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Abstract—This work investigates the effect of double intelligent
reflecting surface (IRS) in improving the spectrum efficient
of multi-user multiple-input multiple-output (MIMO) network
operating in the millimeter wave (mmWave) band. Specifically, we
aim to solve a weighted sum rate maximization problem by jointly
optimizing the digital precoding at the transmitter and the analog
phase shifters at the IRS, subject to the minimum achievable
rate constraint. To facilitate the design of an efficient solution,
we first reformulate the original problem into a tractable one by
exploiting the majorization-minimization (MM) method. Then, a
block coordinate descent (BCD) method is proposed to obtain
a suboptimal solution, where the precoding matrices and the
phase shifters are alternately optimized. Specifically, the digital
precoding matrix design problem is solved by the quadratically
constrained quadratic programming (QCQP), while the analog
phase shift optimization is solved by the Riemannian manifold
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optimization (RMO). The convergence and computational com-
plexity are analyzed. Finally, simulation results are provided to
verify the performance of the proposed design, as well as the
effectiveness of double-IRS in improving the spectral efficiency.

Index Terms—Intelligent reflecting surface, mmWave commu-
nications, hybrid precoding, majorization-minimization, Rieman-
nian manifold optimization.

I. INTRODUCTION

For the past decades, multiple-antenna techniques have
attracted great interest, since they can increase the spectrum
efficient [1]. However, the fully digital beamforming (BF) or
the precoding structure imposes an excessive energy consump-
tion and hardware cost due to the use of various number
of radio frequency (RF) chains as well as the analog-digital
(A/D) converters [2]. To handle this issue, the hybrid A/D BF
or hybrid A/D precoding technique has been regarded as an
efficient approach which requires only a smaller number of
RF chains than the fully digital counterpart [3]. For instance,
in [4] and [5], the majorization-minimization (MM) based
methods were proposed to design the hybrid BF/precoding
in multiple-input single-output (MISO) and multiple-input
multiple-output (MIMO) networks, respectively. Also in [6], a
matrix monotonic optimization-based hybrid precoding design
was developed. Furthermore, an alternating optimization (AO)
approach by exploiting the orthogonal property of the digital
BF was presented in [7]. However, in spite of the fruitful
research in related literatures, the performance of millimeter-
wave (mmWave) communication systems is still sensitive to
blockages which hinders the communication reliability [8]—
[10]. Hence, there is an emerging need for a new technology
to solve these problem.

Recently, a new technique called intelligent reflecting sur-
face (IRS), has inspired great research attention. To be specific,
an IRS comprises an array of reflecting elements, which can
reflect and alter the phase of the electromagnetic (EM) wave
passively. Hence, by smartly tuning the phase shifts with a
programmable controller, the reflected signals can be adjusted
to a desired direction [11]. Moreover, since only reflecting
the received signal without a dedicated RF processing, or re-
transmission, IRS can have higher energy efficiency than active
transmitter (Tx) or relay [12]. With these advantages, IRS has
been treated as a promising way to overcome above-mentioned
issues in mmWave systems. Currently, IRS has been applied
to various practical settings such as the MISO network in [13],
[14], the MIMO network in [15]-[17], the cognitive radio (CR)
network in [18], the physical layer security communication
in [19], [20], the green communication network in [21], and
the two-way communication network in [22], respectively.
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Among relevant works, MM and manifold optimization (MO)
are two promising methods which have been widely used to
address the formulated problem. Interested readers can refer
to Appendix C for more details about MM and MO methods.

The above works commonly assumed that perfect channel
state information (CSI) can be obtained. In fact, it maybe hard
to obtain the perfect CSI, especially for the IRS-related links.
Thus, the robust design has been investigated in IRS-aided
system. For instance, [23] studied the robust transmission
design for an IRS-assisted MISO network, where a constrained
concave-convex procedure (CCCP) algorithm was proposed.
Also, in [24], the authors proposed an energy efficient BF de-
sign for IRS-empowered MISO networks, where a semidefinite
relaxation (SDR)-based robust method was presented. Then, in
[25], the authors studied the robust and secure communications
in IRS-aided MIMO network, where a penalty-based SDR
method was developed. Moreover, [26] studied the robust de-
sign in IRS-assisted CR network, where an AO-based method
was proposed.

Furthermore, to exploit the potential of IRS in mmWave
communication systems, in [27], the authors studied the hybrid
precoding for IRS-enabled mmWave system, where a gradient-
projection approach was presented. Then, in [28], the authors
investigated an IRS-enhanced mmWave non-orthogonal multi-
ple access (NOMA) network, where a MO based method was
developed to design the power allocation, phase shifters, and
the hybrid BE. Also, in [29], the hybrid BF and phase shift
design in mmWave multi-user MISO channel was studied.
In particular, IRS can be seen as an effective method to
achieve hybrid BF/precoding since the analog phase shift can
conduct by the reflection elements at the IRS. Recently, [30]
studied the joint BF and user association optimization for IRS-
assisted mmWave multiuser MISO networks. Besides, [31]
and [32] investigated the joint precoding and phase shifts
design for IRS-assisted mmWave massive MIMO systems. In
fact, as pointed out in [33], IRS-enabled hybrid precoding/BF
architecture is more energy-efficient than the conventional
phased array based hybrid precoding/BF architecture, owning
to the use of the energy-efficient IRS rather than the energy-
hungry phased array at Tx.

The above works mainly studied the single-IRS scenario, to
further enlarge the coverage for wireless communication sys-
tems, especially in high frequency such as mmWave band, on
the other hand, some recent works have studied double-IRS-
aided communications. To be specific, the cascaded passive BF
design in a double-IRS-assisted network was investigated in
[34]. While a routing technique in a multi-hop IRS-enabled
network was proposed in [35]. Then in [36], the authors
proposed a phase shifter method in a double-IRS-enhanced
uplink MIMO network. Also in [37], for a single-user MIMO
downlink network, under the assumption that LoS channel
model for the inner-IRS link, the authors proved that double-
IRS can obtain two times of the capacity scaling order than
that of the single-IRS counterpart, thanks to the cooperative
BF gain originated by the double-reflection link. Then, [38]
studied the secure transmission in double-IRS-empowered
wiretap channel, where a product manifold algorithm was
developed to optimize the secrecy rate. Moreover, in [39], a
MM based approach was proposed to handle the weighted sum
rate (WSR) maximization design in a multi-hop IRS-aided
network. The results in these works suggest the enormous
potential of double-IRS in improving the spectrum efficiency
and expanding the coverage of wireless network.

Motivated by these observation, in this work, we propose
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a new hybrid precoding structure in a multi-user downlink
MIMO network aided by two cascaded IRSs, where the digital
precoding is achieved by Tx and the analog phase shift is
conducted by the IRS. To solve the formulated WSR design
subject to the quality-of-service (QoS) constraints, we turn
the objective function into a quadratic form by utilizing the
MM method, then, a suboptimal block coordinate descent
(BCD) method is developed to obtain the solution. Specifically,
we propose a quadratically constrained quadratic program
(QCQP)-based method to design the digital precoding matrix.
Then, the analog phase shift is solved by a price-based MO
algorithm. Simulation results are provided to validate the
performance of the proposed approach. Our main contributions
are concluded as follows:

1) Due to the sophisticated objective function and coupled
variables, the WSR maximization problem is non-convex.
To handle this issue, we develop an MM-based method
to transform the objective function into an equivalent
tractable quadratic form. Then, a BCD framework is
applied to handle the reformulated problem, where each
subproblem is solved by the corresponding method in an
iterative manner. Comparing with the weighted minimum
mean squared error (MMSE) method, the proposed MM-
based method does not require prior knowledge about the
number of the information streams for each user [42].
Besides, the MM method can tackle the QoS constraints,
e.g., the minimum rate constraints, which is more suitable
for the formulated problem than the weighted MMSE
method.

2) Given the phase shift matrices, the digital precoding
matrix at the Tx is optimized by the QCQP. As for
the optimization of the phase shifters, we firstly propose
an approximation of the non-smooth QoS constraints by
using the log-sum-exp inequality, which is smooth and
differentiable. Then, by including the approximated QoS
constrains into the objective, we transform the phase
shifters optimization problem into a quadratic form objec-
tive with the unit modulus constraint (UMC). Moreover,
we develop a price mechanism-based Riemannian mani-
fold optimization (RMO) algorithm to design the phase
shift matrices, where the price factor can be found the by
the bisection search method.

3) The convergence of the proposed algorithm is guaranteed
by rigorous proof. Besides, the proposed algorithm enjoys
the polynomial time complexity, which is beneficial to
implementation. Finally, simulation results are provided
to validate the performance of the proposed method, as
well as the effectiveness of double-IRS in improving the
spectral efficiency in MIMO network.

The rest of this work is organized as follows. Section
IT describes the system model and formulates the problem.
Section III investigates the joint design. Section IV provides
the simulation results and Section V concludes the work.

Notations: Throughout this work, the upper case boldface
letters and lower case boldface letters denote matrices and
vectors, respectively. Tr (X), In |X], and rank (X) represen-
t the trace, the logarithmic determinant, and the rank of
X, respectively. Besides, X7, X*, X, X1, and vec (X)
denote the transpose, the conjugate, the conjugate trans-
pose, the inverse, and the vectorization of X, respectively.
The block-diagonal matrix with diagonal entries X;,..., Xy
is denoted by BLKDiag (Xy,...,Xy), and is reduced to
Diag (x1,...,2n) when scalar diagonal entries are consid-
ered. [X],  denotes the entry at the p-th row and g-th column
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of X, and [x],, denotes the m-th entry of x, respectively.
diag (X) means a vector consists of the entries on the main
diagonal of X. In addition, I stands for an identity matrix
and X > O indicates that X is positive semi-definite. |-|, |||,
and R {-} denote the modulus, the Frobenius norm, and the
real part of a variable, respectively. Besides, E denotes the
expectation, and x ~ CN (o, X) suggests that x is a circularly
symmetric complex Gaussian random variable with mean o
and covariance 3.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. IRS Model

Firstly, we provide the IRS model. The m-th reflecting
coefficient (RC) is denoted as 6,, = e/%m, with ¢,,, € [0, 27).
Thus, for an IRS with M reflection elements, the RC matrix
is given as ® = Diag (61,...,05). Commonly, there exist
two models to describe the RC.

1) Continuous RC: In this case, the amplitude of the
incident signal is unchanged, e.g., |6,,| = 1. While the phase
can take any value, e.g.,

O € Fi = {00 = €7 6 € [0,2m)} . (1)

2) Discrete RC: In this case, the RC of each reflection
element can only take a value from a discrete set. Let Qg
denote the number of bit resolutions for each IRS element.
Here, we assume that the phase shift values are equally taken
in the region [0, 27), e.g.,

O € Fo 2 {0 |0 = €7 b €S},
Q
where S 2 {0 277(22(97:1)

Q4 — 00, the model in (2) becomes the continuous RC case.

2)

2 } In fact, by letting

52Q¢7"'a

B. System Model

As shown in Fig. 1, we consider a double-IRS-assisted
network which consists of one Tx, two IRSs, and L users.
We assume that Tx and the [-th user, VI € {1,...,L} are
equipped with Ntx and Ny; antennas, respectively, while the
IRSs have M; and M5 reflection elements, respectively. We
denote F; € CMixNrx |, ¢ CMxM1 |, ¢ CM2xNrx,
G, € CNuaxMi and H; € CNuiXMz a5 the Tx-to-IRS1
link, the IRS1-to-IRS2 link, the Tx-to-IRS2 link, the IRS1-
to-I-th user link, and the IRS2-to-I-th user link, respectively.
The Tx-IRS2-IRS1-users link suffers much larger path loss due
to the longer link distance, thus is ignored [36]. Besides, we
assume that the direct link between Tx and users are blocked
by obstacles, and all CSI are perfectly obtained at TX, since we
aim to obtain an upper bound of the rate performance. In fact,
efficient channel estimation methods for double-IRS-assisted
network have been proposed in [40] and [41], with On/Off
reflection and always-On reflection, respectively. Here, we
assume that a hybrid precoding architecture is jointly achieved
by Tx and the IRS, where the baseband signal is fully-digitally
processed by Tx, and the RF signal send by Tx is reflected
by the IRS to obtain analog BF.

Let s; € CNatX1 be the transmit symbols for the [-th
user with N4 ; being the number of information streams for
the [-th user. Then, the transmitted signal by Tx is given as

L
x = Y W;s;, where W; € CNtx*Nat js the dedicated

digitall }ecoding matrix for the [-th user. Here, we assume
that E [s;s{/] =T and E [sysf’| = 0 for any [ # I'.

Hence, the received signal at the [-th user is given as

yi = (Hl(")QFQ@lFl + Gl®1F1 + H192F3) X+ ny, (3)

Authorized licensed use limited to: Middlesex University.

User L

Obstacles
Fig. 1: The double-IRS-assisted mmWave MIMO system.

where ®; € CM1*Mi and @, € CM2*Mz denote the phase
shifters for the two IRSs, respectively, and n; is the noise
vector at the I-th user with n; ~ CN (0,07I), where o} is
the noise power.

The [-th user utilizes the linear decoder matrix V; €
CNaixNu to obtain an estimation §; € CNetX1 eg. § =
V.y;. Then, the information rate of the /-th user is given as

R :m’1+vlﬁlwlwﬁﬁﬁvﬁ<vlclvﬁ)* L@
where H; = H;0,F,0.F; + G;0.F; + H;®,F3 is the
equivalent channel matrix between Tx and the [-th user, and

—_ L —_
Ci=H; Y W;WIH/ + 071 is the interference plus noise
J#l
covariance matrix for the [-th user.
Then, by employing the MMSE decoder, the /-th decoder

matrix is given by!

-1
L

Vi =W/H Y BHW,W/H/ + 1| ,
j=1
By substituting (5) into (4), the achievable information rate
for the [-th user is 3 3
R =W|I+WHBIC/TH,W)|. (6)
The proof of (6) can be found in [42, Appendix A], we omit
the details for brevity.

®)

C. Channel Model

Due to the small wavelength, mmWave has limited ability
to diffract around obstacles. As a result, mmWave channels are
usually characterized by the extended Saleh-Valenzuela model
[81, 91, [31], [32].2 For example, F' is given by

path
r r H
Fi= > aga (V). 5)) ac (4. 5,) .

q=1

(7

n fact, there exist some other decoders for MIMO systems such as the
zero forcing (ZF) decoder, the maximum ratio combining (MRC) decoder, the
vertical bell labs layered space-times (V-BLAST) decoder, and the maximum
likelihood (ML) decoder, etc. According to [1], the MMSE decoder is a kind
of linear decoder, which has lower complexity than the non-linear decoders
such as the ML decoder and the V-BLAST decoder. In addition, when
comparing with other linear decoders, e.g., the ZF decoder and the MRC
decoder, since MMSE takes into consideration both interference and noise,
the MMSE decoder can obtain better performance than the ZF decoder and
the MRC decoder. Thus, to strike a balance between the performance and
implementation complexity, we adapt the MMSE decoder in this work.

2In fact, there exists some other models to describe the mmWave channel
such as the 3rd generation partnership project (3GPP) model [10], [33].
However, the extended Saleh-Valenzuela model is a perfect fit for modeling
the IRS-assisted mmWave channel in our work, especially for high frequency
band such as 28 GHz, which is a typical frequency band for implementing
mmWave communication. In addition, the channels in IRS-assisted network
often have line-of-sight (LoS) and non-line-of-sight (NLoS) components
simultaneously. In the extended Saleh-Valenzuela model, both the LoS and
NLoS component can be modeled precisely setting the related parameters
appropriately. Based on these observations, we adapt the extended Saleh-
Valenzuela model in our work.
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where Npu¢n is the number of physical propagation path-
s in Fy, o4 is the gain of the g¢-th path in F;. Here,
we assume that o, are independently distributed with

CN (0, 5210—0'1”@)), Vg € {1,..., Npasn}, where x =

/M1N1x/Npasn is the normalization factor, and PL (D) is
the path loss that depends on the distance D between the two

entities associated with F; [9]. Besides, the array response
vectors associated with the ¢-th path in F; are respectively
denoted by a, (¢}, 8;) and a, (¥f, 8%), where ¢} (5}) and
1/); (,8;) represent the azimuth and (elevation) angles of arrivals
and departures (AoAs and AoDs) of the path, respectively.

Here, we assume that uniform planar arrays (UPAs) are
employed at all these nodes. Then, the transmit array response
vectors ag (¢}, B5) corresponding to the g-th path in Fy is
given as

ay(Yq, By)

_ 1 [17 i B (msin(wq) sin(B,)+n cos(8,))

~ VNrx

e (W= 1)sin(y) sin(8)+ (1) cos(6,))]

®)

where A is the signal wavelength, d is the distance between
the antennas or IRS elements, 0 < m < W and 0 <n < H
denote the horizontal and vertical antenna element indices of
the antenna plane, respectively. Besides, the whole antenna
array size is Ntx = W H. Other array response vectors can
be similarly defined.

D. Problem Formulation

Here, we maximize the WSR among these users, by jointly
optimizing the digital precoding matrices and the phase shifter-
s, subject to the minimum achievable rate constraints for users.
We mainly tackle the continuous RC design, then extend the
proposed method to the discrete RC case. Thus, our problem
is formulated as:

L
max R (9a)
{W,},,01,0, ; e
L
s.t. ZTr (W,wW/) <P, (9b)
=1
[101],10| = 1] (@3], = 190, 90)
R >T, (9d)

L

where ooy [0 < oy < 1,> w; = 1) is the weight for the [-th
=1

user, P; denotes the maximum transmit power, and I is the

minimum rate threshold for these users, respectively.

III. JOINT TRANSMIT PRECODING AND PHASE SHIFT
DESIGN

In this part, we develop a BCD-based method to obtain a
suboptimal solution of (9). In particular, we decouple (9) into
two subproblems, where each subproblem is solved by one
efficient method.

A. Problem Transformation

Here, we transform the non-convex WSR design to a
solvable problem by utilizing the MM method. Firstly, by
using the determinant identity [T + XY | = [T+ YX|, we have
R =l |I+ HWW/HIC |

Authorized licensed use limited to: Middlesex University.

In fact, we want to obtain a trackable lower bound for
R;. Firstly, we denote W, ®; and ®; as the obtained W,
©; and O; in the previous iteration, respectively, and intro-
duce auxiliary variables H; = H;®;F.0,F; + G;0,F; +

~ - O
H,0,F;, C, = H, Z W]WfHF + O'ZQI.
j#£L

J#
Then, according to [42], a lower bound of R; can be
established as

R > [EB'E[ - Tr (A, (Bi-B/)). 0
where I WHELH
Al _ 1y

B, = [ AW, EW,WHE! §C } ’ (11a)
- A I WHHH

B2 . _ Wity 11b

: [lel HW,W/H/ +C, } (1o

and E = [I 0]", A; is an auxiliary variable associated with

_ ~ _ - -1

By, which is given by A; = B]'E EHB;lE) EfB; .
Thus, by denoting ¢; = 1n)EH]§l_1E‘ + Tr (Alﬁl), we

have R; > ¢; —Tr AlBl . The MM technique makes use of
(10) and iteratively solves the following problem

XL:wlTr (AlBl)

min (12a)
(W, 0.0, &

a.t. (9b), (9¢), (12b)

In ‘EB;lE. Ty (Al (Bl — Bl)) >T. (12¢)

Moreover, according to [42], Al can be decomposed as

_ ALl Al2 XH 3?
A — l l = ~l ~ ~l ~ 13
= RR )= [3 wmig ] 0

where 5(_;, {fl are respectively, given by X, = I+
WHHEC, '"H/W,, and Y, = -WFHIC; "
Thus, the following equation can be obtained
AB, = Alll + 2% {AllQHlWl} +
(14)

L
ol AP+ APH, | Y WW[ ) H

=1
Via the above procedure, we transform (12) into the follow-

ing equivalent problem
L

Z 2@[% {TI‘ (AllQIjIlWl) }
=1

min
{WL}LLzl 761792

y ; (15a)
+> @ Tr <Al221_{l (Z w,wWH ) a7 )
l:1s.t. (9b), (9¢), - (15b)
Tr (A?ﬁl (i w,wWH ) H/ )
o (15¢)

+ 2R {Tr (A[*H,W))} < T+ n [EB'E|

+Tr (AZBZ) — Al = GZAZ .

The main advantages of (15) is that the objective function
is in a quadratic form, which is convex with respect to (w.r.t.)
a given variable when fixing the others. Then, we propose a
BCD method to obtain a suboptimal solution of (15).

B. Digital Precoding Optimization

Firstly, we solve the subproblem w.r.t. {Wl}lel with
fixed ®; and ®,. By denoting w; = vec(W;) and u-
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tilizing the equalities Tr (XY) = vec(X* )Hvec (Y) and
Tr (XFYXZ) = vee(X)" (27 @ Y) vec (X), (15) can be
rewritten as

min Zwl (leVlwl + 2R {VZHWI}) (16a)
{Wl}lL=1 =1
L
s.t. Zlewl <P, (16b)
=1
wi'Viwi + 2R {v{'w;} < -T + In [EB'E|
(16¢)

+Tr (AZBZ) — AN 2AR v,

where V, = I ® (I?IFA?QIZIZ), and v; = vec ((AZHEI)H),
respectively.

Note that (16) is a QCQP problem, which can be efficiently
solved by the optimization toolbox CVX [43].

C. Phase Shifter Optimization

Here, we handle the phase shifter optimization. Since ©;
and ©, is symmetric in H; and Hj, the proposed method
for ®; is suitable for ®,, vice versa. Thus, in the following,
we focus on the design of ®; with given {Wl}le and ©s.

L

Specifically, by denoting E = > WlWlH , and substituting
_ =1
H, =H,6,F,0,F,+G;0,F, +H;0:,F; into the objective
function and neglecting the irrelevant terms, we obtain the
following problem

L

min Z o Tr (A%Q'IIE\IIH)
=1

CF1
L
+) 2wk {Tr (APTW))} (17a)
=1
L
+3 2w {Tr (A%QWEFgfegﬂﬁ)}
=1
st ’[@1}m7m‘:1,Vm, (17b)
Tr (APPETT) + 2R {Tr (A*TW,) }
1 17
+2§R{Tr (A?WEF?@EH{I)} < _tw, 07
where ¢ = (H;0,F; + G;)©,F,, and -, = - +

In ‘EE;IE’ + Tr (Alﬁl) — A} — 02 A?2, respectively.
To solve (17), we introduce the following Lemma.

Lemma 1 [17]: Let C; € C™*™, Cy € C™*™, Then, for
a diagonal matrix E = Diag (eq,...,e,,), and e = diag (E),
the following relationships hold:
Tr (E”C,EC;) =e” (C; ® C)e,
Tr (EC) =17 (E® C]) 1 =e"co,
Tr (ECY) = clfer,
where co = diag (Cz).
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By utilizing Lemma 1, we have

2R {Tr (A°®W,)} = 2R {q] 601}, (18a)
Tr (2R {AJ°H,0,F,0,F EFY O H/ })
— 2% {a},61) ()
Tr (2R {A7°G,©,F,EF{©)H/"})
_op {q3T,191} 7 (18c)
Tr (@fFf@fHﬁA?Hl@2F2®1F15F{1) :

(18d)

+Tr (@{fGﬁAfQGlelFlaF{’) = 0""U,,0,,
Tr (07 FYOIH AP G0, F,EF) = 0{'U,,0:, (18¢)

Tr (F1EFY O G/ APH,0,F,0,) = 0{'U;,0,, (18
where the related parameters are, respectively, 1given by
qi, = diag (F;W,A°H,0,F; + FiW,A*G;), (19)

a2, = ding (F1EFY O Hf APH,0,F ), (19b)
qs, = diag (F@F? ol A%2Gl), (19¢)
Uy, = (FYOIHAPH,0,F, + G'A}*G))

o (FrZFl)” (19d)
U,, = (FYOIHIA?G) o (F,2FY), (19)
Us, = (G A?H,0,F,) o (F,2F7)". (19f)

Based on these equations, we obtain the following problem
w.r.t. 81

min iwl (0{1U191+2%{0{1ql}) (20a)
b=t

st. |[04],,] = 1,Vm, (20b)

01U,0, + 2% {efql} <T.VI,  (20c)

where U; = Uy ; + Uz + Uy, and @ = qj ; + 95, + a3,
respectively.

To handle the QoS constraint (20c), a price mechanism is
introduced to solve (20). Firstly, we need to convexity the non-
smooth constraints (20c) by a smooth approximation using the
log-sum-exp inequality (see e.g., [44]), i.e.,

L

max a7 < 1 In Z e | < max a3+ 1 InL,
vie{l,...,L} ] vie{l1,...,L} i

2D
for z; € R,Vl, and p > 0 is the smoothing parameter. By
applying (21) to (20c), we obtain a smooth constraint as

L
lln Ze“(efmeﬁﬁ{efq’})) <T. (22)
H 1=1
Thus, (20) can be approximated as

L

min 3 @ ((;vfole1 + 2R {0{fql}) (23a)
o=t

st. |61, =1,Ym, (23b)
L

Zelt(9fU101+2%{9¥qz}) < ehlr (23¢)

=1
Then, by introducing a non-negative price p and adding (23c)
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(a) Tangent space and Riemannian gradient.

(b) Vector transport.

Fig. 2: An example of the key steps in manifold optimization.

into (23a), we obtain the following problem

r%ilnﬁ (01,p) = iwl (O{JUlal + 2R {O{JQZ})
1=1

B (24a)
tp (Z eu(GfIUlﬂl—&-Q?R{GfIql}) _ e“fl>
1=1
s.t. [[01],,] = 1,Vm. (24b)

Next, we focus on obtaining the optimal 6; with a giv-
en p. In fact, the objective function (24a) is a quadratic
form, while the main difficulty is the UMC (24b), which
constitutes a Riemannian manifold [48]. In fact, the search
space of (24) is the product of complex manifold M =
{0, € CMx1||[0,],] = ...|[01]M1| =1}, which is a Rie-
mannian manifold of CM1*1, Then, the following three main
steps are needed in each iteration to obtain 6.

Firstly, for any point 61, the tangent space is given by
i\ H
Toi M = {z e CM| [z(og) } —0,Ym € M}, (25)
where z is the tangent vector at 93. The Riemannian gradient

gradgi f at 6’ is the tangent vector which leads to the steepest
decrease of the objective function, and given by

grady; f = Vo [ ~R{Voif o (61) } 001, (6
where the Euclidean gradient Vgi f of 24) 1s
Vi [ = 206 + 297, 27)

with U = Zlel (Wz +p i e“((ei)HUZOHm{(ei)qu}>>Uz,

=1
L i\H i i\H
andq =3, (@m+p3 e ((e1) " vioir2m{(61) qz})) qa,

=1
respectively. The concept of the tangent space and Riemannian
gradient is shown in Fig. 2(a).

Secondly, the conjugate gradient for the Riemannian mani-
fold is updated by _ ‘
| ditt = ~Virr f + tHal, | (28)
where d’ is the search direction at 03“, and 75”1+1 is the Polak-
Ribiere parameter to obtain fast convergence [45], which is
given by
R{VELS (Vo1 f = Vo f)}
H .
vgi fvezl f

i = (29)

However, d* and d**! in (28) exist in two different spaces
To; M and Tgis1 M, thus the search direction cannot be
directly obtained. To handle this problem, a transport operation

Authorized licensed use limited to: Middlesex University.

6
(c) Retraction.
which maps d° to 7;§+1M is proposed, and given by
iy A A
Tois0i+t (d') =T M — Toit1 M, 30)

' d - {dio(017) oo,

Similarly to (28), the update method for the search direction
on M is given by _ ‘

ditt = 7grad9§+1f + ti%iHei+1 (dl) .

The vector transport operation is shown in Fig. 2(b).

Thirdly, after obtaining d* at 67, a retraction step is utilized

to make the obtained point remains on the manifold. To be

specific, the retraction operation for d* at 67 is given by

Retg; (t5d") £ Tos M — M :

X [tl?dl] m = [071 + tédl] 7n/| [071 + tédi]'rﬂ"
where ¢ is the Armijo backtracking step size. The retraction
operation is displayed in Fig. 2(c).

With these steps, the RMO algorithm is summarized as
Algorithm 1, where the convergence is proved in [45].
Algorithm 1 The RMO Algorithm for Problem (24).

€1y

(32)

1: Initialize a point 0(1) and set the convergence accuracy ey,
calculate d° = —gradgo f, set i = 0;
2: repeat
a) Choose the Armijo line search step t5;
b) Find 677" using the retract operation: [677'] ==
[6: +5d7],,,/|[6: +1:d],,
c¢) Determine the Riemannian gradient gradeiﬂ f in (206);

b}

d) Calculate transport 7;1 it (dl) according to (30);
e) Calculate the Polak-Ribiere parameter tlﬁ'l in (29);
f) Compute the conjugate direction d’*! by (31);
g i+ i+ 1
3: until convergence, i.e,
4: Output O7F.

gradgzifH < €.

Next, we focus on obtaining the optimal p. Here, we denote
the corresponding optimal 6; with given p as 61 (p). Then,
the optimal p can be found by the following complementary
slackness condition

pXLj (67 () UBy (p) + 2% {07 (p)ar} ~T1) =0. (33)
=1

For (33), there exists the following two cases:
1) When p =0, if
L

> (67 0 U6 ) + 28 {67 (O} ) <0,

=1
(34)
then the optimal p is p = 0.
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2) Otherwise, (33) holds if and only if the following equa-
tion holes

A0S (91{1 (p) Ui (p) + 2?}3{0{{ () qz} - fz) =0.
=1
(35)

As mentioned by [17] and [18], v (p) is monotonically
decreasing w.r.t. p. Thus, the bisection search method can be
used to find the optimal p for the case of p > 0. The total
procedure to find p and 0, are given in Algorithm 2.
Algorithm 2 The Algorithm for Problem (24).

Algorithm 3 The BCD Algorithm for Problem (9).

1: Initialize a feasible point (W{,©9,©9), and set k = 0.
2: repeat
a) Computer WF by (16).
b) Computer ®% and ®% by solving (24).
c) Update H;, A}!, A}, and A?2, respectively.
d k< k+1.
3: until some stopping criterion is satisfied.
4: Output (W}, ©7, ©3).

1: Initialize the iterative number ¢ 0, the maximum
iterative number ¢y, error accuracy €y and €.
2: Do while:

a) Given Wy, calculate the objective value of (24), which
is denote by f (9?));

b) Calculate v (0) by (34);

c¢) If (34) holds true, the optimal value p* = 0, go to Step
i; Otherwise, initialize the lower and upper bounds p;
and py,.

d) while |p; — p,| > €, do

e) Calculate p = ’”JFTP“ and v (p) by (35);

f) If v (p) > 0, p < p; Otherwise, p, < p;

2) end while

h) Set the optimal p =

PLt+Pu
2

i) Obtain BY) by solving (24) using the manifold opti-
mization toolbox [46];
j) Calculate the objective value f (0§t+1)) of (24);

(o) s (o1")]

fsei”)
Otherwise, 0§t+1) — 01”, go to Step a.
1) return the optimal solution 8; = Ogt).

, go to Step i;

k) If t > tnax OF < €p, go to Step |;

It is easily known that the optimization of 65 can be
obtained in a similar way, when fixing the other variables.
At this time, the related parameters are given by

a1, = diag (F2©0,F W APH, + FsWAPH,), (36a)

a1 = diag (F,0,F/ ZFI ]Gl APH, ), (36b)
a5 = diag (F,ZFY O Gl APH)) (36¢)
Uy, = (HAPH) ©

(FgelFlsF{f OFFY + FsEFY )T, .
Uz, = (B APH) © (Fs=F{ O FY )T, (36¢)
Us, = (HAPH) 6 (F2®1F15F§{>T, (36f)

respectively.

In addition, for the discrete RC case, taking 6, for ex-
ample, at the end of Algorithm 2, we project [6:],, into
the discrete set. In particular, we denote the solution of
the two cases as [6:];, and [Ol]ib, respectively. Then, we
map [6,]°, to obtain [6,]0, ie., [0,]0 = %", where
¢* = argmin |[04]; — €’

— 634511 |
1<q<29

D. Convergence and Complexity Analysis

To this end, we finish the joint precoding and phase shifter
design. The BCD algorithm is given in Algorithm 3.

Authorized licensed use limited to: Middlesex University.

Now, we estimate the computational complexity of Algo-
rithm 3. Firstly, for the optimization of {Wl}lel, accordingly
to [16], the complexity of solving problem (16) is given

by O (log, i LN3y ), where €, denotes the accuracy

requirement.
Then, for the price mechanism-based RMO algorithm to
update ©1, the complexity for calculating  (p) is O (M3). To

Pu—pP1l

obtain the optimal p, the number of iterations is log, ( -
P

Therefore, the total complexity is O (log, ”“e—;”’> M?).
Accordingly, the total com<plexity of Algorithm 3 is given by

1
C =0 | max 1 log, > LN3,
€

w (37)
log, ( M7, log, (p“€ pl) M§}> :
Hence, Algorithm 3 enjoys the polynl:)mial time complexity,
which is beneficial to implementation.

In fact, we can use the SDR method to solve problem (20)
and then select the optimal 8, through Gaussian randomization
(GR). However, according to [16], for the SDR-GR method,
the complexity of the SDR algorithm in each iteration is
given by O (\/§L(M1 + )5 My (3MP + 2M? + M1)>
O (BLM{® 4+ 2LM35 + LM?), and the GR is with the
complexity of O (LM7). Thus, the SDR-GR method leads
to higher complexity than the RMO method.

In addition, for the convergence of Algorithm 3, the follow-
ing Theorems hold.

Theorem I: The value sequence R (W}, OF, ©F) of (12)
is non-descending and can converge to a locally optimal value.

Proof: See Appendix A. [ ]

Theorem 2: The converged solution generated by Algorith-

m 3 is a KKT point of (12).
Proof: See Appendix B.

Pu — PL

IV. SIMULATION RESULTS

Here, simulation results are provided to assess the perfor-
mance of the proposed method. The scenario is shown in Fig.
3, where there exist one Tx, two IRSs, and L = 5 users.
A three-dimensional coordinate is considered, where Tx and
the IRSs are located at (0 m,0 m, 10 m), (0 m, 10 m, 10 m),
and (50 m, 10 m, 10 m), respectively. Besides, the users are
located in a circle centered at (50 m, 0 m, 2 m) randomly, with
radius of 5 m.

Unless specified, we assume that the number of information
streams of each user is Ng; = 8, VI, and the weights is @; =
1/L,VI. The numbers of antennas for Tx and users are Npx =
4 x 2 and Ny, = 2 x 2, VI, respectively. As for the two IRSs,
we set My = My = 10 x5 and the number of quantized bits is
Q¢ = 3. The carrier frequency is set as 28 GHz. In addition,
the transmit power for Tx is set as P; = 30 dBm and the
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Fig. 3: The simulation scenario.
noise power is set as o7 = —80 dBm, VI [31], respectively.

Besides, the QoS threshold is set as I' = 1 bit/s/Hz and the
smooth parameter is set as p = 10 [44], respectively.

In addition, we assume that the mmWave channel contains
Npath = 8 propagation paths, and the distance-dependent path
loss PL (D) is modeled as [32]:

PL (D) [dB] = a + 10blog;, (D) + ¢, (38)
where D denotes the link distance and ( ~ N (0, 92). Ac-
cording to the real-world channel measurements for 28 GHz
channels [9], the parameters in (38) are set as a = 61.4, b = 2
and o = 5.8 dB for a LoS path, and a = 72.0, b = 2.92 and
o = 8.7 dB for the NLoS paths, respectively. In addition, the
element spacing are set to be d = \/2.

A. Convergence

Firstly, the convergence behaviour of the inner RMO algo-
rithm are tested. From Fig. 4, we can see that for different
Nrx, My and M, the WSR increases with the iteration
numbers, and gradually converges almost within 30 iterations,
either in continuous or discrete RC case, which demonstrates
the practicality of the RMO method. Moveover, larger Ntx,
M; or M leads to slower converge speed, since more vari-
ables should be optimized.

2

I
©

=
k)

A Np,0=8, M =50, M50, Continuous RC
&Ny =8, M, =40, M =40, Discrete RC
—d—N. x=4 M, =50, M ;=50, Continuous RC
—o— Ny =4, M, =40, M ,=40, Discrete RC

1_:W [

5 10 15 20 25 30
The number of iterations

Fig. 4: The convergence behaviour of the RMO algorithm.

I
N

The weighted sum rate (bit/s/Hz)
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Then, the convergence behaviour of the outer BCD algorith-
m are evaluated in Fig. 5. From Fig. 5, we can find that the
WSR increases with the number of iterations, and gradually
converges almost in 20 iterations for various Ntx, M; and
M>, which confirms the efficiency of the BCD method.

B. Performance Evaluation

Now, we study the impact of the main system parameters on
the WSR. To show the effectiveness of the adopted double-
IRS design, we compare the proposed method with several
benchmarks: 1) random double-IRS design, e.g., select the
phase shift randomly; 2) a single-IRS near the Tx; 3) a single-
IRS near the users; and 4) The SDR-GR method to design the
phase shifters. These approaches are labelled as “Continuous
RC”, “Discrete RC”, “Random IRS”, “Near Tx”, “Near the
users”, and “SDR-GR method”, respectively.
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Fig. 5: The convergence behaviour of the BCD algorithm.

Firstly, we show the WSR versus the transmit power Ps in
Fig. 6, where the number of elements for single-IRS-enabled
schemes is M = M; + My = 100. From this figure, we
can see that whether in continuous RC case or discrete RC
case, the double-IRS design outperforms the other designs,
while the single-IRS near the users case suffers the worst
performance. This is mainly due to the fact that the reflected
signals through the double-reflecting link and single-reflecting
link can be constructively added at users by the proposed
method, thus is beneficial to improve the WSR. In addition, the
performance gap between the continuous RC case or discrete
RC case is relatively small, which suggests the practicability
of the proposed algorithm. Moreover, we can observe from
Fig. 6 that the proposed method obtains better performance
than the SDR-GR method, due to the proposed optimization
framework.

—#— Continuous RC

—O— Distrete RC

—¥%— Random IRS

—O—Near Tx

—E— Near the users
SDR-GR method

25 30 35 40

The transmit power Ps (dBm)
Fig. 6: The WSR versus the transmit power P;.
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o
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o

n
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Then, we show the WSR versus the number of the reflection
elements in Fig. 7. The z-axis in Fig. 7 denotes the total
number of elements for single-IRS case, or the number of
elements for each IRS in double-IRS case. From Fig. 7, we
can see that for all these methods, the WSR increases with
M. The result comes from two folds. Firstly, with a larger M,
the incident power at the IRS is enhanced, thus a higher array
gain can be obtained. Secondly, with larger M, the reflected
signal power received by the users increases, when the RC
are optimized properly. This result suggests that a larger IRS
can improve the rate performance with proper phase shift. In
addition, from Fig. 7, we can see that the scaling order of
double-IRS case is higher than the scaling order of single-
IRS, which indicates the superiority of double-IRS.

Next, in Fig. 8, we show the WSR versus the number of the
reflection elements M7, with fixed total number of elements
M = M; 4+ My = 100. It can be observed in Fig. 8 that the
WSR obtains the maximized value when the two IRSs have
nearly equal number of elements. This is mainly due to that
equally assigned the IRS elements can effectively balance the
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Fig. 7: The WSR versus the number of reflection elements M.

passive BF gains between the two single-reflection links, thus
is beneficial to improve the WSR.
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Fig. 8: The WSR versus the number of reflection elements M;.

Moreover, we show the WSR versus the number of Tx’s
antennas Ntx and the number of user’s antennas Ny in Fig.
9 and Fig. 10, respectively. From these two figures, we can
see that for all these methods, the WSR increases with Ntx
or Ny, since more spatial degrees of freedom are available
for effective precoding and decoding with more antennas.

—#— Continuous RC

—O— Discrete RC
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w

N
w
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) The number of Tx's antennas
Fig. 9: The WSR versus the number of Tx’s antennas.

Then, we show the WSR versus the number of information
streams Ng; in Fig. 11. Here, since the total transmit power
is a fixed value, thus the power of each symbol decreases with
the increase of Ny ;. Therefore, the obtained WSRs of these
methods are almost constants with different Ny ;.

Lastly, in Fig. 12, we show the sum information rate versus
the number of users L. From Fig. 12, one can see that
the rate increases with L, but with a marginal return. This
is mainly due to the fact that with larger L, the mutual
interference between users becomes the main bottleneck of the
performance, hence limiting the rate growth. In this case, some
other techniques are needed to further improve the spectral
efficiency.
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Fig. 10: The WSR versus the number of user’s antennas.
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Fig. 11: The WSR versus the number of information streams.
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Fig. 12: The WSR versus the number of users.

V. CONCLUSION

This paper proposed a new hybrid precoding and phase shift
design in mmWave MIMO network aided by two cascaded
IRSs. Due to the non-convexity of the WSR maximization
objective and the minimum information rate constraint, we
first reformulated it into a tractable one by the MM method,
then, a BCD algorithm was proposed, where the variables were
optimized in an alternating manner. Specifically, the digital
precoding was solved by a QCQP, while the phase shifters
were solved by the price-based RMO method. Simulation
results verified the advantages of the proposed method and the
efficiency of double-IRS in improving the spectral efficiency.

APPENDIX A
PROOF OF THEOREM 1

Here, we denote the objective function of (12) as
R(W;,01,0,). Also, we denote (W}, ®%, ©}) as the ob-
tained solution at the k-th iteration in Step 2 of Algorithm 3.
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Then, the following relation holds:
R(W} 0f ef Al'F A2F A2

k+1 k k 11,k 12,k 22,k
gR(Wl LOF @k AILE AIZF A )
k+1 k+1 k 11,k 12,k 22,k
< R(Wi el e, Al AP A7)
k+1 k+1 k+1 11,k 12,k 22,k
< R(WiTL e eft AlY APE AP

<R (WlkJrl,@lf+17912@4»1’Alll,k+17Al12,k+1’Al22,k+1)7

(39)
where the first to the third inequality is due to Step 2-a and
Step 2-b in Algorithm 3, and the last inequality is due to
Step 2-c in Algorithm 3, respectively. Thus, (39) generates a
monotonically increasing sequence R (W}, ©F, ©%). More-
over, R (Wf,@’f,@’;) is upper-bounded due to (9b), thus
guarantee to converge.

APPENDIX B
PROOF OF THEOREM 2
As mentioned, the sequence R (W}, O, @%) will con-
verges to R (W}, 0©7,03) as k — oco.
Then, when k& — oo, the KKT conditions are given as:

(upI + (uf + ) Vi) wi + (uf + o) v =0,V], (40a)
L

up | > owiwi) =P | =0, (40b)
=1

uj (leVlwl + 2% {Vlel} + f‘l) =0, (40c)

where ug > 0 is the dual variable for (16b) and {u; > O}{;l
are the dual variables for (16c), respectively.
Besides, the Lagrange function of (24) is

L(61,m) = iwz (9¥U191 + 2% {O{IQZ})
=1

L
+p Z eu(B{{Uz91+29?{9fqz}) _ eufz (41)

=1

+ 21: m ([61]7, 161],, — 1),

m=1
where 17 > 0 € RM1*1 ig the dual variable w.r.t. the UMC.
Then, the KKT condition is
[Ue; + 4, + 1071, =0,Ym, (42a)
M (1011, (67, —1) = 0,vm. (42b)
Similarly proof can be obtained for 6. Since {wl*}lL:I, 07
and 03 are the optimal solutions to (16) and (24), respectively,
then the KKT conditions holds. Thus, ({wf}le ,07, 0;) is
a KKT point.

APPENDIX C
INTRODUCTION OF MM AND MO METHODS

The MM procedure consists of two steps. In the first
majorization step, we aim to develop a surrogate function that
locally approximates the objective function with their differ-
ence minimized at the current point. Then, in the minimization
step, we minimize the surrogate function [47]. To be specific,
let us consider the following optimization problem

min f (x)
X

s.t. x e X,

(43a)
(43b)
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where X' is a nonempty closed set and f (-) is a continuous
function. Initialized as xo € X, MM generates a sequence
of feasible points x; by the following induction. At point x;,
in the majorization step we construct a continuous surrogate
function g (-|x;) satisfying the upper bound property that
g(x|x¢) > f(x)4c, Vx € X, where ¢, = g (xq |x¢)—f (%4)-
Thus, the difference of g (-|x:) and f(-) is minimized at
x¢. Then in the minimization step, we update x as X;1; €

arg min g (x |x; ). The procedure is shown in Fig. 13.
XEX

X1z

X X

Fig. 13: The MM procedure.

In the MO approach, as shown in Fig. 2, the main proce-
dure consists of three steps: 1) calculating the gradient; 2)
transporting the vector; and 3) retraction. In fact, the MO
method is similar to the gradient-based optimization in the
Euclidean space. However, we need to determine which kind
of manifolds can be utilized, based on specific constraints. For
the UMC associated with the phase shifts, the commonly used
manifolds are the Riemannian manifold or the complex circle
manifold [48].
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