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Abstract. In this work, a generalised central pattern generator (CPG) model is formulated to 

generate a full range of gait patterns for a hexapod insect. To this end, a recurrent neuronal 

network module, as the building block for rhythmic patterns, is proposed to extend the concept 

of oscillatory building blocks (OBB) for constructing a CPG model. The model is able to make 

transitions between different gait patterns by simply adjusting one model parameter. 

Simulation results are further presented to show the effectiveness and performance of the CPG 

network.  

1. Introduction 

The constituents of the locomotive motor system are traditionally modelled by nonlinear coupled 

oscillators, representing the activation of flexor and extensor muscles driven by, respectively, two 

neurophysiologically simplified motor neurons [1-4]. Different types of oscillators can be chosen and  

organised in a designed coupling mode, and usually with appropriate topological shape to allow 

simulating the locomotion of particular animals [5-9]. All internal parameters and weights of coupled 

synaptic connections of the oscillator network are controlled by the environmental stimulations, 

central  nervous  system instructions  and the network itself.  The nature of the  parallel and distributed  

processing is a  prominent characteristic of this oscillatory circuit that can be canonically described by 

a group of ordinary differential equations (ODE), which may also be an autonomous system. In other 

words, a complex biological pattern generator system such as the central pattern generators (CPG) can 

be  simplified  and implemented in  a phenomenological  model that uses  the concrete  artificial 

neural network dynamics.  

      Following our previous modelling [10-12] and implementation [13] works, a generalised 

locomotion CPG architecture is presented here not only to generate a range of legged gait patterns but 

also to make the transitions between different  patterns. A mathematical formalism, extended from our 

previous works for gait pattern generation, is proposed to incorporate the gait pattern transitions. The 

CPG model uses an oscillatory building block (OBB) [12] as a pair of flexor and extensor 

motoneurons to drive individual joints. The interconnection of OBBs formulates a CPG model capable 
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of generating different gait patterns and their transitions. It is also shown that only one OBB parameter 

is used to control the creation of different gait patterns, and gait pattern transition is therefore 

implemented by changing this OBB parameter. 

     The proposed CPG model provides a reconfigurable architecture to integrate many observed gait 

patterns of any legged animals. The scalability and modularity features make the model particularly 

amenable to hardware or software implementation. A computer simulation shows that the model is 

able to run smoothly for both single pattern operation and pattern transitions provided that its initial 

state is properly configured.     

The rest of the paper is organised as follows. Section 2 derives a mathematical framework for the 

OBB module and the CPG model, which is suitable for the neuronal network design. Some simulation 

results are presented in Section 3 to show its performance. Finally, Section 4 concludes the paper. 

 

2. The model 

In this section a graph dynamics is first introduced, which is followed by the dynamics of a 

generalised OBB module description. 

 

2.1 Graph dynamics 

Consider a neighbourhood-constrained system composed of a set of nodes and a set of shared 

resources represented by a connected graph G=(N,E) where N is the set of nodes, and E, the set of all 

resources between any pair of interconnected nodes. Between any two nodes i  and j , i , j N, there 

can exist ije  resources, 0ije . The reversibility of node i  is ir , i.e., the number of resources that 

shall be reversed by node i  towards each of its coupled nodes, indiscriminately, at the end of its 

operation. A node will operate if and only if it possesses ir  resources from all of its coupled nodes.  

         
             Figure 1: An example of the graph dynamics. Node i and j have reversibility value as  

             3 and 1, respectively. Dark nodes indicate the sinks and white nodes for sources. It is clear that a  

             cycle of  this graph dynamic system has 4 orientations.  Node i becomes a sink exactly once,  and  

             node j becomes a sink 3 times in a cycle. 

 

     The reversibility value for each coupled node needs to be chosen together with a suitable number of 

resources belonging to each node. Two criteria exist for the arrangement of coupling parameters to 

avoid starvation or deadlock of the period operation: (1) 1},max{  jiijji rrerr . (2) 

).,gcd( jijiij rrrrf   where ijf  is the sum of the greatest multiple of ),gcd( ji rr  that does not 

exceed the number of shared resources oriented from in  to jn , and from jn  to in , respectively in the 

initial orientation. The first rule stipulates a range of the number of the resources while the second 

decides the exact number of resources in the range and their directions. Based on the two rules a 

dynamic attractor can be made with flexible control of its active patterns, and be immune of the 

system halt due to deadlock or starvation [14][15]. Figure 1 illustrates the graph dynamics. 
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2.2 Dynamics of an  OBB module 

Inspired by  the Hopfield  Neural network model,  the SMER  graph  dynamics  can be described  by a  

group of difference equations for computer simulation. Consider a pair of coupled neuron i and j  

with ir  and jr  as their reversibility, respectively. This coupled neuron pair is referred to as an OBB. 

The postsynaptic membrane potential of neuron i at t time instant, )(tM i , depends on three factors, 

i.e., the potential at last instant )1( tM i , the impact of its coupled neuron output )1( tv j , and the 

negative feedback of neuron i itself )1( tvi , without considering the external impulses. The 

difference equation in the discrete time domain of this system can be formulated as follows: each 

neuron’s self-feedback strength is ijii ww  , jijj ww  , respectively, and the activation function is 

a sigmoidal Heaviside type. Thus we have, 
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Where W  is the weight matrix. We have the outputs of neurons as,  
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The selection of system parameters, such as the neuron thresholds and synapse weights, are crucial for 

modelling the OBB module. In the model, let )(' rhr  , h is a function of getting highest integer level 

and multiplying

 

by 10, e.g., if 77ir  and 463jr  then 
310)463())463,77(max()(  hhrh . 

The neuron i and j’s thresholds i  and j and their synaptic weights can be designed as ijii fr / , 

ij  1 , 
,/ rrW iij  , 

,/ rrW jji  . The model parameters can be arranged by comparing the two 

nodes’ reversibility. If ji rr  , then ji    and jiij ww   (i.e., asymmetric coupling), that means, a 

node with smaller reversibility, corresponding to a neuron with lower threshold in an OBB module, 

will oscillate at a higher frequency than its companion does. 

     The combination of the duty cycle (the ratio between the interval of the positive output and its 

associated oscillation period), the oscillation frequency and the phase latency of a coupled pair of 

neurons is the key set of joint parameters for modelling a one DOF joint. The oscillatory pattern 

transition, which is another important concept in addition to the pattern generation, can thus be 

understood as a transition from an old to a new set of the joint parameters. It is clear that the duty 

cycle of an extensor motor neuron plays an important role in deciding the locomotion speed of a 

legged animal [16-18]. In this model, the duty cycle of a neuron in a coupled two neuron system is 

dependent on the model parameters. The choice of reversibility of two coupled neurons thus dictates 

the transition between different patterns as it decides the model parameters, and hence the duty cycle. 

Therefore, the design of transition in patterns is simplified to the selection among different 

reversibility values. 

     Suppose both coupled neurons have their reversibility changed in the amount of 
d

ir  and 
d

jr , 

respectively, the model formula (1) in a more general format involving pattern transition is as follows. 
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These equations indicate that, in theory, the pattern transition can be incurred by the reversibility 

change of any one of the two coupled neurons. 

3. Simulation results 

In this section, some case studies of the operations of the OBB modules, in the formats of a single 

OBB or a group of OBBs for the collective behaviours, are demonstrated in terms of the oscillatory 

patterns generation and transition.  

 
3.1 Pattern generation 

Let’s suppose that in a simple experiment a hexapodal insect has only one joint in each leg. The 

coupling relation of 6 legs can be represented by an OBB architecture as shown in Figure 2.  

 

 
 

Figure 2 configuration corresponds to a slow gait pattern of a hexapodal insect. Each flexor is 

regarded as a neuron population composed of several flexor neurons, whose reversibility is always one, 

coupling with the neighbouring flexor neurons or extensor neurons. The model parameters are shown 

in table 1.    

Table 1. OBB module parameters 

    Flexor neuron     Extensor neuron  

Reversibility        1        5 

Weight        0.1       0.5 

Threshold        0       1 

Initial value
a
           0.35       0.65 

a 
Initial membrane potential values can be chosen randomly in the range of [0,1]. 

The oscillatory dynamics of the OBB module can be obtained by using Matlab Simulink, as shown in 

Figure 3. It is noticeable that the coupled neurons start with a self-organised period with the given 

initial membrane potentials. The system then undergoes a stable periodic oscillation. The duty cycle of 
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a neuron is decided by the model parameters, and thus indirectly related with the reversibility of two 

coupled neurons.  

 

  

Figure 3 : The waveforms of a hexapodal insect OBB model in time domain. When the system becomes stable, 

the oscillatory period is 18 seconds and the duty cycle of extensor neurons is 15 seconds.  

  

3.2 Pattern transition 

As described in the coupled node equations in Section 2, a change of the reversibility of any one of 

two coupled neurons results in the change of model parameters, and hence the change of oscillatory 

patterns. Therefore, the pattern transition in the OBB model is straightforward. In Simulink 

simulation, a control signal, corresponding to the control signal in formula 3, is used to switch 

between the previous and current model parameters derived from the previous and current reversibility 

of the coupled neurons. For instance, if we need to change the reversibility of all pairs of coupled 

flexor and extensor neurons from }5,1{  ExtensorFlexor rr  to }3,1{  ExtensorFlexor rr  and then to 

}1,1{  ExtensorFlexor rr , the dynamic model parameters are changed accordingly,  

Table 2. OBB module parameters 

  P1
 a
 Flexor  P1 Extensor     P2 Flexor    P2 Extensor    P3 Flexor   P3 Extensor 

Reversibility         1       5                       1                3                          1                    1 

Weight         0.1       0.5                    0.1             0.3                       0.1                 0.1 

Threshold         0       1                       0                1                          0                    1 

Initial value            0.35       0.65                  -
 b

                 -                           -                    - 
a
 P1, P2 and P3 represent Phase 1, 2, 3, respectively. 

b 
This symbol means do not care.

 

     Like a switch being used to control the pattern change, a transition between previous and current 

patterns can be achieved with some possible intermediate self-organisation period (see Figure 4).   

It is clear that if no transition happens then neuron i will continue its first pattern, which becomes 

high at time instant 39 and lasts for 12 seconds till 51. The duty cycle for neuron i is 0.8 (and for j is 

0.2 accordingly). As pattern transition occurs at 40, ideally the new pattern starts immediately after 

this time instant. Practically a self-organisation stage exists so the new pattern starts at the time instant 

of 51. This is because the membrane potentials of two coupled neurons are not ready (or, not as close 

as possible to their thresholds due to the operation of the old pattern) to make the transition to happen 

immediately. After a short period, though, the model will evolve into the desired new pattern with the 

duty cycle of neuron i as 0.5 (neuron j as 0.5). We argue that this phenomenon is biologically plausible 

as no real creatures will act immediately, i.e., zero delay, upon a command of action.  

27th International Conference on CADCAM, Robotics and Factories of the Future 2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 65 (2014) 012008 doi:10.1088/1757-899X/65/1/012008

5



 

 

 

 

 

 

 
 
Figure 3: A pattern transition process. The transition occurs at the time instant of 160 and 300 seconds. It is 

obvious that there is a self-organised transition period between two patterns after the new pattern becomes stable. 

 

4. Concluding remarks 

An extended OBB model that is able to be configured to build up a tailor designed architecture for 

both model generation and transition has been proposed in this work. The simple OBB module 

constitutes a basis from which a complex, rhythm-producing model can be designed. Due to adoption 

of the OBB module, the whole model can be modular and scalable for design, prototype, manufacture 

and test. It is also an asynchronous and self-clocked system if the reversibility values and initial 

membrane potentials are chosen for individual OBB modules. Because of the simplicity of the system, 

the hardware version of a simple OBB module can be made such that a system with arbitrary 

complexity can be hopefully developed for real-time hardware implementation.  
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