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Abstract: Emergency Management System (EMS) is an important component of Intelligent trans-
portation systems, and its primary objective is to send Emergency Vehicles (EVs) to the location of a
reported incident. However, the increasing traffic in urban areas, especially during peak hours, results
in the delayed arrival of EVs in many cases, which ultimately leads to higher fatality rates, increased
property damage, and higher road congestion. Existing literature addressed this issue by giving
higher priority to EVs while traveling to an incident place by changing traffic signals (e.g., making
the signals green) on their travel path. A few works have also attempted to find the best route for an
EV using traffic information (e.g., number of vehicles, flow rate, and clearance time) at the beginning
of the journey. However, these works did not consider congestion or disruption faced by other
non-emergency vehicles adjacent to the EV travel path. The selected travel paths are also static and do
not consider changing traffic parameters while EVs are en route. To address these issues, this article
proposes an Unmanned Aerial Vehicle (UAV) guided priority-based incident management system to
assist EVs in obtaining a better clearance time in intersections and thus achieve a lower response time.
The proposed model also considers disruption faced by other surrounding non-emergency vehicles
adjacent to the EVs’ travel path and selects an optimal solution by controlling the traffic signal phase
time to ensure that EVs can reach the incident place on time while causing minimal disruption to
other on-road vehicles. Simulation results indicate that the proposed model achieves an 8% lower
response time for EVs while the clearance time surrounding the incident place is improved by 12%.

Keywords: intelligent transportation system; emergency vehicle priority; drone in emergency

1. Introduction

Worldwide adoption and use of intelligent transportation systems (ITS) have improved
traffic and safety conditions, reduced traffic congestion, and the timely propagation of
important traffic updates. ITS uses special hardware (e.g., inductive loop detectors, radar
detectors, and laser detectors) and roadside infrastructures to evaluate existing traffic
conditions (e.g., traffic flow at a specific point of the road system, average travel times for a
particular segment of track, and road hazard). Real-time traffic monitoring capability and
the improved communication facility between vehicle and everything (V2X) have enabled
an ITS to offer various services, such as dynamic traffic signal control, emergency vehicle
priority, public vehicle priority, pedestrian safety, incident management service, variable
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speed limit, and freeway ramp signals. An emergency management system (EMS) is a
crucial component of ITS, which detects emergencies (e.g., road accidents or fires) and
automatically send emergency vehicles (EVs) (e.g., ambulances, fire service, and police) to
appropriate locations.

Emergency services are typically available in most major cities, and although their
goal response time and the quality of service (QoS) requirements are strict, congestion can
severely impede these services. For instance, the average real response time for Victoria,
Australia, is 17% higher than the target of 90th percentile [1], and the standard set by the US
National Fire Protection Association (NFPA) suggested eight minutes target time for EVs [2].
EVs (e.g., ambulances, fire service, and police) need to arrive at the location of an emergency,
such as an accident or fire, as soon as possible, specifically within the “golden time”, which
is an early critical time to rescue people in an incident during which damage attributable to
the incident can be minimized. For example, in first aid, cardiopulmonary resuscitation
(CPR) should be commenced within 5 to 10 min from the time a situation occurs. Similarly,
the amount of damage may vary significantly based on the time firefighting begins after
a fire occurs. In most countries, providing giveaways to EVs is a legal requirement. The
drivers of regular (i.e., non-emergency) vehicles are expected to pull over or change lanes
or give way to the EVs as soon as possible when they hear the siren or see the emergency
lights. However, on urban roads, specifically during peak congestion hours, it becomes
hard and sometimes impossible for a driver to change lanes or give way to EVs due to
the presence of other vehicles. This results in the late arrival of EVs and causes increased
fatalities and social expenses [3].

Researchers have addressed the above-mentioned issues and proposed various tech-
niques to improve EV response time. Hannoun et al. [4] suggested that nonpriority vehicles
should pull over when there is any EV behind them. This solution is feasible for the high-
way or freeway with multiple lanes. However, this pull-over method will cause significant
delays due to average speed loss due to the introduction of oscillations and capacity drop
for the stop-and-go process. A few other works [5–7] suggested that the traffic signals ahead
of the emergency vehicles should be changed to green using RFID sensors, inroad sensors,
and EV detection from a video feed. Although these methods can slightly improve the EV
travel time, they do not consider disruption or congestion faced by other nonemergency
vehicles adjacent to the EVs’ travel path. This aspect is significantly important to reduce
the congestion near the incident place and improve the incident clearance time. Incident
clearance time refers to the time from the start of the incident to bring the traffic condition
back to the preincident traffic condition. Existing approaches also did not consider the
real-time traffic monitoring capability of ITS and the communication features of its roadside
infrastructure. They connected autonomous vehicles, which can aid in optimal travel path
selection for EVs based on real-time traffic conditions. Furthermore, the speed loss of EVs
near the intersection for safety reasons is not addressed in existing methods.

To address the above-mentioned issues, we propose an integrated UAV-assisted emer-
gency vehicle priority system in this paper. Our proposed approach considers that the EMS
can automatically detect an incident type (e.g., road accident or fire) and place and, based
on the type of the incident, send appropriate EVs. In this case, EMS communicates with the
central traffic controller to obtain an optimal travel path for sending EVs. In response, the
central traffic controller utilizes the ITS sensors to determine the quickest EV travel path based
on the real-time traffic condition and informs the EMS, who delivers this information to EVs.

The proposed model also uses an adaptive path selection strategy that continues
monitoring the traffic condition while the EVs are en route and notifies them immediately
when a better route becomes available. Drone assistance near the intersection to reduce the
speed loss of EVs is also utilized in our proposed model to improve performance.

To assess the performance of the proposed model, we used extensive simulation using
the Simulation of Urban Mobility (SUMO) version 1.17.0 [8] for macOS and real-life traffic
data from VicRoads—the road corporation of Victoria, Australia [9]. The simulation results
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show that our proposed approach yielded better results than existing methods. Overall,
this paper makes the following contributions:

1. developed an adaptive optimal travel path selection method for EVs considering
real-time traffic conditions and wait time of surrounding nonemergency vehicles.

2. proposed using drones as the lead vehicle of EVs to minimize their speed loss near
intersections while improving safety conditions by notifying other nonemergency
vehicles about incoming EVs.

3. conducted extensive simulations based on real-life traffic and incident datasets ob-
tained from VicRoads, and the simulation results demonstrated the superiority of our
proposed model compared to existing approaches.

The rest of the paper is organized as follows: In Section 2, we describe the issues
related to incident management in ITS, the use of drones in different sectors, and current
emergency vehicle priority systems. The proposed model is discussed in Section 3. In
Section 4, we analyse the performance of the proposed model. Finally, Section 5 concludes
the paper.

2. Background

Countries and organizations worldwide are making strides to improve road safety
and workplace safety [10], introducing various measures from stricter traffic laws to more
advanced traffic management systems. Despite these commendable efforts, the number of
incidents on roads is on the rise [11–13].

Emergency Management System (EMS) provides different services, such as monitoring
the number of vehicles and their speed on the road, measuring traffic flow rate, and
managing traffic incidents. EMS aims to reduce traffic congestion and disruption faced
by road users while minimizing the incident clearance time. One of the major challenges
in minimizing incident clearance time is to send the EV to the incident place within the
shortest possible time. Some highways and freeways have dedicated emergency lanes, and
the EVs can use those. However, on arterial urban roads, mainly during the peak period,
EVs must stay behind other nonemergency vehicles.

Clearing the incident place is one of the primary objectives of EMS, and several
management teams work together to achieve this [14]. Existing literature used a few
approaches, such as Green Wave [5], ITS Integration model [15], Usage-Base model [16],
Smart Congestion Avoidance (STLC) [17] and Smart Collision Avoidance (SCA) [18] to aid
emergency service vehicles to travel quickly. The Green Wave system [5] recommended
making one signal green in front of an EV using RFID, wireless sensors, and video cameras.
In the ITS integration model [15], different roadside infrastructures (e.g., traffic signal, traffic
controller) communicate together to provide priority to EVs. The usage-Base model [16]
ensures the best utilization of the EV department’s resources (e.g., Staff, number of available
EVs). In contrast, STLC [17] provides EVs with a better route to avoid the possible congested
route, while the SCA [18] system uses different warning signs to ensure on-road vehicles
can avoid collisions, mainly at the intersections. There are many emergency vehicle priority
systems already implemented in different countries, such as Intelligent Traffic Light System
in Israel [19], the Smart Traffic Signal System in Singapore [20], the GPS-based emergency
vehicle priority in Chicago, USA, and the Emergency Vehicle priority system in Queensland,
Australia [21].

Qin and Khan [22] proposed a preemption method for EVs that allows the central
traffic controller to set an emergency traffic phase so that the signal phase in front of an EV
turns into a green signal. On the other hand, Huang et al. [23] developed a Petri-net-based
preemption model, which divided the EV travel route into different discrete subsystems.
In this method, the central traffic control system sets priorities for different sections of the
incident place. The higher priority area gets a higher green phase time so EVs can reach
the incident place quicker. Erskine and Elleithy [24] proposed a joint strategy of reducing
the wait time for an EV by choosing the best path selection strategy and minimizing the
negative impact of EV preemption on general traffic. However, this approach shows
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severe negative consequences in the case of large traffic volumes where the spacing of the
intersections is shorter compared to the minimum detection distance. This approach is also
ineffectual when multiple EVs follow each other as the recovery phase is not designed to
explicitly handle the preemption of the 2nd EV. The above-mentioned models also did not
calculate the impact of the preemption policy on adjacent nonemergency vehicles.

To detect the presence of an EV in an intersection, different authors proposed roadside
cameras [25], EV GPS-based location [26], and RFID tags [27]. In [28,29], the authors
proposed using vehicular and wireless sensor networks to determine the location of the
EV. These methods used different localization-based algorithms [30–32] to provide a green
signal ahead of an EV. Although the methods mentioned above were able to reduce the
travel time of an EV to the incident place, they only considered turning only one signal
green ahead of the EV. In contrast, Emergency Vehicle Priority System (EVPS) [33] assigned
different priority levels to different EVs based on the type of incident. In this case, the
optimal number of signals that needed to be turned green was calculated considering the
impact of EV’s travel path on adjacent nonemergency vehicles. Although this approach
achieved improved performance in EV travel time and incident clearance time, this did not
consider the increase in wait time of other nonemergency vehicles.

Amini et al. [34] considered human-driven vehicles along with connected vehicles
(Internet of Vehicle environment) to observe the impact of vehicle speed on different
driving behaviors. They also tested the vehicle speed change caused by different phase
times, the impact of sudden brakes by leading vehicles, and the speed change near an
intersection. The result shows that the change in speed of a leading vehicle has a huge
impact on the following vehicle. In [35], the authors proposed a signal control setting by
providing a split queue to the vehicles in an intersection to minimize the delay in crossing
an intersection. This method needs multiple phases in an intersection to work. However,
no prior works have considered maintaining a better average travel speed of EV while
entering an intersection.

Unmanned Aerial Vehicles (UAVs) or drones have been utilized in many scenarios,
including monitoring public events, rescue tasks, disaster monitoring, and resource dis-
tributions [36]. Important concerns for emergency coordination and crisis management
strategies are effective deployment, instant availability, and reliability [37]. Drones ensure
the efficiency of disaster response and transmission of critical incident reports [38].

UAVs have great potential to enhance emergency response times by coordinating with
traffic controllers and directing emergency vehicles along optimized paths. However, their
use comes with several constraints. The battery life of UAVs is a significant concern; most
commercial drones can only remain airborne for around 20–40 min. This time can also
vary depending on the size and weight of the attached equipment (e.g., camera, lights)
and weather conditions. These battery life issues significantly impact their operation range
and duration, particularly in larger cities or during extended emergencies. UAVs face
difficulties operating effectively in adverse weather conditions, such as high winds, heavy
rain, snow, and foggy visibility. Communication latency, or delays in data transmission
between UAVs and control centers, can compromise the drones’ efficacy in real-time traffic
management. For UAV-guided traffic management to be effective, it must be integrated
with other traffic and emergency service systems. Not all arterial roads may be covered by
UAV-assisted emergency vehicle support systems.

Existing visual roadside units such as speed cameras, red light cameras, and road safety
cameras used in existing incident management systems (IMSs) will continue supporting
the IMSs [14,33,39,40] when UAV support isn’t available. These RSUs also work as early
warning systems by detecting and reporting accidents or other incidents in real-time. This
assists in quicker emergency response and more efficient traffic management.

Location awareness is another important feature in responding to emergency incidents.
Real-time incident monitoring using a drone (UAV) incorporating sensors’ RF signals, ultra-
sound, and GPS tracking is used to identify obstacles in [41]. An Intelligent Video Sensor (IVS)
integrates image analysis with video sensing and transmission capabilities. It works in [42],
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suggesting using such embedded systems to collect streaming video, calculate data associated
with high-level traffic parameters, and transfer the live video feed and computed traffic data
to a base station. Traffic parameters calculated in this work include vehicle flow, average
vehicle speed, obstacle detection, and deadlock. Li [43] considered that UAVs can be equipped
with two sets of LiDAR where each set can measure the speed of vehicles in one lane, and
hence both sets can be used together to measure the speed in multiple lanes. The accuracy of
this method was reported as 94–100%. Apeltauer et al. [44] considered that video recordings
from intersections can be captured using cameras attached to UAVs, and the recording can be
analyzed using classifiers. Similar video analysis-based traffic monitoring is also proposed
in [45]. Ke et al. [46] proposed a real-time traffic flow parameter estimation from aerial videos
using a four-step process with Kanade–Lucas–Tomasi (KLT) tracker, k-means clustering, con-
nected graphs, and traffic flow theory. UAVs have also been used for pedestrian movement
monitoring [47]. Recently, Oubbati et al. [48] proposed an exciting work where drones were
used to monitor urban areas for incident detection and traffic parameters estimation to help
plan a route for emergency vehicles. However, none of the previous works used drones as lead
vehicles for EVs to minimize their speed loss while crossing an intersection and to provide
better safety for other road users by alerting them about upcoming EVs. Table 1 highlights
specifications of a few commercially available common drones, suggesting that most of them
offer a communication range of more than 4 km, a flying time of at least 20 min, and are
available within an acceptable price, and hence are suitable to assist in incident management.

Table 1. Drone specification.

Name of Drone Flying Time
Communication

Frequency
(GHz)

Communication
Range

Max Flying
Speed Price (USD)

[49] 30 min
(at 20 kph,
no wind)

2.400–2.483
5.725–5.825

Up to 7 km 72 km/h 1599

[50]
31 min

(at 25 kph,
no wind)

2.400–2.483
5.725–5.850

Up to 8 km 72 km/h 1599

[51]
27 min

(hovering at
sea level,
no wind)

2.400–2.483
5.725–5.850

Up to 7 km 94 km/h 3299

[52] 40 min 2.400–2.4835 Up to 9 km 72 km/h 1495

[53] 23 min 2.4–2.483
5.18–5.24
5.725-5.85

Up to 3.5 km 58 km/h 999

[54] 25 min 2.4–2.48
5.2–5.8

Up to 800 m 29 km/h 599

[55] 25 min 2.4–2.48
5.2–5.8

Up to 4 km 55 km/h 999

[56] 35 min 5.725–5.850 Up to 8 km 64 km/h 499

[57] 17 min 2.405–2.475 Up to 800 m 65 km/h 987

[58] 25 min 2.402–2.476
5.727–5.8

Up to 2 km 57 km/h 799

To the best of our knowledge, no prior work in the literature used UAVs to guide
the emergency vehicle to the incident location. A few works [43,46,48] in the literature
employed UAVs to estimate traffic parameters, but they did not use UAV assistance to guide
emergency vehicles. The goal of the above-mentioned works is to accurately estimate traffic
parameters, which is significantly different from our work. Therefore, no direct comparison
is possible. However, there are some existing works that focus on assisting emergency
vehicles to reach the incident location by using manual intervention on the traffic light
system (e.g., changing the green signal phase). We have compared our work with existing
incident management systems. In summary, although a few existing works have considered
emergency vehicle priority and change of traffic signals ahead of an emergency vehicle
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to ensure their early arrival, they lack consideration of other important aspects, such as
appropriate consideration of disruption faced by other nonemergency vehicles in adjacent
areas of the incident place, the dynamic estimation and calculation of traffic parameters,
and use of UAVs to ensure better road safety for all road users. Our proposed approach
addresses these issues and proposes a UAV-assisted incident management system.

3. Proposed Model
3.1. Problem Scenario

The problem scenario is depicted in Figure 1. The figure shows the current position
of the EV that is traveling toward the place of the incident. The task of selecting the best
travel path for an EV involves several challenges including:

• Optimising the travel time of the EV
• Reducing incident clearance time
• Minimising disruption faced by other road users.

Drones assisting 

emergency vehicle

Figure 1. Drone-assisted incident management system. Here, drones will work as the lead vehicles
to guide the EVs to the incident place while alerting other road users.

Figure 1 shows that there are multiple paths available to the place of the incident.
However, the path with the shortest distance (Route B) may not be the best path, as it may
have higher congestion, or selecting that path may cause a higher disruption for other road
users. It is possible to make all the signals green in front of the EV when it starts its journey.
Although this may result in faster arrival of EVs, it will also create more congestion for
other road users as other nonemergency vehicles traveling in other directions will be stuck
in red signals. The problem is further complicated by the dynamic nature of traffic flow
and the sudden movement of vehicles. For example, if we consider that a static travel path
is selected at the beginning at t0 for EVs, this path may not be the best route after five-time
units at t5 as the traffic condition in that travel path may change completely due to arrival
or departure of vehicles. Another problem is while crossing an intersection, EVs need to
slow down and reduce their speed to ensure road safety for other road users, and such
stop-start movement results in higher travel time for them. These issues are addressed in
our proposed model and discussed below.

3.2. Proposed Approach

The proposed approach considers that when the emergency controller receives a noti-
fication about an incident, it determines the emergency vehicle dispatch location based on
the type of incident (e.g., highly critical, medium, noncritical) and the type of the emergency
vehicle (e.g., police car, ambulance, fire service) needs to reach the incident location first.

The emergency management system creates various priority codes (for instance, Code
A, Code B, Code C) for different incident types. In a Code A scenario, an ambulance is
allocated the highest priority (Priority 1), while fire services and police vehicles follow
with Priority 2 and Priority 3, in that order. This arrangement is based on the need for an
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ambulance to be the first respondent at the scene for immediate patient care, followed by
the police for incident evaluation. If necessary, fire services are dispatched to deal with
potential hazards, such as an oil spill or a fire outbreak. Under Code B circumstances, a
fire service vehicle gets top priority (Priority 1) since medical personnel can only assist
the injured if the fire is dealt with first. This situation could occur when a vehicle is under
fire and occupants are trapped within. For Code C incidents, a police vehicle is given the
topmost priority (Priority 1), while the ambulance and fire service vehicles are assigned
Priority 2 and Priority 3, respectively. This prioritization is typically for situations that
require crowd management, like altercations between groups where a police presence
is needed first to disperse the crowd, paving the way for the ambulance to reach the
scene. After the emergency vehicle dispatch point and incident place are determined,
the emergency control room and emergency vehicle determine the initial route using the
emergency vehicle’s GPS [59]. Please note that the above steps are already used in the
existing literature [6] and the proposed approach uses the same method. The contribution
of the proposed model starts from here and is highlighted in Figure 2. Any new incident
in the path of the EV, change of incident (e.g., caught fire when there was no fire before
the ambulance started its journey), and any other EV dispatch point is determined by the
emergency controller. After an initial travel path for an EV is selected, this information is
sent to the central traffic controller, who sends the information to the roadside infrastructure
along the travel path and to the assistive drones with a permit to fly permission within the
emergency vehicle route.
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Figure 2. Workflow of UAV-assisted adaptive route selection strategy.
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To ensure the early arrival of an EV, traffic signals along the travel path need to be
turned green. A naive approach, in this case, is to turn all the signals green along the
travel path of an EV as soon as it starts its journey. Please note that in case of a severe
incident and a life-threatening situation this naive approach is used and EVs are provided
with the highest levels of priority without any other consideration. However, in other
noncritical situations, although this approach will ensure the quicker arrival of an EV, it will
also increase traffic congestion for other road users. Therefore, in our proposed approach
we optimally determine the number of signals to turn green for the minimum amount of
time considering shorter travel time for an EV and reducing the congestion faced by other
nonemergency vehicles in adjacent areas.

Algorithm 1 outlines the steps followed to determine the number of interruptions (signals
need to be turned green) to find of best clearance time. The clearance time here includes the
EV travel time to the incident location plus the time needed by other vehicles to clear the cell.
In the context of traffic management and transportation research, a “Cell” refers to a distinct
section or segment of a road that possesses a single entry point and a single exit point. Roads
are divided into cells, where each cell represents a road segment with a designated vehicle
entry point (referred to as the “source”) and an exit point (referred to as the “sink”), and there
are no additional entry or exit points within the confines of that particular cell. Researchers
have employed both fixed cell sizes [60] and variable cell sizes [61] in traffic queuing models.
In our proposed model, we adopt the concept of variable cells in traffic modeling, which
entails defining the road segment between two intersections as a cell (Figure 3).

Figure 3. Cell of road with source and sink.

The following steps are used to calculate the number of signals that need to be turned
green along the EV travel path:

• Determine EV travel time for each cell (1 to n).
• Calculate the EV travel time by making multiple signals green (2 to n− 1)
• Calculate the number of vehicles in the adjacent cells if different signals are turned

green (the number may increase since they have to give way to the EV).
• Calculate the change of speed of other vehicles.
• Find the optimal number of signals that need to be turned green.
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Algorithm 1 Selecting optimal number of signals to turn green.
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Algorithm 1 Selecting optimal number of signals to turn green.

Input: route, adj (route to consider, no. of adjacent cells to consider)
Output: bestm (no. of signals to turn green)

1: best_clearance_time← ∞ // initialise to infinity
2: bestm ← ∅ // initialise to null

3: for m← 1 to n− 1 do
4: EVt ← 0 // initialise to zero
5: for each cell i in route do
6: tt ← CellClearanceTime(i)
7: EVt ← EVt + ti
8: end for

9: ADt ← 0 // initialise to zero
10: for each cell i in route do
11: for a← 1 to adj do
12: Lai ← ath cell to the left of i
13: Rai ← ath cell to the right of i
14: tl ← CellClearanceTime(Lai )
15: tr ← CellClearanceTime(Rai )
16: ADt ← ADt + tl + tr
17: end for
18: end for
19: clearancem = EVt + ADt
20: if clearancem < best_clearance_time then
21: best_clearance_time← clearancem
22: bestm ← m
23: end if
24: end for
25: return bestm

26: function CELLCLEARANCETIME(cellid)
27: ni ← no. of vehicles in cellid
28: vi ← avg. speed for cellid
29: Si ← space headway for cellid using eq. ()
30: Ti ← time headway for cellid using eq. ()
31: ti ← Ti × ni // travel time for cellid
32: return ti
33: end function

The central traffic controller monitors the traffic condition along an EV’s travel path
and calculates the cell clearance time in real-time in our proposed model. When an EV
enters a cell, the length of the cell, the number of vehicles in that cell, and their average
speed are detected. The travel time of an EV to cross an entire cell is calculated using time
headway. An EV is considered the last vehicle of a cell; hence, the cell clearance time is the
travel time of an EV for that cell, which is calculated using the following equation [62]:

ti = n̆i × Ti (1)

Here, ti represents the clearance time of cell i, n̆i shows the number of vehicles in i,
and Ti shows the average time headway for i.

The average time headway Ti can be calculated as [62]:

Ti =
Si
ϑi

(2)
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where Si and ϑi are the average space headway and the average speed of the vehicles
associated with signal i, respectively.

Space headway (S) [62] can be calculated by using the following equation:

Si =
li
n̆i

(3)

where li is the length of the cells associated with signal i and n̆i is the number of cars in
those cells.

The average vehicle speed in cell i can be calculated by [63]:

ϑâi =
∑n̆âi

âi=1 κâi

n̆âi

(4)

where κâ is the speed of âth vehicle determined from the relevant speed sensors. If there is
no speed sensor installed, ϑâ also can be determined by using the following equation [63]:

ϑâi =
qi
ρi

(5)

where qi and ρi represent the flow rate and density associated with ith cell, respectively.
Density refers to the number of vehicles per unit length of the road. For cell i, the density
ρi can be represented as [63]:

ρi =
n̆i
li

(6)

where n̆i is the number of vehicles that are occupied in length li of ith cell, normally, density
is expressed as vehicles per kilometer.

The proposed model calculates the minimum duration a signal needs to be turned
green for each EV to cross a cell including the intersection. In this case, a different travel
time for an EV to travel from Cell 1 (i.e., dispatch point) to Cell n (i.e., incident location)
with a different number of signals being turned green is assessed, where n is the number of
cells between EV dispatch point to the incident location. Please note that a higher number
of green signals increases the number of cars waiting in the adjacent areas of EV’s travel
path. Our model calculates the wait time of the vehicles in seven cells including the current
Cell of an EV, three cells to the right, and three cells to the left of an EV’s travel path as the
adjacent areas. To calculate the wait time, we first need to determine when an EV must
cross the intersection of those signals, which will be turned green. The time needed to clear
the first Cell can be calculated considering the signal is turned to green as:

ζ1 = ζs0 + ζc1 + ζγ (7)

where ζs0 is the time taken by an EV to come from the dispatch point to the entry of the first
Cell, ζc1 is the clearance time of cell 1, and ζγ is the time to clear the intersection. Afterward,
the total wait time based on the different number of signals can be calculated as follows:

ζt = ζ1 +
m

∑
j=2

ζ j, (8)

where ζt is the EV travel time to clear m number of cells plus ζ1, m is the number of signals
that need to be turned green manually (m ranges from 2 to the n− 2).

As alluded before, in contrary to previous works [33], the proposed model considers
the number of additional vehicles added to the queue in adjacent areas of an EV’s travel
path along with its current Cell to calculate the total clearance time. This calculation is
also repeated by considering the EV’s current location in other cells (any of the three right
and left cells). This provides six additional alternative routes for an EV. If any of the
alternate routes are quicker and optimal, the central traffic controller sends the updated
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route information to the EV and the assistive drones. The number of green signals, which
provide less clearance time (EV travel time and the clearance time of observed Cell) is the
optimal number of green signals.

The proposed approach also reduces the travel time of an EV in an intersection using
drones, which work as the lead vehicle of an EV. Drones will fly to the intersection ahead of
an EV to stop any other incoming vehicles and pedestrians. The drones will project the stop
sign as shown in Figure 1 and also send audio-visual alert notifications. Drones will assist to
keep the intersection clear so that EVs can cross the intersection without slowing down too
much to ensure the safety of other road users. Drones will also track the movement of road
users near the intersection and instantly notify an EV if there is any sudden unexpected
movement from other vehicles or pedestrians approaching the intersection. In this case,
drones only need to send a notification if there is sudden movement near the intersection
and there is a need for the EV to drive through the intersection cautiously. Otherwise, the
EV can safely proceed to and pass the intersection without reducing its speed. Traffic flow
and vehicle presence and speed monitoring using UAVs have been extensively studied in
the literature [43,45,46]. Our proposed approach can use any of these techniques for objects’
(vehicles and pedestrians) presence and movement detection.

Although drones help EVs to maintain a continuous speed in the proposed approach,
there might be some vehicles in the lane ahead of an EV to enter the intersection.

The issue of providing a clearway to an EV near the intersection is addressed using
a discrete-time model. This sort of model is used in bilevel optimization trajectory design
problems [64]. In this case, the higher level task will be used to clear the intersection for an EV
and the lower level task will be assigned to reduce the impact on nonemergency vehicles.

4. Performance Evaluation
4.1. Simulation Setup

To assess the performance of the proposed model, we used the microscopic version
of the open-source, multimodal traffic simulation platform named Simulation of Urban
Mobility (SUMO). The Melbourne Central Business District (CBD) map was used in SUMO,
where two different incident places were selected. The first incident place was ten signals
apart (a short-distance incident afterward) from the EV dispatch location. In comparison,
the second incident place was 20 signals apart (termed as a long-distance incident afterward)
from the same. For short-distance incidents, we used the EV departure point from St
Vincent’s Hospital Melbourne, 41 Victoria Parade, Fitzroy VIC 3065, and the incident
location at 64 Smith St, Collingwood VIC 3066. The EV start point for long-distance
incidents is similar to short-distance incidents, but the incident location is Bile repair
station, 111 Wellington St, Collingwood, VIC 3066. We used five different congestion levels
in both scenarios where an occupancy rate of 0% was used to see the travel time in free
flow (no other vehicles except EV). A 100% occupancy rate was used to see the impact
when the full road segment is occupied, while 30%, 50%, and 70% occupancy rates were
used to reflect low, medium, and high congestion, respectively. For low, medium, and high
congestion rates, we used real historical data from VicRoads [9]. To reflect different levels
of congestion, we selected the average hourly traffic flow data for Saturday from 10:00 a.m.
to 11:00 a.m. (low congestion), Monday to Friday from 12:00 p.m. to 01:00 p.m. (medium
congestion), and Monday to Friday from 08:00 a.m. to 09:00 a.m. (high congestion). All data
were taken as the average of three years’ traffic data for those selected days (e.g., Saturday,
Monday–Friday) during the stated time frame.

4.2. Simulation Results

We observed flow rate, speed, EV travel time from the dispatch centre to the incident
place, and the average waiting time of vehicles in each cell. We used two variations of our
proposed model, one with the support of drones (labeled as WD) and the other without
the support (labeled as ND), to assess the impact of drone usage. We ran each simulation
20 times, and the average results obtained from them are presented below.
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Tables 2 and 3 show the impact of drone usage and suggest that making more interven-
tions makes an EV reach the incident place faster. For short-distance and a 30% occupancy
rate, the EV travel time (without the drone support) reduced from 408, 385, 350, 317, and
295 s to 391, 362, 321, 285, and 267 s, respectively, with the usage of leading drones. A
similar pattern can be observed for 50%, 70%, and 100% occupancy rates for both short
and long-distance incidents. A lower travel time for EVs with drone support is achieved
as drones help EVs to cross the intersection without causing any delay and reducing their
speed. The results showed a minimum of 3% lower EV travel time across all cases. Drones
can save up to 5 s of EV travel time in each intersection, which plays an important impact
in clearing the incident quicker.

Our proposed model aims to reduce EV travel time while ensuring adjacent nonemer-
gency vehicles do not wait longer to provide a giveaway to an EV. We achieve a lower EV
travel time by making a dynamic number of interventions (manually turning signals green
in front of an EV). Although making more interventions increases the number of vehicles
in a cell as it increases the wait time; however, it does not increase the total clearance time.
To further explore this issue where total clearance time decreases even when the number
of vehicles increases, we monitored density, flow rate, and speed changes, and the results
obtained for cell 10 with an occupancy rate of 50% are presented below.

Figure 4a shows that density at Cell 10 started increasing from phase 9 when there
was no intervention while the same was observed in phases 12, 15, and 16 for 1, 2, and
3 interventions, respectively.

Figure 4b shows that the flow rate started decreasing mainly from phase 10 with no
intervention and phase 13 when 2 interventions were used. With 2 and 3 interventions, the
flow rate started decreasing from the 15th and 17th phase, respectively.

Figure 4c shows that speed started decreasing in cell n (where the incident happened)
from phase 1 while a similar trend was observed in cells 10, 5, and 1, from phases 5, 11, and
16, respectively. The more vehicles stayed closer to the incident place, the more speed loss
was observed.
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Figure 4. Density, Flow rate, and Speed changes in different cells during the incident with a 50%
occupancy rate. (a) Density at cell 10. (b) Flow rate at Cell 10. (c) Speed change at cell 10.

Table 2. EV Travel time (s) for different occupancy rates with and without drone support for a short
distance.

Intervention (IN)
Occupancy Rate (%)

0 30 50 70 100
ND WD ND WD ND WD ND WD ND WD

0 230 213 408 385 515 478 710 645 2392 2184
1 230 213 385 362 464 432 682 634 3275 3107
2 230 213 350 321 403 357 621 558 3221 3095
3 230 213 317 285 371 339 587 503 3180 2984
4 230 213 295 267 342 323 509 482 2886 2712

ND = No drone support, WD = with drone support.
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Table 3. EV Travel time (s) for different occupancy rates with and without drone support for long distance.

Intervention (IN)
Occupancy Rate (%)

0 30 50 70 100
ND WD ND WD ND WD ND WD ND WD

0 480 462 811 787 981 925 1323 1289 3843 3762
1 480 457 745 721 917 891 1288 1231 3819 3701
2 480 453 727 675 878 851 1216 1192 3902 3684
3 480 448 682 623 829 801 1188 1152 3874 3672
4 480 443 615 578 787 765 1102 1092 3716 3658

ND = No drone support, WD = with drone support.

When an EV reaches the incident place in a shorter time, it brings time headway
down. Therefore, even when the number of vehicles increases, the total time to clear
the observed cells decreases, as shown in Tables 4 and 5. Please note that making more
interventions does not guarantee a minimum clearance time. When the occupancy rate is
too high, making too many signals green will increase the density quickly. For example,
when 2 interventions were made with a 70% occupancy rate for the long-distance incident
with no drone support, the average cell clearance time was 59.35 s, but it went up to 63.75 s
when we made 3 interventions. This happened because when we made 3 interventions,
the density of the adjacent cells of the third signal increased too quickly. For the same
incident place and occupancy rate, the average cell clearance time was reduced up to 56.45
and 61.15 s, respectively. Overall, for both incident places, the average cell clearance time
improvement is around 4.08%. Our simulation also showed that in around 40% cases, our
proposed model achieved quicker EV travel time when an alternate route was selected
instead of the initial travel path selected at the beginning of the journey.

Table 4. Average cell clearance time (s) for short-distance incident (distance = ten signals).

S #1 Interventions
0 1 1 2 2 3 3 4 4 5 5

O (%) ND ND WD ND WD ND WD ND WD ND WD
0 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1
30 29.25 28.6 28.2 26.0 25.1 24.3 23.5 26.1 31.9 35.1 39.36
50 31.15 29.7 28.6 26.4 25.9 31.9 29.6 37.25 34.7 44.2 40.6
70 51.15 48.1 46.75 48.4 44.45 56.85 49.9 61.9 56.05 69.45 62.55
100 130.9 144.85 133.55 179.85 165.6 192.45 178.8 206.4 186.35 229.85 205.6

ND = No drone support, WD = with drone support, O = Occupancy rate.

Table 5. Cell clearance time (s) for long-distance incident (distance = 20 signals).

S #2 Interventions
0 1 1 2 2 3 3 4 4 5 5

O (%) ND ND WD ND WD ND WD ND WD ND WD
0 24 24 24 24 24 24 24 24 24 24 24
30 36.25 34.71 33.6 31.2 29.75 29.90 28.65 36.75 35.2 44.35 42.9
50 43.75 42.1 41.25 38.7 36.75 46.25 44.65 50.7 48.75 62.7 59.75
70 56.15 55.2 53.6 59.35 56.45 63.75 61.15 66.75 65.6 72.6 69.15
100 188.1 217.4 207.65 256.15 240.2 266.15 262.1 275.65 271.2 285.8 281.35

ND = No drone support, WD = with drone support, O = Occupancy rate.

The proposed model calculates the number of signals that need to be turned green
considering a shorter EV travel time and a shorter wait time for surrounding nonemergency
vehicles. However, in case of a severe incident, the central traffic controller may only
consider the faster travel time of an EV and increase or decrease the number of green
signals and finally use the proposed model to calculate the clearance time.

We also compared our proposed model with existing approaches to assess its perfor-
mance. Table 5 shows the superiority of our approach (UAVES) compared to GreenWave [5]
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and EPVS [6]. The EV travel time for short-distance incidents with a 50% occupancy rate
is 362, 335, and 261 s for GreenWave, EPVS, and UAVES, respectively. On the other hand,
the average cell clearance time is 29.25, 24.3, and 23.5 s for GreenWave, EVPS, and UAVES,
respectively. Our model improved the EV travel time and average cell clearance time for
all other occupancy rates for both incident locations. The use of drones in intersections
to provide the EVs with better speed at intersections, selecting an alternate route for EVs
based on the updated traffic congestion, and dynamically adjusting the number of green
signals resulted in better performance for our proposed model (Table 6).

Table 6. Comparison between Green Wave, EVPS, and UAVES.

Occupancy

Green
Wave EVPS UAVES

EV Travel
Time (s)

Avg. Cell
Clearance
Time (s)

EV Travel
Time (s)

Avg. Cell
Clearance
Time (s)

EV Travel
Time (s)

Avg. Cell
Clearance

Time (s)

Short
Distance

30 331 29.25 289 24.3 276 23.5
50 362 31.15 335 29.6 261 25.9
70 573 51.27 512 48.4 487 44.45

Long
Distance

30 806 36.25 675 29.90 635 28.65
50 915 43.75 854 38.7 823 36.75
70 1225 56.15 1146 55.2 1102 53.5

UAVs have great potential to enhance emergency response times by coordinating with
traffic controllers and directing emergency vehicles along optimized paths. However, their
use comes with a few constraints, which are discussed below.

i. Extreme weather conditions: Extreme weather conditions, such as high winds,
heavy rain, snow, and foggy visibility conditions may result in communication
delay in data transmission between UAVs and control centers and thus impacting
its efficacy to provide support. Please note that existing Incident Management
System (IMS) of the Intelligent Traffic System (ITS) already incorporates visual
roadside units (RSUs), such as speed cameras, red light cameras, and road safety
cameras. These RSUs will continue to provide services to EVs if UAVs are unable
to provide satisfactory services. Current weather updates can also be taken into
consideration to decide whether UAV assistance is to be used.

ii. Battery lifetime: The flight time of the UAVs may differ based on different issues
(e.g., the weight of the battery, payload weight, etc.). Existing drone manufacturers
provide expected battery life for their products, which is highlighted in Table 1. In
our work, we consider that existing drones provided by the manufacturer can be
directly integrated into the ITS system without any modifications or the addition
of an extra payload. Newer UAVs such as JOUAV CW series VTOL can last up
to 480 min and can carry up to 20 kg payload. The price of professional VTOL
drones is $3000–300,000 [65]. Depending on the available budget of the transport
authority, specific products can be selected based on their requirements (i.e., average
estimated flight time to reach the incident location).

5. Conclusions

Emergency management systems are one of the most important services provided
by governments around the world to ensure public safety and minimise the loss of lives
and money. A key task of an EMS is to send the EVs to an incident place faster. Existing
literature used priority-based services and changes in traffic signals to ensure faster arrivals
of EVs. However, they fail to consider important aspects, such as disruption faced by other
nonemergency vehicles, traffic condition changes when the EVs are en route, and speed
loss of EVs near the intersections. Our current work addressed these issues and proposed
a UAV-assisted adaptive route selection strategy where real-time traffic data obtained
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from roadside infrastructures and sensors were utilised for a more accurate calculation of
traffic parameters and the travels paths were accordingly adjusted to make an EV reach the
incident place faster while causing minimal impact on other road users. Simulation results
confirmed that our proposed approach outperformed existing methods and achieved a
lower EV arrival time and cell clearance time.

Author Contributions: Conceptualization, A.C., S.K. and M.E.K.; Methodology, A.C., S.K. and
M.E.K.; Software, A.C.; Validation, A.C. and M.E.K.; Formal analysis, A.C., S.K. and M.A.; Investiga-
tion, A.C., S.K., M.E.K., R.N. and M.A.K.; Data curation, A.C.; Writing—original draft, A.C., S.K. and
M.E.K.; Writing—review & editing, S.K., M.E.K., R.N., M.A.K. and M.A.; Visualization, A.C. and R.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [https://vicroadsopendata-vicroadsmaps.opendata.arcgis.com/, accessed on 28 May
2023].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. VAGO. Emergency Service Response Times. 2015. Available online: https://www.audit.vic.gov.au/report/emergency-service-re

sponse-times (accessed on 28 May 2023).
2. Wass, H.S.; Fleming, R.P. NFPA 13. In Sprinkler Hydraulics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 7–8.
3. Sumi, L.; Ranga, V. Intelligent traffic management system for prioritizing emergency vehicles in a smart city. Int. J. Eng. 2018,

31, 278–283.
4. Hannoun, G.J.; Murray-Tuite, P.; Heaslip, K.; Chantem, T. Facilitating emergency response vehicles’ movement through a road

segment in a connected vehicle environment. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3546–3557.
5. Mittal, A.K.; Bhandari, D. A novel approach to implement green wave system and detection of stolen vehicles. In Proceedings of

the 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; pp. 1055–1059.
6. Karmakar, G.; Chowdhury, A.; Kamruzzaman, J.; Gondal, I. A Smart Priority Based Traffic Control System for Emergency

Vehicles. IEEE Sens. J. 2020, 21, 15849–15858.
7. Wu, J.; Kulcsár, B.; Ahn, S.; Qu, X. Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision

making. Transp. Res. Part B Methodol. 2020, 141, 223–239.
8. Eclipse SUMO. Simulation of Urban MObility Available online: https://www.eclipse.org/sumo/ (accessed on 28 May 2023).
9. VicRoads. VicRoads Traffic Data. 2019. Available online: https://discover.data.vic.gov.au/dataset/trafficsignalstrategicmonitor

detectordata (accessed on 28 May 2023).
10. Ahamad, M.A.; Arifin, K.; Abas, A.; Mahfudz, M.; Cyio, M.B.; Khairil, M.; Ali, M.N.; Lampe, I.; Samad, M.A. Systematic literature

review on variables impacting organization’s zero accident vision in occupational safety and health perspectives. Sustainability
2022, 14, 7523.

11. Yannis, G.; Dragomanovits, A.; Laiou, A.; La Torre, F.; Domenichini, L.; Richter, T.; Ruhl, S.; Graham, D.; Karathodorou, N. Road
traffic accident prediction modelling: A literature review. In Proceedings of the Institution of Civil Engineers-Transport; Thomas
Telford Ltd.: London, UK, 2017; Volume 170, pp. 245–254.

12. Cieslik, I.; Kovaceva, J.; Bruyas, M.P.; Large, D.; Kunert, M.; Krebs, S.; Arbitmann, M. Improving the effectiveness of active safety
systems to significantly reduce accidents with vulnerable road users-the Project PROSPECT (Proactive Safety for Pedestrians and
Cyclists). In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV2019), Eindhoven,
The Netherlands, 10–13 June 2019.

13. Mitsakou, C.; Dimitroulopoulou, S.; Heaviside, C.; Katsouyanni, K.; Samoli, E.; Rodopoulou, S.; Costa, C.; Almendra, R.; Santana,
P.; Dell’Olmo, M.M.; et al. Environmental public health risks in European metropolitan areas within the EURO-HEALTHY
project. Sci. Total Environ. 2019, 658, 1630–1639.

14. Karndacharuk, A.; Hassan, A. Traffic incident management: Framework and contemporary practices. In Proceedings of the 39th
Australasian Transport Research Forum (ATRF), Auckland, New Zealand, 27–29 November 2017.

15. Nellore, K.; Hancke, G. A survey on urban traffic management system using wireless sensor networks. Sensors 2016, 16, 157.
16. Händel, P.; Ohlsson, J.; Ohlsson, M.; Skog, I.; Nygren, E. Smartphone-based measurement systems for road vehicle traffic

monitoring and usage-based insurance. IEEE Syst. J. 2013, 8, 1238–1248.
17. Ghazal, B.; ElKhatib, K.; Chahine, K.; Kherfan, M. Smart traffic light control system. In Proceedings of the IEEE 2016 Third

International Conference on Electrical, Electronics, Computer Engineering and Their Applications (EECEA), Beirut, Lebanon,
21–23 April 2016; pp. 140–145.

18. Pattanaik, V.; Singh, M.; Gupta, P.; Singh, S. Smart real-time traffic congestion estimation and clustering technique for urban vehicular
roads. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016, pp. 3420–3423.

https://vicroadsopendata-vicroadsmaps.opendata.arcgis.com/
https://www.audit.vic.gov.au/report/emergency-service-response-times
https://www.audit.vic.gov.au/report/emergency-service-response-times
https://www.eclipse.org/sumo/
https://discover.data.vic.gov.au/dataset/trafficsignalstrategicmonitordetectordata
https://discover.data.vic.gov.au/dataset/trafficsignalstrategicmonitordetectordata


Sensors 2023, 23, 5324 16 of 17

19. Barba, C.T.; Mateos, M.A.; Soto, P.R.; Mezher, A.M.; Igartua, M.A. Smart city for VANETs using warning messages, traffic statistics and
intelligent traffic lights. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 902–907.

20. Elsagheer Mohamed, S.A.; AlShalfan, K.A. Intelligent traffic management system based on the internet of vehicles (IoV). J. Adv.
Transp. 2021, 2021, 1–23.

21. Shaaban, K.; Khan, M.A.; Hamila, R.; Ghanim, M. A strategy for emergency vehicle preemption and route selection Arabian J. Sci.
Eng. 2019, 44, 8905–8913.

22. Qin, X.; Khan, A.M. Control strategies of traffic signal timing transition for emergency vehicle preemption. Transp. Res. Part C
Emerg. Technol. 2012, 25, 1–17.

23. Huang, Y.S.; Weng, Y.S.; Zhou, M. Design of traffic safety control systems for emergency vehicle preemption using timed Petri
nets. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2113–2120.

24. Erskine, S.K.; Elleithy, K.M. Real-Time Detection of DoS Attacks in IEEE 802.11 p Using Fog Computing for a Secure Intelligent
Vehicular Network. Electronics 2019, 8, 776.

25. Hamdi, M.M.; Audah, L.; Rashid, S.A.; Mohammed, A.H.; Alani, S.; Mustafa, A.S. A review of applications, characteristics and
challenges in vehicular ad hoc networks (VANETs). In Proceedings of the IEEE 2020 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–27 June 2020; pp. 1–7.

26. Dumka, A.; Sah, A. Smart ambulance traffic management system (SATMS)—A support for wearable and implantable medical
devices. In Wearable and Implantable Medical Devices; Elsevier: Amsterdam, The Netherlands, 2020; pp. 215–228.

27. Sundar, R.; Hebbar, S.; Golla, V. Implementing intelligent traffic control system for congestion control, ambulance clearance, and
stolen vehicle detection. IEEE Sens. J. 2014, 15, 1109–1113.

28. Silva, B.; Hancke, G.P. Ranging error mitigation for through-the-wall non-line-of-sight conditions. IEEE Trans. Ind. Inform. 2020,
16, 6903–6911.

29. Dasari, R. Multi-Sensor Fusion for Fast and Robust Computer Vision Applications. Ph.D. Thesis, State University of New York,
Buffalo, NY, USA, 2020.

30. Rohani, M.E.A. A new decentralized Bayesian approach for cooperative vehicle localization based on fusion of GPS and VANET
based inter-vehicle distance measurement. IEEE Intell. Transp. Syst. Mag. 2015, 7, 85–95.

31. Wang, H.; Wan, L.; Dong, M.; Ota, K.; Wang, X. Assistant vehicle localization based on three collaborative base stations via
SBL-based robust DOA estimation. IEEE IoT J. 2019, 6, 5766–5777.

32. Nellore, K.; Hancke, G.P. Traffic management for emergency vehicle priority based on visual sensing. Sensors 2016, 16, 1892.
33. Chowdhury, A. Priority based and secured traffic management system for emergency vehicle using IoT. In Proceedings of the

IEEE 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24 September 2016; pp. 1–6.
34. Amini, M.R.; Gong, X.; Feng, Y.; Wang, H.; Kolmanovsky, I.; Sun, J. Sequential optimization of speed, thermal load, and power

split in connected HEVs. In Proceedings of the IEEE 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July
2019; pp. 4614–4620.

35. Xiu, W.; Wang, L. Traffic State Division of Typical Two-Phase Intersection Based on Informational Split Analysis. In Innovative
Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 435–446.

36. Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-enabled intelligent transportation systems for the
smart city: Applications and challenges. IEEE Commun. Mag. 2017, 55, 22–28.

37. Challita, U.; Ferdowsi, A.; Chen, M.; Saad, W. Artificial intelligence for wireless connectivity and security of cellular-connected
UAVs. arXiv 2018, arXiv:1804.05348.

38. Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and
Neutralization Techniques. Ad Hoc Netw. 2020, 111, 102324.

39. Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Saha, T. Detecting Intrusion in the Traffic Signals of an Intelligent Traffic System.
In Proceedings of the International Conference on Information and Communications Security, Lille, France, 29–31 October 2018 ; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 696–707.

40. Chowdhury, A.; Karmakar, G.; Kamruzzaman, J. Trusted Autonomous Vehicle: Measuring Trust using On-Board Unit Data.
In Proceedings of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communica-
tions/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand,
5–8 August 2019; pp. 787–792.

41. Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A review on IoT deep learning UAV systems for
autonomous obstacle detection and collision avoidance. Remote Sens. 2019, 11, 2144.

42. Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german
highways for validation of highly automated driving systems. In Proceedings of the IEEE 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018, pp. 2118–2125.

43. Lee, K.H. Improvement in Target Range Estimation and the Range Resolution Using Drone. Electronics 2020, 9, 1136.
44. Apeltauer, J.; Babinec, A.; Herman, D.; Apeltauer, T. Automatic vehicle trajectory extraction for traffic analysis from aerial video

data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 9.
45. De Bruin, A.; Booysen, T. Drone-based traffic flow estimation and tracking using computer vision: Transportation engineering.

Civ. Eng. 2015, 2015, 48–50.



Sensors 2023, 23, 5324 17 of 17

46. Ke, R.; Li, Z.; Kim, S.; Ash, J.; Cui, Z.; Wang, Y. Real-time bidirectional traffic flow parameter estimation from aerial videos. IEEE
Trans. Intell. Transp. Syst. 2016, 18, 890–901.

47. Park, K.; Ewing, R. The usability of Unmanned Aerial Vehicles (UAVs) for pedestrian observation. J. Plan. Educ. Res. 2018, 42,
206–217

48. Oubbati, O.S.; Lakas, A.; Lorenz, P.; Atiquzzaman, M.; Jamalipour, A. Leveraging communicating UAVs for emergency vehicle
guidance in urban areas. IEEE Trans. Emerg. Top. Comput. 2019, 9, 1070–1082.

49. Phantom 4 PRO. 2021. Available online: https://www.dji.com/au/phantom-4-pro/info#specs (accessed on 28 May 2023).
50. MAVIC 2. 2023. Available online: https://www.dji.com/au/mavic-2/info (accessed on 28 May 2023).
51. INSPIRE. 2023. Available online: www.dji.com/au/inspire-2/info#specs (accessed on 28 May 2023).
52. EVO II. 2023. Available online: auteldrones.com/pages/evo-ii-specification (accessed on 28 May 2023).
53. Skydio 2. 2023. Available online: www.skydio.com/pages/skydio-2 (accessed on 28 May 2023).
54. Typhoon 4K. 2023. Available online: www.yuneec.com/en_GB/camera-drones/typhoon-4k/specs.html (accessed on 28 May 2023).
55. ANAFI. 2023. Available online: www.parrot.com/en/drones/anafi (accessed on 28 May 2023).
56. FIMI X8SE. 2023. Available online: www.fimi.com/fimi-x8-se.html (accessed on 28 May 2023).
57. SwellPro Spry+. 2023. Available online: www.swellpro.com/spry.html#specs (accessed on 28 May 2023).
58. X-Star Premium. 2023. Available online: www.autelrobotics.com/x-Star-premium/ (accessed on 28 May 2023).
59. Hasrouny, H.; Bassil, C.; Samhat, A.E.; Laouiti, A. Security Risk Analysis of a Trust model for Secure Group Leader-Based

communication in VANET. In Vehicular Ad-Hoc Networks for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 71–83.
60. Lo, H.K. A novel traffic signal control formulation. Transp. Res. Part A Policy Pract. 1999, 33, 433–448.
61. Jin, Y.; Yao, Z.; Han, J.; Hu, L.; Jiang, Y. Variable Cell Transmission Model for Mixed Traffic Flow with Connected Automated

Vehicles and Human-Driven Vehicles. J. Adv. Transp. 2022, 2022, 6342857.
62. Hall, F.L. Traffic stream characteristics. In Traffic Flow Theory; US Federal Highway Administration: Washington, DC, USA, 1996;

Volume 36.
63. Mathew, T.V.; Krishna Rao, K. Fundamental Parameters of Traffic Flow; NPTEL: Chennai, India, 2006.
64. Stoilova, K.; Stoilov, T. Bi-level optimization application for urban traffic management. In Proceedings of the IEEE 2020 15th

Conference on Computer Science and Information Systems (FedCSIS), Sofia, Bulgaria, 6–9 September 2020; pp. 327–336.
65. JOUAV VITOL. 2023. Available online: https://www.jouav.com/vtol-drone (accessed on 28 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.dji.com/au/phantom-4-pro/info#specs
https://www.dji.com/au/mavic-2/info
www.dji.com/au/inspire-2/info#specs
auteldrones.com/pages/evo-ii-specification
www.skydio.com/pages/skydio-2
www.yuneec.com/en_GB/camera-drones/typhoon-4k/specs.html
www.parrot.com/en/drones/anafi
www.fimi.com/fimi-x8-se.html
www.swellpro.com/spry.html#specs
www.autelrobotics.com/x-Star-premium/
https://www.jouav.com/vtol-drone

	Introduction
	Background
	Proposed Model
	Problem Scenario
	Proposed Approach

	Performance Evaluation
	Simulation Setup
	Simulation Results

	Conclusions
	References

