://dx.doi.org/10.1023/A:1020990805004
http://dx.doi.org/10.1023/A:1020990805004

[106] T. Yatagai, T. Isohara, and Iwao Sasase. Detection of http-get flood attack

based on analysis of page access behavior. In Communications, Computers

and Signal Processing, 2007. PacRim 2007. IEEE Pacific Rim Conference on,

pages 232–235, 2007. doi: 10.1109/PACRIM.2007.4313218.

[107] Nong Ye, Syed Masum Emran, Qiang Chen, and Sean Vilbert. Multivariate

statistical analysis of audit trails for host-based intrusion detection. IEEE

Trans. Comput., 51(7):810–820, July 2002. ISSN 0018-9340. doi: 10.1109/

TC.2002.1017701. URL http://dx.doi.org/10.1109/TC.2002.1017701.

[108] Dit-Yan Yeung and Yuxin Ding. Host-based intrusion detection using dy-

namic and static behavioral models. Pattern Recognition, 36(1):229 – 243,

2003. ISSN 0031-3203. doi: http://dx.doi.org/10.1016/S0031-3203(02)

00026-2. URL http://www.sciencedirect.com/science/article/pii/

S0031320302000262.

[109] Jie Yu, Chengfang Fang, Liming Lu, and Zhoujun Li. A lightweight mecha-

nism to mitigate application layer ddos attacks. In Peter Mueller, Jian-Nong

Cao, and Cho-Li Wang, editors, Scalable Information Systems, volume 18 of

Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, pages 175–191. Springer Berlin Heidelberg,

2009. ISBN 978-3-642-10484-8. doi: 10.1007/978-3-642-10485-5 13. URL

http://dx.doi.org/10.1007/978-3-642-10485-5_13.

[110] Shui Yu, Wanlei Zhou, and R. Doss. Information theory based detection

against network behavior mimicking ddos attacks. Communications Letters,

IEEE, 12(4):318–321, 2008. ISSN 1089-7798. doi: 10.1109/LCOMM.2008.

072049.

[111] Shui Yu, Theerasak Thapngam, Jianwen Liu, Su Wei, and Wanlei Zhou. Dis-

criminating ddos flows from flash crowds using information distance. In Pro-

ceedings of the 2009 Third International Conference on Network and System

Security, NSS ’09, pages 351–356, Washington, DC, USA, 2009. IEEE Com-

puter Society. ISBN 978-0-7695-3838-9. doi: 10.1109/NSS.2009.29. URL

http://dx.doi.org/10.1109/NSS.2009.29.

[112] Shui Yu, Guofeng Zhao, Song Guo, Yang Xiang, and A.V. Vasilakos. Brows-

ing behavior mimicking attacks on popular web sites for large botnets. In

Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE

Conference on, pages 947–951, 2011. doi: 10.1109/INFCOMW.2011.5928949.

125

http://dx.doi.org/10.1109/TC.2002.1017701
http://www.sciencedirect.com/science/article/pii/S0031320302000262
http://www.sciencedirect.com/science/article/pii/S0031320302000262
http://dx.doi.org/10.1007/978-3-642-10485-5_13
http://dx.doi.org/10.1109/NSS.2009.29

[113] Shui Yu, Song Guo, and I. Stojmenovic. Can we beat legitimate cyber behavior

mimicking attacks from botnets? In INFOCOM, 2012 Proceedings IEEE,

pages 2851–2855, 2012. doi: 10.1109/INFCOM.2012.6195714.

[114] Shui Yu, Guofeng Zhao, Wanchun Dou, and S. James. Predicted packet

padding for anonymous web browsing against traffic analysis attacks. Infor-

mation Forensics and Security, IEEE Transactions on, 7(4):1381–1393, 2012.

ISSN 1556-6013. doi: 10.1109/TIFS.2012.2197392.

[115] Shui Yu, Wanlei Zhou, Wanchun Dou, and S.K. Makki. Why it is hard to

fight against cyber criminals? In Distributed Computing Systems Workshops

(ICDCSW), 2012 32nd International Conference on, pages 537–541, 2012. doi:

10.1109/ICDCSW.2012.25.

[116] Shui Yu, Wanlei Zhou, Weijia Jia, Song Guo, Yong Xiang, and Feilong Tang.

Discriminating ddos attacks from flash crowds using flow correlation coef-

ficient. IEEE Transactions on Parallel and Distributed Systems, 23(6):1073–

1080, 2012. ISSN 1045-9219. doi: http://doi.ieeecomputersociety.org/10.1109/

TPDS.2011.262.

[117] Shui Yu, Wanlei Zhou, Weijia Jia, and Jiankun Hu. Attacking anonymous

web browsing at local area networks through browsing dynamics. Comput.

J., 55(4):410–421, April 2012. ISSN 0010-4620. doi: 10.1093/comjnl/bxr065.

URL http://dx.doi.org/10.1093/comjnl/bxr065.

[118] Stefano Zanero. Behavioral intrusion detection. In Cevdet Aykanat, Tu-

rul Dayar, and brahim Krpeolu, editors, Computer and Information Sci-

ences - ISCIS 2004, volume 3280 of Lecture Notes in Computer Science,

pages 657–666. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-23526-

2. doi: 10.1007/978-3-540-30182-0 66. URL http://dx.doi.org/10.1007/

978-3-540-30182-0_66.

[119] Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection tech-

niques for mobile wireless networks. Wirel. Netw., 9(5):545–556, September

2003. ISSN 1022-0038. doi: 10.1023/A:1024600519144. URL http://dx.doi.

org/10.1023/A:1024600519144.

[120] Jianwei Zhuge, Thorsten Holz, Xinhui Han, Jinpeng Guo, and Wei Zou. Char-

acterizing the IRC-based Botnet Phenomenon. Technical report, Reihne In-

formatik, December 2007.

126

http://dx.doi.org/10.1093/comjnl/bxr065
http://dx.doi.org/10.1007/978-3-540-30182-0_66
http://dx.doi.org/10.1007/978-3-540-30182-0_66
http://dx.doi.org/10.1023/A:1024600519144
http://dx.doi.org/10.1023/A:1024600519144

	List of Tables
	List of Figures
	Abbreviations
	Notations
	List of Publications
	Acknowledgments
	Declarations
	Abstract
	Chapter Introduction
	Access Matrix as Interest Measurement
	Research Question
	Contribution to Knowledge
	Organisation of the Thesis

	Chapter Theoretical Background
	Different Types of Denial of Service Attack
	Scenario of Denial of Service Attack
	Location of Detection Systems
	Victim Types of DDoS Attack
	Application Layer Attacks and Flash Crowds
	Performance of Intrusion Detection Systems
	Different Approaches to Intrusion Detection Systems

	Chapter Literature Review
	Approaches to Detect Unsolicited Browsing
	Related Work - Learning systems
	Learning systems - Sequence-Oriented Methods
	Sequence-Oriented Methods - Brief Outline
	Sequence-Oriented Methods - Data Collection
	Sequence-Oriented Methods - Malicious Behaviour
	Sequence-Oriented Methods - Detection Performance

	Learning systems - Protocol-Oriented Methods
	Protocol-Oriented Methods - Brief Outline
	Protocol-Oriented Methods - Data Collection
	Protocol-Oriented Methods - Malicious Behaviour
	Protocol-Oriented Methods - Detection Performance

	Related Work - Technical Solutions
	Technical Solutions - Brief Outline
	Technical Solutions - Data Collection
	Technical Solutions - Malicious Behaviour
	Technical Solutions - Detection Performance

	Analysis of Previous Approaches

	Motivation for Research
	Summary

	Chapter Methodology
	Data Collection - Two Approaches to Web Interest
	Data Collection - Macro-Interest of Web Users
	Data Collection - Micro-Interest of Web Users

	Data Preprocessing - Micro-Interest
	Sequence Length Distribution in Data Sets
	Clustering
	Entropy as a Measure of Interest Groups
	Calculating the Number of Clusters
	Dynamically Changing the Number of Clusters
	Re-clustering
	Merging
	Partitioning

	Summary of the Algorithm
	Fixed Number of Clusters
	Reallocation of Sequences for Micro-Interest

	Soft and Hard Detection Ranges
	Allocation of Attacking and Validating Sequences
	Strategies of Attacking Hosts Against Macro-Interest Approach
	Rarely-changing Hosts
	Frequently-changing Hosts

	Strategies of Attacking Hosts Against Micro-Interest Approach
	Detection of Attacking Hosts Against Macro-Interest Approach
	Mahalanobis Distance
	Mutual Information and Statistical Independence as Anomalous Measurement
	Likelihood of the Same-category Segment

	Detection of Attacking Hosts Against Micro-Interest Approach
	Detection Based on Bayes Factors
	Detection Based on Likelihood Analysis

	Summary

	Chapter Results
	Sequence Distribution for Macro-Interest Approach
	Intention Classification for Macro-Interest Approach
	Result Analysis

	Clustering Results for Micro-Interest Approach
	Stability of Clustering Algorithm
	Sequence Distribution for Micro-Interest Approach

	Intention Classification for Micro-Interest
	Intention Classification with Bayes Factors
	Length-Dependent Detection Analysis
	Intention Classification with Likelihood Analysis

	Summary and Discussion

	Chapter Conclusion
	Contribution to Knowledge
	Clustering Algorithm
	Statistical Measures

	Chapter Future Work

