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ABSTRACT 

While teaching a heel first contact style of footwork in fencing (also referred to as toe 

contribution avoidance) is in keeping with long standing traditions, it is not conducive 

to today’s modern style of fast paced and explosive fencing. Equally, fencers towards 

the elite-end seem to be gradually adopting a more spring-based style, as their body 

progressively and organically transitions to “ball of the foot” based footwork, in order 

for them to fence competitively in the manner they have intuitively associated with 

success. Therefore, if from a young age fencers are taught to make full use of the 

stretch shortening cycle (SSC) via “bouncing” or simply by initiating movement via 

the ball of the foot, this will expedite the learning process. It will demonstrate to them 

how the SSC can be used to move at greater speed, cover greater distances when 

advancing, retreating and lunging, and conserve the much-needed energy required to 

compete over day long competitions. This paper details the mechanistic 

underpinnings of the SSC and its application to the modern day fencer. 

 

INTRODUCTION 

Fencing is a combat sport with ancient traditions, with its roots from war and duels. 

Modern sport fencing was developed from the duelling system during the 19th 

century, inheriting centuries of tradition but without blood drawn (Cohen, 2002). In 

order to face the opponent at all times and to have the weapon ready for action at all 

times, fencers use a movement pattern that is specific to fencing only. This movement 

pattern is challenging and beginners spend years to reach mastery. All fencers assume 

a stationary “on guard” position with the weapon arm facing the opponent and the 

corresponding foot directed towards the opponent; the sole of the foot has full contact 



with the floor. The back foot is positioned perpendicular to the leading foot, and 

approximately one-foot length apart; knees are lightly bent. As part of this movement 

pattern, fencers are coached from a young age to “step” forward (advance) and back 

(retreat), using a “heel-strike” motion in the advance and a “heel-push off” in the 

retreat. It is described in the following way (Garret, Kaidanov, & Pezza, 199): “To 

advance, lift the toe of your leading foot and step forward (around a foot length in 

(Garret, Kaidanov, & Pezza, 199), not more than 15 cm in (Simmonds & Morton, 

1997), land on the heel and place the foot flat. Then, pick up the back foot and move it 

equal distance forward. The retreat is simply the reverse and the leading foot pushes 

off with the heel.” This description is similar in all relevant literature (Cohen, 2002; 

Evangelista, 1996; Garret, Kaidanov, & Pezza, 199; Gaugler, 2004; Kronlund, 1962; 

Nadi, On fencing, 1996; Nadi, 1955; Simmonds & Morton, 1997) and is presently 

being taught in fencing clubs around the world. The main underlying principle is that 

the toes (or the ball of the foot) should not be allowed to contribute to fencing 

movements. This is in contrast to other fast motion combat sports such as boxing and 

taekwondo, where ball of foot contribution to all movements is fundamental. 

 

It is unclear why this Toe Contribution Avoidance (TCA) to fencing motion is taught 

universally other than due to century old traditions, but it is tempting to speculate that 

duels and wars were fought on uneven surfaces and close contact with the ground at 

all times could be of vital importance for survival (Cohen, 2002). However, top 

competitive epee fencing has evolved continuously during the last 30 years towards 

higher speed, shorter fencing distance, and simpler and faster weapon movements 

(Harmenberg, Väggö, Schmitt, Boisse, Mazzoni, & Pingree, 2015). In top 

competitions, nearly all epee fencers bounce continuously in conflict with coaching 

traditions. The fencers are “bouncing” instead of the TCA technique as they travel 

across the piste and this is done via the balls of their feet. The ball of foot is used in 

three different situations: (1) the “on guard” position, i.e., bouncing instead of a 

stationary TCA, (2) shorter movements with bouncing instead of TCA type advances 

or retreats, and (3) in longer movements using push-offs with the ball of foot (with or 

without an initial bounce), making advances and retreats (and lunges) longer and 

faster than using TCA principles. The key to these three situations is to make full use 

of the stretch-shortening cycle (SSC).  

 



The scientific principles of the SSC have previously been reviewed (Turner & 

Jeffreys, 2010). Bouncing can be continuous movement up and down to continually 

load (primarily) the Achilles tendons with elastic energy; the fencer is then always 

primed to move horizontally forward or backward, faster, and with greater energy 

conservation. Some movements instead require a single bounce, akin to the fencer 

rapidly “jabbing” the ground with the ball of their foot (we refer to it as a jab as it 

conceptualizes the need to initiate the bounce by actively hitting the ground, thus 

applying more force).  Again, this single jab generates the elastic energy required to 

propel them in to motion in a more effective and efficient manner relative to TCA 

footwork. Of note, even without the jab, simply generating momentum via the ball of 

the foot enables a greater contribution from of the quadriceps relative to a heel push-

off (including the benefits of pre-loading), as well as generating elastic energy from 

the tendon (albeit less than the previous two examples given that rate and magnitude 

of loading is less); these then increase the potential for maximal force production and 

impulse.  Finally, as summarized in Epee 2.5 (Harmenberg, Väggö, Schmitt, Boisse, 

Mazzoni, & Pingree, 2015), there are strategic justifications why bouncing is rational. 

For example, if a TCA fencer attempts to advance, they need to lift the front foot, 

thereby shifting body weight to the back foot. Then the opponent can lunge and 

attack, which will be very problematic for the TCA fencer, since they cannot retreat 

given their body weight will be centred on the back foot. A bouncing fencer will not 

have this problem since they will never shift any body weight to a specific foot.  

 

With respect to bouncing’s suitability to the different fencing weapons, the average 

action length must be considered. This is around 15 seconds in epee and around 5 

seconds in foil, and 2-3 seconds in saber (Turner, et al., 2014). This means that epee 

fencers have sufficient time to develop a bouncing game and notably, all 16 top 

competitors in the 2016 Olympic games individual epee event can be classed as 

“bouncers”. This is in contrast to foil and saber, where the actions are much shorter 

and both fencers use the time for fast and long movements. These fencers are more 

likely to utilise single bounces (or jabs), or simply benefit from the additional force 

generated via a ball of foot push-off. As such, we believe that use of SSC through 

adopting a “ball of foot” style of footwork, will be advantageous for all weapons. 

 



This paper aims to explore the biomechanical rational as to why we believe the use of 

the SSC to fencing footwork should be advocated as part of coaching practice and 

athlete development within fencing. We will justify our challenge to the current, long-

standing and traditional system, through an evidence base that centres on muscle 

tendon mechanics, namely the SSC. In particular, we will discuss how the body 

utilises the SSC for optimal propulsion and movement economy, and the clear 

crossover this has to fencing actions. We will then conclude this paper with suitable 

drills and training practices, designed to enhance these mechanics. As an aside, we 

will also identify the difference in loading forces associated with the two footwork 

strategies (i.e., bouncing vs. TCA) and thus their potential implications to injury. 

 

WHY IS THE STRETCH SHORTENING CYCLE SO IMPORTANT TO 

ATHLETIC PERFORMANCE? 

It is evident that you can jump higher following a countermovement jump (CMJ; i.e., 

incorporating a pre-stretch) than a squat jump (SJ; i.e., one with no pre-stretch). 

Improvements in the range of 20-30% (Bosco, et al., 1987), or differences in jump 

heights of ~ 2-4 cm (Bobbert & Casius, 2005) are likely noted. Similar differences 

would also be evident when moving horizontally and comparing a standing broad 

jump (SBJ) with and without a pre-stretch. Moreover, by increasing the load applied 

and the rate of loading during the countermovement, e.g., following a run-up or a 

drop jump (that is movements that increase the speed and the load experienced during 

the pre-stretch), jump height typically increases further (Aura & Viitasalo, 1989; 

Bobbert, 1990; McBride, McCaulley, & Cormie, 2008; McCaulley, Cormie, Cavill, 

Nuzzo, Urbiztondo, & McBride, 2007). This phenomenon is a consequence of what is 

termed the SSC, and describes an eccentric phase or stretch (Figure 1a), followed by 

an isometric transitional period (amortization phase; Figure 1b), leading into an 

explosive concentric action (Figure 1c). The SSC takes advantage of the tendons 

elastic properties and the muscle spindle reflex, whereby when a muscle is stretched, 

especially if stretched quickly, it is involuntarily stimulated to contract and shorten 

rapidly. Of note, bouncing is a series of SSC’s. 

 



 

Figure 1a – c: The stretch shortening cycle (SSC). The SSC describes an eccentric phase or 

stretch (Figure 1a), followed by an isometric transitional period (referred to as the amortization 

phase; Figure 1b), ultimately leading into an explosive concentric action (Figure 1c). The SSC 

takes advantage of the tendon’s elastic properties (for both power and energy conservation) and 

the muscle spindle reflex, whereby when a muscle is stretched, especially if stretched quickly, it is 

involuntarily stimulated to contract and shorten rapidly. 

 

Aside from enhanced propulsion, efficient SSC mechanics enables the athlete to 

reduce the metabolic cost of movement (Bobbert & Casius, 2005; Bobbert, Gerritsen, 

Litjens, & Van Soest, 1996). For example, economical sprinting (i.e., efficient usage 

of the SSC) can recover ~ 60% of the mechanical energy used (Dalleau, Belli, 

Bourdin, & Lacour, 1998; Verkhoshansky, 1996; Voigt, Bojsen-Moller, Simonsen, & 

Dyhre-Poulsen, 1995), thus in effect, delaying time to fatigue. The SSC is therefore 

essential to many sporting endeavours, and unsurprisingly, many coaches look to 

incorporate training drills such as plyometrics, which can enhance the athlete’s use of 

this mechanism. We should also note that the SSC is an innate action, and most 

sporting movements naturally call upon it given the aforementioned. Fencing 

coaching on the other hand requires its athletes to adopt positions and move in a 

sequence that does not capitalize on this biological potentiator of performance. A 

discussion of the mechanics that underpin the SSC will make this point clear.  

 

THE MECHANICS OF THE STRETCH SHORTENING CYCLE 

During hopping, jumping, and running for example, our legs exhibit similar 

characteristics to a spring, whereby the leg spring compresses on ground contact and 

stores energy, before rebounding at push-off and releasing energy (Hobara, et al., 

2008). It is recognized that the tendon (and here we are referring to the Achilles 

tendon) is the primary site for the storage of elastic energy (EE) (Kubo, Kawakami, & 



Fukunaga, 1999; Lichtwark & Wilson, 2007). The magnitude of stored EE in the 

tendon (often referred to as strain or potential energy) is hypothesized to be propor-

tional to the applied force and the induced deformation (i.e., the change in length, 

which usually represents tissues elongation and stretch) (Zatsiorsky & Kraemer, 

2006) and supports for example, the high correlation (r = 0.79) between the tendons 

capacity to store EE and performance of distance runners (Verkhoshansky, 1996), and 

the difference in jump height between the CMJ and SJ as noted in the earlier example.  

 

A common goal of training then, is to improve an athlete’s ability to stretch their 

tendons. One of the ways in which this can be induced, is to increase what is referred 

to as “muscle stiffness” – here we refer to muscle stiffness by virtue of an active 

contraction, as oppose to that generated by passive inflexibility. To elaborate, because 

tendon and muscle are arranged in series (Hill, 1938), they are both subjected to the 

same forces. The distribution of stored energy amongst these tissues then, is therefore 

dependent on the induced length changes in each. Put simply, whichever tissue 

structure stretches the most, will store the most EE. Athletes that can generate muscle 

stiffness (i.e., have muscles able to resist being stretched), will see all movement at a 

joint primarily derived via stretch in the tendon, thus capitalising on the tendon’s 

elastic properties. If an athlete cannot generate muscle stiffness, movement at a joint 

will be a consequence of stretch in both muscle and tendon, with any stretch in the 

muscle (given its lack of elastic properties) regarded as a waste of potential (elastic) 

energy.  

 

Muscle stiffness is a trained quality and athletes will not be able to generate muscle 

stiffness if they are not strong enough and/or are inhibited by an involuntary nervous 

reflex, namely (in this scenario) the Golgi Tendon Organ (GTO) reflex. The GTO acts 

to reduce muscle stiffness as a safety mechanism, causing more movement (flexion) 

at a joint (given the muscle is now more compliant and cannot maximally contract to 

resist stretching). This has the effect of increasing the time available to dissipate 

landing forces, thereby protecting us from injury. Plyometric training (assuming 

gradually introduced and developed) inhibits the GTO reflex (enabling muscle 

stiffness) and together with strength training, works to strengthen the muscles so that 

they can tolerate the subsequently increased landing forces consequent to this 

adaptation. To describe this adaptation by way of an analogy, plyometric training 



turns athletes from squash balls in to golf balls. Squash balls are compliant and thus 

compress at landing, dissipating all the force – they therefore do not bounce very 

high. Golf balls on the other hand, are stiffer, compress far less at landing, and 

therefore better able to store and use the potential energy as evidenced by a much 

higher bounce. This mechanistic understanding is used to formulate plyometric 

training as described in the concluding parts of this paper. 

 

HOW FENCING MOVEMENTS COUNTERACT THE SSC  

To use the SSC optimally then (in terms of both propulsion and economy of energy), 

we need to stretch the tendon. As such, its use is limited when we land on our heels, 

as per traditional fencing footwork (i.e., TCA). Consider the Achilles tendon, a long 

fibrous tissue designed for locomotion (note that some of the fastest animals, or those 

that must cover long distances, have very long tendons). Landing strategies that 

initiate ground contact via the ball (or the toe) of the foot are able to stretch this 

biological spring; in contrast, heel-based landings exert little stretch.  To make this 

point explicit, see the landing strategies adopted in Figures 1, 2 and 3. In Figure 1a, 

the sprinter lands on the ball of his foot. In figure 1b, the ankle joint maintains 

stiffness (primarily via the calf and tibialis anterior muscles), and thus, even though 

this period represents the middle of the ground contact phase, the foot is not flat. This 

is likely the product of high muscular forces, which are able to resist deformation, 

inferring that the tendon has stretched and will forcibly, and at a lowered energetic 

cost, recoil. This then potentiates the initiation of the swing phase (Figure 1c). 

Compare that to a classical retreat in Figure 2. Classical footwork coaching dictates 

that the fencer push-off with the heel (Figure 2b) and in addition, the fencer is 

expected to have full floor contact with one foot at all times. The propulsion is thus 

generated via muscular effort, at a higher metabolic cost, and with little facilitation of 

the tendon. Anecdotally, distance travelled is also much less. We hypothesize 

therefore, that both the propulsion and energetic efficiency of traditional fencing 

footwork (i.e., TCA) is not optimised. With respect to movement economy, while a 

single bout may not tax metabolic demand too much, as the competition progress, this 

“squandering” of energy may come at a price (Turner, et al., 2017). As much as 

possible then, the “on guard” position should ensure fencers are equally ready to 

attack or retreat with the Achilles tendons in both legs preloaded with elastic energy. 



Similarly, fencers traveling at speed up and down the piste can better undertake this 

feat by limiting heel contact, maximizing ball of foot contacts, and thus Achilles 

tendon stretch. This is why fencers should bounce. An alternative of performing the 

retreat is shown in Figure 3, where the fencer pushes-off with the ball of the foot 

instead of the heel. This gives the fencer the possibility to preload the Achilles tendon 

with elastic energy (more so if the movement is initiated with a single bounce). Again 

distance is increased, which is especially notable with multiple consecutive retreats.  

 

 

Figure 2a-c (left to right): Classical retreat. From the on-guard position with full floor contact 

with both feet (Figure 2a), the fencer pushes-off with the heal of the front foot while the back foot 

moves back a limited distance to land with full floor contact (Figure 2b). Finally, the front foot is 

moved back to reach the on-guard position once more. The recommended distance varies from 

one-foot length to not more than 15 cm. The classical advance is simply the reverse. 

 

 

 

Figure 3a-d (left to right). A ball of foot facilitated retreat. From the on-guard position where the 

floor contact is mainly facilitated by the ball of the foot (Figure 3a), the fencer pushes-off with the 

ball of the front foot while the back foot moves back a controlled but longer distance compared 



with the classical retreat, to land with the ball of the foot (Figure 3b). After landing with the back 

foot, the front foot follows (Figure 3c) to finally reach the on-guard position once more, where the 

front foot lands with the ball of the foot (Figure 3d). Anecdotally the distance covered is ~ 3 times 

that covered with the classical retreat. The advance is similarly performed in the reverse order 

using the ball of the foot both for the push-off of the back foot, as well as the landing of both feet. 

The use of SSC can further facilitate both the retreats and the advances using this technique, 

either from a single bounce (or jab) in a stationary on-guard position, or in the performance of 

multiple advances or retreats or in any combination thereof.  

 

 

LANDING FORCES AND THE LIKELIHOOD OF INJURY  

We should also take a moment to describe the benefits the use of SSC has to injury 

reduction. Professor Liberman et al., (2010) investigated the difference in impact 

forces between heel striking and forefoot (ball of the foot) striking while running. 

Heel striking generates a large transient impact spike, which sends a shock wave up 

through the body (Figure 4a). In contrast, striking with the ball of the foot generates 

minimal impacts forces with no impact transient (spike; Figure 4b). This is a key 

finding as one of the key factors around the aetiology of overuse injuries (especially 

stress fractures) is the initial ground reaction force, and its rate of loading at landing 

may be key (Milner, 2009). Furthermore, and by way of example, a common injury 

affecting army recruits is stress fractures, typically to the tibia (Jones, Thacker, 

Gilchrist, Kimsey, & Sosin, 2002; Milgrom, Giladi, Stein, & Kashtan, 1985; Milner, 

2009). Stress fractures are an overuse injury caused by fatigue damage to the bone 

(Milner, 2009).  Essentially, inadequate time for remodelling means that osteoclastic 

re-absorption of bone outstrips the osteoblastic formation of new bone, resulting in a 

weakened bone (Jones, Thacker, Gilchrist, Kimsey, & Sosin, 2002). The pathology of 

stress fractures is such that a reduction in running volume can reduce its occurrence, 

and military studies have reported that reducing running volume by approximately 

half, reduces stress fractures by half (Jones, Shaffer, & Snedecor, 1999; Shaffer & 

Almeida, 1996).  In a fencing context, where fencers undergo several hours of 

training each week, and all involving TCA footwork, it is likely that heel-striking will 

expedite the likelihood of an overuse based injury (albeit stress fractures being an 

extreme example). A reduction in impact forces (magnitude and rate of loading) by 

virtue of ball of foot landings may be able to attenuate this. Furthermore, when you 

consider that impact forces travel up the skeletal system, bouncing SSC allows these 



forces to be shared among the ankle, knee and hip joint (Turner & Jeffreys, 2010); 

TCA in contrast, sees these forces distributed over the knee and hip only (Turner, et 

al., 2014). Of course, oftentimes fencers will lunge and in an effort to maximise 

distance, will land heel first. This is a practicality of the technique in this context, 

with the reduced volume of TCA movements as we advocate herein, potentially 

seeing the injurious implications of this largely mitigated. 

 

 

 

Figure 4a-b: Difference in impact forces between heel striking and forefoot (ball of the foot) 

striking while running (Lieberman, et al., 2010). Heel striking generates a large transient impact 

spike, which sends a shock wave up through the body (Figure 4a). In contrast, striking with the 

ball of the foot generates minimal impacts forces with no impact transient (spike; Figure 4b). 

 

In summary, heel striking is associated with large impact spikes, characterised not 

only by their magnitude, but also by their rate of loading. While TCA may represent 

lower impact values compared to running, the impact trauma will accumulate over 

time given the volume of training undertaken by fencers. Use of SSC driven 

technique serves as a means of organically attenuating the risk of high training loads 

(i.e., without the need to manipulate footwear, training surface, or limit high impact 

tasks such as lunging for example). Equally, the muscle tendon properties are such 

that muscle stiffness involuntarily adapts to the “hardness” of surfaces and footwear, 

thus serves as a naturally occurring “cushion” to these constant changes – see Ferris 

and Farley (1997) for a review of this natural modulation of leg stiffness. 

 

 

METHODS TO ENHANCE SSC MECHANISMS 



The optimal method to train SSC ability is plyometrics (Kyrolainen, Komi, & Kim, 

1991; McBride, McCaulley, & Cormie, 2008; Myer, Ford, Brent, & Hewett, 2006; 

Potteiger, et al., 1999; Rimmer & Sleivert, 2000; Schmidtbleicher, Gollhofer, & 

Frick, 1988; Spurrs, Murphy, & Watsford, 2003). The following sections outline how 

plyometric exercises can be progressively integrated into an athlete’s training 

program, and also outlines appropriate methods of performance evaluation.  

 

Plyometrics covers a wide range of fundamental movement skills such as jumping, 

hopping and bounding; in its simplest form, plyometrics revolve around two basic 

capacities, jumping and landing. While appearing relatively simple exercises, they are 

in fact quite complex and as such, appropriate time should be allocated to their 

development. Therefore, this requires a progressive system of exercises to be set up, 

through which an athlete can pass to ensure they have the required technical mastery 

to be able to perform each in a manner that both maximizes performance gains, but 

also minimizes injury risk.  

 

Ideally, in terms of maximizing performance, plyometric training should be preceded 

by strength training to reduce the risk of injury to the muscle tendon complex, 

facilitate the dishinhibition of the GTO, and increase the quality and quantity of Type 

IIa (from Type IIx) fibers. The latter point is of significance due the high correlation 

between the percentage of Type II fibers and power output (Coyle, Costill, & Lesmes, 

1979) and is therefore likely to increase the athletes’ net potential to develop power 

(Komi, 2003). Below is a suggested progression of drills: 

 

1. Jump ropes 

Jump ropes are an effective entry stage plyometric drill as shown by Miyaguchi and 

coworkers (Miyaguchi, Sugiura, & Demura, 2014). In addition, the movement pattern 

of jump ropes has similarities with the “on guard” bouncing which make jump ropes 

practice even more attractive. The risk of injury is limited compared to more 

advanced plyometric drills. It should be noted that “double-under” jumps place 

greatest demand on the SSC (Miyaguchi, Sugiura, & Demura, 2014) with data 

showing that subjects use approximately 70% of energy from the SSC, and are 

therefore effective for reinforcement of SSC ability. 

 



2. Jump to box 

This stage develops basic jumping abilities and also crucially, landing ability, in a 

controlled environment. By excluding the time gravity has to act, landing forces can 

be minimized, and landing technique taught to beginner athletes, or athletes with 

current landing problems. Varying the height of the box (i.e., gradually increasing it 

and eventually aiming to jump to a box higher than the athlete’s belly button) can 

provide a challenge to the athlete’s jumping ability, while still minimizing landing 

forces. Moving from a double leg to a single leg landing can further challenge the 

athlete’s landing ability. All landings should be made with the shoulders, knees and 

toes in line, to ensure load is appropriately distributed across both the knee and hip 

joints.  

 

3. Drop lands or jump and stick 

This stage builds upon the athlete’s landing capacity developed in stage one, and 

develops their ability to control landing (eccentric) forces. Initially, exercises in this 

stage can involve low amplitude movements (i.e., stepping from a low box or taking 

short horizontal jumps if working from the floor), but progression can be provided by 

increasing the amplitude of movement, and by moving from double to single leg 

landings. As well as further developing landing technique, this stage allows the 

athlete to adapt to high landing forces through learnt GTO reflex inhibition. This 

stage, and the amplitudes within, should be dictated by the quality of the movement 

and not be progressed until the athlete can stick the landing with appropriate levels of 

control, and with appropriate foot contact. Heel contact for example, is suggestive of 

GTO reflex and the athlete’s inability to optimally store energy in the tendons, which 

is essential to the amortization phase (and duration of) used in the subsequent stage 

(Flanagan & Comyns, 2008). So heel contact should be avoided (of note the gap 

between the heel and floor should be large enough to swipe a credit card under – it 

should not be so big as to fit a golf ball). In addition, and described in the preceding 

text, this stage also requires the development of muscle stiffness through pre-

activation tensioning (where muscle activation begins during the flight phase prior to 

contact with the floor) and antagonist co-contraction (i.e., the tibialis anterior 

contracts in concert with the gastrocnemius and soleus to “lock” the joint in position) 

and may therefore take several weeks to develop (Kyrolainen, Komi, & Kim, 1991).  

 



4. Drop jump, or jump, jump, stick 

This stage begins the true plyometric training where the SSC is utilized to enhance 

subsequent concentric performance. Here, the athlete performs a sequence of 

horizontal jumps of initially low amplitude, where the aim is to minimize ground 

contact time (GCT), while maintaining effective landing mechanics and body control. 

Again, this stage should be progressed to involve greater amplitude of jumps and the 

utilization of single leg activities. Ankling drills and rope skipping provide good 

examples of short response jumps. In addition, there is research suggesting that 

overall leg stiffness is correlated with ankle stiffness (Arampatzis, Schade, Walsh, & 

Bruggemann, 2001; Farley, Blickhan, Sato, & Taylor, 1991; Farley & Morgenroth, 

1999), therefore ankling may provide a prudent starting point. 

 

Emphasize horizontal drills and train like a sprinter 

Given that lunging and fencing specific change of direction speed tests demonstrate 

greater correlations with SBJ distance (i.e., a horizontally directed jump) than vertical 

jump height (Turner, Bishop, Chavda, Edwards, Brazier, & Kilduff, 2016; Turner, 

Marshall, Noto, Chavda, Atlay, & Kirby, In press), plyometric training should ensure 

athletes are adequately exposed to horizontal-based drills. Equally, it is important that 

fencers train with low amplitude jumps given that fencers move so that they do not 

unnecessarily extend flight time, given that this period represents a vulnerability to 

attack.  Therefore, low hurdle drills of varying distance are an effective method. The 

variation in distance ensures athletes learn to bounce in a manner that enables them to 

be reactive to stimuli. Again, moving in set pattern or with a predictable sequence of 

movements is to the advantage of the opponent. The concept of training like a sprinter 

will also serve the fencer well, with particular focus on acceleration drills, where a 

low foot recovery is desirable as well as generating momentum. As such, horizontal 

hopping (i.e., using one foot) and bounding (from one foot to the other) drills, 

including against additional resistance (such as sleds and resistance bands) will likely 

prove effective. Drills should evolve to be responsive to stimuli. 

 

Change of direction speed (CODS) and Repeated lunge ability (RLA) 

The drills 1- 4 above concern movements with force directed vertically. The critical 

fencing movements are performed mostly horizontally, so it is therefore of 

importance to develop drills mimicking the fencing situation. Several papers have 



shown the importance of change of direction ability and repeated lunge ability in 

fencing (Turner, Bishop, Chavda, Edwards, Brazier, & Kilduff, 2016; Turner, et al., 

2016; Turner, et al., 2017), and the aforementioned drills must ultimately be 

integrated in to these. As such, these actions should be performed making full use of 

the SSC technique. This includes push-off with the ball of foot both in advance (also 

the lunge) as well as in retreat, making these movements faster, longer, and more 

energy conservative. As one example, making an advance from a bouncing on guard 

position with push-off using the the ball of foot of the trailing foot, landing on the 

leading foot while elongating the Achilles’ tendon, and immediately initiating a 

retreat with a push-off by the the ball of foot of the leading foot. This situation would, 

if correctly performed, make maximal use of SSC in contrast to the TCA movement 

described in the introduction and would naturally be applicable for all weapons. 

 

The average active fencing time in 15 touch bouts has been assessed and varies 

between the different weapons. A change of direction drill should therefore mimic the 

most challenging action time for the specific weapon, suggestively the mean plus 2 

standard deviations. For epee, this would mean an approximately 30 second drill time. 

We have used markings 3 meters apart with instructions to the fencers to make 

advance/retreats at maximal speed between the markings. The acceleration during 3 

meters causes the fencer to be forced to make an abrupt stop from a high-speed 

motion when changing direction. Epee fencers need to cover the 3 meters 

approximately 20 times (with 19 changes of directions) for a work time of 

approximately 25-30 seconds. The drill can be repeated numerous times and it is 

recommended to target the observed break time from 15-touch matches between the 

sets. A variant is to replace the last advance before the change of direction with a 

lunge and thus assessing “repeated lunge ability” (RLA). These drills are designed to 

both mimic the competitive situation and to make full use of SSC ability. 

 

EVALUATING THE SSC MECHANISM 

As GCT is an important variable in plyometric training prescription, monitoring of 

this important variable is important and can be achieved using training/testing 

equipment such as contact mats and force plates and is available in real-time, possibly 

facilitating athlete motivation (Flanagan & Comyns, 2008; Newton & Dugan, 2002). 



Moreover, calculation of the reactive strength index (RSI; flight time ÷ ground 

contact time) during activities such as drop jumps, can provide S&C coaches with a 

good indication of an athletes’ SSC ability (Flanagan & Comyns, 2008; Newton & 

Dugan, 2002; Young W. , 1995; Young, Pryor, & Wilson, 1995). This is usually 

tested over the following drop heights: 30cm, 45cm and 60cm (Newton & Dugan, 

2002) and as previously mentioned, efficient SSC mechanics should result in greater 

jump heights from greater drop heights. The ratio score, i.e., the RSI, is usually 

reported as it considers both variables; some athletes could get a low GCT but not 

jump high and vice-versa. Anecdotally, an RSI of ≥ 3 is considered excellent. 

 

CONCLUSION  

While teaching a TCA style of footwork in fencing is in keeping with long standing 

traditions, it is not conducive to today’s modern style of fast paced and explosive 

fencing. Equally, fencers towards the elite-end seem to be gradually adopting a more 

spring-based style as their body progressively and organically transitions to SSC 

usage via the ball of the foot instead of heel focused push-offs and landings, in order 

for them to fence competitively in the manner they have intuitively associated with 

success. If from a young age fencers are taught to make full use of SSC, it is 

suggested that this will expedite the learning process, demonstrating to them how the 

SSC can be used to move at greater speed, cover greater distances when advancing, 

retreating and lunging, and conserve the much-needed energy required to compete 

over daylong competitions. In conclusion, we feel fencers should make full use of the 

SSC and therefore be taught to bounce. 
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