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Abstract

The transmission of digital colour images is rapidly becorﬁing popular on mobile telephones,
Personal Digital Assistant (PDA) technology and other wireless based image services.
However, transmitting digital colour images via mobile devices is badly affected by low air
bandwidth. Advances in communications channels (example 3G communication network) go
some way to addressing this problem but the rapid increase in traffic and demand for ever
better quality images, means that effective data compression techniques are essential for
transmitting and storing digital images. The main objective of this thesis is to offer a novel
image compression technique that can help to overcome the bandwidth problem. This thesis
has investigated and implemented three different wavelet-based compression schemes with a

focus on a suitable compression method for mobile applications.

The first described algorithm is a dual wavelet compression algorithm, which is a modified
conventional wavelet compression method. The algorithm uses different wavelet filters to
decompose the luminance and chrominance components separately. In addition, different
levels of decomposition can also be applied to each component separately. The second
algorithm is segmented wavelet-based, which segments an image into its smooth and non-
smooth parts. Different wavelet filters are then applied to the segmented parts of the image.
Finally, the third algorithm is the hybrid wavelet-based compression system (HWCS), where
the subject of interest is cropped and is then compressed using a wavelet-based method. The
details of the background are reduced by averaging it and sending the background separately
from the compressed subject of interest. The final image is reconstructed by replacing the

averaged background image pixels with the compressed cropped image.
For each algorithm the experimental results presented in this thesis clearly demonstrated that

encoder output can be cffectively reduced while maintaining an acceptable image visual

quality particularly when compared to a conventional wavelet-based compression scheme.
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CHAPTER 1

Introduction to the Research

1.1. Background

Over the past two decades visual communication has gained much popularity with mobile
telephones and personal digital assistants (PDAs). Visual communication is also becoming
increasingly important with applications in teleconferencing, telemedicine, digital
television, entertainment, online learning and many more. Parallel to this growth of visual
communication is the transmission of colour images that is, ‘picture messaging’ and the
Multimedia Messaging Service (MMS). With MMS users can add images to text messages.
. Digital colour images are usually large and they require more storage and transmission
time than grey-scale images. This can pose considerable problems for communication
networks due to the potentially large volumes of data involved, for example, transmitting a
512 x 512 colour image coded using 24 bits (8 bits/pixel) via a modem at 28.8
kilobits/second would take about 3.6 minutes. Table 1.1 and Table 1.2 give examples of
transmisston times and storage capacity for uncompressed images [Oh and Woolley,

1999].

Table 1.1 Transmission time Jor uncompressed PAL video image {source: Oh and Woolley,

19997
. . Transmission Time (hour)
?ff‘i‘;ge‘f F(‘}'g:t':)e Modem ISDN2 ISDNG El
(56 Kbps) | (128 Kbps) | (384 Kbps) | (2.048 Mbps
T sec 61440 0.3 0.1 0.04 0.008
3 min 7372800 36.5 16.0 53 1.0
5 min 18432000 913 20.0 13.3 2.5

Table 1.2 Digital media storage capacities for PAL video image[source: Oh and Woolley,

19997
Maximum storage capacity
Storage Media No of Frames | Duration of video
(min}

Magneto-Optical (MO) — 640 2560 14
Mbytes

MOQ — 2.6 Gbytes 10649 5.9
Recordable-CD —680 Mbytes 2720 - 1.5

DVD - 8.5 Gbytes 34816 19.3
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The data from the tables show that transmitting such a large number of bits using a normal

communications link is very slow and the storage capacity is inefficient.

Over the years, the problem of limited bandwidth of transmission channels has been
lessened by significant improvement in storage and transmission technologies. For
example a Digital Versatile Disk (DVD) is capable of storing Gigabytes of movies and
fibre optics can carry Terabits/sec. Broadband Internet access is available via Digital
Subscriber Line (DSL) and Asymmetric Digital Subscriber Line (ADSL) technology. At
the same time, there have been significant advances in image compression techniques (for
example, JPEG and MPEQG). This poses the question, is it worth continuing with research

into image compression?

Despite the improvements made in media storage technology, compression techniques and
the performance of transmission media as mentioned earlier, the demand for greater data
storage capacity and faster transmission speeds will continue to exceed the capabilities of
current technologies. Furthermore, there is still one application field that justifies putting
efforts into image compression research. This application is mobile computing. Unlike
their desktop counterparts, internet access via mobile devices is badly affected by low air
* bandwidth. The radio spectrum is a scarce resource and it cannot be altered. The charts in
Figure 1.1a and Figure 1.1b highlight the broad allocation of spectrum in the UK by
various categories of use. This data was provided by the Radio Communications Agency
and used by Cave-[2002] in work based on an analysis of the detailed spectrum allocation
table for the UK. it should be noted the information is based on an allocation table data
rather than on liceﬁsing records, thus there may be some disparities between the amount of
spectrum shown and the amount of spectrum actually issued under licence [Cave, 2000,

pp.207].

Further to the earlier discussion, in recent years third generation (3G) mobile
communications, broadband Internet access, and digital broadcasting delivered by
terrestrial wireless or satellite have been debloyed, which will invariably place additional
demands on the radio spectrum. Therefore, radio spectrum management continuous to be a
more important issue and has prompted the British government to review the way radio

spectrum was being managed [Cave, 2002].
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setting up a connection. These overheads render TCP/IP and HTTP unsuitable for wireless
telecommunication [Schiller, 2000, pp.316-317]. Advances in communications channels
(example 3G communication network) go some way to addressing this problem but the
rapid increase in traffic and demand for ever better quality images, means that effective
data compression techniques are essential for transmitting and storing digital images. The
main objective of this thesis is to offer a novel image compression technique that can help

to overcome the bandwidth problem.

1.2. Image Compression and Compression Standards

The previous section shows that effective data compression techniques are essential for
transmitting and storing digital images and thus, image compression has become very
important with the rapid growth in multimedia computing and the advent of the Internet.
Gonzalez and Woods [1993, pp.308] regard image compression as an enabling technology

and it is the subject of much research in industry and universities.

One of the most widely used image compression standards is the Joint Photographic
Experts Group (JPEG) and has been the preferred method in still image compression for
the past decade. JPEG is a discrete cosine transform (DCT) based compression standard
that works best or:1 ‘continuous tone’ or natural images but synthetic images, for example
clipart, with manyr sudden jumps in colour values will not so compress well. Nevertheless a

lot of the synthetic images used on the Internet are in JPEG format.

The JPEG compression algorithm first converts the original image into an YCrCb image.
The image is then divided into 8x8 blocks and each block is transformed using the DCT.
Compression is achieved via quantization followed by variable length coding (VLC)

[Wallace, 1992]. Each step contributes to the overall compression of the image.

Image Discrete Binary Output Data
— Cosine gl Quantizer |umpd Encoder  fummp
Transform

Figure 1.2 JPEG algorithm
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JPEG has a fundamental limitation that derives from the block-based segmentation of the
source image. Because of the block-based segmentation approach, a JPEG image can
suffer from annoying blocking artefacts. JPEG is a very efficient coding method but the
performance degrades at high compression ratios [Rao and Bopardikar, 1998, pp.167].

As mentioned earlier, JPEG is intended for continuous tone images. Other compression
standards like JBIG also exist. JBIG is a lossless method for compressing bi-level or bi-
tonal (black and white) [Jbig, 2002] images like regular printed text, for transmission
across a communication channel, for example, facsimile. JBIG is not widely applied
because there is no commonly used data format and there is no official JBIG file format.
However, JPEG and JBIG are part of other standards such as the TIFF file format and page
description languages like PDF.

In recent years researchers have focused on the utilization of discrete wavelet transforms
(DWT) in digital image compression. The success of the DWT as a compression technique
has prompted its inclusion in the JPEG2000 standard. The advantage of the DWT is that, in
contrast to the DCT, it does not divide the image into blocks, but analyses the image as a
whole. The wavelet transform allows a high compression ratio and yet maintains the image
quality [DeVore et al, 1992].

However, there exists a large selection of wavelet families and researchers are faced with
the task of choosing the most suitable wavelet for a particular application. Firstly, wavelets
can be divided into continuous and discrete transform groups. Furthermore, discrete
wavelet transforms can be orthogonal or biorthogonal. Which is the ‘best’ wavelet for
coding colour images? Hubbard [1998, pp.239] cited that Frage caution against spending
too much energy and that choosing a wavelet Choosing the best wavelet is quite a task.
Hubbard [1998, pp.240] also cited that Rioul disagrees with Frage and asks, “...why not try
to find the wavelet best adapted to a given task...” and even suggests custom-making

“...one’s own wavelets, with the properties one wants...”.

A brief examination of a typical wavelet-based image coder system reveals that the
encoder consists of three major parts, that is, the wavelet transform, a quantizer, and an
entropy coder. The image is first decomposed into wavelet coefficients. The quantizer then

quantizes the wavelet coefficients. The entropy coder produces an output bit stream and
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then encodes these wavelet coefficients. Although the overall performance of the coder
depends on all three parts, the choice of the wavelet will ultimately affect the performance
of the coder. From the above discussion this thesis concurs that the search for the best

wavelet for coding colour images is important.

Compressed
image

Input
image

s Transform =i Quantizer == Encoder s

Figure 1.3 A typical image compression system

" Wavelets have been used increasingly in compression systems. In spite of the widespread
interest in the application of wavelets in image compression, limited studies have been
conducted into the selection of the ‘best” wavelet from a large family of wavelets available

for a specific image.

Ln general, the following can represent the operation of a generic image coder;

I 0
T{}
Input _Output
image image

O=Til}

Figure 1.4 General representation of image coder

T{}is the systerﬁ transformation that maps the input image ‘I’ into the output image, ‘0’.

Therefore it can be said that the output image, ‘O’ is related to the input image, ‘I". If the
output ‘0’ is related to the input image ‘I, this could influence the performance of the
coder. Applying this to a wavelet-based image compression system, the wavelet filter and

the input image are important parameters and therefore warrant further investigation.

In the past, most research in image compression primarily dealt with grey-scale images and
therefore most test images used are grey-scale. This is not realistic in the current

environment where colour is a more attractive option. Hence this research is concemed
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with compression of colour images rather than grey-scale images. The major concern of
this research is to identify the best wavelet for compressing still colour images. Therefore,
. the initial research questions are:

1. What image statistics affect the coding performance?

2. Which wavelet filter is best for compressing a particular image?
Based on these questions, a systematic study of the effects of image statistics on coding

performance was carried out.

1.3. Applications

There are two specific application of interest in this research, namely mobile computing
and medical imaging. As mentioned earlier, ‘picture messaging’ and MMS are becoming
popular but transfnitting such a large amount of bits using a normal communications link
can be slow and may be costly using mobile devices. Current mobile devices like PDAs
have several constraints that is, limited processing, low display resolution, limited storage
capacity, and relatively limited communication speed. While technological advances will
reduce some of these constraints, mobile devices are likely to remain significantly less
capable than their desktop counter parts. For example, resolutions on PDAs are limited by
the compaciness of the screens and a typical handheld PDA screen is about 4 inches
diagonally, supporting 320 x 320 resolution. It is expected that screen resolution will
continue to improire but screen sizes are likely to remain small because most mobile device
users prefer compactness. Although the small screen of mobile devices is a disadvantage, it
offers an opportunity for a trade-off between image quality and transmission speed.
Another possible solution to the small screen factor is a scalable compression system in
which the user can determine the level of image quality. This is possible with a wavelet-
based compression system that can decompose the image to any desired level (in theory)
and hence offer a trade off between the image quality (PSNR) and image size (bytes

transmitted).

The other application area of interest in this research is in the compression of medical
images. The usage of mobile devices like PDAs is becoming more widespread among
doctors who need to access data such as medical images.from remote locations [Ratib et al,
2003, Lowes, 2002]. As mentioned earlier, the bandwidth and storage constraints of mobile
devices means that medical images too must be compressed before transmission and

storage. The trade off between bit rate and image quality is much more important when
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medical applications are being considered. Under some circumstances, speed and hence

low bpp may be the important factor whereas in others, image quality will be paramount.

For both of the application areas of. interest, the variability in the capability of the end
user’s mobile device is significant. A growing range of products is becoming available
with some wide variations in the key features already identified; display size and
resolution, processing power and storage capability. What is envisaged is a compression
system that will be able to select an optimal compression method to meet both the demands
specified by the user that is matched to their equipment. There is little point, for example,
in transmitting a high resolution image to a device that only has a low resolution screen,

even if the user has asked for it!

1.4. Overview of Research

As a major concem of this research is to identify the best wavelet for compressing still
colour images, different wavelets were used to compress a selected set of colour images.
The initial results show that different wavelets produce different varied coding
performance. Coding performance refers to peak signal-to-noise ratio (PSNR),

compression ratio (CR) and bits-per-pixel (bpp).

To explore and ‘to understand how the various image features affect the coding
performance, grey-scale image histogram features are used to analyse colour images. Grey-
scale image feature analysis is being employed initially as there is limited data on coding
performance measures for colour images. This will allow certain quantitative and
qualitative comparisons to be made. The histogram features are statistically based features
and they can provide information about the characteristics of the colour distribution of a
colour image. These features include first order statistics, for example mean, standard
deviation, variance, energy, entropy, skewness, kurtosis, and entropy. Other characteristics
explored include, image gradient. Frequency characteristics of the images such as spectral

frequency measure (SFM) and spatial frequency (SF) are also explored.

Different approaches to compressing colour images using wavelets are also explored. One
of the methods explored is the utilization of a dual wavelet to compress colour images. The
proposed dual wavelet compression scheme uses one wavelet to compress the luminance

image and another to compress the chrominance images. The results, although confined to
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a small sample of images and range of wavelets, clearly show that potential gains can be
achieved by the application of dual wavelets. The work on the dual wavelet scheme also
showed that coding performance could be further improved with a single wavelet by

processing the luminance and chrominance images at different levels of decomposition.

Another approach explored is a wavelet-based image compression scheme in which a grey-
scaled image is first partitioned into non-smooth and smooth segments and different
wavelets are then applied using the 2-D DWT. Initial results indicate that some
improvement in compression can be achieved through the use of a combination of wavelets
with little loss in the quality of the reconstructed image. This could prove to be a very
significant factor for mobile devices, where bandwidth costs can be high and small
reductions in PSNR would have little, if any, impact. The approach is extended to colour
images. The method first partitions the luminance image into smooth and non-smooth
segments and different wavelets are then applied using the 2-D DWT. The results show
that the combination of segmentation and wavelet selection based on image properties can

produce some improvements in compression.

The final approach explored is an image compression system called a hybrid wavelet-based
compression system (HWCS), which is based on the assumption that viewers are more
interested in the subject of interest (SOI) for a giveﬁ image than the background. A
subjective evaluation of the visual quality of the images indicates that this approach is

broadly successful.

1.5. Organization of Thesis

The following chapters of this thesis are organised as follows.

Chapter 2 presents the mathematical background of transforms used in the field of
compression with a particular emphasis on transforms used in image coding. The reason
for this is that, the researcher views the transform of an image coder as an important focus
in this research. Three major transforms are reviewed in detail, that is, the Fourier

transform, continuous wavelet transform and discrete wavelet transform.
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Chapter 3 is a literature survey and review of the work done in the field of image coding,
with a particular emphasis on subband coding and wavelets. Mallat’s multiresolution
analysis, which is the core of most wavelet-based compression schemes, is also examined
in this chapter. The literature review explores work using DCT based image compression
méthods, in particular the JPEG standard and its problems. The JPEG2000 standard, a

wavelet-based compression scheme, is also discussed in detail.

Chapter 4 is an extension of chapter 3 and begins with a consideration of early wavelet-
based compression schemes. These early schemes can be traced back to the works of
Queiroz et al’s [1997] and Huh and Hwang’s [1997]. Advanced wavelet-based
compression schemes, that use novel quantization and encoding techniques, like embedded
zero-tree wavelet scheme (EZW) [Shapiro, 1993] and SPIHT [Said and Pearlman, 1996]
are explored in detail. The chapter also explores wavelet-based compression schemes

applied to colour images.

Chapter 5 begins with a look at two common colour spaces, that is the RGB and YCbCr
colour spaces. A study of how different wavelet filters affect the coding performance of
colour images was carried out and the results are reported. Also included in this chapter is
a detailed study of which image histogram statistics have a connection with the coding

performance measures.

Chapter 6 explores different approaches to compressing colour images using wavelets.
This chapter begins by describing a method for identifying the frequency characteristics of
a colour image. Next, a dual wavelet compression scheme to compress colour images is
described. The scheme compresses colour images using different wavelet filters for the
luminance component and chrominance components. Section 6.4 describes a
segmentation-baséd wavelet image compression scheme to compress grey-scale and colour
images. In this scheme the image is first partitioned into non-smooth and smooth segments

and different wavelets are then used to compress them.

Chapter 7 starts with a look at the concept of ‘subject of interest’ (SOI) used in
photography. This chapter describes in detail an image compression system based on the

subject of interest called a hybrid wavelet-based compression system (HWCS). The HWCS
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is based on the assumption that viewers are more interested in the subject of interest for a

given image than the background.

Chapter 8 summarizes the main results of this thesis and puts forward ideas for future

work.



CHAPTER 2

Mathematical Background —
From Fourier to Wavelet transform

2.1. Introduction

One of the key components in image processing is the transform. Several transforms have
been used for image compressibn and these include Karhunen-Loeve, lapped orthogonal,
discrete cosine, and more recently, wavelets. As one of the main concerns of this research
is image compression this section will therefore examine three relevant transforms, the
Fourier transform, continuous wavelet transform, and discrete wavelet transform (DWT).
The reason for examining these thrcc transforms is that they are essential in the
understanding of the work of this research and it will be shown in this chapter that the
mathematics of wavelets can be traced back to the Fourier series and Fourier transform.

Included in this section is also a review of filter banks and their role in image compression.

As mentioned earlier, wavelet mathematics underpinnings can be traced back to the
Fourier series and Fourier transform. Therefore, it will be logical and beneficial to begin

this chapter with a look at Fourier series and the Fourier transform.

2.2. Fourier series
Jean Baptiste Joseph Fourier introduced the concept that any function can be expressed as
a series of sinusoidal waves that are multiples of a basic frequency [Bolton, 1995, pp.12]

and this can be expressed mathematically as;

fle)= %ao + ia cos nwt + "fb,, sin nwt (2.1)
n=| n=|

Equation (2.1) is the Fourier series in trigonometric form.

2.3. Fourier Transform

Aperiodic signals can be represented as weighted integrals of complex sinusoids that are
not harmonically related [Qian, 2002, pp.32]. The Fourier series can be extended to an
aperiodic because aperiodic signals can be viewed as periodic signal with an infinitely long

period, which can be derived by considering the exponential form of the Fourier series.

12
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70)=Sc,em 2.2)

n=—a
This exponential form of the Fourier series can be rewritten

()= rfcne[j"?] where w = %;E _ (23)

H=—al

" Asthe period T increases, the fundamental frequency 2—;— decreases, and the harmonically

related components become closer in frequency.

{08

106

J0.4

Amplitude
Amplitude

{0.2

1-0.2

0.4 - : : l - 0.4

Figure 2.1 Sinc wave

As T — « the spacing between harmonics, Aw, becomes smaller and smaller, and the

amplitude spectrum becomes a continuous graph [Balmer, 1998, pp.232-234].

With very small Aw intervals, the discrete sum becomes a continuous sum and so the
summation becomes an integral. Thus, the Fourier series-equation becomes
| | _
70 === Tr0w) e aw 2.4)
27
where

F(w)= [fle)emar 2.5)
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F(w) is the measure of the similarity between the signal f (t) and complex sinusoidal
functions. Equation 2.5 is known as the continuous Fourier transform and equation 2.4 is
the inverse Fourier transform (1FT). In the frequency domain, the function or signal f (t)
can be analysed for its frequency contents. Another advantage is that the signal f (t) can
also be filtered to improve or eliminate certain frequency components. The IFT re-

transforms the processed signal F(w) back into the time domain,

The Fourier transform is a powerful and common mathematical tool for signal processing.
However, it has drawbacks, notably it can be computed for only a single frequency at any
one time. Secondly, the Fourier transform can only provide information in the frequency
domain and no information in the time domain. In other words, time information is lost
[Misiti, 1997, pp.1-3]. The loss of time is due to the integration over time from - to

+ 0, hence time locality disappears.

If the signal to be analysed is non-stationary and contains some kind of discontinuity, then
the Fourier transform does not provide any information on where the discontinuity is in
time. Figure 2.2a shows a non-stationary signal with frequency components of 2 Hz, 4 Hz,
10 Hz, and 15 Hz. There is a small discontinuity between the 2 Hz and 4 Hz components.

However, the spectrum shows no indication of the discontinuity.

(a) - (b)
Figure 2.2(a) Signal with a discontinuity and (b) its Fourier transform
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2.4. Short Time Fourier Transform

The Short Time Fourier Transform (STFT), which is also known as the ‘Windowed
Fourier Transform’ [Phillips, 2003; Goswami and Chan, 1999, pp.60], was an attempt by
Dennis Gabor to overcome the lack of information on time locality in Fourier analysis
[Gabor, 1946]. Gabor modified the Fourier transform to analyse non-stationary signals by
dividing the signals into small sections. These small sections of the signal can then be
assumed to be stationary and their Fourier representation can then be computed. The result

is a signal that is mapped into a two-dimensional function of time and frequency.

Recall the Fourier transform 1s defined as;
F)= [r@ea
and the STFT is deﬁnet_i by;
STFT(z, f)= ? fle' t-r)e™ (2.6)

The difference between the Fourier transform equation and the STFT is the

function g’ (f — ) [Rioul and Vetterli, 1991]. The ‘*’ indicates a complex conjugation.

The function g’ (f—7)can be thought of as a window that is shifted along the signal f (o).
For each shift, the Fourier transform of the product function f(¢)g * (¢ — z) is compnted. In
the following figure, a window function is placed at t = -3. The window function and the
signal function f(t) are then multiplied. The Fourier transform of the product can then be
computed. The window is then shifted to a new position, multiplied with the signal f (r),

and the Fourier transform of the product is then computed. The procedure is repeated until

the end of the signal is reached.
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Figure 2.3 Computing STFT

The variables {f - 7)are the transform variables from the single time domain variable .

Therefore, it could be said that the STFT transforms a time-variable function (#) into a

time-frequency function.

The signal f{#) may then be reconstructed using:

7l)g"-7)= %?E(w)e"““ @.7)

The STFT does provide some information on both time locality and frequency spectra, but
it does have a limitation. The limitation is that once a particular window size is chosen the
same window is used to analyze every frequency of the signal. A small window results in
good time resolution but poor frequency resolution. A large window gives good frequency

resolution but poor time resolution.

To illustrate the effects of different window size, the STFT is applied to a non-stationary
signal (Figure 2.4) that consists of four sinusoids of 2Hz, 4Hz, 7Hz, and 9Hz. For the first
example, the window used is a Hamming window with a width of 100mS. The STFT of the

signal is shown in Figure 2.5a.



Chapter 2 17

Figure 2.4 Signal in the time domain

Figure 2.5a is a spectrogram that shows frequency against time. This figure indicates that

frequencies can be resolved but not time when the window width is 100ms.

() (b)
Figure 2.5 (a) STFT of signal (b) 3D spectrogram of (a)

Figure 2.5b shows the 3D spectrogram of Figure 2.5a. The figure shows four frequency
components at different time intervals. With a window width of 40mS the following plots

are obtained.



Chapter 2 18

@ | (b)

Figure 2.6 (a)STFT of signal with narrower window width (b)3D spectrogram of (a}

With a narrower window, the frequencies cannot be resolved but time is resolved. The
reason for this limitation may be reduced to the Heisenberg Uncertainty Principle [Rao and
Bopardikar, 1998, pp.18-19].

2.5. Wavelets
The continuous wavelet transform (CWT) is an alternative approach to the STFT. The
CWT is very similar to the STFT in'that the signal is multiplied with a function and the

transform is then computed for different parts of the time-domain signal.

A wavelet is a waveform that is limited in duration and has an average value of zero
[Misiti, 1997]. Wavelets tend to be irregular and asymmetric. On the other hand, sinusoids

are smooth, predictable and they do not have limited duration. See Figure 2.7.

(a) (b

Figure 2.7 (a) Sine wave (b) wavelet
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To understand the CWT, it is essential to examine two important ideas, that is, translation

and scaling. These ideas will be discussed in the following sub-section.

2.5.1. Translation and Scaling
For the purpose of discussion, a specific function will be used. Consider the function f{¢),
where:

f(€)=cos(5¢)e™ . (2.8)
Equation 2.8 describes a cosine function multiplied by an exponential. The result is a

function that decays rapidly.

Figure 2.8 f (t) = cos(51‘)e"rz plot

Assuming that f (t)=cos(51‘)e"‘z is a wavelet, then a function to be decomposed is

expressed as a linear combination of different translations and scalings of this wavelet.

Translation can be achieved by subtracting a value 7 from the variable ¢, that is, f (t —r).
This translates the function f (t) by 7 wunits and the equation is written as
f)= cos(St‘—r)e"rz . Figure 2.9(a) shows how the function f(f)= cos(St‘)e"‘2 is

translated or shifted by 6 units along the x-axis.
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(a)

Figure 2.9 (a) Translated and (b) scaled signal

If the variable ¢ is divided by a scaling factor s the fﬁnction f{(z) will be stretched or

compressed. Figure 2.9(b) shows how the function f (t) = carjs(St)e"r2 is scaled by a factor

of 0.4. The function is stretched or compressed, depending on the scaling factor ‘s ’°. The
scaling factor ‘s’ may be greater than one or less than one. The scaled and translated

wavelet can be written as:
wi(t)= 1 (@] (2.9)

where s and 1 refer to a scaling and translation of the wavelet f(t).

Figure 2.10 Scaling and translating
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2.6. The Continuous Wavelet Transform

Any function y{f) is a ‘mother wavelet’ or wavelet if it satisfies the following two
properties [Rao and Bopardikar, 1998, pp.1-2]:

1. The function integrates to zero:

?w(:)dr =0 (2.10)

2. The function is a square integral or, equivalently, has finite energy:

2

Tﬂw(tl dt < (2.11)

Let f(t) be any square integral function. The CWT of f (t) with respect to a wavelet y(r)

15 defined as;
cm} (z,5)= j f(:)-J}_-S-lw'[’-‘s'—’J dt (2.12)

where ‘=’ stands for ‘is defined as’.
‘7’ represents the time shift or translation and ‘s’ determines the amount of scaling, it is

also known as the scale and or dilation variable. r//‘(t—r) is the transforming function or
s

2

the ‘mother wavelet’, where ‘*’ indicates conjugation. This mother wavelet is similar to

. 1
equation (2.9). The wavelet transform is a function of two variables ‘7 " and ‘s . The ﬂ
s

factor is known as-the normalising factor which ensures that the energy stays the same for

alof‘rt and *s’.

Equation (2.12) can be rewritten in a more compact form by defining () as

-1

vi()= ﬁW(TJ @.13)

Combining equations (2.12) and (2.13) gives,

CHT, (r.5)= a]‘f(f]wl.s ()ar (2.14)

The equation (2.14) can be seen as an inner product that is
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(f(tlw: ()= _?f(t)w:.s (e)ar . (2.15)

The equation (2.15) represents the inner product of two functions, defined in the L?(R)
space. The CWT computes, via the inner product formula, the wavelet coefficient of £1(¢)
associated with the wavelety/] (t) [Liu and Chan, 1998, pp.7]. The coefficient indicates the
comelation of the signal f(f) with the scaled and translated wavelet 7 (t). The
correlation is a measure of the ‘similarity’ between the signal f(¢) and the wavelet W, ().

This view is illustrated in Figure 2.15.

Figure 2.15 f{t} along with haar wavelet

The Figure 2.15 shows a signal f(t) along with the haar wavelet with two different

translations and scales. For illustration purposes the haar wavelet is used because it the

simplest of all the wavelets.

2.7. Discrete Wavelet Transform

With reference to the above figure (Figure 2.15), it can be seen that in order to capture the
full characteristics of the signal f(¢), the coefficients have to be calculated for the whole of
the signal. The computation load can be quite heavy depending on the size of the window.
To circumvent this problem, the discrete wavelet transform (DWT) was developed. The
DWT algorithm is identical to that of a two-channel filter bank analysis.

The original function f(¢)can be reconstructed by:
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1 o« o
t)=— T,8 dsdr 2.16
f ( Cw ;[ msz f ( )llr s( } ( )
where C, is a constant that depends on the choice of wavelet and is given by
¥
C, = j' @) (2.17)
T

where W(w)is the Fourier transform of the mother wavelet (t). Equation 2.17 is known
as the admissibility condition [Vetterli and Kovacevic, 1995, pp.301]. The admissibility
condition implies W(0)= 0, that is:

= g]w(t)dr =0 (2.18)

which means the mother wavelet y{f) has to be a bandpass filter in the frequency domain.
To recover from its inverse wavelet transform (1WT), w(t) must satisfy equation 2.18.
This. condition restricts the selection of functions, that is, mother wavelet, w(t). As far as

the CWT is concerned, practically any function can be called a wavelet, provided it has a

zero integral,

The CWT generates a lot of redundant data. Alternatively, the original signal or function
can be reconstructed by a sampled version of CWT Jf(t,s). The CWT f(r,s) .can be

sampled in a dyadic grid, that is, 7 = k2~ ands =2~/ [Goswami and Chan, 1999, pp.72;
Vetterli and Herley, 1992 ]. Substituting 7 and s into equation 2.12 gives

cwr(k2 27 )= Tf(:) ! : w‘["'fz._der
= [feN27 w2/t k)
CWT (k27,277 )= jfr)y ()t = aj (2.19)

where (1) is the dilated and translated mother wavelet /() defined by

w,, )=2"yl2/ k) ' (2.20)
Altematively, v, (t) can be written as

wi(e)=2""y(2/1 - k) 2.21)
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The original signal can be recovered from the sampled wavelet transform by

10=3 Yaiwil) (2.22)

where a is a two-dimensional set of coefficients known as the discrete wavelet transform

(DWT) of [ (r) The double summation in equation 2.22 indicates that the wavelets have

two parameters and they are translation and scale.

Functions or signals can be represented by a sum of scaling functions and/or wavelets. In
other words, wavelets can be used to represent functions as a series expansion. A series

expansion can be expressed as:

)= ay.() (2.23)

where i is an integer index of the finite or infinite sum, g, is the real-value expansion
coefficients, and w,(r) is the expansion set or basis set (basis function). The expansion set
is a set of real-value functions of ¢. Wavelet decomposition is achieved withy, (¢}, which

is also know as the ‘mother wavelet’ or generating wavelet. The expansion set or mother

wavelet ,{r) should match the features of f() in order to represent f(r) using only a

few coefficients. Therefore, the choice of i, (¢) is important.

Wavelets can be orthogonal that is their ‘inner products’ are zero
Wy, () = fv, by, () =0 (2.24)

The wavelet coefficients a, can also be computed by the inner product

a, =(fhwi @)= [7hi () (2.29)

2.8. Multiresolution Analysis

The function f{¢) can be decomposed into different scale levels, and each level can be
further decomposed into different scale levels. This ability to decompose a function into
different scale levels is called multiresolution analysis (MRA). Multiresolution is a

mathematical tool that is often used in wavelet-based image compression schemes. In
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multiresolution analysis two functions are required, that is a scaling functiong and a

mother wavelet Y.

2.8.1. The Scaling Function
The basic scaling function is defined as

¢ (1)=p(e - k) keZ, gel’
where ¢, () is known as a scaling function, and Zis the set of all integers. A scaling

function can be viewed as an element of a function space and not as a function that is
defined by a formula. A function space is a collection of functions that can be represented

by a sum of scaling functions and/or wavelets. One commonly used function space in
signal processing is the Z2(R) space. The L*(R) space contains all functions, which have a

finite, well-defined integral of the square.

The set of functions or expansion set @, (t) can span (generate) a subspace of L (R) This

subspace L?(R) is defined as

V° = Spanlp, (1)}

for all integers % from —0to oo. The bar indicates closure. This means that
f(t)zzak¢k(t) forany f{t)eV®.
k

A larger subspace can be spanned by changing the time scale of the scaling function. The
basic scaling function can span a set of 2D functions by scaling and translation, which may
be defined by

6(0)=2"¢(3't k) (2.26)

The subspace L’(R)spanned is defined as

v/ = Spanig, (2’ ;= Spanig! (1)} for ke Z.
k k

This means that if f(t)e ¥/, then it can be expressed as
)= apl2’t - k)
k

when j > 0, ¢/ (¢) is narrow and the span is large. This can therefore represent finer details.

When j <0, ¢/(t) is wider and is translated in larger steps [Burrus et al, 1998, pp.12]. In

other words, wider scaling functions represent coarse information.
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The function £(¢) is obtained as a linear combination of a dilation of ¢{t) by a factor of
2’and translated by k. In other words, the wavelet, ¢/ (t) is compressed j times and
shifted & times.

compressed : ¢] = ¢(2‘" t) shified : ¢ (t) = gt - k)

In MRA the whole function space is decomposed into subspaces. This implies that when
each function is decomposed, there will be a part of f(r) in each subspace. The basic
requirement of MRA is a nesting of spanned spaces:

Plc.Vicv'cvVicV' c..cV’/ cV/ . c?
¥%is known as the central space. Each ¥/is contained in the next subspace V!, that is,

the subspace ¥ /is contained in all the higher subspaces.

The space spanned by the scaling function ¢(2j t—k) can be denoted by ¥/ and this is
possible ifg{t)e V'. This implies that if @(r}is in¥°, it is also in ¥, which is spanned
by ¢(2t). '(é(t) can be expressed, in terms of a weighted sum of shifted ¢(2t) , as:

#(6)=> h(n)2"* g(2t - n), neZ (2.26)

where h(n) is the scaling function coefficients and 2"? maintains the norm of the scaling

function with the scale of two. This equation is known as the recursive equation or dilation

equation [Burrus et al, 1998, pp.50; Goswami and Chan, 1999, pp.91].

2.8.2. The Wavelet Function

The wavelet equation can be represented by:

w(t)=> h(n)2"* ¢(2t — n), neZ (2.27)

This equation produces wavelet functions that reside in the space generated by the scaling
functiong(r). The equation is a weighted sum of shifted scaling function #(2¢) defined in

the wavelet equation.

The wavelet equation generates the wavelet function, which gives the mother wavelet of

the form;
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wi()=2"y(2't - k) jkeZ (2.28)
where 2/> maintains the norm of the wavelet function of scale j. The set of functions

]

wi(t)generate the differences between the spaces generated by the various scales of the

scaling functions and these spaces can be denoted by W’. W/ are known as the detail

spaces and they are orthogonal to each other.

If the approximation f (t)at level jis denoted by 1/ (r), then
eV,
Since information at resolution level jis necessarily included in the information at a
higher resolution, ¥ /must be contained in ¥ #*', that is mathematically,
_ Vicv™ jeZ.
This also implies that
fi)ev,
It can be deduced from earlier discussion that there will be a part of f (r) in each subspace.
In other words f; (t) is the part in V7. A function in one subspace is in all hi'gher (finer)

subspace. Because of the definition of ¥/, the spaces have to satisfy a natural scaling

condition:

t

f)ev’ & f(2u)ev™
which insures elements in a space are simply scaled versions of the elements in the next

space [Burrus et al, 1998, pp.12].

The difference between f7/*'(¢) and f(¢) is denoted by

g’ ()= r""0)-1() (2.29)
then

)= () +d’ () (2.30)

Consequently, the subspaces can be decomposed and written as
v =yview!
where V' is called the scaling space and W~ is called the detail space at resolution level j

and is orthogonal to¥/. The @ symbol indicates a direct sum of orthogonal subspaces.
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V' @®W/ isthe set of all elements v/ + w’/ where v/ eV’ and w/ eW/,and so v/ 1 w’,

which is used to denote v/ is orthogonal to w”.

When the inner product between any element in #’and any element inV”’ is zero that

is(Wj,V’)=0 , then it can be said that ¥/ is orthogonal to# /. V/1W/is used to

denote V'’ is orthogonal to# /. This relationship can be described by the following

diagram;

Orthogonal )
complement of V!

Figure 2.16 Wavelet subspaces

Ifthe V space is further decomposed, then the following is obtained
v -wl ey’
=W ew’ ey
=W/ oW’ ew’ 7 ®..
-So the approximation space at resolution j,¥/, can be written as a sum of subspaces.

These subspaces are mutually orthogonal [Liu and Chan, 1998, pp.10].

The subspaces {V’ } are generated by a scaling function g{r) and the subspaces {W s } are
generated by a wavelety(r). Any function
f)ev’

can be written as

£0= Yaigler-k)= Satsl

k=—0
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and
g/ t)ew’

can be written as

)= Y a2 i-k)= Ydlv]
k=—m

k=—0

where {a,;’ }*Ez and {d H }kez are coefficients sets in £>(R).

2.9. The Frequency Domain

So far the discussion has been limited to the time domain. This section will examine the
relations discussed in the previous section in the Fourier or frequency domain. The Fourier

transform of the scaling function is represented by
$w)= [pl)>ar 231

where 53((0) denotes the Fourier transform of ¢(t), the scaling function. Recall the dilation

equation is defined as

8() =2 h,p(20 - k) (2.32)
k
If the dilation equétion is multiplied by ¢’* and integrated, then

wj;a(:)e-f“d: = > 2k, °°j;zs(zz — k™ dt

| R
(2 Re)

h ‘
Let H{w)=Y —£e™* then
©-275

#o)= H(ﬂ}»(ﬂ). (2..33)

2 2

H(w) is the discrete Fourier transform (DFT) of 4,. H(0)=1 if ¢(0)= 0. This implies

that the frequency response of H(w)at DC is unity (low-pass filter).

Similarly, the Fourier transform of the mother wavelet is
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()= zw(r)e-wdr and G(o)= 3 £Le°* then
u?(w)=G(-‘§J¢[§J (2.34)

where &(a)) and y?(a)) are the dilation and wavelet equation in the frequency domain,

respectively.

But if the equation

(2

do)-r(2) H(2)(2)]

after n iteration, this becomes
~ o\ @ @ o @
=H|—g| —|..H — |¢| —
o) [2)¢(2) [2”)¢[2"J

$(0)=T1 H[zw J (2.35)

n=1

is iterated then

This leads to

2.10. Analysis of signals

The idea of decomposition and reconstruction are often used in signal processing. The
decomposition or analysis process involves dividing the signal into different components
for processing. The reconstruction (synthesis) process reconstructs the decomposed signal.
An important issué here is the ability to reconstruct the decomposed signal perfectly. For

the purpose of discussion, the following equations are repeated here;

flevi and /()= a/4{ () (2.36)
g/)ew’ and g/(t)=3"dly/(r) 2.37)

Following the MRA requirement i.e.,V/*' =¥/ + W/ [Liu and Chang, 1998, pp.15], a
function

fj+l (t) e Vj+1

can be written as;
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[ =5+ g’ @)
=Yan O+ Tai) 29
k k
where ¢] = 2"’2¢(2ft - k)
wi=2"y(2'1-k)

2/’ maintains the unity norm of the basis function [Burrus et al, 1998, pp.32].

Using the dilation equation
#(0)= hin)2"* ¢(2t ~ n) (239)

and assuming a unique solution exists, then the scaling and translating of the time variable
‘t’ gives
#271- k)= Zh(n)2”2¢(2(2*'t —k)-n)

2.40
=Zh(n)2”2¢(2”l —2k—n) (2.40)

Using the variable m = 2k + n{Burrus et al, 1998, pp.31] and substituting it into (2.40)

gives ‘
#2/1—k)= Zh m—2k2"24(2" 1 - m) 241)
If ¥/is denoted as
v/ = Span{2/2 (21 - k )} (2.42)
k
then
fQev = )= a (v g2 - k) (2.43)

is expressible at a scale of j+1 with scaling function only and no wavelets [Burrus et al,

1998, pp.32]. At a lower scale resolution, wavelets are necessary for the ‘detail’ not

available at a scale of ;. Therefore

)= ; al (/"2 t-k)+ Y} (1)2”21/1(211.-— k) (2.44)

k
If the ¢/ (t) and y/(r) are orthonormal, the j level scaling coefficients are found by taking

the inner product:
ai()= ?f(r)zf’w @/ 1- k= (7()0¢ 0)) (2.45)

and by using equation 2.41 gives
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al(t)= [£ER"*Y hm- 262" g2t — m)ar
and interchanging the sum and integral, equation 2.45 can be written as

ai(t)=> h(m-2k) ]’ LRV (27— mit (2.46)

J’f(:)2‘f’*”’2¢,{ (2’”'[ - mpt =a]"'(m) giving

al(t)="> hm-2k)al" (m) (2.47)
The corresponding relationship for the wavelet coefficient is

di(t)=>" h(m-2k)a/" (m) : (2.48)

2.11. Digital Filter Interpretation
Equations 2.47 and 2.48 basically describe a digital filtering and down-sampling process.

The two equations indicate that the expansion coefficient a/*'(m) is convolved with the
time-reversed recursion coefficients A,(—n) and A (-n) followed by a down-sampling

process. The down-sampling process omits every other value of the signal to be sampled.
The convolution and down-sampling process produce the approximation and detail

coefficients at the next level j—1 [Burrus et al, 1998, pp.33, Villasenor et al, 1995).

dj

al,cwl(m) > hl("n) > *2 —
—pd af
k

> ho(—n) » ‘2 —

Figure 2,17 Two-band analysis bank

Figure 2,17 shows the implementation of equation 2.47 and 2.48 using a two-band analysis

bank where h,{(~7n) and h (~n) are finite impulse response (FIR) filters and the down

arrows denote down-sampling. The FIR filter implemented by 4, (- ) is a low-pass filter,

and A (-n) is a high-pass filter. The a;*'(m) coefficients are filtered by two FIR filters
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with coefficients #,(~n) and h (- #). The results are then down-sampled to give the next

coarser scaling and wavelet coefficients.

The filter coefficients #4,(-#) and & (- n) can be replaced by A, and A, to denote the

scaling function coefficients for the dilation equation 2.26. The frequency response of a

digital filter is the discrete Fourier transform (DFT) of its impulse response coefficients

h(n). This is defined by
H(o)= 3 Hop™

‘Using this definition, the filter coefficients h, and A can be re-written as H,(w) and

H, (a)) respectively. Using this notation Figure 2.17 can be re-drawn as

dJ

aimy [P 42
a;

> Ho(w) ‘2 —

Figure 2.18 Two-band analysis bank re-drawn

The splitting and decimation process can be repeated to give a two-scale structure.

e
V3 h, J'Z —> W
> o A > ‘2 —

hy . }2 2 1

4 > h, |—» lz —K

Figure 2.19 Three-stage two-band analysis tree

2.12. Synthesis of signals
The original signal can be reconstructed from a combination of the scaling function and

wavelet coefficients at a coarse resolution. This can be derived by considering a signal in

the j+1 scaling function space f(t)e ¥/*' and the function can be written as;
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Fe)= aj 2072 g2 _) (2.49)
k
or in terms of the next scale as
FO)= /270 1 —k)+ Y a2y (27 e ~k) (2.50)
k k
Substituting equation 2.41 and the following
w(t)=> h(nR2"? (2t ~n), nez (2.51)
into equation 2.50 gives
F0)=al > HnN27" g2 — 2k — n)+ ...
k n
3 d; Y k(N2 92 - 2k - n)
k n

(2.52)

Multiplying equation 2.49 and equation 2.52 by 2(*"*”’2¢(2”'t—k') and integrating
evaluates the coefficients as |

al" (k)= a’ (mh, (k —2m)+>" d” (m)n, (k — 2m) (2.53)

-—' TZ b4 (n) a,‘(”l (m)
it o gon) —gf

Figure 2.20 Two-band synthesis bank

2.13. Biorthogonal and Orthogonal Filter Bank
The combined analysis and synthesis structure with the associated scaling and wavelet

functions is illustrated in the following diagram:

Y

¥ _ v
d
aJ{H(L)’ > hl(") > ‘2 :. - 12 _.I gl(") }’G:H(m)
Tt {42 12 |- .
¢ ¢

Figure 2.21 Filter bank structure
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For a biorthogonal wavelet system the scaling function #(¢) and the dual ﬁ(t) are
respectively defined by:

#0)= 23 by (mp(2r —n), $(1)=23 g, (n)p(2r - n)

and the associated wavelet function and its dual are defined by:

V)= VZX 12}, ) =T 5, (21 ).

For an orthogonal wavelet system:

p=9¢,w=y
and

o(n) = 2o(n), ()= g,(n)

2.14, Summary

The chapter began with a review of the Fourier series and showed how the Fourier
transform is derived from the Fourier series. The drawback of the Fourier transform
discussed in section 2.3 shows why the wavelet transform is preferred. The drawback is

partially resolved by Gabor’s STFT and is discussed in detail in section 2.4.

An alternative to the STFT, that is, the CWT is discussed in section 2.5 and 2.6. Two
central ideas of wavelet theory, that is, scaling and translation are discussed in the same
sections. Section 2.7 examines the DWT in detail and the connection between the DWT
and filter banks is established in sections 2.11 and 2.12, which shows that the computation

of the wavelet transforms can be accomplished by using filter banks.

The concept of MRA is explored in detail in section 2.8. The role of the scaling and
wavelet function in MRA is discussed in detail. The scaling function is used to create a
series of approximations of an image or function and the wavelet function is used to
generate the details of an image, which contains the difference of information between

adjacent approximations.
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Lastly, the two main types of wavelets, orthogonal and biorthogonal wavelets are discussed
in section 2.13. The discussion shows that a biorthogonal wavelet filter uses two wavelets
instead of one wavelet as in an orthogonal wavelet filter. One wavelet is nsed for
decomposition and the other for reconstruction. By using two wavelets, biorthogonal

wavelets can be symmetric and have compact support [Hubbard, 1998, pp.243].
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Subband Coding, Wavelets, and Image
Compression — A Review

3.1. Introduction

The first recorded mention of ‘wavelet’ dates back to 1909, in a thesis by Alfred Haar.
However, the concept of wavelets in its present theoretical form was first proposed by Jean
Morlet, a French geophysical engineer, in the late 1970°s [Misiti, 1997, pp.1-29]. The
theory of wavelet transforms has developed from the early 1980°s. Since then wavelets
have become very popular and are being studied increasingly with applications in digital

signal processing and image processing.

The first orthogonal wavelets with compact support were constructed by Ingrid Danbechies
[Daubechies, 1988]. These orthogonal wavelets were implemented using a filter bank
algorithm, thereby establishing the link with filter banks and quadrature mirror filters
(QMFs) which is also known as subband coding.

3.2. Subband Coding

Subband Coding (SBC) is é method of encoding audio signals efficiently. 1t takes
advantage of the phenomenon of the human hearing system called ‘masking’. The human
ear is sensitive to a wide range of frequencies but when a lot of signal energy is present at
one frequency, the ear cannot hear lower energy at nearby frequencies. When this occurs,
the louder frequency is said to ‘mask’ the softer frequencies. SBC can save bandwidth by
discarding information of the masked frequencies. The result is an approximation of the
original signal. If the computation is done correctly, a human would not be able to detect
the difference. The basic idea of SBC is to divide the frequency band of a signal into
subbands and each subband is then coded with Pulse Code Modulation (PCM) or
differential PCM (DPCM).

In the late 1970°s Croisier et al [1976] and Crochiere et al [1976] developed the idea of
subband coding using QMF to compress speech. Croisier et al employed a method based
on interpolation-decimation-tree decomposition techniques to decompose the spectrum of a

band-limited, Nyquist sampled, signal into a given number of adjacent channels. Each

37
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channel is then moved and the sampling rate is reduced accordingly. The initial spectrum is

reconstituted without frequency folding or distortion.

The interpolation-decimation-tree decomposition technique has a drawback, that is,
aliasing, which occurs due to decimation. However, this drawback is overcome by the use
of QMF. Croisier et al [1976] gives the following definition of QMF. Given a digital
filter H, , its quadrature mirror filter H, is defined as follows:

Hz(w)=H,((;s —a)) G.1)

4, (0)=4, (w)i% (3.2)

where Hl(a))le(a))e"’"(“’)denotes the complex frequency response of the

filter H,, and @, = 27f, denotes the sampling rate.

xin] yi*[n
H, |2 |-~ | 12 o Gi
Xin[n) y[n]
. xz(n]  ya[n
H; > l 2 -* ------ ?- » T 2 G,

Figure 3.1 Two-channel QMF

With reference to Figure 3.1, the input signalx, [n]is filtered by H,and H,. The
filters H, and H, are known as an analysis filter bank (see section 2.11). Typically H, isa
low-pass filter and H,is a high-pass filter. The two output signals x,[n] and x,[n]
represent the low and high bands of x,, [n] The resultant spectra occupy half the Nyquist

bandwidth of the bﬁginal signal and the sampling rate in each band is then down-sampled

by a factor of 2. At the receiving end, x, [n] and x, [n] are up-sampled by a factor of 2 and
passed through a two-band synthesis filter bank which consist of the filters G, and G, (see

section 2.12). The outputs from these filters are then added to produce y[n].
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A similar implementation proposed by Crochiere et al [1976) uses a bank of non-
overlapping band-pass filters. However, this approach suffered from aliasing effects caused

by decimation and needed sophisticated band-pass filters.

3.2.1. Subband Coding of Images

As can be seen from the previous discussion, SBC originated in the context of speech
processing, but it can be extended to image coding. Work related to image coding using
subband coding caﬁ be traced back to the Kretzmer [1956] split-band quantisation method.
Kretzmer’s method was a high-frequency-low-frequency PCM-type approach. Another
approach that is more directly related to subband coding of images is Burt and Adelson’s
[1983] Laplacian pyramid which produces, an approximate frequency decomposition.
However, Burt and Adelson’s approach did not explicitly use any subband coding concepts
or QMF filters. Vetterli [1984] extended the QMF filter to a multidimensional case. 1t was
Woods and O’Neil [1986] who extended subband coding to 2-D images (subband coding
of images) using QMF.

With Woods and O’Neil’s [1986] approach, the image is filtered with a 2-D QMF, and
then the filter coefficients are sub-sampled. The resnltant subbands, that is, LL, LH, HL,

and HH are then formed.

Figure 3.2(a) shows how the input x(m,n) is split into four subbands. Each subband is

decimated by a factor of 2. After encoding, transmission, and decoding, the filtering

process is carried out in reverse. See Figure 3.2(b).

yu{m,n) ¥ "
» Hy. l 2 — —t 2 T Hn -
yu(msn) yu B W2
> le l 2 e 2 1 > Hu
x(m,n}
—
Yu(m,n) ¥ Uy
Hz, ' l ? _ 2 1 Hx
Yo(m,n) ¥= Ur
Hz; l 2 —_— 2 1 * Hn
(a) (b)

Figure 3.2 System diagram of 4-band splitting
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Each subband is upsampled by a factor of 2 and bandpass filtered to eliminate aliased
copies of the signal produced by the upsampling. The subbands are then summed to

reconstruct the original signal.

The subbands are then coded with a DPCM scheme. The bits are optimally assigned
among the subbands according to the DPCM error variances. An optimum mean square

Laplacian quantizer is employed to quantize each subband.

The subband coded images are presented along with their signal-to-ratios (SNR’s). The
SNR performance of the subband coder is compared to the SNR performance of an
adaptive DCT, vector quantization, and differential vector quantization for different bit

rates. The results show that the adaptive subband coder has the best SNR performance.

3.3. Wavelet and Filter Bank

Mallat [1989a, 1989b] developed the idea of multiresolution analysis (MRA). MRA
decomposes a discrete signal into frequency bands by a series of low-pass and high-pass
filters to compute its DWT. MRA is very similar to the Croisier et al [1976] coding
scheme. 1t could be said that historically, filters came first and then wavelets. It was
Daubechies [1988] who discovered that QMFs can be used to generate wavelet bases.
Since then, there have been a number of studies into wavelet and filter banks. This section

will explore some of these works.

3.3.1. Mutliresolution

As mentioned earlier, Mallat initiated the idea of MRA which provides a natural
framework for the understanding of wavelet bases. This section will explore Mallat’s work
on MRA.

Mallat’s paper [1989a] on multiresolution analysis of signal decomposition describes a
mathematical model for computing and interpreting multiresolution representation. In this
study, Mallat shows the properties of an operator which approximates a signal for a given

resolution. Mallat demonstrated that the difference in information between the
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approximation of a signal at resolution 2/*' and 2/ can be extracted by decomposing the

signal on a wavelet orthonormal basis of L’ (R” )

Mallat’s wavelet representation is calculated based on the decomposition of the original
signal using a wavelet orthonormal basis. A wavelet orthonormal basis is a family of
functions v2’ w(Zf x‘")(,-,n)ezu that can be built by dilating and translating a unique
function w(x)}. This decomposition defines an orthonormal multiresolution representation

called a wavelet representation. This representation can be computed with a pyramidal

algorithm based on convolution using QMFs. The algorithm is illustrated by the following;

G

A 4

h 4

l2 —>Dsz

d
Azl*' f

A 4

A 4

P 12 — A, f

Figure 3.3 Decomposition algorithm

G and H are high-pass and low-pass filters respectively. G is the mirror filter of H and they

are known as QMFs as described in section 3.2. A:, f is known as the discrete
approximation of f(x) and D,fis the discrete detail signal at resolution

2/.D,, f contains the difference of information between A,/ and 47, 1.

The original signal can be reconstructed from the wavelet decomposition with a similar

algorithm. The reconstruction algorithm is illustrated as follows:

d
A;f ~ _ - Az!*'
— 1’2 H + x2
D,f
¥, 12 e

Figure 3.4 Reconstruction algorithm
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This pyramidal algorithm based on convolutions with QMFs is very efficient. 1t can be
observed that the above-mentioned decomposition and reconstruction algorithm is very
similar to the subband coding of images proposed by Woods and O’Neil [1986]. However,
it should be noted that both schemes were developed independently. The mathematical
background of the decomposition and reconstruction algorithm has been discussed in
sections 2.10, 2.11 and 2.12.

In Mallat’s [1989a] study, decomposition and reconstruction algorithms in two dimensions

is discussed. The two-dimensional decomposition algorithm is illustrated in Figure 3.5.

In Figure 3.5 A;‘L1 f is known as the discrete approximation or reference signal of a signal

f(x) at the resolution2”. D,f,D.f,and D}, f are detail signals at resolution 2’. The

image A;m f is convolved with a one-dimensional filter and every other row is retained.

Next, the columns of the resulting signal are convolved with another one-dimensional filter

and every other column is retained. The filters used are the QMFs H and G described

earlier.

3

c i ="

" & =l2 H > l2 —szsz

Ad,+1 1}
L He s He

ﬁ d

% > lZ —bAﬂf

Figure 3.5 A two-dimensional decomposition algorithm

The following figure illustrates how the image Afm fis .decomposed

intoAf,f,D;,—f,D;,f,andD;-f-
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aif | DLr
D, f

D, f D f

Figure 3.6 Decomposition of an image

The image Az", J corresponds to the lowest frequencies, D;, f gives the vertical high
frequencies (horizontal edges), Dzz, f the horizontal high frequencies (vertical edges),

and Dj , f the high frequencies in both directions (diagonal}.

The reconstruction algorithm is illustrated in the following figure;

3
Dzi f; » Tz
D f T b—;TZ > é
—» o 12 y
D, f - C“L)_' x4 iwf
— é > 1‘2
A f 12 b &
— g > TZ

Figure 3.7 Reconstruction of an image

The image Aj. fis reconstructed fromA;, f,D,, f.D, f, andD], f. Between each

column of the images Af,f,D;,f,Dzz,f, andD;,f , a column of zeros is added and the

rows are convolved with a one-dimensional filter. A row of zeros is added between each
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row of the resulting image. Then the columns are convolved with another one-dimensional

filter. The filters used are the QMFs A and G described earlier.

3.4. Still Image Compression Standards

Section 1.] has shown that transmission of digital colour images using mobile devices such
as mobile telephones can be slow and may be costly. Thus effective data compression
techniques are essential for transmitting and storing digital colour images. The DCT-based
JPEG standard has been the compression standard of choice for many years, but in recent
years this has been overshadowed by the new JPEG2000 standard. JPEG2000 is a wavelet-

based compression standard.

The following sections begin by exploring image compression methods, in particular
JPEG. The JPEG2000 standard will also be explored in detail in section 3.9. This will help
to better understand the reasons why wavelet transforms have become the transforms of

choice for many image processing applications.

3.5. JPEG Standard

Much of the carlier work and research into image compression has produced image
compression standards that give excellent compression performance in terms of
compression ratio, peak signal to noise ratio (PSNR) and bits-per-pixel (bpp). The JPEG
standard is an example, which is widely used to compress continuous tone or natural

images.

JPEG is a lossy compression algorithm that exploits the human visual system
ineffectiveness to perceive small changes in colour in an image. The algorithm first divides
up an image into 8x8 pixels blocks and then converts the image from an RGB colour space
to a luminance-chrominance colour space, such as YUV. The next stage in the JPEG
algorithm is to apply a Discrete Cosine Transform (DCT) to the all 8x8 blocks. A two-
dimensional DCT is used and it is defined by [Wallace, 1992]:
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77 2 2
p(u,v)%(:(u)cm[; > 59 o5 P oo yf;)m] (33)

where C(u),C(v) = foru,v =0,

1
V2
Cw),C(vi=1 foru,v>0

With reference to equation (3.3), f{x,y) is the intensity or brightness of the pixel in row x
and column y. Fu,v) is the DCT coefficient in row #, and column v of the DCT matrix.
The output after the DCT process is a set of 64 basis-signal amplitudes or ‘DCT
coefficients’, which contains integers ranging from -1024 to 1023. Much of the signal
energy lies at low frequencies and these frequencies appear in the upper left corner (0, 0)
of the DCT matrix. In principle, the DCT introduces no loss to the source image samples, it
merely transforms the original 64-point signals to the frequency domain where they can be

efficiently encoded.

JPEG suffers from blocking artefacts when compression is high and they are most visible
at very low bit—ratclt. This artefact is primarily due to the negligence of correlations among
adjacent blocks by a coarse quantization of DCT coefficients independently in these blocks
[Yung et al, 1996]. Yung et al [1996] characterize and quantify the blocking artefact and
then propose an iterative post-processing approach to remove the blocking artefact. A
block classification scheme was developed to prevent over-smoothing in the edge and
texture regions. Frequency domain filtering, which exploits the correlation of low
frequency components among adjacent blocks was used. The attempt was broadly
successful in improving the JPEG decoded image to achieve a better visual appearance,
faster convergence rate and higher PSNR value but it has never been adopted or

incorporated by any compression standard.

Vanhoucke [2001] applied a method called the Modified DCT (MDCT), which is used in
perceptual audio coding, to overcome the blocking artefact. Using the Modified DCT for
transform coding of images seems to be a very practical solution to the bloéking artefact
problem. Even at high bit rate, the smoothing effect can produce very high quality images.

However, there are drawbacks to this method. The computational complexity can be
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expected to increase by 50%, and the bit allocation strategy is made more challenging.

Perhaps a faster algorithm to implement the MDCT might make it a more viable solution.

DCT-based compression schemes like JPEG utilize the fact that most natural images have
light or smooth edges. Therefore, most blocks contain primarily low frequencies, and these
blocks can be represented by a small number of coefficients without significant loss.
However, with synthetic images the edges are sharp in contrast to a natural image. Sharp
edges are associated with high frequencies. As a result, the DCT of the blocks where the
edges pass has high-amplitude coefficients indicating high frequencies. These high

frequencies cannot be removed without significant distortion.

The edges can be smoothed by adjusting the measures of block ‘edginess’ and image
roughness, while restricting the DCT coefficient values to values that would have been
quantized to those of the compressed image [Ahumada, 1995]. The basic steps of the
algorithm are first to minimize the root mean square (RMS) error by adjusting the DCT
coefficients and then calculating the block edge variance and finally, estimating what it
should be. Next, the block edge variances are lowered fo the estimated values from the
previous step and then all the DCT coefficients are quantized to the coefficients of the

compressed image.

All these methods seem to work well, but the computation overhead still remains high.
This may be reduced by the use of a simple low-pass filter. However, this simple solution

does have a drawback, that is, some information will be lost.

As mentioned earlier, the overall coding performance does not depend solely on the
transform alone but on the two other components of an image coder, that is, the quantizer
and entropy encoder. 1t would be logical to examine them to understand better their role in

image compression.

3.6. Quantization

Quantization is a process where the amplitude of a signal is converted into a finite series of
discrete amplitudes. In JPEG, the DCT coefficients are quantized in conjunction with a
quantization table: The quantization table is specified as an input to the encoder. The

quantization value is defined as:
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F9(u,v) = IntegerRound Flu,v) 3.4)
o))

where F€ isthe quantized value, F (u, v) is the DCT coefficients, and Q(u,v) is the value

from a quantization table. The quantized values are rounded off and then normalized by the

quantizer step size.

There are two types of quantization, scalar quantization (SQ) and vector quantization
(VQ). In SQ, the input is processed individually to produce the output, while in VQ, the

inputs are grouped together into vectors and processed to give the output.

3.6.1. Scalar Quantization

SQ is the simplest of all lossy compression schemes and it is used in the JPEG standard.
Research on scalar quantization includes Ortega and Vetterli’s [1997] novel technique for
adaptive scalar quantization. The algorithm utilizes samples that were previously
quantized, to estimate the distribution of the source. With this proposed scheme, the side
information needed to adapt to changing source statistics does not need to be sent. Ortega
and Vetterli [1997] proposed that the adaptive quantizer can be divided into two building
blocks, model estimation and quantizer design. The purpose of the model estimation is to
produce an estimate of the changing source probability density function. This estimate is
used to redesign the quantizer. The results show that loss due to adaptivity can be

minimized.

3.6.2. Vector Quantization

VQ is a lossy compression technique and can achieve higher compression ratios than SQ.
A review of VQ methods for image coding can be found in Nasrabadi and King’s paper
[1988]. VQ has also been extensively investigated for image subbands [Cosman et al,
1995]. Cosman et al cited that subband/VQ coders are very competitive with subband/SQ
coders that incorporate sophisticated lossless coding and both camps have repoﬁed
improvement in performance. Cosman et al also cited that Shannon theory supports the
distortion/rate superiority of VQ over SQ. However, the recent wavelet/subband coders
like JPEG2000 does not support this view and instead has opted for a scalar quantizer in its
implementation. Therefore, it remains to be seen whether VQ algorithms can achieve the

advantages predicated by Shannon theory.
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3.7. Entropy coding

Entropy coding is the last stage in the JPEG procedure. Additional compression is achieved
by encoding the quantized DCT coefficients. The JPEG proposal specifies two entropy
coding methods: Huffman Coding [Huffman, 1952] and arithmetic coding [Rissanen and
Langdon, 1979]. The entropy coding step achieves additional compression losslessly by
encoding the quantized DCT coefficients more compactly based on their statistical

characteristics.

A detailed description of the development of a method for the construction of a minimum-
redundancy code is found in Huffman’s paper. Huffman showed that a minimum-
redundancy code or ‘optimum code’ can be constructed in such a way that the average
number of coding digits per message is minimized. Huffman coding used in image
compression is based on the frequency of occurrences of pixels in an image instead of
symbols in a message. The pixels that occur frequently are encoded with a lower number
of bits. A Huffman code table and the encoded pixels must be transmitted so that decoding
can be carried out. A Huffman code table may have to be constructed for each image or for
a set of images. Huffman tables may be predefined and used within an application as
defaults, or computed specifically for a given image in an initial statistics-gathering pass

prior to compression [Wallace, 1992].

Unlike Huffman coding, the arithmetic coding method specified in the JPEG proposal
requires no tables ‘to be externally input, because it is able to adapt to the image statistics as
it encodes the image [Wallace, 1992]. Arithmetic coding encodes the symbols using non-
integer numbers of bits. It was the implementation of arithmetic coding by Moffat et al
[1995], which incorporates several improvements over a widely used earlier version that
has become a de facto standard. A paper by Howard and Vitter [1992] shows examples of
how arithmetic coding achieves its performance. The paper points out that the main
disadvantage of arithmetic coding is that it tends to be slow. Some of the other drawbacks
of arithmetic coding are also highlighted. A fast coder, based on reduced-precision
arithmetic codingk was developed to overcome these problems is discussed. The next

section explores research pertaining to wavelet-based compression.
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3.8. Wavelet-based Compression

As mentioned above, JPEG suffers edge effects and blocking artefacts at high compression
ratios. Different schemes have been proposed to reduce these artefacts and some of these
schemes are discussed in the preceding section. In recent years, novel approaches like
wavelet transforms have been used to resolve the problems encountered in JPEG-based
compression, One_‘such example is JPEG2000. JPEG2000 uses wavelet transforms instead
of the DCT. The advantage of a wavelet transform is thaf, in contrast to JPEG, it does not
divide the image into blocks, but analyses the image as a whole. Unlike the DCT used in
the traditional JPEG, wavelet transforms allow a high compression ratio to be achieved and
yet maintains the image quality. A recent study [Santa-Cruz et al, 2002] has shown not
only does JPEG2000 provide superior rate-distortion performance but that there is
significant improvement in functionality and it also provides lossy and lossless
compression. Similar works are also found in two separate publications: Santa-Cruz and
Ebrahimi, 2000a, Santa-Cruz and Ebrahimi, 2000b.

3.9. JPEG2000 Standard

JPEG2000 is a wavelet-based still image compression scheme and has several advantages
over the original jPEG standard. Firstly, JPEG2000 compression efficiency at low bit rates
is very much improved. In addition, new functionalities like multi-resolution
representation, scalability and embedded bit stream architecture, lossy to lossless

progression, and region-of-interest (ROI) coding are part of the standard [Adams, 2002].

Input
image - Discrete Wavelet
Tiling Level offset Colour »

— . » Transform Transform (DWT)
Compressed — A
image ; EBCOT :

4——| Bitstream |g Rate < ! < Quantizer

Control Coding

Figure 3.8 JPEG2000 encoding process

The tiling operation divides the input image into rectangular non-overlapping tiles or

blocks as depicted in the following figure:
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Figure 3.9 Tiling example

These tiles can be compressed independently. The tiling ;)peration is optional and it is only
used when the image to be encoded is larger than the encoder memory. Tiling can reduce
memory requirements since each tile is reconstructed independently. In addition, specific
parts of the image can be decoded, rather than the whole image thus reducing the memory
requirements. This tiling process is similar to the JPEG compression scheme although the
tile size is larger than the block size used in JPEG. The tiling process causes tiling artefacts

at the tile boundaries at low-bit rate [Liang et al, 2003].

3.9.1. Level Offset

JPEG2000 requires that the input sample data should have a nominal dynamic range
centred about zero. This requirement is the result of high-pass filtering used by JPEG2000.
To ensure that input sample data should have a nominal dynamic range centred about zero,
the level offset pre-processing stage is essential. Level offset is achieved by adding an
offset of — 2?7 to the input sample so that the samples have a signed representation in the
range of — 2”7 < x[n] < 2%~ [ Taubman et al, 2002, pp.418 . If the input sample is already

centred about zero then no level offset is performed.

3.9.2. Colour Transform

Most colour images are commonly represented in RGB -format, which is not suitable for
image compression. In the RGB format, the image is composed of three independent grey-
scale images, where each image corresponds to red, green and blue components. A more
suitable colour format or colour space for image compression is the

luminance/chrominance colour space. One such colour space is the YC:Cb space, which is
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statistically less dependent than the R, G and B colour components [Limb and Rubinstein,
1974]. JPEG2000 uses an irreversible colour transform (1CT) to transform a RGB image
into a YC:Crimage. 1CT is defined as:

Y 0.299 0587  0.114 ][R
C, |=|-0.16875 -0.33126 05 ||G (3.5)
C, 0.5 -0.41869 -0.08131|B

3.9.3. Discrete Wavelet Transform

JPEG2000 uses a one-dimensional wavelet transform (1D DWT) to decompose each image
tile into high and low sub-images. A two-dimensional decomposition is achieved by
applying the 1D DWT along the horizontal and vertical axes of the image tile. This results
in four subband images; low subband image (LL), high subband image (HL), low subband
image (LH), and high subband image (HH). See Figure 3.10. This process can then be
repeated with tﬁe LL image several times. The process is known as a dyadic

decomposition.

Figure3.10 Level decomposition

The DWT can be irreversible or reversible. The default irreversible wavelet transform is
implemented by means of a Daubechies 9/7 tap filter [Christopoulous et al, 2000a;
Antonini et al, 1992} and the default reversible transform is implemented by means of a
LeGall 5/3 tap filter [LeGall and Tabatabai, 1988].

The JPEG2000 standard supports a convolution-based and lifting-based filtering mode. A

series of dot products between the high-pass and low-pass filter coefficients and an
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extended one-dimensional signal is performed in the convolution-based mode. In the
lifting-based mode, the odd coefficient values are updated with a weighted sum of even
coefficient values, and the even coefficient updated with a weighted sum of odd coefficient

values.

3.9.4. Quantization
After the DWT, the wavelet coefficients are quantized. The quantization process reduces
the precision of the coefficients. In Part 1 of the JPEG2000 standard, a scalar quantizer is

used and it is defined as:

g,In] = sign(y, [n]){%J (3.6)

where A, is the quantization step size, and y, [n] is the transform coefficient for subband

b [Taubman et al, 2002, pp.437]. The quantization process is lossy, unless the coefficients
are integers as produced by the LeGall 5/3 tap filter. In the case where the coefficients are
integers the quantization step size is set to 1, which means that no quantization is

performed and the coefficients remain unchanged.

3.9.5. Coding

JPEG2000 uses a coding techniqué based on Embedded Block Coding with Optimal
Truncation (EBCOT). Prior to coding, each subband of each tile is further partitioned into
precincts and code-blocks. These code-blocks are essential entities used in coding. Each
code block is corﬂpressed independently, a bit-plane at a time. For each bit-plane in a code-
block, a special code;block scan pattern is used for each of the three passes, that is, the
significance propagation pass, the magnitude refinement pass and the clean-up pass
[Taubman et al, 2002, pp.363-367]. In the significance propagation pass, a bit is coded if
its location is not significant, but at least one of its eight-connected neighbours is
significant. In the magnitude refinement pass, all the bits from locations that became
significant in a previous bit plane are coded. Lastly, in the clean-up pass, any bits not

coded in the first two passes are taken care of.
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;j/Code-blocks
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Precinct

Figure 3.11 Tile partition into subbands, precincts and code-blocks

3.10. Region of Interest Coding

In region of interest (ROI) coding the background (BQ) is coded with lower fidelity than
the regions of interest (ROIs). In the wavelet domain ROI coding can be accomplished by
identifying wavelet coefficients that affect the ROJs and these coefficients are then coded
with a higher quality [Cruz et al, 1999].

The ROI coding scheme in Part 1 of the JPEG2000 standard is based on the MAXSHIFT
method [Christopoulos et al, 2000b]. The MAXSHIFT method is an extension of Atsumi
and Farvardin’s [1998] work on a ROI scaling-based coding method. In the ROI scaling-
based coding method the coefficients are scaled (shifted) so that they are placed in the
higher bit-plane. Then, during the coding process, the most significant ROI bit-planes are
placed in the bit-stream before any BG bit-planes of the image (see Figure 3.12). As a
result, during the decoding stage the ROI bit-plane will be decoded first before the rest of
the image [Christopoulous et al, 2000a].

In the MAXSHIFT method, the encoder scans the quantized coefficients and chooses a
scaling value o such that the minimum coefficient belonging in the ROl is larger than the
maximum coefficient of the BG. During the decoding process every coefficient smaller

than o is scaled up.

To accomplish ROI coding an ROI mask is computed. The ROI mask is a map of the ROI
in the image domain. It consists of non-zero value inside the ROI and 0 outside. The mask

will thus indicate which coefficients are needed for the reconstruction of the ROI.
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Figure 3.12 Comparing scaling;based method with MAXSHIFT method [source:
Christopoulous et al, 2000a]

3.11. Summary

The chapter has shown that wavelets have proven to be a popular and powerful too! for
signal analysis and synthesis. Wavelets have also found a wide range of applications
especially in the area of image coding. The use of waveléjt transforms in image coding was
first discussed by Mallat [1989a] and Daubechies [1988]. Wavelet transforms can be
mathematically related to subband coding [Vetterli, 1984, Woods and O°Neil, 1986].
Section 3.2 and section 3.3 examined work done in subband coding, wavelets and filter
banks. The similarities between Woods and O’Neil’s subband coding [1986] and Mallat’s
multiresolution [1989a] is remarkably striking. As already mentioned in section 3.3.1, both
schemes were developed independently. In actual fact, it was Vetterli [1984] who first
used QMF filter in a multidimensional case. Vetterli cited that separable filters are
necessary and sufficient for the most natural four-band extension of the standard two-band
QMF filters introduced by Croisier et al [1976] and Crochiere et al [1976]. However,
Woods and O’Nei.l [1986] argued that separable filters are not necessary. 1t should also be

noted that Vetterli’s work contains no empirical data on image coding.

This chapter also examined the JPEG and JPEG2000 standards. This is necessary because
it will help to better understand the short comings of JPEG and why wavelet-based
methods are currently so popular in image compression. There are works that iry to .
overcome the short comings of JPEG. Some of these works are discussed in Section 3.5.
Work on entropy encoding methods like Huffman and arithmetic coding have also been

explored.
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Wavelet-based Colour
Image Compression Schemes

4.1. Introduction

There has been a variety of wavelet-based image compression schemes proposed over the
last decade. This.chapter will explore these significant schemes, which range from the
simple to the more advanced schemes like Shapiro’s [1993] embedded zero-tree waveiet
scheme (EZW) and Said and Pearlman’s [1996] set partitioning in hierarchical trees
(SPIHT) coder. The more advanced schemes like the EZW and SPIHT use novel

quantization and encoding techniques to improve the PSNR performance.

4.2. Wavelet-based Compression Schemes

Prior to JPEG2000, which uses a wavelet transform researchers have used wavelets to

compress images. One such research is a JPEG-like image coder by Queiroz et al [1997].

Image Discrete Entro O
. Py utput
- Cosine —»] Quantizer Coder ata
Transform Stream
Image Wavelet i Entropy Output
=™ Transform [~P] Quentizer Coder ata
Stream

Figure 4.1 Queiroz et al strategy

The above is an illustration of Queiroz et al’s [1997] strategy. The discrete DCT module is
replaced with a DWT module. The rest of the JPEG components, that is the quantization

and entropy encoder, remain the same. The DWT is realised as a two-channel filter bank.

The proposed coder by Queiroz et al [1997] adopted a procedure that groups the
coefficients according to the subbands into blocks as shown in Figure 4.2. 1t is usual in a
DWT that the coefficients are grouped and displayed by subbands as opposed -to the 8x8
blocks of coefficients used in a DCT. In this study for n-levels, blocks of 2" x 2" samples

s .
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are constructed. The subbands are then scanned from low-frequency to high-frequency.

The resulting block is scanned into a vector.

Figure 4.2 Scanning subbands [source: Queiroz et al, 1997]

This study showed that a DWT-JPEG scheme using existing JPEG components, except the
transform, is possible. The tests have shown that the performance of the DWT-JPEG coder
is close to that of sophisticated wavelet coders. The performance can be improved by

improving the performance of the quantizer and Huffman encoder.

In a similar study, a ‘new extended’ JPEG coder [Huh and Hwang, 1997] was investigated
to improve the performance of the JPEG extensions, which has been established in
ISO/TEC 10918-3 (1ITU_T Rec. T.84) [1SO, 1992]. The basic concept is to develop an
efficient image coder combining the DWT features, while using variable quantization and
entropy encoding and decoding procedures. In addition to all these, a new variable
guantization matrix based on the human visual system (HVS) is generated. Like Queiroz et
al [1997], Huh and Hwang [1997] replaced the DCT module with a block-wise discrete
wavelet transform using filter banks. The block diagram for this proposed system is shown

in Figure 4.3.

The reported simulated results demonstrate the improved performance of the DWT-based
JPEG extension coder over the conventional JPEG coder. The performance of the DWT-
based JPEG extension coder gives better objective and subjective quality at high

compression.
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Figure 4.3 Huh and Hwang [1997] proposed coder block diagram

The results from the two studies show that the coding gains of the coders can be improved
by replacing the DCT module with a wavelet transform. However, the coding gain does not
depend solely on the transform used but other components of the image coder like

quantization and entropy coding, which are equally important.

4.3. Spatial Oriented Tree

The EZW algorithm uses the 2-D discrete wavelet transform to decompose images into
subband images for efficient quantization and encoding at different scales. The highest .
energy coefficients can be found in the lowest frequency subband images. Figure 4.4

shows a discrete wavelet transform two level decomposition.

Figure 4.4 Subband images
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in subband HH]. This parent-child relationship applies to the LH and HL orientations. In
other words, in a hierarchical subband system every coefficient at a given resolution can be
related to a set of coefficients at the next finer resolution of similar orientation. The
coefficients in the lowest frequency subband, that is LL2, each have only three children,
comprised of the single coefficient at the same spatial location in HL2, LH2, and HH2.

HL1

LH2 HH1

Figure 4.6 Zero-tree structure [source: Shapiro, 1993]

~ The lowest frequency subband is the top left, and the highest frequency subband is at the

bottom right.
LL3_ HL3
7 HL2
s | |
4 HL1

HH2
LH2

LH1 HH1

Figure 4.7 Scanning order of subbands [source: Shapiro, 1993]
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The next step is scanning the coefficients. The order of scanning should be done in such a
way that no child node is scanned before its parent. Figure 4.7 illustrate the order of
scanning. All the positions in a given subband are scanned before moving on to the next
subband.

4.4. EZW Algorithm

The EZW algorithm [Shapiro, 1993] begins by setting a threshold level T to determine
whether or not a coefficient is significant. A wavelet coefficient ¢ is said to be insignificant
with respect to a given threshold T if |¢|[<7, otherwise the coefficient is said to be
significant. For a- threshold value 7, a coefficient is an element of a zero-tree if the
coefficient of concern and all of its descendents are insignificant with respect to the
threshold 7. If a bit-plane coding is adopted then the inifial threshold 7 will be:

7 - ollog, (Max(le(x. )] @.1)

where Max(.) is maximum coefficient value and c(x, y)is the coefficient [Valens, 2004 ].

|_ _| represents the largest integer less than |c(x, y] [Rao and Bopardikar, 1998, pp.160].

The image is coded using two passes, which are known as the dominant and subordinate
passes. In the dominant pass, the image is scanned and a symbol is assigned to every
wavelet coefficient. The symbols are: zero-tree root (ZRT), isolated zero (1Z), positive
significant (POS) and negative significant (NEG). If the wavelet coefficient is greater than
the threshold level T then a POS is assigned to the wavelet coefficient. A NEG is assigned
to the wavelet coefficient if the wavelet coefficient is smaller than minus the threshold
level T. If the coefficient is the root of a zero-tree then a ZRT is assigned. An IZ is
assigned to a wavelet coefTicient if the coefficient is smaller than the threshold. Each time
a wavelet coefficient is encoded as significant (positive or negative), its magnitude is

added to a subordinate list and the coefficient concerned is set to zero.

The dominant pass is followed by the subordinate pass.in which all coefficients on the
subordinate list are scanned. The width of the effective quantizer step size, which defines
an uncertainty interval for the true magnitude of the coefficient, is cut in half. A

coefficient in the upper half of the range gets assigned with a ‘1’ symbol (for the upper part
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of the range), while a coefficient in the lower half gets assigned with a ‘0’ symbol. During
the subordinate pass a string of symbols from this binary alphabet is generated, which is
then entropy encoded. '

The whole process continues to alternate between dominant and subordinate passes where
the threshold is halved prior each dominant pass and can be summarised by the following

pseudo-code:

threshold = InitialThreshold;
do

{
dominant_pass (image) ;
- subordinate pass(image);
threshold = threshold/2;
} while ({threshold > MinimumThreshold);

Shapiro reported that the EZW algorithm produces compression results that are
competitive with a known wavelet-based compression algorithm developed by DeVore et
al [1992]. The EZW was also compared to JPEG using the ‘Barbara’ test image as a
reference. The results show that the EZW coder gives a significantly higher PSNR.
Artefacts were reported for low bit rates. However, Shapiro cited that these artefacts are

not as objectionable as the blocking effects produced by block transform coding schemes.

4.5. SPIHT
The Said and Pearlman’s [1996} SPIHT (pronounced as ‘spite’) algorithm uses the set
partitioning principles to improve the PSNR performance. The SPIHT algorithm has

several features in common with the EZW algorithm.

The SOT for SPIHT is the same as those for EZW except for the LL2 subband. The
SPIHT SOT is based on the assumption that the dimension of the LL subband is an integer
multiple of two. Hence the coefficients in the LL subband are divided into groups of two-
by-two. One fourth of the cdefficients in LL have no children, while the remaining
coefficients each have four children. Figure 4.8 shows a situation for a group of four

coefficients in the LL2 subband. The coefficient marked with an asterisk has no children
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(see Figure 4.8). All the other coefficients, except for those in the highest frequency bands

have four descendents.
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Figure 4.8 SPIHT SOT

In the SPIHT algorithm, the wavelet coefficients are grouped into three ordered lists, the
list of significant pixels (LSP), the list of insignificant pixels (LIP) and the list of
insignificant sets (LIS). LSP contains the coordinates of all pixels that are significant with
respect to a threshold. LIS contains the coordinates of the roots of insignificant sets of
pixels and lastly LIP contains a list of coordinates of all pixels that are insignificant, but do

not reside within one of the two types of mentioned.

)J is sent to the

In the first stage of the coding algorithm, the output n = |_log2 (max(,.. )

C.,
decoder. The value nis for testing significance of pixels and constructing the significance
map. Next the LSP is set as an empty list and this is followed by adding a set of
coordinates of all spatial orientation tree roots to the LIP. The set of coordinates with
descendants are added to the LIS. The sorting pass and the refinement pass are then

initiated.

During the sorting pass each pixel of the LIP is tested for significance with respect to ». If
the pixel is significant then a 1 is transmitted and its coordinates are moved to LSP. A sign

bit representing that pixel is also transmitted. The algorithm then tests each entry in the LIS
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for the existence of significant descendents. If no significant descendents are found then a
0 is transmitted. However, if the entry has one significant descendent then a 1 is
transmitted and each entry of the immediate descendents is tested for significance. If a
descendent is found to be significant then a 1 and a sign bit are transmitted and the pixel
coordinates tagged onto the LSP. If a descendent is found to be insignificant then a 0 is
transmitted and the pixel coordinates are tagged onto the LIS. A pixel is moved to the end
of the LIS as an entry of type B, if it has more descendents. The descendents of an entry in
the LIS of type B are tested for significance. If at least one of them is significant, then this
entry is removed from the list and its immediate descendents are tagged to the end of the

list as entries of type A.

After a pass through the LIS is completed, a refinement pass through the LSP is initiated.
The n"” most significant bit of each entry of the LSP is transmitted. The entry added in the

current sorting pass is excluded. Next the quantization step is updated, where nis
decremented by 1 and the sorting process is repeated. The output of this process is then

handed over to an arithmetic encoder.

Said and Pearlman [1996] reported that thé results obtained from the SPIHT algorithm
surpasses those from Shapiro’s original EZW. |

4.6. Compressing Colour Images

The compression schemes described in the earlier sections are intended for grey-scale
images. Wavelet-based colour image compression schemes will be explored in the later
sections but works on coding of colour images prior to wavelets will be explored in this
section. Work related to colour image coding can be traced to Limb and Rubinstein’s
[1974] method called plateau coding for coding chromatic component of colour television
signals. Since most changes in chrominance are accompanied by luminance changes
Limb’s method exploits this effect by only transmitting new chrominance samples when

there is a significant change in the luminance signal.

Referring to the following diagrams, the luminance signal is coded digitally using pulse-
code modulation (PCM) or differential pulse-code modulation (DPCM) for transmission

over the channel. The decoded luminance signal is used to select changes in the amplitude
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of the signal. The averaging circuits average the signals between the detected significant
changes in the luminance signal. The average signal is coded and read into the buffer and
multiplexer under command of the change detector. At the decoder end the same detection
process is repeated on the decoded luminance signal. The buffer and demultiplexer then

output the coded averaged chrominance signal enabling the chrominance signals to be

reconstructed.
Y. Luminance N Buffer
Coder ] » & To channel
Decoder » Multiplexer
ry
Change ] 1
Detector _ :
----------- b o - -I
v -
Cl | Averaging ol |
Circuit Coder
r—'
cl Averaging c2 |
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Figure 4.9 Block diagram of a plateau coder [source: Limb and Rubinstein, 1974]
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Figure 4.10 Block diagram of a plateau decoder {source: Limb and Rubinstein, 1974]
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Simulations have shown that plateau coding can give pictures of high quality for

chrominance bit-rates in the range 0.25 to 0.5 bits per luminance sample.

A follow up work by Netravali and Rubinstein [1979] also exploits the effect that the
spatial changes in the chrominance coincide with spatial changes in the Iuminance.
Netravali and Rubinstein proposed two techniques for digital coding of the chrominance
components of a colour television signal. Both techniques are based on an observation
make by Limb and Rubinstein that the spatial changes in the chrominance coincide with
spatial changes in the luminance. Netravali and Rubinstein [1979] use this to predict the
chrominance samples efficiently using the previously transmitted chrominance and

luminance samples, and the present luminance sample.

Based on the results of computer simulations, Netravali and Rubinstein present two coding
schemes. In the first scheme the adaptive prediction of the chrominance components is
based on the lunﬁhance and the chrominance components are coded by a DPCM coder.
The second scheme uses the chrominance signal to adaptively extrapolate its past using the
luminance signal for adaptation. Only those chrominance samples where the extrapolation
errot is more than a threshold are transmitted to the receiver. Computer simulations on
video telephone pictures indicate that, for the predictive coding, the entropy of the coded
chrominance signals can be reduced by about 15 to 20 percent by adaptation.

4.7. Subband Coding of Colour Images

Section 3.2.] discussed the work of subband coding of monochrome images using QMF by
Woods and O’Neil [1986]. The application of subband coding to colour images was
considered by Gl{aravi and Tabatabai [1988]. In this work, the R, G, and B components
were transformed into luminance Y and chrominance signals I and Q. The luminance
signal was treated as a monochrome image and the chrominance signals 1 and Q
components, upper (high) band signals, were discarded. The simulated results

demonstrated that subband coding can be an effective method to compress colour images.

4.8. Wavelet-based Colour Image Compression

This section will explore wavelet-based compression methods applied to colour images.
One such method is a modified EZW for colour images known as Colour Embedded
Zerotrec Wavelet (CEZW) proposed by Shen [Shen, 1997, pp.57-78; Shen and Delp,
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@7T= )

(b) Dominant pass:
i. The Y component is scanned and for each Y node its children in the Y
component as well as those in the U and V components are compared with
_ T. Symbols of Positive significant (POS), Negative significant (NEG),
Zerotree (ZT) and Isolated Zero (I1Z) are assigned and entropy coded.
1. The U and V components are alternately scanned. The coefficients
and their children nodes are compared with 7. Those coefficients that
have been coded as part of a zerotree in step (i) are not examined.
Symbols of POS, NEG, ZT and IZ are assigned and entropy coded.
(c) Subordinate pass:
The coefficients that have been coded as signiﬁéant in previous passes
(excluding the dominant pass just preceding this subordinate pass) are
examined. The quantization error is compared with T and symbols
of Significant (SIG) and Insignificant (INS) are assigned and entropy
coded. '

The proposed CEZW algorithm was evaluated using Daubechies 9/7 tap filter bank. The
entropy encoder used is an adaptive arithmetic coder. The PSNR ratios from the CEZW
were compared with that from the SPIHT and JPEG. Table 4.1 shows the PSNR of the
decoded images using CEZW, SPIHT and JPEG.

The results in Table 4.1 show that the PSNR from CEZW is 4 dB higher than that from
SPIHT at all data rates. However, it should be noted that the PSNR values are biased in
favour of CEZW using a luminance/chrominance colour space (YUV) instead of the RGB

colour space. The PSNR is obtained from:

255°
(MSE(Y)+ MSE(U)+ MSE(V))/3

PSNR =10log,,

[Shen, 1997]. Therefore, it is difficult to ascertain the actval PSNR improvement over
SPIHT and JPEG.
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Table 4.1 PSNR of decoded image using CEZW, SPIHT and JPEG [Adapted from Shen,

1997}

Rate Images
(bpp) girls lenna model | peppers | tiger
CEZW 36.1 36.9 374 41.9 319
0.5 SPIHT 323 333 332 37.8 279
JPEG 297 30.3 30.8 ‘ 346 25.1
CEZW 393 40.1 40.5 448 35.1
1.0 SPIHT 3587 35.9 36.1 398 il4
JPEG 332 335 338 37.2 28.8
CEZW 423 42.7 43.0 45.9 38.3
1.5 SPIHT 38.0 37.6 38.2 423 34.0
JPEG 35.0 35.2 35.7 384 31.2

The performance of the SOT from the CEZW algorithm was evaluated by Saenz et al
[1999] as part of an investigation into colour embedded image compression. The
investigation was carried out by means of a set of core experiments that seek to evaluate
the advantages of various colour transformations, SOTs and the use of monochrome
embedded coding schemes such as EZW and SPIHT. The SOT from CEZW is used with
various types of colour transformations. The colour transformations used were RGB to
YUV and RGB to Karhunen-ILoeve transform (KL.T). The SOT from the CEZW algorithm
was referred to as CZW. As in Shen [1997] a 9/7 biorthogonal wavelet filter and adaptive
arithmetic coding was used in Saenz et al’s evaluation. Each colour component of the test
images were compressed independently using two new SOTs referred to as Naive-EZW
(NEZW) and Naive-SPIHT (NSPIHT), respectively. Other techniques used were SP-CZW
and CSPHIT. SP-CZW adapted the SOT from SPIHT and is used in conjunction with
Shapiro’s dominant and subordinate passes. CSPHIT is the SPIHT used to compress colour

images. Some of the results from Saenz et al’s evaluation are presented in Table 4.2.

Saenz et al concluded that the CZW and SP-CZW performance are similar and the best
performance was obtained using CSPIHT. Saenz et al observed that the quality of the
decompressed YUV and KLT images are better than that of the RGB images for all
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techniques. In addition, Saenz et al also observed that the YUV images are visually better

than the KLT images despite the fact that KLT perform better in terms of PSNR.

A closer examination of the results shows that in the YUV colour space at a bit rate of 1.5
bpp, the NSPIHT achieves the best PSNR value. The PSNR difference ranges from 0.39 to
0.9 dB. However, at a bit rate of 0.5 bpp, the SP-CZW achieves the best PSNR vaiue and
the PSNR difference ranges from 0.01 to 1.79 dB.

Table 4.2 PSNR results for the Barbara image [Adapted from Saenz et al, 1999]

Rate Image Barbara (PSNR dB)
(bpp)
NEZW | NSPIHT | CZW SP- JPEG | CSPIHT
CZW
- RGB 2363 24.59 24.12 24.12 24.51 -
0.5 KLT | 24.05 2491 26.58 26.58 - 27.54

YUV | 24.68 26.01 26.46 26.47 - -
RGB | 25.36 26.66 26.92 26.92 | 26.43 -
1.0 KLT | 25.83 27.24 28.68 28.69 - 29.35
YUV | 27.18 28.23 28.50 28.50 - -
RGB | 27.05 2799 27.32 2742 | 2723 -
1.5 KLT | 27.50 28.68 29.28 29.33 - 30.25
YUV | 2859 29.49 29.10 29.10 - -

4.9. Multiwavelets and Colour Image Compression

The advanced DWT-based compression schemes like Shapiro’s EZW [1993] and
Said/Pealman’s SPIHT [1996] discussed in earlier sections utilizes scalar wavelets. In
recent years balanced multiwavelets (BMW) have been used to compress colour images
effectively. However, their performance is marginally short of the 9/7 tap biorthogonal
scalar wavelets (SW). In a study carried out by lyer and Bell [2001] the properties of the
9/7 tap biorthogonal SW (Bg) and four multiwavelets that are important to grey-scaled

images were investigated. The four multiwavelets used areSAj, SA:, Bmwg and Bmw;.

SA® is an unbalanced symmetric-antisymmetric multiwavelet and SA} is a balanced
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symmetric-antisymmetric multiwavelet. Bmwgz and Bmw;, are both balanced

multiwavelets. Partial results from Iyer and Bell’s study are tabulated in Table 4.3 for three

standard grey-scale images.

The results from Table 4.3 show that the By wavelet achieves 0.09-1.3 dB higher PSNRs

than SA}. From the same table, the results also show that the unbalanced multiwavelet

SA? PSNR is about 0.26-1.11 dB worse than the Bmws balanced multiwavelet. To

appreciate these gains and losses, the images have to be magnified.

Table 4.3 PSNR results [Adapted from Iyer and Bell, 2001}

Image CR By~ SA} SA:’ Bmwg | Bmw
16:1 | 30.82 | 29.58 | 30.41 | 30.19 | 30.40
barbara
32:1 | 27.04 | 2627 | 2695 | 26.71 | 26.93
16:1 | 32.46 | 31.89 | 32.24 | 32.15 | 3192
goldhill
32:1 | 30.13 2934 | 29.88 | 29.74 29.54
| 16:1 36.71 36.38 3539 | 36.25 36.33
ena
32:1 | 33.59 | 3197 | 3321 | 33.08 | 33.18

The study of lyer and Bell [2001] was extended to cover colour images by Rout and Bell
[2002]. In the Rout and Bell study, the compression performance of three scalar wavelets
and five balanced multiwavelets on seven colour images were investigated. Each RGB
image is transformed into an YC,C; representation. A five level decomposition is used and
the SPIHT is used to quantize the wavelet coefficients. No entropy encoding was used.

Table 4.4 shows the PSNR results for three out of the seven images.

For each compression ratio, the maximum PSNR values are highlighted for both the SW
and BMW. In terms of PSNR performance, the SWs perform better than the BMWs. The
range of difference is 0.04 to 0.47 dB.



Chapter 4 71

Table 4.4 PSNR results from Rout and Bell {2002]

Scalar Wavelet Multiwavelets
1mage CR By, Byos Dy SA, Ort; | Bmw; | Bmw;; | Bmws
, 32:1 (3206 32.19 | 3149 | 3194 | 31.97 | 31.80 | 3180 | 31.74
ena
48:1 [ 3081 3092 | 29.76 | 30.42 | 30.45 | 30.24 | 30.38 | 30.14
32:1 | 27.62 ) 27.62 | 2680 | 27,54 | 2754 | 2746 | 27.52 | 2741
lighthouse
48:1 | 26.07 | 26.18 | 2543 | 26.05 | 26.03 | 2594 | 2599 | 2592
32:1 £ 22.06( 22.10 2193 22,04 | 2203 | 21.93 22.00 21.97
mandrill
48:1 | 21.18 | 21.21 21.08 21.17 | 21.15 | 21.07 21.13 21.06
4.10. Summary

This chapter explored a variety of wavelet-based image compression schemes in particular
advanced schemes like EZW and SPIHT. Some of the early wavelet-based works can be
traced back to the works of Queiroz et al [1997] and Huh and Hwang [1997]. The two
mentioned works basically replaced the DCT module with a discrete wavelet transfonﬂ
using filter banks. The reported results from Queiroz et al [1997] and Huh and Hwang
[1997] show the DWT-based JPEG extension coder gives better objective and subjective

quality at high compression.

Section 4.4 and 4.5 explored advanced wavelet-based compression schemes like EZW and
SPIHT. The EZW is a very effective and computationally simple image compression
technique. It is based on four key concepts, namely, (1) a discrete wavelet transform, (2)
prediction of the absence of significant information across scale, (3) entropy-coded
successive-approximation quantization and (4) lossless compression using adaptive
arithmetic encoding. Like the EZW, the SPHIT is based on the zerotrees technique, which
takes advantage of the structural similarities across the sub-bands when using wavelet

decomposition of an image.

Wavelet-based colour image compression schemes liked CEZW are explored in section

4.8. The CEZW is a modified EZW for colour images proposed by Shen [1997]. The
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CEZW used a modified SOT to exploit the correlation between the colour components of
the YUV colour space. The results obtained using CEZW show that the PSNR from
CEZW is higher than that from SPIHT at different data rates. The performance of the SOT
from the CEZW algorithm was further evaluated by Saenz et al [1999] as part of an

investigation into colour embedded image compression.

Work related to colour image coding prior to wavelet-based compression schemes are
explored in sections 4.6 and 4.7. Section 4.6 explored a method called plateau coding for
coding chromatic component of colour television signals [Limb and Rubinstein, 1974].
Section 4.7 touch on the application of subband coding to colour images [Gharavi and
Tabatabai, 1988].

Lastly, the use of multiwavelets in colour image compression is discussed in section 4.9. A
study by Rout and Bell [2002] shows that scalar wavelets like the By, perform better than

the balanced multiwavelets.



'CHAPTER 5

Statistical and Frequency Properties of
Colour Images

5.1. Introduction _

The output of the wavelet filter is influenced by the input characteristics of the image (as
discussed in section 1.2). As one of the main concerns.of this research is colour images,
this chapter will report a study that will look into the characteristics of colour images and
how they influence the coding performance. Another concern of this research is to
establish, which wavelet filter is best suited to compress different types of images. Hence,

a study is conducted and reported in section 5.4 to address this concern,

5.2, Background on Colour

The human eye has three types of colour photoreceptor cells called cones and the ability of
the human eye to perceive colour arises from the sensitivities of these cones. Each type of
cone responds to a range of wavelengths. Owing to this property of the human visual
system, all colours can be modelléd as combinations of the three primary colour
components that is, red, green, and blue (RGB). The Commission International de
'Eclairage - the International Commission on [llumination (CIE ) have designated the
following wavelength values for the three primary colours that is, red = 700nm, blue =
435.8nm and green = 546.1nm (see Figure 5.1). The relative amounts of these three
primary colours needed to produce a colour of a given wavelength are called tristimulus

values.

Colour images displayed on a computer monitor are in the RGB colour space, thus the
colour images used in this research are analysed in the RGB colour space. The same
images are also analysed in the YCyC; colour spaces. This is done because the YC,C;

colour space is often used in image compression schemes (see section 5.3.2).

73
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Blue

cones . == Green
Relative
response

400 Blue 500 Green 600 Red 700
Wavelength, nanometers
Figure 5.1 Wavelength values for the three primary colours
5.3. Colour Space

The colours perceived by the human eye can be represented by a colour space or colour
model. Weighted combinations of stimuli at three wavelengths are adequate to describe all
the colours the human eye perceives. These wavelengths can be used to form a coordinate
system, from which the colour measurement process can be described. Although, a
common colour space used in digital imagery is the RGB colour space, there are other
colour spaces: the luminance/chrominance colour space; cyan, yellow, magenta (CYM)

colour space; and hue, intensity saturation (HIS).

In this research as mentioned earlier the two colour spaces used are RGB and the
luminance/chrominance. However, there are different variation of luminance/chrominance
colour spaces, for example, YUV and YIQ, which are used in television broadcasting and
the YC,C; colour space, which is used in most image compression schemes. Therefore, the
following discussions will focus on the RGB and YC,C, colour spaces which are relevant

to this research.

5.3.1. RGB Colour Space
A computer colour monitor displays colour images as a collection of pixels, which consist
of three tiny dots in its spectral components of red, green, and blue. The RGB colour space

is a three-dimensional orthogonal coordinate system (see Figure 5.2). The red, green and
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blue intensity starts at zero at the origin and increases along the respective axes. The

maximurm value of each colour is 255 for an 8-bit depth and the net result is a cube.

B
I Blue
{0,0,255) Cyan
|
|
|
Magenta : = White
l .
I
1
(I
I c
Black I~

o Y ——p

’ Green

e ’ Gray Scale (0,255,0)
Fd
’
Red Yellow
R (255,0,0)

Figure 5.2 RGB colour space

Colour images m the RGB colour space are highly correlated between the components
(Pratt, 1991; Gharavi and Tabatabai, 1988]. This correlation is often exploited in colour

image compression schemes, for example, Shen, 1997 and Lervik and Ramstad, 1995.

5.3.2. YCoCr Colour Space

The YCoCr colour space is defined by the Intemational Radio Consultative Committee, and
is mainly used in the digital video paradigm and image compression schemes. it consists of
the luminance (Y) and chrominance (CoCr), where Y 1s the light intensity, and Cb and C:
are the colour difference signals [Umbaugh, 1998, pp.31]. Pratt [1971] cited that the YCoCr
colour space is a preferable colour space in transform coding and it is frequently used in
image compressic;n schemes [Lervik and Ramstad, 1995; Saenz et al, 1999]. This colour
space is derived from the fact that the human vision perceives a colour stimulus in terms of
luminance and chrominance attributes, rather than in terms of R, G and B values. The
relation between the YCoCr space and the RGB space is defined by equation 3.5 in section
392
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Human vision is more sensitive to changes in the luminance than changes in chrominance
and the YCoCr space exploits this advantage in a lossy compression scheme by quantizing

the CoCr components more to yield higher compression ratios.

5.4. Variation in Coding Performance

To investigate the variation in coding performance, different wavelets were used to
compress a selected set of colour images. The initial results show that different wavelets
produce varied coding performance. The coding performance was compared with reference
to peak signal-to-noise ratio (PSNR), compression ratio (CR) and bits-per-pixel (bpp). The
results also indicate that PSNR, CR and bpp values are image dependent, that is the values

obtained depend on certain characteristics of the image being compressed.

5.4.1. Image Classification

As mentioned in section 5.4, a selected set of colour images were used to investigate
variation in coding performance. At this stage it was felt that different types of images
have different characteristics that may influence coding performance. To verify this

hypothesis the images were classified into various categories.

Some researchers have attempted to categorise images, such as Smith and Chang, [1997]
and Gevers et al, [2000]. The main concern of Smith and Chang’s [1997] work was to
classify images for indexing and search capabilities of Web image search engines, and
Gevers et al [2000] study dealt with the classification of images using both textual and
image features.

This research iniéially attempted to classify colour images based on the classifications
proposed by both Smith and Chang [1997] and Gevers et al [2000] but found them to be
unsuitable. Drawing on the observations made by these researchers, this research classifies

the images as follows:
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Images
Natural Synthetic
Images Images
Computer Cartoons Clip-arts
generated
images

Figure5.3 Image Classification

The term ‘synthetic image’ referred to in this thesis is an image that is generated by a

computer, a drawing (cartoon), or a clip-art.

Synthetic images differ from natural images in that synthetic images have sharp artificial
colour transitions. On the other hand, natural images have gradual colour transition, for
example photographs. Furthermore, sharp transition occurs between two different régions
of constant colour in a synthetic image. In contrast, natural images do not have sharp edges
like synthetic images instead the edges are often blurred. Also synthetic images have fewer
colours than natural images. Cartoons and clip-arts are basically line drawings and

therefore will have very well defined edges as compared to natural images.

5.4.2. Wavelet Filters Used

Five wavelets filters, haar, db2, bior4.4, coif4, and sym4 from the Matlab wavelet
toolbox are used. These are chosen because they are popular wavelets and are most
frequently referred to in the literature, example Daube_.chies [1992], Burrus [1998], and
Strang émd Nguyen [1997]. The following is a brief explanation of these wavelets used in

this work.

The wavelet names ‘dbN’, ‘biorNr.Nd’, ‘coif N°, and ‘symN’ are short names for
daubechies, biorthogonal, coiflets and symlets respectively. The N, Nr, and Nd are the
order and they are integers. NV is known as the length of support.
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The wavelets used have different properties which are important in image compression.
Some of these properties are compact support, symmetry, number of vanishing moments,
and smoothness or regularity. These properties affect coding performance and therefore
warrant further discussion. These properties are summarized in Table 5.1 for five of the

wavelet families used in this study.

Symmetric or antisymmetric wavelets give rise to linear-phase filters. The usage of linear-
phase filters in subband coding has been said to be desirable [Antonini et al, 1992]. The
reason being that without linear-phase the phase distortion around edges is very visible. In
addition for computational purposes, linear phase is more convenient because of the

symmetry of the filters [Vetterli and Kovacevic, 1995, pp.413].

Table 5.1 Wavelet Properties [Misiti, 1997]

haar db Bior coif sym
QOrthogonal Yes Yes No Yes Yes
Biorthogonal Yes Yes Yes Yes Yes
Compact support Yes Yes Yes Yes Yes
Support width 1 2N-1 2Nr+1 for rec., 6N-1 2N-1
2Nd-+1 for dec.
Filters length 2 2N max(2ZNr,2Ndy+2 6N 2N
Regularity Not about 0.2 N | Nr-1 and Nr-2 at | Information | Information
continnous | for large N the knots not not
available available
Symmetry Yes Not Yes Near Near
symmetric symmetric symmetric
No. of vanishing 1 N Nr-1 2N N
moments for psi (y)

In terms of image coding performance, regularity is also desirable since a high regularity
can give a better compression ratio. A wavelet filter is called regular if the filter has a
certain number of zeros at the aliasing frequency and if it iterates towards a continuous
function [Vetterli and Kovacevic, 1995, pp.414]. High regularity requires long filters but
long filters can cause artifacts, for example ringing around edges [Vetterli and Kovacevic,
1995, pp.413].

Another important wavelet property is the number of ‘p’ vanishing moments. The ‘p’

moment of a wavelet is defined as:

Ix”t,?f”(x)dt =0
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where #(x) is the analysis wavelet, x” is the signal or function, and p = 0, ..., n. The

function x? can be expressed by a polynomial. If a wavelet with enough number of
vanishing moments, p, is used to analyze a polynomial with a degree less than p, then all
detail coefficients will be zero [Unser, 2003; Strang and Nguyen, 1997, pp.227-228).
These zero coefficients can then be coded with fewer bits resulting in a higher compression

ratio.

5.4.3. Results

The principal wavelet types supported by the Matlab wavelet toolbox were applied to a
sample of sixty images. Based on the findings of Adams and Ward [2001] a three level
decomposition is' chosen. Adams and Ward [2001] show that coding efficiency is
contributed by the first five decomposition levels. Based on this, it would be reasonable to
use a three level decomposition. The performance of the image coder is evaluated based on
the PSNR obtained. Some of the results are presented in Table 5.2. A full set of results can
be found in Appendix 1.

The standard peak signal-to-noise ratio PSNR is defined by [Strang and Nguyen, 1997]:

PSNR =10* log »(255% / MSE ) (5.1)
and the mean square error (MSE) is defined by [Strang and Nguyen, 1997):
1 M N .
MSE=~——Z Z:[]’(x,y)—l'(x,y]z (5.2)
m y=1 x=]

where M and N are the row and column of the image respectively. / is the original image

and | is the compressed image.

However, the PSNR of a colour image with red, green and blue components is defined by
[Saenz et al, 1999]

=10*lo 2557
- 810\ MSE (red)+ MSE(green)+ MSE(blue)
3

PSNR (5.3)

A high value of PSNR is good because it means that the signal-to-noise ratio is high which
means less error in the image. In image compression, the ‘signal’ is the original image, and

the ‘noise’ is the error in reconstruction.



Chapter 5 80

Image compression involves reducing the size of image data, while retaining necessary
information. The reduced file is known as the compressed file. Compression ratio is

defined by [(Umbaugh, 1998, pp.237]:

Uncompressed file size

Compression ratio = —
Compressed file size

An alternative way to state the compression is to use the terminology bits-per-pixel, which
is defined by [Umbaugh, 1998, pp.238]:

No.of bits (SXno. of bytes)
No.of pixels  Size of image

Bits — per — pixel =

Table 5.2 Initial results

Image haar db2 bioré.4 biors.5 coifé symé
PSNR| CR | bpp [PSNR| cR | bpp [PSNR| CR | bpp [PSNR| R | bpp [PSNR| CR | bpp |PSNR[ cR | bpp
peppers 30.28 13.40] 0597| 30.90| 14.57{ 0.549] 31.29] 12.98| 0.616] 31.32] 9.92] 0.807] 31.23| 8.16| 0.980] 31.23] 13.06] 0.643
bird 35.66] 48.18] 0.177] 36.98| 44.65} 0.179] 37.23 41.57] 0.192] 37.26] 32.67] 0.245] 37.01| 28.09] 0.285] 37.29{ 40.90] 0.1%6
lenacolor 3004| 16.08] 0497 30.45| 17.5¢} 0.456] 30.64] 17.08| 0.488] 30.75] 13.60] 0.588] 30.55] 11.56] 0.652] 30.61| 16.62] 0.481

pamblades 2667] 6721 1.190) 26.96] 7.25} 1.103| 27.27] 7.21] 1.109] 21.40] €06] 1.320{ 27.25 5.34) 1.498{ 27.18( 7.10] 1.127
snowwhite02 3208| 2164] 0370] 32.64] 22.70) 0.352| 32.70] 21.97| 0.364| 33.14] 16.99] 0.471| 32.73| 14.47| 0.553] 32.72| 21.44| 0.373
hercufes01_256 | 30.63{ 12.08] 0662) 30.60{ 12.78] 0.627| 30.78] 12.68] 0.631] 30.72] 10.31} 0.776| 30.51| 8.98] 0.831] 30.73| 12.47] 0.641
toystory01_256 | 30.58] 14.20] 0563] 30.49] 74.97) 0.534] 30.68] 13.97| 0.573] 30.69] 11.44] 0.699( 30.51] 9.88| 0.809| 30.58| 14.14] 0.808
memaidd1_256 | 29.74] 9.39] 0852] 29.67] 9.83] 0.814] 29.81] 9.33] 0.858] 20.82| 7.57} 1.057| 29.68| 6.40] 1.250{ 29.71] 9.30] 0.850
clipart0s 256 37.13] 18.68| 0.480) 33.02f 11.27) 0.710| 31.80] 10.84] 0.738] 3063] 7.62} 1.050| 30.54] ©.30f 1.271] 30.98| 10.63] 0.752
clipart06_256 41.34] 43.20] 0185] 36.07] 32.58) D.246] 35.81] 25.21| 0.274) 35.38] 24.13] 0.332| 34.54| 20.17| 0.397| 35.78| 29.44] 0.272
clipart10_256 37.18] 24.21| ©0.330] 34.10f 18.79] 0.426] 33.65| 17.48] 0458 32.881 15.59] 0.513| 32.79] 13.54| 0.501] 32.99] 17.61] 0.454
clipart05_256 35.64| 18.18| 0494) 32.65| 14.26| 0.561] 32.17] 13.74] 0.582 31.77! 11.30] 0.708 31.41] 9.92| 0.806] 32.07[ 13.81] 0.579

It can be seen that different wavelet filters used on the same image produce different
PSNR, compression ratio (CR), and bpp values. This is consistent with an carlier work by
Yap and Rahman, [2003a]. For example, the PSNR value varies from 37.13 to 30.63 dB for
the ‘clipart09_ 256’ image using the six different wavelets as shown in Table 5.1. The
results also show that some wavelet filters performed better than others in terms of PSNR,
for example for ‘clipart09 256° the ‘haar’ wavelet filter performed the best. However,
the results also show that the same wavelet filter does not necessarily yield the best PSNR
and best CR. For example, the PSNR for the ‘peppers’ image is 31.32 dB using the
‘bior6.8° wavelet filter but the ‘db2’ wavelet filter yields a better CR. Although the
‘bior6.8’ wavelet filter slightly outperforms the ‘bior4.4” wavelet filter in terms of
PSNR, overall the best combination of PSNR and CR is produced by the bior4.4 (9/7 tap)
wavelet. This result is wholly consistent with the selection of the Daubechies 9/7 tap

wavelet as the basis of the JPEG2000 standard. For clipart images, the ‘haar’ wavelet
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outperforms all the other wavelets and therefore it is the preferred wavelet for such images.
However, there is a significant variation of PSNR values for different clipart images when

the images are compressed using the ‘haar’ wavelet.

Furthermore, some wavelet filters perform better than others depending on the image being
compressed; for example the ‘bior4. 4’ wavelet performs better than the ‘haar’ wavelet
for the ‘peppers’ image in terms of PSNR. It is also observed that using biorthogonal
wavelets, that is ‘bior4.4” and ‘bioré.8’°, to compress natural and synthetic images
yields the best PSNR. This result is consistent with the findings of Rout and Bell [2002]

that cited biorthogonal wavelets provide the best performance in image compression.

The variation in PSNR may be attributed to the characteristics of the image and this is
consistent with the study of Saha and Vemuri [1999a]. Any of the image characteristics
could have caused these variations for example, the number of colours or the distinct edges

of an image.

At this stage the results show that the coding performance measures (PSNR, CR and bpp)
differ depending on both the type of wavelet filters used and the characteristics of the
images being coded. The next section discusses the work carried out to establish why the

coding performance measures vary from image to image.

5.5. Image Statistics

As mentioned in section 5.1, one of the concerns of this research is to investigate and
establish which characteristics and statistical features of a colour image influence the
coding performance. To explore this problem and to understand how the various image
features affects the coding performance, grey-level image histogram statistics are used to
analyse colour images. The grey-level image histogram statistics present a statistical
analysis of an image that can provide useful information about the characteristics of the
image. As mentioned in chapter one, grey-scale image statistical analysis is being used
because there is limited data on coding performance measures for colour images. The data
gathered allows certain quantitative and qualitative comparisons to be made. The common
statistical features are mean, standard deviation, variance, skewness, kurtosis, and entropy

[Saha and Vemuri, 2000a; Umbaugh, 1998]. In addition, image gradient is also used [Saha
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and Vemuri, 2000c]. Frequency characteristics of the images such as spectral frequency
measure (SFM) and spatial frequency (SF) are also explored. The following sections will

give a brief explanation of the image statistics used in this research.

5.5.1. Mean

This is an average, which indicates the general brightnes§ of the image and is given by:

mean = 2. I(x, y)/(x * y) (5.4)
where Z I (x, y)is the summation of all pixel values of the image and (x * y) is the size of

the image [Burdick, 2000, pp.37]. An image with a high mean indicates that the image is a

bright image and a dark image will have a low mean.

5.5.2. Standard deviation
The measure of the frequency distribution of pixel values of an image is known as the

standard deviation of that image. The standard deviation (Std. Dev.) can be calculated by:
Std. Dev=\/(21x’y2 Hx* y)—(mean)z) (5.5)
where ZIME is the sum of the squares of all pixel values of the image [Burdick, 2000,

pp-37].

5.5.3. Variance

The variance is the square of the standard deviation and is calculated using [Parker, 1997,
pp.120]:

Variance(o) = (Std.Dev)’ (5.6)
An image with a high variance means that the image has a high contrast, and an image with

a low variance indicates that the image has a low contrast.

5.5.4. Skewness
Skewness is a measure of symmetry, or more precisely, the lack of symmetry of a
histogram. A distribution or data set is symmetric, if it looks the same to the left and right

of the centre point. Skewness is calculated by using:
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-1yt o

where N is the number of pixels [Parker, 1997, pp.153].
3.5.5. Kurtosis

Kurtosis is a measure of whether the data is peaked or flat relative to a normal distribution.
Data sets with high kurtosis tend to have a distinct peak near the mean, decline rather
rapidly, and have heavy tails. Kurtosis is calculated by using:

a

I _ 4
k=%2l:w] -3 (5.8)

where N is the number of pixels [Parker, 1997, pp.153].

5.5.6. Entropy

Assuming an information source with 7 possible symbols x and that symbol i will occur

with probability p(x,.) then the entropy associated with the source of the symbols X is

defined, in general, as:
H(X)=-3. ol log(p(x,) (59

where entropy is measured in bits/symbol [Parker, 1997, pp.121].

1f an image is thought of as a source of symbols, or grey levels, then entropy is the measure
of information content [Parker, 1997, pp.120] of an image. The entropy of an image in this
research is measured by:
a. zero-order entropy,
H(0)=log, N, (5.10)
where N, is the different number of pixels. The zero order entropy is log, of

different values of pixels or average number of bits required to represent one pixel
[Grigorescu et al, 2003; Sprljan et al, 2003].

b. first-order entropy,

H (l ZP log, P, bits/pixel - [Parker,1997, pp.121] (5.11)

i=]
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¢. second-order entropy,
H(2)=- pli, j)*log, pli, f) (5.12)
where pli, /) denotes the probability that a pixel has value i while its

neighbouring pixel has value j [Sprljan et al, 2003].

5.5.7. Image Statistics Results
Various image statistics for a set of sixty different colour images were calculated in the
RGB and YC,C; colour space. The following tables show a sample of the results of image

statistics in the RGB and YCoC; colour space respectively. A complete set of results can

be found in Appendix 2.
Table 5.3 Image statistics in RGB colour space
Mean Std.Dev. Variance Showness Kurtosis
limage R G B R [ 6| B R G B Rlele|[RrR|]Gc]|&®
bird 108.97| 135.48 127.46] 18.77] 19.02] 2200 35217 361.94] 483.92| 280] 0.11] -2.37| 23.84] 14.82] 769
buiehills256 59.54| 132.63| 209.59] 7240| 78.92| 4417 5241.80| 62268.12| 1951.36] 0.79] 0.24] -0.34] -0.93| -1.64] -1.47
columns 96.71| 88.54] 94.61] 6261 63.40] 7045 3919.84] 4019.35] 4963.07| 0.64{ 0.60] 0.88] -0.49] -0.68] -0.33

[snowwhite02 83.65| 79.07] 74.57] 43.15] 40.87| 35.65| 1861.82| 1670.58| 1271.24] 090 0.91] 0.89] 0.59] 0.56] 1.20
toystory02_256 | 165.37] 151.35] 117.14] 81.04] 8587 6B.87{ 6567.99] 737349 474363] 0.36| -0.15| 0.23] -1.53{ -1.75{ -1.72
toystory01_256 | 78.87| 84.85| 80.52] 58.05] 57.81| 57.27] 3369.66] 3342.08| 3280.07] 0.84] 0.68] 0.75; 0.04] -0.17| 0.18
dipart(3_256 188.72] 105.24] 154.94] 111.84| 125.54] 124.51] 12508.45] 15761.14] 15503.57] -1.10] 0.36] -0.44] 0.80] -1.87] -1.81
clipart06_256 196.88| 197.35] 197.46] 104.57] 104.23] 104.18] 10935.57] 10864.24| 10854.24| -1.31] -1.32| -1.33] 0.22] -0.19] -0.18
clipart10_256 191.84] 181.45] 179.19] 76.96] 79.64| 8042] 592345| 6342.21] 6467.92| -1.48] -0.99] -0.89] 1.49] 0.32] 0.09

Table 5.4 Image statistics in YCyC, colour space

Mean Std.Dev. Yariance Skewness Kurtosia
Image Y Cb Cr Y Cb Cr Y | Cb | Cr Y Cb Cr Y Cb Cr
bird 0.450] 0.028} -0.018] 0.073] 0.024] 0.020] 0.005] 0.001] 0.000] 0.377] -3.473] 5.305] 15.619| 13.624] 49.911
bulehills 256 0.469] 0.199] -0.168f 0.281] 0.079 0.052f 0.079] 0.006] 0.003] 0.366] -D.720] -0.042] -1.529| -0.867] -0.952
columns 0.360) 0.007} 0.014] 0.250] 0.025( 0.025] 0.062| 0.001] 0.001] 0.667| 0.214] 2.776] -0.569| 0.508] 9.963

snowwhite02 0.313] 0.012] 0.010] 0.160] 0.021| 0.017] 0.026] 0.000] 0.000] 0.204] -0.834] 1.070] 0.613] 1.206] 4.415
toystory02_256 | 0.595| -0.076] 0.038] 0.315 0.076 0.066] 0.099] 0.006] 0.004] -0.157] -0.683] 1.339] -1.697] 0.380] 1.521
toystory(lt_256 | 0.324| 0.005( -0.010] 0.224] 0.033[ 0.034] 0.050] 0.002] 0.001] 0.735] -0.265] 0.255] -0.031). 0614] 1.143
clipart09_256 0.533] 0.042[ 0.148] 0.392{ 0.272| 0.249] 0.154] 0.074] 0.062] 0.240] 0.668| 0.665]| -1.770| -D.469] -1.46%
clipan06_256 0.773] 0.001] -0.001] 0409 0.013 0.021] 0.167] 0.000] 0.000f -1.319] 27.852| -23.073| -0.153| 868.022] 535.302
clipart10_256 0.723] -0.011| 0.021] 0.309] 0.013| 0.023] 0.095] 0.000] 0.001] -1.121] -0.194] 0.194| 0.625] -1.963] -1.963

To verify if there is any relationship between these image statistics and coding
performance, that is, PSNR, CR, and bpp (obtained from section 5.4) the coefficient of
correlation (r) is computed. The coefficient of correlation between the image statistic of
each colour component and coding performance measure is computed using the following

definition:
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Fo—o¥ (5.13)

where SXJ,:%ny—x_y, Sn=];2x2—f2, and SW:%ZyZ—?Z. x and yare the

variables [Lewis and Traill, 1999, pp.167 ].

A correlation is a measure of the relation between two or more variables. The r between
the image statistics and coding performance indicates the strength of the relationship
between the variables. A strong r will indicate a strong relationship or connection in which

one variable affects or depends on the other. A weak correlation will indicate the opposite.

The coefficient of correlation for both RGB and YCC; images is presented in Table 5.5
and Table 5.6 respectively. In addition to this, the coefficient of determination (r*) is also
computed. The r* value indicates the proportion of common variation in the two variables,
that is, the ‘strength’ of the relationship. This is important when evaluating the correlation

between two variables,

As there is no defined method for determining whether a connection is weak or strong, for
this research a weak connection is defined as having * of less than 0.4. A scatter plot of
PSNR and mean (red) show that most data points are scattered around the trend line and do
not fall on the trend line (see Figure 5.4). This indicates a weak correlation between the
two variables. Hence, based on this observation, this thesis argues that the image statistics
used in section 5.5 cannot be used to explain the vanation in the coding performance

measures.
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Table 5.5 Coefficient of correlation for RGB images

Natural Images

r(red}| r’(red)| r {green) rzgggen) r {blue} | r(blue)
|meanTana/rSNRIEENI| oY1 372 | MR 0.0168 | BN 073135 | NIRRT 070952 | MIl0"4812 | I 02316
Std!Dev¥and RSNRM| IEQT2440| Mi0T0595 | IENT0'0525 | MNENEE0'002¢ | I 0.0045 | NI 070000
varYand SNRIN =0 355 | MiK0"0192 | I 00245 | IR 00003 | BN 0:0033 | BERK 070000
skewland]PSNRIE| o /0683 | Sl0T004 7 | IMINEO 4086 | IR oT1670 | IIEC'58 12 | I 03149
[Kun¥and|eSNR IR 0”445 I 0'2159 | 0’334 9| NN 01121 | IE0'2468 | M 00609
mean and CR 0.0240]  0.0005 0.2719 0.0v39] 05413 0.2930
Std.Dev. and CR -0.2884] 0.0832 -0.1605 0.0258| -0.0662 0.0044
Var. and CR -0.1751|  0.0307 -0.0647 0.0042] -0.0452 0.0020
Skaw and CR 0.0950]  0.0090 -0.2893 0.0840] -0.5821 0.3384
Kurt. and CR 05700 0.3250 0.4712 0.2220] -0.1789 0.0320
Imeaniand bpp £:071188| #E0.0141| .0212 | B0 4724 | EEEE 012231
Std:Dev¥and bpp S| £ 071 749| 88 010306 :0059]580:0020] EiEE 00088
#o0.0888|&%0.0079|3 .0004 | 200777 | 882 0'0060
$0:0520| ¥¥0 0027 .0742|BHE06415 | BB 072145
IKurt¥and bpp :0:3726| 011389 %0.0785 |88 0'4759| EEE 02265
Synthetic images
r(red) | r’(red) T (green) r’(green)| r (blue) ﬂylue)
|FeanTanal RSN M| RE0T5 18 | M0/ 0230 | MMFO:3361 | IR 0117 50| M0 2616 | IR 0/0685
std Devand PSNREl| IE0T5 936 | Sl01352¢ | NI 073563 | IR 0% 270 | IEOY1 625 { WA 070333
VarYand,RSNR I IE0"5666 | Il 0'3210 | MEME0!3352 | MRS 0Y1.1 24 | IOV 855 | MM 00356
SKkewand.PSNR BN I0%1664 | 070277 | MEEC™0o6 7| MR 070097 | IF0'07 92| @I 0/0004
Kirt¥arcRSNRIMI| W0737,10| 0T 377 | IRE0:0237.| M 010006 | IE0™1958 | I 0'0383
mean and CR 0.1720] 0.0296 -0.2863 0.0820] -0.2863 0.0820
Std.Dev. and CR 05758 0.3315 -0.3932 0.1545] -0.3888 0.1511
var. and CR 05767 0.3325 -0.3882 0.1507] -0.4021 0.1617
Skaw and CR 0.3220] 0.1037 0.2603 0.0677] -0.0332 0.0011
Kurt. and CR 0.3331] 01110 0.0516 0.0027] -0.1387 0.0192
[maaniand bpp #1%£0.0805 | %:0.0065] ; 50.0694} 352011124 | EEEE00126
Std:Deviand ibpp S8 80/6241 | 8 0.3895) S 71233588 0.3444 | 201186
Variand bp %0.6321| 80,3005 4011154888 0.3645 |58 071329
Skew and'bpp’ $0i2521| 8% 00636 30,0414 22200701 | 588 0/0049
IKurtand bpp’ $0.3336] 8801113 20.0014| & 0161088 00262
Clipart images
. r (red)| r’(red)| r (green) rz(green) r {blue} | r’(blue)
tmaantand RS NRIEN | Wo% 556 | Ml0T024 3| IE0'21 86 | I 00478 | IEOM 0SS | I 076117
stulDevYand[RSNRIB| IE0T5352 | Il0'2565 | IIFO! 2302 | N0 05 30} IEC"4077 | I 0T 662
Var¥and PSNRI| IFo0"44ss | Ml 0™207 2 | MIF0T2252 | I 00507 | 072 208 | I 0T 77,1
Skewrard]RSNRII| IFoT1605 | llf0T02s6 | N 072336 | I 0"0546 | M O'1659; I 00275
Ki¥ana RSN |l o'2705| 0 0732 |l 03753 | IR 0T 208 I 0’ 2664 | B 007,10
mean and CR 0.2027] 0.0411 0.2287 0.0523| 0.2430 0.0591
Std.Dev. and CR -0.5943] 03532 -0.2456 0.0603] -0.2743 0.0753
Var. and CR -0.4583|  0.2100 -0.2767 0.0766] -0.3194 0.1020
Skew and CR 0.1427]  0.0204 -0.2210 0.0488] -0.1872 0.0350
Kurt. and CR -0.0601] 0.0036 0.1126] 0.0808 0.0065
rigan and: bpp B | 5.0.0276| E2 0.0008 ' $570.0827] 8555 0.0068
Std.DevZand bpp aek: | % 0.4863| E0/2365| #8704358] 888 011899
varfand bpp 807433001875 04653\ B 02165
Skéw and bpp $0.0010| % 0.0000 1] $8%0.0009] 9% 0.0000
Kurt¥and bpp §70.0969 |88 0.0004 | 35252074248 FF01907{8880.0364
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Table 5.6 coefficient of correlation for YCyC, images

Naturai images:

r(Y) | vy | rich) | F¥ch) | ricn | r*(Cr)
mean and PSNR 0.31473 0.1007 0.3291 0.1083]  -D.1624 0.0264
Std.Dev. and PSNR]  -0.1300 0.0169 -0.0202 0.0009 0.1490 0.0222
Var. and PSNR -0.0483 0.0023 0.0345 0.0012 0.1480 0.0218
Skew and PSNR -0.3388 0.1148 -0.4228 0.1787 0.1736 0.0301
Kurt. and PSNR 0.3417 0.1168} 0.1377 0.0180 0.2345 0.0550
mean and CR 0.2564 0.0657 0.4540 0.2061 -0.2878 0.0828
Std.Dev. and CR -0.1936 0.0375 -0.0578 0.0033 -0.0252 0.0006
Var. and CR -0.0953 0.0091 -0.0020 0.0000 -0.0249 0.0006
Skew and CR -0.2025 0.0410 -0.4304 0.1852 0.2919 0.0852
Kurt. and CR 0.4785 0.2289 0.2314 0.0535 0.3209 0.1030
mean and:bpp} 0. E£990.0451 2074057 | B QL 20:06021 8 0.0036
Std.Dev¥and bpp 3| 55 0'0962 8400003 356| Bt 0\0184 | ¥ 0075 18 0016
Variand bpp 3 ) £0.0012 %0.0084| 38570 07481 8 0.0056
Skew and.bp) $820.2241{8 00502 i E50.0324{ 558 0.0010
KirtFand'5pp #50/2766{ B 00765 | 8288 0/0021 | E38E 0.0085 | BEEE0.0494 | B8 0.0024
Synthetic images:
r() | Aoy | reb) [ by | r€n | r(Cr)
|mean and PSNR -0:2508 0.0846 -0.0187 0.0003 0.2339 0.0847] -
Std.Dev. and PSNR| 04242 - 0.1800 -0.2548 0.0848{ 0.2774] 0.0770
" |var. and PSNR -0.3875 0.1502 025841  0.0668] -0.2962 0.0877
Skew and PSNR 0:0752] 0.0057 0.1032] o0.0107] 0.2978] 0.0886
Kurt. and PSNR 0.0914] - 0.0084 -0.0778 0.0061 0,2202 0.0485
maan and CR -0.2522 0.0636 0.1411 0.0199 0.1227 0.0151
Std.Dev. and CR -0.4037 0.1630 -0.4327 0.1872 -0.5725 0.3278
Var. and CR -0.3887 0.1511 -0.4029 0.1623 -0.5613 0.3151
Skew and CR 0.2620 0.0686 0.0099 0.0001 0.2713 0.0736
Kurt. and CR 0.1268 0.0161 0.0565 0.0032 0.3959 0.1567
maan and: bpp FEEEE | B 012124 | B 0.0451 | B85850.2671 | 8580.071 4 | 8970 0549 2555 0.0030
Std:Dev¥and bpp | B 00504 | 88 0.0025 | 8 0. 3166 | 88 011002 | B8 01378 | 888 0.0189
VarTand: bpp #2170.0984 | #850.0097 ) #5165.0.0960 | 45 0.0917 | B8 0.0084
SKew.and bpp? #7073163| &8 0/1001 |[#8E0° $0.0122 | #8820.0821 | £ 0.0067
Kirtfand bpp? 500133 | 888802268 | 88 0.0514 | 885 0.2474 | 80,0612
Clipart images:
r(Y) | oy | r€b) | by | rcn | ¥’ Cr)
mean and PSNR £.1180 0.0142 0.0077 0.0001 0.3875 0.1502
Std.Dev. and PSNR| -0.4115 0.1693 04266  0.1819 0.2478 0.0614
Var. and PSNR -0.4086 0.1670 -0.4221 0.1782 0.2117 0.0448
Skew and PSNR 0.1425 0.0203 0.2070 0.0428 -0.1878 0.0391
Kurt. and PSNR 0.3663 0,1342 0.2624 0.0688 0.2506 0.0628
mean and CR 0.2528 0.0639 0.0102 0.0001 -0.0625 0.0039
Std.Dav. and CR -0.3479 0.1210 -0.4930 0.2431 -0.0384 0.0015
Var. and CR 0.3425 0.1173 -0.4536 0.2057 -0.0850 0.0072
Skaw and CR -0.3178 0.1010 0.2093 0.0438 -0.2076 0.0434
Kurt. and CR 0.1960 0.2849 0.0812 0.2789 0.0778
faan and bpp3 50,0035 | BEgE0,3083| 858 011507 | 25558 010884{ &85 0.0355
Std.Deviand bpp £2{ 50,2534 | B3 0.0642| % 3820/0534| 8" 0.0028] £0.067.4 [ ¥, 0.0045
Variand bpp | 550,257, | BB 0.0661 | 807207 | 8+ 0.0166 | $870:1043] 227:0.0109
Skew and bpp“EEEE | ¥ 0.0016 | ZEE0.0000| £¥2820.2301 |88 70.0529 | ¥ 0:1256| 3% 0.0158]
2801642 8550.0269 | o0 2206 £7 - 0.0487 | 3320.1604| 5. 0.0257|

Kiirt. ‘and bpp =385
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As can be seen from the Table 5.5 and Table 5.6, all the image statistics have only a weak
connection with the coding performance measures. This is consistent with an earlier work
by Yap and Rahman, [2003b].

In addition to the mentioned image statistics, the three entropy measures, that is, H(0),
H(l), H(2), are also computed in the RGB and YC,C; colour space. A samp]e of these

results is presented in the following tables.

Table 5.7 Entropy measures in RGB colour space

Red Green Blue
Image HO H1 H2 HO H1 H2 HO H1 H2
bird 7.8580| 4.5019]| 4.0235| 7.8455| 4.8410] 3.9642] 7.8202| 4.9375]| 4.3459
bulehills256 7.8704| 6.0232| 4.6470] 7.8642| 7.2334| 5.4681] 7.0768| 5.6308| 4.4149
columns 7.9580| 7.4940| 5.8346| 7.7879| 7.4453| 5.7333] 7.9715| 7.5467| 5.9382

snowwhite02 7.9425] 7.2808] 6.1975] 7.9484] 7.1898| 6.1461] 8.0000| 7.0880] 6.0953
toystory02_256 | 7.9009]| 7.0150] 5.6206] 7.9069]| 8.6024| 5.3025] 7.8455] 6.7188| 5.4353
toystory01_256 | 8.0000] 7.4877| 6.3619] 0.0000] 7.5870] 6.4021] 8.0000] 7.5238] 6.4073
clipart09_256 1.0000] 0.6266]| 0.5079] 1.0000] 0.8778]| 0.6291| 1.0000{ 0.8663]| 0.6340
clipart06_256 1.5850] 0.8495] 0.5418} 2.0000| 0.9522| 0.5465| 1.5850] 0.8454| 0.5428
clipart10_256 1.5850| 1.3822| 0.8077] 1.5850] 1.3822| 0.8077 1.5350[ 1.3822) 0.8077

Table 5.8 Entropy measures in YCyC, colour space

Y Cb Cr
Image HO H1 H2 HO H1 H2 HO H1 H2
bird 7.8455] 4.8210| 6.5996] 4.0000| 2.7894| 4.3005| 6.2479] 0.9426] 0.8322
bulehills256 7.7879] 7.1411] 6.9843| 6.2095] 5.1897] 5.2306] 0.0000| 0.0000} 0.0000
columns 7.8329| 7.4748| 7.6922| 4.9542| 2.8885] 3.6772| 5.5236| 3.4113} 4.9402

snowwhite02 7.9366] 7.1954] 7.5736] 3.4594] 1.2520] 1.5084] 5.1293] 3.0677] 4.0263
toystary02_256 | 7.8580| 6.6446| 6.7628| 4.8074] 1.1272] 1.0107| 6.2668| 4.2487] 4.3022
toystory01_256 | 9.0000] 7.5481| 7.4985] 5.3576| 2.5959] 2.6765] 5.5050] 2.1055] 2.3149
clipart09_256 2.3219| 1.9867] 1.4171] 1.0000] 0.7778] 0.5434] 1.5850| 1.1100] 0.8471
clipart06_256 2.3219| 0.8897] 0.5570| 1.5850] 0.0252| 0.0185] 0.0000] 0.0000| 0.0000]
clipart10_256 1.5850| 1.3922| 1.0416| 0.0000] 0.0000] 0.0000] 1.0000] 0.9933 U.B2U—1I

As with the image statistics, r and r* are computed to verify if there is any relationship
between these entropies and coding performance measures. The results are presented in
Table 5.9.

It can be seen from the results that most of the zero-order entropy measures in the RGB

colour space have only a weak connection with the coding performance measures, except



Chapter 5 ‘ 89

for the synthetic images. In the natural images category, there is a moderate negative
correlation between H(I) and PSNR and CR. The results also show that there is a moderate
positive correlation between FH(1) and bpp. There is a also a strong correlation between
H(2) and the coding measures.in the red and green components but the correlation in the
blue component is weak. For synthetic images, there is a strong negative correlation
between H(0) and PSNR and CR in the red and green colour components. However, the
correlation in the blue colour component is weak. To get a better picture, scatter plots in
Figure 5.5 were made. By visual inspection it was decided that the straight line curve is the
best for describing the overall pattern of the data. In this case the mathematical equation is
of the form of a linear equation:
y=bx+a

where a is the y-intercept and b is the slope of the line.

1t can be seen from Figure 5.5 that most of the data for the red and green component fall on
the trend line, whereas for the blue component the data is scatted round about the trend

line.
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Figure 5.5 Scatter plots PSNR and H(2)

Table 5.9 Entropy correlation results for RGB images

Natural images:

r (red) rzg red)| r (green) rz(gl-g_en) r (blue) | y*(blue)
F{O)Tand RSNR | IE0Y3323 | M0V11 04 | IBNEE0-3625 | I 0%) 356 | WREOT41 09 -'o‘(i'éﬁs
H(oyand CRIM Eo.aaé’él.ﬁ‘.ﬁﬁé 03443 | 01 Y85
Ho)fand.spp Il | 073512 | J0Ti233 13546 | N0 557 | 013566
H(1) and PSNR| -0.5411] 0.2928 0.2684| -0.0629
H()andCR | -0.6361] 0.4047 0.3954| -0.1514
H(1) and bpp 0.4617| 0.2132 0.2113| -0.2211
H{2)and PSNR |£20.8041 |£50.64656 ; BEL0,3047
H(2)and CRE%1#70/8393 | 8H0'7044 984 | #0:3480
H(2)'and bpp | 077442 | 805538 200120
Synthetic images:

r (red) | r(red)| r (green) rz(green!

H{o)land 2SNR | IE0'8 163 | 0669 | IECs 155 | IO 8722 Y4146
HioyandIcRER! IE0Y7095 | Il0"5033 | 07005 | I 074006 !_’Tffﬁ 02527
H(o)and toplll| ll0"e165 | IN0™3825 | MK 0'6467, I 074208 | Il 0’5154 | I 072657,
H() and PSNR| -0.1058] 0.0112]  -0.1120 0.0125| -0.1304] _ 0.0170|
H(1)and CR | -0.0588] 0.0035 -0.0143 0.cc02| 0.09862 0.0093
H(1) and bpp 0.1111 0.0123 -0.0866 0.0075
H(2)’and PSNR | 0.2372| 2800563 1|40.2817 1079
H(2)"and CR & £70.0920| $0.0085 | &0/0068
H{2Yand bpp 5 | B 0.0948 | 5800060} 5 1|8#0:0009

Clipart images:

r (red)| r’(red) __l_'_igreen) r (blue) | r’(blue)
Fifoyand[ZSNR | 070967 | ICT0053 0748 | IR 070056 | 006 53 | 070043
HioYandlcRIll E"'oaszllo*ﬁﬁva 3| I 010005 | W00 54| IEE0'0002
Fito)[ana EppIll| IE0T1763 | IE0.0577 | IEEO'2062 | M0/ 04.34 | NE-0205 7| IE010235
H(1) and PSNR| -0.0759] o0.0058 0.0143] 0.0200 0.0004
H(1)and CR | -0.0875] 0.0077 0.0075| -0.0134 0.0002
H(1)andbpp | -0.1227] 0.0151 0.0086] -0.1767 0.0312
H(2)y'and PSNR |5:0:1056 |88 0.0112|% 11627 | E4570.0265] #%:0.0223] 5% 0.0005
H(Z)'and CR%%]#2011053| 8%0.0111 044 | BE58E 070109) 5570/0356 MO 0016
H(Z)"and bpp 51 550.0005| 25 0.0098 |5 ’ '0081 | ##01467
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The results from Table 5.10 show that the zero-order entropy measure in the YC,C, colour
space has only a weak connection with all the coding performance measures. The
corresponding r* supports this observation. Therefore, it is concluded that the zero-order
entropy in the YC,C, colour space cannot be used to explain the variation in coding

performance measurcs.

Table 5.10 Entropy correlation results for YCyC, images

Natural images:
r(Y) | (Y)| r(Ch) | *(Cb)] r (Cr) [r*(Cr)

(o) andl PSR |F0%3715| 0% 380 | oY 37| W00337 | oY 777 |W0'0574
| O ana CRIM | FE0Y3266 | [0¥1067 | 0 6445 | 0’0020 #0°2854| 0,08 T4
FH(0) and;bpp MM | 0"3540| (051253 | NOY 148 BH001 32| WOY 400 | BIC0796
H{1) and PSNR -0.5232] 0.2738] 00770/ 0.0059| -0.0797} 0.0064
H{1) and CR -0.6363| 0.4049| 0.2353| 0.0554] -0.2515] 0.0633
H(1) and bpp 0.4416| 0.1950| -0.1481| 0.0218] -0.0207| 0.0004

H(2)'ahd PSNR#]#:0.6384}10:3076| #0.0802] %4 0.0064 | £2011630| £ 0.0266

H(2)'and C £:0.6810}10:4638|%0.2546]| ¥ 0.0648|#70:2995| £ 0.0897
H(2)"and Bpp s | 0'5269110:2776| 2071439} #0.0207| & 0l0529( ¥ 0.0028

Synthetic imagea:

| r(Y) |r(v)| r(Cb)|r(Cb)| F(Cn) [F(Cr)
PO and RSNRM | W0'0092 100001 |0 2086 | WK0/0435 | E0:2086| W010435

H(0)TanalcRIMM|N0Y073 1070711 5 [E0'2515| 070633 | Fo0 143 M0/0002
Fio)Tard  bop | 070463 | [070023 [ 02018 | 070407 [E0"0441 | 070019
H(1) and PSNR | -0.1582] 0.0250| -0.3733] 0.1393] 0.1418] 0.0201
H{1) and CR -0.0651] 0.0042| -0.3236] 0.1047]| 0.0632] 0.0040
H{1} and bpp 0.1281) 0.0164] C€.3567] 0.1294] -0.0610j 0.0037
H(2)'and:PSNR #$70.0686|10.0047$10:3387 | 011147 | 8011 533] & 0.0235
H(2)y'ahd CREEE | §010127[10/0002|#0.2656 | #0:0705| E0!1018| §0:0104
H(2)" Bpp e | 50,0298 10'0009| ¢ 2692] ##£0!0895 [i£010592] 8 0:0035

Clipart images:

r(Y) |P(¥)| r €b) | F*(Cb)| r (€N [F(Cr)
Ho%0a5]f0’0100| 0966 | 070387 | 0% 788; 070320
RoYfand cRIM | E070228 | [070005 | 070714 | IN0"0051 | 070535 | l076029
H(oand cpp M | 070852 { [070073 | 0% 342 | 07071 80 E0T2025{ 070410
H(1)and PSNR | 0.1674] 0.0280] 02333 0.0544| 01150 ©0.0132
H¢1) and CR 0.0632| 0.0040] 01365 0.0188] 0.0852] 0.0091
H¢1) and bpp -0.2241] 0.0502] -0.2285] 0.0522| -0.1781] 0.0317
H(2)'and PSNRE | £0/1702{20:0290|§0:24 14 | $80.0581{#0.0821]50.0067
H(2)'and.CR? #0.0611}30.0037) 8071399 BH0.0196| §0:0734{ #0.0054
H{2)'and:bpp #0.2235|10/0499]¥0/2412| E£0.0582]#071502{ #0.0225

HO AR RSNR
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5.6. Image Gradient

Image gradient is a2 measure of image edge strength and orientation. An edge is defined by
a change in grey level. This change of grey level in an image is big near an edge and small
in areas where the grey level is regular. Image gradient can be used to provide an
indication of how-busy the image is in terms of edges. Saha and Vemuri [2000b] defined

image gradient as:

IG =

1
M*N i=l j=1 i=] j=l

[filf(w%I(i+Lj]—f}§|1(i,j)-1(f,j+ 1) (5.13)

5.6.1. Image Gradient Results

The image gradient measures for a set of sixty different colour images were calculated in
the RGB and YCyC; colour space. The following table shows a sample of the results of

image gradient measures.

Table 5.11 Image gradient measure results

RGB . YCbCr
ImgGrad | ImgGrad | ImgGrad | ImgGrad | imgGrad | ImgGrad
image {R) G) (8) {Y) {Ch) {Cr)
bird 4.50 4.47 6.40 4.08 263 1.69
bulehills256 4.39 4.97 427 4,57 0.81 1.13
columns 9.16 8.64 9.75 8.54 2.25 2.16
couple 8.70 8.26 10.18 8.1 2.96 2.46
snowwhite02 13.17 13.04 12.88 12.95 0.95 0.81
toystory02_256 15.51 13.71 13.13 13.56 3.41 3.40
toystory01_256 20.21 20.06 20.41 19.78 2.95 2.73
mermaid01_256 27.91 25.65 25.11 24.53 5.55 7.85
clipart09_256 10.61 17.28 18.79 14.61 5.75 5.90
clipart06_256 6.71 7.01 715 6.94 0.12 0.16
clipart10_256 12.92 11.85 11.62 12.13 0.30 0.55
clipartd5_256 6.54 8.46 9.05 7.88 1.85 245

The r and * values are computed to verify if there is any relationship between image
gradient and coding performance measures. The results are presented in Table 5.12. The
results indicate there is a strong negative correlation between the image gradient and
PSNR, and between image gradient and CR for natural and synthetic images. The results
also indicate that there is a strong positive correlation between image gradient and bpp.

However, a closer examination reveals that the correlation for the blue colour component is
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not as strong as the correlation for red and green colour components. As for the clipart
images there is a positive correlation between image gradient and all three coding
performance measures for the red and green colour components. The results also show that

there is a weaker correlation for the blue colour component.

In addition to the r and * computations, the scatter plots are made to see the strength of the
correlation between image gradient and PSNR (Figure 5.6).

Table 5.12 Image gradient correlation results for RGB images

Natural imagaa:

rired) | r’(red) [r(green)|r’(green) r(blue) | r’(blue)

ImgGrad and PSNR| 09254 0.8564]  -0.9421 0.8876]  -0.7530 0.5671
[imgGrad and CR .8388 07037 -0.8553]  0.7315] 06744 0.4548
limgGrad and bpp 0.9608 0.9231 09561  0.9141 0.5329 0.3516

Synthetic images:
rired) | r’(red) |r(green)|(green)|  (blue) | r(blue)

{ImgGrad and PSNR -0.9385 0.8807 -0.9385 0.8807 -0.9478 0.8883
ImgGrad and CR -0.8866 0.7860 -0.8620 0.7431 -0.8476 0.7185
imgGrad and bpp 0.9076 0.8238 0.8842 0.7618 0.8650 0.7483

Clipart images:

rired) | r*(red) [r(green)|r*(green)| r (blue) | r’(blue)

imgGrad and PSNR|  -0.7669 oses1| -0.8438] 07117 -0e68s9]  0.4705
ImgGrad and CR 0.5645 0.3187[ -0.5917 0.3502]  -0.5181 0.2684
)mgGrad and bpp 0.7113 0.5060]  0.7857 0.6174 05679]  0.3225

Table 5.13 Image gradient correlation results for YCiC, images

Natural images:

. r(Y) | () | reb) | )| riCn | ri(Cn)
ImgGrad and PSNR -0.9405 0.88486 -0.6060 0.3672 -0.7990 06383

ImagGrad and CR -0.8519 0.7258 -0.5196 0.2899 -0.5288 0.2796
ImagGrad and bpp 0.9435 0.8901 0.7521 0.5657 0.8070 0.6512

Synthetic images:

rY) | ) | reb) [ cp)| rCn | F(Cn

ImgGrad and PENR 0.9434 0.8900 .7218 0.5207 -0.5981 0.3577
ImagGrad and CR -0.8544 0.7299 -0.7227 0.5223 0.7944 0.6310
ImagGrad and bpp 0.8654 0.7489 0.8260 0.6822 0.8381 0.7023]

Clipart images:

r(¥Y) | fy) | rico) | A(cp)| ri€n | rX(Cr)

ImgGrad and PSNR -0.8367 0.7001 0.7649 0.5851 -0.5291 0.2799
ImagGrad and CR -0.5989 0.3587 -0.5893 0.3473 -0.5656 0.3169
ImagGrad and bpp 0.7718 0.5957 0.8747 0.7851 0.8360 0.4045
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Figure 5.6 Scatter plots for image gradient and PSNR

The linear equation is used to establish the relationship between image gradient and PSNR.

The equation can be used to predict the PSNR from the image gradient measure for a given

image.
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5.7. Spatial Frequency
An additional characteristic used to analyse the sample images is the spatial frequency (SF)
in the spatial domain [Eskicioglu and Fisher, 1995]. SF is the mean difference between

neighbouring pixels and it indicates the overall activity in an image. It is defined as:

SF =VR*+C?

h 1 M N d l M N
where R = W}z ;(Xj‘,‘-xj_t_l and C = WZ kzﬂ(xj‘t-xj_u)%.

5.7.1. Spatial Frequency Characteristics Results

The spatial frequency measures for a set of sixty different colour images were calculated in
the RGB and YCyC, colour space. The following table shows a sample of the results of

spatial frequency (SF) measures.

Table 5.14 Spatial ﬁeéuency measure results

RGB YCbCr
Image SF(r) | SF(g) | SF(b) | ST({Y)|SF(Cb)|SF(CN
bird 8.37 8.76 9.93 8.37 2.82 2.43
bulehills 256 5.29 5.78 4.93 5.32 1.34 1.54
columns 17.63 17.15 18.78] 17.15 2.72 3.32
snowwhite02 17.30 17.16 16.77] 17.11 1.26 1.17
toystory02_256 27.85 25.95 22.89| 2546 5.84 578
toystory01_256 30.94 30.78| 30.58] 30.53 4.16 3.87
clipart09_256 52.01 66.37 69.23] 54.85 31.50] 26.61
clipart06_256 38.88 39.77 40.29] 39.34 3.16 4.26
clipart10_256 51.54 4797 47.23] 48.88 1.38 2.57

To check if there is any relationship between SF and coding performance measures the r

and r* values are computed and the results are presented in Table 5.15.



Chapter 5

96

Table 5.15 SF correlation results for RGB images

Natural images

r(red) | r*(red) |r (green)f?(green] r (blue) | r¥(blue)
SF and PSNR 00301 08850 -09414] 08862 -0.8167 0.6670
SF and CR -0.8544]  0.7300] -0.8748] 0.7853] 0.7473 0.5585
SF and bpp 0.0a99] o0.9023]  0.93%0] 08835] 0.6933 0.4807
Synthetic images:

r(red) | r’(red) |r(areen)k’(green] r (biue) | r’(blue)
SF and PSNR -07000] 06385] -07891] 06226] -0.7853 0.6167
SF and CR -08453] 0.7148] -083s5] 06e97] -0.8351 06974
SF and bpp 09006] 08111] 08995 08091 0.8040 0.7992
Ciipart images:

2 : 2

r(red) | r’(red) |r (Breen)y*(green] r (blue) | f*(blue)
SF and PSNR -0.7656]  0.5862] -0.7541] 0.5687] -0.6850 0.4692
SF and CR -08453]  0.7146] -0.8365] 06997] -0.8351 06974
SF and bpp 0.7773]  oe042]  oso7s| oes21] o660 0.4475

Table 5.16 SF correlation results for YCyC, images

Natural images:

r(Y) | r(Y) | r€b} | FHCh)| ricn | r*Cr)
SF and PSNR -0.9503]  0.9030] 05777 0.3337] -0.7007 0.4910
SF and CR -0.8801] 0.7745] -05196] o0.2699] -06920 0.4789
SF and bpp 0.9274| o08600] 07243 05247] 07467 0.5576
Synthetic Images:

r(Y) | fA(Y) | red) | Ffcb)| r€n | r}(Cn
SF and PSNR -0.7998]  06307] -06572] 04319] -0.5542 0.3071
SF and CR -0.8402) 0.7059] -07227| 0.5223] -0.7192 0.5173
SF and bpp 0.8965] 0.8037] 0.7765| 0.6020|  0.8283 0.6828
Clipart images:

rey) | o2 r(cb) | YX(Ch)| (€ | F(Cp)
SF and PSNR 07712  05947] -0.7097| 0.5036] -0.1412 0.0199
SF and CR 06452  0.4162] 05893] 0.3473] -0.3535 0.1250
SF and bpp 07779] 06051 0.9002] o08104] 04470 0.1998

The analysis shows that the results obtained using the SF measure is similar to the ones

obtained using image gradient. The results show there is a strong negative correlation

between the SF and PSNR, and between SF and CR for natural and synthetic images. The

results also show that there is a strong positive correlation between SF and bpp. The

correlation for the blue colour component is not as strong as the red and green colour
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components. There is a positive correlation between SF and all three coding performance
measures for the red and green colour components for clipart images and a weaker

correlation for the blue colour component.

Upon a closer examination of the definition of image gradient and spatial frequency, it
could be seen that the definition for an image gradient and spatial frequency are basically

the same. Hence, this could explain the similarities in the results.

5.8. Spectral Flatness Measure
The spectral flatness measure (SFM) of a digital image is defined as:

1

M-I N- 9 |mn
1 hl"g|6(k,l] ]

O S
MN k=0 ’

1=

(5.14)

where &k,/) refers to the Fourier coefficients [Sprljan et al, 2003].

The SFM provides an indication of the overall activity of a digital image. A digital image
with a SFM of 1 indicates that all the pixels have the same value, except one. A lower SFM
indicates that the energy of image is concentrated in fewer coefficients. Sprljan et al [2003]
cited that if an image has a flat or near-flat spectrum then the quality of any prediction will

be poor.

5.8.1. SFM Results
This section presents the results of the investigation into how the SFM measure affects the
coding performance. Table 5.17 shows a sample of the results of SFM measures for a set of

nine different colour images in the RGB and YC,C; colour space.
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Table 5.17 SFM results in the RGB and YC,C, colour space

RGB YCbCr
| mage SFM(r) | SFM{g) | SFM (b} [ SFM (Y) | SFM (Cb) | SFM (Cr)
bird 0.000516] 0.000488{ 0.000638] 0.000429]| 0.013696| 0.016693
bulehills256 0.000463| 0.000208| 0.000083] 0.000217 0.000070| 0.000137
columns 0.001432| 0.001728| 0.001542| 0.001487| 0.021050] 0.027082

snowwhite02 0.001778| 0.001962| 0.0022898| 0.0018917| 0.002685] 0.003848
toystory02_256 | 0.002812] 0.002899] 0.003912| 0.002900| 0.001845| 0.003980
toystory01_256 | 0.014601] 0.013187] 0.013999| 0.013620| 0.011687] 0.011979
clipart09_256 0.002897| 0.005734| 0.003989| 0.003281| 0.025576] 0.001348
clipart06_256 0.003676] 0.003825| 0.003961| 0.003752| 0.108185] 0.066778
clipart10_256 0.009834] 0.008319| 0.009202| 0.008464) 0.015427] 0.015427

Like the previous sections, the r and r* values are computed to check if there is any
relationship between SFM and coding performance measures and a sample of the results is

presented in Table 5.18.

Table 5.18 SFM correlation results in the RGB colour space

Natural imagee:

r(red) | r’(red) F(green) rz(green)| r(blue) | F’(blue)

SFM and PSNR -0.5936 0.3523 -0.7300 0.5330 0.7007] . 0.4910
SFM and CR -0.4484 0.2010 -0.5929 0.3515 -0.6578 0.4327
SFM and bpp 0.5040 0.2540 0.6160 0.3785 0.6478 0.41596

Synthetic images:

r(red) | r’(red) |r(green) rz(green)l r{blue) | r(blue)

SFM and PSNR -0.6887 0.4743] -0.6273 0.3835 -0.4352 0.1929
SFM and CR -0.6886 04742 -0.6790 0.4611 -0.4949 0.2448
SFM and bpp 0.7835 0.6138 0.7528 0.5667 0.5547 0.3077
Clipart images:

r(red) | r’(red) |r(green)|r’(green)| r(blue) | r(blue)

SFM and PSNR -0.69831 0.4885 -0.6934 0.4808 -0.6160 0.3795
SFM and CR -0.3956 0.1565] ' -0.4440 0.1972 -0.3736 0.1396
SFM and bpp 0.5801 0.3365 0.6296 0.3564 0.4694 0.2204
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Table 5.19 SFM correlation results in the YCiC, colour space

Natural images:

r(Y) | f(Y) | rew) | FACb) | ricn | F(Cn

SFM and PSNR -0.7149 0.5111 -0.4141 0.1715 -0.4727 0.2235
SFM and CR -0.5774 0.3334 -0.3308 0.1095 -0.3929 0.1544
SFM and bpp 0.6213 0.3860 0.4349 0.1892 0.6680 0.4462

Synthetic images:
rY) | fY) | r(€b) | F(Cb) | r(Cn | *(Cr)

SFM and PSNR 0.6517 0.4245|  -0.5344 0:2856)  -0.5500 0.3025
SFM and CR -0.6959] 0.4842]  -0.5110 0.2611 -0.4498 0.2023
SFM and bpp 0.7871| 0.6196 0.6093 0.3712 0.6093 0.3742
Clipart images:
2
r(Y) | rfy) [ r(cb) | Fi(Cb) | ri€n | *(Cr)

SFM and PSNR £0.7019 0.4927|  -0.2205 0.0486{ -0.2738 0.0750|
SFM and CR -0.4158 0.1729 . -0.0299 0.0009| -0.0822 0.0067
SFM and bpp 0.6004 0.3505|  -0.0063 0.0000 0.0346 0.0012

Comparing the results in Table 5.18 with the results in Table 5.19 shows that there is a
negative correlation between the SFM and PSNR, and between SFM and CR for natural
and synthetic imalges. The results also show that there is a positive correlation between
SFM and bpp. It is also observed that there is a weaker correlation for the blue colour

component compared to the red and green colour component.

5.9. Summary

The results from section 5.4.3 show that the best combination of PSNR and CR is
produced by the ‘biord. 4’ (9/7 tap) wavelet filter. This result is wholly consistent with
the selection of the Daubechies 9/7 tap wavelet as the basis of the JPEG2000 standard.
Furthermore, it is also found that the haar wavelet filter outperforms the other wavelets

for clipart images.

Also in this chapter a variety of grey-level image histogram statistics is used to analyse
sixty colour images. The aim is to determine what causes the variation in coding
performance measures. It is observed that most of the grey-level image histogram statistics,
that is, mean, standard deviation, variance, skewness, and kurtosis do not have any
significant connection to the coding performance measures. The results have shown that

image gradient and spatial frequency has a strong correlation with all three coding
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performance measures. The strong correlation between image gradient and all three
coding performance measures support the findings of Saha and Vemuri [2000b] for grey-
scaled images. However, the equation used to describe the relationship between image
gradient and PSNR is a linear equation instead of a logarithmic equation used by Saha and
Vemuri [2000b].

Although the results in this chapter show that image gradient and spatial frequency has a
strong correlation with all three coding performance measures, this research is cautious not
to take this as evidence of causation and the .result remains as a statistical association. It is
therefore proposed that there should be a more through study conducted to search for the
cause of this correiation. However, this research is concerned with image compression and
thus will not pursue further the cause of this correlation. The basic findings are however
relevant to this research and the results from this chapter inform the choice of wavelet and
other aspects of the development of three wavelet-based compression systems reported in

chapter 6 and 7.



CHAPTER 6

Approaches to Compressing
Grey-Scale and Colour Images

6.1. Introduction
This chapter presents a method for identifying the frequency characteristics of a colour
image and two methods of compressing grey-scale and colour images using a wavelet-

based segmentation approach.

6.2. Analysis of an Image Using a Block-based FFT Method

This section is concern with a systematic study conducted to identify a colour image
according to its image activity. A method using a block-based Fast-Fourier transform
(FFT) is used to determine the image activity. The results confirm that an image with a

low-level of activity is easier to code compared to an image with a high level of activity.

6.2.1. Histogram Statistical Features

The work is discussed in detail in chapter 5 and explores how various image characteristics
influence the coding performance measures using grey-scale image histogram features to
analyse colour images. The histogram features are mean, standard deviation, variance,
energy, skew, kurtosis, and entropy. The results showed that the images from each
category defined in this research had similar characteristics. There were no dominant
statistical features that could be used to distinguish between them. The results also showed
that these statistical features did not correlate well with coding performance criteria like
PSNR (which was used as an indicator of image quality) and bpp (which was used as an
indicator of compression performance). As these global statistical features could not
explain the coding performance, other image characteristics were needed and it was

decided to explore in the frequency domain based on local image properties.

6.2.2. Image Characteristics in the Frequency Domain

A typical RGB colour image can be considered to comprise three independent grey-scale
images, where each image corresponds to a different colour. Typically, each of these grey-
scale images will consist of pixels that are correlated and therefore contain redundant

information. Significant compression can be achieved by exploiting these redundancies,

101
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Fourier Log Power Fourier Log Power Fourier Log Power
Spectra of Spectra of Spectra of
R component G component B component

Figure 6.2 Fourier log power specira images

The above images indicate a wide variation in spectra. The bright center in the blocks,
indicate a low frequency component. The blocks that contain the hair produce a spread of
energy at all frequencies. Spectra with lines normal to the edges indicate the presence of

dominant edges, for example the transition between shoulder and background.

The spectra images contain no useful statistical information that could help define the
coding performance. To analyze the image more effectively, a more quantifiable measure
is needed. To provide this, the average magnitude (AM) of each block is computed. The

array of AM can then be displayed as an image. The average magnitude is defined as:

Average Magnitude = Z |F (j,k] /N
Sk

where |F(;,k) is the matrix containing the amplitudes of the spectrum and N is the number

of frequency components [Augusteijn et al, 1995; Dulyakarn et al, 2000]. The
corresponding AM images of the Fourier log power spectra images shown in Figure 6.3, is

shown here.

E I T T

Average Magnitude of Average Magnitude of Average Magnitude of
R component G component B component

Figure 6.3 Average magnitude images
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contain a large smooth region have a large number of small average magnitudes (83%),

which indicates a low level of activity.,

These images were then compressed using different wavelets. The results for four wavelets

are presented here.

Table 6.3 Compression results

Image haar db2 biord.4 bioré.8

PSNR| CR | bpp|[PSNR| CR ]| bpp|PSNR| CR | bpp|PSNR| CR | bpp
bird 36.66] 45.18] 0.18| 36.98{ 44.65] 0.18] 37.23] 41.57] 0.19] 37.26] 32.67] 0.25
shapes01 41.53] 35.18] 0.23]| 35.96] 26.87] 0.30] 34.36| 27.33] 0.29]| 34.37| 25.66] 0.31
marcie 31.08] 19.16] 0.42| 31.77| 19.78] 0.40] 32.03] 17.77] 0.45] 32.18| 13.68] 0.59
peppers 30.28] 13.40] 0.60| 30.90| 14.57] 0.58] 31.29| 12.88] 0.62| 31.32| 9.92| 0.81
mandrill ‘| 25.87] 7.26] 1.10] 25.97| 7.26] 1.10] 25.97] 6.77| 1.18] 26.02} 5.85| 1.37
paimblades | 26.67| 6.72] 1.19| 26.96| 7.25] 1.10] 27.27] 7.21} 1.11| 27.40| 6.06] 1.32

The results confirm that images that have a high level of activity are harder to code. High
levels of activity mean that there is more information compared to a low-level activity

image, which has low information content.

6.3. A Dual Wavelet Compression Scheme for Still Colour Images

Conventional wavelet-based compression schemes first convert a colour RGB image into
luminance/chrominance format before the wavelet transform is carried out. The
luminance/chrominance image is decomposed with a single wavelet filter and at a single
decomposition level. The work described in this section demonstrates that this does not
necessarily achieve optimum coding performance. A new scheme is proposed that uses one
wavelet to compress the luminance image and another to compress the chrominance
images. The results also show that coding performance can be improved with a single

wavelet by processing the luminance and chrominance images at different levels of

decomposition.

To compress colour images a wavelet-based encoder would comprise of a colour

transform, a wavelet transform, a quantizer, and an entropy coder.
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Figure 6.6 Typical wavelet-based encoder

Typically all colour images are in the RGB colour space. The RGB image has to be
transformed into the YC,C, colour space before being decomposed into wavelet
coefficients, which are then quantised. The entropy coder produces an output bit stream

and then encodes these wavelet coefficients.

This typical approach applies the same wavelet filter to decompose the Y, C,, and C;
components without considering that the human visual system (HSV) is relatively
insensitive to distortion in the chrominance components especially at high frequencies. The
CyC, chrominance components have a minor role in the perception of edges and fine details
[Taubman et al, 2002, pp.421]. Lervick and Ramstad [1995] show that the C,C;
components generally have a smaller amplitude dynamic range than the Y -component.
Lervick and Ramstad [1995] also show that the amplitudes of the C,C; are also smaller
than the Y component. In addition, the human vision system (HVS) is less sensitive to
intensity changes than for spatial variations in the Y component. This property can be

exploited to help reduce the encoded output.

The proposed wavelet-based image coder is built on the two-dimensional wavelet
transform discussed in section 3.3.5. It supports tri-component images and also supports a
variety of wavelet families supported by Matlab. The main components are colour

transform, wavelet transform, threshold, quantizer and entropy encoder.
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Figure 6.7 Structure of the wavelet-based tri-component coder

The equation used to transform the RGB image into YC,C; colour space is defined in
section 3.9.2, A ;cwo-dimensional discrete wavelet transform (DWT) wavelet analysis
function is used to decompose the Y, Cy, and C; components separately. Since the resultant
wavelet coefficients after DWT are close to zero these coefficients can be set to zero by

using a method called thresholding.

After transformation and thresholding, all the coefficients are quantized. The coefficients
are floating-point values and these are scaled and quantified. Each coefficient is
represented by » bits, which is some value between 8 and 16 bits. The scaling works by
computing the maximum and minimum of the coefficients and maps the coefficients to the
quantization steps. The number of steps is determined from the value ». The quantization
process maps the coefficients into integer values, which is then fed into the Huffman

entropy coder.

A Huffman entropy-coding scheme.is used to reduce the storage size by reducing the
number of bits required to code the coefficients. The coefficient matrix is converted into a
long single sequence of integer values, and these values are encoded as symbols. The
length of the code words is first computed, and then the Huffman code words are

determined. Finally a Huffman tree is constructed and is nsed for the compression.

The decoding scheme is basically the reverse of the encoding process (See Figure 6.8). The
compressed image is first decompressed using the Huffman decoding scheme to obtain the
coeflicient matrix. The coefficients are then re-scaled in the dequantization stage and the

inverse DWT (IDWT) is carried out to reconstruct the image. Following the IDWT, an
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inverse mapping is performed from the Y, Cp, and C; colour space to the RGB space using

the following equation:

R 1.0 0 1402 | Y
G|=|1.0 -0.34413 -0.71414||C,
B 1.0 1.772 0 C

T

R | Y ]._ DWT |¢- Q' |eH g:zf;’;gr |
Reconstructed gr(l)an;gressed
mage G |¢— Cb Iq— IDWT |¢— Q' |¢ En‘mpeyr | le—
B (¢ Cr |1- IDWT |g— Q' e Evtor |
Decoder

Figure 6.8 Decoding structure

With this scheme a different wavelet filter can be used to decompose the luminance and
chrominance components separately. This is consistent with the work of Lervik and
Ramstad [1995], which cited that the statistics of the C,C, components are equal and they
use the same subband filter bank for both the CyC; components. However, in the work
reported here, it is shown that there may be some benefits in using different wavelet filter

for each of the CyC; components, and different levels of decomposition.

The six images used in this study were classified as low, moderate, and high frequency,
using a block-based FFT analysis method described in section 6.2.3. The frequency
spectrum was calculated for each of the Y, Cp and C, image planes separately and then
aggregated to produce the final figure. Table 6.4 presents the results. Earlier work on grey
scale images had indicated that significant improvements in PSNR and/or the compression
ratio (CR) were possible through the selection of different wavelets, based on the

frequency characteristics of an image (see Table 6.3).
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Table 6.4 Image Classification

Image Low band Moderate band | High band
Low bird 235 (92%) 17.66 (7%) 3.33 (1%)
Fraquency |gowera56 246 (96%) 2.66 (1%) 7.33 (3%)
Moderate |marcie 129 (50%) 113.66 (45%) |13.33 (5%)
Frequency [peppers 83.33 (32%) 132 (52%) 40.66 (16%)
High barboon 50.667 (20%) 139 (54%) 66.33 (26%)
Frequency [palmblades |10 (4%) 134.66 (53%) [111.33 (43%)

To provide a basis for comparison, the principal wavelet types supported by the Matlab
paékage were applied to the six images, using level 3 decomposition and reconstruction
filters. The results are shown in Table 6.5. 1t can be seen that the best CR is produced by
the haar wavelet for low frequency images and db2 for the moderalte and high frequency
images. The best PSNRs are produced by the bior4.4 and sym4, but with no particular
pattern being evident. Overall, as in section 5.4.3 the best combination of PSNR and CR is

produced by the bior4. 4 (9/7 tap) wavelet.

Table 6.5 Coding performance using a single wavelet

Imege haar dh2 biord.4 eym4 colf4

PSNR] CR bpp | PSNR|] CR | bpp |PSNR] CR | bpp |PSNR| CR | bpp|PSNR| CR | bpp
bird 3666) 45.18] 0.18] 36.98] 44.65| 0.18] 37.23| 41.57| 0.19| 37.29) 40.90] 0.20| 37.01| 28.09{ 0.29
flower256 36.70| S58.78] 0.14] 37.32| 56.86 0.14] 37.22| 47.26| 0.17] 37.18§ 50.92)] 0.16] 37.12| 31.98] 0.25
marcie 31.08| 19.16] 0.42] 31.77] 19.78( 0.40] 32.03} 17.77] 0.45] 32.01f 17.98] 0.45] 32.03] 11.46| 0.70
peppers 30.28| 13.40] 0.60] 30.90] 14.57| 0.55] 31.29f 12.98| 0.62] 31.23| 13.06} 0.61] 31.23| 8.18| 0.98
mandrill 2587| 7.28| 1.10| 2597 7.26| 1.10| 25.97] 6.77] 1.18] 26.00| 6.89| 1.16] 26.01] 5.24| 1.53
lpalmblades 2687) 6.72] 119] 26496] 7.26| 1.10] 27.27] 7.21| -1.11] 27.19] 7.10] 1.13]| 27.25] 5.34] 1.50

The next stage was to combine the wavelets producing the best PSNRs with those
producing the best CRs, that is the bior4.4 with the haar and db2. The luminance (Y)
image plane contains the majority of the image details and it was therefore decided that, for
this study, the wavelet producing the best PSNR should be used for this element of the
compression (that is the biord4.4). The haar and db2 wavelets were used to compress

both of the chrominance planes, Cy, and C,. The results obtained are shown in Table 6.6.
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Table 6.6 Coding performance using dual wavelets

biord.4(3), haar bior4.4(3), db2
Image PSNR| CR bpp | PSNR| CR | bpp
bird 36.92| 46.36| 0.17] 37.21] 44.38] 0.18
fiower256 37.22| 5469 0.15] 37.24] 53.75] 0.15
marcie 31.72| 19.34] 0.41] 31.93] 19.04] 0.42
peppers 30.57| 13.45| 0.60] 31.08] 13.97| 0.57
mandrill 2585 6.88] 1.16] 2594| 6.92| 1.16
palmblades 26.57] 7.04] 1.14] 26.71] 7.27| 1.10

The results in Table 6.6 show that both combinations show an improvement in the
compression ratio with only a small loss in PSNR, compared to the bior4.4. The
exception to this is palmblades (bi$r4 .4 and haar). -The best improvement is for the
bior4. 4(3), haar(3) for the flowers256 image, which shows an increase in CR of 15.7%
for no loss of PSNR. Overall, the }?ior4 . 4(3), db2(3) produces an increase in CR of
8.10% for a loss of only 0.56% in PSNR. The bior4.4(3), haar(3) produces overall
increase in CR of 9.62% but the PSNR is reduced by 1.13%.

In a further experiment, it was found that a combination of bior4.4, db2, db3 can

marginally improve the CR for mandrill. The results are shown in Table 6.7.

Table 6.7 Triple wavelet coding performance

bior4.4(3). db2(3), db3(3)

Image PSNR | CR bpp

bird 37.18] 4501 0.18
flower256 37.23] 52.81 0.15
marcie 31.94] 18,78 0.43
peppers 31.18] 13.84 0.58
mandrill 2594 693 115
palmblades 26.70 7.25 1.10

This could open up a possibility of a triple wavelet compression system. As the results in
Table 6.7 show only a marginal improvement in CR for a particular image for a significant

increase in complexity, this approach will not be considered any further.

Finally, a series of results were taken for a single wavelet (bior4.4) but with different
levels of decomposition applied to the chrominance components (CpC;). The

bior4.4(3,7) produces a large overall gain in CR (22.45%) but at an large fall in PSNR
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(3.48%). The overall figure for bicr4.4,(3,5) produces an overall increase in CR of
23.22% for a loss in PSNR of 0.77%. The best individual performance is again for

flowers256, where an increase of 32.5% in CR has been produced for a loss of only 0.34%
in PSNR.

Table 6.8 Coding performance using different levels of decomposition

biod.4 (3,1) bior4.4 (3,3) biord.4 (3,5) biord.4 (3.7)
Imaga PSNR| CR | bpp | PSNR| cR | bpp| PSNR| CR |bpp|PSNR] CR |bpp
bird 28.13| 32.37] o0.2s| 37.23| 41.57] 0.19] 37.08] 53.92| 0.15| 36.99] 56.03] 0.14
flower256 20.85| 17.58] o.46] 37.22] 47.25] 0.17] 37.20] 62.59| 0.13| 37.09[ 65.23] 0.12
marcie 30.59] 798| 1.00 32.03] 17.77] 0.4s| 31.86] 19.51| 0.41| 31.74] 19.38] 0.41
peppers 31.55| e6.08] 132| 31.29] 12.98] 0.62] 30.84] 13.92| 0.58| 29.58] 15.29] 0.52
mandrill 26.07| 4.75| 168| 2s.97] 6.77] 1.18] 257%] 7.18| 1.12| 25.04] 7.67] 1.04
paimblades | 27.80] S.41| 1.48] 27.27] 7.21] 1.11] 26.8s| 7.4s| 1.07| 23.92] 861|093

The above results, although confined to a small sample of images and range of wavelets,
clearly demonstrate the potential gains that may be achieved by the application of either
multiple wavelets or different levels of decomposition of the same wavelet. The image
samples were chosen to give a good statistical spread of characteristics which gives
confidence of the general applicability of this technique. The overall results for bior4. 4

(3,5) are particularly impressive.

6.4. A Segmentation-based Wavelet Compression Scheme for Grey-Scale Images

The advent of picture messaging on mobile telephones, Personal Digital Assistant (PDA)
technology and other wireless based image services has shifted the balance of priority for
image compression schemes. Historically, the output medium for decompressed images
was a high resolution computer monitor that demanded a good quality image. Image
quality can be broadly interpreted to mean a good Peak Signal to Noise Ratio (PSNR). The
capabilities of the display screen on the majority of mobile devices combined with the cost
of transmission bandwidth has shifted the emphasis away from the PSNR towards the level
of cofnpression, frequently expressed as a direct compression ratio or via a bits per pixel

(bpp) value.

In recent years wavelet-based compression has become popular because such compression
schemes allow high compression ratios while maintaining good image quality. The

popularity and success of wavelets has prompted its inclusion in the JPEG2000 standard. A
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variation on conventional wavelet-based image compression schemes is presented here.
The proposed technique exploits the variable frequency characteristics of an image by
applying different wavelet filters to the low and high frequency elements. It is shown that
this can offer an improvement in the compression ratio for certain types of image, with

little overall loss in PSNR.

The conventional lossy wavelet cofnpression approach uses the same wavelet filter to
compress the whole image. This section proposes a compression scheme based on the
segmentation of an image into its non-smooth and smooth segments. A different wavelet

filter is then applied to these different elements of the image.

An edge-detector algorithm was used to segment the grey-scale image into smooth and
non-smooth segmént images. A smooth segment image is defined as an image with smooth
varying, continuous surfaces. In contrast, a non-smooth image consists of distinctive sharp
edges, for example clipart. Since edges are usually sharp 'changes, an edge-detector can be
used to identify fast gradient changes. The gradient change of an image can be derived by
computing its first derivative by finding the numerical approximation of the difference in

each pixel. The gradient change can be computed by:

J[I(r,c)—](r—l,c—l)]2 -+-[1’(r,c—1)—1’(r——l,c)]2

1(r,c) denotes an image pixel at row (r) and column (c).

Typically, an approximate magnitude is computed using:
|I(r,c)— I(r —l,c—l} +|I(r,c—])—1(r -1, c}

This form of the equation is generally preferred because it is much faster to compute
[Umbaugh, 1998, pp.64].

Edge-detectors work on the basis that edge information in an image can be located by
examining the relationship of a particular pixel and the surrounding pixels. If there is a
wide variation of grey levels surrounding a pixel then an edge is present. On the other

hand, if the grey levels are similar then there is no edge present at that point.
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The following is a modified version of an edge detection algorithm scheme first presented
by Liu (2004). A Roberts operator, chosen because it works best with grey-scale images
[Umbaugh, 1998, pp.63], is used to extract the edges. The Roberts operator mask is

defined as:

The Roberts operator convolution masks are convolved with the grey-scale image to
produce an edge-detected image, which is basically a binary image. The resultant edge-
detected image is then divided into blocks; values of 8 x 8, 16 x 16 and 32 x 32 were used
in this study. The number of black pixels in each block is counted. 1f the block contains
more than 10 black pixels, then it is considered to be a non-smooth segment. However, if
the block contains less than 10 black pixels, then that region is said to be a smooth

segment. Figure 6.9 provides an example of its operation.-

Figure 6.9 Segmented images

The smooth and non-smooth segment images were then compressed separately using a
different wavelet filter for each image. The following is a comparison of the coding
performance using a single wavelet compression scheme and the dual wavelet method

presented above. :
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6.4.1. Grey-scale Image Segﬁze}ttation-based Results
The segmentation scheme described above was implemented using Matlab, using two of

the wavelets available in that package. The following six grey-scale images were used.

ggoldhill

Figure 6.10 Grey-scale test images
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The first set of results (Figure 6.11) gives a comparison of the output from the encoder for
a single wavelet and the dual wavelet scheme. The number of bytes coming from the
encoder has been used to provide an absolute measure of performance rather than the
compression ratio, as is more normal. The reason for this is that the dual wavelet method
produces two image outputs that must be added to produce the total data size. The
bior4.4 wavelet was used for the single wavelet method at a decomposition level of 3.
For the dual wavelet method, the bior4. 4 was again used at level 3 for the smooth image

and a haar wavelet at a decomposition level of 4, for the non-smooth segment image.

|—0—'Encoderoutput (single wavelet) - Enceder output (dual wavelet) |
=z 25000 -
2
Fy 20000 -
5.
-4 158000 -
3
10000 -
E:;Odu?r Encoder g
Image up output (dual ‘é 5000 -+
(single wavelet) 2
wavelet) wi 0
gmandrill 18125 14704 A ™ a N
gmarcie 6849 5850]| . é@o 6{5\0 6@‘5& %{o‘b@ &adb 0\6\\
gpalmblades 15381 13686 § 3 & & &
gbarbara 11504 0266 : &
gboat 8162 7399 Images
g_goldhill 6889 5970

Figure 6.11 Comparison of resultant compressed file sizes for the single and dual wavelet

methods.

From Figure 6.11 it is apparent that there is some improvement in compression as the total
number of bytes coming from the encoder is smaller for the dual wavelet method.
However, a direct comparison cannot be made as the effects of the application of the dual

wavelet reduce the overall PSNR by approximately 2dB for each of the images.
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Figure 6.12 Reduction in PSNR caused by the dual wavelet method.

In order to provide a direct comparison, the PSNR for the single wavelet method was set to

the same level as that achieved by the dual method, and the number of bytes produced by

the encoder was recomputed. The results are shown in Figure 6.13.

—e&— Encoder output (single wavelet) —— Encodar output (dual wavelet)
- 18000 -
2 16000 -
2 14000 -
= 12000 -
8 10000
3 8000 -
Encoder g 6000 -
Imaga cu_:tput Encoder B 4000 -
(single |ouiput (dual 9 2000 |
wavelat) wavelet) w 0 . , ] , '
gmandrill 15574 14704 N " A
gmarcie 4993 5850 é\b‘\ 6@@’? &b"’g’ & s &
lgpaimblades 12874] 13886 § ¢ s &
gbarbara 8674 9286 &
gboat 590 7399 Images
ggoldhill 4969 5970

Figure 6.13 Comparison of the single and dual wavelet methods for fixed PSNR levels.

Initial results indicate that some improvement in compression can be achieved through the
use of a combination of wavelets with little loss in the quality of the reconstructed image.
This could prove to be a very significant factor for mobile devices, where bandwidth costs

can be high and small reductions in PSNR would have little, if any, impact.
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This technique can be extended tc; colour images where it is anticipated that more
significant improvements may be possible. 1t is hoped at this stage further work can be
carried out to classify regions of an image based on their frequency content, and then to
match a small family of wavelets to these regions in order to optimise overall performance.
One possible outcome from this study is to develop a simple expert system to perform the
initial analysis on an image and then to assign the most appropriate combination of

wavelets for its compression.

6.5. A Segmentation-based Wavelet Compression Scheme for Still Colour Images

This section describes an extension of the above scheme to still colour images. There are
two major parts to the proposed scheme. Part 1 consists of a segmentation scheme
described in section 6.3.]1 to segment the luminance (Y) image into smooth and non-

smooth segments.

Part 2 consists of the wavelet-based -‘encoder and decoder described in section 6.3. A 2D
DWT is used to decompose the segmented Y, Cb, and Cr components. The resultant
wavelet coefficients are set to zero using thresholding and then quantized. Finally the
storage size is reduced by a Huffman entropy-coding scheme. The process to recover the

image is identical to the process is described in section 6.3.

6.5.1. Colour Image Segmentatian-based Method Results

A block-based FFT method was used to classify the six images used in this study. The
frequency spectrum was calculated for each of the Y, Cy, and G, image planes separately
and then aggregated to produce the final value. Table 6.9 presents the results. Earlier work
on grey scale images had indicated that significant improvements in PSNR and/or the
compression ratio (CR) were possible through the selection of different wavelets, based on

the frequency characteristics of an image [Yap and Comley, 2004).
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Table 6.9 Colour Image Classification

Image Low band Moderate band | High band
Low bird 235 (92%) 17.66 (7%) 3.33(1%)
Frequency |qower2s6 246 (96%) 2.66 (1%) 7.33 (3%)
Moderate |marcie 129 (50%) 113.66 (45%) [13.33 (5%)
Frequency |peppers 83.33 (32%) |132(52%) 40.66 (16%)
High mandrill 50.667 (20%) 139 (54%) 66.33 (26%)
Frequency [paimblades 10 (4%) 134.66 (53%) [111.33 (43%)

The principal wavelet types supported by the Matlab package were applied to the six
images, using three levels of decomposition. The results are shown in Table 6.10 and they
are used as a basis for comparison. The results show that the best encoded output is
produced by the haar wavelet for low frequency images and db2 for the moderate and
high frequency images. The bior4.4 wavelet filter yield the best PSNRs. Overall, the
bior4.a (9/7 tap) wavelet filter yields the best combination of PSNR and CR. Again, this
is wholly consistent with the selection of the 9/7 tap wavelet as the basis of the JPEG2000

standard.
Table 6.10 Coding performance using a single wavelet

haar db2 blor4.4 eym4 colf4

Image Encoded Encoded Encoded Encoded Encoded
output |PSNR| output |PSNR| oufput {PSNR| output [PSNR| output |[|PSNR
bird 4352| 36.66 4403| 36.98 4730] 37.23 4807| 37.29 7000] 37.01
flower256 3345| 36.70 3458 37.32 4161] 37.22 3861| 37.18 6147] 37.12
marcie 10263 31.08 ga40| 31.77]  11088] 32.03 10933| 32.01 17163| 32.03
peppers 14672| 30.28]  13490| 30.90 15149 3129 15057 31.23]  24098] 31.23
mandrill 27093] 25.87 27093| 2597 28063 25.97 28554 26.00 37554 26.01
palmblades 29239] 26.67] 27106| 26.96] 27257] 27.27]  27699| 27.19]  36824] 27.25

The next stage was to segment the Y image using the method described in section 6.4. The
segmented Y image is compressed using the wavelet filters producing the best PSNRs with
those producing the best CRs, that is, the bior4.4 witH the haar and db2. The smooth
segments of the Y image, that contains the smooth/continuous features, are compressed
with the bior4. 4 wavelet filter. The non-smooth segments, that contain most of the sharp
features, are compressed with the haar or db2 wavelet filter. The chrominance images,
Cb and Cr are compressed with the bior4 .4 wavelet filter at level 3. The results obtained

are shown in Table 6,11,
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Table 6.11 Coding performance using segment-based approach, single level

decomposition
biord 4(3), haar(3), biord 4(3), db2(3),
biord 4(3) bior4.4(3)
Encoded ouput Encoded ouput
Image Total PSNR Total PSNR

bird 4955 36.79 4652 36.49
flower256 4321 36.83 3874 36.39
marcie 11246 31.90 10087 30.67
peppers 15338 31.20 14283 30.18
mandrill 28786 2593 29275 25.85
palmblades 28958 27.14 26407 26.25

Note: First two wavelets are used to decompose the segmented Y image at level 3 and level 4,

The third wavelet is used to decompose the chrominance componenté at level 3.

Figure 6.14 gives a comparison of the results in Tables 6.10 and 6.11 and shows that a

there is a reduction in the encoded output with some loss in PSNR.
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Figure 6.14 Comparison of conventional and segmented wavelet algorithms

The next enhancement was to apply the segmentation algorithm to the luminance image
(Y) and the two chrominance images (CpC,;). The smooth and non-smooth segments are
compressed with the bior4.4 and haar wavelet filters respectively. The results obtained

are shown in Table 6.12.

Table 6.12 Coding performance of ségment—based approach applied to Y and CyC, images

bior4.4(4), haar(3),

bior4.4(5), haar(3)

Encoded ouput

Image Total PSNR

hird 4239 30.82
flower256 3146 25.75
marcie 9860 23.90
peppers 13977 17.20
mandrill 27533 19.29
peimblades 25622 13.16

Note: First two wavelets are used to decompose the segmented Y image at level 4 and 3.

The third and fourth wavelets are used to decompose the chrominance components at level 5 and 3.

The results in Table 6.12 show that there is a further reduction in the encoded output but
there is also a significant loss in PSNR. In addition, there is also a significant colour
distortion in the reconstructed image (See Figure 6.15). Hence, this particular approach

will not be considered any further.
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Figure 6.16 Comparison of two different approaches

Figure 6.16 gives a comparison of the results in Tables 6.10 and 6.13 and shows that the
encoded output is further reduced using the dual wavelet approach and the PSNR loss is

also reduced compared to the previous approach.

6.6. Summary

The results presented in section 6.2 represent the first stage in the development of an
optimal algorithm for compressing still colour images for mobile telcphones.’The results in
Table 6.3 show that different wavelets produce different levels of performance for the
different images used as test cases. For example, considering the image of ‘marcie’, for
best quality, the bior6. 8 wavelet should be chosen, offering a PSNR of 32.18. Equally, if
the concern is for achieving the highest level of compression, the db2 wavelet should be

chosen, with a bpp of 0.40. However, the results of Figures 6.2, 6.3 and 6.4 show that the
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same quality is not required across the whole image, giving rise to the possibility of
selécting different wavelets for different parts of the image, based on local statistical

properties.

The work in section 6.3 is concern with compressing colour images using different wavelet
filters for the luminance.component and chrominance components. The results, although
confined to 2 small sample of images and range of wavelets, clearly demonstrate the
pote.ntial gains that may be achieved by the application of either multiple wavelets or
different levels of decomposition of the same wavelet. The image samples were chosen to
give a good statistical spread of characteristics which gives confidence of the general
applicability of this technique. The overall results for biord.4,3,5) are particularly

impressive.

Section 6.4 presents a wavelet-based image compression scheme in which a grey-scale
image is first partitioned into non-smooth and smooth segments and different wavelets are
then applied using the 2-D DWT. The results reported in section 6.4 indicate that
significant improvements in compression ratios can be achieved through the use of a
combination of wavelets with little loss in the quality of an image. This could prove to be a
very significant factor for mobile devices, where bandwidth costs can be high and small
reductions in PSNR would have linlé, if any, impact. The method is extended to colour
images where the luminance image is split into non-smooth and smooth segments and
different wavelets are then applied to the segmented images. This method and the results
are presented in section 6.5. The results in section 6.5.1 show that the coding performance
is further improved by compressing the chrominance components with a different wavelet

filter.
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7.2 Hybrid Wavelet-based Compression System

Based on the earlier comparison made between a mobile telephone text message and a
formal sentence construction, and also SOI, this research would like to present an
alternative view to perceiving an image in the context of a mobile telephone. This thesis
proposes to reduce the details in the background by averaging it and sending the
background separately from the SOI. Figure 7.2 is a summary of the proposed HWCS:

. Get image.

. Crop image.

. Create mask with cropped image.

. Create background image with mask.

Derive the average background image.

. Quantize and encode averaged image using Huffman entropy.

. Compress cropped image.

Transmit the encoded compressed images and encoded averaged image.
. Decode and dequantize averaged image.

0. Reconstruct deccded averaged image and compressed image.

1. Superimpose the compressed cropped image onto the averaged image
to form the final image.

ol oo N« s s BEES e Y L I PO I L

Figure 7.2 Overall algorithm

The SOl is a specific area within the image and this can be cropped. The cropping process
is performed by selecting a specific area of the image, a snb-image, which is then cropped.
The sub-image is compressed using a wavelet-based scheme as described in chapter six
(section 6.3) and sent separately from the averaged background image. The final image is
reconstructed by replacing the averaged background image pixels with the compressed

cropped image.

[t should be noted that the SOI used in this work is a very different approach to that used to
define and process the region-of-interest (ROl) in the JPEG2000 standard. The ROI
algorithm in JPEG2000 is designed to increase the quality of the selected area of the image

rather than to reduce the resolution of the background.
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7.2.1. The Background Image

A mask is created using the cropped sub-image. Initially the mask is black, which is of the
same size as the copped image. The mask contains zeros for all pixels that are part of the
cropped sub-image. This mask is used to replace the cropped portion from the original

image to create the background image. Figure 7.3 illustrates this process.

Background
image

—

Create mask
from cropped
image
Cropped image Mask

Original image

Figure 7.3Creating mask

However, the black mask produces a line artefact (Figure 7.4a) in the final reconstructed
image. Figure 7.4(b) shows the same image with the line artefact removed. How the final

reconstructed image is derived will be explained in a later section.

Figure 7.4 Line artefact
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To eliminate the artefact, the black mask is replaced with a different mask with an average
value of the background image. The average value is computed from the background

image using the following algorithm.

Create black mask from cropped image. )

Replaced the cropped portion of the image with the black mask.
Convert the new image into a row vector.

Remove the zeros.

Compute the average value for generating the mask using the

following
1
E - Z ]r,r:
n

where X is the average value, n is the total no. of pixels and
E:Incis the sum of all pixels.

ook W N

Figure 7.5 Algorithm for computing the average value of the mask

—

Create mask
from cropped
image

Cropped image Mask

Original image

Figure 7.6 Result using the algorithm in Figure 7.5

The algorithm for 'Lcreating the background image is shown in Figure 7.7(a) and the result is
shown in Figure 7.7(b). '
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1. Define where to place the mask in the background image.
2. Perform the actual indexing to replace the background image pixels
with the mask.

(a) Algorithm

{(b) Background image with an averaged mask

Figure 7.7 Creating background image

7.2.2. Block-based Pixel Averaging

The section describes the details of the process used to derive the average background
image utilizing a block-based operation. Block-based operations involve processing an
image in sections called blocks, rather than processing the entire image hence the name

block-based operations. This is illustrated by the following figure:

AL ]
A L]
Figure 7.8 Block-based operations

The following figure (Figure 7.9) is used to illustrate how the averaged background image

is derived. Assuming the background image is defined by a set of pixel values/, ., where

re?

r,c is the pixel coordinate.
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Figure 7.9 Background image matrix

The background image is divided into m — by — n blocks, which is manually determined by

the user. The block sizes are 4, 8, 16, and 32 were used in this research. The block size can
however also be determined automatically by another Matlab function and this function is

described later in this chapter.

The average of each block is computed using:

m n
21
¢ 0

=20

m*n

where d is averaged pixel value, and m* n is the dimension of the image. The result is an

averaged image, which is smaller than the input matrix.

length
fe—
2 8 2 7
height 4 6 8
5 , 8 3

Figure 7.10 Averaged matrix

The output matrix is then quantized by a quantizer described in section 6.3. The output of

the quantizer is fed into a Huffman entropy encoder. The resultant output from the encoder
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is transmitted with the compressed part of the image. Both the quantizing and entropy
encoding processes modify the pixel values in order to save memory and shorten

transmission time.

7.2.3. "Reconstmction of Background Image

At the receiver end the encoded output is then decoded. The decoded output is used to
reconstruct the background image. The background image is reconstructed using the
averaged valne in each block. The resultant background image is an averaged value image
and it is referred to as the averaged background image. The reconstruction algorithm is as

follows:

1. Initialization
Set the element and its position to 1.
Initialize start of block and end of block value.
Set eTrack to 1.

2. Reconstruction:
while Height <= height of averaged image

while row <= height of block
while eTrack <= length of averaged image

for m = start of block : end of block
read element of block and create a new list;
endfor

update start of block marker:
update end cof block marker;

point to the next element in block:
store element in buffer:;

update bTrack;

endwhile

update row by 1;

restore initial element;
restore initial row;

endwhile

recall buffer;

Refresh eFirst with buffer;
restore initial row;

update Height by 1;

endwhile

Figure 7.11 Reconstruction Algorithm
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7.3. Reconstruction of the Final Image

The final image is reconstructed using the following algorithm:

1. Define where to place the compressed cropped image in the averaged
background image.

2. Perform the actual indexing to replace the averaged background
image pixels with the compressed cropped image.

Figure 7.12 Final image reconstruction algorithm

7.4. Results for Grey-scale Images

The following set of results (Table 7.1) gives a comparison of the output from the encoder

for a single wavelet (bior4.4) and the HWCS. The number of bytes coming from the

encoder has been used to provide an absolute measure of performance.

Table 7.1 Encoder output without quantizer

Encoder Encoder Encoder Encoder Encoder

Image ogtput cutput cutput " output output

(single {(HWCS (HWCS (HWCS (HWCS

wavelet) blksz:4) blksz:8) blksz:16) blksz:32)
gbird 2022 2811 1778 1573 1396
gmarcie 6849 6543 4916 4516 4345
gchiliq01 9238 8721 7224 6843 6680
gmandill 19125 13603 12187 11872 11685
gchiliq)2 7685 7571 6048 5648 5471
oflower256 2731 273 1467 1112 923

The results from Table 7.1 indicate that significant reduction in the encoder output can be
achieved through the HWCS. This could prove to be an important factor for mobile
telephone service providers, where transmission time may be significantly reduced. In
addition the amount of storage required for each image is also significantly reduced, which

means that more images can be stored on the mobile telephones.
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—e—Encoder output (single wavelet) —— Encoder output (HWCS blksz4)
gl ENCO d&r output (HWCS blkaz8)  —3¢— Encoder output (HWC S bikszB)
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Figure 7.13 Graphical compression of encoder output

Block size: 8
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Block size: 16

Block size; 32

Figure 7.14 Reconstructed grey-scale images at different block sizes

To achieve a smaller encoder output, the average image is quantized prior to encoding.

Table 7.2 presents:the results.

Table 7.2 Encoder output with quantizer

Encoder Encoder Encoder Encoder Encoder
Image Ol:ltpu'l output output output output

(single (HWCS (HWCS (HWCS (HWCS

wavelet) blksz:4) blksz:8) blksz:16) blksz:32)
ghbird 2022 2218 1585 1424 1380
gmarcie 6849 5586 4662 4400 4327
gchiligQ1 9238 7921 7017 6742 5661
grandrill 19125 12896 11953 11715 11654
gehiliq02 7685 8776 5801 5530 5452
gflower256 2731 1710 1158 969 891
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Figure 7.15 Graphical comparison of encoder output with quantizer

7.5. Block Size Selection

Up until now the block size is selected manually. This section will describe an automated
block selection process. The block size is determined by determining the level of activity
of the background image with the cropped portion replaced by a black mask. This

background image is created using the process described in section 7.3.

Figure 7.16 Background image with a black mask

A block-based Fast-Fourier transform (FFT) method described in section 6.2 is used to
determine the level of activity of the background image. The level of activity is classified

as either low, moderate, or high.
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Having determined the level of activity, the following algorithm is used to select the block

size.

if Low > Moderate
if (Moderate + High) >= &0
Select Mcderate;
Set Flag to 0;
else
Select Low;
Set Flag to 0;
endifelse
endif

if rFlag not 0
if Moderate > High
if 1 >=°35%
Select High;
Set Flag to 0;
endif
if Flag not O
Select Moderate
endif
else
Select High
endif
endif

if Select = Low
Set blksize = 16
endif
if Select = Moderate
Set blksize = 8
endif
if Select = High
Set blksize = 4
endi £

Figure 7.17 Block size selection algorithm

7.6. Compressing Colour Images Using HWCS

The HWCS described in earlier sections is used to compress grey-scale images. In this
section the HWCS is extended to compress colour images. There are two parts to the
proposed scheme. Part one consists of applying the HWCS, described in the above
sections, to the luminance (Y) image. The second part consists of applying the 2D DWT to

compress the C,C, components as described in section 6.3.
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7.6.1. HWCS Results

The following set of results in Table 7.3 gives a comparison of the output from the encoder
for a single wavelet (bior4.4) and the HWCS. The total number of bytes coming from

the encoder has been used to provide an absolute measure of performance.

Table 7.3 Colour encoder output

Encoder | Encoder Encoder Encoder Encoder
Image Otljtput output output output output

{single (HWCS {HWCS (HWCS (HWCS

wavelet) biksz:4) blksz:8) blksz:16) blksz:32)
bird 4730 5487 4478 4242 4098
marcie 11066 10755 9135 8731 8560
chiliq01 14182 13693 12195 11810 11648
mandrill 29063 23510 22087 21775 21588
chilig02 10834 10832 9301 8804 8727
flower256 4161 4668 3668 ‘3432 3231

—&— Encoder output (single wavetet) —B— Encoder output {HWCS blksz:4)
g Encoder output (HWCS blksz:8) ¢~ Encoder output {HWCS blksz:B)
—¥— Encoder output (HWCS blkaz:32)

35000 -
30000 -
25000 -

20000
15000 -
10000 -
5000 -

Encoder output (bytes)

0 T T ] T T 1

Images

Figure 7.18 Graphical comparison of colour encoder output

As with the grey-scale images, the results from Table 7.3 indicate that significant reduction
in encoder output for colour images can be achieved through the HWCS. Again this could
prove to be an important factor for mobile telephone service providers, where transmission
time may be significantly reduced. The following are samples of images compressed by the

HWCS.
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Figure 7.22 Graphical comparison of encoder output using dual wavelet and level

approach

The results in Table 7.6 and Figure 7.22 clearly show that the HWCS dual wavelet and

level approach can reduced the encoder output significantly compared to HWCS quantizer

approach.

Further experimental work shows that different orthogonal wavelets can be used to

decompose the chrominance compon:ents that can further reduce the encoder output. The

following table shows the results:

Table 7.7 Effect of using different orthogonal wavelet on CpC, components

bior4.4(3) haar{3) db3(3) sym2(3)
Imaga CbEncoded |CrEncoded |CbEncoded |CrEncoded |ChEncoded {CrEncoded |CbEncoded |CrEncoded
Smile01_256 1844 1699 1861 1418 1771 1518 1668 1463
aerial01_256 1785 18971 1337 1633 1646 17493 1566 1675
peppers 3331 3844 2716 3930 2931 3556 2878 3424
lenacolor 23490 2202 2312 2082 2230 2131 2208 2053
patmblades 9230 2731 10103 2522 9329 2642 9178 2565
boy 1884 2018 1626 1701 1645 1877 1582 1810
bird 15219 1179 1208 1003 1331 1070 1268 1132
marcie 2156 2063 1719 1602 1987 1837 1786 1695
chiliqD1 2245 2715 2085 2633 1996 2504 1927 2470
mandrill 5777 4151 5308 4151 5406 3976 5201 3998
chilig02 1705 1555 1626 1671 1648 1538 1548 1550
flower256 1082 1337 927 926 936 1044 937 979
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7.10. Applying HWCS to Mobile Telephones Images

As indicated in the earlier part of this thesis, the main concern of this research is picture
messaging using mobile telephones. This section will discuss the work of applying the
HWCS to images used on mobile telephones. This is done by resizing the image to a fit the
screen of a commercially available mobile telephone. The screen size in this instance is
128 x 128 pixels. It should be noted up to this stage of the research, the images used are
256 x 256 pixels.

Having resized the image at source the HWCS with dual and level approach is applied to
the resized image. The following is a set of results (Table 7.7) using the mentioned

approach.
Table 7.8 Compressing 128 x 128 images using HWCS

Encoder Encoder Encoder Encoder Encader
Image output output output output output
8 (single (HWCS (HWCS (HWCS (HWCS
wavelet) blksz:4) biksz:8) blksz:16) blksz:32)
bird 2168 1870 1597 1453 1417
marcie 5090 3695 3272 3100 3054
chilig01 5735 5055 4659 4497 4454
mandrill 10241 7794 7461 7275 7228
chiliq02 5349 4670 4249 4071 4027
flower256 1763 1442 1183 982 940
—e— Encader autput (single wavelet) -—g-.. Encader autput (HWCS blkaz:4)
- Encoder autput (HWCS blksz8l) ~-3¢--Encoder autput (HWC S blkaz16)
—3— Encoder cutput (HWC S blksz.32)
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Figure 7.23 Graphical comparison of encoder output for 128 x 128 images
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The PSNR measure is used as an estimate of the quality of a reconstructed image
compared with an original image. 1t is computed using the MSE defined in equation 5.2 in

section 5.4.3. Equation 5.2 is only an approximation of /(x,y) and therefore it can be

argued that PSNR is only an approximation. PSNR is a good measure for comparing a
reconstructed image with the original_image, but comparing visual quality of images using
PSNR is meaningless. For example an image with a 15 dB PSNR may look better than an
image with 2 25 dB PSNR. |

MSE and PSNR are convenient mechanisms for evaluating information loss and they are
widely used in many applications, in particular in image coding. One reason why they are
so widely used is because they are easy to calculate and usually have low computational
complexity. However, they do not correlate well with the human perception of image
quality [Efford, 2000, pp.301; Watson, 1993]. Measuring image quality by subjective
evaluations of human observers often is more appropriate. Furthermore, most reconstructed
images are ultimaiely viewed by humans. For this reason, this thesis argues that subjective
fidelity criteria based on human perception is more appropriate for evaluating image

quality.

7.12. Subjective Fidelity Criteria
Subjective fidelity criteria can be divided into three categbn'es:

1. Impairment

2. Quality

3. Comparison
Impairment tests score the test images in terms of how bad they are. Quality tests rate the
test images in terms of how good they are and comparison tests evaluate test images on a
side-by-side basis, Table 7.9 provides an example of scoring scales for the three types of

subjective fidelity measures.
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Table 7.9 Subjective fidelity scoring scales [Umbaugh, 1998, pp.242] |

Impairment nglity Comparison
5 — Imperceptible A — Excellent +2 much better
4 — Perceptible, not annoying B - Good +1 better
3 — Somewhat annoying C - Fair 0 the same
2 —Severely annoying D — Poor . -1 worse
1 — Unusable E — Bad -2 much worse

The definitions in Table 7.9 are vague and therefore another scoring scale is needed. Table
7.10 provides another example of one possible absolute rating scale for evaluating

television images.

Table 7.10 Television allocation study organization rating scale [Frendendall and
Behrend, 1960]

Value  Rating Description
] Excellent An image of extremely high quality.

2  Fine An image of high quality. Artefacts are not objectionable.
3 Passable  An image of acceptable quality. Artefacts are not objectionable.
4 Marginal“ An image of poor quality. Artefacts are somewhat objectionable.

5  Inferior A very poor image, but still acceptable. Objectionable artefacts are
highly visible.

6  Unusable An image so bad that it is unacceptable.

The Table 7.10 scoring scale is more suitable for evaluating still images but it needs to be
modified for the purpose of this research. A modified version of Frendendall and Behrend
[1960] is presented below:
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Table 7.11 Alternate subjective fidelity scoring scales

Value  Rating Description
1 Excellent An image of extremely high quality, as good as you could desire.

-2 Fine An image of high quality, providing enjoyable viewing. Artefacts
are not objectionable.

3 Passable  Animage of acceptable quality. Artefacts are not objectionable.
4 Marginal An image of poor quality. Artefacts are somewhat objectionable.

5  Inferior A very of poor image, but still acceptable. Objectionable artefacts
are definitely present.

6  Unusable An image so bad that you do not want it.

7.13. Image Evaluation

A subjective evaluation of the visual quality of the four images in Figure 7.24 was carried
out with thirty-six postgraduate students using the questionnaire in Appendix 4. The
postgraduate students are enrolied on a Masters of Science in Computer Networks. This
group of students were chosen because they are mobile telephone users or potential mobile
telephone users who are most likely to use picture messaging. Each student was asked to
rate each image using the subjective fidelity scoring scales displayed in Table 7.10. The

results are shown in Figure 7.27.
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Figure 7.27 Subjective fidelity scoring results
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The results show that the majority of the respondents have rated the four images as either
passable (3) or marginal (4). For images compressed using 8x8, 16x16 and 32x32 block
sizes the swing is towards passable. This is an unexpected and interesting but potentially
very important result. Although the sample size was small, the larger block sizes, that is,
8x8, 16x16, and 32x32 scored better than the smaller one (4x4). Figure 7.27(a) shows that
the majority of the respondents score a rating of 4 (marginal) for the 4x4 block size
whereas the larger block sizes produced a majority score of 3 (passable), which is a better
score. The most significant result is that the largest block size of 32x32 produced scores
that are broadly comparable to the finer block sizes. This means that a larger block size

may be used producing better compression, while providing image of acceptable quality.

By inspecting and comparing the 4x4 and 32x32 images in Figure 7.28 it is possible to
offer an explanation why the respondents of the subjective evaluation favour the bigger

block size images. The two images are repeated here for convenience.

(b} 32x32 block size
Figure 7.28 Comparing the 4x4 and the 32x32 block size image

It can be observed that the 4x4 block size image has more jagged edges than the 32x32
block size image. A close up view of part of the 32x32 block image reveals that some
details have emerged despite the fact that the image has been subjected to a coarse
averaging algorithm. This thesis argues that this is possible becanse the averaging
algorithm was only applied to the Y component and not to the chrominance components.
Hence, during the colour inverse transformation process, the details from the chrominance

components have emerged.
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Figure 7.32 Proposed Wavelet-based Compression System for Mobile Telephones

The expert system in Figure 7.32(a) is a rule-based system. Its function is to select a screen
size suitable for the receiving device. This is accomplished by the transmitting device
interrogating the receiving device for the model number. When the model number is
received, the transmitting device will search its database for the appropriate screen size.
The second function of the expert system is to select the best wavelet by analysing the
captured image using a block-based FFT analyser described in section 6.2. The result from
the block-based FFT analyser is then used select the appropriate wavelet. The third
function of the ekpert system is to select the appropriate block size for the averaging

algorithm.

The cropping algorithm cropped the Y component from the YCbCr image which had been
transformed from the captured RGB input image. The cropping algorithm crops a specific
area of interest of the image, which is selected by the user. The remainder of the image,
that is, the background image is then averaged. The averaging algorithm averages the
background image utilizing a block-based operation, which is described in section 7.2.2.
The wavelet image coder is a two-dimensional wavelet transform discussed in section

3.3.5.

On the receiving device, the encoded averaged background image is reconstructed by the
averaging reconstructing algorithm. The resultant decoded averaged background is then

combined with the decoded Y image to produce the final Y image. Finally, an inverse
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mapping is carried out to convert the Y, Cy, and C, colour components to R, G, and B

components.

The proposed system was simulated via Matlab using the algorithms developed in this
research. For simulation purposes, a set of natural, synthetic and clipart images were fed
into the system separately. The system was able to identify the images and choose the best
wavelet to compress the image concerned. The simulation shows that the proposed system
~was able to perform the cropping and averaging algorithm effectively as predicted. Further
simulation also showed that given the model number of‘k the receiving device, the system

was able to select the appropriate screen size.

7.15. Summary

This chapter presented a hybrid wavelet-based compression system (HWCS), which is
based on the assumption that viewers are more interested in the subject of interest (SOI)
for a given image than the background. The HWCS reduces the details of the background
by averaging it and sending the background separately from the SOl. As the main concem
of this research is colour picture messaging using mobile telephones, the HWCS was
extended to colour images suitable for use on mobile telephones. The HWCS is discussed
in detail in this chapter. The results of the image evaluation reported in section 7.13.
Although the sample is small, the results demonstrate that the algorithm has produced
images that are visually acceptable for picture messaging, while improving overall

compression over existing methods.
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Discussion and Conclusions

8.1. Introduction

In the introduction to this thesis the problems associated with transmitting colour images
were discussed in detail. The discussions pointed' out that although significant
' improvements have been made in media storage technology and transmission media, the
problem of low air bandwidth that can affect Internet access via mobile telephones,
remains a concermn. Therefore, this thesis argues that this justifies putting efforts into

research in image compression for mobile telephones.

8.2. Small Screen Factor

The discussions in section 1.3 highlighted the problem of the disadvantage of the small
screen of mobile telephone. However, the discussion also pointed out that the small screen
factor offers an opportunity for a trade-off between image quality (PSNR) and image size
(bytes transmitted). Therefore, different wavelet-based compression schemes that offer a
trade off between the image quality (PSNR) and image size (bytes transmitted) were
investigated. What was envisaged was a compression system that would be able to select
an optimal compression method to meet both the demands specified by the user that were
matched to their mobile telephone screen. The main purpose of this thesis was to analyse
the use of wavelet-based image compression methods and then developed new techniques
suitable for application to mobile devices, with particular reference to picture messaging

on mobile telephones.

8.3. Bandwidth Problem

Another problem that is highlighted in the section 1.3 is the air bandwidth bottleneck. This
problem is expected to remain as the growth of Intemet traffic using the air bandwidth is
likely to continue, as the number of mobile devices used to access the Intemet is likely to
increase. 1n addition, the Intemet protocols like TCP/IP and HTTP, which come with a lot
of overheads, are not suitable for wireless telecommunication. Therefore, effective data
compression techniques for mobile telephones are essential for transmitting and storing

digital images.
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8.4. Choosing the Best Wavelet

Chapter five considers the characteristics of colour images and how they influence coding
performance. The results from the statistical study showed that it is image gradient and
spatial frequency that has a strong correlation with PSNR, CR and bpp. The magnitude of
the relation between the variables, that is, image gradient and the coding performance and
spatial frequency and coding performance is strong. In other words, one variable could be
predicted based on the other. However, this result is only a statistical association and
cannot conclusively prove causality. A more detail study is needed to establish what is the

cause of this association.

The statistical results from chapter five showed that it is difficult to distinguish between a
natural image and synthetic image. However, it was observed that first-order entropy, H(1),
of the clipart images tended to be less than 5. This could be used in an expert system to
identify a clipart image. The simulation results reported in section 7.14, indicate that it is

possible to identify clipart images using H(/) as a identifying criteria.

Another concern of chapter five was to establish, which wavelet filter was best suited to
compress the different types of image used in this research. Hence, a study was conducted
and to address this concern. The results of the study show that that the best combination of
PSNR and CR was produced by the ‘biord.4’ (9/7 tap) wavelet filter and the haar

wavelet filter outperforms the other wavelets for clipart images.

8.5. Wavelet-based Image Compression Schemes

Motivated by the success and advantages of the DWT as a compression technique, this
thesis has examined and implemented three main wavelet-based compression schemes with
a focus on a suitable wavelet-baseci compression method for mobile applications. The

details of these three algorithms are reported in chapters 6 and 7.

The first algorithm is a dual wavelet compression algorithm, This algorithm is a modified
conventional wavelet compression method, which uses different wavelet filters to
decompose the luminance and chrominance components separately. In addition, different
levels of decomposition can also be applied to each component separately. It also avoids
the use of advanced quantization schemes like EZW to achieve reduced encoder output.

The need to keep complexity to a minimum is an important factor for mobile applications.
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The results of the evaluation of this algorithm indicate that there is a possibility of a triple
wavelet compression system, where a different wavelet is used for each of the colour
components, that is, Y, Cy, and C, separately. The evaluétion results also clearly show that
potential gains may be achieved by the application of either multiple wavelets or different

levels of decomposition of the same wavelet.

The second method 1s a segmented wavelet-based algorithm, which segments an image
into its smooth and non-smooth parts. A different wavelet filter is then applied to the
segmented parts of the image. The results show that significant improvements in
compression ratio can be achieved through the use of a combination of wavelets with little
loss in the quality of a grey image. When the method was extended to compress colour
images the results showed that the coding performance could be further improved by
compressing the segmented chrominance components with a different wavelet filter and

different level of decomposition.

Finally, the third algorithm was the HWCS, where the subject of interest was cropped and
then compressed using a wavelet-based method. The details of the background are reduced
by averaging and sending the background separately from the compressed subject of
interest. The final image is reconstructed by replacing the averaged background image
pixels with the compressed cropped image. The HWCS was extended to compress colour
images, where the HWS is applied to the luminance (Y) image. The C,C,; components are

compressed using the 2D DWT,

For each algorithm described the results show that encoder output can be effectively
reduced when compared to conventional wavelet-based compression schemes. The
subjective evaluation of the images produced by the HWCS show that the images are

visually acceptable for picture messaging, while improving overall compression.

8.6. Contributions
This section describes the contributions made by this thesis. The contributions are

classified into main contributions based on the work carried out in this thesis and

~ contributions based on previous work. This classification is, of course, subjective and

represents the author’s opinion. The references in parenthesis refer to the corresponding

sections in the thesis.
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8.6.1. Main Contributions from this Thesis _
i. A hybrid wavelet-based compression scheme for mobile devices was designed,
developed and proven experimentally (chapter 7).
ii. A segmentation wavelet-based compression scheme for grey-scale and colour
images was designed and tested (section 6.4 and 6.5).
iii. A fully automated wavelet-based compression system for mobile applications has

been proposed and simulated (section 7.24).

8.6.2. Other Contributions

i. Created a block-based FFT analyser for analysing frequency content of an image
(section 6.2). L

ii. Developed a dual wavelet compression scheme for compressing colour images
(section 6.3).

iii. Established that the haar wavelet filter outperforms the other wavelets for clipart
images (section 5.4.3).

iv. Shown that the first-order entropy, H(1), can be used distinguish clipart from
natural and synthetic image (section 5.5).

v. Shown from a statistical study that the image gradient and spatial frequency of

colour images has a strong linear relationship with PSNR, CR and bpp (section
5.6 and 5.7).

vi. Shown, with the aid of experimental work, that different orthogonal wavelets can

be used to decompose the chrominance components that can further reduce the

encoder output (section 7.9).

8.7. Future Work

Based on the work reportéd in this thesis, this section puts forward some ideas for future

work.

8.7.1. Cause-Effect Study

As discussed in section 8.4, the statistical study in chapter 5 shows that there is strong
statistical association between image gradient and the coding performance and spatial
frequency and coding performance. However, ‘the cause-effect relationship was not

established. Therefore, this thesis would suggest a detailed investigation into the cause-
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effect relationship would be the next logical direction. The cause-effect study could help
better understand which image characteristics influence the coding performance of a
wavelet-based image compression system. Hence, an adaptive wavelet-based compression
~system would be feasible based on the image characteristics. The adaptive wavelet-based
compression system could be a neural-network, which would select the best wavelet based

on image characteristics.

The study could also include a more detailed investigation as to why the zero-order entropy
measure in the RGB colour space has only a weak connection with the coding performance

measures, except for the synthetic images.

8.7.2. Hybrid Wavelet-based Compression System

The hybrid wavelet-based compression system (HWCS) described in chapter 7
demonstrated that it is possible to significantly improve the wavelet encoder output and yet
be able to maintain a reasonable visual image quality. In some preliminary work described
in section 7.14 of this thesis has shown that the HWCS can be incorporated into a complete

wavelet-based compression system for mobile telephones.

One possible direction for further work is an automatic cropping algorithm to replace the
present cropping procedure. Presently, the subject of interest is manually defined by the
user prior to being cropped. One suggestion is to explore the utilization of existing object
recognition techniques to implement the automatic cropping algorithm. An artificial

intelligence (Al) system is also a poséibility.

One drawback of the averaging algorithm used in the HWCS is that it suffers from similar
blocky artefacts to those produced by the JPEG-based algorithm. Therefore, one possible
avenue for future work is to eliminate the blocky artefacts produced by the averaging
algorithm and thereby improve the visual quality of the reconstructed images. At this stage
it is conjecture that these blocky artefacts are caused by the negligence of correlations
among adjacent blocks and by a coarse averaging of pixels independent of these blocks. A
possible solution to this problem is to adopt the Yung et al [1996] approach discussed in
section 3.5. The Yung et al [1996] apprdach was to characterize and quantify the blocking

artefact and then propose an iterative post-processing approach to remove it.
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Finally, another possible direction for future work is to consider a hardware
implementation of the wavelef encoder and decoder used in the proposed wavelet-based
compression system for mobile telephones discussed in section 7.14. A special-purpose
very large scale integrated (VLSI) chip may be designed and fabricated to implement the
wavelet encoder and decoder. This could significantly increase the computational speed of

the wavelet encoder and decoder and established its suitability for mobile applications.

8.7.3. Human Vision Perception and Image Evaluation

1t would be interesting to investigate further why most of the respondent in the image
evaluation reported in section 7.13 prefer the larger block size images. A detailed study of
human vision perception might reveél the reasons why the respondents chose the larger
block sizes. The study should include other forms of image evaluation methods based on
weighted mean squared errors (WMSE) [Taubman et al, 2002, pp.199-207]. WMSE is
based on the human visual system contrast sensitivity function (CSF). The reason for
including WMSE in the image evaluation is that it is a more accurate gauge of perceptnal

quality than the more usual mean squared error (MSE) [Taubman et al, 2002, pp.621].

In conclusion, this thesis has demonstrated that a hybrid approach to image compression,
taking account of display device capabilities, can offer significant improvements in image

compression for mobile applications.
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Appendix 1

This appendix contains the complete set of coding performance measures for sixty-four

images.
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Natural images

Haar db2 bior4.4 bior6.8 ceoif4 aym4
bird 36.66| 42.24| 45.48| 0.177] 36.98] 41.77| 44.65] 0.179] 37.23] 38.92| 41.57| 0.182| 37.28| 32.04] 32.67| 0.245| 37.01| 27.84] 26.09] 0.285] 37.29| 33.33| 40.90] 0.156
bulehills256 36.98| 53.37| 47.84| 0.167] 37.59| 52.63| 4767 0.168| 37.61| 4477 40.12] 0.198| 37.75] 3543] 31.50| 0.254| 37.72| 30.74] 26.46| 0.302] 37.68{ 45,88 42.06] 0.150
columns 33.76] 33.22] 30.58| 0.262] 33.96} 33.23| 31.20] 0.256| 33.91] 32.47| 29.31] 0.273] 33.92] 26.59 23.13] 0.346| 33.67]| 22.59} 15.23] 0.416] 34.04| 30.25] 28.14] 0.284
coupla 32,497 25.77] 23.43] 0.341| 33.02| 28.1C) 25.67] 0.312| 33.25| 28.82| 24.88| 0.322| 33.41| 23.81 19.70] 6.406] 33.31] 21.07| 16.68] 0.480] 33.35| 27.44| 24.,33] 0.329
Emila02_256 32.58| 27.24] 24.86] 0.324] 33.65] 30.48] 26.47] 0.302] 34.22] 28.55] 24.06] 0.333] 34.40| 23.18 18.38) 0.435] 34.15] 20.25] 15.49] 0.517] 34.07] 28.23] 24.30] 0.329
marcia 31.08]| 20.29] 19.16] 0.418] 31.77| 21.40| 18.78] 0.404] 32.03] 20.34] 17.77{ 0.450] 32.18] 16.81 13.68] 0.585{ 32.03] 15.18| 11.46] 0.698| 32.01| 20.08| 17.98] 0.445
womanbaby256 33.64| 33.48] 31.22] 0.256] 34.80] 37.90| 32.34] 0.247] 3525| 36.42] 30.20| 0.285| 35.46| 20.40| 2357} 0.339] 35.17| 2564] 20.32| 0.384| 3521} 35.94] 30.38( 0.263
justinkelly256 29.76] 13.92] 14.14] 0.568] 30.38| 15.50| 15.10| 0.530 30.738] 16.38] 14.60] 0.548] 30.92] 14.35] 11.89]| 0.673] 30.78 13.04| 10.09| 0.793| 30.79] 15.48] 14.28] 0.561
Smilal1_256 30.62| 19.38] 18.15]| 0.441] 31.20| 20.88| 19.11] 0.419] 31.53] 20.87| 17.68] 0.453] 31.689] 17.84 14.18] 0.565| 31.46] 1667] 12.49] 0.640] 31.41] 20.08] 17.67] 0.453
sail 28.32] 10.95| 11.25| 0.711] 28.58] 11.70| 11.91| 0.672| 28.79] 12.07| 11.42| 0.700| 28.96] 10.68 5.25| 0.865| 28.80] $.77] 8.02] 0.997] 28.80{ 11.53] 11.11] 0.720
aanal02_256 28,200 8.33] 9.45| 0.847| 28.26] 8.76] 9.75] 0.821| 23.27 9.38 9.57| 0.836] 28.91 8.19 7.56] 1.068] 28.18] 7.48 B6.52] 1.227] 2833 8958 9.37] 0.853
aariald1_256 29.79| 14.93] 16.09] 0.497| 29.98| 15.81] 16.22| 0.493{ 29.86] 16.01] 1567 0.511] 30.07| 13.55] 12.03] 0.665| 29.87| 12.33| 10.44] 0.7686] 29.94] 1569] 1579} 0.507
daltastwo256 29.95] 12.80] 12.76] 0.627] 29.82| 13.15] 12.29] 0.602] 30.01{ 13.84] 1259 0.635| 29.99| 12.84 10.92] 0.733] 29.85] 12.07] 9.64| 0.830] 30.00] 13.23] 12.48] 0.641
peppers 30.28]| 14.17] 13.40] 0.597] 30.50| 15.28| 14.57| 0.549] 31.29{ 14.95] 12.98] C.618] 31.32] 12.04 9.92] 0.807] 31.23| 10.54] 8.16] 0.980] 31.23} 14.30] 13.08] 0.613
balloons 34.24| 25.70] 23.268] 0.344) 34.32| 27.73| 25.58| 0.313] 34.51] 27.93] 24.85| 0.322] 34.61 22.99] 19.57] 0.409] 34.42| 20.71| 17.31| 0.462] 34.52] 26.11] 23.66] 0.338
mountain256 28.05] 8.73] 10.15] 0.783) 28.14| 9.09] 10.35] 0.773] 28.19] 9.34] 967| 0.828] 28.24| 8.7 8.17| 0.980] 28.15] 8.19| 7.12| 1.123] 28.16] 9.03] 9.64| 0.830
winter256 27.47| 11.39] 12.41| 0.644] 27.66| 11.62| 12.22| 0655| 27.80] 11.25] 11.20] C.714| 27.73| 10.44 5.42] 0.850] 27.65| 10.02] 8.43] 0.849] 27.68| 11.19] 11.21] 0.714
lanacolor 30.04[ 16.19| 16.08| 0.497] 30.45] 17.96| 17.54]| 0.458| 30.64| 18.78] 17.08| 0.463] 30.75] 16.15 13.60| 0.588] 30.59] 14.52§ 11.56]| 0.682] 30.61] 17.72] 16.62] 0.481
palmbladas 26.87| 596] 6.72] 1.190] 26.96] 662 7.25| 1.103] 2727 7417 7.21| 1.109] 27.40] 662 6.06] 1.320] 27.25] 6.28] 534| 1.498] 27.19] 6.89| 7.10| 1.127
boy 30.33] 17.81) 18.32] 0.437] 30.91] 19.81| 19.43] 0.412] 31.10l 18.97{ 17.87| 0.453] 31.22| 15.78] 13.43| 0.596] 30.97) 14.18{ 11.51] 0.895( 31.07| 18.97] 17.93] 0.448
flower256 36.70] 51.83| 58.78] 0.14] 37.315] 49.16| 53.88] 0.141] 37.22| 4287| 47.25| 0.169] 37.239| 34.99| 38.573] 0.207| 37.124| 30.18| 31.58] 0.250| 37.175] 43.20] 50.82| 0.157
aanal03b_256 26.04] 5.43| 6.22] 1.29) 25.934| 5.406| 8.18] 1.285| 25.955| 5.533]| 5.805| 1.373] 25.90| 5.211| 4.962| 1.612]| 25.862} 5.006| 4.382| 1.826] 25.863] 5.43| 5.873] 1.382
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Synthetic images

Haer db2 biord.4 bior6.8 coif4 symd
snowwhite02 32.08] 22.47| 21.64] 0.370] 32.64| 24.65| 22.7Q] 0.352] 32.70| 25.48| 21.97) 0.364| 33.14| 21.16] 16.99| 0.471] 3273} 18.64] 14.47| 0.553| 232.72| 24.17] 21.44| 0.373
toystory02_256 31.35] 16.73| 15.74] 0.508| 31.55| 16.87| 16.24] 0.493] 31.69| 17.23] 15.54| 0.515] 31.77| 15.14 12.79] 0.626] 31.57| 13.62] 11.02]| 0.726] 31.54] 16.64] 15.35| 0.521
toystory01_256 30.589] 14.20| 14.20| 0.563| 30.49| 14.83| 14.97] 0.534] "30.68| 14.81| 13.97| 0.573| 30.89] 13.16 11.44] 0.699| 30.51] 12.27| 8.88] 0.809] 30.58| 14.73] 14.14] 0,809
- |mermeaidd1_256 29.74] 969 9.39] 0.852| 24.67| 8.78] 9.83] 0.814] 29.81 993] 9.33| 0.858] 29.82] 8.71 7.57] 1.057| 29.69] 7.82| 6.40| 1.250] 25.71] 9.60] 49.30| 0.860
gbugslife02_256 29.81] 12.82] 13.20] 0.606| 30.15] 13.02| 12.98| 0.616] 230.32] 13.10| 12.03| 0.665| 30.48] 11.29 9.59f 0.834] 3042] 10.15| 8.05] 0.994] 230.38]| 12.77] 11.96] 0.669
bugsbunny02_256 30.87] 13.26] 12.80] 0.625| 230.70] 13.55| 13.42| 0.586] 30.75] 14.26| 13.51| 0.592| 30.8%] 12.96 11.50§ 0.696] 30.60] 11.66] 4.74| 0.821| 30.70] 13.63] 13.17| 0.608
bugsbunny01_256 30.74| 14.44| 13.71] 0.583| 20.65| 14.17| 13.98| 0.573| 30.61] 14.86| 13.55| 0.580| 30.65] 12.76 10.80] 0.740] 30.36] 11.21 8.82] 0.897| 30.54] 14.17] 13.34| 0.600
geri02 30.23] 14.68] 14.66] 0.546] 30.93] 16.71] 16.21] 0.494| 31.27] 17.40] 15.34| 0.494| 31.48| 14.14] 11.84] 0.676] 31.36] 12.22| 9.65| 0.829] 21.23} 16.30] 15.04| 0.532
gan01 29.18] 10.67] 10.90] 0.734| 30.06] 12.80| 12.96] 0.617] 30.7Q| 14.05] 13.20| 0.608] 30.95] 1157 10.27| 0.779} 30.69| 10.21 8.62] 0.928] 30.63} 13.16] 12.84] 0.623
mermaid02_256 31.41{ 11.65] 11.08] 0.721| 31.07] 11.30| 11.23] 0.712| 30.90] 11.64| 10.87| 0.736] 30.85| 10.42 9.01] 0.888] 30.66] 0.64] 7.86] 1.017| 30.85] 11.27] 10.77] 0.743
hercuiesQ1_256 30.63] 12.38] 12.09] 0.662] 30.60] 12.77| 12.76] 0.627] 30.76] 13.60] 12.68] 0631] 30.72] 11.94 10.31| 0.776] 20.51] 11.08] 8.938] 0.891] 30,73 13.12] 12.47| 0.641
hercules02_256 30.22]| 11.53] 11.23] 0.713] 30.20] 11.72| 11.67| 0.686] 30.31] 12.56] 11.63| 0.888] 30.35| 11.54 9.09] 0.801] 30.23] 10.98] 8.76] 0.913] 30.34| 12.06] 11.43] 0.700
lionking01_256 31.77| 18.01| 16.83] 0.475f 32.25| 19.15) 17.21]| 0.465| 32.60| 19.08f 16.39] 0.4a8| 32.75| 16.03 12.89] 0.620] 32.56] 14.47] 11.00] 0.727| 32.44| 13.18| 16.00] 0.500
lionking02_256 33.19| 27.45| 24.67| 0.324] 34.28| 28.36) 24.45| 0.327| 34.72| 26.44| 22.06{ 0.363| 3504| 21.38 16.80| 0.476] 34.79] 19.06] 14.21| 0.563| 34.69| 25.97] 21.91| 0.365
monsterinc01_256 30.50| 17.36| 16.95( 0.472] 31.06| 18.78] 17.46) 0.458] 31.22] 18.90f 16.54] 0.484| 31.33] 16.25 13.28] 0.602] 21.14] 14.97] 11.43] 0.700] 231.20| 18.23| 16.38| 0.488
monsterinc02 256 | 20.80| 16.85] 15.85] 0.505| 30.25| 17.74] 16.73| 0.478] 30.39] 18.53] 16.03] 0.499] 30.38] 16.07| 12.81| 0.624| 230.27] 14.64] 1097 0.729] 20.38| 17.98] 15.91] 0.503
monstennc03_256 30.35( 17.44| 17.44] 0.459] 30.51| 18.04] 17.55]| 0.456| 30.64| 16.93] 1545] 0.518| 30.67| 14.84 12.46| 0.642| 30.62] 13.58] 10.638| 0.749] 30.62| 16.82] 15.65] 0.511
entz01 30.99] 17.11] 16.57] 0.483] 31.52| 18.22{ 18.90]| 0.473| 31.73| 18.44} 16.11] 0.497| 31.89| 1556 12.85] 0.622| 32.04] 13.99] 10.75] 0.744| 31.83| 17.53] 15.65] 0.511
antz02 31.89] 20.33{ 19.11] 0.419] 32,70| 21.87] 19.87] 0.403| 33.03] 22.06f 18.72| 0.427| 33.25| 17.95 14.46] 0.553] 233.08} 15.11] 11.86| 0.686] 33.05| 20.95] 18.17] 0.440
snowwhite01_256 32.98] 28.91] 25.28] 0.316] 233.73} 32.07| 27.80| 0.288] 233.96| 32.88| 26.96] 0.207] 34.34| 27.82| 21.68] 0.369| 34.25| 24 80| 18.34] 0.436 34.03| 31.03] 26.238] 0.303
windowsxp 35.93] 35.48) 34.09] 0.235] A7.175] 37.27| 38.10| 0.222| 37.639| 3497} 23.55] 0.238| 37.733| 20.38] 28.27| 0.283| 37.531] 25.50| 23.45| 0.341| 27.64] 34.45} 23.92| 0.236
barboon 25.87] 6.47{ 7.26] 1.102| 25.968] 6.64| 7.257| 1.102| 25.960] 6.70} 6.765] 1.183| 28.02] 6.323] 5.847] 1.368| 26.01] 6.12| 524 1.528| 26.00] 6.66] 6.89] 1.162
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Clipart images
Haar db2 biord.4 biorg.8 coifd aymd

e ol R o | ron [ el o | roun [ 22 R ] o | s [-com e T o | e [ o R [ e [t el
clipart09_256 37.13| 15.76] 15.68] 0.480] 33.02] 8.82] 11.27] 0.710| 3180 9.78' 10.84] 0.738] 30.63] 7.82 7.62] 1.050] 3054| 693 8.30] 1.271| 30.98| 9.83] 1063] 0.752
clipart06_256 41,34| 51.21| 43.28] 0.185| 36.07] 33.70] 32.58] 0.246] 3581 30.68] 29.21] 0274| 3s38| 26.67] 24.13] 0.333] 34.54] 23.64] 20.17] 0.397] 35.78] 30.27| 29.44] 0272
clipart10_256 3718 27.99] 24.21| 0.330] 34.10] 18.61} 18.79] 0.426| 3365] 18.06] 17.48| 0.458] 32.88] 18.14] 15.59| 0.513] 32.79] 17.06] 13.54| 0.581| 32.99] 18.79] 17.61| 0.454
clipart05_256 35.84{ 19.97] 16.18] 0.484| 32.65| 15.97| 14.26] 0.561] 32.17] 16.70] 13.74] 0.582{ 31.77| 1431 11.30] 0.708] 31.41| 13.40 9.92| 0.806] 32.07| 16.33] 13.81| 0.578
clipartQ7_256 3255 10.99] 10.48] 0.763] 30.13] 9.10] 9.35| 0.856] 25.80] 9.38] 9.08| 0.881] 2%.45] 5.14 8.21) 0.975| 29.26] 8.96] 7.54] 1.062| 24.65] %S.20| 9.04| 0.885
clipart08_ 256 32.56] 15.51] 14.79] 0.541| 31.56] 15.73] 15.44| 0.518] 31.65f 17.36] 15.96| 0.50%] 31.44] 16.16 13.70] 0.584] 31.27| 15.68] 12.51| 0.639] 31.38] 16.43] 15.63| 0.512
clipart01_256 35.60] 32.01] 28.05] 0.285| 35.07| 34.30| 29.61| 0.268] 34.84] 33.08| 27.15] 0.2585] 34.64] 27.54] 21.69] 0.369] 34.61] 2297] 16.44]| 0.487] 34.72| 31.37] 26.42| 0.303
clipartd3_256 34.25| 21.38] 19.11] 0.419| 32.64| 18.14| 17.92| 0.448]| 32.80| 16.33] 16.05| 0.499| 3247| 12.41 11.56] 0.652] 32241 12.10] 10.01] 0.800{ 32.83} 16.56] 16.26] 0.482
clipart@2_256 36.30| 26.93] 22.12] 0.362| 34.82| 25.20| 22.34| 0.358] 34.51| 26.32] 21.96] 0.264] 34.54| 18.83 15.41] 0.519] 34.07] 17.98] 13.38] 0.597] 34.65] 24.66] 21.11] 0.378
clipari04 256 32.28| B8.49] 8.35] 0.958] 28.16] 6.17| 6.37] 1.257] 2877 6.61] 634| 1.261] 28.21] 6.51 5.84| 1.370] 28.17| 6.27] 5.20] 1.539] 28.56] 6.34] 6.25] 1.280
clipart11_256 37.75| 25.76| 23.78] 0.337] 33.89] 18.04| 18.41] 0.435] 33.42| 17.82] 17.18] 0.466| 32.35] 15.85 14.71| 0.544] 32.36] 14.68}] 12.33 0.649] 33.03 17.37] 17.25] 0.464
clipart12_256 35.80| 12.90] 11.58) 0.691] 31.10] 8.88| 8.93] 0.896| 30.15] 8.46 8.18] 0.977| 29.07 7.00 6.21| 1.288| 28.92| 6.03] 4.89| 1.605| 29.79| 8.28| 8.02] 0.957
clipart13_256 45.03| 63.55{ 57.84| 0.138] 38.31| 54.09| 50.32] 0.15%] 3%.08] 54.75] 50.35| 0.159| 37.60{ 51.09] 43.81| 0.183] 3B.11] 47.96| 40.88] 0.196] 37.56| 51.88] 48.62| 0.165
clipart14_ 256 38.56| 26.72| 40.00] 0.200] 38.78] 19.91] 30.72] 0.260| 35.8C] 17.24{ 23.48| 0.341| 34.93] 11.26 12.27| 0.652| 34.39] 9.95| 9.77] 0.819] 34.37| 16.30| 22.45] 0.356
clipart1S 256 39.84| 23.77| 37.87] 0.211] 34.88] 16.48] 23.37] 0.342| 34.06] 14.21{ 18.52] 0432 32.95] 10.21 10.86] 0.737] 32.39] 8.98] &.65f 0.925] 32.78| 13.91] 18.19] 0.440
clipart16_256 39.93| 25.24| 35.88] 0.224| 36.22] 19.19] 25.36] 0.315| 36.51] 17.36{ 21.54] 0.371| 3533] 11.04 12.73] 0.628] 34.57| 9.75| 10.23| 0.782| 34.82| 16.64| 21.45] 0.373
clipart17_256 34.77| 14.91| 12.35] 0.648| 30.73] 90.611 8.85| 0.884]| 3007| 9.25] 8.40] 0953 25.41] 8.56 7.37{1 1.085] 28.14| B8.00| 6.42| 1.246] 29.62] 9.08] 8.44] 0.948
clipari18 256 34.17) 16.91] 14.76] 0.542) 31.32) 15.44§ 14.38] 0.556] 31.06] 1637} 14.58] 0.549] 30.79] 15.64 13.27) 0.603] 30.57) 15.34] 12.08] 0.663] 30.50] 15.45] 14.20] 0.563
clipart19 256 33.88| 14.67| 13.88] 0.586] 31.18} 12.21] 12.18] 0.657] 31.0%9| 12.94] 12.27] Q.652] 3061] 13.00] 11.36{ 0.704| 30.28] 12.57] 10.24| 0.781| 30.54] 12.45] 12.07] 0.663
clipart20_256 40.27] 29.53] 32.52] 0.248| 36.19] 21.45] 24.26| 0.330] 35.58] 18.85] 20.86] 0.382| 34.60] 12.88 12.85] 0.622| 33.89] 11.44| 10.35| 0.773] 35.16] 18.15] Z2.42| 0.382
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Appendix 2

This appendix contains the complete set of coding performance measures for sixty images.
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Z xipusgay

RGB Image Statistics

Natural Images:

Image m:an mc:an B mean RDS:S G:et:' B::S' R var. G var. B var. sl:w sl?e w B ekew | R kurt| G kurt | B kurt
bird 108.17| 115.48] 127.48] 18.77] 19.02) 2200 35217 361.94] 48302 280 o011 -237| 23.84| 1482] 769
bulehills 256 50.54| 132.63| 20050 72.40| 78.92] 44.17| 524180 6228.12| 195138 079] 024] -034] 093 184 -147
columns 96.71] 8854 9461 6261] B340] 7045 3919.84| 4019.35| 408307 064] 060 0.88| -049] -088] -0.33
couple 10081 76.45] 73.40f 5154] 5364| ©6568] 2656.50{ 2877.36] 4313.25] 058] 0.83 1.45] 0.11] -001] .11
8mileD2_256 120.72| 101.42] 88.01] 6523 6215 56.50] 425557| 3862.24] 3192.32] o007 o053 065] 077] -054] -007
marcie 118.43| 96.17| 78.24] 51.07| 44.25] 4357 2608.10| 1958.13] 1808.77] 0.10] 048 066 -008] o071 o097
womanbaby?256 242.80] 211.14] 196.93| 22.41] 4362 56.80] 502.06] 1002.38] 323652| -3.15| -0.89] 087 11.72] 0.02] -0.78
justinkelly256 143.71| 106.52| 86.15] 81.71] 8253 71.85| o6676.23] ©811.20] s5162.18] -0.08] 0.20 038 -1.41] -1.50 -1.31
8mileD1_256 109.43] 87.79| 87.43] 62.20| s54.13] 4564| 3868.54| 292051| 208297 0.25] 0.31 041 -1.20] -1.14] -0.57
sail 97.93] 112.60| 133.25] 43.81| 3s562] 37.71] 191902 1268.95| 142220 105 085 043 025] 0.21] 055
aerialD2_256 114.90| 119.35] 113.75| 63.55] 61.03] 60.22] 403B.96] 3724.16| 23626.78] -0.03] 0.09 0.35] -1.26] -1.03] -0.89
aenalD1_256 120.77] 120.26| 101.78] 58.20| 48.31| 4p44]| 338685| 233381| 183525 0.18] -0.39 0.20] -0.81] -0.27} 0.32
dallastwo256 81.05] 75.16| 54.51| 57.22| s56.95| 39.10| 3273.04| 324280 152884 1.15] 1.01 182] 067] o004 378
peppers 144.20] 112.88] 64.17| 4508 7307 44.095] 211397| 533865 202073| -0.70] -0.14 084 oo00| -154] o072
balloons 107.62| 121.22| 138.57] 42.05] 50.51] 65.12] 1768.43| 2551.32] 424119] o0.18] -085] -047| -0.05] -042| -1.05
mountain256 141.61| 133.05 141.55| 65.50| 68095| 78.50] 4301.77] 475386| 6161.94] 0.17] 0.36 0.25| -1.04] -1.07{ -1.49
winter256 32.74| 67.46| 126.73] 46.47| 4308| 4491 215085| 185572| 201657| 195 1.83 033 313 243] o002
lenacolor 180.17| 98.95| 105.33{ 49.09] 52.80] 34.05] 2410.06] 2797.19] 115066 -0.70] 0.23 023] 07| -078] -017
palmblades 99.23| 110.34| 1068] 48.73] as.7a]l 29.10| 2374.34| 237554 84705 0.70] 050 504 022 -0.14| 3029
boy 102.55) 108.82| 90.47] 67.31] s66.13] 6269] 4530.52| 4372.75] 393061] 0.69] 088 1.01] -098] -039] o019

pLI



Synthetic Images:

Imege R mean m‘:an B mean RDS‘:;I. G:::. BDs::" R var. G var. B var. el?o w ekGaw B akew | R kurt | G kurt | B kurt
snowwhite02 83.65] 79.07] 74.57| 43.15] 40.87| 3565| 1861.82] 1670.58| 1271.24] 0.903| 0907| 0.888( 0588] 0.556| 1.202
toystory02_256 165.37| 151.35] 117.14] 81.04| 85.87] 68.87| 6567.99] 7373.49] 4743.63| -0.358| -0.145 0.225] -1.531| -1.748| -1.717
toystoryQ1_256 78.87] 84.85] 8052] 58.05| 57.81 57.27] 3369.66] 3342.08| 3280.07] 0.842] 0684 0.749] 0.035| -0.169{ 0.180
mermaid01_256 108.14) 125.12] 99.91] 84.15| 61.43] s54.90] 7080.81] 3773.99] 301452 0.222] 0.507] ©0.508] -1.248] -0.260] -0.121
abugslife02_256 52.96] 55.50| 27.90] 5262| 37.57] 31.55] 2768.99] 1411.70 99521] 1.278] 1.143 2.294| 1.265] 1.399| 7.895
bugsbunny02_256 172.58| 160.78| 117.10| 57.24] 7095 77.46| 3275.87| 5034.06] 5999.38| -0.859| -0.833 0.291{ 0.116} -0.534) -1.370
bugsbunny01_256 132.10] 104.30] 9612 81.15] 70.19 58.47| 6585.29| 4927.31| 3418.77{ -0.005] 0.368 0.739] -1.522| -1.148| -0.266
geriQ2 141.02] 102.64] 85.04] 71.65| 63.79 54.22] 5133.07| 4068.72] 2939.76| -0.091]| 0.544 0.809| -0.827] -0.430] 0.263
geri01 157.09] 107.10] 91.04] 77.50| 79.29] 85.33] 6006.88| 6286.36]  7281.68] -0.531| 0.366 0.702| -0.703] -1.198| -0.950
mermaid02_256 140.63| 167.81| 164.93| 70.34| 73.20] 93.07| 4947.75| 5358.21| 8662.33| -0.443| -0.928| -0.642| -0.669| -0.670] -1.219
hercules01_256 119.66) 142374 133.031 77.38] 62.48] 96.68] 5988.35] 3903.43] 9347.01] 0.336] -0.483] -0.312] -1.244] -0.642] -1.668
hercules02_256 145.94] 151.61| 139.39] 7057| 58.91| 84.93] 4979.71| 3470.62] 7212.76| -0.463| -0.317| -0.034] -0.929| -0.389| -1.291
lionking01_256 108.00| 97.10| B4.31] 43.90] 63.49| 80.98| 1927.54| 4030.80| 6557.20] -0.060] 0.378 0.604| -0.304] -1.511] -1.514
lionking02_256 98.56] 101.05] 97.20] 31.23] 41.75] 68.81 975.50] 1742.98| 4735.09] 0.398| -0.267] 0.124] 0.930] -0.867] -1.755
monsterinc01_256 163.31| 165.91[ 178.85| 62.07] 55.89] 49.82| 3852.79] 3123.56] 248200 0.011] -0.026] -0.644| -1.234| -1.008| -0.016
monstenncl2_256 156.43] 155.14] 159.46] 63.28] 57.61 53.93] 4004.30] 3318.79] 2908.01| 0.130] 0.239] -0.252] -1.059] -0.884| -0.408
monsterinc03_256 62.63]| 90.78| 120.93] 3960] 54.26] 54.14] 1568.51] 2944.09] 2931.56] 1.162| 0.655] 0.019] 0.784] -0.738] -0.656
antz01 101.23] 57.03] 41.12] 43.19] 31.69] 23.98] 1856537 1003.94 575.24] 0.746| 0.855 0.975| 0.807] 1.194] 2.094
entz02 153.91| 104.87] 100.57| 59.69] 57.36] 63.51| 3562.98] 3200.37] 4033.96] -0.268| 0.081] -0.311] -0.541] -0.796| -1.512
snowwhite01 95.00] 90.85| 84.49] 5263] 49.96] 38.99] 2770.42| 2495.72| 1520.03| 0.878] 0917 0.547| -0.036] -0.023| -0.530

2 Xipugagy
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Clipart Images:

Imege R mean m(:an B mean RDSOt: GDS: :' BDS: R var. G var. B var. 9:“' efe w B akew | R kurt| G kurt | B kurt .
clipart09_256 188.72] 105.24]| 154.94]| 111.84| 12554| 124.51| 12508.45] 15761.14] 15503.57| -1.095] 0.355] -0.441| -0.802] -1.874| -1.806
clipart06_256 196 88| 197.35| 197.46] 104.57| 104.23] 104.18] 10935.57| 10864.24| 10854.24| -1.310| -1.322{ -1.325| -0.222| -0.189] -0.180
clipart10_256 191.84] 181.45| 179.19| 76.96| 7964| 80.42| 592345 6342.21| B6467.92| -1.484| -0.988] -0.886] 1.493] 0.321] 0.094
clipart05_256 234 46| 203.51| 178701 4094] 5868[ 7993] 1676.17| 3443.89] 6388.66| 4.629| -1.091] -0.562| 23.748] 1.363] -0.837
clipart07_256 146.19| 158.13| 172.53] 9435] 92.19] 94.18| 8902.68| 8498.49] 8870.29] -0.220] -0.442] -0.697]| -1.261] -1.071] -0.885
clipart0f_256 132.37| 155.94] 134.29| 125.65] 107.10] 125.43| 15788.16| 11470.54| 15731.81] -0.072} -0.307] -0.102] -1.977] -1.676] -1.970
clipart01_256 5109 26.21] 6749| 3546| 3531| 6049 1257.74] 124668 3658.58] 0.015] 2441 0.708| -0.821] 6.791] -0.544
clipart03_256 56.66| 39.05| 106,62} 54.25] 5558 96.99] 2943.49] 3088.98| 9407.52] 0.656| 1510 0.366] -0.935] 0.682] -1.386
clipart02_256 128.52| 29.22] 20.56] 95.21}  28.97 18.57| 9064.72 839.46 344.74| -0.071] 2360 6.171] -1.471] 10.604] 73.971
clipartD4_256 108.13] 186.10] 119.75] 96.45| 90.64] 114.06] 9302.19] 8216.08] 13008.14] -1.438| -1.409 0.132] 0.314] 0.344] -1.861
clipart11_256 186.85| 188.25| 187.77| 104.52] 103.68] 103.78| 10924.83| 10749.31] 10770.94| -1.073| -1.107| -1.082{ -0.668] -0.590| -0617
clipart12_256 181.28] 107.27] 173.30| 11560 125.89] 118.99| 13364.03] 15847.11| 14159.10| -0.930| 0.321] -0.770] -1.134] -1.897] -1.408
clipart13_256 255.00] 219.62| 219.62 0.00] 88.15 88.15 000] 7769.70] 7769.70] 0.00] -2.090] -2.090] 0.00] 2369| 2369
clipart14_256 165.02] 79.84] 112.44| 121.85] 118.26] 104.92| 14848.37| 13984.55| 11008.54| -0.616] 0.806 0.337] -1.621| -1.350] -1.453
clipart15_256 115.08] 72.43] 204.72| 126.89] 114.99] 101.46| 16101.46| 13223.41] 10293.38] 0.196] 0.958( -1.522| -1.962{ -1.083| 0.317|
clipart16_256 247.34] 34.78| 1570] 4352f 87.52{ 61.30] 1894.05] 7659.66] 3757.97| -5.507] 2119 3.647] 28.331] 2.489] 11.303
clipert17_256 142.07] 142.07] 73.96| 121.06] 121.06] 115.72| 14654 53| 14654.53| 13390.34] -0.289] -0.289 0.925] -1.860{ -1.860] -1.144
clipart18_256 193.63] 223.85| 200.09] 78.40| 54.12] 65.32| 6146.88] 2928.57] 4267.31| -1.186] -2.238] -1.221] 0.382] 6.055| 0.845
clipart19_256 178.53] 159.26] 149.82] 103.71] 116.85] 122.10| 10755.32] 13653.16] 14908.09| -0.837| -0.509] -0.367] -1.028] -1.644| -1.809|
clipart20_256 247 34| 138.59] 138.59| 43.52| 127.02| 127.02| 1894.05| 16133.44] 16133.44] -5.507] -0175] -0.175] 28.331| -1.970 -1‘970I

Z Xipusday
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Appendix 2

177

RGB Entropy Measnres

N'atural Images:

Red Green Blue
Image HO H1 H2 HO H1 H2 HO H1 | H2
bird 7.8580| 4.9019] 4.0235] 7.8455] 4.8410] 3.9642] 7.8202] 4.9375] 4.3459
bulehills256 7.8704| 6.0232] 4.6470] 7.8642] 7.2334] 5.4681] 7.0768| 5.6306] 4.4149
columns 7.8580| 7.4940| 5.8346| 7.7879| 7.4453| 5.7333] 7.9715| 7.5467 5.9382
couple 7.9887| 7.4130| 5.8966| 7.8765| 7.2762] 5.7424] 8.0000| 7.2640] 5.8755
8mile02_256 7.9600] 7.7595| 6.2429| 7.9425| 7.6453] 6.1773] 7.9773] 7.5377[ 6.1488
marcie 8.0000| 7.5822| 6.2948| 8.0000] 7.3540] 6.1962] 8.0000] 7.2813 6.1997
womanbaby256 7.4346| 4.3122| 3.4614] 7.6366 6.3336] 4.7235] 7.8329| 8.8015] 4.9462
justinkelly256 8.0000| 7.7455| 6.6643| 8.0000] 7.7100] 6.6544] 7.9129] 7.5221 6.5686
8mile01_256 7.9189) 7.7267| 6.6131] 7.8265| 7.4469] 6.3988| 7.9189] 7.4114] 6.4434
sail 7.7616] 7.1410] 6.6456| 7.6147] 6.9790] 6.5230] 7.6511] 7.0838] 6 5908
aerial02_256 8.0000) 7.7663| 7.0567| 7.9830| 7.7604] 7.0668| 7.9830| 7.7571] 7.0635
aerial01_256 8.0000] 7.8057| 6.6781| 7.9944] 7.3858| 6.5589] 7.9600] 7.1690] 6.4302
dallastwo256 7.9484] 7.5007| 6.4227| 7.8320] 7.4375] 6.3873| 7.9386] 6.8583 6.0377
peppers 7.9307| 7.3332| 6.2584] 7.9189] 7.5617] 6.3776| 7.8826} 7.0193| 6.0441
balloons 7.8138) 6.8696| 5.0895| 7.6366| 6.9795| 5.1537| 7.7748[ 6.9671| 5.3110
mountain256 7.9887| 7.6010] 6.9138] 7.9887] 7.4705] 6.7706] 7.9887| 7.2031| 6.4665
winter256 7.9542) 6.1218| 5.7521| 7.9887| 7.0127| 6.6130] 7.9425| 7.4867| 7.0457
lenacolor 7.6147| 7.2498 6.1988] 7.8517] 7.5618| 6.6122| 7.4512[ 8.8665[ 6.2545
paimblades 7.9425| 7.5425| 7.1204] 7.9542] 7.5790] 7.1270] 7.9944| 2.5552| 2.1606
boy 7.8138| 7.0941] 6.0440] 7.7347] 7.0911{ 6.0671] 7.6935] 6.9851| 5.9390
Synthetic Images:
¢ Red Green : Blue

Image HO | Hd H2 | ‘HO | H H2 [ HO | H1 | H2
snowwhite02 7.9425| 7.2809| 6.1975] 7.9484| 7.1888] 6.1461] 8.0000| 7.0680] 6.0953
toystory02_256 7.9009| 7.0150] 5.6206] 7.9069] @.6024] 5.3025] 7.8455| 6.7195| 5.4353
toystory01_256 8.0000{ 7.4877] 6.3619] 8.0000] 7.5870] 6.4021] 8.0000| 7.5238] 6.4073
mermaid01_256 8.0000] 7.4701] 6.2368] 8.0000] 7.4496| 6.2266] 8.0000] 7.4383| 6.2979
abugslife02_256 8.0000| 7.0986] 6.3911] 7.9366| 7.0055] 6.4229{ 7.9887| 6.1608] 5.7538
bugsbunny02_256 | 8.0000| 6.1371] 4.9484] 8.0000] 6.0586] 4.7509] 8.0000] 6.2011] 4.9738
bugsbunny01_256 | 8.0000] 7.7175| 6.5470] 8.0000| 7.6952] 6.4751] 8.0000| 7.4638] 6.3908
gerio2 8.0000| 7.5042{ 6.3809| 8.0000| 7.7971] 6.6593| 7.9658| 7.5573| 6.5252
geri01 8.0000| 6.8170] 5.6559| 8.0000] 7.1370] 6.0182] 8.0000] 6.8271] 5.8569
mermaid02_256 8.0000| 7.5385| 5.8928| 8.0000] 7.0274] 5.5477] 8.0000] 8.4397| 5.2780
hercules01_256 8.0000| 7.3257] 5.9840 8.0000] 7.3235] 5.8541] 8.0000] 6.8234] 5.5271
hercules02_256 8.0000| 7.7763| 6.5573] 8.0000] 7.6034| 6.3625] 8.0000] 7.3285] 6.1442
lionking01_256 7.9189| 7.1450| 5.9561| 7.8138| 6.9545| 5.6849] 7.8202| 6.4329( 5.4075
lionking02_256 7.7279] 6.7870| 5.6004] 7.6439] 7.0464] 5.6208] 7.7748[ 7.0348[ 5.6180
mansterincd1_256 | 7.9830| 7.5399] 6.3523] 7.9484] 7.5287] 6.3587] 8.0000 7.4795| 6.4060
monsterincd2 256 | 7.9830| 7.4776] 6.4485] 7.9425] 7.4739] 6.4569] 8.0000] 7.6412] 6.6051
monsterincd3 256 | 7.9830| 6.8348| 6.1946] 7.9307] 7.5077] 6.5399 8.0000] 7.7099] 6.7093
antz01 8.0000] 7.3617| 6.4695| 7.8265| 6.9064] 6.1387] 7.5392| 6.4395] 5.8387
antz02 8.0000] 7.6985| 6.1749] 7.9425] 7.6435| 5.9949] 7.8392| 7.0342| 5.60865
snowwhite01 7.8329 7.4166| 6.0827| 7.7616] 7.3299] 6.0009] 7.7074] 7.1382| 5.9405




Appendix 2 178
Clipart Images:

. ) Red Graen Blue
Imege HO H1 H2 - HO H1 H2 HO) H1 H2
clipart09_256 1.0000| 0.8266] 0.5079{ 1.0000| 0.8779( 0.6291] 1.0000] 0.9663| 0.6340
clipart06_256 1.5850| 0.9495| 0.5418| 2.0000] 0.8522( 0.5465| 1.5850] 0.9454| 0.5428
clipart10_256 1.5850} 1.3822| 0.8077] 1.5850| 1.3822( 0.8077] 1.5850| 1.3922| 0.8077
clipart05_256 4.3219| 3.0508| 1.7335] 4.5236{ 3.2774| 1.8658] 4.4594| 3.2455| 1.8508
clipartd7_256 6.8826| 3.1461| 1.9886| 6.8048| 2.0407| 1.8809] 6.6865| 2.1738] 1.4170
clipart08_256 7.9715| 1.8006] 1.2165] 7.9773] 3.4424| 2.6337| 7.9773] 1.8588] 1.2698
clipart01_256 6.7549| 5.4530| 3.2489| 7.1997| 4.7733| 2.8833| 7.5622] 5.2058| 3.1550
clipart03_256 7.2761| 5.0388| 3.0300] 7.2946| 4.7646] 2.9033| 7.8948| 4.3134] 2.6003
clipart02_256 7.6294| 4.2547] 2.4609| 6.7004| 3.1437| 1.8228| 5.1699| 3.8294| 2.2215
clipart04_256 1.5850| 1.2527] 0.8726] 2.0000f 1.9177| 1.2177| 2.0000]| 1.8177] 1.2177
clipari11_256 6.5392| 1.5900] 1.0210 6.9658] 1.6102| 1.6102{ 6.9658| 1.8109] 1.0447
clipart12_256 1.0000| 0.8675[ 0.5381] 1.0000| 0.9818} 0.6369| 1.0000| 0.9048| 0.5752
clipart13_256 0.0000] 0.0000| 0.0000] 1.0000| 0.5808| 0.3093| 1.0000| 0.5809] 0.3093
clipart14_256 1.0000] 0.2366] 0.5561] 1.0000| 0.8967| 0.5269| 1.5850] 1.5818| 0.8850
clipart15_256 1.0000] 0.9931] 0.5739] 1.0000] 0.8808| 0.5263| 1.0000| 0.7182 0.4552
clipart16_256 1.0000] 0.1945] 0.1566] 1.0000] 0.5747| 0.3403| 1.0000] 0.3337 0.1842
clipart17_256 1.5850] 1.4326) 0.8824 1.5850] 1.4326| 0.8824| 1.0000] 0.8888| 0.5364
clipart18_256 2.5850] 1.9540( 1.1825] 2.3219]| 1.3696] 0.8579| 2.5850] 2.0268| 1.2235
clipart19_256 2.0000| 1.5465| 0.9515| 2.3219| 1.5462| 0.9566| 1.5850| 1.2288| 0.7150
clipart20_256 1.0000| 0.1845] 0.1566] 1.0000| 0.9945] 0.5841| 1.0000] 0.9945| 0.5841

Image Gradient, Spatial Frequency, and Spectral Flatness Measure
Resnlts (RGB)

Natural Images:

mage '"_19(?)’3" '"19(:)’“ ""g(g)md SF ()| SF (g) | SF(b) | SFM(r) | SFM(g) | SFM (b)
bird 4498| 4467] 6400 837] s76] s3] oo000s| 0.000s| o0.0006
bulehills256 4390| 4970| 4274 s520| s78] 493 0000s| 00002]  0.0001
columns 9163|  8843| 9753 ] 1763] 17.15] 1878] 0001a] 00017] _0.0015
couple 8704| 8268| 10180 1310] 1344] 1635 00013| 00021] 0.0030
8mile02_256 10165 |  10103] 10.285 | 14.85] 1500] 1522 0.0008] 00011] 00014
marcie 13.648| 13.804 | 14.880 | 18.95] 19.19] 20.43[ 00027] 0.0041] 0.0067
womanbaby256 4728 5880 6747 894] 10.44] 11.56] 00001] 0.0002] 0.0002
justinkelly256 20540 | 20499 | 20664 | 26.11] 25.99] 2563] 00023 00034 0.0049
8mila01_256 23067 | 22574 | 21.777 | 1495| 1508] 1522 0.0031] 0.0044] 0.0049
sail 28801 | 26407 | 26720 31.30] 28.71] 28.33] 0.0125] o0.0000] 0.0063
aerial02_256 36128 | 36793 | 35569 | 41.90] 42.88] 4145] 00119] 00123] 0.0124
aerial01_256 23067 | 22574 | 21777 | 28.72] 2857] 27.50] o0.0050] o0.0063] 0.0086
dallastwo256 22995 |  22622| 19.297] 33.39] 3284] 2898] 00172 00173] 0.0290
peppers . 15343 17317 | 15994 | 2355] 26.78] 2268] 0.0022] 0.0035] 0.0096
balloons 4568| 5788 6608| 877| 11.55] 1222] o0.000s] o0.0008] 0.0006
mountain256 37.339 | 36537 | 38445 | 41.84] 42.16] - 4630] o00118] 00130 00137
winter256 30583 | 34004 | 30.082 | 34.53| 35.95| 38.76] 0.0611] 0.0334] 0.0143
lenacolor - 15431 | 20437| 18708 | 20.15] 26.20]-22.15] 0.0015] 0.0077] 0.0065
palmblades 43.620 | 40.905|  5.855| 4590 4201] 17.10] 0.0176] 0.0112] 0.0116
boy 17.224| 19327 16.908 | 21.07] 23.19[ 2050 00037] 0.0043] 0.0047
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Synthetic Images:

imsge 'mg(?)’ad '"‘"(s;ad '"‘"‘g;ad SF(r}| SF(g){ SF(0)| SFM() | SFM(g) | SFM (b)
snowwhite02 13170 | 13.038| 12877 17.30] 17.16] 16.77] 0.0018] 00020 0.0023
toystory02_256 15509 | 13.708| 13.127 | 27.86] 25.95] 2280] 0.0028] 0.0029] - 0.0039
toystory01_256 - 20207 | 20.058| - 20.408 | 30.94] 30.78] 30.58] o0.0146] 00132] 0.0140
mermaid01_256 27914 | 25652 - 25112 48.96] 46.94] 4387 00222 00198 0.0250
abugslife02_256 23554 | 23219 21525] 20.38] 2861 2721 00177 00213 0.049
bugsbunny02 256 | © 19.067| 17.293| 18.080 | 34.97] 3380] 3260 o0.00se] 00057 0.0086
bugsbunny01_256 | - 22.469 | 20.817| 20.153 | 36.47] 34.05] 31.30] o0.0077[ o0.0110] o0.0121
gerio2 19283 | 18.917| 18478 | 2682 2651[ 2572 o0.0032] 00058] o0.0078
gerio1 19386 | 19.879| 18.530 | 28.26] 27.10] 2562] o0.0016] 00025] 0.0027
[mermaido2_256 21742 22670 22776 [ 4a.11] ar.91| 47.00] 00132 o0.0114] 0.0008
hercules01_256 22649 | 19603 | 19.411| 42.35] 38.14] 37.85] o0.0135] 00097 0.0082
hercules02_256 25677 | 23960 22.361| 4590] 4a.36] 3083 00124 o00118] o0.0008
lionking01_256 14.287 | 12725| 12501 | 22.24] 21.12] 2092| 00028] o00028] 0.0027
lionking02_256 8.397 7.601 7.428 | 12.83] 12.90] 13.20] o0.0008] 0.0007] 0.0006
monsterinc01_256 16645| 16.653| 16.862 | 23.88] 23.00] 2352] 0.0026] 0.0026] 0.0023
monsterinc02_256 19.879| 10.417| 19425 [ 26.26] 25.51] 2461] o0.0038] 0.0038] 0.0034
monsterinc03_256 | ~ 20202 | 20684 | 21.394 | 24.36] 24.82] 2516] o0.0156] 0.0070] o0.0046
antz01 18052 | 16.518] 15676 | 23.45| 21.90] 2061] 00059 0.0155] 00263
antz02 12.742| 10.985] 10.604 | 20.00] 19.22] 18.46] o0.0019] 0.0034] o0.0032
snowwhite01_256 9.884 9.653 9.563 | 13.50] 13.64] 13.04] o0.0006] 0.0008] 0.0008
Clipart Images:

ImgGrad | imgGrad | ImgGrad | ¢ (1, | 5k (g)| SF b)| SFM () | SFM (g) | SFM ()

Image (n (9) {b)

clipart09_256 10607 17.276]  18.794| 52.01| 66.37] 69.23] 0.0029] 00057 0.0040
clipart06_256 6.713 7.013 7.148| 38.88] 39.77] 40.29] 0.0037] 00038 0.0040
clipart10_256 12.919]  11.854|  11.622] 51.54] 47.97] 47.23] o0.0008] 0.0093] 0.0092
clipart05_256 6.540 8.457]  9.054] 37.48] 37.00] 39.89] o0.0040] o0.0048] 0.0062
clipart07_256 23.709]  28.926]  34.360] 64.72] 74.55] 8ss2] o0.0212] 0.0250] 0.0317
clipart08_256 8.407 17619 8.919] 3267] 39.74] 3358] 0.0023] 0.0034] 0.0025
clipart01_256 3.015 2.799 4.926] 10.80] 11.42] 1943] o0.0026] 0.0070] 0.0028
clipart03_256 7.483 3.755 8.852| 25.61] 16.14] 32.05] o0.0086] 0.0058] 0.0051
clipart02_256 7.729| - 3.770 2.963| 34.26] 22.92] 21.29] o0.0041] o0.0004] 0.0063
clipart04_256 39,101 35.075|  14.474] 97.20] 87.02] s5267] 0.0315] 0.0285] 0.0161
clipart11_256 18.9064] 20183] 190.881| 60.35] 6265 61.90] 00098] 0.0104] o0.0102
clipart12_256 12.436]  20.023| 15.245| 56.31| 71.46] 6235 00024 00079] 0.0025
clipart13_256 0.000 1.681 1.681] 0.00] 20.70]* 20.70] o0.0000] 0.0000] ©0.0000
clipart14_256 8.903 8.210 7.717| 47.65| 45.76]' 42.55] 0.0000] 0.0000] 0.0000
clipart15_256 7658 10.724]  10.724] 44.19] s52.29]- 52.25] o0.0000] 0.0000] ©0.0000
clipart16_256 7.658 6.241 3.860| 44.19] 39.89)-3137] o0.0000] 0.0044] 0.0000
clipart17_256 21.320] 21320 13.451] 72.22| 72.22] s857] o0.0211] o0.0241] o0.0232
clipart18_256 14416] 11812] 12.074] 51.81] 44.17| 42.86] o0.0088] 0.0052] 0.0060
clipart19_256 18.058]  15.781 10.164] 61.30] s6.51| 48.19] 0.0123] o0.0117] 0.0086

clipan20_256 - 7.658 9.229 9.229] 44.19( 48.51)" 48.51 0.0000 0.0032 0.0032



YCbCr Image Statistics

Natural Images:

Image meYan mc;:n mi;n Yns;: C;::d‘ C;::d ¥Yvar. | Covar. | Crvar. |Y skew|Cb akew| Crakew| Y kurt | Cb kurt | Cr kurt
EF 114.66 7.22| -463] 18.51 6.14 503 342.61 37.65 2529 0.377] -3.473 5.305] 15.619] 13.624] 49.911
bulehifls256 119.55| 50.81| -4280] 71.72| . 2025 13.28| 5143.84] 410.21] 176.35| 0.366| -0.720] -0.042| -1.529] -0867] -0.952
columns 91.68 1.65 3.59| 63.65 6.37 6.29| 4051.52 40.61 39.61| 0667 0.214 2.776] -0.569 0.508 9.963
couple 83.33 -5.60( 12.33] 50.96 16.14 18.62{ 2597.02] 260.52] 346.60] 1.021 0.126 0.586] 0.780 1.771 0.061
Bmile02_256 105.66 -9.96| 10.74] 6192 7.41 8.16] 383360 54.96 66.63| 0.398| -0.702 0.075] -0.604 0227] -0.727
marcie 100.78] -12.73| 12.59] 45.61 6.97 7.62] 2080.57 48.54 58.11] 0.379{ -0641] -0.357| 0.514 1.475] -0.571
womanbaby256 219.01] -12.46( 17.03] 37.79 11.82 14.93] 1427.86| 139.63| 222.92] -1.131 -0.434 0.330| 0856 -1.365] -1.335
justinkelly256 115.32| -16.46] 20.25( 8040 8.99 1054] 6463.91 80.90] 111.00] 0.150| -0.065 0.271] -1.504] -0.378] -0.592
8mile01_256 94,22 -3.83] 10.85] 54.49 11.98 1124} 2969.00] 143.59] 126.36] 0.309] -0.263 0.471] -1.132] -0.910] -0.539
sail 110.62] 12.77] -9.05| 365 12.44 11.42| 1332.63| 154.64] 13047} 0.937] -1.408 1.839] 0.219]° 5.881 4,781
aernal02_256 117.38 -2.05| -1.77| 60.89 6.37 10.00] 3707.75 40.64 99.95| 0.064| -0.703 2623] -1.126 4.123] 24208
aenal01_256 11831 -9.33 1.76] 49.08 7.79 13.05| 240896 60.69] 170.36] -0.176| -0.244 1.197] -0.399 0.351 6.703
dallastwo255 7457 -11.32 4621 54.01 15.55 7.95| 2917.32| 241.74 63.26| 1.073| -1.498 1.475] 0.327 2.994 7.0M
peppers 118.70] -29.64] 1962| 53.81 12.95 3366| 289561| 167.66| 1132.76| -0.238| -0.124 0.488] -0.878| -0.229] -1.223
balloons 11913 10.97| -821| 38.72 2913 2096] 1499.43] 848.73| 897.68| -0.313] -1.504 1.244| -1.165 2.618 0.283
mountain256 137.11 2.51 3.21] 67.79 17.35 10.77] 4595.13| 30094{ 11596] 0272 1.906] -0.980] -1.112 3.561 0.545
) wintar256 63.84] 3549 -2218| 4329 12.11 7.85] 1B73.67| 146.73 61.63] 1.695 0.018] -0.2561| 2.533] -0482| -0421
lenacolor 123.97| -10.52] 40.00| 47.87 13.65 12.85| 2291.74] 186.42] 165.12| -0.081 0.436] -0.205| -0.847| -0.530] -0.851
palmblades 95.66] -47.96 2.55| 44.10 23.70 6.80| 1945.17| 561.86 46.24| 0649] 0457 2541 0.329] -0.303 8.960
boy 104.85 -8.12] -1.65{ 63.60 20.15 1589 404529] 40591| 25261] 0840 -1.659f -0.013] -0.509 6.318] -0.591
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Synthetic Images:

Y Cb Cr )Y Std.| CbStd. | CrStd. Yvar. | Cbvar. [ Crvar. | Y askew|Ch skew| Cr skew| Y kurt | Cb kurt| Cr kurt
Image mean | mean | mean | Dav Dev Dev
snowwhite02 79.03] -3.03] 265| 4072 537 441 1657.76] 28.79] 19.41| 0.904| -0.834] 1.070] 0613 1.206] 4.415
toystoryD2_256 151.64| -19.47| 079] 8036 19.28] 16.92| e457.11| 371.80| 286.21| -0.157| -0.683] 1.399| -1.697| 0380 1.521
toystary0t_256 8257 -1.16| -264] 57.06 9.85 8.74| 325582 o97.05] 7631 0735/ -0.265] 0.255] -0031| 08614 1143
mermaid01_256 11717 -9.74] -6.44] 56.11 26.38] 4012 3148.45| 69574| 1600.40] 0536] -0.828] 0.365| 0.874] 2.186/ 0.196
abugslife02_256 51.50] -13.37| 0097 3961 1461 13.14] 1568.82| 213.44] 17256 1.153] -1.226] 1.877| 1.134] 23017 4427
bugsbunny02_256 | 159.33] -23.83| 9.45| 58.28 32.80] 3291 3396.10] 1076.14] 1082.98] -0914] 0126 o0.176] -0.537] -1.008] -0.853
bugsbunny01_256 | 111.68] -8.78] 14.57] 69.50 18.90] 2006| 4820.83| 35712 40259 0250 -0.337] 1.214| -1.223] -1.191] 21086
geri02 112.11] -15.28] 2062| 62.80 9.08] 18.61| 3943.46| 8243 346.38] 0319 0097 1.214] 1.214] -0569] 1.138
gerio? 120.22| -16.47| 26.30| 73.54 18.21| 3207] 5408.26] 2331.50| 1028.40| 0053 0.114] 0437] -1.216] -1.008] -0.679
mermaid02_256 150.36]  3.14] -13.36] 64.17 2516 3864| 411757] 633.18] 149294] -1.117| -0204| 0544 -0157] -1425] 2387
hercules01_256 13451 0.B4] -10.60] 6335] 34.77] 27.99] 4013.74] 1208.88] 78338 0.126] -0.256| 1.288] -0.955] -0.727] 1.165
hercules02_256 148.52] -5.16| -1.84] 5904] 3143 2690] 348591| o987.88| 72338| -0.322| 0619] -0272| -0520] 0.110] 0.031
lionking01_256 08.90| -8.24] 6.49] 5388 2142 20.30] 200261| 458.73] 858.62] 0.216] 0.193] -0.084] -1.592| -0.912] -1.504
lionking02_256 0986| -1.51] -003] 3444 2527| 2516| 1186.14| 638.50] 633.18] -0.240| 0.077| 0.258] -0.472] -1.438| -0.985
monsterinc01_256 | 166.61 6.91| -235 5545 1504] 1200| 307467 226.18] 144.00| -0038] -0.501] -0902] -1.016] 0245 0756
monsterinc02_256 | 156.02 184 029 s6.86 2026[ 1045| 3233501 410.44] 410302} o023s5) -0419] -0535] -0870] -0.670} 0571
monsterinc03_256 0z11] 21.34| -21.02| 49.04 8.07] 11.20] 2404.44] 6500 12553 o0.681] -1.088] -0.084] -0.586] 1.643] -1.182
antz01 68.43 -1542| 2339| 31.02 6.70| 16.86| 96246| 4484 28417| o765 -0.761] 0.795] 1.236] o0.975| -0.128
antz02 119.04| -10.43| 2487| 56.73 18.05| 1326] 3217.98] 32596 175.93] -0.078] -0.835] 1.101| -0.765] 1.249] 1567
snowwhite01 91.25] -382] 267 4853 9.83 905| 235503} 9670 9910 o0901f -0151] 2.425] -0002] 1.163] 6.165
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Clipart Images:

Y Cb Cr 1Y Std.) CbStd. | Cr Std. Y var. | Cbvar. | Crvar. | Y skew|Cb skew| Cr skew| ¥ kurt | Cb kurt | Cr kurt
Image mean | moeon | mean | Dev Dev Dev - - :
clipart09_256 135.87| 10.76| 37.70] 99.92 69.26 63.36] 9984.94] 4796.65| 4014.49] 0.240 0.668 0.665] -1.770] -0.469| -1.461
chipantd6_256 197.22 0.14] -0.24] 104.20 318 5.37] 10858.04 10.11 28.8%) -1.319] 27.852] -23.073] -0.193] 868.022] 539.302
clipart10_256 184.30 -2.89 5.38| 78.75 3.18 593] 6201.30 10.08 35.11] -1.121] -0.194 0.194] 0.625| -1.963] -1.863
Clipari05_256 209931 -17.63] 1749 52.21 21.90 22.47] 2726.00] 479.81] 504.82] -1.551] -0.993 1.204] 3.989| -0.183 0.572
¢lipant07_256 156.20| 921] -7.14] 91.07 21.52 17.14| 8293.82] 463.11| 293.80] -0.410 1.886] -2.123] -1.055 3.978 4,458
clipart08_256 146.42 -6.85] -10.02] 113.06 13.70 19.48| 12781.97| 187.71| 379.59| -0.157] -1.277] -2.416] -1.868 3.556 9.998
¢lipantD1_256 38.35] 1645 9.08] 26.32 24.34 28.10 692.81| 592.57| 789.79| 1.429 0.181] -1.094] 3.243] -1.292 2.136
clipart03_256 52.01] 30.81 3.31] 56.50 31.00 15, 71] 3191.79] 961.19] 246.95] 1.195 0.249 1.333] 0.118] -1.344 1.766
¢lipart02_256 57.92| -21.09] 50.36] 44.01 19.47 38.93] 1936.71] 379.22] 1515.76] 0.452] -0478] -0.107] -0.028] -1.125] -1.581
clipart04_256 182.13] -35.21| 11.41| 89.50 50.07 16.65| 8009.95] 2507.28| 277.29] -1.341| -0.748 0.748| 0.265] -1.439{ -1.439
clipart11_256 187.78 -0.01{ -0.66f 103.67 2.87 B.29| 10746.51 8.24 68.67| -1.096] 13.776] -14.693| -0.607| 199.475] 217.010
clipart12_256 136.92] 20.52] 31.64] 102.52 65.77 61.88] 10511.01] 4325.71]| 3828.82] 0.209 0.839 0.862| -1.811] -0.930] -1.164
clipart13_256 230.20 -5.97]1 17.69f 61.79 14 .87 44.07] 3818.04] 221.23| 1942.43| -2.090{ -2.090 2.080] 2.369 2.369 2.369
clipart14_256 109.02 1.93] 39.94] 102.26 37.92 62.11] 10456.85| 1438.18} 3857.16] 0.584 0.122 0694] -1.391] -1471| -1.505
clipert15_256 10025 58.95| 10.55] 99.14 72.58 5319| 9828.56] 5267.77| 2628.83| 0.855] -0.1985 1.669] -1.144] -1.799 0.959
clipart16_256 86.16| -45.41| 107.83| 58.50 26,42 4422 342200 697.81| 1955.28| 1.883] -1.780| -1827] 2.390 4.778 1.399
clipart17_256 134.31] -34.06| 5.54]| 114.08 60.86 9.90| 13014.18| 3703.48 97.64| -0303] -0.838| -0.838| -1.857] -1.188] -1.188
clipart18_256 212101 -6.78] -13.18] 6€0.82 11.77] 17.77| 3699.55| 13847| 315.60] -1.670] -1.429| -1.492] 2284] 5205 2375
clipart19_256 163.94 -7.98] 10.40] 111.37 19.79 22.27| 12403.52| 391.58] 496.09] -D.545] -3.880 2647 -1.571| 17.465 8.131
clipart20_256 171.11] -18.35] 54.37] 92.42 21.28 63.06] 8542.21| 452.87| 3976.23] -0.245| 0.297 0.297( -1.805] -1912f -1.912
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Appendix 2
YCbCr Entropy Measures
Natural Images:

Y Cb Cr
Image HO H1 H2 HO H1 H2 HO H1 H2
bird 7.8455| 4.8210] 6.5996] 4.0000| 2.7994| 4.3005| 6.2479| 0.8428] 0.8322
bulehills256 7.7879| 7.1411| 6.9843] 6.2095! 5.1897| 5.2306] 0.0000| 0.0000] 0.0000
columns 7.8329| 7.4748] 7.6922] 4.9542| 2.9685| 3.6772| 55236 3.4113] 4.9402
couple 7.6248| 7.2844] 7.7105] 5.3576] 1.9697] 2.0215] 6.1699] 4.8401| 57324
Bmile02_256 7.9484| 7.6807| 7.5784| 4.3219| 0.1703] 0.1906| 5.6724] 4.5733] 5.0661
marcie 8.0000] 7.4006| 7.7706] 3.8074| 0.0849| 0.0885| 5.6147| 4.5683| 6.3331
womanbaby256 | 7.5699| 6.1789] 5.9075| 1.5850| 0.0424] 0.0715| 5.8826] 4.9608| 4.8553
justinkelly256 7.9887| 7.7659) 7.7340] 3.1699] 0.0838| 0.1089 5.6826| 5.3838] 6.2712
Bmile01_258 7.8329| 7.5273| 7.6147| 4.8074| 2.8478| 2.7634] 5.9069| 4.4183] 4 8450
sail 7.5850| 6.9794] 7.6341| 5.7004] 4.6782| 5.8408] 5.9773| 1.3882] 1.3812
serial02_256 7.9658] 7.7308] 7.8624] 4.3219] 2.0332| 2.6060| 6.5078] 2.3883} 3.0300
aerial0l_256 7.6830| 7.4123] 7.7274] 4.5850] 0.7705| 0.8790| 6.6724] 3.3758| 39099
dallastwo256 7.8704| 7.4153] 7.7642] 4.0000| 1.5073| 1.6735| 6.3038] 3.9592| 55010
peppers 7.6009| 7.5731] 7.7620] 2.8074] 0.0114] 0.0140| 6.4094| 4.5528] 4.6316
balloons 7.3038| 6.7985| 7.3245] 5.5850| 4.2004| 4.5763| 6.16998] 2.2457| 21388
mountain256 7.9887| 7.5707| 7.5269] 6.1699| 2.8225| 3.0739| 5.0875| 3.8443| 5.0423
winter256 7.9542| 6.9416| 7.5081| 6.1085] 5.6104| 6.3386] 1.5850] 0.0014] 0.0011
lenacolor 7.7211| 7.4425] 7.8193| 5.0000] 1.8068] 1.9048] 6.2668] 5.8087| 7.1356
palmblades 7.9425| 7.4183| 7.7852] 4.7004| 0.0464] 0.0345] 5.7004] 2.8055] 4.0484
boy 7.9060| 7.4764| 7.6501| 4.5236| 1.7394| 1.9472| 5.3923] 3.2838 3.7085
Synthetic Images:

Y Cb Cr
image HO H1 H2 HO H1 H2 HO H1 H2
snowwhite02 7.9366] 7.1954| 7.5736] 3.4594| 1.2520] 15084| 5.1233] 3.0677| 4.0263
toystary02_256 | 7.8580| 6.6446| 6.7628] 4.8074] 1.1272| 1.0107| 6.2668| 4.2487] 4.3022
toystory01_256 | 8.0000| 7.5481] 7.4985| 5.3576| 2.5958| 2.6765| 5.5850| 2.1055] 23149
mermaid01_256 | 7.9830| 7.4224] 7.4233| 6.0224| 2.5413| 2.5315] 7.0000| 3.8748] 3.6571
abugslite02_256 | 7.8887] 6.9868] 7.4358] 5.2479| 0.7236| 0.7115| 6.0444| 2.7084| 26565
bugsbunny02_25 8.0000| 5.7005| 5.6863| 5.7004] 1,5979| 1.3465| 6.7944| 3.3038| 3.1779]
bugsbunny01_25d 7.9944| 7 .6401| 7.5889] 5.0444| 2.7210| 2.6001| 6.6439] 4.8456| 4.9390
gerin2 7.9944| 7.8022] 7.8048) 3.3219] 0.1256] 0.1905| 6.5236 5.5457/ 6.1291
geri01 8.0000| 7.2339] 7.0578| 4.4594] 1.1484] 1.0972| 6.9189| 5.7067| 6.0645
mermaid02_256 | 7.9484| 6.9094| 6.9267| 5.7279] 3.5948| 3.0542| 6.7549] 2.0971] 1.7808
hercules01_256 | 8.0000| 7.2039| 6.9727 5.7814| 3.5199| 3.0536| 6.5546] 2.1082] 1.8786
hercules02_256 | a.0o00| 7.6262| 7.5094] 6.3399 3.4179] 3.1183] 6.4429] 3.3847] 3.3090
lionking01_256 | 7.7211| 7.0216] 7.2522] 5.0000] 2.2923| 1.9345| 5.8074] 3.9316] 3.8158
lionkingd2_256 | 7.5850[ 6.7831] 7.1861| 5.4283| 3.4889| 3.1747| 5.8826] 3.4234 3.1782
monsterinc01_256 7.9484| 7.5335] 7.5815| 5.2854| 4.1095| 4.3144] 4.9069] 3.0380] 35560
mansterinc02 254 7.9542| 7.4775] 7.5790] 5.3219] 3.6153| 3.6701| 4.9068| 3.2508| 3.8579
Imonsterinco3_25d 7.9600] 7.3962| 7.5790] 5.2479| 4.8050] 5.7265| 3.3219] 0.0598] 0.0592
antz01 7.8265| 6.9121| 7.3884] 3.0000] 0.0356| 0.0308| 6.3750| 5.7831 6.1766
antz02 7.9484| 7.6804| 7.6182] 4.9069| 2.1885| 2.0730| 6.3523] 5.4068] 6.2293
snowwhite01 7.7004| 7.2697| 7.5038] 5.0000| 1.6155| 1.9056| 5.6439] 2.5715| 3.1328
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Clipart Images:

Y Cb Cr

Image HO H1 H2 HO H1 H2 HO H1 H2

clipart09_256 2.3219| 1.8867] 1.4171§ 1.0000| 0.7778| 0.5434| 1.5850] 1.1106| 0.8471
clipart(6_256 2.3219| 0.9697} 0.5570] 1.5850| 0.0252} 0.0185| 0.0000] 0.0000] 0.0000
clipart10_256 1.5850| 1.3922| 1.0416| 0.0000| 0.0000| 0.0000/ 1.0000| 0.9933] 0.8201
clipart05_256 4.5236{ 3.2774| 2.1141| 0.0000{ 0.0000{ 0.0000| 4.3923| 3.0916| 2.0109
clipart07_256 7.0334| 3.1599| 2.1290] 5.5236| 1.8292| 1.3600| 5.3923| 0.1258| 0.1176
clipart08_256 7.9658| 3.3977| 2.8319] 5.4263| 0.1337] 0.1110| 5.5236| 0.0372| 0.0269
clipart01_256 7.0334] 4.8280| 3.8926| 6.1085] 3.5382| 2.5710| 5.7814| 4.0415| 2.6866
clipart03_256 7.3576| 4.8583| 3.3884| 6.5392| 4.3665| 3.0762| 5.1699] 2.5768] 1.7467
clipari02_256 7.1699| 4.8634| 2.2648| 0.0000| 0.0000] 0.0833| 6.8202| 4.7385] 3.1397
clipanidg_256 2.0000{ 1.9177( 1.4799| 0.0000| 0.0000| 0.0000{ 1.0000] 0.9084] 0.8116
clipart11_256 6.8704| 1.6388| 1.1329| 4.9542] 0.0628| 0.0491| 0.0000| 0.0000] 0.0285
clipart12_256 2.0000{ 1.7006( 1.3204{ 1.0000] 0.8251| 0.6173| 1.0000( 0.8690] 0.6628
clipart13_256 1.0000| 0.5808] 0.3801]| 0.0000| 0.0000] 0.0000] 1.0000| 0.5809] 0.3801
clipart14_256 2.0000| 1.7314| 1.3124] 1.0000| 0.9074] 0.6509| 1.0000] 0.9190| 0.6824
clipant15_256 2.0000§ 1.5902| 4.2783] 1.0000| 0.9990] 0.8265] 1.0000] 0.8511] 0.4555
clipart16_256 2.0000{ 0.8983| 0.9824] 0.0000| 0.0000] 0.0000] 1.5850| 0.8147] 0.9237
clipat17_256 2.0000| 1.8522| 1.3225| 1.0000] 0.5671| 0.4031{1.0000 | 0.8738| 0.6644
clipart18_256 4,0875| 2.6753| 1.8349| 1.0000| 0.4650| 0.4843| 1.0000| 0.3432| 0.2503
clipart19_256 3.0000| 1.9703]| 1.3221] 0.0000] 0.0000] 0.0000] 2.8074) 1.3418] 0.9174
cliparti20_256 1.5850| 1.1543| 0.8938| 0.0000] 0.0000] 0.0000] 1.0000] 0.8843| 0.7649

Image Gradient, Spatial Freqdency, and Spectral Flatness Measure

Resnlts (YCbCr)

Natural Images:

Image "“9(3)’3" "“?fb';"’ '"_'F(’gr';ad Sf(Y) | SF (Cb)| SF (Cr) | SFM (v) | SFM (cb) | SFM (cn)
bird 4.077 2634 1686] 8370] 2815 2430] ooood] 00137) 00167
bulehills256 4.574 0.814 1.126] 5321] 1339 1542] o00002] 0.0001] o0.0001
colurmns 8.539 2.247 2.164] 17.152] 2720 3.321] o00015] 00211] 00271
couple 8.113 2.962 2.450| 13.018] 4249] 3.821] ooco18] o00076] 0.0031
8mile02_256 10.028 1.187 1348| 14.970] 1542] 1.779] ooo10] 00011 0.0012
marcie . 13.552 3.003 2.459] 19.033] 23.487| 2665 00037 0.0073] 0.0046
womanbaby256 5519 1176 1397] 9915 1.851] 2284] 00002] 0.0008] ©.0005
justinkelly256 20.301 2.323 2.734] 25801] 2637] 3078 00031 o00011] ©.0009
8miled1_256 16.389 1.796 1.834] 21027] 2214 2608] ooo4o] 00023] 0.0018
sail 26.544 5.539 5010] 28.756] 6.602] 5956] 00093] 0.0143] 00176
aerial02_256 35.865 4.066 5.085) 41.884] 4556] 6653] 00119] 0.0633] 0.0506
aerial01_256 22.256 2.188 3.348] 27.973] 3.108] 5630] 00063] 0.0057] 0.0150
dallastwo256 21.739 6.922 4500| 31.407] 9.423] 6.252] 00171 o00402] o.0767
peppers 15.739 4.232 5.422] 24208] 5343] 7468] 00034 00017 0.0011
balloons 4533 3.693 2919| 8.745] 6607 5714] 00005 0.0041] 0.0030
mountain256 *36.736 5.275 4.480| 42.169] 6628] 4741 o00128] o00241] 0.0291
winter266 33.097 5.834 46371 35410] 6732] a7e2] o00348] 0.003s] 0.0059
lenacolor 17.325 6.786 6662| 22.882] 6974] 6998 ooos0] o0.0267] 0.0046
palmblades 37.060]  20.810 6.733| 38.278] 21.804] 8486 00125] o0.0155] 01732
boy 17.834 3.864 4162] 21811] 4.355] 4.092] o00040] 0.0050] 0.0104
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Synthetic Images:

imags "“9(3;'3" '“‘?gb")a" "“‘(’gr']ad st(v) | sFcor| sFicn| skmony | sFm(co) | sFm(cn)
snowwhite02 12,851 0.952 0813 17.192] 1262 1.169] o00019] 0.0027] 0.0038
toystory02_256 13.564 3.408 3.401] 25463] 5806] 5777] 00029] 0.0018] 0.0040
toystory01_256 19.781 2.949 2.732| 30534] a162] 3866] 00138] 0.0117] o0.0120
mermaid01_256 24 530 5,554 7.850| 45.315] 9.370] 13269 00214] 0.0115] o0.0107
abugslife02_256 22 870 3.799 2.549] 28.458] 4309] 2982] 00224] o0.0023] 00023
bugsbunny02_256 16.643 4.344 4691] 32075] 7.153] 7.979] oooso] o.o018] o0.0018
bugsbunny01_256 20,636 3611 3.743| 33.775] 5627 6.450] ooose] 0.0040] 0.0038
geri02 18.660 1.851 3.270] 26160] 2159] 4.124] o0o00a8] 00013 0.0020
geri0] 18.450 4.328 7.327| 25.746] 5477] 9.482] o00021] 0.0023] 00023
mermaid02_256 21.209 3.851 6.287] 45.140] 6.134] 12.184] 00116] 00041] 0.0090
hercules01_256 19,586 5.073 4617] 38305] s8378] 8362] 00107 o0.0045]  0.0050
hercules02_256 23.458 5717 4.324] 43631] 9.052] 6.717] 0o0119] 00081 00038
lionking01_256 12.750 2.266 2.862] 21.107] 3.026] 3.877] o0o0020] o0.0008] 0.0006
fionking02_256 7.490 1.961 1993] 12612] 2576] 2792 00007 oo0004] 0.0004
monsterinc0?_256 16.368 2663 2.364] 23584] 3719] 3080 00025 o0.0026] 00035
monsterinc02_256 | . 19.157 3.463 3.054] 25272] a662] 3530] 00035 00034] o0.0007
monsterinc03_256 20,408 2.227 2.473] 24503 2945] 3.1455] ocooso] 0.0010] 0.0012
antz0? 16.634 1.915 2.599] 21.992] 2444] 3357] o0o116] 00025 o0.0007
antz02 11,002 2.807 2775] 19209] 4.190] 3.883] o0.0028] 00025 0.0010
snowwhited1_256 9.486 1.005 1089 13.440] 1.520] 1.738] o.o0006] o0.0008] 0.0012
Clipart Images:

Imags '"‘9(3;3" "“:’gb';'d "“‘(’gr';ad sf(v) | SF (cv) | SF (cn | SFM (v} | SFM (cb) | SFM (Cn)
clipart09_256 14.606 5748 5.806| 54.852] 31495] 26614] 00033] 00256] 00013
clipart06_256 6.938 0.418 0.161| 39.335] 3.160] 4.258] o00038] o0.1082] o0.0668
clipat10_256 12.132 0.297 0.554] 48880] 1.377] 2569] 00095] 0.0154] 00154
clipat05_256 7.882 1.851 2.454] 35760] 9.186] 11.756] 0.0043] 0.0153] 0.0243
clipart07_256 27.888 5.170 4.493] 71.947] 16.384] 13.363] o00248] o0.0708] 00757
clipart0s_256 13.696 3.313 4.479] 35012] 7720 10952] 00027] o00182] oo0i92
clipart0?_256 2.467 1.763 1866] 10100] 6831] 6525 00036] 0.0040] 0.0062
cliparto3_256 5160 3.145 2.348] 18954] 10.388] 8621] o00054] 00060 0.0151
clipart02_256 4.764 1,288 2.704] 24282] 5526] 11.804] 00051 o0.0049] 0.0042
clipartod_256 33.733]  12.143 4.005| 83732] 35990 11.883] 00275] 00559] o0.0560
clipanti1_256 19.689 0.355 0697| 61.260] 2968] 8618] 00100] 0.1461] 0.1476
clipant12_256 17.218 5.414 5.069] 60.962] 23.748] 24.047] o0ooas| 0.0058] o0.0057
cliparti3_256 1.480 0.284 0.841] 14533] 3.493] 10.352] ooooo| 0.0000] o0.0000
clipart14_256 8.363 1.275 2.344] 43175] 7.660] 16.998] 00000] 0.0000] 0.0000
clipart15_256 9.810 3.520 2.367| 46.378] 19.867] 15.868] 0.0000] 0.0000] 0.0000
clipant16_256 6.383 1.430 2.896| 35744] 9.706] 18.669] 00013]  0.0015]  0.0005
clipat17_256 20.373 5.015 0.816] 68.954] 24172] 3.931] oo0214] 00186 o0.0186
clipart18_256 12.501 1623 1968| 45607] 6616] 8413] 00061 00350 00217
clipant19_256 15.770 3.219 3.571] 54.835] 13.237] 14.472] o00108] o0.0549] o0.0484
clipan20_256 8.761 0.901]  2669] 44.150] 6.226] 18.448] 00016] 0.0038] 0.0038
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A Segmentation-based Wavelet Compression Scheme for Still Image
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ABSTRACT

There has been much recent interest in the use
of wavelet-based image compression schemes,
They offer various advantages, not least the
elimination of the need to segment an image
prior to using the Discrete Cosine Transform
(DCT). It is shown in this paper, however, that
image segmentation and separation can produce
an equivalent performance to  more
conventional schemes and can offer certain
advantages. A wavelet-based image
compression scheme is presented in which an
image is first partitioned into high and low
frequency segments and different wavelets are
then applied using the 2-D discrete wavelet
transformation (DWT).

KEY WORDS
wavelet-based, edge-detection, segmentation.

I. Introductibn

The advent of picture messaging on mobile
telephones, Personal Digital Assistant (PDA)
technology and other wireless based image
services hag shifted the balance of priority for
image compression schemes. Historically, the
output medium for decompressed images was a
high resolution computer monitor that
demanded a good quality image. lmage quality
can be broadly interpreted to mean a good Peak
Signal to Noise Ratio (PSNR). The capabilities
of the display screen on the majority of mobile
devices combined with the cost of transmission
bandwidth has shifted the emphasis away from
the PSNR towards the level of compression,
frequently expressed as a direct compression
ratio or via a bits per pixel (bpp) value.

For many years the Joint Photographic Experts
Group {JPEG), a DCT-based compression
scheme, has been the still image compression
standard of choice. However, in recent years
wavelet-based compression has become popular
because such compression schemes allow high
compression ratios while maintaining good

image quality. The popularity and success of
wavelets has prompted its inclusion in the
JPEG2000 standard. A  variation on
conventional wavelet-based image compression
schemes

is presented here. The proposed technique
exploits the variable frequency characteristics
of an image by applying different wavelet
filters to the low and high frequency elements.
1t is shown that this can offer an improvement
in the compression ratio for certain types of
image, with little overall loss in PSNR.

2. Image Characteristics

A typical grey-scale image is comprised of
pixels that are correlated and therefore contain
redundant information. Significant compression
can be achieved by exploiting these
redundancies. A detailed examination of the
frequency characteristics of the image pixels
can provide useful information pertaining to the
potential compression of the image concerned.
The fréquency characteristics can be better
viewed by splitting the image into blocks and
computing the Fourier log power spectrum of
each block [3].

Figure I Original image (source: Kodak) and
Fourier log pawer spectrum image

The above images indicate a wide variation in
spectra. The bright center in the blocks, indicate
a low frequency component. The blocks that
contain the hair produce a spread of energy at
all frequencies. Spectra with lines normal to the
edges indicate the presence of dominant edges
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(high frequencies), for example, the transition
between the shoulder and the background.

3. Conventional Wavelet

Compression System

In recent years researchers have focused on the
utilization of discrete wavelet transforms
(DWT) in digital image compression. The
advantage of the DWT is that, in contrast to the
discrete cosine transform (DCT), it does not
require the image to be divided into blocks, but
analyses the image as a whole.

The following is a conventional lossy wavelet
compression system. The image is first
decomposed into wavelet coefficients by a
forward discrete wavelet transform. The result
is fonr different sets of coefficients or subband
images, that is, the approximation coefficients
and the three sets of detail coefficients. Many
of the resultant wavelet coefficients are close to
zero. These wavelet coefficients are then
quantised. Finally, the wavelet coefficients are
encoded and an output bit stream is produced.

Input . Compressed
image Ea i
et FOWT b Quantizer [y C:Ive? =

Figure 2 Typical wavelet campressian scheme

4. The Discrete Wavelet Transform

The key to any wavelet-based compression
scheme is the wavelet transform. This section
provides a short review of the wavelet
transform algorithm. The 1D wavelet transform
decomposition and reconstruction algorithm
basically utilizes a pair of complementary filter
banks. Each filter consists of a Yow-pass filter

(H(z)) and a high-pass filter (G(z}). Figure 3
describes a single stage, two-channel filter
bank.

Analviis Swnthesis

Figure 3 Single stage two-channel filter bank

The input y{z) is filtered by a low-pass filter
- H(z) and down-sampled by a factor of two to
produce yo(z). Output (z) is obtained by

image

filtering y(z)with a high-pass filter G(z) and
down-sampled by a factor of two. The 1D
wavelet transform is well-documented and can
be found in [3], [4], [5] and hence will not be
discussed further. Instead, this paper will focus
on how the 2D wavelet transform is used to
decompose and reconstruct an image.

In two dimensions, the decomposition is
achieved by applying the 1D transform in the
horizontal and vertical directions as shown in
Figure 4.

Image

6(z) b2

Figure 4 Level ane of the wavelet transform

The outputs LL, LH, HL, and HH are sub-band
images. LL is the lowest sub-band image and it
represents a smaller low-resolution version of
the original image. The other sub-band images
LH, HL, and HH are high-pass samples and
they represent a smaller residual version of the
original image.

At the reconstruction stage the sub-band images
are recombined so that the original image can
be reconstructed. The reconstruction process is
depicted in Figure 5.

otz o A

+— t2 H(z)

LH

t2 G(z)
HL—-| t2 [~ A0 i

un : 3)—-“: 0
—-ITT Gz} '

Figure 5 Wavelet transfarm recanstruction
pracess

Reconstruction is achieved by up-sampling the
lower resolution images and passing them

through the synthesis filters, H (z) and &(z)

5. Method

The above approach uses the same wavelet
filter to compress the whole image. This paper

2 2 LL

H(z) —-|lﬂ—-|: Ll }_:,,
o) {42 —

Hiz) 42 }—'iL
o) |42 |~

Qnigina
tmage
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proposes a compression scheme based on the
segmentation of an image into its low and high
frequency parts. A different wavelet filter is
then applied to these different elemeuts of the
image.

An edge-detector algorithm was used to
segment the grey-scale image into low
frequency and high frequency regions. Since
edges are usnally sharp changes rather than
slow-varyiug changes, an edge-detector can be
used to ideutify fast gradient changes. The
gradient change of

an image can be derived by computiug its first
derivative by finding the  uumerical
approximation of the difference in each pixel.
The gradient change can be computed by:

\/[[ r c —l c—-l)]z [[(r c—l) I(r—l,c)]2

I(r,c)denotes an image pixel at row (r) and
columu (c).

Typically, an approximate magnitude is
computed using;

|I(r,c)—[( —1c—]1+|1rc—l —lc]

This form of the equation is generally preferred
because it is much faster to compute [2].

Edge-detectors work on the basis that edge
information in an image can be located by
examining the relationship of a particular pixel
and the surrounding pixels. If there is a wide
variation of grey levels surroundiug a pixel then
an edge is present. On the other hand, if the
grey levels are similar then there is no edge
present at that poiut.

The following is a modified version of an edge
detection algorithm scheme first presented by
Liu (2004) [1]. A Roberts operator, chosen
because it works best with grey-scale images
[2], is used to extract the edges. The Roberts
operator mask is defined as;

1 01
row mask = 0 column mask =
0 -1 ) -1 0

The Roberts operator couvolution masks are
convolved with the grey-scale image to produce
an edge-detected image, which is basically a
binary image. The resultant edge-detected
image is then divided into blocks; values of § x
8,16 x 16 and 32 x 32 were used in this study.
The number of black pixels in each block is

counted. If the block contains more than 10
black pixels, then it is considered to be a high
frequency region. However, if the block
contains less than 10 black pixels, then that
region is said to be a low frequency region.
Figure 6 provides an example of its operation.

F igure 6 Segmented tmages

The low frequency and high frequency images
were then compressed separately using a
different wavelet filter for each image. The
following is a comparison of the coding

performance using a single wavelet
compression scheme and the dual wavelet
method presented above.

6. Results

The segmentation scheme described above was
implemented using Matlab, using two of the
wavelets available in that package. The first set
of results (Figure 7) gives a comparison of the
output from the encoder for a single wavelet
and the dual wavelet scheme. The number of
bytes comiug from the encoder has been nsed to
provide an absolute measure of performance
rather than the compression ratio, as is more
normal. The reason for this is that the dual
wavelet method produces two image outputs
that must be added to produce the total data
size. The biord.4 wavelet was used for the
single wavelet method at a decomposition level
of 3. For the dual wavelet method, the biord .4
was again used at level 3 for the low frequency
image and a haar wavelet at a decomposition
level of 4, for the high frequency image.

Encoder
output Encoder
image (single) output {dual)
gmandrill 19125 14704
gmarcie 6849 5850
gpalmbilades 15381 13686
gbarbara 11504 9285
[aboat 8162 7300
lagotdnilt 6889 5970
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F“_ Encoder outpul (single) —8— Encoder output (dual) J Encoder Encoder

output output

25000 - Imaga {singte) {dual}
20000 gmandrill 15574 14704
15000 4 gmarcie 5254 5850
lgpaimblades 12954 13686
100001 gbarbara 8753 9285
3000 1 gboat 6580 7399
0 ggoldhill 4972 5970

LS

& A A &

Figure 7 Comparison of resultant compressed
Jile sizes for the single and dual wavelet
methods,

From figure 7 it is apparent that there is some
improvement in compression as the total
number of bytes coming from the encoder is
smaller for the dual wavelet method. However,
a direct comparison cannot be made as the
effect of the application of the dual wavelet is
to reduce the overall PSNR by approx. 2dB for
each of the images.

PSNR

Imaga (single} PSNR (dual)
gmandrill 25.20 27.14
gmarcie 32.93 30.84
gpalmblades 29.31 27.77

barbara 31.29 28.55
gbeat 31.78 30.17
ggoldhill 31.52 28.53

[ —e— PSNR (single) —— PSNR (dual) |

35 4
% | M;::
25 4
20 4

0 —
>

é‘é\b& Q‘é‘? @@" & eﬁ@ & dg)&"

Figure 8 Reduction in PSNR caused by the dual
wavelet method.

In order to provide a direct comparison, the
PSNR for the single wavelet method was set to
the same level as that achieved by the dual
method, and the number of bytes produced by
the encoder was recomputed. The results are
shown in Figure 9.

—e— Encoder output (single) —8— Encoder output (dual)

N >

R AV SR A

Figure 9 Comparison of the single and dual
wavelet methods for fixed PSNR levels.

7. Conclusions and Future Work

Initial results indicate that some improvement
in compression can be achieved through the use
of a combination of wavelets with little loss in
the quality of the reconstructed image. This
could prove to be a very significant factor for
mabile devices, where bandwidth costs can be
high and small reductions in PSNR would have
little, if any, impact.

Current work is concentrating on extending the
technique to colour images where it is
anticipated that more significant improvements
may be possible. Work is also underway in
order to classify regions of an image based on
their frequency content, and then to match a
small family of wavelets to these regions in
order to optimise overall performance. The
ultimate aim is to develop a simple expert
system .to perform the initial analysis on an
image and then to assign the most appropriate
combination of wavelets for its compression.
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Abstract ,

The main concern of this study is to idemtify the
‘right’ or ‘most appropriate’ wavelet for
compressing stili-synthetic images. To investigate
this, different wavelets were used for a selected
set of symhetic image. The results of this
investigation are presented in this poper. The
initiol results show that different results con be
obtained by using certain wavelets to compress
still-synthetic imoges

Keywords

Wavelet, synthetic images, compression

I. Introduction

Since the advent of the Internet there has been an
insatiable desire for faster transmission speed of
stil and video images using public telephone
lines. A PAL colour video has 25 frames per
second, 576 scan lines per frame, 720 pixels
(pels) per scan lines for each of the red, green,
and blue colour components. If each colour
component is coded using B bits (24 bits/pixel
total) then the bit-rate is 576 x 720 x 25 x 24 =
248 832 000 bits/sec or approximately 248.83
Mbits/sec [t]. The transmission times and storage

Capacity for uncompressed images are shown in
Table | and Table 2 [2]. It is clear from the tables
that transmitting such large amount of

bits using normal communications link is very
slow and the storage capacity is very inefficient.
Thus, effective data compression techniques are
essential for transmitting and storing digital
images.

Table I Transmission time for uncompressed PAL

video imoge

Duration File size Transmission Time (hour)
of PAL (Kbits) Modem El
video {56 Kbps) {2.048 Mbps)
1 sec 248 832 1.23 0.03
2 min 29859840 148.11 405
5 min 74649600 370.28 10.13

Table 2 Digitol medio storage capacities for PAL
video image

Maximum storage capacity

Storage Media No of Duration of

Frames video (min)
Magneto-Oplical (MO)- 515 034
640 Mbytes
MO - 2.6 Gbytes 2090 1.39
Recordable-CD 680 547 0.36
Mbyles
DVD - 8.5 Gbytes 6833 4,56
DVD — 17 Gbytes 13666 9.1

2. Synthetic Images

Images can be classified into different types and
some researchers have attempted to classify
images [3, 4] using different criteria. Smith and
Chang have classified these different types of
images as follows:

Figure I ]mag; .Class:'ﬁcorion

However, this method of classification is too
elaborate for the purpose of this research. For this
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research we have
follows:

classified the images as

etic Images Classification

The term ‘synthetic image’ referred to in this
paper is an image that is generated by the
computer or a drawing (cartoon). Hybrid image
refers to an image that consists of a computer
image superimposed on to a natural scene e.g.
Walt Disney ‘Dinosaur’. In this research, hybrid
is also classified under synthetic images. 1t should
also be noted that 3-D graphics like those nsed in
engineering are included in the definition.
Synthetic images have sharp artificial colour
transitions whereas natural images have gradual
colour transition. In a synthetic image sharp
transition occurs between two different regions of
constant colours. In contrast, natural images e.g.
photographs do not have sharp edges like
synthetic images instead the edges are often
blurred. Synthetic images have fewer colours than
natural images.

The transmission of synthetic images is very
common and important on the Internet. Their
impact is so significant that compression standard
like MPEG-4 now supports synthetic visval
objects such as human faces and body animation
[5]. Previous MPEG standards only supported
natural images. Virtual newscaster, ANANOVA
is an example of synthetic images used on the
Internet. For many engineering applications 3-D
models are increasingly being accessed through
the Intemmet [6). Hence, it is only natural to
conclude that synthetic objects and images will be
playing more significant roles on the Internet in
the future and therefore compression of synthetic
images warrants further investigation.

3. Overview of DCT-based and
Wavelet-based Compression

This section will give a brief overview of the
Discrete Cosine Transform (DCT) based and
wavelet-based compression methods.

3.1 JPEG

JPEG is 2 DCT-based compression standard for
continuous-tone images. It is the most commonly
nsed standard on the Internet. JPEG works on

bank, a quantizer, and an entropy coder.

either full-colour or grey-scale images; it does not
handle bi-level images well. It works best on
‘continuous tone’ or natural images but images
like synthetic images with many sudden jumps in
colour values will not compress well using JPEG.
Nevertheless a lot of the synthetic images used on
the Internet nse JPEG compression.

The following is a brief overview of JPEG [5]. In
JPEG the original image is taken through a series
of steps, which are image preparation, DCT,
quantization, and encoding, Each step contributes
to the overall compression of the image.

Figure 3 JPEG Compression

The JPEG standard uses the discrete cosine
transform (DCT} and it suffers from annoying
blocking artefacts when compression ratio is high,
Increasing the compression ratio lowers the
transmission time, but the image quality will
deteriorate rapidly. The blocking artefacts were
addressed in the new JPEG 2000 standard. JPEG
2000 uses wavelet transform rather than DCT.
The advantage of wavelet transform is that, in
contrast to JPEG, it does not divide the image into
blocks, bt analyse the image as a whole. Unlike
the DCT used in the traditional JPEG, wavelet
transform allows the high compression ratio and
yet maintains the image quality [7].

3.2 Wavelet-based Compression

A typical wavelet-based image coder witl
comprise of three major parts: a wavelet filter

Figure 4 Wavelet Co&éf

The wavelet filter bank decomposes the image
into wavelet coefficients. The quantizer then
quantizes the wavelet coefficients. The entropy
coder produces an ontput bit stream and then
encodes these wavelet coefTicients.

Although the overall performance of the coder
depends on all three parts of the coder, the choice
of the wavelet filter will ultimately affect the
performance of the coder. If the waveler filter
performance is poor then however well the
quantizer and encoder perform, it will not
maintain the picture quality. Suffice o say filter
banks play an important role in a typical wavelet-
based coder. The choice of filters nsed in a
number of researches is chosen on a ‘trial-and-
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error’ basis. To date there are no known or
published rules or guidelines to facilitate the
selection of a wavelet filter for
improved/optimised performance.

4. Experimental Method and Results

4.1 Compression Algorithm

The wavelet image coder used is written using
Matlab. The algorithm [8] is ontlined as follows:

Step 1: Perform a wavelet transform of the signal

Step 2: Set all values of the wavelet transform,
which lie below some threshold value to 0.

Step 3: Transmit only non-zero values of the
transform obtained from step 2.

Step 4: At the receiving end, perform an inverse
wavelet transform of the data received from step
3.

The Matlab Wavelet toolbox function ‘wavedec?’
is used to perform wavelet transform. The image
is decomposed into its coefficients using the
‘wavedec?’ function. The decomposition depends
on the type of wavelet and the level of
decomposition.

4.2 Wavelet Filters Used

There are a number of wavelets developed over
the years. In this experiment only twelve are
selected and they are: haar, db2, db5, dbl0,
biorl.3, bior3.l, bior6.8, coifl, coifd, sym2,
symd, and sym§8. The choice of wavelet filters are
selected randomly for this research.

4.3 Images Used

For this particular study, a set of synthetic test
images are put together from movies, and
websites. Examples of these synthetic images can
be found in the appendix.

4.4 Resulis and Discussions

Figure 5 shows the results of using different
wavelets to compress different types of synthetic
images. Three levels of decomposition are used.
The image is decompose into 4*n subband
images, where n is the number of level of
decomposition. Using different wavelets, the
performance of the image coder is evalnated
based on the peak signal-to-noise ratio (PSNR)
obtained. The PSNR is calculated by using the
following formula:

PSNR=10*1og(255" /sqr{ MSE))
and the mean square error (MSE) is obtained by:

MSE =15 S e, )- 1)

y=1 x=1

where M and &V are the row and column of the
image respectively. I is the original image and I’
is the compressed image.

A high value of PSNR is good because it means
that the signal-to-noise ratio is high. In image
compression, the ‘signal’ is the original image,
and the ‘noise’ is the error in reconstruction. The
tabulated results are shown in the appendix. From
the results (Figure 5), it can be seen that different
wavelet filter produces different PSNR and the
PSNR values vary from 75.23 db to 90.12 db.

B =
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Figure 5 PSNR values for different wavelets

The results are better viewed in terms of the way
the images have been categorized in this research.
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Figure 6 PSNR values for Computer Generated
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For each category of images, the PSNR varies
widely, for example the computer generated
image category the PSNR varies from 90.12 db to
76.45 db. This large variation in PSNR could be
attributed to the characteristics of the image [9].

5. Conclusions and Future Work

One thing which is clear from the results obtained
is that different wavelets produce different results.
From Table 3 in the appendix, it can be seen that
some wavelets filters performed better than others
e.g. for Antz0| (computer generated image), the
‘haar’ wavelet filter performed best. And on the
average the ‘haar’ performed the best. It is also
observed that there is no specific wavelet filter
that has performed consistently better than others.
The resulis seem to indicate that PSNR values are
image dependent i.e. the PSNR values depend on
the type of image used.

The images from different categories used in this
research have different characteristics. For
example, cartoon images have fewer colours than
the computer generated images and hybrid
images. Cartoon images are basically line
drawings, so their edges are more distinct than the
edges found in the images from the-other two
categories.

As part of the research, a systematic study will be
conducted to see if it is possible to establish a
clear link between the characteristics of an image
and the coding performance. It is hoped that the
results from this study can help 10 design the
‘right” or “best’ wavelet to compress still
synthetic images.

To begin with, a systematic study has to be
carried out to see if it is possible 10 establish a
clear link between the characieristics of an image
and the coding performance. A detail study will
also be carried out to investigate the variables
involved when deciding on a filter bank for a
particular application. For example which wavelet
filtkers type to wuse, e.g. orthorgonal or
biorthogonal. The results from this study can then
be used 10 help facilitate the design of the ‘right’
wavelel to compress synthetic images. It is
envisaged that the results can also be extended in
facilitating the selection of the ‘right’ wavelet for
other images like medical images, aerial images,
scanned images and compound images. A DSP-
based image coding system using wavelets will be
developed. An evaluation of the system will be
carried out with the synthetic images.
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7. Appendix

Computer Generated Image ' Hybrid Image Cartoon Image

Figure7 Sample Images

=
LT

Computer Generated Image Hybrid Image Cartoon Image

Figure 8 Images after ‘haar’ transform

Hybrid Image

Computer Generated Image Cartoon Image

Figure 9 Images after reconsiruction
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Table 3 PSNR Values
Image haar db2 dbs dbl0  biorl.3 bior3.] bior6.8 caifl coif4 sym2 sym4 sym8
Antz01 90.12 89.08 8798 8675 90.07 83.10 8669 8878 8642 8908 B8.18 8717
Geri0l 7797 7179 7725 7663  77.68 76.45 7682 71758 7656 71.79 7741 T71.01
WaltDino01 8698 8582 8451 8325 8643 82.37 8330 8545 B287 8582 8464 8354
Dino0| 8331 8285 8207 81.19 8269 81.99 81.21 8233 B0.52 8285 8182 8096
SnowWhite0l 8680 8634 8565 8511 86,61 8293 8485 86,15 8482 8634 B557 8498
Peterl 8280 81.67 7953 7698  80.68 75.23 76.83 8067 7586 81.67 7963 7129
Calvin0l1 7982 7897 7757 1599 78353 76.42 7594 1838 7526 7897 7776 7625
Avcrage 8397 8322 82.08 8084 83.24 79.78 80.81 8276 8033 8322 8214 8103



Appendix 3

198

The Implications of Image Statistics and Image Features on Coding Performance of
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ABSTRACT

The main emphasis of this research is to
investigate which synthetic image
characteristics affect the coding performance.
The results indicate that coding performance is
dependent on certain image statistics like edges,
image gradient, skewness and kurtosis.

Keywords: Synthetic images, coding
performance, wavelet, image statistics

I. SYNTHETIC IMAGES -

The term ‘synthetic image’ refers to computer
graphic image (CGl), a drawing (cartoon) or
hybrid image. Hybrid image refers to an image
that consists of a computer image superimposed
on to a natural scene, e.g, Walt Disney
‘Dinosaur’. Synthetic images have sharp
artificial colour transitions whereas natural
images have gradval colour transition. In a
synthetic image sharp transition occurs between
two different regions of constant colours. In
contrast, natural images e.g. photographs do not
have sharp edges like synthetic images instead
the edges are often blurred. Synthetic images
have fewer colours than natural images.

The transmission of synthetic images on the
Internet is very common and important. Their
impact is so significant that compression
standard like MPEG-4 now supports synthetic
visnal objects such as hnman faces and body
animation [5]. Hence, it is only natural to
conclude that synthetic objects and images will
be playing more significant roles on the Internet
in the future and

therefore compression of synthetic images
warrants further investigation.

A typical wavelet-based image coder will
comprise of three major parts: a wavelet filter
bank, a quantizer, and an entropy coder.

Image Wavelet Qutpt
—#] Tansform [P Quamizer =¥ Emropy [—PDm
Coder Sraam

Figure 1 Wavelet Coder

In general, the operation of the image coder can
be represented by the following notation;

| 0 L5
Inpul ) Output
image image

0=T{I}

Figure 2 General representation of image coder

The above suggests that the ontput image, ‘0’
is related to the input image, ‘I" by the transfer
function *T".

From our previous work [1], we demonstrated
that when compressing different synthetic
images using different wavelet filter the peak
signal-to-noise ratio (PSNR) is image
dependent i.¢., the PSNR varies from image to
image. The result of that study is shown here in
Figure 3.
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Figure 3 PSNR values for different wavelets
2. IMAGE STATISTICS

To further investigate why the PSNR varies
from image to image, we analyse the images
using gray-level image statistics [3] and image
activity measure [6]. The image statistics used
here are mean, standard deviation, variance,
energy, entropy, skewness, and kurtosis,

2.1. Mean

Mean = ZI(x,y)/(Nx*Ny) 08
where 5 /(x, y) represents the summation of
all pixel values of the image and (Nx * Ny ) is
the size of the image.

2.2. Standard deviation

The measure of the frequency distribution of
pixel valnes of an image is known as the
standard deviation of that image. The standard
deviation (Std. Dev.) can be calcnlated as
shown below:

Std Dev=1 (): i{x, y)° H{Nx* Ny))— (Mean2 @)
where ¥ /(x, y)z is the sum of the squares of
all pixel values of the image.

2.). Variance

The variance (o) is the square of the standard
deviation and is calculated using the following:

Variance = (Srd Dev )2 (3)

2.4. Energy

This refers to refers to how the grey-levels are
being distributed [7] and is given by

— () @)
Ne* Ny
where Nx*Ny is the size of the image,
and I(x, y) is the value of the pixel of the
image.

E:

2.5. Eatropy

Entropy is the measure of information content
[4]. The entropy is measured by:
2.5.1 Normal entropy,

E, =2 l(.r, y)log I(x, y) (3)
2.5.2 Shannon entropy,

R 2 ( 2) 6
Ey=-— > T i{x, y)" togt{x,»)" ) (6)
2.5.3 Log energy,

E, = _%z log(l(x, y)z) (N
2.6. Skewness

Skewness is a measure of symmetry, or more
precisely, the lack of symmetry of a histogram,
A distribution, or data set is symmetric if it
looks the same to the left and right of the centre

3

i 1 I (x, y) — mean

point. § =~ = (8)
Nx* Ny o

2.7. Kortosis

Kurtosis is a measure of whether the data are
peaked or flat relative 10 a normal distribution.
Data sets. with high kurtosis tend to have a
distinct peak near the mean, decline rather
rapidly, and have heavy tails.

4
e 1 Z(I(x,y)—meanJ -3 ©)

Nx * Ny o

3. IMAGE ACTIVITY MEASURE

tn addition to the above-mentioned statistics
features, image activity measure (IAM) is also
used. [AM establishes how bnsy the image is in
terms of edges and contours [6]. The following
1AMs were used in this research i.e. edge
information, and image gradient.

3.1 Edge Informatioo

El=( : za(:)]*mo (10)

Ne* Ny

where B(i) is the binary image derive from the
Sobel edge extraction operator.

3.2 Image Gradient

This method calculates activity values by
applying functions like the logarithm or square
root to the horizontal and vertical gradient.
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. 4, RESULTS

Varions image statistics and image activity
measure for a set of seven different synthetic
images were calculated. The following tables
show the results of the image statistics and
image activity measure. Due to the restriction
of space, the results are displayed as three
separate tables.

Table 1 1mage statistics

Image Mean Variance g: Energy
Antz)] 6792 | 96239 | 3102 | 009
Gendl 11797 | 5706.75 | 715.54 0.30
WaltDino01 93.69 1509.69 | 40.12 0.16
Dinol 13489 | 1694.28 | 4116 0.31
S$nowWhite01 90.22 233796 | 4835 0.16
Peterl 171,59 | 304053 | 5514 0.50
CalvinQ1 20744 [ 203593 | 4512 0.69

(a) Mean, variance, standard deviation, and
energy

Skewnes Kunosi

Image Entropy . .
Log
Na;'mn Shlnnnﬂ Energ
¥
Amz0l 29363 -50027 317 [yl 424
Geri0) 39167 | -203746 354 1A 175
WaltDino01 43412 -99232 887 04?7 298
Dinodl 66849 | -199942 2.68 033 297
SnowWhite
1 4184} -101847 372 09 299
Peter| 89200 | 342806 10.14 06 264
Calvin0) 11122 | 486600 10.61 -1.1 301

{b)Entropy, skewness and kurtosis

Table 2 Image activity measure

Image Edge Ggigcm
Antz01 3,905 13957
Geni0l 3.225 20021
WaltDino01 328 15.402
Dino01 2.002 7627
SnowWhite01 2982 5.705
Peter| 5414 50.571
Calvin0l 5.513 18 876

Different wavelets are used to compress
different types of synthetic images. Three
levels of decomposition are used. The image is
decomposed into 4*n subband images, where n
is the number of level of decomposition. Due ta
the limitation of space, we are presenting the
results for one wavelet (Haar) only.

Table 3 Performance of image coder

Image Haar
Comp.

PSNR Ratio bpp
Antz01 20.12 445 540
Geri0l 77.97 431 556
WakDino01 86.97 622 - 385
Dino01 83.31 19.09 1.25
SnowWhite0l 3580 130 329
Peter] 82.79 1 7.45
Calvia0l 79.81 5.68 4.22

The following coding performance measures
were found: peak signal-to-noise ratio (PSNR),
compression ratio (CR), and bits-per-pixel
{bpp). Again due to the limitation of space, only
samples of results are presented here (Figure 4 -

8).

Edges va Comp ratio [Haar)

[-----<~Curvru°=l—0—ﬁiga-|

Pl il

Flo e a8 o]
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Figure 4 Edges versus compression ratio

values
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Figure 5 Image gradient versus bpp values
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Edges va bpp (Hasr)

Figure 6 Edges versus bpp values

Skewness vs PSNR (Haar)
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Figure 7 Skewness versus PSNR values

Kurtosls vs PSNR {Haar}
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Figure B Kurtosis versus PSNR values

The results from analysis show that a negative
correlation exists between the edges and
compression ratio. The analysis also reveals
that the image gradient and bpp are positively
comrelated. A positive correlation also exists
between the edges and bpp. The skewness
values show a strong positive correlation with
PSNR values. A strong positive correlation also
exists between the kurtosis and PSNR values.

5. CONCULSION AND FUTURE WORK

A systematic study has been conducted to see if
there is any link between the characteristics of
an image and the coding performance.

The results obtained show that different
wavelets produce different results. It is also
observed that there is no specific wavelet filter
that has performed consistently better than
others. Although the study found no clear

relation between most image statistics and the
coding performance measures, however the
results does indicate that coding performance
measures is related to certain image statistics
like edges, image gradient, skewness and
kurtosis.

The different images used in this research have
different characteristics. For example, cartoon
images have fewer colours than the computer
generated images and hybrid images. Cantoon
images are basically line drawings, so their
edges are more distinct than the edges found in
CGl and hybrid image. The analysis of these
images has shown that Kurtosis has the
strongest correlation with the PSNR.

This study also exposed the issues that have yet
to be resolved pertaining to the choice of
wavelets for compressing synthetic images. For
examples, is it the limited number of colours, is
it the brightness, or is it the distinct edges of a
synthetic image that influence the coding
performance?

It is envisaged that the results can help to
design the right wavelet filters to be used for
compressing synthetic images for better
performance. It is the researchers’ opinion that
using the ‘right’ wavelet filters is very
important. The reason is that if the performance
of the wavelet filter is poor than the overall
performance of the wavelet coder cannot be
significant improved no matter how well the
quantization and entropy encoder perform.

It is also envisaged that the results can also be
extended in facilitating the selection of the
‘right” wavelet for other images like medical
images, aerial images, scanned images and
compound images. ‘
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This appendix contains the Matlab source code for the main function used in this research.
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R R R R R R R e R R R R R R L LR R e R R R R R R LR R L L2 T 1 1]
% Author : Vooi Voon YAP, Middlesex University, London

% First written: 20/03/2002

% Last Update: 25/03/2004

% MSE calculations revised in this wversion. - 03/01/2004

% Corrected 'dequantize' error - used dequantiz{decodedCr,Cbscale) instead of
% dequantiz(decodedCr,Crscale) for dequantizedCr.

Purpose
This is a wavelet-based image compression program written for my PhD research.
% It compress colour images uvusing DWT.

% Note: This function/program calls in functions written by fellow researchers:

% This function threshold the YCbCr coefficients separately.

B R e R e R T L T L L SRt i LY
clear all;

close all;

clc;
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% Orig_Img=imread('D:\matlabép5\work\imagesi\natural\8mile0l 256.bmp");

% Orig_Img = imread{'D:\matlabép5\work\images\aerialiaerialQl 256.bmp'};
% Orig_Img=imread('D:\matlabsp5\work\images\natural\peppers.bmp');

% Orig_iImg=imread('D:\matlabép5\work\images\natural\lenacolor.bmp');
Orig_Img=imread{'D:\matlabép5\work\images\natural\palmblades.bmp');

% Orig_Img=imread{'D:\matlabépS\work\images\natural\boy.bmp'};

% Orig_Img=imread('D:\matlabép5\work\images\natural\bird.bmp"');

% Orig_Img=imread{'0:\matlabép5\work\images\natural\marcie.bmp'};

% Crig_Img = imread('D:\matlabépS\work\images\naturalichiligQl.bmp"'};

% Orig_Img=imread('D:\matlabép5\work\images\natural\mandrill.bmp'};

% Orig_Img = imread{'D:\matlabép3\work\images\naturalichiliq02.bmp'};

% Crig Img=imread('0:\matlabép5\work\images\natural\flower256.bmp");

figure (1)

imshow (Orig Img); title('Original Image'): % display image

Orig Img = double(Orig Img):; % convert to double for arithmetic operations
ROrig=Qrig Imgi{:,:,1};

GOrig=0Orig Imgi{:,:,2);

BOrig=crig_Img(:,:,3):

$EEHLSLTTLLRLLTRRELS59%5%%% Transform to ICT colour space $3ERFPHLRL445 493929228890 %%%%%
Y = 0.299*Qrig_Img(:,:,1} + 0.8587*0rig_Img{:,:,2) + 0.114*Orig_Img(:,:,3);

Ch = -0.16875*0rig _Img(:,:,1} - 0.33126*0rig Img(:,:,2) + 0.5*0rig Img{(:,:,3);

Cr = 0.5*Crig_Img({:,:,}) - 0.41869*0rig_Img(:,:,2) - 0.08131*0rig_Img(:,:,3);

Final Img = zercs(size(Orig_Img}); % Clear final image matrix (reset)

dwtmode ( 'sym') ;

YLevel = 3; % level of the decomposition
CbCrlevel = 3;
WaveletTypel ='haar'; % name of the wavelet

WaveletType2 ='haar':

[YRecon, YccomEncoded, YcomTotalCoeff, YcomNonZeroCoeff)...
= YComp(Y, WaveletTypel, YLevel):;

Y = YRecon;

[CbRecon, CbhcomEncoded, ChcomTotalCoeff, ChcomNonZeroCoeff]...
= CbComp (Cb, WaveletType2, CbCrLevel):;

Cb = CbRecon;

[CrRecon, CrcomEncoded, CrcomTotalCoeff, CrcomNonZeroCoef€l...
= CrComp {Cr, WaveletType2, CbCrLevel};

Cr = CrRecon;

$33%393%583%38%%%%%% Perform inverse transform to reconstruct the RGE image %%3%%38%%8%%%%%%
= Y + 1.402.*Cr;

=Y + (-0.34413.*Cb) + (-0.71414.*Cr};

=Y + 1.772.*Ch ;

-]


file:///matlab6p5/work/images/natural/8mile01_256
file:///matlab6p5/work/images/aerial/aerial01_256
file:///matlab6p5/work/
file:///natural/pepper
file:///matlab6p5/work/images/natural/lenacolor
file:///matlab6p5/work/images/natural/palmblades
file:///matlab6p5/work/images/natural/boy
file:///matlab6p5/work/images/natural/bird
file:///matlab6p5/work/images/natural/marcie
file:///matlab6p5/work/images/natural/chiliq0
file:///matlab6p5/work/
file:///natural/mand
file:///matlab6p5/work/images/natural/chiliq02
file:///matlab6p5
file:///natural/f
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Final Img(:,:,1l)=R;

Final_Img{:,:,2)=G;

Final_Img{:,:,3)=B;

CmpR=Final_Img{:, :,1}; '
CmpG=Final_Img{:,:,2};

CmpB=final_Img(:,:,3);

Final_Img=uint8{Final_Img):
figure(2)
imshow(Final_Img};title('Reconstructed Image'):

imwrite (Final_Img, 'D:\Matlabtpb\work\Images\DummyImg.bmp');

fprintf (1, 'YcomEncoded: ) %¥d\n', size(YcomEncoded,1)):
fprintf (1, 'CbcomEncoded: $d\n', size(CbcomEncoded,1));
fprintf (1, 'CrcomEncoded: %d\n’', size(CrcomEncoded,l}};

Rerror = ROrig - CmpR;
[Rml Rnl) = size(ROrig):

RMSE = (sum{sum{Rerror.*Rerror)})./{Rml1*Rnl);
Gerror = GOrig - CmpG;
[Gml Gnl] = size(GOrig);

GMSE = (sum{sum{Gerror.*Gerror}})./{Gml*Gnl};
Berror = BOrig - CmpB;

[Bml Bnl] = size(BOrig):;

BMSE = (sum{sum{Berror.*Berrocr}))./{Bml*Bnl);

fprintf (1, 'Y Decomposition levell: $d\n', YLevel);
fprintf (1, 'CbCr Decomposition level?l: %d\n', CbhCrLevel);
fprintf (1, 'Y Wavelet Type: $s\n', WaveletTypel};
fprintf (1, 'ChCr Wavelet Type: %s\n', WaveletType2);

RGBMSE=RMSE+GMSE+BMSE;
AveMSE=RGBMSE/3; .
fprintf(1l, '\nAverage MSE is: %1.4f', AveMSE);

RGBPSNR = 0;
RGBPSNR = 10*10gl(0{(255*255) /AveMSE) ;
fprintf(l, '\nRGB PSNR is: : %1.3f dB\n', RGBPSNR}:;

TotalCoeff({l) = YcomTotalCoeff;
TotalCoeff(2) = CbcomTotalCoeff;
TotalCoeff(3) = CrcomTotalCoeff.

NonZeroCoeff(l) = YcomNonZercCoeff;
NonZeroCoeff(2) = CbcomNonZeroCoeff;
NonZeroCoeff (3} = CrcomNonZeroCoeff;

CoeffCompRatio = sum(TotalCoeff)/sum{NonZeroloeff);
fprintf (1, 'Coeff. Compression ratio: $2.3f\n', CceffCompRatic);

ImgSz={(size(Orig_Img,1)*size(Orig_Img,2))*3;
Compressedimage=size (YcomEncoded, 1} +size (CbcomEncoded, 1} +size(CrcomEncoded, 1)
FileCompRatic = ImgSz/CompressedImage;

fprintf (1, 'File Compression ratio: %2.3f\n', FileCompRatio):

FEELLULATRFAILSILBLITHLSLEILASBULLSEE bits per pikel HISTREETLLFAALLLBUTRALSLSISBITANHEER%%%
bpp = (B8*CompressedImage} /ImgSz;
fprintf(l, 'bpp : %1.3f\n\n', bpp);

Totalencoded = size(YcomEncoded, 1) +size(CbcomEncoded, 1) +size{CrcomEncoded, 1}
fprintf{1l, '\nTotal encoded output : %d', Totalencoded):


file:///Matlab6p5/work/Images/Dummylmg.bmp'
file://'/nAverage
file:///nRGB
file://'/nTotal
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Author : Vooi Voon YAP, Middlesex University, Londen %
% ----------------------------------------------------------------------------------------- %
% First written: 14/03/2004 %
% Last Update: 26/03/2004 ' %
R R et it i it %
% Function : YConp.m %
YT e S e e e mm s msmmsmemesee %
% Purpose : 3
% This is a wavelet-based image compression program written for my PhD research. %
% It process gray-scale images. %
o e e e %
% Note: This function/program calls in functions written by other fellow researchers: %

EEEAEEEE AR AR SRR R R R LA EE AR AR LRI LR L L AR R AR R L R R R R AR R RN VR A EA EE AR AR REREELEEY

function {cImage, yEncoded, yTotalCoeff, yNonZeroCceff]...
= YComp(Yimage, WaveletName, Level)

Orig_Img = Yimage; % re-assign image

QOrig_Img = double(Orig_Img}; % convert to double for arithmetic operations
Final Img = zeros(size{Orig_Img}); % Clear final image matrix (reset)
dwtmode ('sym'); - .

DecomLevel = Level: % level of the decompositicn
WaveletType = WaveletName; % name of the wavelet

EESEEEEE LR ERERRRERERELEELELAEELELE L beﬁin encoding FEAEEREEHITHRELELRRLRALLRRTRRIEIERLIR Y

e it D e b bty Compress each compenent of the image individually --—-—-——-—====—- %
{Basis, 1] = wavedec2{0Orig_Img, Pecomlevel, WaveletType);

TotalCoeff(l) = size(Basis,2); % used for computinhg compression ratio

o m s e m e e Threshold -—--------=---eommmo oo e %
Thasisl=wthresh{Basis, 'h',20}; %20

T bt bbbt bt quantization -----r=----m-—mm o o %
[quantized,scale] = quantiz(Tbasigl,8); %16

NonZeroCoeff (1)=nnz{quantized) : % compute the no. quantized thresholded

coefficients left

e e e entropy encoding --=---==eme— et m e —me %
[ni,nj)} = size{quantized);

encoded = EntropyCoder{quantized, 'encode',ni, nj);

yEnceded = encoded:

EHIEIRLRILTTLTLLIDIBLLLERBELI99%9%%% end of encoding FEFEHEEHTEHIEILLABELLLLBLTLAIHHALELLLS

FEEEEEEILEHIIBILIRRLLLIEEEESR99%%% begin decoding %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
e L L L L L D e L L L D LB L decode ———---mmmmmmmm e e %
decoded = EntropyCoder (enceded, 'decode', ni,nj); )

R it bbbttt dequantize -——-------ssssseeo-——-——ro—seceeoe- %
dequantized = deguantiz(decoded,scale};

o mm s mmmm e s LECONSLIUCLion ———————~-"-—-s=s-s———-————————aeeo %
ReconCoeff = waverec?(dequantized, 1, WaveletType):
olmage = ReconCoeff;

EEIEAHLEARARILAULLAUEIRRARRR99%% end of decoding FHEHHERRBRIRRRLBARLLHRRRLRIARIRRARN Y

Jom e Calculaticn of compression ratio —---------===secommmmooooo %
yTotalCoeff = TotalCoeff:
yNonZeroCoeff = NonZeroCoeff:;
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R RN R R A R A R R R R L A R AR R R R R RN R RN R AL L T A AN AL AR R TE

% Author : Vooi Voon YAP, Middlesex University, London %
e e e e T m—mmm e %
% First written: 14/03/2004 %
% Last Update: 26/03/2004 %
e e e e e e %
% Function : CbhComp.m

%

e e e e e e e e e m e %
% Purpose : %
% This is a wavelet-based image compression program written for my PhD research. %
% It process gray-scale images. # %
R e it et ettt bt bl ——————— %
% Note: This functien/program calls in functions written by other fellow researchers: %

T L T LTI E Y

functicon [oImage, CbEncoded, CbTotalCoeff, CbNeonZercCoeff]...
= CbComp {Chbimage, WaveletName, Level)

Orig_Img = Cbimage; % re-assign image
Orig Img = double{Orig_ Img}); % convert to double for arithmetic operaticns
Final Img = zeros(size{Orig_Img}); % Clear final image matrix {reset)

dwtmode {'sym'};

DecomlLevel = Level; % level of the decomposition
WaveletType = WaveletName; % name of the wavelet

EEETRREERELELLTRELTRLLR RN %Y begin encoding R HEFLELRLTREERR LR RIRTLILIR R RS

L i DL LT T Compress each component of the image individually -----—-—————---= %
[Basis, 1] = wavedec2{Orig_Img, DecomlLevel, WaveletType);

TotalCoeff(il) = size(Basis,2): . % used for computing compression ratio

o m e e Thresheld -----=--—-———--c-co-cosmmmm oo %
Thbasisl=wthresh{Basis, 'h',20}; %20

o m - mmm e m o mm e mmmememme—m oo ——-- quantization -=-====---c————— - ——m——a oo %
[quantized, scale] = quantiz(Thasisl,8); %8 max:16 L
NenZeroCoeff (1)=nnz{quantized); % compute the no. quantized thresholded

coefficients left

fmmmmmmmm - eNETOPY BNCOUING —m - m— = e oo %
[ni,nj] = size{quantized): '

encoded = EntropyCoder (quantized, 'encode’',ni,nj);

CbEncoded = enceded;

FEEETIHRLEARRVRLATRTLLLELEREIRR399%Y end of encoding FEHEERLERLERBLARARLLEEEASRILARARLRARLLY

FELETLRERALLLERELLBLLRRLE2282220%%% begin decoding $HS3 S EEERLEHRELEELLLRALRLEIRELESLR94%
LRttt L et L D bt decode ======e——--- - —mememe e rceoe %
deceded = EntropyCoder (encoded, 'decode’,ni,nj);

LR i ey deguantize ----—-—-———===emmm---c-----——————o- ¥
dequantized = dequantiz(deccded,scale);

E e ittt reconstruction -------——-rme--o-coo-oo e %
ReconCoeff = waverec?{dequantized, 1, WaveletType):

olmage = ReconCoeff:;

EEELEREEEIR LT TIELELIERRLELEEEREE5%%% end of decoding FFEEEAELERERERRGRLIEEEIRREIRELEELRTR LY

fmmmmmmm s reemmeme e e Calculation ¢f ceompressieon ratio ——-----------c----e--———-oo ¥
CbTotalCeeff TotalCoeff;
CbNonZeroCoeff = NonZercCoeff:

[ |
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FEEEEE AR L LIRS E AT AL E R T E R AR AL VLT EIR SR LR LRI R LA SRR ATRLTEVT IR IRSRAIRSERELIS RIS IR

% Author : Veoi voon YAP, Middlesex University, London %
- — e m e — - %
% First written: 14/03/2004 %
% Last Update: 26/03/2004 %
e ettt e et e L e e e e %
% Function CrComp.m %
- e e e m e e m e e e mm - —m o ———— e 3
% Purpcse

%

% This is a wavelet-based image compression program written for my PhD research.

%

¢ It process gray-scale images.

%

R e it i e i b Dt %
% Note: This function/program calls in functions written by other fellow researchers: %

FEELRBLRRRLLHARAAILILRLLUTLLRRLLALELLRRLARRAALTLAUTLLLLLLLRFLLLBULRILARERLIRILIHHH04%S

function [oImage, CrEncoded, CrTotalCoeff, CrNonZeroCeoeff]...
= CrComp (Crimage, WaveletName, Level)

Orig_Img = Crimage; % re-assign image -
I

Orig_Img = double (Orig_Img); . % convert to double for arithmetic operaticns
Final Img = zeros(size(Orig_Img)): % Clear final iﬁage matrix (reset)

dwtmode ('sym');

Deccmlevel = Level; . % level of the decomposition
WaveletType = WaveletName: % name of the wavelet

FEETEHLLELLLBALLLLIIRERERRLT999%94%%% begin encoding FEEFRSERERRRTELERLLRALLLEAGEEIRLRLERLL

f-m e mmm e mm e Compress each component ¢f the image individually ----—=--==--=---—- %
fBasis, 1] = wavedec2(Qrig_Img, DecomLevel,WaveletType};

TotalCoeff(l) = size(Basis,2); % used for computing compression ratio
e e e Tﬁreshold ————————————————————————————————— %
Thasisl=wthresh(Basis, 'h',20); %20

o e quantization --—------==s-——————————cemmme—— - L]
{quantized, scale] = quantiz(Tbasisl,B); %8 max:16

NonZeroCoeff (1)=nnz (quantized}; % compute the no. gquantized thresholded

coefficients left

[ni,nj)] = size(quantized):

encoded = EntropyCoder (quantized, ‘encode’',ni,nj):

CrEncoded = encoded; o
FEEETLIEITHIEFLATRARLALLALLEERE49%Y end of encoding FHEEHEEESRRELSLELESEIHERRRBRE U294

FEEEFFHLLRLESELIFIHILELRLRS292%%%9%% begin decoding #HH4EHERLSRPLLEHFRLELRRLLLEEREHLITSRELS
o rmmmemme o memese—e - decode =-——————-—==-sesmmme——— -
decoded = EntropyCcder (encoded, "decode',ni,nj);

fom e e dequantize ——---------sseemeio—oo-eo
dequantized = dequantiz{decoded,scale);

o reconstruction ----==-——----———F--mma---
ReconCoeff = waverec?(dequantized, 1, WaveletType);

oImage = ReconCoeff;

FHEEERTLTHRLLHLRALTLLLLLRERELH99%%%%%% end of decoding
FEEEREATILETLTRTHLLELLILRLINRLSREREEE

CrTotalCoeff = TotalCoeff;
CrNonzZeroCoeff = NonZeroCoeff:



Appendix 4 | 209

function out = EntropyCoder{in, state,ni,nj)
% Entropy Coder using Huffman encoding. The Huffman coding function called in thia program
is
% a third party function created by Karl Skretting, (Hogskolen in Stavanger (Stavanger
University)
Signal Processing Group, karl.skretting@tn.his.no
Homepage: http://www.ux.his.no/~karlsk/)

]
%
%
]
% inputs:

% in - the input matrix -
% state - can be the string 'encode' or 'decode' to specify encode or decode process
% ni & nj - dimensions of the input matrix

k]
%
$

output:
out - the encoded image in the form of a sequence

if isegual(state, 'encode’)
% Convert the matrix c into a 1-D array of coefficients
cc = reshape(in,ni*nj,l);
% Prepare input for the Huffman function
xC=cell(2,1); xC{l}=cc:
¥ Pass to the Huffman encoding function
out = Huff06({xC);
return;
elseif isegual{state, "decode’)
% Pasa to Huffman decoding function
xC = Huffl6(in):
% Convert back to matrix version
out = reshape(xC{l},ni,nj):
return;
else
fprintf{'Input state error, please specify the encode/decode process'};
return; '
end

function varargout = HuffQ6(xC, ArgLevel, ArgSpeed)

% Huffo0é6 Huffman encoder/decoder with (or without) recursive splftting

% Vectors of integers are Huffman encoded,

% these vectors are collected in a cell array, xC.

% If first argument is a cell array the function do encoding,

% else decoding is done.

¥

% [y, Res] = Huff06(xC, Level, Speed); % encoding

¥ y = Huff06(xC): % encoding

$ xC = Huffl6(y): % decoding

Arguments:
y a column vector of non-negative integers (bytes) representing
the code, Q <= y({i} <= 255.
Res a matrix that sum up the results, size is (NumOfX+1)x4

one line for each of the input sequences, the columns are
Res{:,1) - number of elements in the aequence
Res(:,2) - zero-order entropy of the sequence

Res(:,3} - bits needed to code the sequence
Res(:,4}) - bit rate for the sequence, Res(:,3)/Rea(:,1}
Then the last line is total (which include bits needed to store NumOfX)
xC a cell array of column vectors of integers representing the
symbol seguences. (should not be to large integers)
If only one sequence is to be coded, we must make the cell array
like: xC=cell(2,l); xC{l}=x:; % where % is the seguence
Level How many levels of splitting that is allowed, legal values 1-8
If Level=1, no further splitting of the sequences will be done
and there will be no recursive aplitting.
Speed For complete coding set Speed to . Set Speed to 1 to cheat
during encoding, y will then be a sequence of zeroa only,
but it will be of correct length and the other ouiput
arguments will be correct.

oF of of oF odP OF OF OP OF OF oF of of of Of OF OF Of OF OF OF oF OF

% SOME NOTES ON THE FUNCTION

¥ huff06 depends on other functions for Huffman code, and the functions in this file
% Hufflen - find length of codewords (HL)

% HuffTabLen - find bits needed to store Huffman table information ({HL)

%

HuffCode - find huffman codewords
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% HuffTree - find huffman tree

% ______________________________________________________________________

% Copyright (c) 1999-2000. Xarl Skretting. All rights reserved.

% Hogskelen in Stavanger (Stavenger University), Signal Processing Group

$ Mail: karl.skretting@tn.his.no Homepage: http://www:ux.his.no/~karlsk/

%

% HISTORY:

$ Ver. 1.0 13.06.2000 KS: Function made based on huff(4

% Ver. 1.1 20.06.2000 KS: Handle some more exceptions

$ Ver. 1.2 21.06.2000 KS: Handle also negative values

% Ver. 1.3 23.06.2000 KS: Use lcogarithms for some sequences (line 114}

% Ver. 1.4 31.07.2000 KS$: If a sequence has many zeros, Run + Value coding '
% is done. {(from line 255 and some more)

% Ver. 1.5 02.08.2000 KS: May have larger integers in PutVLIC and GetVLIC

% Ver. 1.6 18.01.2001 KS: MaxL in line 218 was reduced from 2°16 to 50000.

% For some sequences we may have length of code word larger than 16, even

% if probability was larger than 2~(-16). Ex: Hi=[12798,14241,7126,7159,3520,...
% 3512,185%7,1799,1089,1092, 681, 680,424,431, 320, 304,201,204,115,118,77,83,45, ...
% 40,24,26,18,14,4,12,3,3,4,2,2,0,11"', sum(Hi}=58C29

% Ver, 1.7 21.08.2001 KS$: MaxL in line 218 and 42C must be the same

% We may now have long code words (also see HuffTabLen.mj

% ______________________________________________________________________

global y Byte BitPos Speed Level

Mfile='Huff06': ’ ~
Debug=0; % note Oebug is defined in EncodeVector and CecodeVector too

% check input and output arguments, and assign values to arguments
if (nargin < 1}:

error([Mfile, ': .function must have input arguments, see help.']):
end
if (nargout < 1);:

error{(Mfile, ': function must have output arguments, see help.']);
end

if {~iscell({xC))
Encode=0;Oecode=1;
y=xC(:) % first argument is y
else
Encode=1;Decode=0; .
if (nargin < 3): Speed=0; else Speed=ArgSpeed; end;
if (nargin < 2); Level=8; else Level=ArgLevel; end;
if ((length(Speed(:))~=1));
error( (Mfile,': Speed argument is not scalar, see help.']):
end
if Speed; Speed=1; end:
if {(length(Level(:))~=1}));
error([(Mfile,': Level argument is not scalar, see help.']);
end
Level=floor (Level);
if (Level < 1); Level=l; end;
if (Level > 8); Level=8; end;
NumCfX = length(xC}:;
end ~

if Encocde
Res=zercs {NumOfX, 4} ;
% initalize the glokal variables
y=zeros(10,1); % put some zeros into y initially
Byte=0;BitPos=1; % ready to write intc first position
% start encoding, first write VLIC to give number of sequences
PutVLIC (NumOfX}) ;

if pebug
disp([Mfile,' (Encode): Level=',6 int2str(Level),' Speed=',int2str(Speed},...
' NumOf£X=',int2str (NumOfX)}]):
end
% now encode each sequence continuously
Ltot=0;
for num=1:NumOfX
®¥=sXC {num}; )
x=full(x(:}): % make sure x is a non-sparse column vector
b=length(x);Ltot=Ltot+L;
y=[y{l:Byte);zeros(50+2*L,1)]): % make more space available in y

% now find some info about x to better code it
maxx=max (x}:
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minx=min(x};:
if (minx<Q)
Negative=1;
else
Negative=0;
end
if { (({maxx*4)>L) | {(maxx>1023}} & (L>1) & (maxx>minx))
$ the test for LogCode could be better, I think, (ver. 1.13)
LogCode=1; % this could be 0 if LogCode is not wanted
else
LogCode=0;
end
PutBit (LogCcde}
PutBit (Negative);

I=find(x); % non-zero entries in x
Sg=(sign{x(1)}+1)/2; % the signs may be needed later, 0/1
X=abs (x) ;
if LogCocde

xa=x; % additional bits

x{I)=floor(log2(x{1}))}:
xa{Il)=xa(I)-2."x(I};
X(I)=x(I}+1;

end
[bits, ent)=EncodeVector (x}; % store the {abs and/or log) values
if Negative % store the signs

for i=1l:length(Sg}; PutBit{$g{i)); end;

bits=bits+length(Sq);
ent=ent+length{Sg}/L;

end .
if LegCode % store the additicnal bits
for i=1:L
for ii=(x{i)-1):(-1):1
PutBit{bitget(xa(i),ii)};
end
end

bits=bits+sum(x)-length(I);
ent=ent+ [sum{x}-length{I}) /L;
end
if L>0; Res{num,l)=L; else Res{num,l)}=1; end;
Res (num, 2) =ent;
Res (num, 3} =bits:

end
y=y{(l:Byte);
varargout (l) = {y}:

if

{nargout >= 2)

% now calculate results for the total

if Ltot<l; Ltot=1; end; % we do not want Ltot to be zero
Res (NumOfX+1, 3}=Byte*B;

Res (NumOfX+1, 1})=Ltot;

Res (NumOfxX+1, 2) =sum {Res (1 :NumOfX, 1} . *Res (1 :NumOfX, 2) ) /Ltot;
Res(:,4)=Res{:,3)./Res(:,1):

varargout(2) = {Res};

end

end

if Decode
% initalize the glcbal variables, y is set earlier
Byte=0;BitPos=1; % ready to read from first position

NumQfX=GetVLIC; % first read number of sequences
if Debug
disp([Mfile, ' (Decode}: NumOfX=',int2str(NumOfX),' length(y}=',intZ2str{length{y))}):
end
xC=cell (NumQfX, 1};

for num=1:NumOfX

LogCode=GetBit;
Negative=GetBit;
x=DecodeVector; % get the (abs and/or log) values
L=length{x); 3
I=find(x}:
if Negative
Sg=zeros(size(I)):
for i=l:.length{I}); Sg{i)=GetBit; end; % and the signs {0/1)
Sg=Sg*2-1; % (-1/1)
else
Sg=cnes(size(I));
end
if LogCode % read additional bits too
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xa=zeros(L,1};
for i=1:L
for ii=2:x{i}
xa(i}y=2*xa(i)+GetBit;

end
and
x(Iy=2.7(X(1)-1};
X=X+Xa;
end
x{I)=x(1}.*sg;
xC{num}=sx;
end
varargout{l) = {xC};
end
return % end of main function, huffoné

% the EncodeVector and DecodeVector functions are the ones

% where actual coding is going on.
$ This function calls itself recursively

function [bits, ent] = EncodeVectfor(x, bits, HL, Maxx, Meanx)

global y Byte Bi{Pos Speed Level
Debug=0;
Level = Level - 1;

MaxL=50000; % longer sequences is split in the middle

L=length (%)

$ first handle some special possible exceptions,

'0', Bun + Value is indicated by a '1"'

if L==0
PutBig (0} ; % indicate that a sequence is coded
FutVvLIC(L); % with length 0 {0 is 6 bits}
FutBit (D) % 'confirm' this by a
bits=2+6;
ent=0;
Level = Level + 1;
return % end of Encodevector

end

if L==
PutBit (0} ; % indicate that a seguence is coded
PutvLIC({L); % with length 1 (& bits)
PutVLIC(x (1)}, $ containing this integer
bits=1+2*6;

if {x(1)>=16); bits=bits+4; end;

if (x(1)>=272): bits=bits+4; end:

if (x1{1)>=4368); bits=bits+5; end;

if {x(1)>=69904); bits=bits+5; end;
if (x(1)>=1118480); bits=bits+4; end:

ent=al;
Level = Level + 1;
return $ end of EncodeVector
end
if max(x)==min{x)
PutBit (0): % indicate that a sequence is coded
PutVLIC{L}; % with length L
for i=1:7; PutBiti(l}); end; % write end of Huffman Table
PutVLIC(x (1)} % containing this integer

bits=1+6+7+6;

if (x(1)»>=16); bits=bits+4; end;

if (x{1y>=272); bits=bits+4; end;
if (x(1y>=4368); bits=bits+5; end;
if (x{1)>=69904); bits=bits+5; end;
if (x(1})>=1118480); bits=bits+4; end:
if {L>=16); bits=bits+4: end;

if {(L>»=272); bits=bits+4; end;

if {L>=4368); bits=bits+5; end;

if (L>=695%04); bits=bits+5; end;

if (L»=1118480); bits=bits+4; end;

ent=0;

Level = Level + 1;

return % end of EncodeVector
end

$ here we test if Run + Value coding should be done

I=find{x); % the non-zero indices of x
if (L/2-length(1)}>50
Maxx=max (%} ;

Hi=IntHist (x,0,Maxx}); % find the histogram

Hinz=nonzeros (Hi};
ent=10g2{L)-sum{Hinz.*log2 (Hinz}) /L;

% find entropy
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% there are few non-zerg indices => Run+Value coding of x

#2=x(I); % the wvalues

I=(T{:);L+1): % include length of x
for i=length(I}:(-1):2; I(i)=I(i)}=-I(i-1)
x1=I-1; % the runs '

; end;

% code this as an unconditional split (like if L is large)

if Speed
Byte=Byte+l; % since we add 8 bits

else
PutBit (0); % this is idicated like when a sequence
PutVLIC(O): % of length 0 is coded, but we add cne extra bit
PutBit(1l}: % Run + Value is indicated by a '1l'

end; '

[bitsl, temp] = EncodeVector(xl);

(bits2, temp) = EncedeVector (x2);

bits=bitsl+bits2+8;

Level = Level + 1;

return % end ¢f EncodeVector
end

if (nargin==1)
Maxx=max (x);
Meanx=mean(x]);
Hi=IntHist (x,0,Maxx); % find the histog
Hinz=nonzeros(Hi):
ent=log2 (L)-sum(Hinz.*1log2 (Hinz))/L; %
HL=Hufflen(Hi);
HLlen=HuffTabLen (HL}:

]

ram

find entropy

% find number of bits to use, store L, HEL and x
bits=6+HLlen+sum{HL, *Hi) ;
if (L>=16); bits=bits+4; end:
if (L>=272); bits=bits+4; end;
if (L»=4368); bits=pits+5; end;
if (L>=69904); bits=bits+5; end;
if (L»=1118480); bits=bits+4; end;
if Debug
disp(['bits=',int2str(bits),"' HLlen=',int2str(HLlen),...
' HClen="',int2str({sum(HL.*Hi}))):
end
else % arguments are given, do not need to be calculated
ent=4;
end

%

% Here we have: x, bits, L, HL, Maxx, Meanx, ent

if (L»MaxL) % we split sequence anyway {and the easy way:; in the middle)

Ll=ceil (L/2);L2=L-L1;
KX1=x(1:L1);x2=x{(L.1+1):L);
elseif ((Level > 0) & (L>10))

xm=median(x); % median in Matlab is slow, could be calulated faster by using the

histogram
Xl=zeros(L,1);x2~=zeros(L,1);
X2 (1l)=x(1);il=0:i2=1;
for i=2:L
if (w(i-1) <= xm}
i1=i1+1; x1(ili=x(i);
else
12=i2+1; x2(i2)=x(i):
end
end
®¥1=x1(1:il});x2=x2(1:12);
% find bitsl and bits2 for xl1 and =x2
Li=lengthixl};L2=length{x2);
Maxxl=max {x1);MaxxZ=max (x2};
Meanxl=mean (x1) ;MeanxZ=mean (x2) ;

Hil=IntHist(x1,0,Maxxl); % find the histogram
HiZz=IntHist{x2,0,Maxx2); % find the histogram

HLl1=hufflen(Hil);HL2=hufflen(Hi2);
HLlenl=HuffTabLen (HL1);
HLlen2=HuffTabLen (HL2);
bitsl=6+Hilenl+sum(HLl.*Hil):
bits2=6+HLlen2+sum{HLZ.*Hi2};

if (L1>=16); bitsl=bitsl+4; end:

if (L1>=272}; bitsl=bitsl+4; end:
if (L1>=4368); bitsl=hitsl+5; end;
i1f (L1>=69904); bitsl=bitsl+3; end;
if (L1>=1118480});: bitsl=bitsl+4; end:
if (L2>=16}; bits2=bits2+4; end:
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if (L2>=272); bits2=bitsZ+4; end;

if (L2>=4368); bits2=bitsZ+5; end;

if (L2>=69904); bits2=bits2+5; end;
if (L2»>=11184E60); bits2=bits2+4; end;

else
bitsl=bits;bits2=bits;
end
% Here we may have: x1, bitsl, L1, HL1l, Maxxl, Meanxl
% and X2, bits2, L2, HL2, Maxx2, Meanx2
% but at least we have bitsl and bits2 (and bits)
if Debug
disp(['Level="',int2str(Level),' Dbitsg=',int2str(bits),' bitsl=',int2str(bitsl), ...
' bitsgZ=',int2str(bits2),' sum=’,int2str(bitsl+bits2)]});
end
if (L>MaxL)
if Speed
BitPos=BitPos-1;
if (~pitPos); Byte=Byte+l; BitPos=8; end;
else
PutBit {1} % indicate sequence is splitted into two
end;
[bitsl, temp] = EncodeVector{xl};

[bits2, temp]l = EncodeVector (x2):
bits=bitsl+bits2+1;
elseif ((bitsl+bits2) < bits)
if Speed
BitPops=BitPos-1;
if (~BitPos); Byte=Byte+l: BitPos=8; end:
else
PutBit {1} % indicate sequence is splitted into two
end;
[bitsl, temp]) EncodeVector {xl, bitsl, HL1l, Maxxl, Meanxl);
[bits2, temp] EncodeVector{x2, bits2, HL2, Maxx2, Meanx2);
bits=bitsl+bits2+1l;

else .
bits=bits+1; % this is how many bits we are going. Lo write
if Debug .
disp(['EncodeVector: Level=',intZstr(Level),’ yint2sted(l), ...
' sybols stored in ',int2str(bits),' bits.'}):;
end
if Speed :
% advance Byte and BitPos without writing to ¥y
Byte=RByte+floor({bits/8):;
BitPos=BitPos-mod (bits,8):
if (BitPos<=0); BitPos=BitPos+8; Byte=Byte+l: end;
else
% put the bits into y
StartPos=Byte*8-BitPos; % control variable
PutBit (0} % indicate that a sequence is coded
PutvLIC(L);
PutHuffTab (HL) ;
HE=huf fcode (HL) ;
for i=1:L:
n=x(i)+1; % symbol number (value 0 is first symbol, symbol 1)
for k=1:HL(n)
PutBit (HK{n, k)};
end
end
% check if one has used as many bits as calculated
BitsUsed=Byte*8-BitPos-5tartPos;
if (BitsUsed~=bits)
disp(['L=",int2str(L),"' max(x)=',int2strimax(x)),' min(x}=',int2stri{minix))}):
disp(['BitsUsed="',int2str(BitsUsed)," bits=',int2str{bits)]):
ervor{['Huff06-Encodevector: Logical error, (BitsUsed~=bits}).']);
end
end
end
Level = Lewvel + 1;
return % end of EncodeVector

function x = DecodeVector
global y Byte BitPos
MaxL=50000: % as in the EncodeVector function (line 216)
if GetBit ’
x1l=DecodeVector;
x2=DecodeVector;
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L=length{xl}+length(x2);
if {L>»MaxL)
X=[x1{:);x2{:)];
else
xm=median({xl:;x2]1):
g=zeros(L,1);
®x(1)=x2(1);
i1=0;i2=1;
for i=2:L
if (x(i-1) <= =xm)
il=il+1l: x{i)=x1{il};
else
i2=i2+1; x(i}=x2(i2};
end
end
end
else
L=GetVLIC;
if (L>1)
x=zeros(L,1);
HL=GetHuf fTab;
if length(HL)
Htree=HuffTree (HL};
root=1;pos=root; , ’
1=0; % number of symbols deceoded 20 far
while 1<L
if GetBit
pos=Htree (pos, 3);
else
pos=Htree (pos, 2);
end
if Htree(pos., 1) % we have arrived at a leaf
1=1+1;
x(l}=Htree(pos,2)-1: % value is one less than symbol number
pos=root; % start at root again
end
end
else % HL has length 0, that is empty Huffman table
x=x+GetVLIC;
end
elseif L==0
if GetBit
% this is a Run + Value coded sequence
xl=aDecodeVector;
x2=DecodeVector;
% now build the actual seqguence
I=x1; % runs
I=I+l;
L=length(I); % one more than the number of values in x
for i=2:L;I(i)=I(i-1)+I(i); end:;
x=zeros(I(L)-1,1);
#{I(1l:{L-1)})=x2: % values
else
x=[]; % this was really a length 0 sequence
end
elseif L==1
X=GetVLIC;
else
error('DecodeVector: illegal length of sequence.');
end
end
return % end of DecodeVector

% Functions to write and read the Huffman Table Information
% The format is defined in HuffTablLen, we repeat it here

% Function assume that the table information is stored in the following format

and if CL>16; CL=CL-16
we have 4 unused 7 bit code words, which we give the meaning
*1110000'+4bits - 3-18 zeros

% previous symbol is set to the initial value 2, Prev=2

% Then we have for each symbol a code word to tell its length

% tQ! - same length as previous symbol

% ‘10" - increase length by 1}, and 17->1

% ‘1100 - decrease length by 1, and 0->16

% ‘11010 - increase length by 2, and 17->1, 18-32

% '11011° - One zero, unused symbol (twice for two zeros)
% ‘11llxxxx' - set code length to CL=Prev+x (where 3 <= x <= 14}
%

%

%
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% '1110001'+8bits - 19-274 zeros,
] '1110010"'+4bits - for CL=17,18,
% '1111111° - End Of Table

function PutHuffTab(HL)
global y Byte BitPos

HL=HL (:}; .

% if (max(HL) > 32)

% disp{['PutHuffTah: To large value in
% end

% if (min(HL) < 0} .

% disp(['PutHuffTab: To small value in
% end :
Prev=2;

ZaeroCount=0;

L=1ength (HL) ;

for 1=1:L
if HL{1}==0
ZeroCount=ZeroCount+1;
else

while (ZeroCount > 0)
if ZeroCount<3
for i=1:ZeroCount
PutBit (1) ; PutBit {1);PutBit
end
ZeroCount=0;
elseif ZeroCount<19

PutBit (1) ;PutBit (1) ;PutBit (1) ;PutBit{0);PutBit{0) ;PutBit{0) ;PutBit{Q);

for {i=4:-1:1); PutBit(bitget
ZeroCount=0;
elseif ZeroCount<275

PutBit (1) ;PutBit{1};PutBit{1l);PutBit{0) ;PutBit{0);PutBit (0);PutBit(l}:

zeros do not change previous value
...+32, do not change previous value

HL, max(HL)=',int25tr(max(HLi)]);

HL, min{(HL)=',int2str(min(HL))]):

{0);PutBit (1) ;PutBit{l):

(ZeroCount-3,1i)), end:

for (i=8:-1:1}); PutBit(bitget{ZercCount-1%,i)}; end:

ZercCount=0;
else

PutBit (1) ;PutBit {1} ;PutBit {1} ;PutBit{0) ;PutBit {0} ;PutBit {0} ;PutBit (1)

for {i=g:-1:1); PutBit({l}; end;

ZeroCount=ZeroCount-274;
end
end
if HL{¥)»>16

PutBit{l);PutBit(1l);PutBit{1l);PutBit{0);PutBit (D) ;PutBit(1};PutBit{0);

for (i=4:-1:1}; pPutBit{bitget(HL{1}-17,1i)); end:

else
Inc=HL({1}-Prev;
if Inc<0; Inc=Ing+1l6; end;
if (Inc==0)
PutBit (0);
elseif |(Ince=l)
PutBit (1) ;PutBit{0)
elseif (Inc==2)
PutBit (1) ;PutBit (1) ;PutBit(0)
elseif {Inc==15}
PutBit (1) ;PutBit{1l);PutB8it(0)
else
PutBit (1) ;:;PutBit(1l);PutBit (1)

sPutBit (1) ;PutBit {0} ;
sPutBit(0)

;

for {(i=4:-1:1}; PutBit{bitget{Inc,il); end:

end
Prev=HL (1) :
end
end
end
for (i=7:-1:1); PutBit(1): end;

return; % end of PutHuffTab

function HL=GetHuffTab
global y 8yte BitPos

Debug=0:

Prev=2;
ZeroCount=0;
HL=zeros (10000, 1} ¢
HLi=0;
EndOfTable=0;

% the EOT codeword
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while ~End0OfTable
if GetBit
if GetBit
if GetBit
Ine=0;
for (i=1:4): Ince=Inc*2+GetBit; end:
if Ine==0
ZeroCount=0;
for (i=1:4}; ZeroCount=ZeroCount*2+GetBitc; end:
HLi=HLi+ZeroCount+3;
elseif Ing==
ZeroCount=0;
for (i=1:8); ZeroCount=ZeroCount*2+GetBit; end;
HLi=HLi+ZeroCount+19;
elseif Inc== % HL{l) is large, >16
HLi=HLi+1;
HL (HLi)=0;
for {i=1:4); HL(HLi)=HL{HLi)*2+GetBit; end;
HL {(HLi)=HL (HL1)+17;
elseif Inc==15

EndOfTable=1; . —
else ,
Prev=Prev+Inc;
if Prev>»l16; Prev=Prev-16; end;
HLi=HLi+1;HL (HLi)=Prev:
end
else
if GetBit
if GetBit
HLi=HLi+1;
else
Prev=Prev+2;
if Prev>»16; Prev=Prev-16; end;
HLi=HLi+1;HL (HLi)=Prev;
end
else
Frev=Prev-1;
if Prev<l; Prev=16; end;
) HLi=HLi+1;HL(HLi)=Prev;
end
end
else
Prev=Prev+l;
if Prev>16; Prev=1: end;
HLi=HLi+1;HL (HLi)=Prev:
end
else
HLi=HLi+1;HL{HLi)=Prev;
end
end . - -
if HLi>O
HL=HL(1:HLi});
else
HL=[];
end
if Debug
% check if this i1s a valid Huffman table
temp=sum(2." (-nonzeros (HL}) }:
if temp ~=1
error (['GetHuffFab: HL table is no good, temp=',num2str(temp})):
end

end
return; % end of GetHuffTab

% Functions to write and read a Variable Length Integer Code word

% This is a way of coding non-negative integers that uses fewer

% bits for small integers than for large ones. The scheme is:

'Q0” + 4 bit - integers from 0 to 15

‘01’ + 8 bit - integers from 16 to 271

‘10 + 12 bit - integers from 272 to 4367

'110" + 16 bit - integers from 4368 to £9%03

*111Q0' + 20 bit - integers from 69940 to 1118479

'1111' + 24 bit - integers from 1118480 to 178956895

not supported - integers >= 17895696 (=2~4+2"8+2712+2°16+2°20+2°24)

L S S i L S
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function PutVLIC (N)
global y Byte BitPos
if (N<OD)

error('Huff06-PutVLIC: Number is negative.
elseif (N<16)

PutBit {Q) :PutBit ()}

for {i=4:-1:1}; PutBit{bitget(N,i)); end;
elseif (N<272)

PutBit (0);PutBit(1);

N=K-16;

for (i=8:-1:1):; PutBiti(bitget(N,1})}; end;
elseif {N<4368)

Put8it (1) ;PutBit (0);

N=R-272;

for (i=12:-1:1); Put8it(bitget(N,i))}; end;
elseif (N<63940)

PutBit (1) ;PutBic (1} ;PutBic(0);

N=N~43€8;

for (i=16:-1:1); PutB8it(bitget(N,i}); end:
elseif (N<1118480)

PutBit (1) ;PutBit(1l);PutBit (1} ;PurBit(0);

N=N-69940;

for (i=20:-1:1); put8it(bitget(N,i)): end;
elseif (N<17895696)

Put8it (1) ;PutBit (1) ;PutBit (1) ;PutBit(1);

N=N-1118480;

for (i=24:-1:1}; PutBit(bitget(N,i)}; end;
else

error{'Huffl06-PutvLIC: Number is too large.

end
return

function N=GetVLIC
global y Byte BitPos

N=0;
if GetBit
if GetBit
if GetBit
if GetBit
for (i=1:24); N=N*2+GetBit; eénd;
K=N+1118480;
else
for (i=1:20); N=N*2+GetBit; end;
N=N+69940;
end
else
for (i=1:16); N=N*2+GetBit: end;
N=N+4368;
end
else
for {i=1:12); N=N*2+GetBit; end;
N=N+272;
end
else
if GetBit
for (i=1:8); N=N*2+GetBit:; end;
N=N+16;
else
for {(i=1:4); N=R*2+GetBit; end;
end
end
return

% Functions to write and read a Bit
function PutBit(Bit)

global y Byte BitPos

BitPos=BitPos-1;

if (~BitPos); Byte=Byte+l:; BitPos=8; end;
y{Byte) = bitset(y(Byte),BitPos,Bit};
recurn

function Bit=GetBit

global y Byte BitPos

BitPos=BitPos-1;

if (~BitPes); Byte=Byte+l; BitPos=8; end;
Bit=bitget{y(Byte),BitPos):

return;
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% this function is a variant of the standard hist function

function Hi=IntHist(W,il,i2);
W=W(:);
L=length(W);
Hi=zeros(i2-il+1,1}:
if (i2-il)>50
for 1=1:L
i=W(l)-il+1;
Hif{iy=Hi(i)+1;
end
else
for i=il:i2
I=find (W==1i};
Hi{i-il+l}=}ength(I);
end
end
return;

function HK = HuffCode (HL,Display)

%

P

HK
HK

Huf fCode (HL, Display);
HuffCeode (HL) ;

Arguments:

Code for symbol $({(i) is: HK(i,l:HL(i})

Codeword for symbol S{i} = '011010°'

0 P OO P OP P OP P O P P P

oP

HISTORY:

Ver. 1.1 25.12.98 English version of program

OP P OP OF P OP P O

if nargin<l
error{'huffcode: see help.')
end
if nargin<2
Display = 0;
end
if (Display ~=
Display = 0:
end

1)

N=length (HL};
L=max (HL) ;
HK=zeros (N, L);
[HLg,HLi] = sort{HL};
Code=zeros (1,L};
for n=1:N
if (HLs{n)>0)
HK(HLi({n),:) = Code;
k = HLs{n);
while (k>0) % actually always!
Code{k} = Code(k}) + 1; ‘
if (Codel{k)==2}
Code(k} = 0;
k=k-1;
else
break
end
end
end
end

Display== ==> Codewords are displayed on screen,

% HuffCode Based on the codewerd lengths this function f£ind the Huffman codewords

HL length (bits) for the codeword for each symbol
This is usually found by the hufflen function

HK The Huffman codewords, a matrix of ones or zercs
the code for each symbol is a row in the matrix

ex: HK(i,1l:L)=(40,1,1,0,1,0,0,0] and HL{(i}=6 ==>

Default=0

Copyright (c) 1999. HKarl Skretting. All rights reserved.
Hogskolen in Stavanger ({(Stavanger University), Signal Processing Group
Mail: Xarl.skretting@tn.his.no  Homepage: http://www.ux.his.no/~karlsk/

Ver. 1.0 25.08.98 KS: Function made as part of Signal Compression Project 98

break ends locp
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if Display
for n=1:N
Linje

= q

Symbel ',int2str(n)}:;

for i=length{Linje):15

end
Linje

Linje = {Linje,' ']:

= [Linje,' gets code: '};
for i=1:HL{n}
if {HK{(n,1)==0)

Linje = (Linje,'0'}:
else
Linje = [Linje,'1']:
end
end
dispi{Linje);
end
end
return;
function HL = Hufflen(S)

HufflLen

Arguments:

a0 IR a0 a0 R OF P R NP P

an

Example:

oap o op

Find the lengths of the Huffman code words

Based on prebability {(or number of cccurences) of each symbel
the length for the Huffman ccdewords are calculated.

HL = hufflen(s);

S a vector with number cf occurences cr probability of each symbel
Only positive elements of S are used, zerc {(cr negative)
elements get length 0. :

HL length (bits) for the codewcrd for each symbol

hufflen((}:,0,4,2,0,1}j} => ans = [3,0,1,2,0,3]
hufflen{(10,40,20,101y => ans = (3,1,2,3])

% ______________________________________________________________________
% Copyright (c) 19995. Karl Skretting. All rights reserved.
% Hogskelen in Stavanger (Stavanger University), Signal Processing Group
% Mail: karl.skretting®tn.his.no Homepage: http://www.ux.his.no/~karlsk/
%
% HISTORY:
% Ver. 1.0 28.08.98 KS$: Function made as part of Signal Ccompression Project 98
% Ver. 1.1 25.12.9%8 English version of program
% Ver. 1.2 28.07.55 Prcblem when length($)==1 was corrected
% Ver. 1.3 22.06.00 KS: Some more exceptions handled
% ______________________________________________________________________
if nargin<l
error{'HuffLen: see help.')
end
% some checks and exceptions
if (length($)==0) $ ver 1.2
warning ('HuffLen: Symbol sequence is empty.'}): % a warning is appropriate
HL=0;
return;
end
I=£ind(5<0} ¢
S(I)=0;
if {(sum(S)==max(S})
disp('HuffLen: Only cone symbol.'): % a message i3 appropriate
HL=zergs {size(S$))s % no Huffman code is needed
return;
end

Algorithm "explained” in Norwegian:
En bygger opp "“treet” ved 4 legge sammen de to nodene som har
minst C, C teller hvor mange verdier som er samlet under denne noden
De N ferste i C er bladene, de andre er noder med to andre noder (blad)

Det en trenger er for hvert blad &4 vite hvilken node som er overst
i treet den er festet pd, dette er lagret i Top, startverdier er her

%
%
%
%
% under seg, men en trenger ikke noyaktig hvordan treet er under hver node
%
%
%

bladet selv (blad ennd ikke samlet i tre)
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% Si er indekser for toppnodene i C, de er sortert etter hvor mange
% verdier (count) for hver node. Kun Si(l:last) er interesssnte,

% siden en kun har “last" trer. (for hver gang hovedlekka kjorer

% samles to trar til et tre, alle blad som horer til hvert av disse
% trerne fer kodeordeslengden, HL, wsket med en, og en ma oppdatere hvilken
% node som nd er toppen for dette bladet, Top{I) settes.
HL=zeros{size(S)):

S=5i(:);

Ip=£find{S8>0); % index of positive elements

Sp=S{Ip); % the positive elements of S

N=length(Sp): % elements in Sp vector

HLp=zeros (size{Sp}):

C=[Sp(:):zeros{N-1,1)]: count or weights for each “tree”

%
Top=1:N; % the “tree” every symbol belongs to
[So,S51)=s0rt (-Sp); % Si is indexes for descending symbols
last=N; % Number of "trees" now
next=N+1; % next free element in C
while (last > 1)
§ the two smallest "trees" are put together
Ci{next)=C{5i{last})+C{Si(last-1});
I=£find (Top==S1i(last)):
HLp(I)=HLp(I)+1; % one extra bit added to elements in "tree"”
Top (I}=next;
I=find (Top==8i{}ast-1}):
ELp{I)=HLp{I)+1; % and one extra bit added to elements in "tree"
Top{I)=next;
last=last~-1;
Si(last)=next;
next=next+l;
% Si shall still be indexes for descending symbols or nodes
¢count=last-1;
while ({count> Q) & (C(S5i{count+l)) >= C({Si{count}}))
temp=>5i (count};
Si (count)=5i (count+l);
Si(count+i)=temp:
count=countc-1;
end
end

HL{Ip)=HLp;
returcn;

function HLlen = HuffTabLen (HL)
% HuffTabLen Find how many bits we need to store the Huffman Table information

% HLlen = HuffTabLen (HL);

% ______________________________________________________________________

% arguments:

% HL The codeword lengths, as returned from HuffLen function

% This should be a wector of integers

% where 0 <= HL(i} <= 32, D0 is for unused symbols

% We then have max codeword length ig 32

¥ HLlen Number of bits needed to store the table

L i e T et T e

% Function assume that the table information is stored in the following format
% previous code word length is set to the initial wvalue 2

% Then we have for each symbol a code word to tell its length

% 0 - same length as previous symbol

% *10! - increase length by 1, and 17->1

% '1100°' - reduce length by 1, and 0->16

% ‘11010 - increase length by 2, and 17->1, 18->2

% ‘11011’ - One zero, unused symbol {(twice for two zeros)

% '111xxxx' - set code length to CL=Prev+x (where 3 <= x <= 14)
% and if CL>»16; CL=CL-16

% we have 4 unused 7 bit code words, which we give the meaning

% '1110000'+4bits - 3-18B zeros

% *1110001'+Bbits - 19-274 zeros, zeros do not change previous value
% *1110010'+4bits - for CL=17,1B,...,32, do not change previous value
% *1111111" - End Of Table

% Copyright (c) 1999. Karl Skretting. All rights reserved.



Appendix 4 _ 222

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% ver. 1.0 18.08.99 KS, function made as an own m-file (another version

% is included in the Huffd4 m-file)

% 25.08.99 KS: now we use this format also in Huffd4

% if you change here, remember to also update HuffQ4!!

% ver. 1.2 26.08.99 ¥S: Reduced number of bits used for zercs {(increased for +2)
% Ver. 1.3 20.06,00 KS: Removed the KeepStatistics lines

% Ver. 1.4 18.01.01 KS: Removed error message if HL is out of {normal) range.
% Ver. 1.5 21.08.01 KS5: Allow HL to be in range 0 <= HL(i) <= 32

R e T e e e D e T T T

Mfile='HuffTablLen"*;

% XKeepStatisties=0; % we may want to keep statistics to see wether the chosen
% code words are well suited

if (nargin ~= 1);

error{{Hfile,': function must have one input arguments, see help.']);
end
if (nargout ~= 1);:

error{[(¥file, ': function must have one ocutput arguments, see help.']);
end
HL=HL(:}:

if (max (HL) > 32}

disp((Hfile,': To large value in HL, max(HL}=',int2str (max(HL))]1};
end
if (min{HL} < 0)

disp((Mfile, ": To small wvalue in HL, min{HL)=",int2str{(min(HL})));
end

Prev=2;

HLlen=0;

ZeroCount=0;

% if XeepStatistics; load HuffTablenStat; end; %
IncStat=zeros({16,1);RunStat=zeros(512,1);

L=length (HL};
for 1¢1:L
if HL{l)==0
ZeroCount=ZeroCount+1l;

else
% if (ZeroCount & KeepStatistics) -
% j=min{[512, ZeroCount]):; RunStat(j}=RunStat(j}+1;
% end

while {ZeroCount > 0}
if ZeroCount<3; HLlen=HLlen+5*ZeroCount; ZercCount=0;
elseif ZeroCount<19; HLlen=HLlen+ll; ZeroCount=0:
elseif ZeroCount<275; HLlen=HLlen+15; ZeroCount=0;
else HLlen=HLlen+l5; ZeroCount=2eroCount-274; end;

end

if HL{ly>16
HLlen=HLlen+11;

else
Inc=HL(l)-Prev:
if Inc<0; Inc=Inc+16; end;
% if KeepStatistics; j=Inc+l; IncStat({j)=IncStat(j}+1l; end;
if {(Inc==0): HLlen=HLlen+l:
elseif (Inc==1):; HLlen=HLlen+2;
elseif (Inc==2); HLlen=HLlen+5;
elseif (Inec==19); HLlen=HLlen+4;
else HLlen=HLlen+7;
end
Prev=HL(1l):

end

end
end
HLlen=HLlen+7; % the EOT cocdeword

% if KeepStatistics; save HuffTabLenS$tat IncStat RunStat; end;
return; % end of HuffTabLen

function Htree = HuffTree (HL, HK)
% HuffTree Make the Huffman-tree from the lengths of the Huffman cedes
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% The Huffman codes are also needed, and if they are known

¥ they can be given as an extra input argument

%

$ Htree = HuffTree(HL,HK);

% Htree = HuffTree(HL);

§ mmm e e, e

% Arguments:

% HL length (bits) for the codeword for each symbol

% This is usually found by the hufflen func¢tion

% HK The Huffman codewords, a matrix of ones or zeros

% the code for each symbol is @ row in the metrix

% Htree A matrix, (N*2)x3, representing the Huffman tree,

% needed for decoding. Start of tree, root, is Htree(l,:).

% Htree{i,l)==1 indicate leaf and Htree{i,l)==0 indicate braench

% Htree{i,2) points to node for left tree if branching point and

% symbol number if leaf. Note value is one less than Symbol number.
% Htree(i,3) points to node for right tree if brenching peint

% Left tree is '0' and right tree is '1!

§ e e e -

% ______________________________________________________________________

% Copyright (¢) 1999. Karl Skretting. All rights reserved.

%t Hogskolen in Stavanger (Stavanger University), $ignal Processing Group

$ Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/
%

$ HISTORY:

¢ Ver. 1.0 25.08.98 KS: Function made as pert of Signal Compression Project 98
% Ver. 1.1 25.12.98 English wversion of program

LT R b Lt E i bt

if nargin<l
error{‘hufftree: see help.'):;
end
if nargin<2
HK = huffcode (HL):
end
H=length (HL); % number of symbols

Htree=zeros(N*2,3);
root=1;
next=2;
for n=1:N
if HL(n)>0
% place this symbol correct in Htree
posS=root;
for k=1:HL{n)
if ((Htree{(pos,l}==0) & (Htree(pos,2)==0})
% it's a branching point but yet not activated
Htree{pos, 2)=next;
Htree{pos, 3)=next+1;:
next=next+2;

end
if HK{n, k)
' pos=Htree (pos, 3}; % goto right branch
else :
pos=Htree(pos,?2): ¥ goto left branch
end
end
Htree(pos,l)=1: $ now the position is a leaf
Htree (pos, 2)=n; $ and this is the symbol number it represent
end
end
if N==
Htree(l, 3)=2;
end

return
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function [out,scale) = quantiz{in,nbit)
% nkit - The number of bits per value

$0btain the maximum values in the coefficient matrix
maxc = max(max{abs{in}});

% Quantization levels

% Lowest level

lowlvl = =1*(2~{nbit-1});
% Highest level

highlvl =-2* (nbit-1) =~ 1;

% Scale
scale = highlvl/maxc:

% Quantize the input coefficient matrix to nbit bits per coefficient

out = in * scale:;
out = floor{out};

function out = deguantiz(in,scale)

% Quantize the input coefficient matrix to nbit bits per coefficient
out = in / scale;

FERRLLDLLLRBLRLLALTRADRILILBULLLBULLLALIRTLIRDUIILILARLIADLLRARLDLIADAARARRLRHLOIBRBRRRLNY

% Author : Vooi voon YAP, Middlesex University, London

% First written: 26/11/2004
% Last Update: 27/11/2004

Purpose

Compressed colour images using crop-based techniques for mobile telephones.

%

% This is a wavelet-based image compression program written for my PhD research.

%

% Blockprocessing used to process backgroung image. Pixels in each block is averaged.

o

Image is resize at source.

BEEELRLLBLLLLRLLRAIRLAB AL RLLULRERRARBLATRAUDILALBALARRARLRARRLILDRAIARALLIRLLHRRRRLRALY

close all
clear all
clec

L]
L]
%
%
%
%

SREEREBALHHHEHILLHALLLIVLILLNERRERERRES Get the image HREEBRERHRRHELRRRLLILLGLRLGRLBULRRERYS

% Orig Img = imread('D:\matlabép5\work\images\naturali\bird.bmp'};
% Orig Img = imread('D:\matlabép5\work\images\naturalimarcie.bmp');
% Orig_Img = imread{'D:\matlabép5\work\images\natural\chiligq0l.bmp');

o

Orig_Img=imread{'D:\matlabép5\work\images\naturalimandrill.bmp'};
% Orig Img = imread('D:\matlabépS\work\images\naturali\chiliq02.bmp"');

% Orig_Img=imread{'D:\matlabépS\work\images\natural\flower(2_256.bmp‘):

Orig_Img = imread('D:\matlabép5\work\images\synthetic\clipartl0_256.bmp"'):
$ - e Select dimension --------s===e=-er -~

Model = 'Nokia 3220°";

% Model = 'Motorola E398';

% Model = 'Sony Ericsson T40';
% Model = 'Sony Ericsson Te8';
% Model = 'MAX Q';

[w h] = SelectDimension({Model);

BT e bttt Resize image ------------===-—-——————— oo oo
% W= 128;
% h = 128;

ScrnSize=ScreenSize(w,h):

Orig_Img = imresize(Orig_Img, [Scrn$Size ScrnSize], *nearest’):
figure(l), imshow(Orig Img),title('Original image’);

Orig Img = double(Orig_Img):

Y = 0.299*0rig_Img(:,:,1) + 0.587*Qrig_Img{:,:,2) + 0.114*Orig_Img({:,:, 3);


file:///matlab6p5/work/images/natural/bird
file:///matlab6p5/work/images/natural/marcie
file:///matlab6p5/work/iniages/natural/chiliq01
file:///matlab6p5/work/
file:///mandrill
file:///matlab6p5/work/images/natural/chiliq02
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Cb = -0.16875*0Orig_Img(:,:,1} + -0.33126*0rig_Img(:,:,2) + 0.5*Crig_Img(:,:,3);

Cr = 0.5*Qrig_Img(:,:,1) + -0,41869"Orig_Img(:,:,2) + -0.09131*Crig Img(:,:,3);

§ === Crop image -———=====———-~----—--s=s-cscmomoaa_a-
% [CropYimg, rect] = imcrop(Y,[40 25 60 75]):; % for bird

% [CropYimg, rect]) imcrop (Y, [15 20 90 100)); % for chiliq0l, marcie
[CropYimg, rect] = imcrop(Y, {20 5 90 105]); % for mandrill

% [CropYimg, rec:) = imcrop(Y, (25 5 90 105)); % for chikiq02

% [CropYimg, rec:t]l = imcrop{¥, {45 40 40 60})); % for flower256

figure(2), imshow(uint8(CropYimg)},title('Cropped image'};

$ - Find average of mask ------—————————c-—c-——-———o—
MaskAveValue = FindMaskAve (CropYimg,Y,rect);

§ e e e ———————— e ————————— e
& —-mmmeme o meeememee e Create mask -----=----=--=——=———---—ccc—ccm—u
Mask = CropYimg;

Mask = (double(Mask)).*0;

Mask = (~Mask).*MaskAvevalue; % 105 original value for marcie

% resize image %
xMaskSize = gize(Mask,1l);:
yMaskSize = size(Mask,2);

cropMask = imcrop{Mask, [0 0 yMaskSize-7 xMaskSize-7]); % the offset is different
% ___________________________________________________________________________________
§ -------mm e background image ----------------——-—-c---—c-c—-o--

% Now replace pixels in the background image with the object image
newl = Y;

% Define where to place the object image in the background image
colshift = rect(l); % the offset is set at 3 for this version
rowshift = rect(2}; % the offset is set at 3 for this version

% Perform the actual indexing to replace the background image pixels with the object

newl({l:size{cropMask,l))+rowshift, (l:size(cropMask,2))+colshift, :) = cropMask;
figure (3),imshow{uint8(newl}));title('New Image'};
- Divide image inteo blocks —————---c-=msmmmemmm oo

[1, m, h] = DefineFreqZones (Orig Img);
blksz = SelectBlockSz {1,m,h);
IblkSz = blksz;

fun = inline({'uint8(round(mean2(x)))"');

AnewI = blkproc(newI, [IblkSz IblkSz), fun):
figure(4), imshow (AnewI);title('Averaged Image');

$ -------em e Encode background image ——---—--=—----ss=ws———o——————o
% [gAnewI,scale] = quantiz(double(AnewI),8.1};

[i,§) = size(AnewI);

enYOutput = EntropyCoder{double (Anewl), 'encode',i,j);

[wNamel wNameZ2] = SelectWavelet{Orig_ Img}
% wNamel = 'biord.4';

% wName2 = 'haar';

YLevel = 3;

CbhCrLevel = §;

§ —mm o mmm oo COMpress images ———-——————-——--—--sssssmes—eoao oo
[YRecon, YEncoded, yTotalCoeff, yNonZeroCoeff]...
= YComp (CropYimg, wNamel, YLevel);

[CbhRecon, ChcomEncoded, CbhcomTotalCoeff, ChcomNonZeroCoeff]...
= CbComp{Cb, wName2, ChCrLevel);

[CrRecon, CrcomEncoded, CrcomTotalCoeff, CrcomNonZeroCoeff]...
= CrComp (Cr, wName2, ChCrlevel);

% figure(5),imshow(uint8{(CompImage));title ('Reconstructed Image');
cimage = YRecon;
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§ —mem e e mm e Transmit encoded image ----——=---——co-e—w-cocccoon-- %
% The block size and the size of orginal image should be transmitted together with %
% encoded image. %
eOutput = sizelenYOQutput,1};

% fprintf {1, '\nEncoded output: $d\n', eQutput);

imgsz = ScrnSize;
I e e %
ettt Decode encoded image ------—------—-—=------—-—----- %
decimage = EntropyCoder (en¥YOQutput, 'decede’ ., i,j):

§ mmm o e e e e e mmmmme———————e——— %
§ e e Reconstruct image —--—-—-—===—==-=s-——————w———m--o—-ao %
rowlength = size({decImage,2); % szA is the no. of elements in a row
decimage = imagetovector{decImage):; % convert image to row vector

tic;

list = VectTolmg(decImage, rowLength,IblkSz);

toc;

recImage = vectorteoimage({list,imgSz,imgSz); % convert row vector to image

% Now replace pixels in the background image with the okject image
n¥Image = uint8{reclmage):

% Define where to place the object image in the scene
colshift = recti{l);
rowshift = recti{2};

nYImagei{(l:size({YRecon,l))+rowshift, (l:size(YRecon,2))+colshift, :) = YRecon:

Y = nY¥YImage:
Cb = CbRecon;
Cr = CrReccn;

Y = double(Y);
Cb = double{Cb);
Cr = double(Cr);

R =Y + 1.402.*Cr; -

G =Y + (-0.34413.*Ch) + (-0.71414.*Cr);
B=Y + 1.772.*Cb ;

Final Img{:,:,1) = R;

Final_Imgt(:,:,2) = G:

Final Img({:,:,3) = B;

figure(5}, imshow(uint8(final_Img)):title('Reconstructed Image'}:

fprintf (1, 'Wavelet Type 1: $s\n', wNamel);

fprintf (1, 'Wavelet Type 2: $s\n’', wName2):

fprintf (1, ‘'\nScreen size: $dx%d\n', ScrnSize, ScrnSize);
fprintf {1, '\nBlock size: %¥d\n', IblkSz);

fprintf {1, '\nEncoded ocutput: $d\n', eOutput);

fprintf (1, '\nY cropped image encoded output: %2.2f\n', size(YEncoded,1}):;
fprintf (1, '\nCb encoded output: $2.2f\n’, size(CbcomEncoded,1}):
fprintf {1, '\nCr encoded cutput: $2.2f\n', size(CrcoemEncoded,l)};

Final_Img = uint8(Final_Img}; % needs tc be converted back to uint8 before writing to a
image file
imwrite(Final Img,'D:\MatlabépS5S\work\Images\cDummyImg.bmp');:

function (width, height] = Selectbimension{model)

switch model
case 'Nokia 3220

fprintf {1, 'Model: $s\n', model};
w = 128;
h = 128;

case 'Moterola E398°
fprintf {1, "Model: %s\n', model);
w = 176;
h = 220;

case 'Sony Ericsson T40'
fprintf (1, 'Model: $s\n', model};:


file:///nEncoded
file://'/nScreen
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‘w o= 128;
h = 160;
case 'Sony Ericsson T6B'
fprintf (i, 'Model: ' %s\n', model};
w = 101;
h = 80;
otherwise
fprintf (1, 'Model unknown: ¥s\n', model);
end
width = w;
height = h;

function newlist = VectToImg(in,rLength, IblkSz)

szA = rLength; % szA is the no. of elements in a row
h=in;

% blkSz = IblkSz*IblkSz;

blkSz = 1blkSz: % block size

e = 1;. % position of element

Initial e = e; % temperary storage

eTrack = 1; % track the elements in a block
stMark = 1; % start of element to be repeated
enMark = blkSz; % end of element to be repeated

eBuffer = Q;

m= 1; % initijial condition
row = 1; % initial condition
Height = 1; % Height of input matrix. initial condition
while Height <= szA % repeat s5zA times
%
while row <= blkSz % repeat blkSz times
while eTrack <= szA % repeat szA times.

for m = stMark:enMark % get element and repeat blkSz times
listim) = hie);

end

stMark = stMark + blkSz;

enMark = enMark + blkSz;

e = et+l;

eBuffer = e;

eTrack = eTrack + 1}

[

end

row = row +1;
e = Initial_e;
eTrack = 1;

end

e = eBuffer;

Initial_e = eBuffer;

row = 1;

Height = Height + 1;
end
% reconimage = vectortoimage{list,ImgSz, ImgSz);
newlist = list:

function blksz = SelectBlock$z (i,m,h)

L =1
M= m;
H = h:
Flag = 1;
ifL>M
if (M+H)} >= g0
Select ="M'
Flag = 0;
else
Select = 'L’
Flag = 0;

end !
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end

if Flag ~= 0

if M >H
if H »>= 35
Select = 'H'
Flag = 0;
end

if Flag ~= 0
Select = 'M!'
end
else
Select = 'H'
end
end

if Select == 'L’
] blksize = 16;
end

if Select == 'M'
blksize = 8;

end

if Select == 'H'
blksize = 4;

end

blksz = blksize;

function [wTypel, wTypeZ2,

iType] = SelectWavelet{i}

LR R R R R AR R AR R R R AR R AR R R R R RS R R A AR SRR SRR R R AR RS AL L R L LR R R AL AR L L]

Date: 12/10/2003

Grgic, ™,

clear
clc

figure(l)
imshow(A);

o ol GO OO o of g° OO o o of of of

A=double(i):;

[EOC, REO, E, REO, RH1, RHZ}=ComputeEntropy (At{:,:, 1)) ¢

fprintf ('\nRed HQO:
fprintf ('\nRed Hl:
fprintf {'\nRed H2:

[ECO,GEQ, E,GHO, GH1, GH2 | =ComputeEntropy (AR{:,:,2));

fprintf {'\nGreen HO:
fprintf ('\nGreen Hl:
fprintf ('\nGreen HZ:

[EQQ, BED, E, BHO, BH1, BH2 ] =ComputeEntropy (A{:,:,3});

fprintf ('\nBlue HO:
fprintf {'\nBlue Hl:
fprintf {'\nBlue H2:

Function name: SelectWavelet.m
Purpose: Select a wavelet for an image. Needs ComputeEntropy.m

ComputeEntropy.m written by Nikola Sprljan
University of Zagreb,
Reference: Image Analyzer - Educational Tool
Sprljan, N, Zgvko-Cinlar,
B AR AN R AR AR E AT R R AR AR AR BRI SRR IR R R AAT AT AE IR ARSI RORRIRRI YRR

%$3.8Bf', RHOQ):
%3.8f', RH1);
$3.8f\n', RH2});

$3.8f', GHO);
%3.8f', GHI1):
$3.8£f\n', GHZ}:

%3.8f', BHO);
%3.8f', BHL);
$3.8f\n', BH2):

if {(RH1 <= 5)&(GHl <= $)&(BHl <= 5))

wNamel = ‘haar';
wName2 = ‘haar’;

imageType = 'clipart!

else

wNamel = 'bior4d.4';:

wName2 = 'haar';
end;

wTypel=wNamel:
wTypeZ2=wName2;
iType = imageType:

Faculty of Elec. & Computing,

of o o o

Croatia %

%
%


file://'/nRedH0
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FEFTLSLTREILRLBULADALALBARALBARAAUISSIHRILRILIRAIDIRRBLBHLIARAABRALBIRIRESS

% Author: Vooi Voon YAP, Middlesex University, London %
$ First written: 22/08/2004 %
% Last Update: %
Bt $
% Main Function : DefineFreqZones.m $

i
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% Purpose : %
$ Analyse an image using frequency domain and block processing method. %
% The image is first divided into 16x16 blocks and the 2D-FFT is appiied %
$ to each block to obtain the log power spectra of each block. %
% This version uses three zones to classify the image. %
FERIR AR R LRSS R RS AR RN RN A AR REELLLLS LRI LLTRLILIRLRRLTHILLIRLLLILLE
function {1, m, h] = DefineFreqZones(in}

FRRIRLLELISHLHILLLLLLRLLLRE8999%% Get the image FRFHBHLRHLLRBALRARA9D5555559%555%5%%
Orig_Img = imread('D:\matlabépS\work\images\natural\bird.bmp');
Orig_Img = imread('D:\matlabépS\work\images\natural\marcie.bmp'):

Drig Img = imread('D:\matlab6pS\work\images\raturali\chiliqOl.bmp'};

%
%
%
% Drig Img=imread('D:\matlabép5S\work\images\natural\barboon.bmp'); % testing only

% figure(l), imshow(Orig_Img),title('Original image'};

Orig_Img = double{in);

B o %
fwidth height layer] = size(Orig_Img):
if layer ==
¥ = 0.299*0rig_Img(:,:,1} + 0.587*Crig_Img(:,:,2) + 0.114*0Orig Img(:,:,3);
Cb = -0.16875*0rig_Img(:,:,1} + -0.33126*Crig_Img¢:,:,2) + 0.5*Qrig_Img(:,:,3):
Cr = 0.5*0Orig_Img(:,:,1) + -0.41869*0rig_Img(:,:,2) + -0.08131*0rig_Img(:,:,3);
else
Y = Orig_Img;
end

% [CropYimg, rect] = imcrop(Y,[80 45 120 155])}; % for bird
[CropYimg, rect] = imcrop{Y,[30 40 180 190)); % for gmarcie, gchiligOl

% figure(2), imshow{uint8{CropYimg)),title{'Cropped image'};

Mask = CropYimg:
Mask = (double{Mask})).*0;

% resize image %

xMask$ize = size(Mask,l);

yMaskSize = size(Mask,2);

cropMask = imcrop (Mask, [0 O yMaskSize-7 xMaskSize-7]);

§ - $
§ e background image -----------ccceccccccccccccnooo——— %
% Now replace pixels in the background image with the object image

newl = Y;

% Define where to place the object image in the background image

colshift = (rect{l)+3);

rowshift = (rect(2)+3):

% Perform the actual indexing to replace the background image pixels with the object
newl((l:size(cropMask,1)})+rowshift, (l:size(cropMask,2)}+colshift, :) = cropMask;

% figure(3),imshow(uint8(newl)};:title{'New Image'):;

A = newl;

Y=double (A)
SEEEELLTLLLLDRRNNRUNGS SIS L0444 RLESSSRLRRILLRLALLULRRRRALALALRGLALLLRLALRLRLLSSS

funl = @fft2;
fun2 = @fftshift;

no = 1§; % define block szie
F - Perform block FFT ----------————-———-—o-——— %

¥l = blkproc(¥Y, [nc nc], funl};
YFFTAveMag = blkproc(Y¥l, [no nol, 'sum{sum{abs (Y1))}./(16*16)"'});


file:///matlab6p5/work/images/natural/bird.bmp
file:///matlab6p5/work/images/natural/marcie
file:///matlab6p5/work/images/natural/chiliq01
file://'D:/matlab6p5/work/images/natural/barboon.bmp'
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YFFTAveMaglD = imagetovector (YFFTAveMag):
YFFTAveMaglDr = round(YFFTAveMaqlD);

Y2 = blkproc(Yl, [no nol, fun2};
LogY=log(abs (Y2});

LI ittt Remove ZErOS -----———-~=---------o-o———————-——
YFFTAveMaglDr = RidZeros (YFFTAveMaglDr); % get rid of the zeros

index=length (YFFTAveMaglDr);

Numbers=1:index;
% Numbers=1:256;
[YfreglList]=SortValues (YFFTAveMaglDr};

§ —-mrm e e Sort out the zoneg =--------—————~em-m-m-owo-o--

¥YValues = 0:max(YFFTAveMaglDr);
¥YNumbers = size({YValues,2};
ElementsPerZone = round(YNumbers/3);

YlZone = sum(YfreqlList(l:ElementsPerZone}};
Zone2Begin = ElementsPerZone+l;

ZonezZEnd = ZoneZBegin+ElementsPerZone;
Y2zZone = sum(YfreqlList (Zone2Begin:Zone2End));
Zone3dBegin = ZoneZEnd+l:

¥3Zone = sum(Yfreqlist (Zone3Begin:YNumbers));

Yk = kurtosis (YFFTAveMaglDr};
¥s = skewness (YFFTAveMaglDr);

L = (YlZone/(YlZone+Y2Zone+¥3Zone))*100;
M = (Y2Zone/(YlZone+Y2Zone+Y3Zone))*100;
H = (Y32Zone/(YlZone+YZ2Zone+Y3Zone))*100;
1l =1L;
m = M;
h = H;
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