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ABSTRACT This paper introduces the PMST-CHIO, a novel variant of the Coronavirus Herd Immunity
Optimizer (CHIO) algorithm, exclusively tailored for individual unmanned aerial vehicle (UAV) path
planning in complex 3D environments. While acknowledging and building upon the foundational principles
derived from UAV swarm path planning research, the PMST-CHIO distinctively focuses on optimizing the
trajectory of single UAVs. It innovatively integrates a parallel multi-swarm treatment mechanism, enhancing
the standard CHIO’s exploration and exploitation capabilities significantly. This mechanism diverges from
the swarm-based approaches by deploying multiple instances of the CHIO optimizer, each functioning
autonomously within its sub-swarm, thereby facilitating independent path planning for individual UAVs.
These multiple CHIO instances or CHIO candidates, operate in concert to determine the optimal and
collision-free routes, taking into account the unique characteristics of individual UAVs and the intricacies
of the service area. The algorithm incorporates two key mechanisms: 1) global exploitation, employing the
best solution identified by the highest performing CHIO candidate across the swarms; and 2) strategic shift
from parallel multi-swarm exploration to focused exploration by the top-performing CHIO candidate after a
specific iteration threshold is reached. This adaptation significantly improves the algorithm’s global search
efficiency, convergence behavior, and navigational accuracy under challenging environments. Extensive
simulations and comparative studies validate that the PMST-CHIO can effectively overcome the limitations
of the standard CHIO algorithm, yielding safer, shorter, and more compliant flight paths for individual UAVs
in intricate 3D landscapes.

INDEX TERMS Coronavirus Herd Immunity Optimizer (CHIO), flight path optimization and safety,
unmanned aerial vehicles (UAVs) path planning.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are autonomous flight
systems that can operate under remote control or via
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integrated onboard computers. These vehicles provide a cost-
effective, adaptable, and safer alternative to manned aircraft,
which are particularly useful in hazardous or inaccessible
areas. UAVs have gained extensive application in both civil-
ian and military sectors due to these advantages. In civilian
applications, they are instrumental in tasks like agricultural
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TABLE 1. List of acronyms and their meanings.

monitoring, aerial photography, surveillance, expedited trans-
port, and forest fire detection and containment. In the military
domain, UAVs are pivotal for high-risk missions like recon-
naissance and intelligence gathering, serving as alternatives
to manned flights. A critical aspect distinct to individual
UAV operations, as opposed to UAV swarms, is the necessity
of efficient and precise path planning. This process entails
developing a collision-free trajectory between two points,
considering flight conditions and constraints. Path planning
for individual UAVs differs significantly from swarm path
planning. While swarm path planning involves coordinat-
ing multiple UAVs to achieve a collective goal, individual
UAV path planning focuses on optimizing a single vehi-
cle’s trajectory. This distinction is crucial in our research as

we concentrate on optimizing path planning for individual
UAVs.We acknowledge the insights gained fromUAV swarm
research but adapt and refine these strategies for singular
UAV applications. Our approach treats path planning as a
multi-constraint optimization problem, aiming to minimize
flight costs and comply with operational constraints, thereby
ensuring efficient and safe UAV missions.

Meta-heuristic algorithms offer an advanced solution to
complex combinatorial optimization problems, often surpass-
ing the performance of traditional methods. These algorithms
excel at thoroughly exploring search spaces, often unearthing
optimal or nearly optimal solutions. Their efficacy is par-
ticularly noticeable in the realm of UAV path planning.
Meta-heuristic algorithms broadly fall into two categories:
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TABLE 2. Parameters definition.

single-based and population-based strategies. Single-based
strategies, like the work of Du et al. [1], apply modified
versions of existing algorithms, such as the Tabu search
algorithm, to address intricate issues like multi-UAV path
planning. Specifically, Du et al. integrated the Nawaz-
Enscore-Ham (NEH) method into the Tabu search algorithm
to tackle this problem. Population-based strategies are fur-
ther divided into four unique categories: evolutionary-based,
swarm intelligence-based, physics-based, and human-based
algorithms. Evolutionary-based algorithms mimic the natural
selection process. Swarm intelligence-based algorithms are
inspired by collective behavior found in nature. Physics-
based techniques model themselves after physical systems.
Finally, human-based algorithms utilize human intuition and
expertise.

Within the first category of population-based approaches,
Yang et al. [2] introduced the Hierarchical Recursive Multia-
gent Genetic Algorithm (HR-MAGA) for UAV path planning
in dynamic environments. HR-MAGA employs a hierarchical
recursive optimization method, enhancing the search effi-
ciency of evolutionary algorithms and adaptability to environ-
mental changes. The algorithm outperforms its predecessors,
including the Path Multiagent Genetic Algorithm (P-MAGA)
and the standard Genetic Algorithm (GA), in generating effi-
cient, collision-free paths. This advancement is particularly

notable in complex and evolving environments, demonstrat-
ing superior global optimization and real-time response capa-
bilities. In a separate study, Hayat et al. [3] proposed two
methods, SICQ and SIC+, aimed at enhancing UAV path
planning via simultaneous information sharing andQuality of
Service (QoS) connectivity. Thesemethodswere assessed in a
comparatively simpler setting, featuring one base station and
various operational UAVs. The results suggested that SIC+
outpaced SICQ in coverage and information sharing time.
Moreover, Chawra and Gupta [4] implemented a Differential
Evolution (DE) algorithm to optimize the path planning of
multiple UAVs for data collection in a cluster-based Wireless
Sensor Network. The efficacy of the DE algorithm was vali-
dated in four unique areas, each containing a single Base Sta-
tion (BS) and one operational UAV. The findings confirmed
that the DE algorithm was superior to both GA and NSGA-II
in optimizing path length andminimizing travel time. In sum-
mary, population-based approaches furnish a diverse range
of algorithms to optimize UAV path planning for vari-
ous applications, each with its unique strengths and weak-
nesses. Regardless, experimental outcomes have consistently
shown the high performance of these algorithms, highlighting
their efficiency in path generation, travel time reduction,
and the enhancement of coverage and information sharing
time.

VOLUME 12, 2024 28397



A. Fouad et al.: Enhancing Individual UAV Path Planning With PMST-CHIO Algorithm

Recent research has focused on harnessing swarm
intelligence-based algorithms to solve the complex problem
of UAV path planning, particularly in challenging and haz-
ardous regions. For instance, Liu et al. [5] introduced a novel
three-dimensional path planning algorithm for the unmanned
aerial vehicles (UAVs), which combines adaptive sensitivity
decision operators with particle swarm optimization (PSO).
The algorithm addresses the issues of local optima and slow
convergence by constructing an adaptive sensitivity deci-
sion area and limiting the search space of particles. It also
improves the searching accuracy by considering relative par-
ticle directivity. The algorithm’s objective function accounts
for the distance to the destination and UAV self-constraints.
Experimental results show that it outperforms other tested
optimization algorithms, with an average improvement of
35.4% in the path cost and 9.6% in the straight-line rate
(SLR). This algorithm provides efficient and effective path
planning for the UAVs.

In another study, Qu et al. [6] presented a hybrid GreyWolf
Optimization (GWO) algorithm, named HSGWO-MSOS,
blending Simplified GWO and Modified SOS to address
the path planning problem for UAVs in intricate and dan-
gerous territories. Experimental findings suggested that the
HSGWO-MSOS algorithm efficiently and safely charted a
path, surpassing other algorithms such as GWO, SOS, and
Simulated Annealing (SA). Similarly, Zhu et al. [7] put forth
a Cooperative Co-Evolution-based SpiderMonkey Optimiza-
tion algorithm (CESMO) to handle the Unmanned Combat
Aerial Vehicle (UCAV) path planning challenge, specifically
for obstacle avoidance. This algorithm was evaluated against
ten swarm intelligence algorithms over 36 test cases. The
experimental findings highlighted the robustness and com-
petitiveness of CESMO in solving the UCAV path planning
problem. Furthermore, Jia et al. [8] devised a unique PSO
variant, termed RPSO, utilizing a new strategy of rotating
particles in high-dimensional space to locate targets. This
algorithm was employed to resolve the UCAV path plan-
ning problem using a novel combat field model called the
Double-Layer Coding model for path planning. Experimental
outcomes showed that the proposed DLC + RPSO method
consistently produced viable flight paths in complex sce-
narios. In summary, recent studies have produced numerous
efficient and effective swarm intelligence-based algorithms,
that are valuable in solving the intricate problem of UAV path
planning in hazardous areas.

In their study, Phung and Ha [9] introduce the Spher-
ical Vector-based Particle Swarm Optimization (SPSO)
algorithm, tailored for the efficient and safe determination of
UAV flight paths. This algorithm integrates a comprehensive
cost function that accounts for key factors such as path length,
potential threats, turn and climb/dive angles, and flight alti-
tude, ensuring both safety and efficiency in UAV navigation.
SPSO’s effectiveness is thoroughly evaluated against various
particle swarm optimization variants and leading metaheuris-
tic algorithms in multiple scenarios. The findings reveal that

it can consistently surpass these alternatives in the majority of
the tested scenarios. Furthermore, the research work includes
practical experiments, confirming the real-world feasibility
of the UAV paths derived from the SPSO algorithm.

The integration of human cognitive mechanisms into the
ABC algorithm, as developed by Han et al. [10], significantly
enhances its autonomy and intelligence, particularly for UAV
path planning. This evolutionary learning framework marks
a considerable advancement in adapting the algorithm to be
more responsive and adaptable. In a separate yet notable
study [11], the ABC algorithm has been refined with a multi-
strategy synthesis designed specifically for UAV path plan-
ning, which optimizes the UAVs’ ability to navigate com-
plex environments by rapidly identifying the most efficient
routes. Chen et al. [12] introduced an innovative adaptation
known as the opposition-based learning ABC algorithm, tai-
lored for UAV path planning. It is particularly effective in
optimizing the collection of building surface data based on
minimal imagery, demonstrating its practicality in real-world
applications. Another breakthrough in the field comes with
the development of a parallel ABC algorithm, focused on
unmanned combat aerial vehicles (UCAVs). The authors [13]
highlight the algorithm’s critical role in military operations,
emphasizing its cost-effectiveness and operational efficiency.
Furthermore, the research led by Yu et al. [14] showcases
the simplicity and robustness of the ABC algorithm in UAV
trajectory planning, particularly emphasizing its relevance in
modern warfare scenarios. Their work underlines the increas-
ing significance of UAVs and the necessity for efficient path
planning solutions. Collectively, these studies underscore the
ABC algorithm’s versatility and effectiveness in tackling
diverse challenges inUAVpath planning, solidifying its status
as an invaluable asset in both civilian and military realms.

Physics-based meta-heuristic algorithms have shown sig-
nificant utility in addressing the path planning problem for
UAVs. An example of this is the Multi-Verse Optimizer
(MVO) algorithm [15], used to optimize UAV travel routes
in two-dimensional space while ensuring end-to-end Quality
of Service (QoS). The MVO algorithm’s performance was
evaluated against other gradient-free meta-heuristics, includ-
ing ALO, DA, GWO, MFO, and WOA. Simulations showed
that MVO outperformed these algorithms in convergence
rate, fitness function value distribution, and computational
efficiency. Additionally, Jain et al. [16] proposed a modi-
fied version of the MVO algorithm to tackle the UAV path
planning challenge in complex environments, catering to
both single and multiple UAV contexts. Experimental results
indicated that this enhanced MVO algorithm outperformed
Glowworm Swarm Optimization (GSO) and Biogeography-
Based Optimization (BBO) in terms of path length and
cost. However, it is worth noting that the computation time
for the modified MVO was higher than that of BBO in
the single UAV scenario, while it was similar in multiple
UAV situations. The superior performance of the modified
MVO algorithm is likely due to the improvements made to
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the original algorithm, emphasizing the value of continuous
refinement in developing more effective solutions.

In the realm of human-based meta-heuristic algorithms,
two prominent studies merit discussion. The first is a study
conducted by Adis Alihodzic, proposing a Modified Fire-
work Algorithm (FWA) [17] to solve the UAV path planning
problem. This enhanced FWA algorithm uniquely integrates
new feasibility rules. The algorithm was tested in a two-
dimensional environment, featuring eight obstacles. Simu-
lation outcomes revealed that the modified FWA algorithm
outperformed several well-known algorithms such as BA,
CS, DE, and PSO, achieving better path cost optimization
and reduced execution time. The second study, undertaken
by Binol et al. [18], focuses on the path planning problem
for multiple UAVs tasked with collecting data from pre-
deployed roadside units (RSUs) in various scenarios. Given
the constraints of UAV battery capacity and mission time,
which may not be sufficient to visit all RSUs, two prob-
lems are formulated: one to equalize travel distances among
UAVs and another to minimize the total path length. The
study proposes two modified metaheuristic-based solutions
with unique evolutionary operators. The experimental results
reveal that the proposed Harmony Search (HS) algorithm
surpasses the Genetic Algorithm (GA) in terms of cost-
effectiveness, especially in complex scenarios, and demon-
strates quicker convergence in simpler search processes.

In the dynamic landscape of our modern era, an intriguing
development has been the emergence of numerous meta-
heuristic algorithms inspired by the nature and behavior
of the COVID-19 pandemic. These innovative algorithms
are as complex as the virus they emulate, subtly mirror-
ing its characteristics to optimize processes and find solu-
tions across a broad spectrum of domains. Currently, there
are eight distinct meta-heuristic optimization algorithms,
each of which incorporates a unique aspect of the infa-
mous pandemic. These are not just theoretical explorations
but practical innovations named as follows: the Coronavirus
Optimization Algorithm (CVOA) [19], the Coronavirus
Herd Immunity Optimizer (CHIO) [20], the Corona Virus
Optimization (CVO) [21], the Anti-Coronavirus Optimiza-
tion (ACVO) algorithm [22], the Coronavirus Optimization
Algorithm (COVIDOA) [23], the COVID-19 Based Opti-
mization Algorithm (C-19BOA) [24], the Coronavirus Meta-
morphosis Optimization Algorithm (CMOA) [25], and the
CoronavirusMask ProtectionAlgorithm (CMPA) [26]. These
algorithms demonstrate their notably improved performance
in solving various optimization challenges. Particularly, the
CHIO algorithm stands out amongst these innovations due
to its dynamism and adjustable control parameters, enabling
efficient investigation and exploration of diverse search
spaces. Nevertheless, it is critical to approach these excit-
ing developments with a level of caution. Given their early
stages, these algorithms need comprehensive testing and val-
idation across different scenarios. Rigorous examination will
help confirm their robustness and effectiveness before being
broadly applied, ensuring they remain not just inventive, but

also trustworthy and efficient tools for problem-solving in our
rapidly changing world.

In this paper, we present PMST-CHIO, a sophisticated
adaptation of the CHIO algorithm specifically developed
for path planning of individual UAVs in challenging three-
dimensional spaces. The innovation of the PMST-CHIO is
its parallel multi-swarm treatment mechanism. Unlike UAV
swarm path planning that involves coordinating multiple
UAVs, our approach focuses on enhancing the path planning
capabilities of a single UAV. The mechanism operates with
multiple CHIO candidates, each exploring potential solu-
tions independently within their respective sub-swarms. This
process allows every CHIO candidate, an instance of the
CHIO optimizer, to investigate diverse solutions with distinct
parameters, thus enriching the variety in the search pro-
cess. Crucially, the PMST-CHIO enhances global exploita-
tion and convergence by initially utilizing solutions from
the most effective CHIO candidate. After reaching a prede-
termined iteration threshold, the focus shifts from parallel
exploration across all candidates to concentrated exploration
by the leading candidate, which can significantly improve the
exploration and exploitation potential of the standard CHIO
algorithm. Moreover, it is finely tuned to meet the specific
safety and flight constraints of individual UAVs navigating
complex 3D environments, a clear departure from the swarm-
based path planning approaches. The paper is structured as
follows: Section II discusses the threat environment model
for UAV path planning. Section III focuses solely on the
Coronavirus Herd Immunity Optimizer (CHIO) algorithm.
The adapted PMST-CHIO algorithm is thoroughly explained
in Section IV. Section V shows experimental simulations to
validate the PMST-CHIO algorithm in UAV path planning.
Section VI critically assesses the PMST-CHIO algorithm,
its pros and cons, and future improvements, particularly for
single UAV operations. Finally, Section VII concludes the
paper with overall findings and implications for UAV path
planning.

II. THREAT ENVIRONMENT MODEL
The threat environment model developed within this section
has been obtained from the theoretical frameworks and
insights delineated by Phung and Ha [9].

A. OPTIMAL PATH
The path planning operation for UAVs is treated as an opti-
mization problem that involves choosing different criteria
depending on various application conditions to achieve the
optimal solution. One of the main parameters for optimizing
the path is the path length. Specifically, in this study, we aim
to minimize the path length and use the flight path Xi to
illustrate all n path points that the flight device must follow.
It should be noted that each path point corresponds to a path
node on the map. The cost function for the path length is as
follows:

F1 (Xi) =
∑n−1

j=1

∥∥∥−−−−−→Pi,jPi,j+1
∥∥∥ (1)
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The expression
∥∥−−−−−→Pi,jPi,j+1

∥∥ represents the Euclidean distance
between two adjacent path points, namely Pi,j and Pi,j+1,
which have the following coordinates: Pi,j =

(
xij, yij, zij

)
and

Pi,j+1 =
(
xi,j+1, yi,j+1, zi,j+1

)
.

FIGURE 1. Model of a threat.

B. TERRAIN AND UAV PERFORMANCE CONSTRAINTS
Safe path planning requires complete avoidance of all obsta-
cles in the flight path. Let K denote the set of all threats, each
of which is represented by a cylinder. As shown in Fig. 1, each
obstacle is defined geometrically by two main parameters:
its centre coordinate Ck and its radius Rk . To accurately
account for the threat cost of the UAV, the size of the UAV
is considered to be D, where dk is the distance between the
UAV and the center of each threat.

The threat cost F2, computed across waypoints Pi,j for
obstacle set K , is determined based on the schematic model
of a threat illustrated above as follows:

F2 (Xi) =
∑n−1

j=1

∑K

k=1
Tk

(
−−−−−→
Pi,jPi,j+1

)

Tk
(
−−−−−→
Pi,jPi,j+1

)
=


0 dk > S + D+ Rk
(S + D+ Rk)− dk
D+ Rk < dk < S + D+ Rk
∞ dk < D+ Rk

(2)

It is important to note that there are several factors that can
affect the possibility of a flight device hitting an obstacle
in its flight path, such as the flight path environment, posi-
tioning precision, and application. Therefore, the distance
from the crash area S is referred to as the danger zone. This
distance depends on the nature of the obstacles, whether static
or dynamic, and the quality of the connection signal. For
instance, the distance can be chosen to be several tens of
meters in the case of static obstacles and several hundred
meters in the case of dynamic obstacles. Additionally, the
flight altitude is taken into account when calculating the
global cost function, which is constrained by two given height
limits - the maximum and minimum height. The height cost

for the pathpoint Pi,j is calculated as follows:

Hij =


∣∣∣∣hij − (hmax − hmin)2

∣∣∣∣ , hmin ≤ hij ≤ hmax

∞, otherwise
(3)

The variables hij, hmin, and hmax represent the flying height of
the device relative to the ground, the minimum height, and the
maximum height, respectively. To calculate Hij, Equation (3)
is used, which takes into account the average height and
penalizes out-of-range values. By summing up all Hij values
for all path points, the altitude cost can be determined as
follows:

F3 (Xi) =
∑n

j
Hij (4)

Furthermore, the evaluation of the smoothing cost involves
calculating the turning angle and the climbing angle. As illus-
trated in Fig. 2, the turning angle φij is the angle between two

consecutive flight way segments:
−−−−−→
p′i,jp

′

i,j+1 and
−−−−−−→
p′i,j+1p

′

i,j+2,
projected onto the horizontal plane Oxy. Assuming k is the
unit vector in the direction of the z-axis, the projected vector
can be calculated as follows:

−−−−−→
P′i,jP

′

i,j+1 =
−→
k ×

(
−−−−−→
Pi,jPi,j+1 ×

−→
k

)
(5)

The turning angle is computed as follows:

φij = arctan


∥∥∥−−−−−→p′i,jp

′

i,j+1 ×
−−−−−−→
p′i,j+1p

′

i,j+2

∥∥∥(−−−−−→
p′i,jp

′

i,j+1

)
·

−−−−−−−−→(
p′i,j+1p

′

i,j+2

)
 (6)

The climbing angle, denoted as ψij, refers to the angle
between the flight way segment

−−−−−→
Pi,jPi,j+1 and its projection

−−−−−→
p′i,jp

′

i,j+1 onto the horizontal plane. This value can be calcu-
lated using the following formula:

ψij = arctan

 zi,j+1 − zi,j∥∥∥−−−−−→p′i,jp
′

i,j+1

∥∥∥
 (7)

Using this information, the smoothing cost can be computed
as:

F4 (Xi) = a1
∑n−2

j=1
φij + a2

∑n−1

j=1

∣∣ψij − ψi,j−1∣∣ (8)

In this equation, a1 and a2 represent the penalty coefficients
assigned to the turning and climbing angles, respectively.

C. GLOBAL COST FUNCTION
The global cost function which quantifies the degree of opti-
mality in terms of safety and feasibility constraints related to
the path Xi, can be defined according to equations (1) to (8)
as follows:

F (Xi) =
∑4

k=1
bkFK (Xi) (9)

where bk (k = 1, ..4) are the weight cofficients, and F1 (Xi)
to F4 (Xi) are respectevely the costs related to the path length
(Equation (1)), to the threat (Equation (2)), to the smoothness
(Equation (4)) and to the flight height (Equation (8)). Here,

28400 VOLUME 12, 2024



A. Fouad et al.: Enhancing Individual UAV Path Planning With PMST-CHIO Algorithm

FIGURE 2. Turning and climbing angle calculation.

the decision varaible is Xi which includes n pathpoints Pi,j =(
xij, yij, zij

)
, such that Pi,j ∈ O, where O is the working space

of UAVs.
We conclude this section by clarifying the key aspects of

our model. Firstly, the ‘i index’ denotes the distinct way-
points in the UAV’s path, essential for computing both the
path length and associated threat costs. Secondly, the ‘qual-
ity of the connection signal’ is fundamental for the UAV’s
precise positioning and swift response during navigation.
Lastly, we acknowledge that modeling dynamic obstacles
as larger static ones is a simplification, useful for ensuring
safety but potentially restrictive under complex environments
with numerous dynamic obstacles. Therefore, refining our
approach to dynamic obstacle modeling will be a pivotal
topic.

III. CORONAVIRUS HERD IMMUNITY OPTIMIZER
The Coronavirus Herd Immunity Optimizer (CHIO), an inno-
vative metaheuristic optimization algorithm, was first
unveiled by Al-Betar et al. in 2020 [20]. While this
unique algorithm shares certain similarities with other meta-
heuristic algorithms, particularly in its imitation of natural
phenomena, it stands apart due to its singular inspira-
tion - the coronavirus. In mirroring the process of nat-
ural herd immunity, the algorithm incorporates elements
of herd psychology, a concept lauded in the medical
field as a highly effective strategy for achieving immu-
nity against infectious diseases. The landscape of the globe
has been dramatically reshaped by the Coronavirus Dis-
ease (COVID-19) pandemic, officially named by the World
Health Organization (WHO) in December 2019. Originat-
ing from the bustling city of Wuhan in China, the dis-
ease was initially linked to individuals who had visited
local seafood or wet markets. Early patients exhibited
severe pneumonia-like symptoms and significant respiratory
distress, the sources of which were initially unidenti-
fied. Despite global efforts in developing vaccines and
treatment protocols, COVID-19 has propagated worldwide

in distinct waves, introducing a myriad of variants [27].
This global health crisis has spurred international alliances
and governments to urgently mobilize extensive resources,
catalyzing the race for vaccine development [28]. However,
even with multiple vaccines now available, adherence to
health safety measures, such as mask-wearing, practicing
social distancing, and abiding by lockdowns, remains critical
in reducing the infection rate. Social distancing, promoted
by the WHO as a primary strategy, seeks to curb the spread
of COVID-19, a virus mainly transmitted through direct
contact or exposure to contaminated objects or surfaces. The
primary transmission mode is via small droplets expelled by
an infected individual through sneezing, coughing, or exha-
lation. The effectiveness of social distancing is governed by
the basic reproduction rate, signifying the number of people
one infected person could potentially infect. The fatality rate,
a key statistic indicating the proportion of infected individuals
who succumb to the virus, is significantly influenced by
individual immunity levels. Those who are elderly or suffer
from chronic illnesses tend to have higher fatality rates.

Consequently, the average age of a population significantly
impacts recovery rates.

A. INSPIRATION
Al-Betar and colleagues [20] conceptualized a mathematical
model to achieve herd immunity against the coronavirus,
resulting in the formulation of a theoretical optimization
algorithm termed the Coronavirus Herd Immunity Optimizer
(CHIO). This model encompasses a strategy aimed at pro-
tecting the global population from the virus by transitioning
the majority of uninfected people into a resistant group inca-
pable of further transmission. The populace within the herd
immunity scenario can primarily be divided into three cate-
gories: susceptible, infected (or confirmed), and immunized
(or recovered) individuals [20]. Susceptible individuals are
those yet to be exposed or infected by the virus, and they stand
at risk of contracting the virus through contact with infected
individuals who disregard social distancing norms. Infected
individuals, also termed confirmed cases, can transmit the
virus to the susceptible group not observing the requisite
social distancing guidelines. On the other hand, immunized
individuals are protected against the virus and pose no threat
to the untreated. They play a crucial role in mitigating the
pandemic’s spread, preventing a potential outbreak [20].

Fig. 3 outlines the population hierarchy within a herd
immunity scenario, highlighting the impact of immunity
acquisition on the three distinct population groups. Immu-
nized individuals are instrumental in curbing the virus’s trans-
mission from infected to susceptible individuals, providing
indirect protection to the susceptible group against the dis-
ease’s spread.

B. OPTIMIZATION STEPS OF CHIO
CHIO’s optimization process is outlined in six phases,
as illustrated below. Algorithm 1 contains the pseudocode,
and Fig. 4 displays the flowchart that depicts the workflow.
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Algorithm 1 CHIO Pseudo-Code
1. Phase 1: Initialization
2. Initialize the parameters (HIS, BRr , nand MaxAge).
3. Phase 2: Generate herd immunity population
4. x ji (t + 1) = Lbi + (Ubi − Lbi)× rand(0, 1), ∀i = 1, 2, . . . , n and j = 1, 2, . . . .HIS
5. calculate the fitness of each search agent
6. set Svj = 0∀j = 1, 2, .,HIS
7. set Aj = 0∀j = 1, 2, .,HIS
8. Phase 3: Herd immunity evolution
9. while (t ≤ MaxItr ) do
10. for j = 1 to HIS do
11. isCorona

(
x j (t + 1)

)
= false

12. for i = 1 to n do
13. if (r < 1

3 × BRr) then

14. x ji (t + 1) = C
(
x ji (t)

)
= x ji (t)+ r ×

(
x ji (t)− x

c
i (t)

)
15. isCorona(x j(t + 1) = true
16. else if (r < 2

3 × BRr) then

17. x ji (t + 1) = N
(
x ji (t)

)
= x ji (t)+ r ×

(
x ji (t)− x

m
i (t)

)
18. else if (r < BRr) then
19. x ji (t + 1) = R

(
x ji (t)

)
20. else
21. x ji (t + 1) = x ji (t)
22. end if
23. end for
24. Phase 4: Update herd immunity population
25. if f (x j(t + 1)) < f (x j(t)) then
26. f (x j(t)) = f (x j(t + 1))
27. else
28. Aj = Aj + 1
29. end if
30. if f

(
x j (t + 1)

)
<

f (x)j(t+1)
1f (x) ∧ Sj = 0 ∧ is_corona

(
x j (t + 1)

)
then

31. Svj = 1, Aj = 1
32. end if
33. if f

(
x j (t + 1)

)
>

f (x)j(t+1)
1f (x) ∧ Sj = 1 then

34. Svj = 2, Aj = 0
35. end if
36. Phase 5: Check Fatality
37. if

(
Aj ≥ Max_Age

)
and

(
Svj == 1

)
then

38. x ji (t + 1) = Lbi + (Ubi − Lbi)× rand(0, 1), ∀i = 1, 2, . . . , n and j = 1, 2, . . . .HIS
39. Svj = 0
40. Aj = 0
41. end if
42. end for
43. t = t + 1
44. end while

PHASE 1: INITIALIZATION
In this step, we tackle the CHIO parameters and opti-

mization concerns. With regards to the objective function,
we formulate the optimization problem as presented in
Equation (10):

min f (x) x ∈ {Lb,Ub} (10)

The measured objective function (or immunity rate), f (x),
is computed for each individual xi = (x1, x2, ..., xn), where

xi represents the gene indexed by i, and n is the number of
genes in an individual. Note that the value range for each gene
is xi ∈ [Lbi,Ubi], with Lbi representing the lowest boundary
and Ubi the highest boundary.

The CHIO algorithm utilizes four algorithmic parame-
ters and two operational parameters. The four algorithmic
parameters are (1) C0, the number of initial infection cases
triggered by an individual; (2) HIS, the population size;
(3) MaxItr , the total number of iterations; and (4) n, the
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FIGURE 3. The hierarchical distribution of the population in the context
of achieving herd immunity [29].

problem dimensionality. At this stage, two major control
parameters of CHIO are initialized: (1) the basic reproduction
rate (BRr), which regulates the operators of the algorithm
by spreading the coronavirus among individuals, and (2) the
maximum age of infected cases (MaxAge), which determines
whether the infected cases recover or die.
PHASE 2: GENERATE INITIAL HERD IMMUNITY POP-

ULATION
The CHIO generates a group of individuals that is equiv-

alent to HIS through spontaneous or heuristic means. Within
the herd immunity population (HIP), these cases are recorded
in a two-dimensional matrix with a size of HIS × n, arranged
in the following manner:

HIP =



x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . .

. . . . . .

xHIS−11 xHIS−11 . . . xHIS−1n
xHIS1 xHIS2 . . . xHISn

 (11)

Each row j of the matrix represents a case x j that is essentially
generated, with x ji calculated as x ji = Lbi + (Ubi − Lbi) ×
rand (0, 1) for every i ranging from 1 to n. The objec-
tive function, or immunity rate, is determined by utilizing
Equation (10) for each situation. Additionally, the status vec-
tor (Sv) of length HIS for all cases in HIP is initialized with
a value of either zero (representing a susceptible case) or one
(representing an infected case). It should be noted that the
number of ones in Sv is randomly initiated to be equal to C0.
In addition to the initial representation of the status vec-

tor (Sv), where the value 0 denotes a susceptible case and

1 denotes an infected case, it is critical to explicitly state
that within the scope of this phase, the ‘Immune’ status is
designated by the number 2 in the status vector (Sv). This
distinction is important for the clarity of the model’s design
and for maintaining the consistency with the representation
used in the ‘Immune case’ section that follows. Therefore,
we can ensure that the unique state of ‘Immune’ is clearly
identifiable and differentiates from other states within our
proposed model.
PHASE 3: EVOLVE CORONAVIRUS HERD IMMUNITY
The evolution phase represents the main enhancement loop

of the CHIO. During this phase, gene x ji within case x j may
either remain unchanged or be modified based on the pro-
portion of the BRr . This modification is influenced by social
distancing and is governed by three distinct rules for cases
that are infected, susceptible, or immune.

x ji (t + 1)←



x ji (t) r ≥ BRr /

C
(
x ji (t)

)
r < 1

3 × BRr infected case

N
(
x ji (t)

)
r < 2

3 × BRr susceptible case

R
(
x ji (t)

)
r < BRr immune case


(12)

Here, r is a number generator that generates values between
0 and 1. The following section describes the three rules that
govern the modification of genes within cases during the
evolution phase.

1) INFECTED CASE
When the value of r falls within the range of [0,BRr/3], the
resulting social distancing can be attributed to the modifica-
tion of the gene value, denoted as x ji (t + 1). This modifi-
cation is determined by calculating the difference between
the current gene value and a gene value obtained from a
contaminated case, denoted as xc.

x ji (t + 1) = C
(
x ji (t)

)
= x ji (t)+ r ×

(
x ji (t)− x

c
i (t)

)
(13)

It is important to emphasize that the selection of the
value xci (t) is arbitrary and dependent on a status vector
(Sv) associated with each contaminated case xc. More pre-
cisely, the value i is chosen based on the condition that
c = {i|Sv (i) = 1}.

2) SUSCEPTIBLE CASE
The modification of gene value x ji (t + 1) is influenced by
any resulting social distancing that falls within the range of
r ∈ [BRr3 ,

2BRr
3 ]. This modification is determined by the

difference between the current gene value and a gene value
obtained from a susceptible case xm, where:

x ji (t + 1) = N
(
x ji (t)

)
= x ji (t)+ r ×

(
x ji (t)− x

m
i (t)

)
(14)
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It should be noted that the value xmi (t) is randomly selected
from any susceptible case xm, taking into account the status
vector (Sv) where m = {i|Sv (i) = 0}.

3) IMMUNE CASE
The value of the new gene, x ji (t + 1), is determined by the
difference between the current gene and a gene extracted from
an immuned case, xv. This difference is measured within the
range of r ∈ [ 2BRr3 ,BRr], representing any social disparities.
The formula for calculating the new gene value is given
by:

x ji (t + 1) = R
(
x ji (t)

)
= x ji (t)+ r ×

(
x ji (t)− x

v
i (t)

)
(15)

Note that the value xvi (t) is derived from the best immune
case xv, taking into consideration the status vector (Sv) such
that f

(
xvi

)
= argminj{k|Sv(k)=2 }f

(
x ji

)
.

The distinct rules governing infected, susceptible, and
immune cases, as delineated in Equation (12), are intricately
designed to mirror the effects of the Basic Reproduction Rate
(BRr) on gene value alterations during the evolution phase of
coronavirus herd immunity. Our approach intricately inter-
twines the epidemiological principles with genetic modeling
to reflect real-world dynamics.

1. Infected Cases: For a value of r less than (BRr/3),
the model indicates a high likelihood of virus transmission.
We simulate this scenario through gene modification, which
integrates genetic data from a randomly selected infected
case. This represents the genetic shift occurring during actual
viral transmission, showcasing how the virus proliferates
among individuals.

2. Susceptible Cases: When r is within (BRr/3) and
(2BRr/3), it denotes a moderate infection risk. The corre-
sponding gene modification here involves blending genetic
materials from a susceptible individual with another ran-
domly selected susceptible case. This mirrors potential expo-
sure and gradual genetic adaptation to the viral environment,
a scenario frequently observed in populations experiencing
virus outbreaks.

3. Immune Cases: For immune individuals, gene modi-
fications are implemented when r is greater than (2BRr/3)
but less than (BRr). This reflects a substantially reduced
probability of reinfection due to pre-existing immunity. The
genetic alteration in this phase amalgamates genetic informa-
tion from an immune individual with the strongest immune
casewithin the population, symbolizing the bolstering of viral
resistance.

In the presented section on the CHIO algorithm, the use of
probabilistic thresholds derived from the Basic Reproduction
Rate (BRr) is a key aspect. These thresholds are fundamental
in enabling the CHIO algorithm to dynamically simulate the
complexities of transmission dynamics and the evolution of
immune responseswithin a population. TheCHIO’s approach
to calibrating these thresholds effectively models a range
of immunity levels and infection risks, providing a detailed

and dynamic representation of how the virus spreads and
how populations respond. This methodology underlines the
probabilistic robustness of the CHIO algorithm, and it is
close alignment with real-world epidemiological dynamics,
as influenced by the Basic Reproduction Rate. The inclusion
of these aspects in our presentation of the CHIO algorithm
underscores its validity and applicability in research contexts,
particularly in understanding the intricacies of coronavirus
herd immunity.
PHASE 4: UPDATINGHERD IMMUNITY POPULATION
The immunity rate of each case, f (x j(t + 1)), is calculated

to determine the strength of the generated case, x j(t + 1).
If the immunity rate of the new case is greater than that of
the actual case, x j(t), then the actual case is replaced by the
new case, x j(t+1), such that f (x j(t+1)) < f (x j(t)). If Svj = 1,
the age vector, Aj, is increased by 1. The state vector (Svj) is
adjusted for every event, by altering the value of x j according
to the herd immune criteria, which is determined using the
subsequent equation:

Sj←


1 f

(
x j (t + 1)

)
<
f (x)j (t + 1)
1f (x)

∧Svj = 0 ∧ is_corona
(
x j (t + 1)

)
2 f

(
x j (t + 1)

)
>
f (x)j (t + 1)
1f (x)

∧ Svj = 1

(16)

The binary value of is_corona
(
x j (t + 1)

)
is set to 1 if case

x j (t + 1) inherits a new value from any infected case. Addi-
tionally, 1f (x) represents the average significance of the

immune population rates such as
∑HIS

xj
f (xj)

HIS . It should be noted
that the levels of immunity among individuals in the popu-
lation are adjusted based on the previously measured social
gap. When the immunity rate of a newly produced individual
surpasses the average immunity rate of the population, it indi-
cates an increase in the population’s immunity to the virus.
If the newly discovered population demonstrates sufficient
strength in terms of immunity to the virus, this signifies that
the threshold for herd immunity has been reached.
PHASE 5: CHECK FATALITY
During this phase, if the immunity rate f (x j(t + 1)) of

the current infected case (Sj == 1) cannot be improved
according to the Max_Age parameter (i.e., Aj ≥ Max_Age),
then the case is considered deceased. However, by using
x ji (t + 1) = Lbi+ (Ubi−Lbi)× rand(0, 1), ∀i = 1, 2, . . . , n
and j = 1, 2, . . . .HIS, the case is regenerated completely
from scratch. Aj and SJ are both reset to 0 as well. This
phase can aid in diversifying the current population and thus
avoiding local optima.
PHASE 6: STOP CRITERION
The CHIO algorithm continues with phases 3 to 5 until the

termination criterion is met, which is typically determined by
the maximum number of iterations allowed. At this point, the
population ismainly composed of susceptible and immunized
cases, with the infected cases having been eliminated.
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FIGURE 4. The flowchart of CHIO algorithm.

IV. THE PROPOSED PMST-CHIO
In this paper we have developed a state-of-the-art algorithm,
PMST-CHIO, that is specifically designed for the safety
requirements and flight constraints of UAVs in complex 3D
environments. This algorithm is a modified version of the
CHIO algorithm, equipped with a range of advanced features
and capabilities. One of the most notable features is the
introduction of a parallel multi-swarm treatment mechanism,
which allows for the simultaneous and independent treatment
of multiple randomly created sub-swarms. Each sub-swarm
represents a herd immunity sub-population HIP associated
with a specific value of the basic reproduction rate param-
eter. This enhances the algorithm’s global exploration and
exploitation capabilities and improves convergence behavior.

What sets PMST-CHIO apart is its ability to improve per-
formance through two key mechanisms. The first mechanism
involves global exploitation of the best solution found by the
best CHIO laborer from the l CHIO candidates. This feature
allows the algorithm to continuously learn and improve from
the best solutions, ensuring that it always moves closer to the
optimal outcome. The second mechanism is the ability to halt
the parallel multi-swarm exploration and replace it with the
best CHIO laborer’s exploration when the algorithm’s current
iteration reaches a fixed predefined number. This ensures that
the algorithm remains efficient and effective even in highly
complex and dynamic environments.

In the context of UAV path planning, our CHIO opti-
mizer’s adaptation is fundamentally anchored in the global
cost function, as outlined in Equation 9. This function serves
as a pivotal element in evaluating the optimality of potential

paths, integrating various constraints and costs associated
with path length, terrain, UAV performance, threat avoidance,
and smoothness. Specifically, the global cost function aggre-
gates these individual cost elements, each quantified through
respective formulae, to comprehensively assess the feasibility
and safety of each path. The optimizer iteratively explores
the search space, which comprises all the possible path points
under the UAV’s operational environment. Each path point is
a potential waypoint in the UAV’s journey, and the optimizer
assesses these points in light of the global cost function.
This approach enables a nuanced balance between direct
path minimization and adherence to safety and operational
constraints.

The PMST-CHIO method involves creating a global
herd immunity matrix HIP(

HIS×(n×NSub_HIP))
G , that consists

of NSub_HIP herd immunity sub-populations. Each sub-
population is represented by a unique HIP(HIS×n)l , l ={
1, . . . ,NSub_HIP

}
matrix and is processed by a l CHIO can-

didate. The elements of each matrix are generated using the
same method as step 2 of a standard CHIO algorithm. The l
CHIO candidate is responsible for handling its corresponding
herd immunity sub-population and has its unique status vari-
able S(1×HIS)vl and age vector Ajl . All CHIO candidates begin
with an equal number of initial infection cases, C0, and a
randomly generated basic reproduction rate, BRr l ,within the
interval [0, 1].The herd immunity sub-populations are pro-
cessed in parallel and simultaneously for a maximum number
of iterations specified by MaxP_Itr . The best solution found
by a candidate CHIO is utilized to limit the global search
process to its respective CHIO owner. The top-performing
CHIO then continues with the optimization process alone
until the end of the iteration count, i.e., iter = t = MaxItr .
This allows for greater flexibility in computation time, with
the option to either reduce or expand it.

Our PMST-CHIO algorithm, an advanced iteration of the
CHIO optimizer, is designed to cater to the intricate demands
of UAV path planning in complex 3D environments. This new
approach hinges on a parallel multi-swarm treatment mech-
anism, which empowers the algorithm with enhanced global
exploration capabilities. By harnessing multiple sub-swarms,
each functioning independently, PMST-CHIO achieves a bet-
ter search of the solution space, which is critical in UAV path
planning, where navigating under a multi-dimensional envi-
ronment with various constraints is paramount. The algorithm
further distinguishes itself with its dual mechanisms. The first
mechanism emphasizes global exploitation, leveraging the
best solution identified by any CHIO laborer. This dynamic
learning process ensures continual improvement, drawing
the algorithm ever closer to the optimal path. The second
mechanism involves a strategic pause in multi-swarm explo-
ration, shifting the focus to the most effective CHIO laborer’s
trajectory when certain criteria are met. The above adaptive
feature maintains the algorithm’s efficiency, particularly in
the rapidly changing or highly complex scenarios. Figures 5
and 6 visually encapsulate these concepts, demonstrating the
PMST-CHIO’s operational framework and its alignment with
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FIGURE 5. Graphical representation of PMST-CHIO.

the unique challenges of UAV navigation in the 3D land-
scapes.

Fig. 5 presents a detailed graphical representation of
PMST-CHIO, which depicts its underlying principles and
highlights the key features that set it apart from other algo-
rithms. This figure is intended to enhance comprehension of
how PMST-CHIO operates and to provide a visual overview
of how it leverages a parallel multi-swarm treatment mech-
anism to improve exploration capabilities, as well as global
exploitation and replacement mechanisms to enhance per-
formance and convergence. Furthermore, Fig. 6 offers a

comprehensive graphical representation of the relationship
between PMST-CHIO and the specific challenges of oper-
ating UAVs in complex 3D environments. This figure is
designed to provide an intuitive understanding of how PMST-
CHIO is tailored to meet the safety requirements and flight
constraints of UAVs in such environments. By examining
this diagram, one can gain insight into how PMST-CHIO’s
advanced features, including the parallel multi-swarm treat-
ment mechanism and global exploitation and replacement
mechanisms, enable it to address the challenges posed by
UAVs in complex 3D environments. Overall, Fig. 6 offers a
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FIGURE 6. Comprehensive graphical representation of the relationship between PMST-CHIO and the specific challenges of operating UAVs in complex 3D
environments.

valuable visual representation of the problem context and how
PMST-CHIO is specifically designed to provide a solution
for it.

V. EXPERIMENTAL SIMULATION ANALYSIS
To demonstrate the effectiveness and resilience of our pro-
posed PMST-CHIO approach, we conducted experiments
across three unique battlefields. Each battlefield posed differ-
ent challenges, characterized by the presence of six, nine, and
eleven threats, respectively. These threats were distributed
randomly under specific conditions. We used a personal com-
puter equipped with an Intel(R) Core (TM) i7-4510U CPU
running at 2.60 GHz, supported by 6 GB of RAM and a 64-
bit Windows 10 operating system.MATLAB 2022b served as
our primary coding and execution platform. The battlefield
scenarios were recreated using a realistic digital elevation
model map, which was derived from accurate measurements
taken by a lidar sensor. This map provided us with a detailed

3D terrain environment, including x, y, and z coordinates.
The geographical basis for this model was a terrain structure
located on Christmas Island, Australia. To ensure detailed
threat representation within these simulations, each threat
was modeled as a cylindrical entity. The exact center coor-
dinates and radius of all threats are comprehensively docu-
mented in Table. 3, Table. 6, and Table. 9, corresponding to
the respective battlefields. We also designated start (S) and
end (T ) nodes for each battlefield at specific coordinates.
For battlefield 1, the coordinates were S1(200, 100, 150)
and T 1(800, 800, 150). For battlefield 2, they were
S2(200, 200, 150) and T 2(800, 800, 150). For battlefield 3,
they were S3(200, 200, 150) and T 3(780, 600, 150). This
experimental setup allowed us to examine the performance
of PMST-CHIO under various conditions, thus facilitating a
comprehensive evaluation of its capabilities.

In addressing the selection of problem dimensions for
our simulations, we chose dimensions of 10, 20, and 30 to
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represent varying levels of complexity. This approach was
intended to evaluate the adaptability and effectiveness of the
PMST-CHIO algorithm across different scales. We observed
that increasing the problem dimensionality escalated the
complexity of path optimization, influencing the algorithm
performance. These findings, detailed in our analysis, demon-
strate PMST-CHIO’s capabilities and limitations in handling
diverse operational scenarios.

In order to maintain consistency across the tests, we have
established a set of control parameters for the PMST-CHIO.
The parameters are as follows: the Herd Immunity (HIS) pop-
ulation size is set at 30; the number of initial infection cases,
or the index case, denoted by C0, is 1; the basic reproduction
rate, BRr l , for each lth CHIO candidate is randomly assigned
within the range of 0 and 1, where l is any integer belonging
to the set

{
1, 2, . . . ..NSub_HIP

}
; the maximum age of infected

cases, denoted as MaxAge, is capped at 100; the number of
treated swarms or herd immunity sub-populations, denoted
as NSub_HIP, is set to 20; each sub HIP is correlated to a
single CHIO worker; the threshold iteration, represented as
MaxP_Itr , is fixed at 9000. Furthermore, the evaluation of
PMST-CHIOwas performed over a maximum of 10000 itera-
tions (denoted asMaxItr , and each experiment was replicated
20 times indicated as Runmax to ensure reliable and statisti-
cally sound results. In order to comprehensively analyze the
performance of PMST-CHIO, we calculated the best, worst,
mean, and standard deviation (std.) for all results obtained.
This rigorous procedure provided a broad-spectrum analysis,
offering valuable insights into the operational efficiency and
potential applicability of PMST-CHIO in diverse battlefield
scenarios.

In the quest to understand of different algorithms in the
context of simulated battlefields, the PMST-CHIO algorithm
was compared to the CHIO and four distinct algorithms,
under identical conditions, across three different battle-
field scenarios. The considered algorithms are the Spherical
Vector-based PSO (SPSO) [9], the widely recognized PSO,
the Artificial Bee Colony (ABC) algorithm [30], and the
Differential Evolution (DE) [31]. A comprehensive collation
of the results acquired from all six algorithms, across the
three simulated battlefields, is provided in Table. 4, Table. 7,
and Table. 10. To delve deeper into the statistical aspects of
these results, Wilcoxon’s rank-sum nonparametric statistical
test was employed. The results of this statistical test are
available in Table. 5, Table. 8, and Table. 11, with a signif-
icance level set at 0.05. The algorithms that offered superior
results and rankings are distinguished by their presentation in
bold. Furthermore, the convergence behavior of the PMST-
CHIO algorithm was scrutinized in direct comparison with
other algorithms across all tests. The graphical depictions of
convergence curves for the PMST-CHIO and its counterparts,
tailored to each of the three battlefield scenarios, can be found
in Fig. 7, Fig. 11, and Fig. 15. Adding another layer of visual
understanding, boxplot diagrams for each battlefield have
been provided in Fig. 10, Fig. 14, and Fig. 18, corresponding
to battlefield 1, 2, and 3 respectively.

In these graphical representations, the black central line
within each box signifies the median, while the edges of the
box delineate the 25th and 75th percentiles. The whiskers
stretch to incorporate the most extreme data points, exclud-
ing any outliers, which are individually plotted. Each box
encapsulates results from 20 individual runs. Finally, the path
planning results, as optimized by the PMST-CHIO along
with the five other competing algorithms, are presented in
a bird’s-eye view format in Fig. 8, Fig. 12, and Fig. 16 for
battlefields 1, 2, and 3 respectively. Additionally, a more
immersive, 3D perspective of these results can be found in
Fig. 9, Fig. 13, and Fig. 17, correspondingly.
BATTLEFIELD 1: In the initial experimental analysis cor-

responding to the primary battlefield, a careful examination
of the data presented in Table. 2 indicates the superior perfor-
mance of PMST-CHIO over its counterparts. This dominance
is observed across key performance indicators, including
best, worst, mean, and standard deviation metrics. Not only
does PMST-CHIO consistently deliver competitive results,
but it also surpasses the standard CHIO model on most com-
parative indices. The superior performance of PMST-CHIO
can be attributed to its unique and effective mechanisms.

The innovative strategy of PMST-CHIO enables it to han-
dle a multitude of randomly generated multi-swarms both
swiftly and independently, adhering to the standard CHIO
protocol. However, it differentiates itself in the application
of the fundamental reproduction rate parameter, where each
subset of swarms is processed utilizing a unique value of this
parameter. Two pivotal mechanisms further empower PMST-
CHIO. Firstly, it harnesses the best solution discovered by
the leading CHIO worker to execute global exploitation.
Secondly, it ceases the exploration of the parallel multi-
swarms and substitutes it with the exploration undertaken
by the most proficient CHIO worker. This transition is trig-
gered when the algorithm’s current iteration reaches a preset
threshold. The combination of these modifications signifi-
cantly boosts the global exploration and exploitation capa-
bilities of the PMST-CHIO and improves its convergence
behavior.

As illustrated in Fig. 7, the PMST-CHIO model exhibits
a satisfactory convergence rate when compared with its rival
algorithms. This particular strength of PMST-CHIO is further
highlighted through the boxplot diagrams detailed in Fig. 10.
The diagrams vividly demonstrate that PMST-CHIO holds
the edge in producing the minimum average value, distin-
guishing itself amongst its algorithmic competitors.

Shifting the focus towards the non-parametric statisti-
cal analysis, the superior performance of PMST-CHIO is
robustly supported byWilcoxon’s rank-sum test, as explicitly
set forth in Table. 5. This data testifies to the algorithm’s
robustness, outshining all other contenders in the field. Our
attention is drawn to Fig. 8 and Fig. 9, which offer an
enlightening perspective on the flight paths mapped by the
UAV, as calculated by PMST-CHIO, CHIO, and four alterna-
tive algorithms. The flight paths optimized by PMST-CHIO
stand out for their smoothness and are notably efficient in
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TABLE 3. Parameter settings for threats relative to the first battlefield.

TABLE 4. Experimental results obtained for the six experimented algorithms relative to the first battlefield.

TABLE 5. Summarised Wilcoxon rank-sum comparisons between the PMST-CHIO algorithm as a reference and five experimented algorithms for the first
battlefield.

evading threat areas, resulting in the least threat cost, further
amplifying its operational efficiency. A stark contrast is
observed when we examine the quality of paths produced by
CHIO, PSO, and ABC, as displayed in Fig. 8 and Fig. 9. It is
apparent that these algorithms struggle to deliver quality in
terms of stability and the ability to circumvent local optima,
leading to subpar paths. Although the remaining algorithms,
specifically SPSO and DE, show potential by uncovering an
acceptable optimal flight path, they are still no match for
PMST-CHIO in terms of path quality. In summary, PMST-
CHIO not only exhibits an impressive speed of convergence
but also excels in generating optimally smooth and safe UAV
flight paths.
BATTLEFIELD 2: In this experimental trial, the

battlefield–which serves as the subject of our investigation–is
faced with a heightened magnitude of threats, encompassing
nine distinct elements distributed across the expanse of the
battlefield. The challenge of path planning in this context
evolves into a problem of considerable complexity, with
as many as twenty dimensions to consider. The superior
performance of the PMST-CHIO algorithm over its com-
petitor algorithms is apparent across a range of performance
indicators, as detailed in Table. 7. This comprehensive table
demonstrates how PMST-CHIO surpasses its rivals in every
category, offering the best, worst, mean, and standard devia-
tion outcomes.

From a statistical perspective, PMST-CHIO’s superiority
is even more evident, outpacing all methods under consid-
eration. Fig. 11 provides a clear visual illustration of this
algorithmic edge. PMST-CHIO demonstrates not only a faster

FIGURE 7. Comparative convergence curves of algorithms for
battlefield 1.

convergence to the optimal flight path but also a superior
quality of the final result when compared to its competition.

Fig. 14 further amplifies this point, with the boxplot
diagrams depicting the unambiguous dominance of PMST-
CHIO over other algorithms in terms of performance.Moving
on to Fig. 12 and Fig. 13, they offer different perspectives—
overlooking and 3D views respectively—on the flight paths
determined by PMST-CHIO, CHIO, and four other algo-
rithms under consideration. The initial analysis of these
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TABLE 6. Parameter settings for threats relative to the second battlefield.

TABLE 7. Experimental results obtained for the six experimented algorithms relative to the second battlefield.

TABLE 8. Summarised Wilcoxon rank-sum comparisons between the PMST-CHIO algorithm as a reference and five experimented algorithms for the
second battlefield.

FIGURE 8. Overhead perspective of pathways created by PMST-CHIO
algorithm and competing algorithms on battlefield 1.

figures reveals that the PMST-CHIO optimized flight path
stands unparalleled among all tested methods.

It shines particularly in terms of stability of the flight path
and the successful circumvention of local optima. Mean-
while, the paths generated by CHIO and other algorithms

FIGURE 9. Three-Dimensional perspective of pathways produced by the
PMST-CHIO algorithm and Its competitors on battlefield 1.

under scrutiny fall short, failing to achieve the supe-
rior quality of flight paths produced by the PMST-CHIO
optimization.
BATTLEFIELD 3: In the forthcoming experimental analy-

sis centered around the intricacies of the third battleground,
composed of eleven distinct threats, the proposed algorithm
exhibits a notable superiority over its rivals in terms of the
best, worst, mean, and standard deviation values, as distinctly
evidenced in Table. 10. The PMST-CHIO, while conceding
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TABLE 9. Parameter settings for threats relative to the third battlefield.

TABLE 10. Experimental results obtained for the six experimented algorithms relative to the third battlefield.

TABLE 11. Summarised Wilcoxon rank-sum comparisons between the PMST-CHIO algorithm as a reference and five experimented algorithms for the
third battlefield.

FIGURE 10. Boxplot representations comparing the performance of all
algorithms on battlefield 1.

a somewhat slower convergence velocity, steadily tends
towards a superior fitness value, superseding all alternative
algorithms (refer to Fig. 15). As corroborated by Table. 11,
the PMST-CHIO emerges as the algorithm demonstrating
superior performance supremacy over all other contenders.

FIGURE 11. Comparative convergence curves of algorithms for
battlefield 1.

The boxed-plot visualizations encapsulated in Fig. 18 lend
further credence to this superiority of PMST-CHIO, con-
sistently outmatching its competition. Fig. 16 and Fig. 17,
offering a broader perspective via overlooking and 3D
views respectively, delineate the flight trajectories generated
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FIGURE 12. Overhead perspective of pathways created by PMST-CHIO
algorithm and competing algorithms on battlefield 2.

FIGURE 13. Three-Dimensional perspective of pathways produced by the
PMST-CHIO algorithm and Its competitors on battlefield 2.

by PMST-CHIO, CHIO, and four additional algorithms
addressing the 30-dimension problem, given a minor adjust-
ment to the terminal point coordinates.

Despite alterations in flight circumstances, PMST-CHIO
continues to generate efficient flight paths of superior quality.
Intriguingly, the optimized flight trajectories as developed by
PMST-CHIO, SPSO, DE, and ABC, demonstrate a minimal
level of interactions with the threat zones within the battle-
field. This stands in stark contrast to the scenarios involving
CHIO and PSO. These latter algorithms appear to demon-
strate a marked deficiency in the effective resolution of the
problem at hand, a fact clearly reflected in their respective
optimized flight path configurations.

VI. ADVANTAGES, DISADVANTAGES, AND FURTHER
ENHANCEMENTS OF THE PMST-CHIO ALGORITHM
Our comprehensive analysis of the PMST-CHIO algorithm,
applied across three distinct battlefields, clearly demonstrates

FIGURE 14. Boxplot representations comparing the performance of all
algorithms on battlefield 2.

FIGURE 15. Comparative convergence curves of algorithms for
battlefield 3.

its superiority over the competing algorithms. It consistently
outperforms them based on all the primary performance met-
rics, such as the best, worst, mean, and standard deviation val-
ues, regardless of the varying complexities and constraints of
each battlefield. This distinguishing performance is attributed
to its unique parallel multi-swarm treatment and dual strate-
gies, which include leveraging the optimal solution from the
lead CHIO laborer and halting parallel multi-swarm explo-
ration upon reaching a certain threshold. The algorithm’s two
key strategies are:

1. Parallel Multi-Swarm Treatment: Utilizing multiple
independent swarms to scan the search space, enhancing
convergence speed and accuracy.

2. Dual Strategies:
• Exploiting the optimal solution from the lead CHIO
laborer to guide the other swarms.
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FIGURE 16. Overhead perspective of pathways created by PMST-CHIO
algorithm and competing algorithms on battlefield 3.

FIGURE 17. Three-Dimensional perspective of pathways produced by the
PMST-CHIO algorithm and Its competitors on battlefield 3.

• Terminating parallel multi-swarm exploration upon
reaching a user-defined satisfactory solution threshold.

The PMST-CHIO algorithm’s primary advantages are:
1. Enhanced Exploration and Exploitation: Its multiple

autonomous CHIO instances within sub-swarms significantly
improve exploration and exploitation.

2. Optimized for Individual UAVs: Tailored for single
UAV path planning, it offers improved navigational accuracy
under complex 3D environments.

3. Adaptive Strategy: A strategic shift from parallel to
focused exploration by the top-performing CHIO candidate,
enhancing global search efficiency and convergence.

However, the PMST-CHIO algorithm has certain limita-
tions. It shows slower convergence in complex scenarios like
Battlefield 3, which hasmore threats. Its effectiveness heavily
depends on the leading CHIO laborer’s performance and
the pre-set iteration threshold. To address these issues and
enhance the adaptability, robustness, and efficiency, we pro-
pose the following improvements:

FIGURE 18. Boxplot representations comparing the performance of all
algorithms on battlefield 3.

1. Enhancing Convergence Speed in Complex Scenar-
ios:
• Implement adaptive parameter tuning based on scenario
complexity, including a dynamic adjustment mechanism
for exploration and exploitation balance.

• Integrate faster-converging algorithms, such as Genetic
Algorithms and Particle SwarmOptimization to comple-
ment PMST-CHIO’s strengths.

• Employ advanced machine learning techniques, e.g.,
deep learning models, for quicker and more accurate
decision-making under varying scenarios.

2. Mitigating Dependence on the Lead CHIO Laborer:
• Develop a diversified leader selection strategy, incorpo-
rating multiple metrics for selecting leaders and reduc-
ing reliance on a single laborer.

• Promote collaborative learning and information shar-
ing among swarms, leveraging collective intelligence to
enhance overall decision-making.

3. Addressing Sensitivity to Pre-Established Thresh-
olds:
• Introduce a dynamic threshold determination mecha-
nism, which adapts to changing environmental condi-
tions and algorithm performances.

• Implement feedback loops for continuous performance
assessment, allowing real-time adjustment to thresholds
based on the current algorithm efficacy.

4. Broader Algorithmic Improvements:
• Establish a protocol for continuous benchmarking
against the newly developed and existing algorithms to
ensure PMST-CHIO’s competence.

• Explore and test the proposed algorithm in a wider range
of applications beyond Battlefield 3, including logistics,
network routing, and other complex real-world scenar-
ios.

The algorithm’s disadvantages include its complexity,
increased resource intensity due to multiple autonomous
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CHIO instances, and its specificity to UAV path planning.
The proposed enhancements will substantially improve the
algorithm performance and applicability in diverse scenarios.
Future research will focus on refining convergence speed,
developing a more robust algorithm via different swarm-
based optimization approaches or machine learning integra-
tion, and expanding its application domains. The PMST-
CHIO algorithm, with its potential to surpass the existing
algorithms, marks a promising breakthrough in the swarm-
based optimization.

VII. CONCLUSION
In conclusion, the PMST-CHIO algorithm has shown its
effectiveness in comparison with other algorithms through
a comprehensive set of experimental trials executed across
three distinct battlefields. This algorithm’s superior perfor-
mance, evident in various measures such as best, worst,
mean, and standard deviation values, coupled with its fast
convergence rate and production of high-quality flight paths,
underscores its superiority. The mechanisms inherent to
this algorithm, including parallel multi-swarm management,
global exploitation, and transitioning from parallel multi-
swarm exploration to the guidance of the leading CHIO
worker, have been instrumental in its success.

However, it is important to note that the PMST-CHIO
algorithm is not without limitations. Its convergence speed
tends to decelerate in more complex situations, and there is a
significant dependence on the efficiency of the leading CHIO
laborer. The algorithm is also sensitive to the pre-established
threshold for parallel exploration.

Despite these challenges, the PMST-CHIO algorithm’s
impressive performance illustrates its value in real-world
applications. Although its use has been primarily focused on
UAV flight path optimization, its potential extends beyond
this application, suggesting it could be an effective solution
for a wide variety of optimization issues, particularly in com-
plex environments. The algorithm’s remarkable performance,
even with its present constraints, demonstrates its consider-
able promise in numerous application areas.
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