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Abstract We study the following separation problem: given n connected curves and1

two points s and t in the plane, compute the minimum number of curves one needs to2

retain so that any path connecting s to t intersects some of the retained curves. We give3

the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves4

have reasonable computational properties. The algorithm is based on considering the5

intersection graph of the curves, defining an appropriate family of closed walks in the6

intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle7

in the family gives an optimal solution. The 3-path-condition has been used mainly8

in topological graph theory, and thus its use here makes the connection to topology9

clear. We also show that the generalized version, where several input points are to be10

separated, is NP-hard for natural families of curves, like segments in two directions11

or unit circles.12
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1 Introduction14

Let C be a family of n connected curves in the plane, and let s and t be two points15

not incident to any curve of C . In the 2-Point-Separation problem we want to16

compute a subset C ′ ⊆ C of minimum cardinality that separates s from t , i.e., any17

path connecting s to t intersects some curve of C ′. Its generalization where several18

input points are to be separated will be referred to as Points-Separation.19

We will actually solve a natural weighted version of 2-Point-Separation, where20

we have a weight function w assigning weight w(c) ≥ 0 to each curve c ∈ C .21

For any subset C ′ ⊆ C we define its weight w(C ′) as the sum of the weights22

over all curves c ∈ C ′. The task is to find a minimum weight subset C ′ ⊆ C that23

separates two given points s and t . Such weighted scenario is useful, for example,24

when we want to keep separated two points in a polygonal domain using a sub-25

set of disks. In such case, we can assign weight 0 to each edge of the domain and26

weight 1 to the boundary of each disk. See Fig. 1 for an example. Such problem27

naturally arises in so-called barrier problems when wireless sensors are modeled by28

disks [4,11].29

In typical scenarios, C is a family of circles or segments, possibly of unit size. In30

our algorithms we need to assume that some primitive operations involving the input31

curves can be carried out efficiently. Henceforth, we will assume that the following32

primitive operations can be done in constant time:33

1. given two curves c and c′ of C , we can compute a point in c ∩c′ or correctly report34

that c and c′ are disjoint;35

2. given a curve c of C and two points x and y on c, we can compute the number of36

crossings between a path inside c that connects x to y and the segment st ;37

3. given a curve c of C , we can decide whether c separates s and t ;38

4. given two curves c and c′ of C , we can decide whether c and c′ together separate39

s and t .40

s

t

Fig. 1 A possible instance for 2-Point-Separation with weights: a polygonal domain with five rectangular
holes and several disks. The task is to retain the minimum number of disks such that any path connecting s
to t inside the domain intersects some retained disk
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These operations take constant time for semialgebraic curves of constant description41

complexity.42

Our results We provide an algorithm that solves the weighted version of 2-Point-43

Separation in O(nk + n2 log n) time, where k is the number of pairs of curves44

that intersect. The algorithm itself is simple, but its correctness is not obvious.45

We justify its correctness by considering an appropriate set of closed walks in the46

intersection graph of the curves and showing that it satisfies the so-called 3-path-47

condition [16] (see also [13, Chapter 4]). The use of the 3-path-condition for solving48

2-Point-Separation is surprising, but it makes the connection to topology clear.49

In fact, our approach can be interpreted alternatively as searching for a shortest50

non-zero-homologous cycle in R
2\{s, t} (with coefficients in Z2). This approach51

works when the optimal solution is given by at least three curves. We take care52

for the case when the optimal solution is attained by two curves separately by53

brute-force.54

On the negative side, we use a reduction from Planar-3-SAT to show that Points-55

Separation is NP-hard for two natural families of curves:56

– horizontal and vertical segments;57

– unit circles.58

Related work Gibson et al. [7] provide a polynomial-time O(1)-approximation algo-59

rithm for the problem Points-Separation for disks. Their approach is based on60

building a solution by considering several instances of 2-Point-Separation with61

disks, which they solve also approximately. It should be noted that no polynomial-62

time algorithm that gives the exact optimum for 2-Point-Separation was previously63

known, even for unit disks. Using our exact solution to 2-Point-Separation for the64

boundaries of the disks leads to a better approximation factor in the final outcome of65

their algorithm.66

The ideas used here for 2-Point-Separation were already included in the unpub-67

lished manuscript with Alt and Knauer [2] for segments. This work replaces and68

extends that part of the manuscript. In the terminology used in Wireless Sensor Net-69

works, we are computing a minimum-size 1-barrier [4,10]. Researchers have also70

considered the dual problem of computing the so-called resilience: remove the mini-71

mum number of curves such that there exists a path from s to t avoiding the retained72

curves. Computing the resilience was shown to be NP-hard for arbitrary segments by73

Alt et al. [2,3], and for unit segments by Tseng and Kirkpatrick [17,18]. A constant-74

factor approximation algorithm for resilience in families of unit disks was given by75

Bereg and Kirkpatrick [4].76

In an independent and simultaneous work, Penninger and Vigan [15] have shown77

that Points-Separation is NP-hard for the case of unit disks. Their reduction is from78

the problem Planar-Multiterminal-Cut and it is very different from ours. Note79

that in our reduction we need unit circles.80

Roadmap In Sect. 2 we describe the algorithm for 2-Point-Separation. We argue81

its correctness in Sect. 3. In Sect. 4 we show that Points-Separation is NP-hard.82
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2 Algorithm for 2-Point-Separation83

In this section we describe a polynomial-time algorithm for 2-Point-Separation.84

Our time bounds will be expressed as a function of n, the number of curves in C , and85

k, the number of pairs of curves from C with non-empty intersection. We justify the86

correctness of the algorithm in Sect. 3.87

2.1 Preliminaries88

The use of the term curve will be restricted to elements of C . The use of the term path89

(or closed path) will be restricted to parametric paths constructed in our algorithm90

and proofs. The use of the term walk will be restricted to graphs. A cycle is a closed91

walk in a graph without repeated vertices.92

General position We are going to count crossings between portions of the input curves93

and the segment st . To simplify the exposition, we assume general position in the94

following sense: the segment st does not contain any self-intersection of a curve of95

C ; the segment st does not contain any intersection of two curves of C ; the segment96

st is not tangent to any curve of C , thus any intersection of st with any curve of C97

is a crossing; no curve of C contains a non-zero-length portion of st . For reasonable98

curves, these assumptions can be ensured (or avoided, from the point of view of a99

programmer) with a small perturbation of s. Separating s and t or separating a small100

enough perturbation of s and t are equivalent problems.101

Intersection graph The set C of input curves defines the intersection graph G =102

G(C) = (C, {cc′ | c ∩ c′ �= ∅}); see Fig. 2. Note that G has k edges. To each edge103

cc′ of G we attach the weight (abstract length) w(c) + w(c′). Any distance in G will104

refer to these edge weights. For any walk π in G we use lenG(π) for its length, that105

is, the sum of the weights on its edges counted with multiplicity, and C(π) = V (π)106

for the set of curves that appear as vertices in the walk π .107

c1

c2

c3
c4 c5

c7

c6

c8

(a) (b)

c8

c7

c1 c2

c3

c4

c5c6

Fig. 2 a A set of curves C with the fixed intersection points xc,c′ . b The corresponding intersection graph
G
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For each curve r ∈ C , let Tr be a shortest-path tree of G from r ; if there are several,108

we select one of them arbitrarily and maintain this choice throughout the algorithm.109

For any r ∈ C and any edge e ∈ E(G)\E(Tr ), let walk(r, e) denote the closed walk110

obtained by concatenating the edge e with the two paths in Tr from r to the endpoints111

of e. When walk(r, e) is a cycle it is usually called a fundamental cycle with respect112

to Tr .113

Fixing intersections and subpaths For each two distinct curves c and c′ from C that114

intersect, we fix an intersection point and denote it by xc,c′ ; if there are different115

choices, we choose xc,c′ arbitrarily and maintain this choice throughout the algorithm.116

Given a curve c ∈ C and two points x, y on C , let c[x → y] be any path contained in117

c connecting x to y; if there are different choices, we choose c[x → y] arbitrarily.118

π -paths Consider a walk π = c0c1 · · · ct in G. Let γ be a path in R
2. We say that119

γ is a π -path if there are paths γ1, . . . , γt−1 such that: the path γi is contained in120

ci (i = 1, . . . , t − 1), the path γi goes from xci−1,ci to xci ,ci+1 (i = 1, . . . , t − 1),121

and the concatenation of γ1, . . . , γt−1 gives γ . The intuition is that γ starts at xc0,c1 ,122

follows c1 until xc1,c2 , follows c2 until xc2,c3 , and so on, until eventually it arrives to123

xct−1,ct by following ct−1. See Fig. 3a for an example.124

If the walk π = c0c1 · · · ct is closed, which means that ct = c0, then a closed path125

γ is a closed π -path if there are paths γ1, . . . , γt such that: the path γi is contained in126

ci (i = 1, . . . , t), the path γi goes from xci−1,ci to xci ,ci+1 (i = 1, . . . , t and ct+1 = c1),127

and the concatenation of γ1, . . . , γt gives γ . See Fig. 3b–c for an example. If γ is a128

π -path or a closed π -path, then γ ⊂ ⋃
C(π). Even if π is a cycle, which is a closed129

walk without repeated vertices, a closed π -path may have self-intersections.130

There may be different π -paths. Given a walk π = c0c1 · · · ct in G we can construct131

a π -path in linear time by concatenating c j [xc j−1,c j → xc j ,c j+1 ] for j = 1, . . . , t − 1.132

If π is a closed walk with c0 = ct , we can obtain a closed π -path by closing it133

with c0[xct−1,c0 → xc0,c1 ]. When the input family C is a family of pseudosegments,134

there is a unique π -path for each walk π and a unique closed π -path for each closed135

walk π .136

c1

c2

c3
c4 c5

c7

c6

c8

(a) (b) (c)

c1

c2

c3
c4 c5

c7

c6

c8

c1

c2

c3
c4 c5

c7

c6

c8

Fig. 3 Some paths in the example of Fig. 2, using the fixed intersection points marked in Fig. 2. In (a)
there is a π -path for the walk π = c2c1c4c6c7c5c4. In (b) and (c) there are two different closed π -paths
for the closed walk π = c2c1c4c6c7c2
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We will mainly use closed (walk(r, e))-paths, where r is a curve of C and e ∈137

E(G)\E(Tr ). Thus, we introduce the notation γ (r, e) to denote a closed (walk(r, e))-138

path; if there are several such paths, it denotes an arbitrary one.139

Counting crossings Let γ be a path contained in
⋃

C , possibly with self-intersections.140

We define N (γ ) as the number of crossings between st and γ , modulo 2. (Due to the141

general position assumptions, no self-intersections of γ are counted.) If C ′ ⊂ C does142

not separate s and t , then for any closed path γ contained in
⋃

C ′ we have N (γ ) = 0.143

Let π be a walk in G and let γ be some π -path. We define N (π) = N (γ ). Thus,144

N (·) is defined for paths in the plane and for walks in G. A priori, the value N (π)145

depends on the choice of the π -path γ . However, as we will see in Lemma 3, when146

no curve of C alone separates s and t , the value N (π) is independent of the choice of147

γ . Our first step in the algorithm will be to remove from C any curve that separates s148

and t .149

In this paper,150

any arithmetic involving N (·) is done modulo 2.151

Because of our assumptions on general position, for any walk c0c1 · · · ct and any i ,152

1 < i ≤ t , we have153

N (c0c1 · · · ct ) = N (c0c1 · · · ci−1ci ) + N (ci−1ci · · · ct ).154

2.2 The Algorithm155

We now describe the algorithm. Firstly, we select the minimum-weight solution C≤2156

consisting of one or two curves from C . We do this by testing separately each curve157

and each pair of curves from C . Of course, it may be that C≤2 is undefined.158

We remove from C any curve that alone separates s and t . We keep using C for the159

remaining set of curves.160

Next we compute the set161

P = {(r, e) ∈ C × E(G) | e ∈ E(G)\E(Tr ) and N (walk(r, e)) = 1}.162

Then we choose163

(r∗, e∗) ∈ arg min
(r,e)∈P

lenG(walk(r, e)),164

and compute C>2 = C(walk(r∗, e∗)). It may happen that P is empty, which means165

that (r∗, e∗) and C>2 are undefined.166

If both C≤2 and C>2 are defined, we return the lightest of them. If only one among167

C≤2 and C>2 is defined, we return the only one that is defined. If both C≤2 and C>2168

are undefined, we return “C does not separate s and t”. This finishes the description169

of the algorithm. We will refer to this algorithm as Algorithm-2PS.170
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2.3 Time Complexity of the Algorithm171

Algorithm-2PS, as described above, can be implemented in O(n2k + n2 log n) time172

in a straightforward way. Since computing C≤2 can be done trivially in O(n2) time,173

the bottleneck of the computation is to obtain (r∗, e∗). We next describe how to obtain174

a better time bound.175

Lemma 1 Algorithm-2PS can be modified to run in O(nk + n2 log n) time.176

Proof The set C≤2 can be computed in O(n2) time by brute force. We compute (r∗, e∗)177

and C>2 = C(walk(r∗, e∗)) as follows.178

The graph G can be constructed explicitly in O(n2) time by checking each pair of179

curves, whether they cross or not. Recall that G has k edges.180

For any curve r ∈ C , let us define181

Er = {e ∈ E(G) | (r, e) ∈ P}182

= {e ∈ E(G) | e ∈ E(G)\E(Tr ) and N (walk(r, e)) = 1}.183
184

Note that185

P =
⋃

r∈C

{r} × Er ,186

and therefore187

min
(r,e)∈P

lenG(walk(r, e)) = min
r∈C

min
e∈Er

lenG(walk(r, e)).188

Thus, (r∗, e∗) can be computed by finding, for each r ∈ C , the value189

min
e∈Er

lenG(walk(r, e)).190

We shall see that, for each fixed r ∈ C , such value can be computed in O(k + n log n)191

time. It then follows that (r∗, e∗) can be found in |C | × O(k + n log n) = O(nk +192

n2 log n) time.193

For the rest of the proof, let us fix a curve r ∈ C . Computing the shortest-path194

tree Tr takes O(|E(G)| + |V (G)| log |V (G)|) = O(k + n log n) time. The main195

idea now is simple: for each edge cc′ ∈ E(G), we can obtain N (walk(r, cc′)) and196

lenG(walk(r, cc′)) in constant time using information stored at c and c′. (The details197

below become a little cumbersome.)198

For any curve c ∈ C , c �= r , let Tr [c] denote the path in Tr from r to c, let Ar [c]199

be the child of r in Tr [c], and let Nr [c] = N (Tr (c)). See Fig. 4a–b.200

The values Nr [c], c ∈ C , can be computed in O(n) time using a BFS traversal of201

Tr , as follows. We set Nr [r ] = 0 and, for each child c of r , we set Nr [c] = 0. For any202

other curve c, if pr (c) is the parent of c in Tr , we can compute Nr [c] from Nr [pr (c)]203

in O(1) time using that204
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c7
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c8

c1

c2

c3
c4 c5

c7

c6

c8

(a) (b) (c)

Fig. 4 a Tree Tc1 for the scenario of Fig. 2 assuming curves of unit weight. In this case Ac1 [c8] = c2
and Ac1 [c6] = c4. b Possible (Tc1 [c8])-path and (Tc1 [c6])-path used to compute Nc1 [c8] and Nc1 [c6]. c
Possible (c7c8c6c4)-path and (c4c1c2)-path that are used to compute N (walk(c1, c6c8)) in Lemma 1

Nr [c] = Nr [pr (c)] + N (pr (pr (c)) pr (c) c)205

= Nr [pr (c)] + N
(

pr (c)[x pr (pr (c)),pr (c) → x pr (c),c]
)
.206

207

In this last equality we are constructing implicitly a Tr [c]-path from a Tr [pr (c)]-path208

attaching to it a path contained in the curve pr (c).209

We can also compute Ar [c] for all c ∈ C , c �= r , using a BFS traversal of Tr . We set210

Ar [c] = c for each child c of r and, for any other c ∈ C , we set Ar [c] = Ar [pr (c)],211

where pr (c) is again the parent of c in Tr .212

For cc′ ∈ E(G)\E(Tr ), we have that213

N (walk(r, cc′)) = Nr [c] + N
(

pr (c) c c′ pr (c
′)]) + Nr [c′] + N

(
Ar [c′] r Ar [c]]

)
.214

215

See Fig. 4b–c. Therefore, each N (walk(r, cc′)) can be computed in O(1) time from216

the values Nr [c], Nr [c′], Ar [c], Ar [c′]. It follows that Er can be constructed in217

O(|E(G)|) = O(k) time.218

The length of any closed walk walk(r, e) can be computed in O(1) time per pair219

(r, e) in a similar fashion. For each vertex c, we store at c its shortest-path distance220

dG(r, c) from the root r . The length of the closed walk walk(r, cc′) can then be221

recovered using222

lenG(walk(r, cc′)) = dG(r, c) + w(c) + w(c′) + dG(r, c′).223

Equipped with this, we can in O(k) time compute224

min
e∈Er

lenG(walk(r, e)).225


�226

The following special case may be relevant in some applications.227

Lemma 2 If the weights of the curves C are 0 or 1, then Algorithm-2PS can be228

modified to run in O(nk + n2) time.229
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Proof In this case, a shortest path tree Tr can be computed in O(|E(G)| + |V (G)|) =230

O(k + n) time because the edge weights of G are 0, 1, or 2. Using the approach231

described in the proof of Lemma 1 we spend O(k + n) per root r ∈ C , and thus spend232

O(nk + n2) in total. 
�233

3 Correctness of the Algorithm for 2-Point-Separation234

In this section we show the correctness of Algorithm-2PS. Since in Algorithm-2PS235

we test each curve of C whether it separates s and t , and, if it does, then remove it236

from C , and since every such separating curve is tested for optimality,237

we can assume henceforth that no curve in C separates s and t .238

As already mentioned earlier, we first show that this assumption implies that the239

choice of π -paths made to define N (π) is irrelevant.240

Lemma 3 Let π be a walk in G and let γ and γ ′ be two π -paths. Then N (γ ) = N (γ ′).241

Similarly, if π is a closed walk in G and γ and γ ′ are two closed π -paths, then242

N (γ ) = N (γ ′).243

Proof Let c be any curve of C(π). Since c does not separate s and t , any closed244

path contained in c crosses st an even number of times. We can use this to make245

replacements that transform γ into γ ′ while keeping N (γ ) constant, as follows.246

We consider the case where π is a closed walk and γ and γ ′ are closed π -paths.247

The other case is similar.248

Let γ1, . . . , γt be the pieces of γ that certify that γ is a closed π -curve. Similarly, let249

γ ′
1, . . . , γ

′
t be the pieces of γ ′ that certify that γ ′ is a closed π -curve. For i = 1, . . . , t ,250

the paths γi and γ ′
i have the same endpoints (xci−1,ci and xci ,ci+1 , where c0 = ct and251

c1 = ct+1) and are contained in ci . Therefore N (γi ) + N (γ ′
i ) = 0 for i = 1, . . . , t ,252

which implies N (γi ) = N (γ ′
i ). We thus have253

N (γ ) =
t∑

i=1

N (γi ) =
t∑

i=1

N (γ ′
i ) = N (γ ′).254


�255

3.1 3-Path-Condition256

Consider the set of closed walks257

Π(C) = {π | π is a closed walk in G(C); N (π) = 1}.258

We will drop the dependency on C and use Π = Π(C). However, towards the end we259

will use Π(C̃) for some C̃ ⊆ C .260

We next show the following property, known as 3-path-condition. It implies that261

from the 3 “natural” closed walks defined by 3 walks with common endvertices, either262

2 or none belong to Π .263
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c

c

c

c

β0 β1

β2

a0 a1 a2

b2b1b0

γ0 γ1

γ2

(a) (b)

Fig. 5 Notation in the Proof of Lemma 4. (Parts of γ1 and γ2 lie on c ∪ c′. We draw them outside because
of the common part)

Lemma 4 Let α0, α1, α2 be 3 walks in G from c to c′. For i = 0, 1, 2, let πi be the264

closed walk obtained by concatenating αi−1 and the reverse of αi+1, where indices265

are modulo 3. Then N (π1) + N (π2) + N (π3) = 0.266

Proof This is basically a matter of parity. For i = 0, 1, 2, let βi be any αi -path, let267

ai ∈ c be its endpoint on c and let bi ∈ c′ be its endpoint on c′. See Fig. 5a. Note that268

the paths β0, β1, β2 start on c and finish on c′, but they have different endpoints. To269

handle this, for i = 0, 1, 2, we define γi to be the path obtained by the concatenation270

of c[a0 → ai ], βi , and c′[bi → b0]. Now the paths γ0, γ1, γ2 start at a0 and finish at271

b0. See Fig. 5b. For i = 0, 1, 2, let δi be the closed πi -path defined by concatenating272

βi−1, c′[bi−1 → bi+1], the reversal of βi+1, and c[ai+1 → ai−1], where indices are273

taken modulo 3. Because of Lemma 3 we have N (πi ) = N (δi ) for i = 0, 1, 2.274

A simple but tedious calculation shows that, using indices modulo 3,275

N (δi ) = N (γi−1) + N (γi+1).276
277

Indeed, since c does not separate s and t , any closed path contained in c crosses st an278

even number of times and thus279

N (c[a0 → ai+1]) + N (c[ai+1 → ai−1]) + N (c[ai−1 → a0]) = 0.280

Since we use arithmetic modulo 2 and N (c[ai−1 → a0]) = N (c[a0 → ai−1]) we281

obtain282

N (c[ai+1 → ai−1]) = N (c[a0 → ai+1]) + N (c[a0 → ai−1]).283

Similarly, for c′ we have284

N (c′[bi+1 → bi−1]) = N (c′[b0 → bi+1]) + N (c′[b0 → bi−1]).285
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Then we have286

N (δi ) = N (βi−1) + N (c′[bi−1 → bi+1]) + N (βi+1) + N (c[ai+1 → ai−1])287

= N (βi−1) + N (c′[b0 → bi+1]) + N (c′[b0 → bi−1])288

+ N (βi+1) + N (c[a0 → ai+1]) + N (c[a0 → ai−1])289

= N (c[a0 → ai−1]) + N (βi−1) + N (c′[b0 → bi−1])290

+ N (c[a0 → ai+1]) + N (βi+1) + N (c′[b0 → bi+1])291

= N (γi−1) + N (γi+1).292
293

It follows that, using indices modulo 3,294

2∑

i=0

N (πi ) =
2∑

i=0

N (δi ) =
2∑

i=0

(N (γi−1) + N (γi+1)) = 0.295

296


�297

When a family of closed walks satisfies the 3-path-condition, there is a general method298

to find a shortest element in the family. The method is based on considering so-299

called fundamental cycles defined by shortest-path trees, which is precisely what300

Algorithm-2PS is doing specialized for the family Π . See [16] or [13, Chapter4] for301

the original approach, and [6] for a recent extension to weighted, directed graphs.302

Lemma 5 Assume that Π is nonempty. Then the closed walk τ ∗ = walk(r∗, e∗)303

computed by Algorithm-2PS is a cycle and is a shortest closed walk of Π .304

Proof We first show that each shortest closed walk of Π is a cycle. This is a conse-305

quence of Lemma 4. Assume for the sake of a contradiction that some shortest closed306

walk π of Π repeats a vertex c. Then we apply Lemma 4 to two non-trivial subwalks307

π ′ and π ′′ of π from c to c and the trivial walk with only vertex c. (Lemma 4 does308

not require that c �= c′.) It follows that both π ′ and π ′′ are shorter than π and either309

N (π ′) = 1 or N (π ′′) = 1, so π could not be shortest in Π . We conclude that each310

shortest closed walk of Π is a cycle.311

Consider the set of closed walks312

Π ′ = {walk(r, e) | r ∈ C, e ∈ E(G)\E(Tr ), N (walk(r, e)) = 1} ⊆ Π.313

We are going to show that some shortest closed walk of Π is in Π ′.314

Choose a vertex r with the property that some shortest closed walk of Π goes315

through r . Choose a closed walk π of Π through r that is shortest. If Π has several316

different shortest closed walks through r , we take π that minimizes the number of edges317

in E(G)\E(Tr ). Since Tr is a tree, π must contain some edges from E(G)\E(Tr ). We318

are going to show that π has exactly one edge from E(G)\E(Tr ).319

Assume, for the sake of contradiction, that π contains at least two edges e and e′
320

from E(G)\E(Tr ). See Fig. 6 for the following notation. Let c be a vertex between e321

and e′ as we walk from r along π . (If e and e′ have a common vertex, then c must be322
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r

e e

Tr[c]

c
e

c
e

r

π
π

π

Fig. 6 Notation in the Proof of Lemma 5

that common vertex.) The closed walk π defines two walks from r to c, one in each323

orientation. Let π ′ be the closed walk obtained by concatenating one of those walks324

with the reversal of Tr [c] and let π ′′ be the closed walk obtained by concatenating the325

other walk with the reversal of Tr [c]. Applying Lemma 4 to the two walks from r to326

c defined by π and the walk Tr [c] we obtain327

N (π) + N (π ′) + N (π ′′) = 0.328

Since N (π) = 1 because π ∈ Π , then either N (π ′) = 1 or N (π ′′) = 1. Take π̃ to be329

the cycle among π ′ and π ′′ with N (π̃) = 1. Note that π̃ goes through r , is no longer330

than π (we are replacing a part of π with the shortest path Tr [c]), and contains at least331

one edge (e or e′) less from E(G)\E(Tr ). Such closed walk π̃ would contradict the332

choice of π . We conclude that π cannot have two edges from E(G)\E(Tr ), and thus333

it has exactly one edge from E(G)\E(Tr ).334

Since π has a single edge of E(G)\E(Tr ), then π ∈ Π ′. We have seen that finding335

a shortest closed walk in Π amounts to finding a shortest closed walk in Π ′. The336

closed walk walk(r∗, e∗), as computed by Algorithm-2PS, is a shortest element of337

Π ′ by construction, and thus also a shortest element of Π . 
�338

3.2 Feasibility339

The next step in our argument is showing that, when C>2 is defined, it is a feasible340

solution. For this we find a closed, simple path contained in C>2 that separates s and t .341

Lemma 6 Assume that Π is nonempty and let π be any cycle in Π . The set of curves342

C(π) separates s and t.343

Proof Let γ be a closed path contained in C(π) with N (γ ) = 1 and with the minimum344

number of self-intersections. Such a path exists because π ∈ Π and thus some closed345

π -path crosses st an odd number of times.346

We can use an uncrossing argument to show that γ has no self-intersection, as347

follows. See Fig. 7. Assume, for the sake of contradiction, that γ has a self-intersection348
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γ

s t

p
γ1

s t

γ2

Fig. 7 Uncrossing argument in the Proof of Lemma 6

at a point p. We can uncross γ at p to obtain two closed paths γ1 and γ2, each of is349

part of γ and has fewer self-crossings than γ . Note that350

1 = N (γ ) = N (γ1) + N (γ2)351

because the paths γ1 and γ2 form a disjoint partition of γ . Therefore, for i = 1 or352

i = 2, the path γi has N (γi ) odd, is part of γ and thus contained in C(π), and has353

fewer self-crossings than γ . This would contradict the choice of γ . We conclude that354

γ must be simple.355

Since γ is simple and N (γ ) is odd, γ separates s and t . It follows that C(π) separates356

s and t because γ is contained in C(π). 
�357

We next argue that the algorithm computes a feasible solution, when it exists. We358

know that C≥2 = C(walk(r∗, e∗)) separates s and t , when it is defined, but could it359

happen that Π is empty and thus (r∗, e∗) is undefined?360

Lemma 7 If C separates s and t but no two curves in C separate s and t, then Π is361

nonempty.362

Proof Consider the connected component of R
2\⋃

C containing s. Since C separates363

s and t , t is in a different connected component. Let δ be a simple, closed path contained364

in the boundary of the connected component of s in R
2\ ⋃

C such that δ separates s365

and t . We then have N (δ) = 1.366

Let c0, c1, . . . , ct (with ct = c0) be the sequence of input curves that contain δ, in367

the order in which they are visited by δ. We have t ≥ 3 because no two curves separate368

s and t . Note that π = c0c1 · · · ct is a closed walk of G. We will see that π ∈ Π , which369

implies that Π is nonempty. It is not true in general that δ is a closed π -path because370

it does not need to pass through the fixed intersection points xci ,ci+1 . However, we can371

construct a closed π -path δ′′ such that N (δ′′) = N (δ) = 1, as follows.372

Let δi be a path contained in ci such that the concatenation of δ0, δ1, . . . , δt−1 is373

δ. For i = 0, . . . , t − 1, let ai be the start point of δi and let δ′
i be the path obtained374

by the concatenation of ci [xci−1,ci → ai ], δi , and ci+1[ai+1 → xci ,ci+1]. Thus, for375

i = 0, . . . , t − 1, the path δ′
i starts at xci−1,ci , finishes at xci ,ci+1 , and is contained in376

ci ∪ ci+1. Finally, let δ′ be the concatenation of δ′
0, δ

′
1, . . . , δ

′
t−1. Since δ′ is obtained377

from δ by inserting the paths ci [xci−1,ci → ai ] twice, once in each direction, we have378

N (δ′) = N (δ) = 1. See Fig. 8.379
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ci−1 ci+1

ci

xci−1,ci xci,ci+1

δi−1

δi

δi+1

ai−1

ai

ai+1

ai+2

δi

δi

δi−1 δi+1

δi+1δi−1

(a) (b)

Fig. 8 a Notation and b the paths δ′
i , δ

′′
i constructed in the Proof of Lemma 7

For i = 0, . . . , t −1, let δ′′
i = ci [xci−1,ci → xci ,ci+1]. Define δ′′ as the concatenation380

of δ′′
0 , . . . , δ′′

t−1. Note that δ′′ is a π -path by construction. Note that, for i = 0, . . . , t−1,381

the paths δ′
i and δ′′

i are contained in ci ∪ ci+1 and have the same endpoints. See Fig. 8.382

Since ci ∪ ci+1 does not separate s and t , it holds N (δ′
i ) = N (δ′′

i ). It follows that383

N (δ′′) =
∑

i

N (δ′′
i ) =

∑

i

N (δ′
i ) = N (δ′) = 1.384

Since δ′′ is a closed π -path and N (π) = N (δ′′) = 1, we have π ∈ Π . 
�385

3.3 Main Result386

We can now prove that Algorithm-2PS correctly solves the problem 2-Points-387

Separation.388

Theorem 1 The weighted version of 2-Points-Separation can be solved in O(nk +389

n2 log n) time, where n is the number of input curves and k is the number of pairs of390

curves that intersect.391

Proof We use Algorithm-2PS. The running time follows from Lemma 1. If C does392

not separate s and t , then Π is empty because of Lemma 6, both C>2 and C≤2 are393

undefined, and the algorithm will return the correct answer.394

It remains to see the feasibility and optimality of the solution returned by395

Algorithm-2PS when C separates s and t . If there is an optimal solution consisting of396

at most two curves, then it is clear that the algorithm is correct because C>2 is always397

a feasible solution, if defined. Let us consider the case when each optimal solution has398

at least three curves. Let C̃ ⊆ C be one such optimal solution. Because of Lemma 7399

applied to C̃ , we know that Π(C̃) is non-empty. Let τ̃ be a shortest cycle in Π(C̃).400

Since C(τ̃ ) ⊂ C̃ is a feasible solution, because of Lemma 6 applied to Π(C̃), and C̃401

is an optimal solution, it must be C̃ = C(τ̃ ).402

Now note that Π(C̃) ⊆ Π(C) because C̃ ⊆ C , which implies that τ̃ is a cycle of403

Π(C). Since τ ∗ is a shortest cycle in Π(C) due to Lemma 5, we have lenG(τ ∗) ≤404

lenG(τ̃ ). For any cycle π of G we have lenG(π) = 2w(C(π)) because of the choice405

of the edge-weights in G. This implies that406

w(C>2) = 1
2 lenG(τ ∗) ≤ 1

2 lenG(τ̃ ) = w(C(τ̃ )) = w(C̃).407
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It follows that C>2 is a feasible solution whose weight is not larger than w(C̃), and408

therefore C>2 is optimal. 
�409

Corollary 1 The weighted version of 2-Point-Separation in which the curves have410

weights 0 or 1 can be solved in O(n2 +nk) time, where n is the number of input curves411

and k is the number of pairs of curves that intersect.412

Proof In the proof of the previous theorem we use Lemma 2 instead of Lemma 1. 
�413

4 Hardness of Point-Separation414

In this section we show that Points-Separation is NP-hard for two families of curves:415

(1) horizontal and vertical segments, and (2) unit circles. We reduce from Planar-3-416

SAT.417

Consider a 3-CNF formula with a set C of clauses over a set X of boolean variables.418

Its formula graph is defined as the bipartite graph on C ∪X that has an edge connecting419

x ∈ X to C ∈ C if and only if C contains literal x or ¬x . A 3-legged representation of420

the formula graph is a plane, rectilinear drawing where the variables and clauses are421

drawn as axis-aligned rectangles, the variables are aligned horizontally, and the edges422

are vertical segments; see the example in Fig. 9. Planar-3-SAT is the restriction of423

3-SAT to formulae whose formula graph is planar and has a 3-legged representation.424

Planar-3-SAT is NP-complete [12], and it remains so when the 3-legged represen-425

tation is given as part of the input. Several NP-hardness proofs of geometric problems426

have used Planar-3-SAT; see for example [1,5,8,9], and [14].427

The reductions for segments and circles are based on the same ideas. Given an428

instance of Planar-3-SAT consisting of a formula 	, with n variables and m clauses,429

and a 3-legged representation L , we transform it into an instance I (	) of Points-430

Separation by replacing the rectangles in L with gadgets, while maintaining their431

relative position and the planarity of the representation. In our case we do not need a432

gadget to represent the edges because the interaction is straightforward. We describe433

the reduction for segments first, and in more detail, since it is easier to visualize.434

x1 x2 x3 x4 x5

x1 ∨ ¬x2 ∨ x3

¬x1 ∨ x4 ∨ ¬x5

x2 ∨ x3 ∨ ¬x4

¬x2 ∨ x4 ∨ x5

Fig. 9 Rectilinear representation of planar 3-SAT
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Fig. 10 Variable gadget for
Points-Separation with
horizontal/vertical segments.
The segments with arrows may
be extended

T F
sr
i sb

i

Let κ ≤ m be the maximum number of occurrences of a variable in 	 and � ≤ κ435

be the maximum number of edge-segments connecting the top or bottom side of a436

variable-rectangle with a clause-rectangle in L .437

4.1 Horizontal and Vertical Segments438

Variables In I (	), a variable is now represented by three nested frames (drawn in439

black), which define two disjoint, cyclic corridors; see Fig. 10. (From now on, such440

a structure will be simply referred to as frame.) The top and bottom side of a frame441

consist of one horizontal segment each. The left and right side of a frame are composed442

of three vertical segments and one horizontal segment each. We place four points at443

each side in such a way that removing any one of the ten segments of a frame results444

in at least two points being in the same cell. Therefore, all of these segments must be445

present in any feasible solution. This finishes the description of a frame.446

Next, we place � pairs Si , 1 ≤ i ≤ �, of vertical segments such that both segments of447

each pair intersect the top side of every frame. Similarly, we place � pairs Si , � < i ≤ 2�448

that intersect the bottom sides of the frames. Some of the segments in pairs will be449

elongated later to cross a rectangle clause, depending on the actual formula. Each pair450

encodes a truth assignment for the variable and consists of a positive (red) segment sr
i451

which corresponds to TRUE and a negative (blue) one sb
i which corresponds to FALSE.452

The pairs are arranged in such a way that when walking around a corridor positive453

and negative segments alternate. In the upper corridor, we place a point between the454

segments of every pair, while in the inner one we place a point between every two455

consecutive pairs. The latter ensures that at least one segment from each pair is needed456

for separating the points in the inner corridor.457

Clauses A clause in I (	) is represented by one frame (as defined in the paragraph458

above); see Fig. 11. For each variable that occurs in the clause, we elongate one459

segment from the corresponding variable gadget: a positive (red) segment is elongated460

for positive occurrences and a negative (blue) one for negative occurrences. Such461

elongated segments cross the frame for the clause. Finally, we place one point pl at462

the left side of the frame and one point pr at the right side such that at least one463

elongated edge-segment is needed for separating the points.464
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¬x2 ∨ x4 ∨ x5

x2 ∨ x3 ∨ ¬x4

x1 ∨ ¬x2 ∨ x3

¬x1 ∨ x4 ∨ ¬x5pl pr

Fig. 11 The construction with segments for the example of Fig. 9

Correctness Let P and S be the set of all points and segments in I (	) respectively.465

We claim that the points in P can be separated with 30n + 10m + 2� · n segments466

from S if and only if 	 is satisfiable. First, assume that those many segments are467

sufficient for separation. As argued above in the description of a frame, all its ten468

segments are necessary for separation, hence, we have the remaining 2� · n segments469

at our disposal for separating the points in every corridor and points pl and pr in every470

clause gadget. From the discussion on the variable gadget we know that at least one471

segment from every red/blue pair Si must be used for the points in the inner corridor to472

be separated. Since there are 2� such pairs, exactly one segment from every pair must473

be used in every variable gadget. Consider an arbitrary red segment sr
i . If sr

i is included474

in the solution, then in order to separate the point between sr
i and sb

i from the next, in475

clockwise order, point in the corridor, the red segment of the adjacent pair (in the same476

order) must also be chosen. A similar observation holds also for an arbitrary choice of477

a blue segment, where now the choice propagates in counterclockwise order. Hence, in478

a variable gadget, either all red or all blue segments must be chosen. But since points479

pl and pr must be also separated, there must be a choice such that the frame of each480

clause gadget is intersected by at least one red or blue edge-segment. Such a choice481

corresponds to a truth assignment that satisfies 	. The converse is obvious. We have482

proved the following.483

Theorem 2 Points-Separation is NP-hard for families of vertical and horizontal484

segments.485

4.2 Unit Circles486

Variables For unit circles we use the variable gadget displayed in Fig. 12. It contains487

3� − 1 disjoint triples of black circles at the center, which form its backbone. The488
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Fig. 12 Variable gadget for Points-Separation with unit circles (top). The extra points that ensure that
all black circles are part of any feasible solution are shown in the zoomed-in area (bottom)

pl pr

pl

Fig. 13 The clause (x2 ∨x3 ∨¬x4) with unit circles. The corridor is marked by a dashed path. The zoomed-
in area (top left) shows a red circle intersecting a black circle of the corridor (both fat) and disconnecting
the corridor

circles in each triple intersect pairwise and define four lunes. With four extra points489

per triple, as described later on, we can ensure that all these black circles are part of490

any feasible solution. The gadget also contains 6� − 2 pairs of red/blue circles. Each491

pair encodes a truth assignment, where the red circle corresponds to TRUE and the492

blue one to FALSE. In particular, there are two pairs (a top and a bottom one) between493

every two consecutive triples. Each such pair intersects the lunes of both triples such494

that its circles cover the right-side intersection points of (the circles of) one triple495

and the left-side intersection points of the other one. Additionally, there is one pair496

intersecting the leftmost triple of the gadget and one pair intersecting the rightmost497

triple. The red/blue pairs are arranged in such a way that when walking along a lune498

red and blue circles alternate. Next, we place ten points inside the lunes of each triple,499

as shown in Fig. 12. Note that inside every inner-most lune there is a point that is not500

covered by any red or blue circle. This ensures that at least one red or blue circle from501

every pair must be present in any feasible solution. Finally, for every triple, we place502
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Fig. 14 The construction with
unit circles for the example of
Fig. 9

four extra points around the intersection points of its circles, see Fig. 12 (bottom),503

such that all points are covered by both circles of at least one red/blue pair, and such504

that removing any black circle of the triple results in two of these points being in the505

same cell. The latter ensures that all circles of a triple must be present in any feasible506

solution, while the former ensures that all extra points are pairwise separated from all507

other points inside the lunes, and thus, they do not influence the choice of a red or blue508

circle in a feasible solution.509
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Clauses The rectangle representing a clause above the line of variables in the 3-legged510

representation L is deformed into an M-shaped corridor whose boundary contains511

black unit circles attached to variable gadgets, see Fig. 13. For this, we use three512

consecutive red/blue pairs: one black circle intersects both circles of the first pair,513

another one intersects both circles of the third pair, and one more intersects only the514

red or the blue circle of the middle pair. Again, using extra points, i.e., one point per515

cell that is covered only by black circles, we enforce all black circles of a corridor to516

be part of any feasible solution. We also place two points, pl and pr , at the left and517

right end of the corridor. The corridor is traversed by three red or blue circles from the518

variables: each circle comes from some red/blue pair of the gadget of a variable that519

belongs to the clause and splits the corridor into two disconnected parts, thus cutting520

every path between the two points at the ends of the corridor.521

The complete construction with unit circles for the example of Fig. 9 is shown in522

Fig. 14. To avoid a cluttered figure, some of the extra points are not shown.523

Correctness Every variable gadget has 3(3�−1) black circles, 6�−2 red circles, and524

6� − 2 blue circles. It is clear that for each clause gadget the number of horizontally525

placed black circles is some quadratic polynomial on n and � and the number of526

vertically placed black circles is some linear function on m. Let b(I ) be the total527

number of black circles in I (	).528

Constructing a feasible solution to I (	) with b(I )+ (6�−2) ·n circles from a truth529

assignment for 	 is immediate. An argument similar to the one used for segments530

shows that any feasible solution with b(I ) + (6� − 2) · n circles contains all black531

circles and, in each variable gadget, either all red circles or all blue circles. The choice532

of red or blue circles made in the variable gadget corresponds to a truth assignment of533

the variables, and such assignment satisfies the clauses because, in each clause gadget,534

the points pl and pr are separated. Therefore a feasible solution containing exactly535

b(I ) + (6� − 2) · n circles exists if and only if 	 is satisfiable.536

Theorem 3 Points-Separation is NP-hard for families of unit circles.537

5 Open Questions538

The most prominent open questions here are whether Points-Separation admits a539

PTAS and whether it is fixed-parameter tractable with respect to the solution size, i.e.,540

the number of separating curves.541
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