
RA2: Predicting Simulation Execution Time for
Cloud-Based Design Space Explorations

Ta Nguyen Binh Duong∗, Jinghui Zhong∗, Wentong Cai∗, Zengxiang Li†, Suiping Zhou‡
∗ School of Computer Science and Engineering
Nanyang Technological University, Singapore

Emails: {donta, jinghuizhong, wtcai}@ntu.edu.sg
†Institute of High Performance Computing

Agency for Science, Technology and Research, Singapore
Email: liz@ihpc.a-star.edu.sg
‡Department of Computer Science

Middlesex University, United Kingdom
Email: s.zhou@mdx.ac.uk

Abstract—Design space exploration refers to the evaluation
of implementation alternatives for many engineering and design
problems. A popular exploration approach is to run a large
number of simulations of the actual system with varying sets
of configuration parameters to search for the optimal ones.
Due to the potentially huge resource requirements, cloud-based
simulation execution strategies should be considered in many
cases. In this paper, we look at the issue of running large-
scale simulation-based design space exploration problems on
commercial Infrastructure-as-a-Service clouds, namely Amazon
EC2, Microsoft Azure and Google Compute Engine. To efficiently
manage cloud resources used for execution, the key problem
would be to accurately predict the running time for each simula-
tion instance in advance. This is not trivial due to the currently
wide range of cloud resource types which offer varying levels
of performance. In addition, the widespread use of virtualization
techniques in most cloud providers often introduces unpredictable
performance interference.

In this paper, we propose a resource and application-aware
(RA2) prediction approach to combat performance variability on
clouds. In particular, we employ neural network based techniques
coupled with non-intrusive monitoring of resource availability
to obtain more accurate predictions. We conducted extensive
experiments on commercial cloud platforms using an evacuation
planning design problem over a month-long period. The results
demonstrate that it is possible to predict simulation execution
times in most cases with high accuracy. The experiments also
provide some interesting insights on how we should run similar
simulation problems on various commercially available clouds.

Keywords—neural network, prediction, cloud-based simulations,
resource-aware

I. INTRODUCTION

Design space exploration (DSE) [1] is a process of finding
the optimal configurations for a system which minimize or
maximize the system’s objective function [2]. However, due
to the large search spaces present in most real-world systems,
finding good configurations by manually setting system pa-
rameters’ values is a tedious and time consuming task. DSE
is usually treated as an automated calibration problem where
the ideal configurations are found by running simulations of
the actual systems. To achieve the speed needed for practical

usage, DSE usually employs heuristics that prioritizes likely
optimal configurations instead of doing exhaustive search over
the entire design space.

In practice, for many complex systems, we still need to run
a large number of simulations to evaluate candidate configu-
rations, which is very time consuming. For instance, Russell
et al. [1] noted that evaluating all building configurations
for their energy consumption using a single core machine
could take more than a year. To cope with such resource
requirements, distributed/high performance computing infras-
tructures are usually employed. Cloud computing, due to the
on-demand, elastic nature of its resources and the pay-as-you-
go pricing model, might be preferred over other alternatives
such as constructing an on-premise data centre. In this work,
we consider cloud as the main execution infrastructure for DSE
problems. Infrastructure-as-a-Service (IaaS) cloud platforms
such as Amazon EC2 or Microsoft Azure provide a seemingly
unlimited amount of computing power on an on-demand basis.
However, system designers usually have limited budgets, so
resource management in cloud-based DSE becomes an impor-
tant problem. Given a certain budget to explore some design
alternatives, the objective in many cases could be to finish the
exploration in the shortest time possible.

Efficient resource management for cloud-based DSE is
therefore needed to maximize designer’s objective given bud-
get or time constraints. Most cloud providers like EC2 charge
coarse-grained billing units (e.g., an hour) which may incur
resource under-utilisation and high cost if the designer does not
plan the DSE execution properly. Sound resource management
strategies, including virtual machine provisioning and simula-
tion task scheduling, would benefit significantly from insights
into the workload that has to be dealt with. For example,
Genaud et al. [3] showed that if the running times of tasks
in a workload are available, achieving cost-effective and time-
efficient execution for many applications is possible using
simple bin packing heuristics.

In the context of DSE problems, accurate prediction of run-
ning time for cloud-based DSE tasks (simulations) before they
are actually executed is not trivial for several reasons. First,
such prediction is application-dependent which means a certain

level of knowledge regarding the simulation would be needed.
A typical DSE simulation might have many configuration
parameters with varying degrees of influence on its execution
time. Another challenge is the resource multiplexing nature of
most commercial cloud providers. A DSE simulation would be
running on a virtual machine (VM) which shares the underly-
ing physical resource with other co-located VMs via a layer
called the hypervisor [4]. Despite recent advances regarding
resource isolation in contemporary hypervisors, performance
interference from noisy neighbors could pose a significant
problem for accurate execution time predictions [5]. Last
but not least, popular cloud platforms today offer a wide
range of resource types which come with varying levels of
performance. For example, the recently introduced t2 instances
(from EC2) dynamically adjust a VM’s share of CPU resource
over time [6]. Such performance variability adds another layer
of confusion to many existing performance predictors, which
have been dealing with only application’s parameters [7]–[9].

In this paper, we aim to enable efficient resource man-
agement for cloud-based DSE by taking the first step to
examine whether it is possible to accurately predict simulation
execution times on various production cloud platforms. The
specific contributions of this paper are as follows.

• We propose a resource and application-aware (RA2)
approach to predict the execution time of DSE simu-
lation tasks. Most existing work are only application-
aware, which might not be adequate in cloud-based
environments where performance variability is preva-
lent.

• We implement the RA2 approach using an artificial
neural network (ANN) based predictor. The predictor
is augmented with a lightweight performance mon-
itoring tool named PerfMon to detect if there are
variations in the cloud resource’s performance.

• We conduct extensive experiments to predict execution
times of CPU-bound DSE simulation tasks on three
most popular IaaS cloud providers. We use an agent-
based crowd evacuation planning problem as a case
study [10]. The obtained results have demonstrated
the effectiveness of our approach. In particular, the
predictor has close to 90% accuracy in most cases,
when used in conjunction with data from PerfMon.

The rest of this paper is organized as follows. Section II
summarizes key DSE concepts and motivates the simulation
time prediction problem. Section III presents the prediction
approach and techniques. Section IV describes experiments
and results. Section V discusses related work, and Section VI
concludes the paper and outlines some future work.

II. CLOUD-BASED DESIGN SPACE EXPLORATION

In exploring a design space, a system S can be defined as
an array of N configurable parameters ρi:

S = {ρ1, ρ2, . . . , ρN} (1)

If we assume that each parameter ρi has M possible values,
then the number of possible configurations θ we might need to
explore would be exponential: MN . Therefore, finding optimal
configurations in the search space requires the system designer

to evaluate many candidate configurations which could be very
time consuming and costly. A commonly used objective is
to find the best configurations within a given budget, in a
minimum amount of time.

In simulation-based DSE, the exploration process could be
improved by employing: 1) a heuristics search algorithm to
efficiently search for the optimal or near optimal configura-
tions; 2) a simplified simulation model of the actual system
to evaluate the candidate configurations; and 3) an automated
framework which enables faster evaluation via scalable, high
performance computing infrastructure [1].

In practice, a typical DSE implementation (see Figure 1)
could be separated into two parts: optimization loop and execu-
tion. The optimization loop has a Selector which incorporates
some search heuristics. The execution component consists
of a Resource Manager which is responsible for executing
candidate configurations.

Figure 1. A typical DSE implementation: Selector selects some configurations
and sends to Resource Manager to run. Selector waits until all selected
configurations have been evaluated. DSE Resource Manager talks to cloud-
based infrastructures to enable simulation executions.

Generally, DSE is an iterative process. Selector selects
a batch of configurations to be considered in each iteration
and sends to the Resource Manager. The latter then executes
a simulation instance for each candidate configuration. After
the completion of all simulation instances, Resource Manager
feeds their outputs back to Selector which will decide whether
a satisfying configuration has been found. If not, based on
the results of the just evaluated set of configurations, Selector
selects another bunch of candidates for evaluation in the next
iteration. This process continues until the desired configuration
has been found, or all the configurations in the search space
have been evaluated, or there is no more budget/time. To speed
up the search, Resource Manager needs to employ appropriate
resource provisioning and scheduling techniques to run many
configurations concurrently. A cloud-based Resource Manager
administers VMs from either public or on-premise clouds
to facilitate simulation executions. The main objective is to
execute all simulations within a given budget in the shortest
time possible.

Given the above objective, Resource Manager must effec-
tively deal with the following issues in each DSE iteration:
1) to decide whether it is necessary to send simulation tasks
to public clouds; 2) to decide how many VMs are needed and
which cloud provider(s) to acquire VMs from; and 3) to sched-
ule tasks onto the acquired resources. It is obvious that efficient
provisioning and scheduling would benefit tremendously from
accurate insights into task execution times.

III. SIMULATION EXECUTION TIME PREDICTION

A. Problem Analysis

Predicting execution times for many simulation instances
on public clouds is not a trivial task due to several reasons:

• Such prediction could be very much application-
dependent which means a thorough understanding
regarding the simulation in question might be needed.
This is not always possible since the system designer
may not be the developer for the DSE’s simulations.
A typical DSE simulation might have many config-
uration parameters with varying degrees of influence
on total simulation time. The problem here is, without
deep domain knowledge, what should be the param-
eters that we need to choose to maximize prediction
accuracy.

• Another challenge is the resource multiplexing nature
of most commercial cloud providers. A DSE simu-
lation would typically be running on a VM which
shares the underlying physical resource with many
other co-located VMs running potentially different
applications. Despite recent advances in resource iso-
lation in contemporary VM hypervisors, performance
interference from noisy neighbors could still affect the
accuracy of many performance predictions [5].

• Newly introduced cloud resource types with different
performance guarantees may confuse predictors. For
example, the t2 family of instances recently introduced
by Amazon EC2 provide a baseline CPU performance
with the ability of bursting using CPU credits [6].
When using this kind of instances, the CPU perfor-
mance could vary over time, depending on the amount
of CPU credits available for a VM. Traditionally, EC2
instance types such as m3 provide fixed performance,
which makes it easier to carry out predictions.

In this paper, we propose an approach to predicting ex-
ecution times for DSE simulations that is both resource and
application aware. This approach, termed RA2, utilises two
sets of input data: the set of configuration parameters for
a single simulation instance θ, and the current performance
level of a particular cloud VM which will be used to run this
simulation instance. Here we focus on CPU-bound workload,
so the CPU performance of a given VM should be considered
carefully. We are interested in prediction models which can
capture potentially complex nonlinear relationships in multidi-
mensional input data; and are able to produce a single output
which is the predicted execution time.

B. Neural Network: Application-Aware Predictor

Artificial neural network (ANN) [11] is a predictive
model that has inspirations from real-world biological neural
networks. It performs well on function fitting problems, and is
particularly well suited for dealing with non-linear problems
which are prevalent in the real world, such as our simulation
time prediction problem.

An ANN is organized as layers of interconnected nodes
(i.e., neurons). The first layer is referred to as the input layer
which takes input values (in our case, these are simulation

parameters) and communicates to one or more hidden layers
where the actual computation is carried out via weighted
connections. After the computation in hidden layers is done,
the output layer finalizes the results and returns the output,
which is the predicted execution time in this case. The number
of input nodes is equal to the dimension of the input data;
whereas the number of nodes in the hidden layers could be
varied. Since we need a single output value, the output layer
in our ANN-based predictor has only one node, but more than
one output is also possible.

The internal computation of each node in a network uti-
lizes a network activation function (e.g., the sigmoid func-
tion) which takes results of the previous layer and con-
nections’ weights as inputs. After the computation, if the
result exceeds the activation threshold value, it is propagated
to the next layer. If an output value of the ANN-based
predictor differs from the expected output in the training
dataset, the difference is propagated back to the hidden lay-
ers to adjust their weights accordingly. This is to ensure
that next time the predicted output could be closer to the
expected output. This is referred to as back-propagational
neural networks. In this paper, we consider some of the most
commonly employed back-propagational ANN algorithms in-
cluding Levenberg-Marquardt (LM), Bayesian Regularization
(BR), Scaled Conjugate Gradient (SCG), and Resilient Back-
propagation (RB) [12]. The Levenberg-Marquardt algorithm is
suitable for most problems. Other problems with noisier data
may consider the Bayesian Regularization algorithm, which
might take a longer time but could obtain a better prediction.

C. PerfMon: Resource-Aware Prediction Augmentation

Up to this point, the ANN-based predictor is just
application-aware, for it only looks at application-related in-
formation. More specifically, it uses historical data which
consist of actual configuration parameter values and their
corresponding execution time to build predictive models. It
assumes the computing resource is available at a constant
level. However, the performance fluctuation inherent in cloud
resources and numerous VM instance types offered by cloud
providers pose a significant challenge for accurate predictions.

Our resource-aware approach is to augment the ANN-based
predictor with appropriate information regarding the cloud
resources. Given a set of simulation instances with varying
configuration parameters, the first step is to identify the set of
cloud resources which will be used to run these simulations.
These resources could have been acquired earlier by the DSE
Resource Manager in some previous DSE iterations. The next
step is to gauge the current level of performance for these
resources, e.g., for EC2 t2 instances, a typical measure would
be the remaining CPU credits for each VMs. A CPU credit
would allow the VM to utilize the full performance of a CPU
core in one minute [6].

We develop a lightweight performance monitoring tool
named PerfMon to detect potential performance changes in the
VMs which will be used to run DSE simulations. PerfMon is
deployed onto each of the VMs acquired by DSE Resource
Manager. In this paper, we only consider CPU-bound work-
load. Therefore, PerfMon is designed to provide an estimation
of CPU availability for a particular cloud VM. For t2 instances
on EC2, PerfMon can make use of the Amazon CloudWatch

API [13] to get the CPU credit balance of a VM. This could
be a good indicator of how long a particular VM would
run with a full CPU core. For VMs on Azure and Google
Compute Engine, PerfMon runs a fixed number of floating
point operations for a predefined period. If there are little
CPU variations, each run in PerfMon would take about the
same amount of time; otherwise, execution times of PerfMon
would differ in different runs. PerfMon calculates the average
of these execution times as an indicator of the VM’s near-term
performance.

PerfMon introduces minimal overhead when executing its
floating point operations: one run takes about half a second
when there is enough CPU credit, and around 5 seconds
otherwise on an EC2 t2.micro instance. Nevertheless, running
PerfMon on the target VM before every single prediction might
not be necessary. For example, performance of t2 instances
might not change very frequently. Figure 2 shows the time
taken for each PerfMon run over a short period of time on
an EC2 t2.micro VM. It is observed that after a period of
good performance, execution times increase sharply. This is
due to the VM running out of its initial CPU credit [6].
Its CPU performance has been reduced to around 10% of
the full performance of a CPU core. By capturing these
changes, PerfMon could enable more accurate execution time
predictions.

Figure 2. Running PerfMon on an EC2 t2.micro VM. The x-axis shows that
there are 500 runs, while the y-axis shows execution time for each run in
seconds. Around after the 180th run, each run takes significantly more time.
This indicates significant reductions in CPU performance due to insufficient
CPU credits.

The RA2 prediction algorithm is as follows. Basically,
after the ANN-based predictor provides initial execution time
predictions for a new batch of simulations, PerfMon will
be executed. Depending on the performance estimations, the
predicted values given by the ANN model will be adjusted
accordingly. For example, assume that the predicted execution
time of a simulation s is t minutes initially. Now after running
PerfMon, the algorithm could see that there’s an available VM
v to run s with a full CPU core’s performance. In this case,
there will be no adjustment to t, and v will be marked to note
that it will run s later on. This is to update v’s remaining CPU
capacity which could be used again for subsequent predictions.
However, if the only available VM v has a reduced level of
CPU performance, say only 10% of a full CPU core, then t
would need to be scaled up by a factor of around 10.

Based on predicted execution times, the DSE Resource
Manager would then make a decision on whether to acquire

additional VMs, or to release some of its current VMs to
save cost. Detailed provisioning and scheduling algorithms are
outside the scope of this paper. However, in Section IV, we
consider a simple simulation task scheduling algorithm for
comparing similar VM types from different cloud providers.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the accuracy of the ANN-based
predictor, and PerfMon’s augmentation mechanism. We first
describe the case study used in our experiments. Experiment
configurations and setup are elaborated next, followed by
results and analysis.

A. Evacuation Planning Using Agent-Based Crowd Simulation

Building design for quickly evacuating crowds from an
indoor place, e.g., train station, shopping mall, etc., in case of
an emergency such as fire or explosion is an important problem
in urban planning. In this paper, we consider this evacuation
planning case study as a real-world DSE problem. Crowd
evacuation simulation (CES) [10] models this problem, and
provides a range of parameters for building designers to
calibrate their designs.

Figure 3. CES models an enclosed space such as an air-conditioned
train station or shopping mall. The dots are actually autonomous agents for
representing humans. Obstacles and other objects can be inserted into the
space.

In CES, a number of autonomous agents are randomly
deployed over an enclosed space. An example is shown in
Figure 3. In this example, there is an exit gate on the right of
the space. All of the agents will try to evacuate from the space
via the exit (there could be more than one exits). The size of
the space, the exit’s width and position, and the number of
agents could be varied. The social force model [14] is used
to determine the collision avoidance movements of agents.
The total evacuation time is defined as the duration from
the beginning of the simulation to the time when all agents
successfully evacuate the room. In this paper, our objective is
to accurately predict the execution time for each instance of
this simulation.

The simulation’s configurable parameters with their corre-
sponding value ranges are summarized in Table I. Some pa-
rameters listed in Table I are model parameters (e.g., MA, MB,
MK1, and MK2); others are application-specific parameters
(e.g., number of gates, gate position, number of agents). DSE
can be used for model parameter calibration or for evaluating
the effects of application parameters. Some of the important
parameters are explained below.

• A: The number of autonomous agents.

• T: The time step to update position and velocity of
agents.

Table I. CROWD EVACUATION SIMULATION PARAMETERS

Properties Parameters
Agents (A) Time Step (T) CTime Step (CT) MA MB MK1 MK2 V0 Vmax Gates (G) Gate x-Position (GP)

Min 10 0.0625 0.03125 100 0.01 10 10 0.5 1 1 21
Max 500 0.5 0.5 5000 0.2 300.000 300.000 2 4 10 28

• CT: The time step to calculate collision avoidance
movements.

• MA, MB, MK1, MK2: The parameters for the basic
social force model [14].

• V0: The initial speed of agents.

• Vmax: The maximum speed of agents.

• G: The number of gates.

• GP: The x-position of the right wall of the space, i.e.,
a variable to determine the length of the space.

B. Experiment Setup

1) Workload: Uniform random sampling over the space of
configurable parameters is used to select a number of candidate
configurations in our experiments. We choose 5100 different
sets of CES configurations based on the value range of
each parameter given in Table I. Subsequently, 4100 randomly
chosen configurations are used for training the ANN-based
predictor, while the remaining 1000 configurations are used
for testing the prediction accuracy.

2) Cloud resources: We use various VM instance types
from three most popular public IaaS cloud providers: Amazon
EC2, Windows Azure and Google Compute Engine (GCE).
Since CES is a single-threaded application, we only consider
VM instance types having a single CPU core. Brief description
regarding each instance type used in our experiments are
summarized in Table II.

Table II. VM INSTANCE TYPES USED IN OUR EXPERIMENTS. ECU,
ACU AND GCEU ARE CPU PERFORMANCE MEASURES FOR EC2, AZURE

AND GCE, RESPECTIVELY.

EC2 t2.nano t2.micro t2.small m3.medium
CPU capacity Variable Variable Variable 3 ECU

Price ($/h) 0.01 0.02 0.04 0.098

Azure a1.basic a0.std a1.std d1.v2
CPU capacity Variable approx. 50 ACU 100 ACU 210 ACU

Price ($/h) 0.058 0.02 0.06 0.091

GCE f1-micro g1-small n1-standard-1
CPU capacity Variable 1.38 GCEU 2.75 GCEU

Price ($/h) 0.006 0.019 0.038

On Amazon EC2, we use four different instance types:
t2.nano, t2.micro, t2.small and m3.medium. These are the
instances with one CPU core. The t2 instances’s performance is
governed by their CPU credits [6]. Each t2 instance starts with
an initial CPU credit balance, and then continuously receives
more CPU credits per hour at a rate depending on instance size.
Once a t2 instance has run out of credit, its CPU performance
would fall back to a baseline level, which again depends on
the instance’s size. The m3.medium instance, on the other
hand, provides a fixed single-core CPU performance which is
equivalent to 3 EC2 Compute Unit (ECU) at a more expensive
price per hour than those of the t2 instances.

For Windows Azure, we also use four single-core instance
types belonging to different pricing tiers [15]. The a0 and a1
instances in the standard tier (denoted as a0.std and a1.std
in this paper) provide approximate performance of around
50 and 210 Azure Compute Units (ACU), respectively. We
also consider the a1 instance type from the basic pricing tier
(denoted as a1.basic). This instance type does not provide
CPU performance guarantees. Lastly, the instance type d1.v2
is from the optimized compute tier which provides excellent
CPU performance for higher pricing.

GCE provides three instance types having a single CPU
core [16]. f1-micro has the most attractive price, but it is a
shared CPU instance whose performance could vary signifi-
cantly. g1-small and n1-standard-1 have around 1.38 and 2.75
Google Compute Engine Units (GCEU), respectively.

3) Performance measure: In this paper, we use the mean
percentage error (mpe) [17] as the performance measure.
1 − mpe is used for measuring prediction accuracy (larger
is better).

C. Results and Analysis

Figure 4. Prediction accuracy on EC2 instances is over 80% in all cases. We
can observe that BR algorithm performs better than LM in most cases. The
more expensive instances, e.g., m3.medium have better prediction accuracy
due to performance stability.

The accuracy in predicting simulation execution times on
different EC2 instance types is shown in Figure 4. It is not
surprising to see that our ANN-based predictor performs best
with m3.medium instances, since these instances have a fixed
CPU performance (each has 3 ECU). The accuracies are 87%
and 88% for the Levenberg-Marquardt (LM) algorithm and
Bayesian Regularization (BR) algorithm, respectively. These
results serve as a confirmation that our predictor can model the
non-linear relationship between many simulation’s parameters
and the corresponding execution time. In addition, we note that
the BR algorithm performs better than the LM algorithm in
most cases. We have also evaluated the Scaled Conjugate Gra-
dient (SCG) and Resilient Backpropagation (RB) algorithms,
but their accuracies are not comparable to those of LM and BR.
For clarify, we omit SCG’s and RB’s results in this section.

Although the first three instance types, t2.nano, t2.micro
and t2.small, all have variable CPU performance, we can
observe that the overall accuracy for all cases is well over
80%. This is mainly because our lightweight monitoring tool
PerfMon is able to capture the levels of CPU performance
variation as another set of input to augment the initial predic-
tion results from the ANN-based predictor. As a result, even
when using the cheapest instance type which is t2.nano, our
predictor can achieve an accuracy of around 84%.

To verify the effectiveness of PerfMon, we also run the
predictor without PerfMon’s input. The difference obtained is
very significant. For instance, without PerfMon, when using
t2.nano instance, the prediction errors (measured by mpe) are
around 115% and 100% for LM and BR algorithm, respec-
tively. Note that an mpe higher than 100% means negative
accuracy. Such large errors might mislead cloud resource
provisioning algorithms, which may lead to high resource
over/under-utilisation. Similar results have been obtained when
predicting execution times on t2.micro and t2.small instances
without PerfMon.

Figure 5. Prediction accuracy on GCE instances. The prediction performance
is quite low for f1-micro, which is the cheapest instance type on GCE.

The prediction result for GCE is shown in Figure 5. In
general, the accuracy is around 80% and above for g1-small
and n1-standard-1 instance types, with or without PerfMon,
mainly due to their relatively stable performance. However,
predictions on the cheapest instance type, f1-micro, do not
seem to be very accurate. A more detailed look into the
performance of this particular instance type with PerfMon is
shown in Figure 6. We notice that f1-micro’s CPU performance
fluctuates significantly and very frequently. This makes it very
hard for any prediction algorithms. Even if we run PerfMon
before every single prediction, the instance’s performance
could go up or down considerably right in the next moment.
Therefore, our recommendation is that, for this kind of CPU-
bound workload, it might not be advisable to use GCE’s f1-
micro instance type due to unpredictable performance fluctu-
ations.

The prediction accuracy for simulations running on Mi-
crosoft Azure is shown in Figure 7. We can observe that even
for one of the cheapest instance types, a0.std, the accuracy
level is also very high (around 87-88%). This is mainly due to
the narrow range of performance fluctuations, as demonstrated
in Figure 8. The question is therefore: are Azure instances
more suitable to run CPU-bound workloads such as the crowd
simulations used in this paper?

Figure 6. Running PerfMon on a GCE f1-micro instance before each
simulation execution. The x-axis shows that there are 100 runs, while the
y-axis shows execution time for each run in seconds. We observe significant
and frequent fluctuations in CPU performance for this instance type.

Figure 7. Prediction accuracy on Azure instances is very high in all
cases. This demonstrates the stability in CPU performance of Azure instances
including the cheapest instance type.

Figure 8. Running PerfMon on Azure’s a0.std and a1.basic instances. The x-
axis shows that there are 500 runs, while the y-axis shows execution time for
each run in seconds. The CPU performance fluctuation is more pronounced
in a1.basic compared to that in a0.std.

We conduct more experiments using a simple scheduling
algorithm to compare the actual overall simulation execution
times on Azure’s a0.std and EC2’s t2.micro VMs. These two
are chosen since they have the same cost per hour. The
scheduling algorithm’s aim is to minimize overall execution
time for a batch of simulations by balancing the workload
across number of VMs, using each simulation’s predicted
execution time. Given a budget of $0.4, we can acquire either

20 t2.micro or 20 a0.std VMs for one hour (for EC2, you can
only run up to 20 t2 instances simultaneously). The overall
execution time is obtained using the actual execution time of
each simulation. The result is quite interesting: 20 t2.micro
VMs completed the execution of 1000 CES simulations in
about 10 minutes; while it took 20 a0.std VMs around 52
minutes.

However, if the t2.micro VMs are not newly acquired from
EC2, i.e., their CPU credits might have run out during previous
DSE iterations, the a0.std VMs would have the advantage. In
another experiment, we execute the same 1000 simulations on
a set of 20 t2.micro VMs whose initial CPU credits have been
fully depleted. This time round, t2.micro VMs took around
97 minutes to complete, which is 87% slower compared to
the time given by a0.std VMs. The cost of t2.micro VMs is
now also over the budget, as with $0.4 we can only get 20
t2.micro VMs for 60 minutes. From these experiments, we
can see that the accuracy of our RA2 approach enable the
DSE Resource Manager to make more informed scheduling
and VM provisioning decisions, e.g., whether to acquire new
VMs, if yes then from which cloud providers, or to continue
with existing resources. Such decisions are the key factors in
determining if a DSE execution could finish on time or within
the given budget, i.e., meeting designers’ objectives.

Last but not least, we consider the overhead of PerfMon
with respect to the overall resource consumption for simulation
time prediction and execution. We measure such overhead
by first obtaining the total time that PerfMon takes to gauge
CPU performance before predictions, denoted as tp. We then

compute the overhead as
tp

tp + ts
, where ts is the total time

for actual simulation executions.

Table III. OVERHEAD OF PERFMON ON VARIOUS INSTANCE TYPES

t2.nano t2.micro t2.small f1-micro a0.std
3.9% 4.2% 4.2% 4.3% 3.2%

The average overhead for the entire experiment is reported
in Table III. It can be observed that even if we run PerfMon
before every single prediction, its average overhead is quite
low, which is around 3-4% for most of the cases. We should
also note that this is considered the worst case overhead,
since we might not need to run PerfMon all the time for the
more stable instance types such as t2.small or Azure standard
instances like a0.std. We believe that our RA2 approach could
be a practical solution towards more accurate predictions of
execution time on cloud resources.

V. RELATED WORKS

Predicting task execution time has been well considered in
previous research, for example [7]–[9]. Chtepen et al. [7]
noted that prior knowledge of the execution times is es-
sential for efficient application scheduling, and proposed an
online prediction method based on extrapolation. The proposed
method improved the scheduling performance up to 15% for
three different workflow systems. Marco and Vecchiola [8]
proposed an execution time prediction algorithm for iterative
parallel applications and were able to reduce up to 35% of
runtime over-estimations with a 7% prediction error. Wang
et al. [9] made use of the linear relationship between task

size and execution time to obtain estimations for MapReduce
jobs in order to improve scheduling performance. These ap-
proaches have been focusing more on accurately predicting
execution times without much consideration for the underlying
computing resources. We note that performance prediction
for cloud-based applications is a more challenging problem
due to performance variability and diverse cloud resource
configurations.

Recently, there have been a growing interest in the area
of performance prediction for applications running on pub-
lic cloud infrastructures. CloudProphet [18] considered the
problem of selecting the best-performing cloud providers for
a given application. Hence, its focus is on predicting an
applications performance when running on a chosen cloud
platform, without actual deployments due to cost or security
concern. This could be done by emulating the application’s
behavior in the cloud. Similar approaches to [18] include [19],
[20]. On the other hand, empirical approaches including [21]
and [22] evaluate the application’s performance on actual cloud
infrastructures. Their focus is more on providing automated
methods to deploy and test applications using synthetic work-
loads. In this work, we collect actual, historical runtime data
for a limited set of our application configurations running
on commercial cloud providers. Such data will then be used
to build predictive models. Finally, we incorporate online
monitoring to obtain more accurate predictions before actual
application deployment.

Mozafari et al. [23] builds models to predict performance
and resource utilisation for cloud-based database applications.
Such applications have many different workload character-
istics from simulation-based DSE problems. More recently,
Gonalves et al. [24] considered a new approach called per-
formance inference to predict an application’s performance
when running on public clouds. The authors argued that it
should be possible to establish a relationship between different
resource configurations offered by an IaaS provider and the
actual resource capacity. Such relationship would enable more
accurate predictions for the expected performance of an appli-
cation, given a certain resource configuration and workload.
The prediction still needs to use historical data regarding
the application’s actual performance under other but related
resource configurations/workloads. Our approach is different
in that we use frequent performance monitoring to adjust initial
predictions based on historical data when needed.

In [25], the authors proposed an application-agnostic per-
formance modeling for cloud-based applications. Such a model
if successfully implemented would potentially be applicable to
a wide range of applications. This is an interesting direction
that might need more consideration in our future work; as it
could address public cloud’s inherent performance variability
to enable better prediction accuracy. However, the idea pre-
sented in [25] is still preliminary and not much results have
been reported.

There have been not much work in the area of predicting
execution time for simulations. [26] and [27] investigated load
prediction techniques in HLA-based simulations. The aim is
to enable dynamic load balancing of distributed simulations
to reduce the overall execution time. The approach presented
in [27] is specific to HLA-based distributed simulations. Our
focus in this paper is on predicting the execution times for

many single-core simulations so that more efficient resource
provisioning algorithms could be implemented.

VI. CONCLUSION & FUTURE WORK

In this paper, we have looked at the issue of execut-
ing simulation-based design space exploration problems over
commercially available cloud infrastructures. Such computing
platforms offer cost-efficient execution for various application
domains via a pay-per-use model; however the performance
variability makes it hard to carry out cost optimization in
many cases. We have proposed a hybrid approach to enable
more accurate predictions of simulation running time on cloud
resources. The approach combines a neural network based
predictor, and a lightweight monitoring tool to capture per-
formance fluctuations with negligible overhead. Data obtained
from the monitoring tool is then used to augment the initial
prediction results if necessary.

We have conducted extensive experiments on three of the
most popular cloud platforms, namely Amazon EC2, Microsoft
Azure and Google Compute Engine, using an actual crowd
evacuation simulation as a case study. The results obtained
demonstrated the effectiveness of our approach, with prediction
accuracy of over 85% in most cases. Our next step is to inves-
tigate some application-agnostic prediction approaches. This
would make it possible to accurately predict the performance
for a wide range of applications. Another direction would
be developing more effective cloud resource provisioning and
scheduling strategies, leveraging the predicted execution times,
for some real-world DSE problems such as building design and
evacuation planning.

ACKNOWLEDGMENT

The authors would like to thank Mr. Murat Karakus for his
initial contributions and help in this paper.

REFERENCES

[1] R. Russell, Z. Hayes, and F. Stuart, “Large-scale building simulation
using cloud computing for estimating lifecycle energy consumption,”
Canadian Journal of Civil Engineering, vol. 41, no. 3, pp. 252–262,
2014.

[2] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas, “Calibration
of abstract performance models for system-level design space
exploration,” J. Signal Process. Syst., vol. 50, no. 2, pp. 99–114, 2008.

[3] S. Genaud and J. Gossa, “Cost-wait trade-offs in client-side resource
provisioning with elastic clouds,” in IEEE International Conference
on Cloud Computing, 2011, pp. 1–8.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177,
2003.

[5] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi, and
W. Knottenbelt, “Cloudscope: Diagnosing and managing performance
interference in multi-tenant clouds,” in 23rd IEEE MASCOTS, 2015,
pp. 164–173.

[6] P. Leitner and J. Scheuner, “Bursting with possibilities - an empirical
study of credit-based bursting cloud instance types,” in 8th IEEE/ACM
International Conference on Utility and Cloud Computing,, 2015, pp.
227–236.

[7] M. Chtepen, F. H. Claeys, B. Dhoedt, F. Turck, J. Fostier,
P. Demeester, and P. A. Vanrolleghem, “Online execution time
prediction for computationally intensive applications with periodic
progress updates,” J. Supercomput., vol. 62, no. 2, pp. 768–786, Nov.
2012.

[8] M. A. S. Netto, C. Vecchiola, M. Kirley, C. A. Varela, and R. Buyya,
“Use of run time predictions for automatic co-allocation of
multi-cluster resources for iterative parallel applications,” Journal of
Parallel and Distributed Computing, 2011.

[9] G. Wang, A. Khasymski, K. R. Krish, and A. R. Butt, “Towards
improving mapreduce task scheduling using online simulation based
predictions,” in Parallel and Distributed Systems (ICPADS), 2013
International Conference on, 2013, pp. 299–306.

[10] J. Zhong, W. Cai, L. Luo, and M. Lees, “Ea-based evacuation
planning using agent-based crowd simulation,” in Proceedings of the
2014 Winter Simulation Conference. IEEE Press, 2014, pp. 395–406.

[11] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt.
Ltd., 2009.

[12] The Neural Network Toolbox. The MathWorks Inc., 2011.
[13] Amazon, “Amazon cloudwatch documentation,”

https://aws.amazon.com/documentation/cloudwatch, 2016.
[14] D. Helbing and P. Molnar, “Social force model for pedestrian

dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
[15] Microsoft, “Virtual machines pricing,”

https://azure.microsoft.com/en-us/pricing/details/virtual-machines,
2016.

[16] Google, “Google compute engine pricing,”
https://cloud.google.com/compute/pricing, 2016.

[17] C. Tofallis, “A better measure of relative prediction accuracy,” J Oper
Res Soc, vol. 66, no. 8, pp. 1352–1362, 2015.

[18] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “Cloudprophet:
towards application performance prediction in cloud,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, 2011,
pp. 426–427.

[19] F. Fittkau, S. Frey, and W. Hasselbring, “Cdosim: Simulating cloud
deployment options for software migration support,” in 6th IEEE
International Workshop on the Maintenance and Evolution of
Service-Oriented and Cloud-Based Systems (MESOCA), 2012, pp.
37–46.

[20] G. Jung, T. Mukherjee, S. Kunde, H. Kim, N. Sharma, and F. Goetz,
“Cloudadvisor: A recommendation-as-a-service platform for cloud
configuration and pricing,” in 9th IEEE World Congress on Services,
2013, pp. 456–463.

[21] M. Cunha, N. Mendonca, and A. Sampaio, “A declarative environment
for automatic performance evaluation in iaas clouds,” in 6th IEEE
International Conference on Cloud Computing, 2013, pp. 285–292.

[22] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park, and
C. Pu, “Expertus: A generator approach to automate performance
testing in iaas clouds,” in 5th IEEE International Conference on
Cloud Computing, 2012, pp. 115–122.

[23] B. Mozafari, C. Curino, and S. Madden, “Dbseer: Resource and
performance prediction for building a next generation database cloud,”
in CIDR, 2013.

[24] M. Gonalves, M. Cunha, N. C. Mendona, and A. Sampaio,
“Performance inference: A novel approach for planning the capacity
of iaas cloud applications,” in 8th International Conference on Cloud
Computing, 2015, pp. 813–820.

[25] S. Imai, S. Patterson, and C. A. Varela, “Cost-efficient elastic stream
processing using application-agnostic performance prediction,” in 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (to appear), 2016.

[26] R. Alkharboush, R. E. De Grande, and A. Boukerche, “Load
prediction in hla-based distributed simulation using holt’s variants,” in
IEEE/ACM 17th International Symposium on Distributed Simulation
and Real Time Applications, 2013, pp. 161–168.

[27] R. E. De Grande, A. Boukerche, and R. Alkharboush, “Time
series-oriented load prediction model and migration policies for
distributed simulation systems,” IEEE Transactions on Parallel and
Distributed Systems, no. 99, 2016.

https://aws.amazon.com/documentation/cloudwatch
https://azure.microsoft.com/en-us/pricing/details/virtual-machines
https://cloud.google.com/compute/pricing

