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Abstract. We present an approach to developing secure system speci-
fications for IoT systems with decentralized data using the Refinement-
Risk cycle (RR-cycle), a method for security engineering implemented
in the proof assistant Isabelle. The RR-cycle enables interleaving attack
analysis with system refinement using rigorous machine assisted proof
in Isabelle to scrutinize and refine system specifications until security
requirements are met. We illustrate this approach by a case study of a
privacy critical scenario by refining it with a distributed ledger. The case
study is motivated by the IoT project SUCCESS on security and pri-
vacy of healthcare IoT applications. We briefly summarize the RR-cycle
method before focusing on its application of identifying a privacy attack
that leads to a security refinement introducing the distributed ledger.

1 Introduction

In general, rigorous specification is justified despite its cost in the long run for
any system as it facilitates and thus economizes maintenance and adaptation.
For complex and hybrid systems, like IoT systems, for security and privacy crit-
ical applications, like healthcare, the application of formal methods is justified
in any case. The approach we advocate in this paper, is to use the classical soft-
ware engineering approach of a top down rigorous development process starting
from an abstract specification based on requirements engineering. This initial
specification is then refined step by step to a more concrete one while preserving
properties. We use the method called Refinement-Risk cycle (RR-cycle) [10,14]
that integrates a state based system view of infrastructures with actors and
policies as basis for the representation of IoT systems and is implemented in the
interactive proof assistant Isabelle.

We first give a brief summary of the Isabelle RR-cycle [10,14] and the IoT
healthcare case study in Section 2 to provide the background for understanding
its application. In Section 3 we re-iterate a previous RR-cycle application to the
case study [14]. By introducing a distributed ledger we can show that now the
RR-cycle terminates with the global privacy property. We discuss, conclude and
present related work in Section 4.



2 Summary of RR-cycle and case study

The RR-cycle [10,14] has emerged as a result of the CHIST-ERA project SUC-
CESS [4] addressing the formal modeling and analysis of security and privacy of
IoT in healthcare. The starting point of this cycle is an initial formal specification
that may have been produced by a formal requirement elicitation method like
in the IoT case study [10,14] but may also be an ad hoc formalization of system
requirements. The RR-cycle improves this initial specification by interleaving
refinement with attack analysis. The process is directed by a global security
property. The RR-cycle is the process that is used to drive security engineering
in the Isabelle Insider and Infrastructure framework (IIIf). Attack trees, Kripke
structures and modelchecking as well as a formal notion of property preserv-
ing refinement are formalized within the framework of the IIIf. This process is
graphically depicted in Figure 1. For a simple healthcare scenario we have applied

Fig. 1. Refinement-Risk-Cycle iterates design, risk analysis, and refinement

the Fusion/UML process for object-oriented software development to derive a
UML system design. One of the major outcomes of this process is the system
class model shown in Figure 2. In addition to this static system architecture,
the Fusion/UML model also provides a set of operation schemas, use cases, and
so-called object collaborations illustrating the method flows within the objects
of the system class model. The complete analysis and design documentation is
available [13]. The arxiv paper [14] already presented a detailed model and anal-
ysis of the first few iterations of the RR-cycle to this case study based on an
earlier workshop paper [10] that informally described the stepwise development
but without formalizations. A summary of the iterations of the RR-cycle, the at-
tacks exhibiting vulnerabilities, and the countermeasures used for the refinement
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Fig. 2. System class model for IoT healthcare system

in these earlier papers [10,14] is provided in Table 3. However, despite introduc-
ing already a blockchain formalization (Iteration 2), the earlier formalization is
inadequate. Consequently the RR-cycle could not be successfully terminated –
also because the termination condition of the RR-cycle has been identified only
later [11]. In the current paper, we thus re-start the RR-cycle after Iteration 2
and introduce a more adequate definition of a distributed ledger. We then show
that it guarantees the global security property of privacy of data.

System Attack Refinement Where

Initial Fusion system
home-cloud-hospital

Eve can perform ac-
tion get at cloud

Introduce access con-
trol by DLM labels

RRLoopOne.thy

hcKripkeOne.thy

Refinement-Risk-Cycle Iteration 1

Access control by
DLM labels

Eve can perform ac-
tion eval at cloud;
changes label to her
own

Introduce privacy
preserving functions
and enforce their use
within system

RRLoopTwo.thy

hcKripkeTwo.thy

Refinement-Risk-Cycle Iteration 2

Privacy preserv-
ing functions type
label fun

Eve puts Bob’s data
labeled as her own

Introduce blockchain RRLoopThree.thy

hcKripkeThree.thy

Refinement-Risk-Cycle Iteration 3

Global distributed
ledger

Global privacy theo-
rem proved

Done LedgerRRLoop.thy

LedgerhcKripke.thy

Termination of Refinement-Risk-Cycle

Fig. 3. Iterated application of Refinement-Risk(RR)-Cycle

3 IoT model in IIIf, attack trees analysis and refinement
to distributed ledger

In this section, we first introduce the specification after RR-cycle iteration level
2 (see Table 3) where DLM access control labels [16] and privacy preserving
functions have already been introduced into the system. We then exhibit an
attack using attack tree analysis and present the refinement where a distributed
ledger replaces the initial ad hoc data management.
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3.1 IoT healthcare model in IIIf

The IIIf allows representing infrastructures as graphs where the actors and local
policies are attached to the nodes. Infrastructures are the states of the system.
We use the underlying theory of Kripke structures and temporal logics CTL in
the IIIf to define a specific state transition relation for our application scenario.
By instantiating the generic Kripke structure state transition relation to each of
the refinements of the application scenario, we inherit the underlying theory of
CTL and attack trees to provide security analysis in Isabelle.

The infrastructure graph is defined as a datastructure igraph whose compo-
nents gra, agra, cgra, and lgra represent the parts as: a set of pairs of nodes;
the actor identities at each node; the credentials and roles assigned to actors;
and the assignment of dlm labeled data at each location. The label type dlm is
a synonym for actor × actor set combining the owner and the set of readers
into a pair. The constructor Lgraph puts these components into an igraph.

datatype igraph = Lgraph gra: location × location)set

agra: location ⇒ identity set

cgra: actor ⇒ (string set × string set)

lgra: location ⇒ (data × dlm) set

We then instantiate igraphs to locales (see Figure 1). The following ex graph is
the concrete igraph example used in the IoT healthcare case study locale where
ex creds and ex locs are example credentials and data (omitted here [12]).

ex_graph ≡ Lgraph {(home,cloud), (sphone,cloud), (cloud,hospital)}

(λ x. if x = home then {’’Patient’’} else

(if x = hospital then {’’Doctor’’} else {}))

ex_creds ex_locs

Infrastructures are generally given by the following datatype that contains an
infrastructure graph of type igraph and a policy given by a function that assigns
local policies over a graph to all locations of the graph.

datatype infrastructure = Infrastructure igraph

[igraph, location] ⇒ policy set

For our healthcare example, the instantiated infrastructure contains the above
graph ex graph and the local policies defined subsequently.

hc_scenario ≡ Infrastructure ex_graph local_policies

The function local policies defines the policy for an application: for each
location x over an infrastructure graph G as sets of pairs. The first element of a
pair is a function specifying the actors y that are entitled to perform the actions
specified in the set which is the second element of that pair.

local_policies G x ≡
case x of

home ⇒ {(λ y. True, {put,get,move,eval})}

| sphone ⇒ {((λ y. has G (y,’’PIN’’)), {put,get,move,eval})}
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| cloud ⇒ {(λ y. True, {put,get,move,eval})}

| hospital ⇒ {((λ y. (∃ n. (n @G hospital) ∧
Actor n = y ∧ has G (y, ’’skey’’))), {put,get,move,eval})}

| _ ⇒ {})

In general, policies specify the expected behaviour of actors of an infrastructure.
They are given by pairs of predicates (conditions) and sets of (enabled) actions.
Policies are controlled by the enables predicate: an actor h is enabled to perform
an action a in infrastructure I, at location l if there exists a pair (p,e) in the
local policy of l (delta I l projects to the local policy) such that the action a

is a member of the action set e and the policy predicate p holds for actor h.

enables I l h a ≡ ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

Infrastructure State Transition The generic state transition relation uses
the syntactic infix notation I →n I’ to denote that infrastructures I and I’

are in this relation. To give an impression of this definition, we show here just
one of several rules that defines the state transition for the action put because
this rule will be crucial in the following attack analysis. The rule put assumes an
actor h residing at a location l in the infrastructure graph G and being enabled
the put action. If infrastructure state I fulfils those preconditions, the next state
I’ can be constructed from the current state by adding the data item d with
label (h, hs) at location l. The addition is given by updating (using :=) the
component lgra by adding this new labeled data item.

put: G = graphI I =⇒ h @G l =⇒ enables I l (Actor h) put =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)(lgra G)

((lgra G)(l := (lgra G l) ∪ {((Actor h, hs), d)})))

(delta I)

=⇒ I →n I’

3.2 Attack tree analysis

The goal of the security analysis is also described by a policy: the global policy.
The global policy is ‘only the patient and the doctor can access the data in the
cloud’. In the first two iterations of the RR-cycle, this global policy has twice
been attacked (see Table 3) by first simply taking the data away (action get)
and second, after introducing dlm-access control labels, by overwriting the access
control label of a data item using the eval action. This attack can be prevented
by enforcing the use of privacy preserving functions (for details see the source
code [12] and [14]). However, even now there is still an attack possible.

We consider next the following global policy expressing data privacy.

global_policy I a ≡ ∀ l ∈ nodes(graphI I). ∀ l’ ∈ nodes(graphI I).

∀ d:: data. ∀ lb:: dlm. ∀ lb’:: dlm.

(lb, d) ∈ lgra(graphI I l) −→ (lb’, d) ∈ lgra(graphI I l’)

−→ lb = lb’
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It expresses privacy by saying that different occurrences of the same data in the
system must have the same labels. Trying to prove this global policy, we fail.
The reason for this is exhibited by the following attack which we find by attack
tree analysis (for details see [14,12]). Using the CTL semantics of attack trees
in IIIf [9], allows translating the attack into an EF property showing that there
exists a path (E) on which eventually (F) Eve can put data on the cloud.

hc_KripkeF ` EF I. enables I cloud (Actor ’’Eve’’) put

That is, Eve could learn the data by other means than using the privacy pre-
serving functions introduced in the second iteration of the RR-cycle and use the
action put to enter that data as new data to the system but labelled as her own
data. As a countermeasure, we need a concept to guarantee consistency of data
labeling across the system: we introduce a distributed ledger also known as a
blockchain.

3.3 Introducing distributed ledger via refinement

We use the inherent uniqueness of the function type in Isabelle to provide a
definition of a distributed ledger in a concise way as a type synonym.

type synonym ledger = data ⇒ (dlm × location set)option

A ledger is now a type of “partial” functions that maps a data item to a pair of
the data’s label and the set of locations where the data item is registered. Since
all functions in HOL are total, we use a standard Isabelle way of representing
partial functions using the type constructor option. This type constructor lifts
a type α to the type α option which consists of the unique constant None and
the range of elements Some x for all x ∈ α.

Since the type ledger is a function type, an element of type ledger maps a
data item d to at most one range element Some(l,L) (or to None if this data
element is not in use in the system). Thus, every data item d has at most one valid
data label l of type dlm and one unique list of current infrastructure locations
L where this data item is located.

These observations about the definition of the type ledger can be exploited
formally in Isabelle and proved accordingly (∃! is unique existence).

lemma ledger def prop: ∀ lg:: ledger. ∀ d:: data.

lg d = None ∨ (∃! lL. lg d = Some(lL))

In order to refine the IoT healthcare application introducing the ledger as a
component of the infrastructure state, we re-define the type igraph.

datatype igraph = Lgraph gra: location × location)set

agra: location ⇒ identity set

cgra: actor ⇒ (string set × string set)

lgra: ledger
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The previous database component lgra is now replaced by a distributed ledger:
the consistency is guaranteed by its global control but the decentralization is
given by assigning the data to various locations as recorded in the ledger in a
set of locations L.

To formally verify that the introduction of the ledger is a refinement, we
follow the RR-cycle process and define a refinement map.

definition ref map :: [LedgerRRLoopFour.infrastructure,

[RRLoopThree.igraph, location] ⇒ policy set]

⇒ RRLoopThree.infrastructure"

where ref map I lp = RRLoopThree.Infrastructure

(RRLoopThree.Lgraph

(gra (graphI I))(agra (graphI I))

(cgra (graphI I))

(ledger to loc (ledgra (graphI I))))

lp

The ref map takes elements of type LedgerRRLoopFour.infrastructure – the
refined infrastructure type – using their components to construct abstract infras-
tructures of type RRLoopThree.infrastructure. The names RRLoopThree and
LedgerRRLoopFour are Isabelle theory names and also designate the iterations
of the RR-cycle (see Table 3 for an overview). These names are used for name
spacing and thus disambiguating the constructors in Isabelle. The second input
lp is a local policy which is a parameter to the application refinement defined in
the application’s locale instance. The Isabelle RR-cycle provides the necessary
meta-theory to prove this refinement.

Note, the last component in the infrastructure ledger to loc is the most
crucial part of the refinement as it transforms an element of type ledger of the
refined infrastructure into a function assigning sets of labelled data to locations
in the abstract infrastructure type. This constructor is defined as follows.

definition ledger to loc :: ledger ⇒ location

⇒ (RRLoopThree.dlm × RRLoopThree.data) set

where ledger to loc ld l ≡ (if (∃ d. l ∈ snd(the(ld d))) then

{(lb,d). l ∈ snd(the(ld d))} else {})

The state transition relation in the refined infrastructure specification uses the
ledger to implement privacy control by adding corresponding conditions to each
inductive rule. For example, the rule for put (see Section 3.1), now checks
whether the ledger designated the actor’s identity h as the owner of the data
item d to authorise that it may be copied to location l. This copying is recorded
in the ledger by adding (using function update :=) the location l to the location
set L of d (using the insert set operation).

put: G = graphI I =⇒ h @G l =⇒ enables I l (Actor h) put =⇒
ledgra G d = Some ((h, hs), L) =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)(lgra G)

((ledgra G)(d := Some ((h, hs), insert l L))))
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(delta I)

=⇒ I →n I’

Considering now the refined infrastructure model for the IoT healthcare scenario,
we reconsider the privacy attack detected in Iteration 2 of the RR-cycle. We
can now prove that the previously desired global policy expressing data privacy
(Section 3.2) is globally valid: data are labelled uniquely.

theorem ledger guarantees privacy:

hc KripkeF ` AG {x. ∀ d:: data. ∀ d’:: data.

d = d’ −→ ledgra(graphI x d) = ledgra(graphI x d’)}

The initial hc KripkeF is the concrete Kripke structure representing the IoT
healthcare example instantiated as a locale. The ledger guarantees privacy

theorem is first proved at the locale level but can be generalized to hold for any
model using the ledger as a final step of the RR-cycle. The RR-cycle is thus
terminated successfully.

3.4 Discussion

Even though Eve can still put data on the cloud, the refinement introducing
the distributed ledger prevents the privacy attack. Because of the ledger, Eve
cannot put existing data (that of Bob) with her own label any more. The new
put semantics only allows extending the ledger by adding new locations and this
only for the data owner.

Effective implementations of the ledger need mapping out the globally con-
sistent type data to a decentralized datastructure, for example a blockchain with
Consensus to preserve the decentralized control specified here. This implementa-
tion could be defined within Isabelle and proved to be a refinement of the ledger
specification. If this implementation is constructive, code can be extracted from
Isabelle into programming languages, like ML, Haskell or Scala.

In comparison to the earlier experiments with applying the RR-cycle to the
IoT healthcare case study [14], we could now terminate the RR-cycle process
and prove a global (AG) privacy theorem. Moreover, the new type ledger also
simplifies the proofs. Compared to the older (partially unfinished) proofs at
Iteration 3 and 4 (see [14]) the proofs are shorter. In addition, we do not need
to add an explicit precondition to the new put rule that the data item has not
been there ([Section IV.C][14]). The new type ledger implicitly guarantees that.

4 Conclusions and related work

In this paper, we summarize some previous preliminary reports [10,14] on using
the Isabelle RR-cycle to develop a privacy enhancing architecture for an IoT
healthcare scenario. The main contribution is to show how to integrate a dis-
tributed ledger into the specification to guarantee global consistency of access
control data labeling correcting earlier attempts [14]. Thereby, the RR-cycle can
be successfully terminated exhibiting a global privacy property.
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Formal system specification refinement has been investigated for some time
initially for system refinement in the specification language Z [8] but a dedicated
security refinement has not been formalized for some time [15]. The idea to
refine a system specification for security has been already addressed in B [2,17].
The former combines the refinement of B with system security policies given in
Organisation based Access Control (OrBAC) and presents a generic example of a
system development. While B is supported by its own tool Atelier B, it does not
provide a formalization in a theorem prover unlike our integration which supports
dedicated security concepts like attack trees and enables useful meta-theory over
the integration. The paper [17] looks at attacks within the B framework but it
aims at designing a monitor that catches actions forbidden by the policy not on
using these attacks to refine the system specification. Dynamic risk assessment
using attack formalism, like attack graphs, has recently found great attention,
e.g. [7]. However, usually, the focus of the process lies on attack generation
and response planning while we address the design of secure systems. Rather
than incident response, we intend to use early analysis of system specification to
provide a development of secure systems. This includes physical infrastructure,
like IoT system architecture, as well as organisational policies with actors.

The Workshop Formal Methods on Blockchain (FMBC) [5] has been running
yearly from 2019 till 2022 and has produced a number of formalizations also in
interactive proof assistants like Coq or Isabelle. From this rich set of related work
it is worth mentioning an approach to formalize the FA1.2 Ledger standard in
Coq [6]. The goal of this paper has been similar to ours to provide a precise
specification of a ledger. The authors look however at a specific technical stan-
dard for Tezos as well as using Coq. Moreover, they are not aiming at providing
a high level general specification.

There are a number of formalizations of blockchains in interactive proof as-
sistants, for example, Mi-cho-coq [3] and Concert [1] amongst others. Mostly,
these formalizations focus on smart contracts to analyze security attacks on
cryptocurrencies like Bitcoin. They effectively try to grasp the semantics of the
smart contract languages and the effect they have on manipulating cryptocur-
rency transfers in their models, how to analyze them and extract code into
blockchain languages like Tezos. We focus on the global consistency property of
a distributed ledger as a security measure to support privacy in IoT applications
like healthcare. Smart contracts and cryptocurrencies are a secondary concern.

Other fully automated verification techniques like Modelchecking sometimes
also use refinement checking but the refinement of the RR-cycle requires data
refinement in addition to trace refinement thus necessitating more expressive
logics like Isabelle’s HOL.

The presented work aims at showing how the RR-cycle helps identifying
and improving on design errors in early phases of the IoT system design. It
draws together a number of previous preliminary attempts and finalizes them
by applying the closed form of the RR-cycle definition.

The developed specification presents a concise formal definition of a dis-
tributed ledger. Although abstract it is well suited to ensure that distributed

9



data can be handled in a privacy-preserving fashion. The formal specification in
Isabelle can also be used to derive more concrete specifications – using refine-
ment – and finally to extract code into programming languages like Haskell or
Scala. Future work may address scalability: RR-cycle refinement could be ap-
plied to map the current abstract specification to add more detail of actual IoT
hardware and Instruction Set Architectures (ISAs). We specify privacy by using
data labeling and verifying it by ensuring label consistency across the system.
It is interesting to explore how this technique relates to specific notions of data
privacy, like k-anonymity or differential privacy.
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