
An experimental examination of program

maintainability as a function of

structuredness

E. Georgiadou, G. Karakitsos, D. Stasinopoulos,

C. Sadler & R. Jones

School of Computing, University of North London,

2-Jg Eden Grove, loWom, 7V7 (9DB, CW

Abstract

The general ethos of producing structured programs has been, at least in
theory, adopted throughout the software engineering community. By studying and
measuring the structure of existing software we can estimate the benefits to be
gained from changes in the structure in terms of the external attributes (perceived
behaviour) of the re- structured software. [13, 2, 3, 10, 6, 7]. In this paper we
report the results of two controlled experiments measuring the improvement on the
maintainability of differently structured code. These experiments build on the
experience and insights gained through an earlier experiment [5]. We discuss a
strategy for re-structuring based on an improved re-engineering factor [9] and
present the static measures of morphology (depth and width of module calls),
coupling and cohesion and module complexity of a range of programs. By plotting
these measures and adopting target values (e.g. width of call < 5) we estimate the
expected improvement in the maintainability after re-engineering. We subsequently
carry out the re-engineering, measure the re-structured code statically and
measure the actual maintainability experimentally. The results reveal that
unstructured programmes take longer to 'reveal their secrets'. An integral part of
this work are the design and execution of controlled experiments as well as the use
of automated tools for the static analysis of code and the recording of the
experimental data.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

752 Software Quality Management

1. Introduction

In the last twenty years the software engineering community has adopted
structured methods for the development of software. However, it is not always
obvious or certain that the methods ensure the production of structured programs.
Furthermore the degree of structuredness cannot always be measured

Several attempts have been made to define the attributes of a structured
program in terms of the constructs it uses (sequence, iteration, selection). Fenton
[6] provided a rigorous definition in terms of S-Structures using only sequence
and nesting. When attempting to re-structure code one needs to ascertain the
degree of structuredness of the given code as the re-structuring process is both
time-consuming and expensive.

In an attempt to gain insights into the structure of software we examined
the global attributes of morphology and coupling and we subsequently looked
at the cohesion and complexity of the individual modules. We produced the static
measures for a variety of programs [12] and carried out re-structuring of the
original code according to established rules [7, 1,9].

In each experiment, both versions of the program (original and re-
structured) were seeded with errors and corrective maintenance was carried out
under controlled conditions. Automated tools for the analysis and the monitoring
of the maintenance activity were used. [14]. The automatically stored data was
analysed [8] and conclusions were drawn.

Section 2 of this paper provides the hypothesis under test, and the static
analysis of code in terms of global and module-based attributes. It discusses
examples of the measures produced. Section 3 deals with the design and conduct
of the experiments and section 4 reports the results and their interpretation.
Finally Section 5 provides the conclusions and future directions of this research
work.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 753

2. Re-structuring Software
2.1 Strategy for re-structuring

The re-structuring strategy is based on analysing the code in order to
identify problem areas such as high concentration of calls and high McCabe
complexity measure. The code is then modularised according to established rules
[1, 9]. It is expected that structured programs are easier to maintain and It is
therefore the expected mean time to find and correct an error in a structured
program should be smaller than the time taken for an equivalent unstructured
version.

The rationale is based on the need to measure simple (internal) software
attributes in order to estimate and measure the more complex ones (external
attributes) such as maintainability. Measuring the maintainability of a program
provides an understanding of its the quality. It is desirable to produce software of
high maintainability [16, 2, 1, 17].

2.2 Global View : The overall structure

When judging the overall shape of a tangible object we look at its
proportions and the way its constituent parts are connected. Certain shapes are
pleasing to the eye either because of their symmetry or smoothness of contours. In
addition, the shape of an object may be dictated by its purpose (use).
Unfortunately it is not possible to judge programs in the same way. However, its
is possible to model the shape of a program in terms of the inter-relationships of its
modules. The shape of a program known as its morphology [18] is given by its
call-hierarchy, the way the individual modules are inter-connected. Researchers
and practitioners on this aspect have identified four attributes of morphology
namely size, depth, width and connectivity density. All these measures can be
obtained from the call-graph where each module is represented by a node and each
call by an arc.

The size of the call-graph can be the number of modules and the number
of calls or even the sum of the two. The depth is the longest path from the root
node to a leaf node and the width is the maximum number of nodes at any one
level. Finally the connectivity density is the ratio of arcs to nodes which increases
as more connections (calls) between modules are added.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

qj
<u60
CO
cd
s

oi

O
00

Fig. 1 Call Hierarchy Matrix

2 3 4 5 6 7 B 9 10 11 12 13 14 13 16 17 18 19 20 21 22 23

1 1 11 1 1 1

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

2cd

C3
o

o

Fig. 2 Connectivity density matrix

™ " "" ̂ "

231 8 5

44 45 46 47 48 49 50 51 32 53 84 33 56 87 58 89 60 tl M „ (4 «5 H «7 (8 (I 70 71

1 1 1 1 1

>t

3

G
2

PQ

1 3i a2 1

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

756 Software Quality Management

We present one example program which was analysed to produce measures of
inter-modular and intra-modular attributes. Figure 1 shows the Call Hierarchy Matrix
which together with the levelling information (Table 1) provide the architecture of the
whole program. Furthermore, figure 2 shows the density of module calls also in matrix
form. It can be seen that the program has 71 modules.

The total number of calls was found to be equal to 493 giving an average
connectivity density of 7. In this particular example about one third of the calls are
made from module 6 to module 32. This high concentration of calls rather distorts the
overall result. In fact it is a call to a library routine which for the sake of this calculation
we can ignore obtaining a more realistic average connectivity density of 4. This means
that on average each module is called four times. It is important to examine the reasons
why one of the modules is called so many times and ensure it is tested exhaustively. A
well balanced graph tends to be an indication of a "balanced* design.

Table 1 : Levelling of Program Modules

level
0
1
2
3
4
5

width
14
21
15
13
5
3

max width = 21 (level 1)

max number of calls = 231 on module 32

2.3 Coupling of modules

Coupling is a measure of module interdependence and it involves two modules.
The global coupling is the overall connectivity of the system represented by a directed
graph showing all the connections (calls between modules) including multiple
connections between two modules. Low coupling is desirable.

The global coupling can be obtained from the median value of the set of pairwise
coupling values c(ml, m2) which are calculated using formula 1 and the coupling
classification shown in table 2 [6] where ml and m2 are the connected modules, i the
worst type of coupling between them and n the total number of interconnections between
ml and m2.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 757

c(ml,m2)= i + [n/(n+l)] [lj

Table 2: Coupling Classification

Coupling identification Description Quality level
5 Content Coupling bad
4 Common Coupling |
3 Control Coupling |
2 Stamp Coupling |
1 Data Coupling V
0 No Coupling good

In this example the global coupling is equal to 2.95. The local coupling between
modules 6 and 32 is c(6, 32) = 1 + (231/232) = 1.987 (aprox. - 2).

2. 4 Intra-modular view

One fundamental attribute of program modules is that of cohesion. Another word
describing module cohesion is module strength which is the extent to which the module
components are needed to perform the same task. High cohesion is desirable and a rough
idea about its value can be obtained if the purpose of a module can be stated in a single
sentence. If this is impossible then the module is likely to perform many tasks which
means that it possesses sequential or communicational cohesion. It is believed that
programs made up of modules with functional cohesion are highly maintainable.

In the example presented here the cohesion ratio of the number of modules with
functional cohesion to the total number of modules is equal to 0.7 which means that this
program is expected to be highly maintainable.

2.5 Re-engineering factor

Before embarking onto the difficult and resource hungry activity of re-structuring
we can obtain an estimate of each programs re-engineering potential by calculating its
re-engineering factor which provides an indication of the amount of re-structuring
required for a specific program if a certain target is to be achieved [9]. Following the static
analysis we have measures of the code's attributes. The re-engineering factor can be
calculated using formula 2 where the ti's are the target values and the ai's are the actual
values and

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

758 Software Quality Management

tl = Target Local Variables
t2 = Target Granularity
t3 = Target McCabe
t4 = Target Information Flow

al = Actual Local Variables
a2 = Actual Granularity
a3 = Actual McCabe
a4 = Actual Information Flow

r = {[al+|a3|]*[a2+|a4|] - [tl+|t3|]*[t2+|t4|]}/[al +|a3|]*fa2+|a4|] [2]

When the value of r is high (nearly 1) then the program is a strong candidate for
re-structuring. Adopting the target values of Granularity <= 50, McCabe < = 5
Information Flow < = 5 and Number of identifiers < 5 we calculated the re-engineering
factors of 6 programs (Table 3).

It can be seen that Programs B and D are already well structured which in fact will
suffer deterioration if they undergo re-structuring according to the target. Program C is a
good candidate for re-structuring whilst the improvement expected for Program A is
minimal. Similarly Programs E and F can be re-structured to a 27% and 54% level.

Table 3

Prog A
Prog B
Prog C
Prog D
Prog E
Prog F
Target

Measures

McCabe Granularity Information Flow

2
26
3
8
10

33
7
91
9
31
70

50

14
7
1
2
21
8

Local
Variables

6
2
17
2
8
7

Re-engineering
Factor
0.08
-9.80
0.81
-10
0.27
0.54

0

2.6 Additional Static Measures

A reasonably large program written in C was analysed using MLT [12] to produce
static measures some of which are listed below [3, 10]. In addition, Table 4 shows the
number of local variables for each module, with the granularity of each module shown in
brackets.

Total number of statements = 2228 Number of modules = 71
Maximum Granularity 1079 (on yyparse) Average granularity = 31

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 759

The experimental material for each experiment consisted of two versions of a
program (written in C) carrying out the same tasks, using the same input and producing
the same output which differs from the required output due to seeded logic errors. Other
materials were hard copies of the program, its actual output, its required output and
simple user instructions on the interface.

The subjects were required to carry out a series of tasks starting with the loading
of the allocated version of the program and continuing with corrective maintenance in
order to produce the required output.

3 The experiments
3,1 The parameters

All the experiments in this series have been designed using the 4ET guidelines [4,
15].The hypothesis under test was : "Maintainability is a function of the program
structitredness" and more specifically " Programs with a high degree of structuredness
take shorter time to maintain".

The experimental subjects were beginners in programming having studied
principles of programming and the syntax of C for 8 weeks. They were familiar with the
fundamentals of the UNIX operating system.

3.2 The environment and recording the experimental data

The maintenance activity was carried out using the interface environment INTER
[14] running under UNIX. This is a non-obtrusive Open Windows environment which logs
the activity of the subject and the time of their actions. In particular the interface carries
out a comparison between the required output and the actual output every time the
program is executed and it logs exactly which errors have been rectified

33 The experimental procedures

Corrective maintenance is carried out on code which is behaving in a different
manner to the expected one. The mamtainers are provided with a listing of the program, a
printout of the required output and a printout of the actual output. The differences in
output are caused by carefully seeded errors which need to be located and rectified.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

760 Software Quality Management

Table 4 : Local Variables per module.

1 ..
2..
3..
4..
5 ..
6..
7 ..
8..
9..
10.
11 .
12.
13 .
14.
15.
16.
17.
18.
19.
20.
21 .
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33 .
34.
35.
36.

.(st:

.(st.

.(st:

.(st:
(st:

.(st:
(st.
.(st:
• (st:
..(st:
..(st:
..(st:
..(st:
..(st:
. (st:
. (st
..(st:
..(st:
• (st:
..(st:
. (st:
..(st:
. (st:
... (st:
. (st:
. (st:
(st

... (st:

..(st:

., (st:

..(st

.. (st:

. (st

. (st

..(st

. (st

1)
477)
122)
1)
85)
1079
18)
6)
5)
14)
14)
3)
7)
1)
6)
4)
3)
5)
11)
3)
5)
5)
3)
3)
3)
5)

: 2)
3)

: 3)
3)

: 9)
: 14)
: 7)
: 3)
: 3)
: 8)

(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
) (env.-ids
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids.
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids.
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids.
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids.
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:

0)
2)
12
0)
19)
: 2
5)
0)
0)
12
2)
0)
0)
0)
0)
1)
0)
0)
2)
0)
0)
0)
0)
0)
0)
2)
1)
1)
1)
1)
3)
6)
3)
1)
1)
1)

yywrap
yylex
) yylook
yyinput
main
) yyparse
alldis
prlev
whereinx
) tablecalls
prtable
yyerror
yyback
yyoutput
yyunput
consgen
length
isstrin
snocgen
appgen
delstr
delastr
noreplst
norepalist
Hast
loch
lobj
Isel
kpnts
Irmk
keep
MKstr
MKy
get_y
readit
mark

37.
38..
39.
40..
41 .
42..
43.
44..
45..
46.
47 ..
48 ..
49..
50 ..
51 .
52..
53..
54.
55..
56..
57.
58 .
59.
60.
61 .
62.
63 .
64.
65 .
66.
67.
68 .
69.
70.
71 .

.(st:

.(St.
..(St.
.(st.
..(st:
..(st:
.(st:
..(st:
..(st:
.. (St.
..(st:
.(st:
..(St.
(st:
.(st:
..(st:
..(st:
(st:

..(st:
.(st:
..(st:
.(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:
..(st:

35)
25)
25)
4)
7)
5)
4)
4)
21)
3)
6)
3)
1)
6)
6)
4)
4)
5)
21)
4)
6)
5)
5)
5)
1)
3)
9)
8)
8)
3)
9)
11)
3)
12)
3)

(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:
(env.-ids:

5)
7)
7)
0)
1)
2)
0)
0)
7)
1)
0)
0)
0)
0)
0)
0)
0)
1)
1)
0)
0)
0)
1)
1)
0)
0)
0)
0)
0)
0)
4)
i)
0)
1)
0)

mrkdis
pick
pickall
getitlist
getitsel
strfromy
getstrlist
prlst
pickifin
findsubs
pralist
xcalled
called
topfolds
lowfolds
prlst2
prlstcn
manifolds
dd ident one
dd ident
sel_dd
Icommon
subs
subs2
wherein
listcalls
isclose
isrecur
findcycle
nodeastr
rmcycle
nomr
recons
relocate
dftype

The whole process is monitored by a program which provides the interface through which
the maintainers load, compile and run the program. Each time the program is executed
the output is compared to the correct (expected) output without the programmer knowing
rt. When the programmer is happy or indeed when the time runs out or the programmer
gives up (!) they log out.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 761

The interface records all the activities. Two experiments were designed, planned and
conducted in two consecutive weeks. The reason for doing this was to ensure familiarity
with the environment and as a contingency in case of unforeseen circumstances (power
cut, system failure, fire).

4. Analysis of the data
4,1 Logistic regression

The data were analysed in two different ways. Firstly the number of errors found
was treated as a response variable in a logistic regression with binomial errors. The
appropriate model was fitted using GLIM4 [8] to investigate whether the probability of
detecting and correcting an error was higher in the case of the structured version of the
program than in the case of the unstructured version. The resulting probabilities from the
fitted model are shown in Table 5.

Table 5: Probability of error detection

1st
2nd

experiment
experiment

unstructured
0.3182
0.2500

structured
0.4091
0.7083

The probability for detecting an error for the structured program is higher in both
experiments. This confirms the hypothesis. In the case of the first experiment the
difference in probability is statistically significant at a 0.05 significant level whilst the same
applies to the second experiment at a lower significant level.

4.2 Time taken to correct errors

The second analysis is based on the time taken to find and correct an error in the
two program versions and the two experiments. Figures 3 and 4 show the total time
taken against the number of errors found. It can be seen that the structured versions
have, in general, lower values than the unstructured ones. This is more obvious in the
second experiment. Table 6 below confirms this observation . It shows the average time
taken to find and correct an error in the two program versions and the two experiments
(no errors found are excluded). The exclusion of the non hits is necessary but likely to
distort the results especially in experiment one where the success rate was lower.
Nevertheless the table shows a significant difference in the second experiment.

Table 6: Time taken to correct errors (in seconds)
unstructured structured

1 st experiment 4121 4089
2nd experiment 5708 2262

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

762 Software Quality Management

Figures & 4 : Time in seconds versus Number of errors

In the first experiment the programs contained 2 errors therefore the possibilities are 0, 1
or 2 errors. Similarly in experiment 2 the number of errors was equal to 4 giving rise to 5
possibilities namely 0, 1, 2, 3 or 4.

Fig. 3 Error corrections (Program 1^

time
msecs

A. unstructured
structured

Fig. 4 Error corrections (Program 2)
e oo o

time
in sees

unstructured
structured

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 763

5. Postscript
5.1 Conclusions

The experimental results suggest that the original hypothesis is true. Programs with
a high degree of structureless take shorter time to maintain. Existing code can be
analysed and re-structured provided it has a high re-engineering factor. Static analysis
tools indicate the problem areas which can then be isolated and improved.

5.2 The future

Further experiments have been planned to carry out adaptive maintenance. If any
industrial sponsors become available we aim to run the same experiments in industry
where the programs can be large. In addition the subjects can be experienced
programmers. Finally we intend to test the same hypotheses using other languages (Pascal
and C++).

Acknowledgements

The authors would like to thank all the students who participated in the
experiments and all the students and colleagues who contributed their help and
suggestions. Special thanks go to Betty Yeboah-Afari for assisting with the logistics of
the experiments.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

764 Software Quality Management

References

1. Beizer. B. ."Software Testing Techniques" Van Nostrand Reinhold, 1990

2 Choi, S.C. and Scacchi W. "Extracting and Restructuring the Design of Large Systems",
11 Software, January 1990

3. Copigneaux , F. "Trends Analysis in Software metrication", EUROMETRICS '91 ,
Mar. 1991, Paris, France

4. DESMET - EXPDA Working Documents - NCC, 1993

5. Easteal, C & Daves G. "Software Engineering Analysis and Design", McGraw-Hill, 1989

6. Fenton N. "Software Metrics - A rigorous approach", Chapman & Hall, 1991

7. Fenton. N. & Hill G. " Systems Construction and Analysis", MacGrw-Hill, 1993

8. Francis. B , Green, M. , Payne, C "GLIM4 ", Oxford University Press, 1993

9. Georgiadou E., Karakitsos G. , Sadler C, Stasinopoulos D. "An experimental examination of the
role of re-engineering in the management of sosftware quality", SQM'93 Conference
Proceedings, Computional Mechanics & at Publications, 1993

10. GilL G.K and Kemerer, C.F. "Cyclomatic Complexity Density and Software Maintenance
Productivity", 11 Trans, on SW Engineering, Vol.17 nO.12, pp 1284-1288

11. Institute of Electrical and Electronics Engineers, Inc. "Glossary of Software Engineering
Terminology", ANSI/11 , New York, 1983

12. Karakitsos G & Danicic S. "A i-Language Translator", University of North London,
Research Seminar Series, 1990

13 Lewis, T.W. "CASE: Computer-Aided Software Engineering", Van Nostrand Reinhold, 1991

14. Karakitsos G, Georgiadou, E., Jones, R. "INTER - An interface for recording experimental
data". University of North London - Research Seminar Series, 1992

15. Mohamed W.E. & Sadler, C T. "Design and Analysis of Experimental Design Procedures",
University of North London - Internal Report, 1992

16. Pressman R_S. "Software Engineering, A Practitioner's Approach" McGraw-Hill, 1992

17. Troy D. A. "Measuring Quality of Structured Designs", The journal of Software and Systems,
2, 1982

18. Yourdoo E. & Constantine L.L. "Structured Design", Prentice Hall, 1979

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

