Scalability Considerations for
Multivariate Graph Visualization

T.J. Jankun-Kelly', Tim Dwyer?, Danny Holten?, Christophe Hurter4,
Martin Néllenburg®, Chris Weaver®, and Kai Xu”

1 Mississippi State University, USA
2 Monash University, Australia
3 SynerScope, the Netherlands
4 Ecole Nationale de I’Aviation Civile, France
® Karlsruhe Institute of Technology, Germany
6 University of Oklahoma, USA
7 Middlesex University London, UK

Abstract. Real-world, multivariate datasets are frequently too large to
show in their entirety on a visual display. Still, there are many tech-
niques we can employ to show useful partial views—sufficient to sup-
port incremental exploration of large graph datasets. In this chapter we
first explore the cognitive and architectural limitations which restrict
the amount of visual bandwidth available to multivariate graph visual-
ization approaches. These limitations afford several design approaches,
which we systematically explore. Finally, we survey systems and stud-
ies that exhibit these design strategies to mitigate these perceptual and
architectural limitations.

Keywords: multivariate data, graph visualization, scalability, percep-
tion, cognition, GPU

1 Introduction

Scalability in visualization is a challenge: How do we choose to show more items
than can be easily rendered upon a screen or understood by a human effec-
tively? Multivariate graph visualization adds additional wrinkles in that nodes
and edges are no longer atomic entities. Rather, they are repositories for further
rich information. In information seeking, the mantra attributed to Ben Shnei-
derman succinctly outlines a path to visual scalability: “Overview first, zoom,
then details-on-demand” [68]. While this is good guidance, naively presenting
the whole universe of data as an initial “overview”, leads to dense, unreadable
displays (Figure M). To provide insightful visualizations at large scale for multi-
variate graphs, we must understand what our visual, cognitive, and architectural
limits are, then explore approaches to mitigate these limitations. Detailed views
must offer useful affordances for navigation to other views. The goals of this
chapter are to identify the challenges and the state-of-the-art in these areas.
At large scale, dense multivariate graphs devolve into hairballs (dense collec-
tions of nodes with heavily over plotted edges) or snowy wastes (highly populated

2 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

Fig. 1. Large (especially scale-free) graphs turn in to hairballs which make understand-
ing structure difficult (left). Matrix views can help, but have limited ability to convey
transitive structure at multiple levels and devolve into snowy wastes (right).

matrix diagrams with visually random structure) if the entire structure is shown
(Figure M). Perceptual and cognitive psychology outline what human visual and
mental limitations interfere with understanding such dense views; additionally,
there are hardware factors which band the amount of graph data that can be ren-
dered in a timely matter. By understanding these limitations, outlined in Section
B, designers can utilize the strategies explored in Section B to show only what
is needed when it is needed. Use of these strategies, and further studies on the
limits of scalability, are also presented in Section @ as a means to guide further
research. We conclude with a summary of challenges in scalable, multivariate
graph visualization.

2 Limits of Visualization

When attempting to display and understand data, there are limits to what the
can be humanly perceived and understood and what can be computed and dis-
played. To work around these limitations, they must be first understood. In
this section, we examine both perceptual and computational/hardware based
limitations to set the stage for the larger discussion of scalability in the next
sections.

2.1 Limits of Visual Acuity

As a sensor, the eye has several different resolving powers or acuities. These
acuities are measured based upon wvisual angle, the angle the viewed object(s)
subtends with respect to the eye. Ophthalmologists recognize four main acuities:
detection acuity (the smallest size an object can be before it cannot be seen),

Scalability Considerations for Multivariate Graph Visualization 3

recognition acuity (smallest size at which an object can be identified), resolu-
tion acuity (smallest distance between two objects before they seem to merge),
and localization acuity (smallest amount of visual change that can be measured
between two visible objects) [R6]. Perception literature in visualization has fo-
cused on the latter two, especially on point acuity (resolvability of two adjacent
points), stereo acuity (the ability to resolve objects at depth), and vernier acu-
ity (the ability to determine if two line segments are collinear) [75] (Figure D);
point acuity is a form of resolution (or ordinary) acuity and stereo and vernier
are localization acuities (hyperacuities). Resolution/point acuity are the primary
acuities from the standpoint of graph visualization design—it is important that
two separate edges, nodes, or matrix elements be resolvable.

Letter Grating Point Stereo Vernier

5’ arc 1-2’ arc 1’ arc 10” arc 10” arc

Fig. 2. Important acuities in visualization (after Ware [I7]).

Assuming perfect vision, standard point acuity is one arc minute per cycle—
i.e., two lines are perceived as distinct when one arc minute separates them.”
Thus, roughly two pixels per arc minute would generate a maximally point re-
solvable display.? Though this pixel density will not be able to perfectly resolve
hyperacuities, which are resolvable to 10 arc seconds, antialiasing can be used to
effectively resolve hyperacuities to sub-pixel resolution [75]. At a viewing distance
of 57 cm, this pixel density corresponds to 121 ppem (pixels per centimeter); at
reading distance, the density is 229 ppcm. If we relax this constraint to allow
point acuity sufficient for legal driving in most countries, about half that of per-
fect acuity [64,[73], the pixel density would need to be one pixel per arc minute,
or about 60 ppcm and 118 ppcem at viewing and reading distances respectively.
For comparison, the Retina displays from Apple vary from 128 ppcm on the

1 “Perfect acuity” here is taken as an accepted average; this acuity will vary over a
population

2 Two pixels per minute are needed to satisfy sampling theory—if we want to visually
detect one pixel per arc minute, we need twice that many to satisfy the Nyquist
criterion [23].

4 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

iPhone 5 (generally used closer to reading distance) to 87 for the Retina display
laptops [&17].

Given these minimum requirements for perceptual resolvability, node density
cannot exceed roughly 1 per 2 pixels if 1 pixel representations are to be used
for maximum discrimination; note, this limits our ability to indicate multivari-
ate nodes/edges to using only the visual variables of hue and luminance . Thus,
to use the MacBook Retina display as an exemplar, graphs exceeding roughly 2
million nodes would strain resolvability assuming the entire display was used and
no connectivity information was displayed. If a node-like representation is used,
however, this number drops to 1 million as edges must connect elements already
on display. For matrix diagrams, the maximum limit is about 0.5 million nodes
so neighboring connections are resolvable; if this is not desired, a packed repre-
sentation still only represents about 1.4 million nodes as the matrix diagram’s
symmetric display scales quadratically with nodes. These patterns are summa-
rized in Figure B. Exceeding these numbers means that the individual elements
of the graph cannot be separated. However, staying below these numbers is not
sufficient for comprehension of the graph—though elements may be perceivable,
they may still exhaust cognitive resources as discussed next.

N N N|E N

N N

N N
N N

m

Fig. 3. Maximum descriminability for unconnected graphs (left), node-link diagrams
(middle), and matrix diagrams (right). Each box is a pixel.

2.2 Cognitive Limits

Perception can be thought of grossly as a two stage process where elements are
first imaged by the eye-sensor and then understood by the brain. This latter,
cognitive step of perception has limitations not tied to the processing power of
the eye discussed previously.

The cognitive stage of perception can be modeled as a hybrid bottom-up/top-
down approach [74,88,RY]. In the bottom-up stage, early vision separates per-
ceived elements into feature maps (e.g., hue, orientation, length) with varying
level of granularity. Elements in these maps are then compared to neighbors to
measure differences. The user-driven top-down stage then searches these maps
using the differences to find features of interest. As an example, if node lumi-
nance in a graph matrix display encodes weight, differences in luminance would

Scalability Considerations for Multivariate Graph Visualization 5

be used as the perceptual search criteria. Thus, the levels of difference that can
be encoded in the feature maps limit these lower level cognitive comparisons.

Ward et al. [74] summarize the absolute discriminability of perceptual fea-
tures relevant to visualization, based upon work by Miller [53]. For item size,
four to five different levels are accurately gauged; 10 levels for hue and 5 for
luminance; and roughly 7 levels for line length and 8 for orientation. These lev-
els are not independent when combined for multi-feature encoding (a popular
approach in multivariate graph visualization)—only about 12 different combi-
nations of hue/luminance can be separated (as opposed to 40-50 if they were
independent) and roughly 17 levels for combinations of hue, luminance, and size.
Thus, the number of perceptual values that can be used for absolute judgements
is very limited—hairballs and snowy wastes will quickly exceed these capacities.

As cognition happens at multiple levels, studies have also investigated how
graph features such as paths are comprehended at latter stages in cognition.
These studies provide guidance on what approaches are suitable for multivari-
ate graph visualization. A common theme of these is the limitation of what
is displayed simultaneously. A variety of studies have investigate visual search
of graphs, either of specific properties such as shortest paths or for more gen-
eral search. In node-link representations, path comprehension suffers when edge
crossings occur [569, 60], especially when dealing with crossings over shortest
paths [78]. Limiting such crossing require reducing edges or novel layouts, both
approaches discussed later. Using 2.5D displays can also help graph structure
comprehension when used appropriately in node-link diagrams [T, 77]; here,
occlusion helps limits what is displayed. Increasing visual separation in com-
bination with limited motion cues can also help visual search in graphs [78].
Structure can be perceived with matrix diagrams by removing edges, with more
accurate reading at larger graph sizes [29].

2.3 Leveraging the Graphics Card (GPU)

In visualization, the human is only part of the process—computation is also
required to generate the visualization. Just as there are limitations on the human,
there are limitations on the computation. These can be limitations on the display
technology, the graph data store, or on the means of computation on the graph.
In this work, we focus on how graphics processors can enable scalable graph
visualization and their limitations; for discussion on the limits and capabilities
of displays and graph storage, we refer the reader to the relevant literature [2,21].

This section describes how graphics cards can be used to address scalability
issues in general and with respect to multivariate graph visualization (MGV)
in particular. Sections 231 and P23 serve as an intro to and history of fixed-
functionality and programmable graphics hardware as well as available program-
ming APIs, respectively. This is followed by Section ZZ3=3 describing typical tasks
and/or application areas within graphics and (information) visualization related
to MGV scalability issues. This section also gives real-world examples of GPU-
based solutions designed to tackle MGV scalability issues from the perspective
of rendering, interaction, and calculation.

6 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

2.3.1 GPU Pipeline—Fixed vs. Programmable

The rise of special-purpose graphics hardware for the accelerated monochrome
and color display of 2D /3D raster and vector graphics began during the mid
to late 1970s and widespread consumer adoption—especially of hardware 3D-
acceleration solutions—was obtained during the late 1990s. Such hardware was
originally built around “fixed functionality pipelines” (FFPs), i.e., special pur-
pose hardware that supports a limited and fixed set of instructions (drawing
commands) to display various types of graphics primitives. Typical FFPs sup-
port operations such as geometric transformation, lighting, and rasterization, all
of which are necessary for displaying (“projecting”) 3D graphics on 2D raster
displays.

An example of early 2D /3D-accelerated FFPs are the processing pipelines on
special-purpose hardware built by Silicon Graphics International (SGI) for use
in their high-end graphics workstations during the early to mid 1990s. The late
1990s to early 2000s saw the widespread consumer adoption of more affordable
mainstream 2D /3D-accelerated graphics FFPs (often used in game consoles)
such as the Voodoo, early GeForce, and early Radeon graphics hardware by
3Dfx, NVIDIA, and ATI, respectively.

From the mid 2000s onwards, graphics hardware manufacturers as well as
graphics APT developers (see Section EZ39) gradually shifted their focus to pro-
grammable pipelines instead of FFPs. Programmable pipelines allow the graphics
processing unit (GPU) to run proprietary code [57]. Such code can be used to
implement new types of drawing commands and can even be used—although
initially indirectly—to perform (non-graphics-related) computational tasks on a
GPU, i.e., “general purpose computation on the GPU” or GPGPU [Zll]. The
latter is useful because of the massive parallelism offered by GPUs as well as the
ease with which GPUs generally handle vector and matrix operations; a direct
result of the fact that 2D /3D transformations and projections within FFPs rely
heavily on vector/matrix math.

2.3.2 GPU Programming—APIs and pitfalls

Programming each level of the graphics card pipeline can be performed through
different languages, such as NVidia’s Cg, Microsoft’s High-Level Shading Lan-
guage (HLSL), and the OpenGL shading language (GLSL), Other specialized
languages exist to do specific data processing: CUDA, OpenCL. If we exclude
specific data processing languages (CUDA and OpenCL) which use specific data
structures, output data must be stored in image textures. graphics cards propose
massive parallel computing but some pitfalls must be avoided in order to take
advantage of this worthy power:

— graphics card are optimized to compute data in parallel and therefore sequen-
tial algorithms cannot be paralyzed without insuring data integrity (mem-
ory protection). Reading and writing graphics memory is not possible at the
same time; this avoids memory corruption (one process reading at the same

Scalability Considerations for Multivariate Graph Visualization 7

time another is updating the information). Synchronization features such as
mutex or memory protection (atomic functions) much be avoided as much
as possible. Specific computation technics can be applied such as MapRe-
duce, a programming model for processing large data sets with a parallel,
distributed algorithm on a cluster [34].

— Bottlenecks exist within the GPU processing, especially when transferring
data between the CPU and the GPU. When this occurs, the graphics card
needs to wait until every process has ended, and then start the memory
transfer—a dramatically slower process. Memory transfer between the GPU
and the CPU must be limited as much as possible.

— Many other pitfalls must be taken into account regarding every language,
such as texture coordinates that differs between OpenGL and DirectX, de-
bugging issues, and graphics card crashes that hinder the development pro-
cess.

2.3.3 Multivariate graph visualization scalability and the GPU

Given the above, we identify the following GPU usages to support tasks (areas
of application) with respect to scalability issues regarding multivariate graph
visualization (MGV):

— Rendering—Graphics cards can render numerous items on the screen and
thus display large datasets. Specific rendering techniques can be used to em-
phasize the rendering process and thus improve data perception (an example
is given in Figure @)

— Computation—Graphics cards can perform fast and parallel data processing,
and be used to process information at the data level

— Interaction—Graphics cards can be used to provide tools to help user to
interact with large datasets.

In the following, we will give examples of GPU usages to address scalability
with respect to the three identifed GPU usages:

Rendering: In these examples, GPUs are used to display data and to perform
image based rendering techniques. Auber developed Tulip [3] an information vi-
sualization framework dedicated to the analysis and visualization of relational
data. This software uses GP-GPU techniques to render large multivariate graphs.
McDonnel et al. [62] developed a framework and an application using shaders to
display multivariate data based on the dataflow model with a final image based
stage. In this final step, the multivariate data of the visualization are sampled
in the resolution of the current view. A more specific rendering technique is
used by Holten [BX] to improve edge visualization by an interesting variation
on standard alpha blending, i.e. how color transparency is combined. Sheep-
ens et al. [66] used the GPU to compute density maps and then apply shading
techniques to emphasize multivariate data on the density map of moving vessels.

8 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

Computation: Hurter et al. [@5] use the GPU for interactive exploration of
multivariate relational data. Given a spatial embedding of the data, in terms of
a scatter plot or graph layout, the moleview uses a semantic lens which selects a
specific spatial and attribute-related data range. The lens keeps the selected data
in focus unchanged and continuously deforms the data out of the selection range
in order to maintain the context around the focus. Animation is also performed
between the bundled and the unbundled layout of a graph. Kernel Density Edge
Bundling (KDEB) [43] computes bundled layouts of general graphs. For this,
KDEB first transforms a given graph drawing into a density map using kernel
density estimation. Next, it applies an image sharpening technique which pro-
gressively merges local height maxima by moving the convolved graph edges into
the height gradient flow. This technique is also applied on dynamic graphs [44].
Graph bundling and the computation of its density has been investigated [50],
and the GPU has been used directly for graph layout as well [25].

Interaction: Interaction with the data is an important manipulation paradigm
to perform data exploration. Scatterdice [I6] helps the user to define the ap-
propriated displayed variables with a smooth animation when changing visual
configuration; Graphdice [5] uses the same paradigms but with graph. From-
DaDy [d6] uses related animation with GP-GPU techniques. In order to address
dataset size issue, FromDaDy loads the whole dataset within the graphics card,
so that when changing visual configuration, no memory transfer is needed. This
helps to improve interaction with a fast and continues animations. Furthermore,
a GP-GPU technique is implemented to support brushing and data manipula-
tion across multiple views. One can then brush trajectories, and with a pick and
drop operation he or she can spread the brushed information across views. This
interaction can be repeated to extract a set of relevant data, thus formulating
complex queries. Each trajectory has a unique identifier. A texture (stored in
the graphics card) contains the Boolean selection value of each trajectory. When
the trajectory is brushed its value is set to true. The graphics card uses parallel
rendering which prevents reading and writing in the same texture in a single
pass. Therefore FromDaDy used a two-step rendering process: firstly it testes
the intersection of the brushing shape and the point to be rendered to update
the selected identifier texture, and, secondly, it draws all the points with their
corresponding selected attribute (gray color if selected, visual configuration color
otherwise).

The key to these techniques is how they overcome the limitations of the GPU
mentioned previous to facilitate multivariate graph exploration—they use multi
pass read-write cycles, minimize CPU-GPU memory transfer, and accommodate
variation in graphical hardware.

Scalability Considerations for Multivariate Graph Visualization 9

Bundling
and Shading

Fig. 4. County-to-county migration flow, (1091764 nodes, the Census 2000): people
who moved between counties within 5 years. Original data only shows the outline of
the USA (bottom), bundled [#3] and shaded path (top) shows multiple information like
East-West and north-South paths, shading shows data density.

3 Design Strategies for Scalable Multivariate Graph
Visualization

The perceptual, cognitive, and technical factors presented in Section B limit the
scalability of network visualization in general. When faced with the increased
amount and complexity of information that one typically encounters in multi-
variate networks in particular, it is necessary to address scalability of visualiza-
tion by additional means. In this section, we review various design strategies to
support scalable interactive visualization of multivariate graphs, including very
large ones. These strategies go beyond simply getting as much information onto
the screen as possible. They also aim to make good use of available display real
estate by transforming and reducing that information to facilitate exploration
and analysis.

Chapter ?7? describes interactive operations in terms of the information visu-
alization reference model of Card, et al. [G]. In the model, three transformation
steps connect a progression of four modes of data representation from raw data
(at one end) to displayed visuals (at the other end) (Figure ?7). In keeping with
the reference model, we organize multivariate graph design strategies into the
three following categories of transformations of information representations.

Data transformation and reduction strategies provide alternative network
compositions by being selective about the type of structure and amount
of information to show. These strategies use combinations of aggregation,

10 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

projection, and filtering techniques to convert multivariate graph data sets
into other data sets, particularly into alternative multivariate graphs having
topologies and attributes that can be more readily and usefully displayed.

Visual mapping strategies provide alternative network presentations by map-
ping data dimensions and values into visual elements that efficiently commu-
nicate graph structure and multivariate attributes. The definition of efficient
here depends on the application and the type of analysis being sought. These
strategies often complement data transformation and reduction strategies by
choosing mappings to suit the aggregated, projected, and filtered information
of specific network perspectives.

View transformation strategies provide alternative network perspectives by
providing a feedback loop for the analyst to interact with visual elements
and the space in which they are shown. Visualizing multivariate networks
in any real analysis application is not a static “batch” or “pipeline” pro-
cess. View transformation strategies often complement other strategies by
supporting not only navigation in view space and selection of data items,
but also interactive changes to the functions and parameters used in data
transformation and reduction and in visual mapping.

Weaver breaks down this progression of transformations into a more detailed
model that specifically targets interactive visualization of complex multivariate
data as networks. The model is implemented in Improvise [81] and has been
used in a variety of graph visualization applications including to meta-visualize
multiple view coordination structure [82,83] and to analyze individual differences
in user categorization of starplot shapes [A8] and geospatial relationships [24].
Figure B depicts the data transformation pipelines in this graph reference model,
as customized for use in the Attribute Relationship Graph technique [835]. In this
model, the three transformation steps in Card’s model are expanded into three
interdependent phases of transformation.

e e Layout
Grouping Ey i3
. . =z
Ti—{Lp Go—{@p> G, ———{@p= N, o — s fo Th T, TI £
o A Epp o 2o TS0 TS, T T g

T T™:

syoed

\j
] &
5P Cuy P TR T T

(%] P
Cliquing Drilling Slicing Collecting Forming Encoding Filtering Brushing

T

Fig.5. The data transformation pipeline of Weaver showing transformation of raw
multivariate data into tractable graph views.

Card’s Data Transformation step expands into the first two phases: data
projection and graph definition. The data projection phase (Figure B, left) ag-

Scalability Considerations for Multivariate Graph Visualization 11

gregates occurrences (Grouping) and co-occurrences (Cliquing) of the data val-
ues in each dimension, then determines which occurrences and co-occurrence to
show as a function of chosen dimensions (Drilling) and data values (Slicing).
Graph definition consists of transformations (Figure B, center) that gather the
aggregates into tables (Collecting) that are then mapped into a graph repre-
sentation (Forming) consisting of primitive elements identified as nodes, edges
and “packs”. (Packs can be thought of as hyperedges that connect multiple
nodes into semantically grouped aggregates, and are often shown as convex hulls
around the connected nodes, as in Vizster [85]).

Card’s Visual Mapping and View Transformation steps expand into a sin-
gle graph visualization phase (Figure B, right). Parallel pipelines that take the
sets of graph primitives generated in graph definition as input. The subsequent
Encoding, Filtering, Layout, and Brushing transformations populate and sup-
port interaction with graph primitives in network, matrix, and other data views.
Transformations are interdependent to capture the ways that one can expect
graph elements to be coordinated in appearance and behavior, such as filtering
of edges on whether their nodes are visible (as well as as a function of their
co-occurrence data attributes), or reencoding edges when a node moves during
automatic or interactive layout.

Together, the three strategies can be seen as axes in a rich design space. We
use the graph reference model here as a frame of reference to discuss the work
that has been done in this space. Below we explore each of the strategies in
more detail, looking at how they are employed individually and in combination
in various exemplar systems.

3.1 Data Transformation and Reduction

Visual bandwidth is finite, both on the production side (the graphics and dis-
play hardware), and on the consumption side (the perceptual and cognitive ca-
pabilities of the person trying to analyze the data); these are alluded to in the
previous section. Data transformation and reduction techniques aim to use the
available visual bandwidth to support foraging, sense-making, and insight by
showing only parts of the data and from particular viewpoints. A variety of data
transformation and reduction strategies are routinely and usefully employed for
increasingly sophisticated visually querying of network structure in data sets,
in systems such as Jigsaw [69], Coordinate Graph Visualization (CGV) [7Z],
Ploceus [51]], Orion [86], and Candid [67].

Whatever the data-size limitation in a certain setting is, as soon as the graph
exceeds it, we can no longer show all information in a single static view. Instead,
data reduction techniques must be applied to extract a task-specific neighbour-
hood of the larger graph for display. This extraction can be fully automatic, or
semi-automatic according to the constraints of the user. As in Chapter 7?7, we
are interested in data reduction operations necessary for producing limited views
of very large graphs. In this chapter, however—with our focus on scalability—we
review recent work that deals more specifically with the problem of extracting

12 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

small tractable graph views from big tabular data. We distinguish three different
data transformation and reduction approaches: aggregation, projection, filtering.

Aggregation techniques. Graph aggregation techniques transform and reduce
data sets by collecting data records into buckets in terms of commonalities shared
by the raw or derived attributes of those records. The underlying principle of
graph aggregation is, for a given graph G = (V, E), to derive an aggregate graph
G = (IN/,E) with fewer vertices and edges. The goal is to compute G in such
a way that it is a good coarse representation of G for the user’s data analysis
purposes. This data reduction process is also known as granulation [I70].

In the graph reference model, graph aggregation happens in the grouping (for
vertices) and cliquing (for edges) stage. These transformations perform unary
and binary calculations to determine raw or derived attributes occurrences and
co-occurrences, respectively. Using raw attribute values themselves is a basic ap-
proach but still highly useful for analysis; Jigsaw [69], Cross-Filtered Views [S4],
and Attribute Relationship Graphs [85] all support multivariate association an
comparison tasks in this way.

Many systems provide several types of graph aggregation that entail more
complex calculations of derived attribute. PivotGraph [R0] uses roll-up for mul-
tivariate graphs to group nodes into equivalence classes based on their attribute
values and create weighted edges as induced by the members of the different
equivalence classes. Selection by restricting certain attribute values can be used
to obtain the induced subgraphs. This technique originally does not focus on
large graphs and depending on the attribute types and values, the number of
equivalence classes may be too high. Orion [36] supports similar attribute-based
aggregation of vertices for networks that are obtained in a previous step from
relational database tables. In the Ploceus system [61]], three types of aggregation-
by-attribute are identified: pivoting is equivalent to PivotGraph’s roll-up but
specifically for categorical attributes; binning is used to describe grouping nodes
by quantitative attributes divided into distinct ranges; prozimity grouping is used
to refer to more sophisticated clustering techniques involving distance functions
of quantitative attributes.

More generally, one can perform arbitrary many-to-many calculations to gen-
erate derived data dimensions for grouping and cliquing. Clustering is a common
approach, although one that requires great care to maintain responsiveness of the
overall graph transformation pipeline. Graph clustering techniques partition the
vertex set V' into mutually disjoint clusters C1, ..., C; with the objective that
two vertices in the same vertex cluster C; are sufficiently similar and two vertices
from different clusters are sufficiently dissimilar. As we deal with multivariate
graphs, there is a wide range of clustering methods that can be applied.

Graph-based clustering methods consider edges (possibly with weights) as
an indicator for similarity and hence aim at finding a clustering with high intra-
cluster edge density and low inter-cluster edge density. Fortunato’s recent survey
on community detection in graphs covers the state of the art in clustering al-
gorithms [24]. On the other hand, attribute-based clustering methods are data
mining techniques that consider each vertex as a point in a multi-dimensional

Scalability Considerations for Multivariate Graph Visualization 13

space spanned by the multivariate vertex attributes. Using a (dis-)similarity
measure defined in this space, clusters are derived based on this measure. Again,
vertices in the same cluster should have high similarity, and vertices in different
clusters should be dissimilar. Berkhin gives a recent review of the most common
clustering methods in data mining [d]. Clustering of multivariate graphs ideally
uses methods that combine connectivity information and attribute information
in a configurable way, especially if attributes and edges are not highly correlated.
Only few methods exist that take into account both types of information. Zhou et
al. [03,04] present a method to transform the attribute data of large graphs into
additional graph edges and then apply a graph clustering algorithm to the aug-
mented graph. Another combined method is DB-CSC by Gnnemann et al. [30],
which allows more flexible cluster shapes. Hadlak [32] describes clustering on
time series behavior of time-varying attributes.

Of particular interest are hierarchical graph clustering methods [24, Chapter
IV.B], where different clustering granularities can be represented between a single
cluster containing everything at the top and singleton clusters at the bottom. In
the graph reference model, hierarchies can be treated as multiple aggregations
that are coincidentally related in terms of data type semantics. (In the graph
visualization phase of the model, representation and interaction should reinforce
these relationships.) Depending on the navigation strategy, different types of cuts
or frontiers in the clustering tree can be applied. Thus it is possible to obtain
rather uniform granularities for an aggregated overview graph or non-uniform
granularities giving more details in a focus region and less details in the further
context. ASK-GraphView [[] is a system that applies hierarchical clustering for
visualizing large graphs.

(a) An example of hierar- (b) A straight-line drawing (left) and a strict confluent
chical edge bundling [3¥]. drawing (right) of the same graph [I9].

Fig. 6. Radial graph layouts using edge aggregation.

While the above methods are mostly concerned with aggregating vertices
to reduce the graph size, there are also several techniques to aggregate edges.
Since a graph of |V| vertices can have O(|V'|?) edges, graphs with relatively few
vertices can already be too edge dense to be readable. Edge bundling meth-

14 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

ods [P0, 28, BR, BY, &3, 44] aim to reduce visual clutter by visually grouping to-
gether edges between similar parts of the graph thus using fewer pixels to show
the original set of edges. Visualizations using edge bundling are well suited to de-
pict global connectivity patterns with reduced visual complexity. See Figure
for an example. The topological information produced in the graph specification
phase of the graph reference model can be used to aggregate edges, although
having two or more (potentially interdependent) stages of aggregation compli-
cates matters substantially; such complex interdependencies between the node
and edge pipelines that define a graph visualization are beyond the scope of the
graph reference model.

The concept of confluent graph drawing [0, 709, &9, 62], where two ver-
tices are connected if and only if there is a smooth path between them, similarly
merges and splits the curves representing edges in a visualization. But unlike edge
bundling methods, confluent drawings are unambiguous or information faith-
ful [BB] since no false adjacencies are created. Confluent drawings can be used
to display certain non-planar graphs without edge crossings. Figure B(b] shows
a straight-line and a confluent drawing of the same graph. Confluent drawing
algorithms are not yet implemented in practical systems and some related deci-
sion problems are known to be NP-complete. Edge compression through Power
Graph Analysis [2,65] (see Figure [@) is another technique for aggregating edges
by replacing the edges of bipartite clique sub-graphs with single edges connect-
ing the two sets of nodes in the bipartite clique. Power Graph compression is
related to confluent drawing in that it also offers an unambiguous, information
faithful representation of the original dense graph however practical techniques
exist for their generation [IH].

IronPython

} IronPythonTestdil
IronPython Modules.dl

ironPython Wptll

& MicrosoftSaipting AspNet

fhondl
G MicrosoftDynamic.il I

Externals

Fig. 7. Illustration of edge compression to simplify dense graphs. the top-level
component graph produced by the Visual Studio code-dependency analysis tool for the
IronPython code base with 39 edges. [[{b)] a power-graph decomposition of the same
graph leaves only six aggregate links without any loss of connectivity information for
an 85% compression rate.

Scalability Considerations for Multivariate Graph Visualization 15

Projection techniques. The Ploceus system [51] is concerned with allowing users
a multitude of ways to extract graph views of tabular data. A key part of their
system is a network schema view of the rich heterogenous graphs that can easily
be obtained from such data. The network schema shows a graph of the types of
nodes in the network and the types of links that are allowed between pairs of
such nodes. The network schema view thus provides a powerful affordance for
restricting the set of nodes and edges shown in the actual network visualization.
That is, the user can select a subset of the available node and edge types that
will appear in the network visualization. An important concept in realizing these
final network views is projection. That is, for the final subset view to be usefully
representative of the original graph, nodes that are to be omitted from the final
view must be spliced out of the network, rather than simply removed, potentially
leaving the graph disconnected even though a transitive relationship exists.

Filtering techniques. In contrast to aggregation techniques, graph filtering se-
lects an appropriately sized subgraph of the input graph, either by stochastic
sampling or by deterministic processes. Typically, an importance function mea-
sures the relevance of vertices and edges in the graph and only the most relevant
objects are kept. Selections can be done by computing additional vertex and edge
attributes, e.g., centrality measures, that indicate how important these features
are in the graph [#7]. Van Ham and Perer [33] use a degree-of-interest function
to determine the relevant subgraph for one or more focus points in the graph.
This function evaluates both the graph topology and the multivariate graph
attributes based on the selected focal vertex. Subsequently, a maximal interest
subgraph of specified size is extracted. By interacting with the visualization,
users can expand additional parts of the graph that they are interested in.

3.2 Visual Mapping

Once a sub-graph is chosen for actual visualization by application of the data
reduction techniques above, there are further scalability considerations in the
Visual Mapping stage. By “Visual Mapping” we mean the visual representations
of data sets as views and/or visual encodings of data items in views. Multiple
views can help with orienting the user of the visualization system when the
displayed visuals represent only a very small fraction of the total data space.
For example, the display may be configured to show an abstract over-view of a
large portion of the full graph while a detailed view shows a much more restricted
neighbourhood but with many more attributes shown on each of the visible nodes
and edges [I3]. In general, this mapping happens in the encoding and filtering
stages of the pipeline. For multiple views, multiple encoding operations coexist,
e.g. Ploceus and Attribute Relationship Graphs both have a central graph view
that feeds off of all three encoding operations (for nodes, edges and packs) and
peripheral views (fed by node or edge encoding operations).

As already discussed in this chapter, various paradigms exist for visual map-
pings for graphs, the two most widely known being node-link diagrams and
matrix views. The limits of scalability for each of these were discussed in Section

16 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

while more exotic representations are discussed in Chapter ??. The appeal of
node-link diagrams is that it is fairly natural for most people to illustrate re-
lated concepts by connecting labels with lines, and—at least while the diagram is
simple enough to be unambiguous—for readers of such diagrams to follow tran-
sitive paths. By contrast, matrices offer unambiguous representations of very
dense graphs (i.e., graphs with a high proportion of edges to nodes). Henry et
al. [37] have elegantly demonstrated that hybrid visual mapping may offer the
best of both representations. In their NodeTrix system, they use matrices to
display dense parts of a large graph, while these matrices are themselves treated
as nodes situated within a larger node-link diagram.

Encodings include input on graph element position from the layout feedback
loop of the pipeline. Layout operates on the filtered graph subset and changes
the position encoding of elements. Complex encoding operations support rich
visual mappings, for example: edge centric schemes such as those suggested by
Riche, et al. [63] control edge curvature based on edge attributes.

In general, there is a trade-off between scalability of layout techniques and
the quality of the resultant drawing. For node-link diagrams, algorithms exist
that can obtain layouts that may be useful to show the gross structure of an
overall graph for thousands (even hundreds of thousands of nodes) in reasonable
time [25, B, 40]. However, for small diagrams—especially when the nodes are
not just points but also need to display multiple attributes—there are additional
and computationally expensive considerations for layout, for example: avoiding
overlaps between node boundaries [[4,27] and minimizing edge-edge and node-
edge crossings [5¥].

3.3 View Transformation

The use of data reduction to limit the view to only a small sub-graph—perhaps a
sub-graph that is specifically chosen for a particular line of enquiry—necessitates
flexible navigation affordances, to allow analysts to easily refocus on different as-
pects or parts of the graph. We call this type of navigation view transformation.
For example, Huang, et al. [&1] developed an early system for exploring an infi-
nite graph by browsing just a small neighbourhood at a time. A simple animated
spring algorithm enabled incremental layout as nodes are added to or removed
from the neighbourhood, and gave the graph smooth transitions. Fisher coined
the term “ego-centric views” [27] to describe views of the graph from one par-
ticular node’s point of view, or from a small neighborhood.

In the pipeline of Figure B, this is the chief concern of the brushing stage,
where encoding can depend on brushing to highlight (un)selected graph elements,
while filtering can depend on brushing to elide (un)selected graph elements. The
brushing stage also covers view-specific interaction capabilities, such as panning
and zooming to navigate a graph coordinate space. In the full pipeline model
(and implementation in the Improvise system [81]), operations at all stages can
depend on navigation and selection visualization parameters controlled through-
out a coordinated multiple view visualization.

Scalability Considerations for Multivariate Graph Visualization 17

Overview+detail can be thought of as branching late in the pipeline with dif-
ferent levels of filtering controlling the portions of graph visible in each view, and
more encoding to show increased detail (e.g., attributes) of remaining elements.
Robert’s Multiform Visualization [64] idea boils down to multiple pipelines with
varying encoding and filtering or even other stages.

Focus+context techniques also show the most detail around only a small
neighborhood, but they endeavor to show this neighborhood in the context of
the larger graph. Focus+context graph techniques can be thought of combina-
tions of visual mapping transformations with multiple views that are nested. A
compelling and scalable example of this design concept is the Topological Fisheye
technique of Gansner, et al. [28] and another that takes advantage of graphics
hardware is proposed by Zinsmaier et al. [95]. In the topological fisheye system
a layout is computed for the entire graph, then a combination of spatial and
structural clustering techniques are used to show an abridged view of the graph
with only gross detail visible. The authors describe navigation in which the user
is able to zoom in to show full detail in a small focal region with the abridged
contextual structure still visible.

4 Studies on Scalability in Graph Visualization

This section provides a summary of the evaluations related to multivariate graph
scalability. Some of them are part of work that has been discussed so far. Use
Cases are the most popular form of study, but in many works, these cases were
designed to demonstrate the proposed technique rather than being a formal
evaluation. This section covers some of the case studies, but the focus is on the
formal studies, both qualitative (such as interviews) and quantitative (such as
controlled experiments).

4.1 Data Transformation and Reduction

Wattenberg [80] described the “pilot usage” of “PivotGraph” (please see Sec-
tion B for details) in his paper. These are essentially observations followed by
semi-structured interviews after participants have been using the tool for a con-
siderable period. The results are from five analysts who looked for new patterns
in their own data using PivotGraph. They are very familiar with the data, which
have been analyzed with other tools.

Three multivariate graphs were used in the study: the first one is a transi-
tion matrix consisting of 521 states (nodes) and 2,671 transition probabilities
(weighted edges). Besides the edge weighting attribute, each node (state) had
four associated categorical attributes. The second dataset is the social network
among a community of 146 people within a large company. Each person (node)
in the community was classified on five dimensions. The last dataset is similar to
the second one: it is the communication patterns among employees of a company,
with each employee classified according to five different dimensions. The graphs
used in the study is not small. For instance the transition matrix graph had

18 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

521 nodes and 2671 edges. However, due to the aggregation technique deployed
in PivotGraph, the number of nodes shown in the examples were less than 100
nodes. In that sense, visual complexity is well under control.

The paper provided detailed description of how PivotGraph was used to
analyze these datasets, especially what the new findings were and how they
were discovered. This provides support for the claim that PivotGraph can help
identify new patterns in multivariate graph data. All the participants are very
positive about their experience of using the PivotGraph, and they especially
liked the feature that allows quick visual comparison between different pair of
dimensions (attributes). All the participants wanted to continue using the tool,
together with what they were using already. This shows that PivotGraph can be
an useful addition to the multivariate graph analysis tool collection.

The Orion system paper [86] includes three use cases: online medical forum
discussions, academic collaborations, and software developments. The first use
case involves 3 million discussion posts from MedHelp.org. The analyst was able
to construct network based on edge weight to answer relevant questions. The
resulting visualization led to discovery of errors in the dataset and interesting
co-occurrence of forum participants on different medical topics. The second use
case used the publication information from the ACM Digital Library to visualize
the career development of academics. The last use case is based on the Github
data and the visualization showed the difference between the followers to the
cities where open-source development are most active.

4.2 Visual Mapping

Wu and Takatsuka conducted an user study [G0] to evaluate the effectiveness of
their multivariate networks visualization method that uses Self-Organizing Map
(SOM) to improve its layout. Their method tries to find optimal node distance
based on not only graph distance but also graph attribute similarity. The eval-
uation consisted two parts: two use cases and a controlled experiment. The first
use case is a student friendship network, with node attribute being the result
of two courses. There are 43 nodes and 55 directed edges in total. The results
showed that it was possible to achieve good balance between node attribute clus-
tering (measured by “data distortion”) and graph drawing aesthetics (measured
by “edge crossings”) by adjusting their weighs in the SOM function.

The second use case is based on the Krackhardt’s high-tech manager advice
network [I79]. Again, this is a relative small social network with 21 nodes (the
managers) but dense connections (190 edges). Each manager has four attributes:
Age, Tenure, Position Level, and Department. The results again showed it is
possible to achieve a good balance between the attribute clustering and layout
aesthetics. The user study compared their method (Fig. B(b)) with a glphy-
base one (Fig. B(a]), in which a star glyph is used to show node attributes. It
involved 33 participants performing tasks on 7 synthesis multivariate networks.
These networks had between 30-50 nodes, 40-70 edges, and 4 or 10 attributes.
The tasks included comparing the set of neighbors of two given nodes in terms
of their attribute similarity and comparing relationships within the same set

Scalability Considerations for Multivariate Graph Visualization 19

of entities. The results showed that the participants spent more time using the
glyph-based visualization, which also had lower accuracy.

(a) Star Glyph: each node is (b) Self-Organizing Map-based Hybird Layout: nodes
a star glyph to show its at- are placed not only to reduce edge crossings but also
tributes. to show their attribute similarity.

Fig. 8. The two multivariate network visualizations used in the user study by Wu and
Takatsuka [90] in their paper on hybrid layout method.

A study by Cunningham et al [§] evaluated their method of visualizing mul-
tivariate network using 2.5D surfaces, each of which represents a node attribute.
They compared their method, GraphScape [91] (Fig. B(a]), to the approach of
using node size to show the attribute value (Fig. P(b]). In the first experiment,
the participants were asked to select the 20% nodes with the largest attribute
value from the visualization of graphs with up to 100 nodes (Fig. P(b}). The re-
sults showed that there was no significant difference in accuracy between the two
methods, but it took longer to complete the task with the GraphScape. In the
second experiment, the participants were asked to determine the average value
of a variable for a cluster of nodes using both visualizations, with similar-sized
graphs. The accuracy of GraphScape was found to be significantly greater than
that of using node size. However, participants answered significantly faster with
node-size visualization, comparing to GraphScape.

There is an increasing usage of curved edges in graph visualization techniques
designed to address scalability issues, such as the edge boundling methods dis-
cussed in Section Bl There were two user studies [61,92] on the impact on
readability when using curved edges in graph visualization. Edge curvature can
be used to encode edge attribute, and it is commonly used in the edge bundling
and confluent drawing methods discussed earlier. The first study consisted of
two experiments. The first experiment examine the impact of three different
curvature levels on graph readability, with the straight edges (zero curvature)
included as the baseline. Participants completed path-finding tasks in a con-
trolled experiment setup, and the graphs used have 20, 50, or 100 nodes. The
results showed that using either straight edges or slightly curved edges are more

20 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

3/4 nodes selected

®
(a) GraphScape: node attributes (b) The other visualization used in the
are shown as 2.5D surfaces. Two at- study: using node size to show attribute
tributes are shown as red and blue value. The task is to select the top 20% nodes
surface in this example. with the largest value.

Fig. 9. The visualizations used in the evaluation of the GraphScape [91] method.

accurate and faster than using heavily curved edges. There was no significant
difference in accuracy between the straight edge and the slightly curved edge,
but the former is significantly faster. The graph size had a significant impact on
speed (each size increase incurred a significant time penalty), but less so on the
accuracy. The second experiment included force-directed Lombardi layout [@],
which uses circular edges to maximize angular resolution (the minimal angle be-
tween edges adjacent to a node). Four tasks were tested in the experiment and
the largest graphs have 200 nodes. There was no significant accuracy difference
but both straight edge and Lombardi layout were faster than the slightly curved
edge. The study by Purchase et al. compared the two variations of the Lombardi
layout with straight-edge graphs produced by force-directed method. The size of
the graphs used was smaller (20 or 40 nodes) but each size had two edge density
level. The three tasks were similar to the second experiment in the study by Xu
et al. discussed above. The results were quite different from the previous study:
straight edges were found to be faster and more accurate than the two varia-
tions of the Lombardi layout. The user preference was also different: Lombardi
layout was the choice for aesthetics in this study whereas straight edge was the
preferred option in the study by Xu et al.

4.3 Navigation and Interaction

Dork et al. designed a visualization method, PivotPaths [0] (Fig. [), to allow
browsing of large data collections through their multiple facets and encourages
exploration and serendipitous discoveries. While the method is not designed with
multivariate network in mind, it provides a novel way to interactively visualize
the relationships between data records through the similarity among their at-
tributes. Because of the design goal, Dork et al. decided to use a longitudinal

Scalability Considerations for Multivariate Graph Visualization 21

study together with observation and semi-structured interviews. The data set
used is a collection of academic publications with 160,000 articles, 180,000 au-
thors, and 20,000 keywords. The study was conducted in a research institute
with more than 200 recorded user sessions, which were followed by interviews
with four participants. The data from the recorded sessions and comments from
the interviews confirmed that the PivotPaths provided an integrated view of the
three facets in the data (publications, authors, and keywords) and the relation-
ships among them. The participants found the “pivoting” animation is easy to
follow and it encouraged them to explore more about the dataset. However, there
was someone confusion about pivoting and filtering: some participants expected
filtering when they “pivoted” from one facet to another.

B Shneiderman

Fig. 10. PivotPaths showing the links between the three facets of research publications:
author (top), paper (middle), and topic (bottom).

The work by Tomer et al. [65] introduced two navigation techniques, Link
Sliding (Fig. [I{a]) and Bring & Go (Fig. [I(b])), for large networks. Both
adopted the focus+context approach and were evaluated in a controlled ex-
periment. The experiment used two randomly generated scale-free graphs, one
sparse (1000 nodes, 1485 edges), and one dense (1000 nodes, 2488 edges). There
were 12 participants and the tasks include identifying all nodes connected to
a given node, following a link, and returning to a previously visited link (re-
visit task). Besides the two new techniques, “Pan and Zoom” and “Bird’s Eye
View” were also included. The Bring & Go technique is significantly faster than
Pan-and-Zoom and Bird’s-Eye-View in all tasks, but Link Sliding was not signif-
icantly faster than Bird’s-Eye-View in two out of the three tasks. There was no
significant difference in accuracy for the “following” and “revisit” task because
there were very few errors. The participants unanimously agreed that Bring &

22 Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

Go was quick, and made the tasks easy. They also found it the least tiring, and
most pleasant to use. Link Sliding and Bird’s Eye View both received mixed
comments regarding the ease and speed at accomplishing tasks. Pan & Zoom
was generally rated as slow and difficult to use for the given tasks. Because the
two networks used in the experiment shared the same number of nodes, it is not
possible to observe how the techniques scale with graph node number. However,
edge density did show negative performance impact for some of the tasks. The
two techniques were not designed for multivariate networks and may require
extra work to provide such support.

T

selection-radius

/ indicator

. Voo
& AN
v
| 1
n g
! \
b\)
. \
link cursor o
‘\
mouse cursor ” //‘

(a) Link Sliding allows the sliding along (b) Bring & Go makes all the neigh-

/)

a (long) edge when the cursor is within bors, some of which normally would be
the selection radius. outside the frame, visible within the
display.

Fig. 11. The Link Sliding and Bring & Go method designed for navigating large graphs.

5 Challenges and Discussion

We have attempted to review the state-of-the-art from research and industry
in addressing the problem of scalability for multivariate graph visualization;
limitations from the hardware and cognitive side were also overviewed. Hopefully,
the principles and design guidelines discussed will be useful to implementers of
new systems. It should be noted that the systems reviewed here tend to be
either research prototypes or visualization platforms specifically designed for
a particular type of graph or application. The “holy-grail” of a visualization
system that can be easily applied to any type or amount of multivariate graph
data remains very much an open challenge. However, the so-called “big-data”
problem is ever growing with the steady march of Moores’ law and the growth
of the internet. Similarly, there is a growing popularity of a network view of
data, evidenced by the rise of technologies such as social networking, so-called
“graph search,” and a move away from tabular data paradigms for storage, such
as graph databases. For these reasons we think that more and more researchers
and practitioners will begin to explore the use of visualization for very large

Scalability Considerations for Multivariate Graph Visualization 23

multivariate graph data and we expect to see rapid developments in this area in
the future.

References

1.

10.

11.

12.

13.

14.

15.

Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: A large scale graph vi-
sualization system. IEEE Transactions on Visualization and Computer Graphics
12(5), 669-676 (2006)

Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv
40(1) (2008)

Auber, D.: Tulip : A huge graph visualisation framework. P. Mutzel and M. Junger
(2003), http://hal.archives-ouvertes.fr/hal-00307626

Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25-71. Springer
Berlin Heidelberg (2006), http://dx.doi.org/10.1007/3-540-28349-8_2
Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.: Graphdice:
A system for exploring multivariate social networks. Comput. Graph. Forum 29(3),
863-872 (2010)

Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Vi-
sualization: Using Vision to Think. Morgan Kaufmann (January 1999)
Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.:
Force-directed lombardi-style graph drawing. In: Proceedings of the 19th interna-
tional conference on Graph Drawing. pp. 320-331. GD’11, Springer-Verlag, Berlin,
Heidelberg (2012)

Cunningham, A., Xu, K., Thomas, B.H.: Seeing more than the graph - evalua-
tion of multivariate graph visualization methods. In: Proceedings of the Workshop
on Interactive Data Exploration and Knowledge Discovery (part of International
Working Conference on Advanced Visual Interfaces 2010). p. to appear. Rome,
Italy (May 2010)

Dickerson, M., Eppstein, D., Goodrich, M., Meng, J.: Confluent drawings: Visu-
alizing non-planar diagrams in a planar way. Journal of Graph Algorithms and
Applications 9(1), 31-52 (2005)

Dork, M., Riche, N., Ramos, G., Dumais, S.: PivotPaths: strolling through faceted
information spaces. IEEE Transactions on Visualization and Computer Graphics
18(12), 27092718 (2012)

Dwyer, T.: Two-and-a-half-dimensional Visualisation of Relational Networks.
Ph.D. thesis, School of Information Technologies, Faculty of Science, University
of Sydney (2005)

Dwyer, T., Henry Riche, N., Marriott, K., Mears, C.: Edge compression techniques
for visualization of dense directed graphs. IEEE Transactions on Visualization and
Computer Graphics To Appear (2013)

Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow, M.:
Exploration of networks using overview+ detail with constraint-based cooperative
layout. Visualization and Computer Graphics, IEEE Transactions on 14(6), 1293—
1300 (2008)

Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Graph Draw-
ing, pp. 153-164. Springer Berlin Heidelberg (2006)

Dwyer, T., Mears, C., Morgan, K., Niven, T., Marriott, K., Wallace, M.: Im-
proved optimal and approximate power graph compression for clearer visualisation
of dense graphs. In: PacificVis 2014. IEEE (To Appear 2014)

http://hal.archives-ouvertes.fr/hal-00307626
http://dx.doi.org/10.1007/3-540-28349-8_2

24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

Elmgvist, N., Dragicevic, P., Fekete, J.D.: Rolling the dice: Multidimensional visual
exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Graph.
14(6), 1539-1148 (2008)

Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy,
P., Nikolov, N.S. (eds.) Graph Drawing. Lecture Notes in Computer Science, vol.
3843, pp. 165-176. Springer (2005)

Eppstein, D.; Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorith-
mica 47(4), 439-452 (2007)

Eppstein, D., Holten, D., Loffler, M., Nollenburg, M., Speckmann, B., Verbeek, K.:
Strict confluent drawing. In: Wismath, S., Wolff, A. (eds.) Proc. 21st Int’] Symp.
Graph Drawing (GD’13). LNCS, Springer-Verlag (2014), to appear.

Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based
edge bundling for graph visualization. IEEE Transactions on Visualization and
Computer Graphics 17(12), 2364-2373 (Dec 2011)

Fikkert, F.W., D’Ambros, M., Bierz, T., Jankun-Kelly, T.J.: Interacting with vi-
sualizations. In: Kerren, A., Ebert, A., Meyer, J. (eds.) Human-Centered Visual-
ization Environments, pp. 71-161. Springer (2007)

Fisher, D.: Using egocentric networks to understand communication. Internet Com-
puting, IEEE 9(5), 20-28 (2005)

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Princi-
ples and Practice in C. Addison-Wesley, 2nd edn. (1996)

Fortunato, S.: Community detection in graphs. Physics Reports 486(3—
5), 75 — 174 (2010), http://www.sciencedirect.com/science/article/pii/
SOX701TR 7309002841

Frishman, Y., Tal, A.: Multi-level graph layout on the gpu. IEEE Transactions on
Visualization and Computer Graphics 13(6), 1310-1319 (Nov 2007)

Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge
bundling for visualizing large graphs. In: Proc. PacificVis. pp. 187-194 (2011)
Gansner, E., Hu, Y.: Efficient node overlap removal using a proximity stress model.
Graph Drawing pp. 206-217 (2009)

Gansner, E.R., Koren, Y., North, S.C.: Topological fisheye views for visualizing
large graphs. Visualization and Computer Graphics, IEEE Transactions on 11(4),
457-468 (2005)

Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using
node-link and matrix-based representations: a controlled experiment and statistical
analysis. Information Visualization 4(2), 114-135 (2005)

Giinnemann, S., Boden, B., Seidl, T.: Db-csc: A density-based approach for sub-
space clustering in graphs with feature vectors. In: Gunopulos, D., Hofmann, T.,
Malerba, D., Vazirgiannis, M. (eds.) Machine Learning and Knowledge Discovery
in Databases, Lecture Notes in Computer Science, vol. 6911, pp. 565-580. Springer
Berlin Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-23780-5_46
Hachul, S., Jiinger, M.: An experimental comparison of fast algorithms for drawing
general large graphs. In: Graph Drawing. pp. 235-250. Springer (2006)

Hadlak, S., Schumann, H., Cap, C.H., Wollenberg, T.: Supporting the visual analy-
sis of dynamic networks by clustering associated temporal attributes. IEEE Trans-
actions on Visualization and Computer Graphics 19(12), 2267-2276 (December
2013)

van Ham, F., Perer, A.: Search, show context, expand on demand: Supporting large
graph exploration with degree-of-interest. IEEE Transactions on Visualization and
Computer Graphics 15(6), 953-960 (2009)

http://www.sciencedirect.com/science/article/pii/S0370157309002841
http://www.sciencedirect.com/science/article/pii/S0370157309002841
http://dx.doi.org/10.1007/978-3-642-23780-5_46

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Scalability Considerations for Multivariate Graph Visualization 25

He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce frame-
work on graphics processors. In: Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. pp. 260-269. PACT ’08, ACM,
New York, NY, USA (2008), http://doi.acm.org/10.1145/1454115.1454152
Heer, J., Boyd, D.: Vizster: Visualizing online social networks. In: Proceedings of
the IEEE Symposium on Information Visualization (InfoVis). pp. 33—40. IEEE,
Minneapolis, MN (October 2005)

Heer, J., Perer, A.: Orion: A system for modeling, transformation and visualiza-
tion of multidimensional heterogeneous networks. In: Visual Analytics Science and
Technology (VAST), 2011 IEEE Conference on. pp. 51-60. IEEE (2011)

Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: A hybrid visualization of so-
cial networks. IEEE Transactions on Visualization and Computer Graphics 13(6),
1302-1309 (2007)

Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hier-
archical data. IEEE TVCG 12(5), 741-748 (2006)

Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comp. Graph. Forum 28(3), 670-677 (2009)

Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica Journal
10(1), 37-71 (2005)

Huang, M.L., Eades, P., Wang, J.: On-line animated visualization of huge graphs
using a modified spring algorithm. Journal of Visual Languages & Computing 9(6),
623-645 (1998)

Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent
drawings. Algorithmica 47(4), 465-479 (2007)

Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation.
Comp. Graph. Forum 31(3ptl), 865-874 (Jun 2012), http://dx.doi.org/10.
1111/7.1467-8659.2012.03079.x

Hurter, C., Ersoy, O., Telea, A.: Smooth bundling of large streaming and sequence
graphs. In: Proceedings of the PacificVis’13 (2013)

Hurter, C., Telea, A., Ersoy, O.: Moleview: An attribute and structure-based se-
mantic lens for large element-based plots. IEEE Transactions on Visualization and
Computer Graphics 17(12), 2600-2609 (Dec 2011), http://dx.doi.org/10.1109/
TVCG_2011 273

Hurter, C., Tissoires, B., Conversy, S.: Fromdady: Spreading aircraft trajectories
across views to support iterative queries. IEEE Transactions on Visualization and
Computer Graphics 15(6), 1017-1024 (Nov 2009), http://dx.doi.org/10.1109/
TVCG 2009 145

Jia, Y., Hoberock, J., Garland, M., Hart, J.: On the visualization of social and other
scale-free networks. Visualization and Computer Graphics, IEEE Transactions on
14(6), 1285-1292 (2008)

Klippel, A., Hardisty, F., Li, R., Weaver, C.: Colour enhanced star plot glyphs — can
salient shape characteristics be overcome? Cartographica 44(3), 217-231 (2009)
Klippel, A., Weaver, C., Robinson, A.C.: Analyzing cognitive conceptualizations
using interactive visual environments. Cartography and Geographic Information
Science 38(1), 5268 (January 2011)

Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles.
Comp. Graph. Forum 29(3), 432-439 (2010)

Liu, Z., Navathe, S.B., Stasko, J.T.: Network-based visual analysis of tabular data.
In: Visual Analytics Science and Technology (VAST), 2011 IEEE Conference on.
pp. 41-50. IEEE (2011)

http://doi.acm.org/10.1145/1454115.1454152
http://dx.doi.org/10.1111/j.1467-8659.2012.03079.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03079.x
http://dx.doi.org/10.1109/TVCG.2011.223
http://dx.doi.org/10.1109/TVCG.2011.223
http://dx.doi.org/10.1109/TVCG.2009.145
http://dx.doi.org/10.1109/TVCG.2009.145

26

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

McDonnel, B., Elmqvist, N.: Towards utilizing gpus in information visualization:
A model and implementation of image-space operations. IEEE Transactions on
Visualization and Computer Graphics 15(6), 1105-1112 (Nov 2009), http://dx.
doi.org/10.1109/TVCG.2009.191

Miller, G.A.: The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review 63(2), 81-97 (March
1956

Millczdot, M.: Dictionary of Optometry and Visual Science. Butterworth-
Heinemann (1997)

Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-aware
navigation in large networks. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pp. 2319-2328. ACM (2009)

Nguyen, Q., Eades, P., Hong, S.H.: On the faithfulness of graph visualizations. In:
Graph Drawing. pp. 566-568. Springer (2013)

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kriiger, J., Lefohn, A., Pur-
cell, T.J.: A survey of general-purpose computation on graphics hardware. Com-
puter Graphics Forum 26(1), 80-113 (2007), http://www.blackwell-synergy.
com/doi/pdf/10.1111/7.1467-8659.2007.01012.%

Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered
bundles. In: Graph Drawing. pp. 136-147. Springer (2012)

Purchase, H.C.: Which aesthetic has the greatest effect on human understanding?
In: Proceedings of the 5th International Symposium on Graph Drawing. pp. 248—
261. GD ’97, Springer-Verlag, London, UK, UK (1997)

Purchase, H.C., Carrington, D.A., Allder, J.A.: Experimenting with aesthetics-
based graph layout. In: Anderson, M., Cheng, P.C.H., Haarslev, V. (eds.) Theory
and Application of Diagrams, First International Conference, Diagrams 2000, Ed-
inburgh, Scotland, UK, September 1-3, 2000, Proceedings. Lecture Notes in Com-
puter Science, vol. 1889, pp. 498-501. Springer (2000)

Purchase, H.C., Hamer, J., Néllenburg, M., Kobourov, S.G.: On the usability of
lombardi graph drawings. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing.
pp. 451-462. Lecture Notes in Computer Science, Springer Berlin Heidelberg (Jan
2013

Quer)cini, G., Ancona, M.: Confluent drawing algorithms using rectangular dual-
ization. In: Brandes, U., Cornelsen, S. (eds.) Graph Drawing. Lecture Notes in
Computer Science, vol. 6502, pp. 341-352. Springer (2010)

Riche, N.H., Dwyer, T., Lee, B., Carpendale, S.: Exploring the design space of
interactive link curvature in network diagrams. In: Proceedings of the International
Working Conference on Advanced Visual Interfaces. pp. 506-513. ACM (2012)
Roberts, J.C.: Multiple-View and Multiform Visualization. In: Erbacher, R., Pang,
A., Wittenbrink, C., Roberts, J. (eds.) Visual Data Exploration and Analysis VII,
Proceedings of SPIE. vol. 3960, pp. 176-185 (January 2000)

Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling protein
networks with power graph analysis. PLoS computational biology 4(7), ¢1000108
2008

(Scheeioens7 R., Willems, N., van de Wetering, H., Andrienko, G., Andrienko, N.,
van Wijk, J.J.: Composite density maps for multivariate trajectories. IEEE Trans-
actions on Visualization and Computer Graphics 17(12), 2518-2527 (Dec 2011),
http://dx.doi.org/10.1109/TVCG.2011.181

Shadoan, R., Weaver, C.: Visual analysis of higher-order conjunctive relationships
in multidimensional data using a hypergraph query system. IEEE Transactions on
Visualization and Computer Graphics 19(12), 2070-2079 (December 2013)

http://dx.doi.org/10.1109/TVCG.2009.191
http://dx.doi.org/10.1109/TVCG.2009.191
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1109/TVCG.2011.181

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

Scalability Considerations for Multivariate Graph Visualization 27

Shneiderman, B.: The eyes have it: A task by data type taxonomy for information
visualizations. In: Visual Languages, 1996. Proceedings., IEEE Symposium on. pp.
336-343. IEEE (1996)

Stasko, J., Gorg, C., Liu, Z.: Jigsaw: Supporting investigative analysis through
interactive visualization. Information Visualization 7(2), 118-132 (2008)

Stell, J.G.: Granulation for graphs. In: Spatial Information Theory. Cognitive
and Computational Foundations of Geographic Information Science, pp. 417-432.
Springer (1999)

Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures for
general-purpose computing: a framework and analysis. In: Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture. pp. 306-317.
MICRO 35, IEEE Computer Society Press, Los Alamitos, CA, USA (2002), http:
//dl.acm.org/citation.cfm?id=774861.774894

Tominski, C., Abello, J., Schumann, H.: CGV-an interactive graph visualization
system. Computers & Graphics 33(6), 660-678 (December 2009)

Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very large,
high resolution displays. In: UIST ’05: Proceedings of the 18th annual ACM sym-
posium on User interface software and technology. pp. 33-42. ACM Press, New
York, NY, USA (2005)

Ward, M.O., Grinstein, G.G., Keim, D.A.: Interactive Data Visualization-
Foundations, Techniques, and Applications. A K Peters (2010)

Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann,
2nd. edn. (2004)

Ware, C., Bobrow, R.: Supporting visual queries on medium-sized node-link dia-
grams. Information Visualization 4(1), 49-58 (Mar 2005)

Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. ACM Trans. Appl.
Percept. 5(1), 2:1-2:15 (Jan 2008)

Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of
graph aesthetics. Information Visualization 1(2), 103-110 (2002)

Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cam-
bridge University Press, Cambridge; New York (1994)

Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of the
SIGCHI conference on Human Factors in computing systems. pp. 811-819. ACM
(2006)

Weaver, C.: Building highly-coordinated visualizations in Improvise. In: Proceed-
ings of the IEEE Symposium on Information Visualization (InfoVis). pp. 159-166.
IEEE Computer Society, Austin, TX (October 2004)

Weaver, C.: Visualizing coordination in situ. In: Proceedings of the IEEE Sympo-
sium on Information Visualization (InfoVis). pp. 165-172. IEEE Computer Society,
Minneapolis, MN (October 2005)

Weaver, C.: Metavisual exploration and analysis of DEVise coordination in Impro-
vise. In: Proceedings of the International Conference on Coordinated & Multiple
Views in Exploratory Visualization (CMV). pp. 79-90. IEEE Computer Society,
London, UK (July 2006)

Weaver, C.: Cross-filtered views for multidimensional visual analysis. IEEE Trans-
actions on Visualization and Computer Graphics 16(2), 192-204 (March-April
2010)

Weaver, C.: Multidimensional data dissection using attribute relationship graphs.
In: Proceedings of the IEEE Symposium on Visual Analytics Science and Technol-
ogy (VAST). pp. 75-82. IEEE, Salt Lake City, UT (October 2010)

http://dl.acm.org/citation.cfm?id=774861.774894
http://dl.acm.org/citation.cfm?id=774861.774894

28

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Jankun-Kelly, Dwyer, Holten, Hurter, Nollenburg, Weaver, Xu

Westheimer, G.: Visual acuity. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physi-
ology of the Eye: Clinical Applications, chap. Chapter 17, pp. 453-469. Elsevier,
10th edn. (1987)

Wikipedia: List of display by pixel density: Apple, Last Accessed November, 2013
Wolfe, J.M.: Guided search 2.0: A revised model of visual search. Psychonomonic
Bulletin & Review 1(2), 202-238 (1994)

Wolfe, J.M., Cave, K.R., Franzel, S.L.: Guided search: An alternative to the feature
integration model for visual search. Journal of Experimental Psychology 15(3),
419-433 (1989)

Wu, Y., Takatsuka, M.: Visualizing multivariate networks: A hybrid approach. In:
Visualization Symposium, 2008. PacificVIS’08. IEEE Pacific. pp. 223-230 (2008)
Xu, K., Cunningham, A., Hong, S.H., Thomas, B.H.: GraphScape: integrated
multivariate network visualization. In: Proceedings of the 6th International Asia-
Pacific Symposium on Visualization. pp. 33-40. Sydney, Australia (Feb 2007)
Xu, K., Rooney, C., Passmore, P., Ham, D.H., Nguyen, P.: A user study on curved
edges in graph visualization. IEEE Transactions on Visualization and Computer
Graphics 18(12), 2449 —2456 (Dec 2012)

Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow. 2(1), 718-729 (Aug 2009), http://dl.acm.org/
Zhou, Y., Cheng, H., Yu, J.: Clustering large attributed graphs: An efficient incre-
mental approach. In: Data Mining (ICDM), 2010 IEEE 10th International Confer-
ence on. pp. 689-698 (2010)

Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail
rendering of large graphs. IEEE Transactions on Visualization and Computer
Graphics 18(12), 24862495 (2012)

http://dl.acm.org/citation.cfm?id=1687627.1687709
http://dl.acm.org/citation.cfm?id=1687627.1687709

	Scalability Considerations for Multivariate Graph Visualization
	Introduction
	Limits of Visualization
	Limits of Visual Acuity
	Cognitive Limits
	Leveraging the Graphics Card (GPU)
	GPU Pipeline—Fixed vs. Programmable
	GPU Programming—APIs and pitfalls
	Multivariate graph visualization scalability and the GPU

	Design Strategies for Scalable Multivariate Graph Visualization
	Data Transformation and Reduction
	Visual Mapping
	View Transformation

	Studies on Scalability in Graph Visualization
	Data Transformation and Reduction
	Visual Mapping
	Navigation and Interaction

	Challenges and Discussion

