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A B S T R A C T

Theories of embodied cognition agree that the body plays some role in human cognition, but disagree on the
precise nature of this role. While it is (together with the environment) fundamentally engrained in the so-called
4E (or multi-E) cognition stance, there also exists interpretations wherein the body is merely an input/output
interface for cognitive processes that are entirely computational.

In the present paper, we show that even if one takes such a strong computationalist position, the role of the
body must be more than an interface to the world. To achieve human cognition, the computational mechanisms
of a cognitive agent must be capable not only of appropriate reasoning over a given set of symbolic re-
presentations; they must in addition be capable of updating the representational framework itself (leading to the
titular representational fluidity). We demonstrate this by considering the necessary properties that an artificial
agent with these abilities need to possess.

The core of the argument is that these updates must be falsifiable in the Popperian sense while simultaneously
directing representational shifts in a direction that benefits the agent. We show that this is achieved by the
progressive, bottom-up symbolic abstraction of low-level sensorimotor connections followed by top-down in-
stantiation of testable perception-action hypotheses.

We then discuss the fundamental limits of this representational updating capacity, concluding that only fully
embodied learners exhibiting such a priori perception-action linkages are able to sufficiently ground sponta-
neously-generated symbolic representations and exhibit the full range of human cognitive capabilities. The
present paper therefore has consequences both for the theoretical understanding of human cognition, and for the
design of autonomous artificial agents.

1. Introduction

In cognitive science, theories that cognition is, in some sense, em-
bodied, can be traced back to two distinct origins (Chemero, 2009): a
reaction to the perceived inadequacies of purely computationalist ac-
counts, and a continuation of eliminitavist/anti-representationalist
theories of mind. The latter aims to understand cognitive systems by
characterizing the dynamics of their behavior and interactions within
the world (often using the language of dynamical systems), and is
usually explicit about positing fundamental roles for the body in cog-
nition. The former, meanwhile, aims to characterize the computations
taking place, and thereby often ends up producing an account in which
the role of the body is reduced to an interface with the world.

The observation that the precise role or details of the body are often

unclear if not explicitly ignored is not new (see, e.g. Ziemke, 2003;
Wilson, 2002). Robotic implementations of models of cognition con-
tribute to this as they can lead to the false assumption that merely
acquiring inputs from cameras and sending outputs to motors are suf-
ficient to provide an embodied model. Such approaches “… reduce the
body to a mere sensorimotor interface for internal processes that are
still just as computational as they were 30–40 years ago” (Ziemke and
Thill, 2014, p. 1). The main motivation often stated in robotics research
is that such a minimal embodiment is necessary to ground symbols so
that they acquire a meaning intrinsic to a cognitive agent as opposed to
one that is given by an external observer (as per the symbol grounding
problem, see Harnad, 1990). Once that intrinsic meaning has been es-
tablished, cognition using such symbols can be entirely computational.1

In the present paper, we argue that reducing the role of the body to such
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an interface is insufficient, even if it is accepted that human-level
cognition can be adequately modeled in a computationalist framework
assuming a body as a source and destination of data. This is because the
body fundamentally shapes the computationalist framework itself.

As far as theories of embodiment go, we therefore intentionally take
a very weak position. The contribution that follows from this is two-
fold. First, as already stated, we demonstrate that the role of the body –
even given this weak interpretation – must necessarily go beyond that
of a sensorimotor interface. It must also go beyond what is required by
symbol grounding considerations because it provides and shapes ne-
cessary computational mechanisms that cannot be disembodied. We
note that this is not an anti-functionalist argument; we merely reject the
claim that models that are implemented in a physical agent, but merely
use the available sensors and actuators to collect and deliver informa-
tion for otherwise computational approaches, are in any sense embo-
died (therein following Ziemke and Thill, 2014 albeit for different
reasons).

Second, we demonstrate that if one were to instead approach this
topic from a machine cognition angle (see, e.g. efforts in so-called
Artificial General Intelligence), then a body will again be necessary to
enable the full range of human cognitive abilities. This remains the case
even if one otherwise rejects stronger, possibly non-representationalist
positions on embodiment (for example, so-called 4E cognition, which
emphasizes the embedded, embodied, enactive, and extended nature of
cognition).

Of particular importance is that our argument does not rely on
circumstantial evidence of the involvement of sensorimotor cortices in
higher-level cognition. Although such an involvement is often put for-
ward as support for embodied theories (see Chersi et al., 2010 for an
example on language processing), it is just as often summarily rejected
by critics (e.g. Mahon and Caramazza, 2008). We also avoid the tradi-
tional symbol grounding (Harnad, 1990) route as a motivation (we do,
however, end up with an account in which symbols are also grounded
by design). Rather, the argument is simply driven from identifying the
computational abilities that human cognition requires, and demon-
strating that those necessitate action and perception to be able to
generate useful representational frameworks. While our argument
therefore uses some terminology from ecological approaches, the focus
on computation distinguishes the present argument from those ap-
proaches, which link cognition to both the environment and action/
perception abilities through the concept of meaning (Gibson, 1979).

We build the argument by first showing that an autonomous
adaptive agent needs both the ability to adapt to novel data and to
update its representational capabilities in relation to that data. We then
show that achieving the latter step requires the ability to generate
falsifiable hypotheses about novel representational frameworks. This, in
turn, requires the ability to act and perceive in the world (in particular,
it requires an a priori notion of action states); thus the action possibi-
lities and perceptive abilities of an agent are shown to be fundamental
to shaping the representational frameworks used by the agent.

In the following sections, we begin with considering requirements
on the representational frameworks of agents, and how it may be up-
dated. We first presents insights from the literature on biological agents
(including humans), and then discuss how one might approach this in
an artificial agent.

2. Updating the representational framework

2.1. In biological agents

For biological agents generally speaking, the matter has been con-
sidered in epistemological terms in biosemantics, a sub-branch of bio-
philosophy proposed by Millikan (1987) as an attempt to subsume
certain philosophical questions of representation and perception within
the purview of biology. This includes, in particular, the contingencies
that arise from consistency with respect to natural selection, where

organisms are naturally-selected for efficiency of their representative
capability in terms of either overall neuronal budget or total energy of
processing. Thus, the biological organism's representative capability
must, in addition to being maximally or near-maximally efficient, also
be of utility to the organism in perpetuating its genetic code (i.e. it must
be consistent with natural selection) if it is to be consistently propa-
gated.

In practical terms, this means that the organism must be able to
discriminate those entities (food, predators, mates, and more), that are
key to its survival and reproduction Piaget (1970). However, the bio-
logical agent will also have simultaneously acquired, by natural selec-
tion, an active capability that is likewise evolved to maximize the or-
ganism's ability to propagate its genetic code; i.e. its ability to interact
with the environment is adapted to maximize its survival and re-
productive capability (a lobster's claws are evolved for opening shells;
its eyes provide the appropriate visual capacity to achieve this end).
The perceptual and the active capabilities of most organisms have thus
evolved in lock-step; the organism perceives (since it must maximize
efficiency of representation) only that which is relevant to its survival
and reproduction with respect to its active capacity to achieve these ends.

While this primarily describes biological entities with a fixed post-
natal representational framework Sipper (1995), humans have, to a
larger degree than other animals, additionally acquired the capacity to
reconfigure their neuronal and perceptual structure in relation to the
environment in ways that go far beyond (whilst still incorporating) the
immediate biological requirements (cf. e.g. Stevens and Neville
(2006)). In other words, we have additionally evolved the capability of
adapting our representational directly to the world on a life-time scale.
Moreover, our perceptual re-configurations can be very abstract. Two
principal operative criteria for this adaptive perceptual updating are
apparent:

1. The need to obtain a maximally efficient representation of the en-
vironment.

2. The need to ensure the discriminability of the active capabilities of
the agent, as well as key entities related to survival/reproduction/
nutrition.

By the “discriminability of the active capabilities” in the latter cri-
terion, we mean the ability to perceive the outcomes of intended ac-
tions undertaken by the agent. That is, an intentional action (one in-
itiated by the goal-setting aspect of the agent's cognition) should be
susceptible to the sensory determination of its having taken place as
intended. In straightforward terms we might say that an intentional
action is one that has a specific percept as its success criterion.

2.2. In artificial agents

In an artificial learner, perceptual data generally exists on a mani-
fold with an intrinsic coordinate set. Equally, however, perceptual data
can consist of discrete entities within a common class (for example,
specific physical cups within the class ‘cup’). In first-order logical terms
these may be equivalently represented by scoped variables; we shall
refer to both as perceptual parameters.

An artificial agent that interacts with the physical world will typi-
cally need to learn on-line; this is a standard machine-learning setting
in which data (as the above) is presented serially in time (e.g. in re-
sponse to the agent's actions). It is necessarily forward-looking, pre-
dicting the label values of data not yet presented to the system, ad-
justing to any disparity with observed action outcomes. Such a system is
thus inherently adaptive; although the degree of adaptation will vary
from agent to agent (sophisticated variants may incorporate notions
such as transfer learning (Pan and Yang, 2010; Taylor and Stone, 2009),
anomaly detection (Chandola et al., 2009), and active learning (Settles,
2010; Koltchinskii, 2010)).

Interestingly, however – and despite this tendency towards

D. Windridge, S. Thill BioSystems 172 (2018) 9–17

10



increasing adaptivity – the majority of existing approaches typically
assume an underlying consistency in the representational characteristics
of the data; the data-stream presented to an agent is generally deli-
neated in terms of a fixed set of classes, or a fixed set of features (for
example, spatial interest points or texture-descriptors). Techniques exist
that partially address these limitations, such as in learners in-
corporating Dirichlet processes or similar to spawn novel states in re-
lation to the requirements of the data (Hoffman et al., 2010), which are
thus capable of expanding their representational characteristics to a
limited extent. However, such a learner would typically not be capable
of spontaneously carrying out as fundamental a representational shift as
that involved in the transition from, say, a low-level feature-based re-
presentation of the world (delineated e.g. in terms of CCD camera
pixels) to an object-based representation of the world (delineated in
terms of indexed entities with associated position, orientation, equiv-
alency classes, etc.), unless a prior capacity for object representation
had been incorporated into it.

Taking the notion of autonomously adaptive agency to its conceptual
limit would thus require that both the representational capabilities of the
learner as well its capacity to attain objective knowledge with respect to
this capability should be included in the autonomous learning process.
In other words, ideal artificial autonomous agents would be capable of
spontaneously reparametrizing their representation of the world in re-
lation to novel sensor data. They must not just be capable of updating
their model of the world, generated in terms of some particular re-
presentational framework; they must also be able to find an appropriate
transformation of the representational framework itself so that it most
effectively2 represents the totality of the temporal data.

Artificial agents, in the ideal case, therefore need to mimic the
ability of biological agents of updating representational frameworks as
sketched above. In the next section, we clarify the details of what this
entails; in particular for an artificial agent designed to function, in some
sense, in the real world.

3. Requirements for representational updating in artificial agents

Assuming a world model W (which captures the agents current
understanding of the world) and a representational framework R
(which governs how this knowledge is represented), ideal agents must –
to put the reasoning from the previous section in semi-formal terms –
perform the double transformational mapping R[W]→ R′[W′], com-
posed of the mappings R→ R′ and W→W′, such that the W and W′ are
guaranteed to both represent the same intrinsic set of entities via some
“noumenal equivalence” Equiv(R[W], R′[W′]).

Certain machine learning paradigms are inherently capable of such
a reparametrization (for example, manifold learning techniques (Zhang
et al., 2012) and non-linear dimensionality reduction techniques
Debruyne et al. (2010)), but for the present purposes, the specific
technique adopted is not significant. The key point is that, at the ter-
mination of the process, the agent arrives at both a reparameterized
perceptual framework R′ (such as an orthonormal basis in manifold or
sub-manifold coordinates) and a revised data set description W′ with
respect to the representational framework (e.g. following projection
into the manifold coordinates). Since the initial, pre-exploratory re-
presentational framework will necessarily contain much redundancy
with respect to an efficient post-exploratory representational frame-
work, this reparametrization will intrinsically involve a reduction in the
number of parameters required to represent the data.3 For example, the

determination of some data-derived sub-manifold, Ms, necessarily im-
plicates the existence of a projection operator such that the full range of
data in the original domain, W⊂M, can be mapped into Ms – for in-
stance, by collapsing data points along the orthogonal complement,

′
⊥W (M is the original sensory manifold, and Ms the re-mapped re-

presentational framework equipped with a suitable basis).
However, whilst there thus exists an intrinsic (though likely in-

computable) parameterization of any given dataset when considered
only in terms of the efficiency of representation, the ideal choice of
representation will also necessarily – and similarly to what we pre-
viously discussed for biological agents – depend on the purpose to which
the data set is put. When this purpose is interaction with the physical
world, the notion of optimal reparametrization of observed data is not
trivial. To give perhaps the simplest example of the resulting compli-
cations, we can consider Simultaneous Location and Mapping (SLAM,
Engelhard et al., 2011; Strasdat et al., 2010). In this approach, the ro-
botic agent's model of the world necessarily depends upon its calcula-
tion of its own position and orientation in the world (i.e. it must factor
its own perspectival world-view into the world model). However, this
positional calculation is itself dependent on (is relative to) the agent's
model of the world (i.e. the agent describes its own position and or-
ientation in relation to the world model). A SLAM agent will therefore
position itself in the world (perhaps using active learning (Fairfield and
Wettergreen, 2010) to minimize model ambiguity) by leveraging its
own, uncertain model of the world. Interconnected ambiguities are thus
always present in both the agent's self-model (of its location/orienta-
tion) and its model of the world, and the hope of SLAM robotics is that,
following full exploration of the environment, these ambiguities con-
verge to within some manageable threshold.

In general, the SLAM problem is not solvable unless certain a priori
assumptions are made. A key such assumption is that the environment
remains reasonably consistent over time. If an environment were to
undergo some arbitrary spatial transformation at each iteration of the
SLAM algorithm, then no convergence would be possible (and in fact
there would be no meaning to the concept of world model). However,
even much milder perturbations of the spatial domain would be suffi-
cient to ensure non-convergence of the algorithm.

A further key a priori assumption, one that shall be particularly
important in the following, but which is often overlooked, relates to the
robotic agent's motor capabilities. The robotic agent's motor capability
may, in this case, be considered as that which initiates the change of
perspective/change of representation. However, as such, it cannot in itself
be subject to empirical uncertainty (unlike the world model), and must
thus be assumed a priori. Colloquially, the agent might thus doubt it's
location, or its world model, but it cannot, if it is to work at all, doubt
the fact that a specific motor impulse has taken place (for instance, a
move forward or turn left command). The agent cannot converge on a
world model if, for instance, motor impulses to the actuators were to
undergo arbitrary permutation. Even non-arbitrary permutation would
not be distinguishable, even in principle, from a corresponding non-
arbitrary permutation of the observed world data. (This non-distin-
guishability of perceptual manipulations from motor manipulations is
absolutely fundamental, and has important consequences in our later
argument).

Thus, both the world-model and the agent's (orientation/position-
based) self-model are inherently posited relative to its motor impulses,
which can be considered to represent the agent's intentions in the sense
that the existence of a specific intention is necessarily not itself open to

2 In general, this ‘most effective representation’ will be determined by an
efficiency criterion: an agent would typically seek a transformation that mini-
mizes complexity (e.g. via a Minimum Description Length (Rissanen, 2010) or
an Occam's Razor type criterion).
3 The criteria for applying such a reductive reparametrization are open; we

could, for example, employ a model selection criterion such as the Akaike

(footnote continued)
Information Criterion to arrive at a principled way to determine the allocation
of manifold parameters in relation to the characterization of out-of-model data
(the latter is related to minimum-description length (MDL) approaches, which
in turn may be considered approximations of the ‘intrinsic’ (incomputable)
Kolmogorov Complexity of the observed data set).
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doubt to the agent, however uncertain its perceptual outcome might be.
Model convergence on a complete world model occurs only when the
outcome of all actions leads to predictable perceptual consequences (to
within some given threshold). We can thus consider the world model as
being mapped on to a grid of motor impulses such that, in a sense, the
agent's active capabilities provide the metric for its perceptual data (see
also Dewey, 1896; Glenberg, 1997; Lakoff and Johnson, 1999).

To summarize, where there exists the capacity for updating the re-
presentational capacity of an agent in relation to perceptual data that it
has sought-out on the basis of its original representation, there also needs
to be some mechanism for guaranteeing that there is either sufficient a
priori noumenal knowledge of the external world, or else that sufficient
a priori assumptions are made regarding the mechanisms (specifically,
agent actions) that initiate new data acquisition for the representation-
updating procedure to converge. While this is already a concern in
SLAM, the problem is much more acute in fully open-ended learning
scenarios where whole new categories of perception can be generated.
These a priori principles are fundamental, and have a long pedigree in
philosophical terms; we discuss this next.

4. Fundamental epistemic restrictions on representational
cognitive agency

4.1. Noumenal continuity across representational changes

We are essentially asking how, in an adaptive online learning con-
text, it is possible to empirically validate a proposed change to an
agent's representative capability (how is it, in a Popperian sense, pos-
sible to falsify a proposed representational update). Falsification of a
world model is, by comparison, straightforward in a standard autono-
mous robotic system, in that a world model typically constitutes a set of
proposed action possibilities (Gibson, 1979; McGrenere and Ho, 2000)
gathered at-a-distance by a vision system. Thus, the visual model ty-
pically denotes a set of object hypotheses that may be verified via
haptic contact (Saunders and Knill, 2004; Schlicht and Schrater, 2003).

In robotics, haptic contact is consequently often considered to be
prior to vision, or at least a priori less prone to ambiguity than vision,
something also evident in human terms. However, in a hypothetical
agent where there exists complete representational fluidity, such that a
completely novel sensorium could be presented to an agent (for in-
stance if sonar data were combined with visual data in some hybrid
world description without any prior information as to the nature of the
former), then it would not be possible to intrinsically favour one group
of senses/sensors over another in order to delineate hypotheses about
the world. Moreover, there would be no immediately obvious way to
form hypotheses about the most appropriate representational frame-
work to adopt.

To address this, we borrow a key insight from the philosopher Kant;
namely that object concepts constitute orderings of sensory intuitions
(Kant, 1999). Objects, as we understand them do not thus constitute
singular percepts, but rather synthetic unities built upon an a priori
linkage that must be assumed between sensory intuitions and the ex-
ternal noumenal world (these a priori links cannot be in doubt since
they are a condition of empirical validation for synthetic unities). Im-
plicit in this is the notion that actions can be deployed to test the va-
lidity of these synthetic unities (which being synthetic rather than
analytic are only contingently true, and therefore falsifiable through
experience). Actions are thus causally initiated by the agent and serve
to bring aspects of the synthetic unities to attention (within the a priori
strata of space and time) in a way that renders them falsifiable.

For Kant, assuming that spatiality and temporal causality are a
priori means that they are assumed by the agent in order to have fal-
sifiable perceptions at all. In principle, other ordering approaches to
sensory data may be possible; however, it would be impossible for the
agent to retain the continuity and falsifiability of object representation
across such a fundamental transition of representation (it would also be

impossible for a self-conscious agent to retain its identity – or “synthetic
unity of apperception” – across such a fundamental representational
chasm). This is the problem of “noumenal continuity”: how can an
agent that undergoes a change of representation framework at time t0
ever be sure that the objects delineated at t0− 1 were the same objects
as those delineated at t0+ 1? Indeed, would the number of objects even
be preserved?

In principle, there is thus a clear risk that an agent that undergoes a
representational change would be severely limited in the extent to
which it could use existing knowledge across these changes. One way to
avoid this risk is when representational changes are built hierarchically.
Such an approach will preserve an agent's ability to falsify both the
representational changes as well as any object hypotheses (synthetic
unities) formed in terms of these. Moreover, it does so while retaining
online continuity of object identity when extended in perception-action
terms.

We will demonstrate this for the example of hierarchical Perception-
Action learning in the next section. By way of example though, consider
how we, as humans, typically represent our environment when driving
a vehicle. At one level, we internally represent the immediate en-
vironment in metric-related terms (i.e. we are concerned with our
proximity to other road users, to the curb and so on, see Windridge
et al., 2013b). At a higher level, however, we are concerned primarily
with navigation-related entities (— e.g. how individual roads are con-
nected). That the latter constitutes a higher hierarchical level, both
mathematically and experientially, is guaranteed by the fact that the
topological representation subsumes, or supervenes upon, the metric
representation; that is to say, the metric-level provides additional “fine-
grained” information to the road topology: the metric representation
can be reduced to the topological representation, but not vice versa.

When goals and sub-goals are explicitly delineated at each level, this
is known in robotics as a subsumption hierarchy (Brooks, 1991). What we
argue for in this paper is that perceptual subsumption and task sub-
sumption need to be directly related to each other in an adaptive cog-
nitive agent in order to achieve the maximal cognitive updating po-
tential. In a fully adaptive online learner, it is then possible to allow
representational induction by adopting a correspondingly hierarchical
approach.

Thus, on the assumption of the existence of a priori means of vali-
dating low-level hypotheses (for example via haptic contact), it is
possible to construct falsifiable higher-level representational hypothesis
provided that these subsume the latter. For example, an autonomous agent
might, following active experimentation, spontaneously conceive a
high-level concept of action possibilities, or schema (Hintzman, 1986),
such as that provided by a container. Clearly, in this case, the notion
container subsumes the concept of haptic contact.

Continuity of noumenal identity must thus be guaranteed by the
lowest level of the hierarchy, with the higher hierarchical levels then
constituting progressive abstractions4 and enrichments of the lower
level representations. For example, an autonomous agent might initially
represent the world in terms of (hypothetical) volume elements such as
voxels or 3d meshes (the a priori bootstrap representation), but, fol-
lowing extensive experimentation, go on to generate an enriched re-
presentation of its world at a higher level in which “containers” and
“non-containers” are the symbols in terms of which the world is deli-
neated (note that the original, pre-symbolic representation of the world
in volumetric terms remains subsumptively present).

4 These abstractions can be conceived of as symbolic. For example, Eliasmith
(2013) proposes a cognitive architecture in which the symbolic entities ma-
nipulated in higher level cognition are built from successive (compressive)
abstractions in the sensorimotor hierarchies.
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4.2. Falsification of representational changes in terms of utility and
compressibility

The falsifiability of aspects such as the symbolic representational
notion “container” is guaranteed, just as it is possible to guarantee the
falsifiability of the hypothesis of the existence of any specific container,
by exploiting the fact that all such hypotheses can be linked to the
lowest level of the hierarchy, at which they are rendered falsifiable by
haptic contact: simply put, just as the agent can verify the presence of a
container by testing whether the proposed container-entity is, in fact,
capable of containing another object, the high-level representational
concept “container” is rendered falsifiable by the fact that it is conceived
along with a corresponding high-level action possibility e.g. “placing an
object into a container” that necessarily subsumes lower-level concepts
such as “haptic contact”. Thus, the representational concept is rendered
falsifiable on the basis of its utility and compressibility.

In other terms, the falsifiability of the representational notion
“container” arises from actively addressing the question of whether this
higher-level perception of the world (in terms of a series of objects in
space that are either container-objects or non-container-objects) in fact
constitutes a useful description of the world i.e. whether it yields a net
compression in the agent's internal representation of its own possible
interactions with the world. For example, if there were only a single
container in the world, or if it were not possible to train an accurate
classifier for containers in general, then it would be unlikely to con-
stitute a useful description of the world; it would likely be more effi-
cient simply to retain the existing concept of object without modifica-
tion. However, when the world is in fact constituted of objects for
which it is indeed an efficient compression of the agent's action-cap-
abilities to modify the object concept in this way, then it is appropriate
for a representationally-autonomous agent to spontaneously form a
higher level of its representational hierarchy (for an example of this
approach utilizing first-order logic induction, see Windridge and Kittler,
2010). Very often, compressibility will be predicated on the discovery
of invariances in the current perceptual space with respect to rando-
mized exploratory actions. Thus, for example, an agent might progress
from a pixel-based representation of the world to an object-based re-
presentation of the world via the discovery that certain patches of pixels
retain their (relative) identity under translation, such that it becomes
far more efficient to represent the world in terms of indexed objects
rather than pixel intensities (though the latter would, of course, still
constitute the base of the representational hierarchy). This particular
representational enhancement can represent an enormous compression
(Wolff, 1987); a pixel-based representation has a parametric magnitude
of Pn (with P and n being the intensity resolution and number of pixels,
respectively), while an object-based representation typically has a
parametric magnitude of ∼no, o < < n, where o is the number of
objects.

In positing this hierarchical approach to representational adapta-
tion, we have thus outlined a framework in which complete re-
presentational-autonomy for an embodied machine learner becomes
feasible, one in which representations are empirically falsifiable, and in
which the noumenal continuity of identified entities can be assumed
across representational transformations. A key aspect of this falsifia-
bility is the requirement that the spontaneous generation of higher-level
perceptions in the agent's representational hierarchy correlates directly
with higher level actions. We now look more closely at this perception-
action connection, and consider the low-level a priori guarantees of
representative falsifiability.

5. Example: hierarchical Perception-Action learning

To conclude our main argument, we demonstrate in this section,
how the above considerations can be implemented in practice in hier-
archical Perception-Action learning architectures. Perception-Action (P-
A) learning is a paradigm in robotics that aims to address significant

deficits in traditional approaches to computer vision (Dreyfus, 1972). In
particular, in the conventional approach to autonomous robotics, a
computer vision system will typically be employed to construct a world
model of the agent's environment prior to the act of planning the agent's
actions within the domain. Visual data arising from these actions will
then typically be used to further constrain the environment model, ei-
ther actively or passively (in active learning the agent actions are
driven by the imperative of reducing ambiguity in the environment
model).

However, it is apparent that there exists in this approach, a very
wide disparity between the visual parameterization of the agent's do-
main and its action capabilities within it (Magee et al., 2004; Nehaniv
et al., 2002). For instance, the parametric freedom of a front-mounted
camera will typically encompass the full intensity ranges of the Red,
Green and Blue channels of each individual pixel of the camera CCD;
thus the range of possible images that might be generated in each time-
frame is of an extremely large order of magnitude, despite only a
minuscule fraction of this representational space being ever likely to be
experienced by the agent. By contrast, the agent's motor capability is
likely to be very much more constrained parametrically (perhaps con-
sisting only of the possible Euler angle settings of the various actuator
motors). This disparity leads directly to the classical problems of
framing (McCarthy and Hayes, 1969), an issue shared with alternative
modalities to vision, such as LIDAR and SONAR.

5.1. P-A learning

P-A learning aims to overcome these issues by considering actions to
be conceptually prior to perceptions (Granlund, 2003; Felsberg et al.,
2009). In other words, perceptual capabilities should depend on action
capabilities and not vice versa. A P-A learning agent proceeds by ran-
domly sampling its action space (so-called motor babbling). For each
motor action that produces a discernible perceptual output in the
bootstrap representation space S (consisting of e.g. camera pixels), a
percept pi∈ S is greedily allocated. The agent thereby progressively
arrives at a set of novel percepts that relate directly to the agent's action
capabilities in relation to the constraints of the environment (i.e. the
action possibilities that exist in the environment): the agent learns to
perceive only that which it hypothesizes that it can change. Thus, the
set of experimental data points ∪ipi⊂ S can, in theory, be generalized
over so as to create a percept-manifold that can be mapped onto the
action space via the injective relation {actions}→ {percep-
tinitial}× {perceptfinal} (Windridge and Kittler, 2010, 2008; Windridge
et al., 2013a).

When such a perceptual manifold is created (representing a gen-
eralization over the tested space of action possibilities), this then per-
mits an active sampling of the perceptual domain – the agent can pro-
pose actions with perceptual outcomes that have not yet been
experienced by the agent, but which are consistent with its current
representational model (which guarantees falsifiability of the percep-
tual model). It is in this way that P-A-learning constitutes a form of
active learning: randomized selection of perceptual goals within the
hypothesized perception-action manifold leads more rapidly to the
capture of data that might falsify the hypothesis than would otherwise
be the case (for example, if the agent were performing randomly-se-
lected actions within in the original motor domain). Thus, while the
system is always “motor babbling” in a manner analogous to the
learning process of infant humans, the fact of carrying out this motor
babbling in a higher-level P-A manifold ensures that the learning
system as a whole more rapidly converges on the correct model of the
world.

5.2. Hierarchical P-A learning

In principle, this P-A motor-babbling activity can take place in any
P-A manifold, of whatever level of abstraction; we may thus, by
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combining the idea of P-A learning with the notion of hierarchical re-
presentation presented above, conceive of the notion of a hierarchically
subsumptive perception-action learner, in other words combining Brooke's
notion of task subsumption with the P-A notion of action preceding
perception. Such a system, employing iterative top-down motor-bab-
bling and bottom-up parametric reparametrization to generate a PA
subsumption hierarchy, was practically demonstrated, for example, by
Windridge and Kittler (2007) and Shevchenko et al. (2009).

In these systems, a vertical representation hierarchy is progressively
constructed for which randomized exploratory motor activity at the
highest level of the corresponding motor hierarchy rapidly converges
on an ideal representation of the agent's world in terms of its symbolic
affordance potentialities. These systems thus converge upon both a
model of the world, and an ideal strategy for its representation in terms
of the learning agent's action capabilities within it (the generalization
and parametric compression mechanisms in these systems, however,
were extremely different; employing string concatenation with re-
dundancy elimination, and first-order rule induction with reverse in-
stantiation, respectively).

Perceptual goals thus exist at all levels of the perception-action
hierarchy, and the subsumptive nature of the hierarchy means that
goals and sub-goals are scheduled with increasingly specific content as
high-level symbolic goals (such as “place ball in cup”) are progressively
grounded through the hierarchy. To pick up an earlier example, as
humans, we may conceive the high-level intention “drive to work”,
which in order to be enacted, involves the execution of a large range of
sub-goals with correspondingly lower-level perceptual goals such as
“stay in the center of the lane”, and so on.

5.2.1. Bijectivity constraints between action possibilities and percepts
To ensure that these hierarchical goals are most efficiently re-

presented, it is necessary to impose a bijectivity between actions and
possible percept transitions in order to induce the correct relationship
between representational subsumption for percepts P and Brooke's task
subsumption in relation to actions A. In particular, in order to retain
falsifiability of a proposed new action possibility, it is necessary to
impose up on any hypothesized new hierarchical perception-action
level the bijective constraint {actions}↔ {Pinitial}× {Pfinal}, where the
initial percepts are the necessary observed state of the world to initiate
the new high-level action and the final percepts are the target observed
state of the world expected at the end of the action.

Critically, this construction permits top-down instantiation of goal
parameters: a high level action naturally schedules a series of subtasks
at different levels of the task hierarchy (the actual sequencing of actions
will depend on the optimization mechanism). Also importantly, each
subtask has its own perceptual goal of the appropriate level of hier-
archical complexity (i.e. the appropriate ‘depth’). Each target object
must thus have a representation at every level of the hierarchy (e.g. a
“container” is also an “object” and is also “voxel cloud”). This re-
presentational subsumption is what allows the agent to falsify a spon-
taneously-hypothesized P-A notion such as container5.

5.2.2. Representational shifts in hierarchical P-A learning
The learning mechanism required in a bootstrap hierarchical P-A

learning agent is dictated by the supervised classification problem in-
trinsic in generalizing the outcome of exploratory actions driven at the

highest level of the hierarchy. In particular, the outcomes of ex-
ploratory actions (predicated for instance on the proposed notion
“container”) result either in the successful achievement of the final
perceptual state or its failure. Each exploratory action can thus be ac-
companied by a binary label {achieved, not_achieved}. The set of ex-
ploratory actions then form a training set that a supervised classifica-
tion system can generalize over. The generalized set of actions (with
appropriate perceptual goals) classified as achievable thus represents a
set of testable action hypotheses.

However, this generalization is not in itself sufficient to give rise to a
new (hypothesized) level of the hierarchy (and thus a new re-
presentational framework); for this, we require that the set of percepts
corresponding to the goal states of the generalized action can undergo
parametric reduction. In particular, they must be capable of parametric
reduction such that the bijectivity constraint {Action Possibilities}↔
{Pinitial}× {Pfinal} holds (this perceptual parametric reduction naturally
implies a novel higher-level action hypothesis). Only in this way can
high-level symbolic propositions such “place the ball in the cup” be
formulated ab initio.

This cycle (exploration, induction, perceptual reparametrization/
high-level action generation) can be iterated over until convergence is
achieved (when all action goals hypothesized to be achievable are in
fact achievable). It was shown by Windridge and Kittler (2007) and
Shevchenko et al. (2009) that this is a form of active learning that can
speed up world-model learning by several orders of magnitude. Further,
motor babbling within such an iterative bootstrap P-A learning system
can be shown to necessarily become increasingly intentional as time
progresses; an initial low level exploratory impulse generated randomly
results in apparently random movement similar to that of a new-born
child, while a randomly-generated high-level exploratory impulse in-
stantiating the perceptual parameters of, for example, the conjectural
action possibility “put into” would result in the apparently-purposive
action, such as placing a ball into a cup.

In terms of the previously discussed P-A bijectivity, the high-level
action “put into” is parametrized by the symbolic notion of “container”.
The parametrization can be treated in terms of first-order predicate
logic, with the action predicate ‘Put_Inton(On−1, Cn)’ being scoped over
the the object variable On−1 and the container variable Cn. The sym-
bolic perceptual notion “container” hence subsumes the symbolic per-
ception notion “object”. This is a strict form of conceptual subsumption
that, when translated via the bijectivity principle into the action space,
becomes equivalent to Brooke's notion of task subsumption: the per-
ceptual goal implicit in the action specifies a target state that a lower-
level task must be scheduled to achieve – for example, tasks of the form
“place hand around object”, “move hand”, and so on. The P-A bi-
jectivity principle does not specify how the task is to be optimally; this is
a free (and potentially hybrid) mechanical choice within the frame-
work. For example, in an artificial agent, optimal control may be used
at some particular hierarchical level, while simulated annealing might
be employed on another level to optimize task scheduling.

Note that for this subsumptive task-scheduling to be possible at all,
the perceptual target must have a corresponding perceptual subsump-
tion. To place and object in a container, the agent must move its object-
containing end effector toward a container object - on this level, the
target is an object, and only with respect to the higher-level action
‘Put_Inton(On−1, Cn)′ is the object also recognized as a container; i.e. it
has an additional, higher-level action possibility characterized by the
variable Cn. In other words, a specific instantiation of a container in Cn

also necessarily implies a corresponding instantiation of an object in
On−1, representing the targeted entity considered only as an object. A
cup is thus both an entity for containing coffee and a solid object, with,
for example, mass and a certain geometrical configuration). The in-
duced PA concept “container” is thus instantiated by specific container-
objects, however the notion itself is a generalization of the action
possibilities of containers in general. The induced notion “container” is
thus symbolic in that it can be employed (since it is capable of entering

5 Interestingly, representational subsumption occurs spontaneous in con-
volutional neural networks and is a key factor in their state-of-the-art perfor-
mance (Ranzato et al., 2007; Girshick et al., 2014; Liu et al., 2017), not least
because of the ready transferability of representations (Oquab et al., 2014). The
bijectivity constraint can thus in principle be incorporated into the deep-
learning objective function of an embodied agent to produce an agent capable
of open-ended learning (deep visuo-motor learning having already been de-
monstrated Porzi et al., 2017; Levine et al., 2016).
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into discrete, relational juxtapositions with other symbolic entities) to
pursue potentially counter-factual possibilities via instantiation (for
example, by attempting to treat a random object as a container).

6. Discussion and conclusions

In this paper, we explored what necessary mechanisms an artificial
agent needs to possess to achieve certain aspects of human cognition. In
particular, we highlighted the ability to update representational fra-
meworks in a manner that is useful to agent in question. We highlighted
the importance of noumenal continuity in relation to the question of
empirical validity and concluded that this can be achieved through an
appropriate subsumptive architecture embodying a perception-action
bijectivity criterion. We went on to demonstrate that hierarchical P-A
learning is a framework in which such an architecture can be realized.
Overall, the proposed framework for spontaneous symbol abstraction in
open-ended cognitive learning is thus intended to be of maximal gen-
erality, being learning-mechanism agnostic, on the proviso that the
bijectivity constraint is observed. The contributions of this framework
are two-fold, having implications for both theories of cognition and the
design of artificial agents, that we discuss here.

Throughout the paper, we have retained the assumption that cog-
nition can generally be thought of as symbolic computation. As far as
theories of embodiment go (Chemero, 2009), this is a weak position:
the body exists initially only because we are interested in agents that
operate in the physical world. Nonetheless, we quickly found that the
body must play a role that goes far beyond being a mere sensorimotor
interface to the world. An agent that proposes a representational update
must also propose a way to falsify this representational update in a
Popperian sense. We have shown, following Kant, that this must be
achieved through a priori action possibilities. This is the crucial aspect
that fundamentally involves the body in even otherwise computational
processes: the representational frameworks that are used are entirely
dependent on the embodiment of the agent.

The role of the embodiment of an agent therefore goes beyond an
interface between a computational model and the physical world; it
also goes beyond merely providing a mechanism by which to ground
symbols (Harnad, 1990); rather it determines the representational fra-
mework used for computation itself. The theoretical contribution to the
study of cognition therefore is that, even on the computational end of
the spectrum, the body has to be more than a mere interface. It follows
from this that the precise nature of the body must be considered even if
one is otherwise interested in constructing a purely computational ac-
count of cognition. First of all, this is because perception is not purely
external; living beings also integrate interoceptive information
(Stapleton, 2011) in cognitive mechanisms. Second, if an agent's per-
ceptive and motor abilities shape the framework in which its cognitive
processes take place, then characterizing this fully might require a
detailed understanding of the precise nature of these abilities. For ex-
ample, a human cannot pick up a red-hot piece of iron while a robot
might, even if both have appropriately shaped grippers. That said, it
remains to be explored what precisely the consequences of differences
in body are for higher-level cognition in particular (see also Thill,
2019).

We note of course that in 4E approaches to cognition, or even non-
representationalist interpretations (Chemero, 2009), the role of the
body is arguably embedded significantly further. Ziemke (2016), for
example, reviews a number of frameworks that focus on the role of
internal bodily mechanisms – for example, homeostatic mechanisms –
in grounding sensorimotor interaction itself, concluding, “[a]t least in
the case of natural cognition, that sensorimotor interaction with the
environment is itself deeply rooted in the underlying biological me-
chanisms, and more specifically layered/nested networks of bodily self-
regulation mechanisms”. P-A architectures such as the one considered
here have also been considered in more deeply embodied terms than we
do here; Vernon et al. (2015), for example, discuss the relevance of the

internal body (again, including mechanisms such as homeostatic reg-
ulation) in achieving such a P-A coupling in natural agents.

Here, we have therefore merely demonstrated a minimally neces-
sary role. This argument also demonstrates that using a robot merely to
ground symbols (e.g. Stramandinoli et al., 2011) is not enough to claim
an embodied model of cognition in a meaningful sense (though it is of
course valid, as in the cited study, to explore specific aspects of em-
bodiment, such as symbol grounding, in this manner).

For agents that have no particular embodiment, for example systems
as sometimes envisioned by some proponents of so-called Artificial
General Intelligence, the lack of means to falsify representational up-
dates through action linkages in the Kantian sense means that there is
no way of meaningfully generating such updates since there is no
principled way of falsifying them. Any proposed representational fra-
mework would be feasible in principle, but without a means to evaluate
its utility in the world the sole remaining intrinsic criterion for favoring
one framework over another would be its compressive capability
(natural selection as a means of establishing framework utility would
obviously also be inapplicable to a disembodied artificial agent). The
only fully model-independent (which is to say representation-in-
dependent) criterion for compressibility that could be applied would
involve a determination of the underlying Kolmogorov complexity of
the input stream; however, this is incomputable even in principle. There
would also be no principled a priori reason as to why compression could
not be allowed to be lossy, and therefore nothing to prevent the system
from collapsing all inputs into a single bit. To avoid this, some addi-
tional metric might be artificially imposed to assess whether the fra-
mework update is useful to the functioning of the system; however this
would necessarily only implicate a criterion of success or completion
with regard to the updating procedure rather than a criterion of fal-
sifiability. If the ability for representational updating is crucial for the
general nature of human intelligence, then the inability to achieve this
without embodiment fundamentally limits the utility of disembodied
models of cognition, at least in terms of achieving such a generality.

There are a few points to note about the framework proposed here.
First, at no stage is there any requirement for global hierarchical con-
sistency of representation (for example, as humans, we do not embody a
set of Cartesian coordinates or similar to describe the geography of our
locale; rather, we retain a series of motor imperatives that are triggered
in relation to key percepts: e.g. we thus ‘turn left at the town-hall’ rather
than head to a particular set of coordinates when navigating). For a
Perception-Action learning agent, the environment “becomes its own
representation” (Newell and Simon, 1976), which naturally represents a
very significant compression of the information that an agent needs to
retain. This further relates to the issue of symbol grounding (Harnad,
1990) in that symbolic representations are abstracted from the bottom-
up here (Marr, 1982; Gärdenfors, 1994; Modayil, 2005; Granlund,
2003). In principle, the present framework is thus a variation on the
notion of perceptual symbol systems (Barsalou, 1999), and a symbolic
description is arrived at similarly than in related approaches (for in-
stance the so-called Semantic Pointer Architecture, see Eliasmith,
2013). As in those approaches, symbols are thus always intrinsically
grounded by nature of their construction. The distinguishing feature is
that in the current context, this grounding is also the guarantor of their
falsifiability, as required for representational upgrading6.

We also observed, in passing, that motor-babbling at the top of the
representation hierarchy would necessarily involve the spontaneous
scheduling of perceptual goals and sub-goals at the lower level of the
hierarchy in a way that (as the hierarchy becomes deeper) looks in-
creasingly “intentional” (a phenomenon that is readily apparent in the

6 It can also be noted that, in humans at least, internal bodily mechanisms as
reviewed by Ziemke (2016), are likely relevant for this functionality. We do not
explore it further here since we are primarily concerned with a more compu-
tationalist stance.
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development of motor movement in human infants). This has implica-
tions for social robotics; in particular, it becomes possible to envisage
communicative actions. Here, the same bijectivity considerations apply
to perceptions and actions as before, however the induction and
grounding of symbols can in principle now be conducted through lin-
guistic exchange. The utility constraint on generated symbols remains:
they have to relate to a compact and useful set of action possibilities. In
addition, however, these action possibilities must be common to the
communicating agents since meaningful linguistic exchange can only
occur between agents with similar sensorimotor capabilities, a notion
that relates directly Wittgenstein's concept of the language game for
which the idea of a private language is meaningless.

In principle, such an approach would implicitly be a hierarchical
generalization of Steels's (1997) famous talking heads experiment in
artificial language formation. We can thus envisage the coeval gen-
eration of perceptual symbols and their corresponding actions within a
community of agents employing P-A subsumption. Typically, the most
efficient form of communication between individuals is in terms of the
highest levels of the P-A hierarchy, such that recipients of a linguistic
token ground its meaning via their internal P-A hierarchy (thus we tell
someone to “watch out for the car”, rather than instructing them on
which specific muscles to activate in order to accomplish this task). In
related work, Thill and Twomey (2016) explore these issues in more
detail, and, in particular, discuss how a framework such as that of
Eliasmith (2013) – which also employs hierarchical structures to derive
symbol-like entities – can be used to investigate how exactly differences
in the sensorimotor experiences of two agents (living or artificial) might
impact their ability to communicate about concepts.

To conclude, we have demonstrated how representational fluidity, a
necessary component of cognition, can be achieved in a computation-
alist framework. In addition to the specific contributions discussed
above, this is of general relevance for studying agents, living or artifi-
cial, for whom such a fluidity might play a role in cognition. We note of
course that this is to some degree a philosophical question first: if one
rejects representationalist frameworks outright as an adequate way of
modeling cognition, then there is also little point in considering re-
presentational fluidity in the way we have here. There is, however, a
point in considering the role of hierarchical structures, and P-A cou-
pling in cognition. In particular, the idea that agents might guide the
exploration of their abilities and environments using hypotheses that
are falsifiable through action does not depend on a computationalist
account. As such, much of what we have discussed in more theoretical
terms in this paper still applies, even if a model to demonstrate this will
rather look rather different.
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