
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The SEArch Smart Environments Architecture

Juan Carlos Augusto1
Department Computer Science

Middlesex University
London, UK

J.Augusto@mdx.ac.uk

Mario Quinde1,2
Department Computer Science

Middlesex University
London, UK

MQ093@live.mdx.ac.uk

José Ginés Giménez Manuel1
Department Computer Science

Middlesex University
London, UK

J.Gimenezmanuel@mdx.ac.uk

S M Murad Ali1
Department Computer Science

Middlesex University
London, UK

SA2305@live.mdx.ac.uk

Chimezie Leonard Oguego1
Department Computer Science

Middlesex University
London, UK

CO527@live.mdx.ac.uk

Carl James-Reynolds1
Department Computer Science

Middlesex University
London, UK

C.James-Reynolds@mdx.ac.uk

Abstract—we report on a Smart Environment Architecture

(SEArch) which has been developed to support innovative
Ambient Assisted Living services. We explain SEArch at a
conceptual level and also how it has been linked to a sensing
environment. We compare SEArch to other similar systems

reported in the technical literature. We illustrate how the
system works using a practical automation scenario.

Keywords—Smart environments, Ambient Assisted Living,

sensing, actuation.

I. INTRODUCTION

Sensing technology has become one important enabler and
stimulating source of innovation in ICT, Computer Science
and technology with societal impact [1,2]. Academia and
industry have recently produced a huge number of systems
based on the concept of “smart technologies”, suggesting the
capability to gather precise contextual information through
sensing, supports more effective decision-making. Much of
these developments are exploratory as some of these
technologies are still recent and not as reliable as desirable.
Many of these environments are engineering in nature,
systems and methods are being developed bottom up and there
are a lack of methodologies and other community resources
which act as standards or at least as guides of good practice.
There are also few shared resources, beyond some datasets,
and therefore most teams are forced to “reinvent the wheel”.

Systems in this area are typically a combination of
subsystems: Artificial Intelligence, Computer Networks,
Human-computer Interface, and Mobile Computing. This
exacerbates the difficulties of sharing and reusing as each
system can be conceived and developed in so many different
ways. Hence the creation of methodologies, guidelines, and
good practice that we can share with interested communities
is valuable. Part of our effort has been directed towards
connecting tools which correspond to the common critical
tasks required in systems of this area. Trying to make it
practically effective, sometimes sacrificing expressiveness in
favour of system features which can help adoption such as:
response time, user friendliness, and overall cost.

Here we present a Smart Environments Architecture
currently in use at the Smart Spaces lab of Middlesex
University. We illustrate how its components work
cooperatively to provide services in environments such as
Smart Homes.

1 All authors are members of the
Research Group on Development of
Intelligent Environments.

II. RELATED WORK

Some system architectures have been used and reported
in the literature, usually with a specific focus on the technical
progress they were reporting. Here we are considering
comprehensive system level architectures so this area will
favour higher level architectures reported in the technical
literature. Our typical target will be Smart House or Smart
Office systems which use several sensors and interfaces and
are supposed to provide services for more than one user.

The literature of this area is very prolific and there are
many systems reported which we cannot possibly fully cover
here. We focus on publications offering a wider and higher
level view of system architectures for context-awareness
systems. Typical terms used in the literature to refer to them
are “Smart Environments”, “Intelligent Environments”,
“Pervasive Systems”, “Ubiquitous Systems”, and “Internet of
Things Systems”. We also have a strong interest in so called
“User-centred Systems” which not necessarily have to be
sensing supported and/or context-aware able, however given
the availability of sensing supported technology pervading
our daily life, user-centred systems based on sensing and
context-awareness are becoming increasingly intertwined.

The summary of the selected systems which report system
architectures of our interest are presented in historical order.
Saif [3] provided a detailed Ubiquitous System architecture
(UbiqtOS/Romvets) through various levels of description.
The various levels include Middleware, context-awareness
handling, reasoning based on production system driven
agents. The system is focused at quite a low level of services,
and is very representative of systems at that time. Cook et al.
[4] MavHome system architecture was organized in four
main tiers: Physical, Communication, Information, and
Decision. Reasoning is made through a multi-agent system.
Learning was linked to the multi-agent system. Fernández-
Montes et al. [5] structured their system based on the
Perception-Reasoning-Acting cycle arising from the multi-
agents area. Within the Perception section they encapsulated
tasks related to data acquisition, there is an explicit mention
of ontology and a number of middleware related tasks. The
Reasoning section also includes a Data Mining sub-module.
Heider [6] presented a system to assist users of a multi-
purpose smart meeting room. The system was approached as

 2 Also member of: Dept. de Ingeniería
Industrial y de Sistemas, Universidad
de Piura, Perú. Mario.Quinde@udep.pe

a goal oriented problem solver, supplemented with a range of
interesting features including a variety of interfaces,
middleware and ontologies to support reasoning by planning.
Although the system is not strong on learning they do
emphasize on the concept of a personal environment for each
system user. Cook et al. [7] CASAS system architecture has
three main tiers: Physical, Middleware and Applications, the
later containing sub-modules as activity recognition and
activity discovery were reasoning and learning are used.

Table 1 gives a summary of the systems mentioned above,
where the following abbreviations were used:
M=Middleware, O=Ontology, R=Reasoning, L=Learning,
H=human-computer interaction options, and U= User-
centred. These dimensions and the resulting scoring assigned
to each of them in the table are difficult to measure given that
is difficult to quantify. All systems have some sort of human-
computer interaction option, however only those with a
higher number or a higher emphasis in that aspect have a tick.

TABLE 1. SYSTEM ARCHITECTURE COMPARISON

System M O R L H U

Saif [3] √ √
Cook et al. [4] √ √ √
Fernández-Montes et al. [5] √ √ √ √
Heider [6] √ √ √ √ √
Cook et al. [7] √ √ √
SEARch √ √ √ √

There are other publications of ideal abstract architectures

(see for example, Badica et al. [8] and Belaidouni et al. [9]),
however they do not report on a live implemented system so
we did not include them in the table above and the overall
comparison. Other systems like Piyare [10] and Lewis et al.
[11] where implemented mostly focused on sensors with a
Middleware glue, although they report working prototypes
they do not fit in the wider analysis we reflect in our table.

One salient feature in comparing SEArch with other
related options is that we do not yet include middleware and
ontology. This has to do with strategic decisions made in the
past on which were considered the most fundamental
components and where to start building the system from. The
initial obvious priority was the acquisition of affordable
standard sensing and standard network communication. The
first higher priority software components were reasoning and
learning modules. We considered if we did not have good
ways for the system to make sensible decisions about
interesting practical situations then the system will not
succeed in the long run. The next level of priority was with
interfaces providing meaningful interaction between
human(s) and system. These interfaces provide the flow of
information from-to environment and system components.

The current step we are focusing on is to organize and
standardize data, information and knowledge flow. Other
teams started from this point, imagining what services the
system will need in the future and starting by providing first
a middleware and ontology support for them. These are
strategic decisions over which probably there is no definitive
answer and it may also be argued that eventually both can
lead to good systems with enough time and resources. So we

are not arguing here our approach is better than anyone else,
we are only reporting on the approach we followed.

The user-centred dimension is a significant one for us.
We have methodologies and tools which guide design,
development and validation throughout all stages of the
creative process. Examples of that support have been
reported in [12,13,14].

III. SYSTEM ARCHITECTURE EXPLANATION

Our system evolved in a succession of bottom up
developments and top down system reviews. Its components
were created out of genuine practical needs driven by practical
challenges we faced on the way. At the same time the
practical challenges we address surpass what is considered in
the market, hence the challenges lead to science with societal
impact. Figure 1 shows an overall picture of the system
architecture. There are ways of capturing data on the right
hand side of the figure and ways to convey information back
to the system on the left hand side, these involve sensing and
interfaces. Various databases are used as repositories within
the system. The most important working components are the
different resources for reasoning, learning, system-user
interaction and user personalization.

FIG. 1. SEARCH SYSTEM ARCHITECTURE DIAGRAM

IV. SEARCH AT WORK

Our Smart Spaces Lab consists of a self-contained
building in Hendon Campus (North London). Figure 2 below
shows the lab layout and its sensing infrastructure. Most of
the building is dedicated to the Ambient Assisted Living
space which replicates a normal house with exception of two
rooms on the right hand side of the picture which are multi-
purpose. The wireless sensor system is mostly a network of
Zwave-compatible commercial sensors (except for the
pressure pad assembled in the lab). The Sensor Control box
is a Vera Plus box (Figure 3). All sensing is non-intrusive and
does not require a sophisticated interaction from the users.

The real-time automation is based (mostly) on a rule
based language with capabilities to check for conditions
fulfilling certain temporal properties based on Alegre et al
[15]) and the learning is made through a combination of
LFPUBS (Aztiria et al [16]) and an LFPUBS2MReasoner
translation (Aranbarri-Zinkunegi [17]). Preferences are
managed through a system which uses user profiles mixed
with the Mreasoner rules to create arguments pro-against the
different possibilities open to the house (Oguego et al [18]).

FIG. 2. SMART SPACES LAB LAYOUT

FIG. 3. ZWAVE SENSING EQUIPMENT AND VERA BOX (TOP RIGHT).

Scenario description: This scenario captures part of the

morning routine of a person with asthma. It starts with the
person waking up, then going to the toilet, then to the kitchen,
and finally leaving home. The system is sensitive to the user
needs and checks the air pollution status after waking up as it
has been indicated this is an important asthma trigger for this
user. The systems turns on lights as needed and then turns
them off when the user left home.

Data collection: Sensors send wirelessly events to Vera

Box. A log of those events are stored in a DB reflecting state
changes. The DB is scanned in a continuous loop and rules
in the system specification are checked for satisfaction at the
current iteration (this can include states extending for a period
of time). Rules triggered can change internal states or order
wireless actuations through the Vera Box.

MReasoner specification rules:
states(BedRoomLight, BedRoomMovement, KitchenLight,
KitchenMovement, CorridorLight, FrontDoorMovement,
ToiletLight, ToiletMovement, BigPadIdle, PollutionAlert,
getup);
is(KitchenMovement); is(#KitchenMovement);
is(FrontDoorMovement); is(#FrontDoorMovement);
is(ToiletMovement); is(#ToiletMovement);
is(BedRoomMovement); is(#BedRoomMovement);
is(BigPadIdle); is(#BigPadIdle);
holdsAt(#getup, 0);
holdsAt(#BedRoomLight, 0);
holdsAt(#KitchenLight, 0);
holdsAt(#CorridorLight, 0);
holdsAt(#ToiletLight, 0);
holdsAt(#PollutionAlert, 0);
ssr((BigPadIdle ^ BedRoomMovement)-> getup);
ssr((getup)->BedRoomLight);
ssr((getup)->PollutionAlert);
ssr((ToiletMovement) -> ToiletLight);
ssr((KitchenMovement) -> KitchenLight);
ssr((FrontDoorMovement) -> CorridorLight);
ssr(([-][60s.]#ToiletMovement ^
 <->[61s.]ToiletMovement) -> #ToiletLight);
ssr(([-][60s.]#KitchenMovement ^
 <->[61s.]KitchenMovement) -> #KitchenLight);
ssr(([-][60s.]#FrontDoorMovement ^
 <->[61s.]FrontDoorMovement) -> #CorridorLight);
ssr(([-][60s.]#BedRoomMovement ^
 <->[61s.]BedRoomMovement) -> #BedRoomLight);

The States line lists states tracked by the system, all
relevant ones have to be declared. The is(…) lines tell the
system which states are independent. Dependent states are
the outcome of rules, whilst independent states represent
sensors triggered (e.g., FrontDoorMovement is related to the
PIR sensor near the front door which is triggered when the
person gets out of the bedroom and into the corridor) or
human actions. The next section initializes dependent states,
here assuming them false. Then ssr lines specify state updates
and actuation rules. They first indicate what the system
should do when the user gets up. Then other rules turn lights
on as the user visits rooms. Finally a set of rules identify
rooms which have been visited but not used for at least a
minute and turn their lights off. This cause for example that
in leaving home for work all lights remaining on will be soon
turned off.

Learning patterns: LFPUBS learns habits as rules
including temporal contexts (e.g. days of the week and times
during those days):
ssr((weekDayBetween(monday-friday)) -> day_context) ;
ssr((#weekDayBetween(monday-friday))->#day_context);
ssr((clockBetween(08:01:00-00:00:00)) -> time_context);
ssr((#clockBetween(08:17:00-00:00:00)) -> #time_context);

Fig. 4. Sample of internal states evolution through time. Rows show the getting up from bed process reflected and internal states triggered.

These contexts are used to constrain the triggering of rules to
the contexts where that actuation is meaningful according to
the experience gathered by the system, for example:
ssr(([-][05s.]#BedRoomDoor ^ actionMap_time_context ^
actionMap_day_context) -> Pattern_1);

User preferences representation: Although not evident
in our simplified system specification above SEArch includes
an interface (Figure 5) to associate levels of priority with
certain preferences which can then be linked to rules and
affect the actuation of the system as preferences of a person
change or when comparing the preferences of several users
(see Oguego et al. [18]).

FIG. 5. PREFERENCES SELECTION INTERFACE

In our scenario, high preferences for health associated with
the user combined with system rules lead to the user being
presented with relevant information (for example, air quality
report when getting up). One rule in the system triggered a
report on Air Quality the user can check when getting up as
seen in Figure 6.

FIG. 6. AIR QUALITY REPORT FOR USER WITH ASTHMA

The resulting house actuation when the above scenario is
exercised can be seen here:

https://mdx.figshare.com/s/23a75c103c20aa99f67f

V. CONCLUSIONS

We report on a home automation system which is being
developed with emphasis on Ambient Assisted Living
services. Our SEArch Smart Environment system architecture
emphasizes Learning and Reasoning automation
supplemented and guided by User Personalization
components as our Research Group prioritizes a user-centred
approach. This paper contrasted SEArch with other relevant
developments. Our architecture puts more emphasis on higher
level components driven by priority services needed. Our
current emphasis is on optimizing the system with a view to
improve practical uptake and innovation outside academia.

ACKNOWLEDGMENTS

The Smart Environment experimentation area has been
strategically supported by two visionary managers: Prof. B.
Barn and Prof. M. Loomes. The system has been developed
with contributions from many researchers, those currently
involved are co-authors of this paper, past contributors are
listed here: http://ie.cs.mdx.ac.uk/some-of-our-contributions/

REFERENCES
[1] J.C. Augusto and H. Ahajan (2019) Preface to 10th Anniversary Issue,

J. of Ambient Intelligence and Smart Environments 11(1). IOS Press.

[2] J. C. Augusto, V. Callaghan, A. Kameas, D. Cook, I. Satoh (2013)
Intelligent Environments: a manifesto. Human-centric Computing and
Information Sciences, 3:12. Springer. DOI: 10.1186/2192-1962-3-12

[3] U. Saif (2002) Architectures for ubiquitous systems, Technical Report
527, Cambridge Computer Laboratory, UCAM-CL-TR-527.

[4] D. Cook, M. Huber, K. Gopalratnam, G. Youngblood (2003) Learning
to control a smart home environment. Proc. IAAI.

[5] A. Fernández-Montes, J. A. Ortega, J. A. Álvarez, L. González (2009)
Smart Environment Software Reference Architecture. NCM: 397-403

[6] Th. Heider (2009) Goal-based Interaction with Smart Environments,
PhD Thesis, Universität Rostock.

[7] D. Cook, A. Crandall, B. Thomas, and N. Krishnan. CASAS: A smart
home in a box. IEEE Computer, 46(6):26-33, 2013.

[8] C. Badica, M. Brezovan, A. Badica (2013) An Overview of Smart
Home Environments: Architectures, Technologies and Applications.
Proceedings of BCI: 78-85. Thessaloniki, Greece.

[9] S. Belaidouni, M. Miraoui, C. Tadj (2016) Towards an Efficient Smart
Space Architecture. CoRR abs/1602.05109

[10] R. Piyare (2013) Internet of Things: Ubiquitous Home Control and
Monitoring System using Android based Smart Phone, J. IoT2(1):5-11

[11] G. Lewis, E. Morris, D. Smith,S. Simanta (2008). SMART: Analyzing
the Reuse Potential of Legacy Components in a Service-Oriented
Architecture Environment. Technical Note CMU/SEI-2008-TN-008.

[12] S. Jones, S. Hara, J. C. Augusto. eFRIEND: an Ethical Framework for
Intelligent Environment Development (2015) Ethics and Information
Technology (Springer Verlag), Vol 17, issue 12, pp. 11-25, Springer.

[13] C. Evans, L. Brodie, J. C. Augusto (2014) Requirements Engineering
for Intelligent Environments. Proc. IE14. pp. 154-161. IEEE Press.

[14] J. Augusto, D. Kramer, U. Alegre, A. Covaci and A. Santokhee (2017)
The User-centred Intelligent Environments Development Process as a
Guide to Co-create Smart Technology for People with Special Needs.
Universal Access in the Information Society, 17(1), 115-130. Springer.

[15] U. Alegre, J. C. Augusto, A. Aztiria (2014) Temporal Reasoning for
Intuitive Specification of Context-Awareness, Proc. International
Conference on Intelligent Environments, pp. 234–241. IEEE.

[16] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. J Cook
(2013) Learning frequent behaviors of the users in intelligent
environments. IEEE Transactions on SMC: Systems 43(6):1265–1278.

[17] M. E. Aranbarri-Zinkunegi (2017) Improving the Pattern Learning
System integrating the reasoning system. MS. thesis, Mondragon Univ.

[18] C. L. Oguego, J. C. Augusto, A. Muñoz, M. Springett (2018) Using
Argumentation to Manage Users’ Preferences. Future Generation
Computer Systems 81:235-243. Elsevier.

