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Abstract

Over the years the demand for large traffic volume and new advancements in network technologies

have grown rapidly. The classical network in general has evolved towards complex architectures with

vendor-specific designed interfaces. Unlike previous mobile network generations, 5G network provides

a new foundational architecture with stringent requirements of network function virtualisation, mas-

sive scalability and high reliability with added flexibility. Alongside, the new concept of SDN-based

network has offered potentially diverse benefits compared to the classical networks. Examples of the

primary advantages include the centralized network provisioning and the network programmability.

Therefore, Software Defined Network (SDN) with Network Functions Virtualization (NFV) have be-

come a promising technique for the advanced 5th generation networks and the key components in the

design of next generation networks.

As the Internet network is growing fast and operate wide range of traffic classes, the service quality

and customer satisfaction are gaining importance in the network management. To this extend, policy-

based network management becomes essential as certain traffic flows need to satisfy the business

needs. In this research, a policy-based network management for quality services over SDN network

is proposed. This research focuses on the traffic routing and measurement collection in order to

satisfy the high level constraints. As part of the overall solution, the integration of intelligence in

the framework is proposed. Machine Learning (ML) is becoming a very promising techniques to

leverage the needs of autonomic and intelligent network management. This research proposes the use

of Reinforcement Learning (RL) to enhance the decision making of policy-based network management

for the end-to-end Quality of Service (QoS) guarantee. In this way, the proposed framework learns

over time and it determines the best action to perform for ensuring end-to-end QoS delivery.

Recently the research on SDN has gained significant attention in the academia. In this context, the

contributions of this research introduce novel methods to improve the monitoring and control towards

intelligent traffic management solutions in multimedia-aware SDN-based environments. This research

work brings three main contributions: (1) measurement collection and probabilistic-based routing

solution is proposed to reduce the monitoring overhead over the control link between the forwarding
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and control layers in SDN, while increasing the observability of network state. This contribution

applies a novel method based on sparsity approximation to compress the aggregated data in the

SDN switch, while the SDN controller recovers the sparse data. Moreover, this research introduces

an innovative probabilistic routing. The primary novelty of this contribution is the prediction of

link bandwidth availability based on the Bayes’ theorem. In contrast to other studies, the proposed

routing algorithm calculates the routing path when less information is advertised by the switch plane;

(2) policy-based network management (PBNM) over SDN to enable QoS provisioning. It addresses

the use of SDN centralized architecture to adopt the standard policy-based network management,

while retaining the proprietary modular-block at each layer independently. With the help of policy

management, the SDN controller can meet the requirement of an end-to-end service delivery with

QoS guarantee; (3) reinforcement learning-based decision making for routing algorithms over SDN is

proposed to apply a novel approach based on reinforcement learning method for the dynamic routing

algorithm selection under SDN-based environments. Based on the learning approach, the proposed

solution selects the most appropriate routing algorithm from a set of centralized routing algorithms

that maintain the flow satisfaction with respect to the defined SLA requirements.

The proposed solutions were evaluated under diverse scenarios. In order to evaluate the ap-

plicability of the overall proposed system, several tools are used for the experiments: MATLAB,

Mininet (SDN network emulator), Floodlight SDN Controller, OpenVSwitch/Ofsoftswitch13 (Soft-

ware switch). While, the following tools were used for the traffic generation: VLC (Live video stream-

ing), Ostinato (Network traffic generator tool), FFMPEG (record, convert and stream video). For the

evaluation, the following experimental setup (Linux-based machine) was used: SDN controller and

application: 2.2GHz multiprocessor of 4CPU unit, memory size of 16GB, Mininet network emulator:

2.2GHz of 4 CPU units, memory size of 32GB. The research presents the design and implementation

of the framework that leverages the benefits of SDN and performance evaluation results are discussed

to validate the feasibility of this approach.

Keywords: Software-Defined Networking, Policy-based Network Management, QoS Provision-

ing, Monitoring, Artificial Intelligence, Machine Learning, Performance Metric.

ii



Acknowledgments

I would like to thank Prof. Orhan Gemikonakli for giving me the chance to carry my thesis in his

department. My special thanks I would like to express to my supervisors Dr. Ramona Trestian

and Dr. Purav Shah for their consistent support and advice throughout this journey. My thanks

also go to Dr. Ioan-Sorin Comsa for his guidance and for many fruitful discussions. Their valuable

suggestions and guidance encourage me to explore deeply in the scientific material and to meet the

research target. I would like to acknowledge my gratitude to my family members who supported me

with no complaining at this tough period. Finally, I would like to express my very special thanks to

my parents, who drove me to accomplish this long journey with motivation and encouragement. My

parents supported me always during my pursue of the doctoral degree and they showed me that the

doctoral degree is a long and tough journey, like a sailing ship, with full of excitements and potential

pressure. To my dear mother and to my beloved father who died, I missed you and thank you for the

support and passion. This thesis is dedicated for you.

iii



List of Publications

1. Ahmed Al-Jawad, Ramona Trestian, Purav Shah, and Orhan Gemikonakli, “BaProbSDN: A

probabilistic-based QoS routing mechanism for Software Defined Networks,” IEEE Conference

on Network Softwarization (NetSoft), 2015.

2. Ahmed Al-Jawad, Purav Shah, Orhan Gemikonakli, and Ramona Trestian, “Compression-

based technique for SDN using sparse-representation dictionary,” IEEE/IFIP Network Opera-

tions and Management Symposium (NOMS), 2016.

3. Ahmed Al-Jawad, Purav Shah, Orhan Gemikonakli, and Ramona Trestian, “LearnQoS: A

Learning Approach for Optimizing QoS over Multimedia-based SDNs,” IEEE International Sym-

posium on Broadband Multimedia Systems and Broadcasting (BMSB), 2018.

4. Ahmed Al-Jawad, Purav Shah, Orhan Gemikonakli, and Ramona Trestian, “Policy-based

QoS Management Framework for Software-Defined Networks,” IEEE International Symposium

on Networks, Computers and Communications (ISNCC), 2018.

5. Ahmed Al-Jawad, Purav Shah, Orhan Gemikonakli, Ioan-Sorin Comsa, and Ramona Tres-

tian, “Performance evaluation of routing strategies over multimedia-based SDNs under realistic

environments,” IEEE Conference on Network Softwarization (NetSoft), 2020.

6. Ahmed Al-Jawad, Ioan-Sorin Comsa, Purav Shah, Orhan Gemikonakli, and Ramona Trestian,

“An Innovative Reinforcement Learning-based Framework for Quality of Service Provisioning

over Multimedia-based SDN Environments,” IEEE Transactions on Broadcasting, 2021.

7. Ahmed Al-Jawad, Ioan-Sorin Comsa, Purav Shah, Orhan Gemikonakli, and Ramona Trestian,

“REDO: a reinforcement learning-based dynamic routing algorithm selection method for SDN,”

IEEE Conference on Network Functions Virtualization and Software-Defined Networking (NFV-

SDN), 2021.

iv



Contents

1 Introduction 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Technical Background 10

2.1 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 QoS Provisioning for Multimedia Delivery . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Approaches for Measuring the Video Quality . . . . . . . . . . . . . . . . . . . 12

2.2 Software-Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Policy-based Network Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Routing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Minimum Hop Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Shortest Widest Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Widest Shortest Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.4 Minimum Interference Routing Algorithm . . . . . . . . . . . . . . . . . . . . . 18

2.5 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 State-of-the-Art 21

3.1 Current Industry Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 QoS Provisioning in SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Policy-based Network Management for SDN . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Artificial Intelligence in SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



3.5 Remaining Challenges and Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Proposed System Architecture and Algorithms 38

4.1 Overall Proposed System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Measurement Collection and Probabilistic-based Routing . . . . . . . . . . . . . . . . 40

4.2.1 Monitoring Techniques under SDN Infrastructure . . . . . . . . . . . . . . . . . 40

4.2.1.1 Monitoring based on Continuous Measurement Update . . . . . . . . 41

4.2.1.2 Monitoring based on Link State Update . . . . . . . . . . . . . . . . . 41

4.2.1.3 Measurement Collection Through Compression Technique . . . . . . . 42

4.2.1.3.1 Sparsity Approximation Algorithms . . . . . . . . . . . . . . 42

4.2.1.3.2 The K-SVD Algorithm . . . . . . . . . . . . . . . . . . . . . 42

4.2.1.3.3 The OMP Algorithm . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1.3.4 Proposed Monitoring Architecture . . . . . . . . . . . . . . . 43

4.2.1.4 Methods Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Probabilistic-based QoS Routing Algorithm . . . . . . . . . . . . . . . . . . . . 44

4.2.2.1 BaProbSDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Policy-based QoS Management Framework . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Network Management Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 RL-based Decision Making for Routing Algorithms under Policy-based SDN Environment 50

4.4.1 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Network Management Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.4 Design of the Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.4.2 RL-Based Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.4.3 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.4.4 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.4.5 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Measurement Collection and Probabilistic-based Routing 65

5.1 Compression-based Monitoring Technique . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Simulation Setup Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Network Emulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



5.1.3 Network Emulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . 67

5.2 Probabilistic-based QoS Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Simulation Setup Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Policy-based QoS Management 79

6.1 Emulation Setup Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Emulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Emulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 PBNM-based SDN Framework with Rerouting . . . . . . . . . . . . . . . . . . 82

6.3.2 PBNM-based SDN Framework with Rate Limiting . . . . . . . . . . . . . . . . 84

6.3.3 Monitoring Overhead vs. Application Performance . . . . . . . . . . . . . . . . 86

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Performance Evaluation of Routing Strategies over SDN 89

7.1 Experimental Setup Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Network Emulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Network Emulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Impact of Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1.1 Low Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1.2 Medium Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.1.3 High Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.2 Impact of Traffic load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.2.1 GetNet Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.2.2 Sprint Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.2.3 AT&T Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.3 Impact on the QoS-based Video Traffic . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 RL-based Decision Making for Routing Algorithms over SDN 101

8.1 Experimental Setup Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Network Emulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3 Network Emulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3.1 Impact of Traffic load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



8.3.1.1 GetNet Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3.1.2 Sprint Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3.1.3 AT&T Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3.2 Impact of Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3.2.1 Low Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3.2.2 Medium Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3.2.3 High Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3.3 Impact of the Background Traffic Routing Algorithm . . . . . . . . . . . . . . . 116

8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Conclusions and Future Work 121

9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



List of Figures

1.1 View of the applied techniques in the framework . . . . . . . . . . . . . . . . . . . . . 4

1.2 A general closed loop network management system . . . . . . . . . . . . . . . . . . . . 5

1.3 A general high-level overview of the proposed solution . . . . . . . . . . . . . . . . . . 6

2.1 The SDN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Traditional PBNM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 RL, Agent, and Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 High level functional block diagram of the proposed framework . . . . . . . . . . . . . 39

4.2 Overall proposed system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Foreseen Architecture of the Compression-based Monitoring . . . . . . . . . . . . . . . 44

4.4 SDN architecture with proposed functional units . . . . . . . . . . . . . . . . . . . . . 46

4.5 Bayesian network model in BaProbSDN for link probability . . . . . . . . . . . . . . . 48

4.6 Proposed PBNM-based SDN Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Network management work flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Proposed PBNM-based SDN Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Network management work flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 The proposed system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Testbed for experiment evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Comparison of performance metrics SNR and PSNR with different training data size

|T | and dictionary size |D|, while sparsity level s = 10 . . . . . . . . . . . . . . . . . . 69

5.3 Comparison of performance metrics CC and NMAE with different training data size

|T | and dictionary size |D|, while sparsity level s = 10 . . . . . . . . . . . . . . . . . . 69

5.4 Comparison of original with recovered signal under different CR, while |T | = 8000, and

|D| = 1560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Considered ISP topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 State information update rate for different HDT and threshold-based link update policy 75

ix



5.7 Bandwidth blocking rate of BaProbSDN method under different WS (Threshold=0.3) 76

5.8 Bandwidth blocking rate for different threshold values and HDT=0s . . . . . . . . . . 76

5.9 Bandwidth blocking rate for different HDT values . . . . . . . . . . . . . . . . . . . . 77

5.10 Bandwidth blocking rate for different traffic loads (Threshold=0.3, HDT=10s) . . . . 77

6.1 Experimental Setup using the Sprint network topology . . . . . . . . . . . . . . . . . . 80

6.2 Throughput, packet loss rate, and latency of QoS traffic flow for PBNM-based SDN

framework with rerouting and default SDN without PBNM . . . . . . . . . . . . . . . 83

6.3 Quantitative video frame quality comparison: a) original image, b) proposed PBNM-

based SDN framework with rerouting (PSNR = 50.52dB, MOS = 5 - Excellent), and

c) default SDN (PSNR = 15.39dB, MOS = 1 - Bad) . . . . . . . . . . . . . . . . . . . 84

6.4 Throughput, packet loss rate, and latency of QoS traffic flow for PBNM-based SDN

framework with rate limiting and default SDN without PBNM . . . . . . . . . . . . . 85

6.5 Quantitative video frame quality comparison: a) original image, b) proposed PBNM-

based SDN framework with rate limiting (PSNR = 50.45dB, MOS = 5 - Excellent),

and c) default SDN (PSNR = 15.39dB, MOS = 1 - Bad) . . . . . . . . . . . . . . . . . 86

6.6 Monitoring Overhead for different update intervals (3, 6, and 9 seconds) . . . . . . . . 88

7.1 Experimental Setup for Performance Testing (The shown topology here is an example

for illustration purpose only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Experimental Setup using the following network topologies: AT&T (large-scale topol-

ogy), Sprint (middle-scale topology), and GetNet (small-scale topology) . . . . . . . . 90

7.3 The average PSNR at different various traffic loads and network topologies . . . . . . 96

7.4 The number of rejection for quality requests at different various traffic loads and net-

work topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1 Experimental Setup using the following network topologies: AT&T (large-scale topol-

ogy), Sprint (middle-scale topology), and GetNet (small-scale topology) . . . . . . . . 102

8.2 GetNet network topology: Packet loss of the traffic classes under different traffic loads 108

8.3 GetNet network topology: The total number of rejected flow and the total number of

flows that are generated in the experiment test . . . . . . . . . . . . . . . . . . . . . . 109

8.4 Sprint network topology: Packet loss of the traffic classes under different traffic loads . 110

8.5 Sprint network topology: The total number of rejected flow and the total number of

flows that are generated in the experiment test . . . . . . . . . . . . . . . . . . . . . . 111

8.6 AT&T network topology: Packet loss of the traffic classes under different traffic loads 112

x



8.7 AT&T network topology: The total number of rejected flow and the total number of

flows that are generated in the experiment test . . . . . . . . . . . . . . . . . . . . . . 113

xi



List of Tables

2.1 PSNR and SSIM to MOS Mapping [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Table of comparison with different approaches for the QoS provisioning in SDN . . . . 27

3.2 Table of comparison with different approaches of PBNM under SDN-basd network . . 31

3.3 Table of comparison with the different approaches of AI/ML techniques for SDN . . . 35

4.1 Notation Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Table of comparison with different approaches for network monitoring in SDN . . . . . 45

4.3 Notation Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Notation Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Performance metrics for the experimental setup under different sparsity levels, for |T |

= 8000 and |D| = 1560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Performance metrics for CAIDA data set under different sparsity levels, for |T | = 8000

and |D| = 1560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Total Overhead Communication per Switch [KB] . . . . . . . . . . . . . . . . . . . . . 71

6.1 Parameters of traffic modeling and setup . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Model parameters of web traffic [2–4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Average PSNR to MOS and SSIM to MOS Mapping . . . . . . . . . . . . . . . . . . . 84

6.4 Average PSNR to MOS and SSIM to MOS Mapping . . . . . . . . . . . . . . . . . . . 85

6.5 Averaged performance evaluation for different monitoring update intervals (3, 6, and 9

seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Model parameters of web traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Model parameters of ftp traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 GetNet network topology: Averaged performance evaluation for routing algorithms . . 95

7.4 Sprint network topology: Averaged performance evaluation for routing algorithms . . 95

xii



7.5 AT&T network topology: Averaged performance evaluation for routing algorithms . . 95

8.1 Parameters of video traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Requirement set for QoS and background traffic . . . . . . . . . . . . . . . . . . . . . . 105

8.3 The mean and standard deviation of the throughput measurement for the routing

algorithms under GetNet, Sprint and AT&T, where l = low load, m = medium load,

and h = high load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.4 Averaged latency evaluation for routing algorithms under GetNet, Sprint and AT&T,

where l = low load, m = medium load, and h = high load . . . . . . . . . . . . . . . . 118

8.5 Averaged estimated PSNR and MOS evaluation for the routing algorithms under Get-

Net, Sprint and AT&T, where l = low load, m = medium load, and h = high load . . 119

8.6 Sprint network topology: Averaged performance evaluation for the RL routing algo-

rithms (Rerouting the QoS-based traffic using the RL-based method, while the routing

of background traffic is based on the static algorithm) . . . . . . . . . . . . . . . . . . 120

xiii



List of Abbreviations

ACI Application Centric Infrastructure

AI Artificial Intelligence

ARIMA Auto-Regressive Integrated Moving Average

CAIDA Center for Applied Internet Data Analysis

CC Cross Correlation

CR Compression Ratio

HD High-Definition

HDT Hold-Down Timer

IETF Internet Engineering Task Force

ISP Internet Service Provider

MHA Minimum Hop Algorithm

xiv



MIRA Minimum Interference Routing Algorithm

ML Machine Learning

MOS Mean Opinion Score

MP-BCP Most Probable Bandwidth Constrained Path

NFV Network Functions Virtualization

NMAE Normalized Mean Absolute Error

OMP Orthogonal Matching Pursuit

ONF Open Networking Foundation

OSPF Open Shortest Path First

PBNM Policy-based Network Management

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PSNR Peak Signal-to-Noise Ratio

QoS Quality of Service

xv



RL Reinforcement Learning

RSVP Resource ReSerVation Protocol

SD Standard-Definition

SDN Software Defined Network

SLA Service Level Agreement

SLO Service Level Objective

SLS Service Level Specification

SNR Signal-to-Noise Ratio

SSIM Structural Similarity

SWP Shortest Widest Path

VBR Variable-Bit-Rate

WS Window Size

WSP Widest Shortest Path

xvi



Chapter 1

Introduction

1.1 Research Motivation

Looking back at the evolution of networking environments, the traditional networks have developed

towards a complex architectures with custom designed interfaces. Due to the vendor-specific design,

the vendors deploy network equipments for managing the entire control and forwarding of data packets

in one physical unit. By this, the network devices are manufactured towards their own vendor-specific

approaches and the network configuration has become a complicated process. As a consequence,

network administrators require to gain an extensive knowledge of the individual tools and architectures

[5–7]. With SDN, features in terms of management and programmability are leveraged to provide

flexibility when compared to the traditional networks. SDN decouples the control plane from the

data plane, while it offers a standardized interface between the planes defined in a communication

protocol called OpenFlow [8, 9]. With the help of network abstraction, the new network paradigm

shall centralize the network intelligence in the logical central unit. This add-on intelligence opens

more opportunities to enhance the network services. In the future, 5G architecture is emerged with

promising in flexibility improvement and separation between the control and user plane. This in turn

gives the SDN concept key role to play on the future network architecture. The SDN-based network

represents a new area for network performance improvement, that lately has attracted both academia

and industry communities to investigate further challenges for an optimized network performance.

On the other hand, the QoS provisioning has become inevitably an important resource manage-

ment issue in the enterprise networks. Network operators offer real time services while promising

quality of service requirements for the voice and multimedia applications. QoS is defined in the

ITU-T recommendation E.800 [10] as the collective effect of service performance, which determines
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the satisfaction degree of a user for a particular service. According to [11], the total IP traffic is

expected to reach 396 exabytes of data per month by 2022, which is about 3 times higher than in

2017. Therefore it is necessary to prioritize the flows for QoS-based services. In order to do this, the

network customers agree beforehand with the service providers in a formal contract described in a

Service Level Agreement (SLA). The SLA represents a high-level policy of service specification which

meets the business needs [12]. The SLA rules are mapped down to a set of low-level configuration

rules on the network nodes. A policy-based management architecture is a solution to enable business

rules to be translated and validated on a low-level configuration. In this research, the focus is on

the traffic routing and measurement collection inside the policy-based management under SDN. The

policy definition and translation are beyond the scope of the research objective.

SDN is relatively a new research domain and it is considered a very promising area for the research

community [6]. Alongside, QoS provisioning is increasingly demanded by the industry to meet the

business level. Together, SDN and guaranteed QoS provisioning are considered a motivation for further

investigation towards a research aspect. This research has an academic impact in the networking area.

It sets up a further important step forward to address the integration of Artificial Intelligence (AI)

and computer networking. The results of this research study shall draw benefits to the academia and

industry communities. This shall clearly spin-off the development of intelligent networking systems

that rely on the integration of AI technologies in order to provide new functional opportunities.

1.2 Problem Statement

The Internet Engineering Task Force (IETF) has described a general framework architecture for

Policy-based Network Management (PBNM) [13]. The PBNM framework presents two main archi-

tectural elements: Policy Decision Point (PDP) and Policy Enforcement Point (PEP) (See 2.3 for

details). The PDP decides on the action based on the state of the PEP whether it fulfills the business

needs. The policy information is stored in a repository Policy Information Point (PIP). Although the

IETF model has described the functional entities, there have been efforts by research communities to

design the functionality with decision-making algorithms [14]. It becomes also a major challenge to

obtain a self-configuring system that complies with the desirable requirements. Literature has shown

an area of concern within the decision unit (PDP) inside the policy-based network framework [15–17].

To this extend, this study presents the utilization of intelligent decision-making solution for the pro-

posed framework. Hereby, this research utilizes the ML techniques to apply an adaptive bandwidth

provision scheme based on the learning from the experiments of past trails. With the help of ML, the

network management for end-to-end QoS becomes self-configured and self-optimized. The utilization

of routing management and data collection is studied in order to adapt dynamically the network
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behavior by the defined policies in PBNM. Here are the research problems that are addressed in this

thesis:

• Static Network Configuration: The global network continues to grow significantly and

the network technologies such as 5G architecture are advancing rapidly. This in turn, makes

the static network configuration to become an impractical approach when coping with all the

network and business needs [18]. In fact, providing an improved QoS level while utilizing the

network resources efficiently is becoming challenging to the service providers. Nowadays the

network is changing state over time due to the variable nature of traffic patterns, therefore it

is very time consuming and failure-prone to enforce the static configurations on each individual

network node.

• Innovative QoS Routing: The QoS route is defined as the travelling of data packets along

a feasible path between the source and destination nodes which satisfies the constraints given

by the QoS requirements. However, a scheme to provide a reliable end-to-end QoS is still

one of the main remaining open issues and it becomes difficult to satisfy the stringent service

level requirements that belong to different application classes over the network. For example,

video calling and multimedia applications demand more stringent quality requirements than

web browsing in terms of parameters like loss, delay, and bandwidth. This challenge arises

when the resource availability in the network is limited, which leads to high levels of congestion

and consequently poor quality. In the meanwhile, the significant growth of multimedia-based

applications, makes it obvious that just an increase in the system capacity will not be enough to

meet the QoS requirements of different application classes. By this, the routing algorithm needs

to adapt to the dynamic changes in the network (e.g., the newly arrived traffic flows and the

termination of existing traffic flows), the transient load fluctuations and the network limitations.

• Low Service Quality Performance: The impact of service quality performance on user

satisfaction is a critical metric that needs to be improved with the help of an intelligent network

management. While delivering network services and applications to users, the performance of

quality services is an important measure to sustain a reliable user’s quality of experience. By this,

network services and applications require different levels of quality performance. For example,

low latency and minimal jitter is required for applications such as live network streaming, while

reliability is required for applications involving file transfers that cannot tolerate packet loss or

high delay. Over time, the network can exhibit different levels of congestion and the user’s quality

of experience decreases depending on factors like the packet loss and latency. As a consequence,

it is essential to design an advanced intelligent system to utilize the network resource more

efficiently and more fairly.
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These problems can lead unpredictably to bad network performance and poor resource utilization.

In fact, all these problems may affect the network operators in terms of possible loss in revenue and

customers churn rate. In this context, this research aims at presenting a novel approach to solve the

above issues by proposing a learning approach for end-to-end QoS provisioning within a policy-based

framework. Solving these problems remains an interest to the service providers due to the need in

providing a promising outcome to the customers while at the same time reaching an efficient network

resource utilization [19].

1.3 Solution Overview

This thesis presents a solution concept to deal with the problems as identified above in 1.2. The

proposed framework employs statistical decision-making methods for fair traffic distribution while

guaranteeing the QoS requirements. As a result, the approach reduces the risk of network congestion

and effectively utilizes the available network resources. In order to do that, this research proposes a

framework that integrates the use of AI, PBNM and SDN for the end-to-end QoS optimization (see

Figure 1.1).

AI/ML

PBNM

SDN
End-to-end QoS

Provisioning

Figure 1.1: View of the applied techniques in the framework

As part of the solution, figure 1.2 shows the closed control loop in the network management. The

figure presents the three main elements in the network management to maintain a monitored network

complying to the QoS requirements. As the network is steadily monitored by the observation unit, the

identification uses the measured quality metrics, accordingly, to scan the high-level policies whether

a requirement is being violated. As a result of a violation, the decision-making unit needs to take the
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measure to resolve the artifacts. Because the network is usually incorporated with dynamic change,

designing the internal entities inside the closed loop becomes a key challenge in achieving high quality

performance. By introducing the closed-loop control structure (see Figure 1.2), a self-organization

concept can be realized in the network.

Decision-

Making

Identification Observation

Policy Violation

Service Quality Monitoring

Low-Level Policy 

Enforcement

High-Level Policy 

(QoS Requirements)

Figure 1.2: A general closed loop network management system

The proposed solution makes use of PBNM to facilitate the routing management over SDNs. In the

field of AI, the RL becomes a promising solution for a centralized network management. In comparison

to other supervising learning methods, the objective of RL is to optimize the network performance by

finding the optimal action through maximizing the expected reward. In this thesis, a novel framework

that employs RL in the decision-making unit of the PBNM system is proposed. Through learning, the

system iteratively improves its knowledge every cycle iteration. The RL algorithm consists of three

main elements: reward, action, and state [20]. The reward and state can be derived from the network

state which is monitored steadily. While the action space contains the possible actions, for instance

re-routing, that can be used to retain a certain policy requirement. By integrating RL in the PDP

component, the intelligence reacts proactively on inadequate network changes by finding the optimal

selection of action set to maximize the long term reward. In general, RL can be adopted to fit the

closed-loop structure defined in figure 1.2.

On the other hand, the key features of SDN include the separation of the control from the data

plane, the logical centralization of the network control, the ability of programming the network, and

the visibility through maintaining a global image of the network by the SDN controller. By taking

the advantages of these features, this research work shall draw the benefits of the SDN architecture

to the proposed framework. Towards this end, a RL-based approach running over SDN to tackle the
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aforementioned challenges is proposed. The proposed solution, as depicted in figure 1.3, combines the

advantages of the autonomic PBNM system and the SDN architecture for QoS management.

To this end, the overall goal of this research focuses on four pillars: QoS, SDN, PBNM and ML.

The study presents at how the integration solutions between the four aspects are utilized in a single

network management framework.

Application Layer

Control Layer SDN Controller

Network Operating System

Network Services

Forwarding Layer
Switch (1)

Northbound Interface

Switch (2) Switch (N)

Southbound Interface (OpenFlow API)

Decision-Making Unit Network State 

Monitoring

Policy Repository

(QoS Requirements)

PIP LayerPDP Layer

Violation Detection

PEP Layer

Figure 1.3: A general high-level overview of the proposed solution

1.4 Research Contributions

As the network is a highly dynamic environment in which, for example, the traffic patterns are

changing over time, it is essential for a network monitoring solution as part of the network management

to measure the quality performance of the underlying network layer. Though on the other hand, the

network management based on routing mechanism represents an important function and capability to

drive the network to ensure a high user expectation of network services. In this research, the objective

aims to study the network framework for monitoring and management under the SDN architecture,

while using a realistic experimental setup to evaluate the framework. The contribution investigates

further the employment of an innovative approach for monitoring and management. In order to realize

the research objective, the research work presents the following main contributions:
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• Proposal of measurement collection and probabilistic-based QoS Routing for SDN: The pro-

posed framework builds on the classical SDN architecture and adds two main contributions:

compression-based monitoring solution and probabilistic routing solution. The compression-

based monitoring solution aims at further decreasing the link usage for QoS applications while

increasing the network observability. It differs from other traditional methods like polling the

SDN switches’ statistical data. This innovative approach makes use of the sparsity approxi-

mation to compress the aggregated QoS metric data. It extends the functionality of the SDN

switch by integrating dictionary learning algorithms like K-SVD and Orthogonal Matching Pur-

suit (OMP) methods for the purpose of sparsity approximation. Additionally the contribution

integrates the probabilistic scheme for the QoS routing algorithm that employs the bandwidth

availability metric as a QoS routing constraint for data delivery. It makes use of Bayes’ theorem

and Bayesian network to determine the link probability in order to select the route that satisfies

the given bandwidth constraint. It considers the amount of overhead while evaluating the QoS

performance in terms of bandwidth blocking rate. The introduction of link state update policies

reduces the amount of state information packets exchanged between the control and data planes.

The proposed solution of this research contribution and the results of the study are presented

and discussed in [21,22].

• Proposal of Policy-based QoS Management Framework for Software-Defined Networks: This

contribution presents the integration of the policy based framework and the SDN from the

architectural point of view. It presents a proof-of-concept for the use of hierarchical structure of

the standard policy-based network management on the centralized management plane of SDN

architecture, while being able to keep the set of functional blocks (e.g. route manager, violation

detector, etc.) at each layer independent of the policy management architecture. By this,

the proposed framework monitors the QoS parameters and enforces dynamically new decisions

(such as: rerouting or rate limiting) on the underlying SDN switches to ensure the demand of

the high-level policies. The introduction of feedback closed-loop between the underlying SDN

switches layer and the application layer brings better performance to the evaluation results when

compared to the default SDN-based network. The proposed solution has been even extended

further in the upcoming contribution by introducing an intelligent decision making unit. The

proposed solution of this research contribution and the results of the study are presented and

discussed in [23].

• Proposal of a Reinforcement Learning Approach for enabling QoS over PBNM-based SDN net-

works: The contribution introduces an innovative Reinforcement Learning-based framework

for multimedia-based SDN environments. The proposed RL-based framework utilizes the Q-
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learning method to decide on the most suitable routing algorithm to be applied on the traffic

flows in order to ensure the QoS provisioning. The aim is to select dynamically the most appro-

priate routing algorithm from a set of centralized routing algorithms that maximizes the return

reward from the network. The return reward indicates the network performance improvements

based on the QoS parameters. The proposed RL-based solution was implemented and evalu-

ated using an experimental setup under a realistic multimedia-based SDN environment. The

proposed solution of this research contribution and the results of the study are presented and

discussed in [24–26].

This research elaborates solutions towards the network monitoring and controlling of the traffic

flows in SDN-based environment. The network management monitors the underlying network layer

and it controls the traffic accordingly to meet the user satisfaction needs. In this research, the first

contribution studies the monitoring scheme under the SDN-based and it proposes a novel method

based on the sparsity approximation to compress the statistical data to the controller, while it also

discusses a new approach of routing based on probability of the update information. The following

contribution evolves towards the integration of monitoring and controlling under the policy-based

management and SDN architecture. It introduces the feedback closed-loop between the underlying

SDN switches layer and the application layer and it highlights the benefits in terms of better network

performance. This leads to the final contribution by integrating the learning based scheme to control

the traffic intelligently and choosing the appropriate routing algorithm that fits the network state.

1.5 Thesis Structure

This thesis is structured as follows. Chapter 2 gives a general introduction to the technical concepts

that are utilized in the work. Chapter 3 presents a review of related work in the research area. It illus-

trates a survey of the state-of-the-art literature in the field. In chapter 4, the overall proposed system

architecture and operational definitions will be presented. This chapter describes the main contribu-

tions in the research. In the following chapter, Chapter 5, presents a data collection scheme based on

a compression technique for SDN-based network. Additionally, the chapter shows the probabilistic-

based QoS routing mechanism for SDN. The approach uses Bayes theorem and Bayesian network to

determine link probability. In Chapter 6, the policy-based management framework to enable QoS

provisioning over SDN-based networks is presented. By using loop chain approach between network

monitoring and policy validation/enforcement, the framework can achieve end-to-end QoS guarantee.

Chapter 7 presents a comprehensive performance evaluation of the state-of-the-art routing algorithms

under realistic scenarios with dynamic network conditions and various topology. While chapter 8
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shows the integration of reinforcement learning algorithm for routing management under SDN envi-

ronment. The closing chapter, Chapter 9, contains a summary of the study and suggestions for future

work.
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Chapter 2

Technical Background

This chapter introduces the technical background for the work presented in this thesis. It is structured

into five main areas, these are: Quality of Service, Software Defined Networks, Policy-based Network

Management, Routing Algorithms and Artificial Intelligence.

2.1 Quality of Service

Nowadays diverse traffic classes (such as video and data) are transferred across the communication

networks. Due to the limitation of network resources, the quality of the traffic flows is affected as a

consequence from the network congestion. This leads to several traffic problems such as packet loss,

low throughput, high jitter and delay, etc. which have a great impact on the users’ perceived quality.

Therefore, to guarantee certain requirements, traffic classes possess different QoS requirements. Guar-

antee of QoS provisioning has become an active field of research especially considering its importance

for applications that require data delivery under certain QoS constraints (e.g., multimedia and voice

data). The QoS-enabled networks provide significant performance improvements for QoS services by

ensuring sufficient bandwidth, controlling latency and reducing packet loss.

For evaluating the performance of QoS-based applications, there are some important metrics to be

considered such as: throughput, packet loss, and delay. Network performance metrics have different

meaning in different aspects, hence they impose different measurement methods. The definitions of

some of the important QoS performance metrics are given below:

• Throughput: It is defined as the amount of data being sent or received per time unit. Another

important related metric is the available bandwidth, though it has another meaning. The

throughput means the measure of actual packet delivery over the link, while the bandwidth
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availability indicates the amount of link capacity is available to allow additional traffic flows to

transport over the link. Based on the throughput measurement, the available bandwidth of a

link can be induced.

• Packet Loss: It is defined as the number of lost packets on the path between the sender and

receiver across the network. In general, there are many causes of packet loss such as the network

congestion, finite buffering capacity or errors in data transmission. The packet loss rate can be

calculated as follows [27]:

PLR(%) =
ntx − nrx

ntx
× 100 (2.1)

where ntx and nrx are the total number of transmitted and received packets, respectively.

• Delay (Latency): It indicates how long it takes for a data packet to travel from the source to

the destination. The total delay between two network nodes is usually the sum of several parts

like processing delay, queuing delay, transmission delay and propagation delay. The main cause

for packet delay is network congestion.

In general, QoS is attributed with a wide range of performance metrics such as packet loss and

throughput. A path metric is the composite of same metric through all the links along the path.

In fact, the composition way depends on the metric type and there are three basic kinds of metric

composition rule [28], such as:

• Additive Metric: The value of QoS parameter constraint m (p) is the sum of a single metric’

values m (Li) along the path p. Examples of metrics which obey the additive composition rule

are delay, jitter, hop count and cost. The rule is represented as follows:

m (p) =

n∑
i

m (Li) (2.2)

• Multiplicative Metric: The metric multiplication of all links along a path represents the

overall path metric. The reliability and loss probability are examples for this composition rule.

The rule is described as follows:

m (p) =

n∏
i

m (Li) (2.3)

• Concave Metric: Here the maximum or minimum value along all the links of a path is selected

for the value of QoS parameter constraint. Example of this metric is bandwidth availability:
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m (p) = min/max bm (Li)c (2.4)

2.1.1 QoS Provisioning for Multimedia Delivery

Nowadays considering QoS requirements in network communication is becoming very essential to

support reliable service for end users. According to Cisco forecast, video traffic volume will reach

82% of all IP traffic by the year 2022 [29]. Therefore it is important to consider the requirement

of QoS for multimedia applications in order to guarantee a sustainable service delivery to the users.

Multimedia has been applied to wide applications such as one-way video streaming and interactive

video conferencing. In this thesis, the focus is on video streaming. The main QoS performance

metrics that impact the user perceived quality are throughout, delay, and packet loss. For one-way

video streaming there is no real-time interaction involved, therefore it can tolerate certain threshold

levels of delay and packet loss rate [30].

2.1.2 Approaches for Measuring the Video Quality

The video quality evaluation has been extensively studied to describe the quality level of video. In

general, there are two techniques to assess the video quality: subjective and objective [31]. The

subjective quality evaluation is based on the individual human perception for rating video quality.

In subjective assessment, a number of viewers are asked to rate the video quality and the average

rating over all viewers is called Mean Opinion Score (MOS). In the meanwhile, there is a number of

techniques that is employed to evaluate the video quality subjectively [32].

On the other hand, the objective quality evaluation is based on algorithms for characterizing the

video quality. Different types of objective evaluation exist, they can be classified into full reference, no

reference and reduced reference metrics based on the amount of reference data [33]. In full reference

method, the original image is used a reference information and the received image is compared against

the reference. In the reduced reference, reduced information are expressed in number of features

like texture that are extracted from the original and received images. The reduced information are

compared between the two images. On the other hand, no reference method required no data from

the original image. However assumption about the original content is used under this method. By

this, the video or images are analyzed without given reference data [31].

The most commonly used objective metrics to assess the video quality is Peak Signal-to-Noise

Ratio (PSNR). The PSNR is an objective video quality assessment method that makes use of the

reference image to compute the ratio between the maximum possible value of the image and the error
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power [34]. A higher PSNR indicates better image quality, by this if the compared images are identical

the PSNR becomes infinity. It is expressed in logarithmic decibel dB. The PSNR of two images x and

y is computed using the following equation:

PSNR (x, y) = 20 · log10
(
MAX√
MSE

)
[dB] (2.5)

where MAX indicates the maximum possible value of the video frame pixel and MSE is the mean

squared error between the original frame x and received frame y of width n and height m. It is

calculated as follows:

MSE (x, y) =
1

m · n

m−1∑
i=0

n−1∑
j=0

[x (i, j)− y (i, j)]
2

(2.6)

Since the video is comprised of multiple frames N , the PSNR of a video can be calculated by

comparing the PSNR with the original video on a frame basis. The overall PSNR is the average of

all PSNR of N frames.

Another objective video quality assessment method is the Structural Similarity (SSIM) index [35].

SSIM is based on the structural information of the video frame. The index range is measured between

-1 and 1 where 1 represents the maximum video quality as the video frames are identical, while

-1 indicates maximum difference. SSIM combines three factors, such as: luminance, contrast, and

structure and is given by the equation below:

SSIM (x, y) = l (x, y) · c (x, y) · s (x, y) (2.7)

where l (x, y) is the luminance distortion between the two video frames, c (x, y) indicates the contrast

comparison and s (x, y) measures the correlation coefficient between two video frames.

Literature like [1] introduces a mapping of PSNR and SSIM to the nominal MOS as given in

Table 2.1. MOS represents a five point scale, with 1 being bad and 5 being very good. It is used to

subjectively rate the users’ perception of video quality.

Table 2.1: PSNR and SSIM to MOS Mapping [1]

MOS PSNR SSIM

5 (Excellent) ≥ 45 ≥ 0.99
4 (Good) ≥ 33 & < 45 ≥ 0.95 & < 0.99
3 (Fair) ≥ 27.4 & < 33 ≥ 0.88 & < 0.95
2 (Poor) ≥ 18.7 & < 27.4 ≥ 0.5 & < 0.88
1 (Bad) < 18.7 < 0.5
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2.2 Software-Defined Networking

Nowadays, the global network is evolved towards complex architectures and custom designed inter-

faces, where the classical routers have their own responsibility to perform the control, management

and forwarding of data packets. In contrast, SDN has emerged with a wide spectrum of benefits [36].

For instance the centralization, programmability via standardized interface, the decoupling of control

and forwarding planes, and feasibility through global network image. All these features can simplify

the management, network interface, and programming compared to the traditional networks. The

new network concept is simplified by decoupling the control plane from the forwarding (data) plane.

Figure 2.1 shows the architecture view of SDN-based network. The SDN paradigm consists of three

layers: application, control and forwarding plane. The data layer is realized by SDN switches and it is

responsible for forwarding the data packets based on the configuration from the control plane. While

the SDN controller is located in the control layer. The controller configures the network switches by

publishing the rules to the switches. In order to do this, the communication between the two layers

is achieved through the OpenFlow protocol via a southbound interface. Along the southbound inter-

face, there is an open northbound interface represented in a user-defined API. The interface is located

between application and control layers. The network applications reside in the application layer and

they communicate with the SDN controller via this interface [37]. Example of network applications

is the QoS and security network management.

The SDN switches maintain a group of flow-tables. Each flow-table contains a set of match-

action rules. The flow entry describes the action to be taken when the data packet matches the rule.

The flow-table of switches are configured by the controller via defined libraries in network services.

Additionally, the flow table in SDN switches maintains statistical information per flow. Therefore the

forwarding plane provides a direct measurement that belongs to the flow-level monitoring. In general,

an entry in a flow-table has four fields: rule field which consists of various information such as source

and destination IP or MAC addresses, action field (forward, redirect and drop) that defines how the

packet will be processed, priority field in case a packet has more than one match and lastly statistic

field for management uses [38]. Generally, the control plane in SDN architecture can contain several

independent controllers, but in this research a paradigm with a single controller will be discussed.

2.3 Policy-based Network Management

The static network settings are based on configuring the network devices individually. Usually the

policy rules are restricted to static condition-action format, where a certain action is applied when
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Figure 2.1: The SDN architecture

the condition is met. For upcoming changes in network configuration, manual intervention by admin-

istrators becomes necessary. In the meanwhile, the main objective of policy management is to ease

the burden of network management on the administrators. As the network state is rapidly changing

due to the traffic dynamics and complex structure, it makes manual management by network ad-

ministrators rather impossible to configure over time. PBNM has become a promising solution for

network management, especially for large scale networks where, changes to accommodate applica-

tions’ requirements occur dynamically. The management system has the advantage of altering the

system configuration dynamically according to the network behavior and settings. Generally, PBNM

systems can be used for several applications such as security and resource management. However, in

this thesis the focus is on the use of PBNM and QoS.

In the network operation life-cycle, PBNM enforces the policies on the underlying network de-

vices and adaptively validates the network behavior against the policy context. As a result of policy

violation, the decision-making unit should choose an adequate action to reduce the risk of a fore-

seen violation in the upcoming time window. In terms of QoS-based data traffic, a violation means

the network does not fulfills the QoS requirements of policy [39, 40]. As a result, it becomes very

challenging to select the best action among a set of possible measures in order to retain a maximum

long-term reward in terms of network performance. Hence, this kind of problem is of focus to be
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further investigated by the current research.

In the context of QoS, the PBNM controls the resource provisioning in order to meet the business

requirements. The agreement consists of a set of high-level policy rules that govern the decision on

data layer. In order to offer a consistent end-to-end QoS guarantees, the Internet Service Providers

initially sign a SLA with the enterprise customers. The SLA represents a non-technical high-level

service specification and it defines the demand conditions for guaranteed services at the business level.

The next interpretation stage of SLA is the Service Level Specification (SLS). The SLS is derived

directly from SLA and it contains the Service Level Objective (SLO) as sub-item that describes

the technical interpretation with measurable terms (e.g. throughput, packet loss, delay, etc.). In this

thesis, the definition and translation from SLA to SLO are beyond the scope of the research objective.

Here, the research utilizes the routing management and data collection in order to adapt dynamically

the network behavior by the defined policies.

PMT

PDP

PEP PEPPEP

PIP

Figure 2.2: Traditional PBNM architecture

Figure 2.2 illustrates a standard architecture for PBNM as defined by [41]. Four entities are

defined: (1) Policy Information Point (PIP) - contains the policy information and requirements.

The policy is defined as the combination of rules and services where rules define the criteria for

resource access and usage [13]. In this research, the focus is on the QoS requirements in the policy.

Other entities in PBNM can store and retrieve policy information to and from PIP; (2) Policy

Decision Point (PDP) - makes decisions based on policies and requirements stored in PIP. It

is responsible for handling network events, making decisions and communicate them to PEP; (3)

Policy Enforcement Point (PEP) - dynamically enforces network low-level policy rules on network

elements, such as switches, as directed by PDP; (4) Policy Management Tool (PMT) - software

tool for network administrators to manage and edit the policy rules.
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2.4 Routing Algorithms

In general, the traditional network architectures suffer from several main limitations such as the

lack of global view, per-hop decision. This is mainly due to the fact that control is distributed

and implemented on network devices [42]. With the introduction of the OpenFlow-enabled SDN

network, the routing algorithms benefits from the new concept. Through the centralization and

programmability, flow-based routing becomes feasible and scalable. By this, OpenFlow provides more

flexibility of defining a set of actions that are associated to various types of flows. This enables each

flow to be treated differently in the underlying network devices. Furthermore, centralized monitoring

and routing can help network operators to create powerful management framework under SDN network

[42,43]. By definition, the routing algorithm is used to find a feasible path from a given source node to a

given destination node that satisfies a set of constraints while achieving efficient resource utilization. A

path is considered feasible if it satisfies the given requirement, for instance if the available bandwidth

capacity is higher than the requested bandwidth. In general, there are different parameters that

characterize the network performance such as the bandwidth, delay and loss probability. However,

when multiple network constraints are used in the routing determination, the problem of finding a

path becomes difficult to solve. Solving the problem of multiple constrained QoS routing is NP-

hard [28, 44]. In this research, the routing algorithms for the bandwidth constraint are addressed.

On the other hand, this research shows the importance of machine learning and SDN architecture in

addressing the problem of centralized routing and the selection of an appropriate routing algorithm.

For this research in order to enable QoS provisioning within a network, the resource availability of

the network must be monitored continuously.

To describe the routing algorithm, a network topology is modeled by a graph G(N,L) where N is

the set of nodes and L is the set of links. In the network, each link has a fixed capacity. As various

traffic flows pass through the link, the available bandwidth is the residual capacity of a link that

remains after the cross traffic is served. When a path setup request arrives, a reduced network graph

is created by eliminating all links that have residual bandwidth less than the requested one. Based on

the reduced network graph, the routing algorithm finds a feasible path where the links have residual

bandwidth equal or greater than the demanded bandwidth. In this research, four centralized routing

algorithms for traffic requiring bandwidth guarantees are presented:

2.4.1 Minimum Hop Algorithm

The Minimum Hop Algorithm (MHA) chooses the path with the minimum number of links between

the source and destination nodes [45]. The algorithm is based on Dijkstra’s algorithm in finding the
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shortest path, where the cost of a link is set to 1.

2.4.2 Shortest Widest Path Algorithm

The Shortest Widest Path (SWP) Algorithm finds the feasible path with the maximum available

bandwidth among the set of existing routes [45]. If there are multiple such paths, the one with the

shortest route is selected. However, if there are many paths with the same bandwidth availability

and shortest route, then randomly one is chosen. The Dijkstra algorithm is used to select the feasible

path, where the cost of a link is assigned to the residual bandwidth. In general, the links that cannot

satisfy the bandwidth requirement are removed before applying Dijkstra algorithm.

2.4.3 Widest Shortest Path Algorithm

The Widest Shortest Path (WSP) Algorithm finds the feasible path with the shortest path among

the set of existing routes [45]. If there are multiple such paths, the one with the maximum available

bandwidth is selected. However, if there are many paths with the same bandwidth availability and

shortest route, then one is randomly chosen. The algorithm tries to balance the network load and it

relies on load balancing to avoid network bottlenecks.

2.4.4 Minimum Interference Routing Algorithm

The Minimum Interference Routing Algorithm (MIRA) exploits the knowledge of ingress egress pairs

in order to minimize the interference between the paths when a new request is arriving [46]. In

order to satisfy future demand, the algorithm attempts as much as possible to avoid placing the

route requests along the critical links. The critical links are the links that decrease the max-flow of

other ingress-egress pair if they are selected in the path. The interference is computed based on the

maxflow-mincut theory, where Links that belong to a mincut set are considered critical links [47]. In

general, the algorithm goal is to find the least critical feasible path.

2.5 Artificial Intelligence

AI is a branch of computer science, that helps machines perform cognitive tasks based on an intelligent

interpretation of the ambient conditions in order to achieve some defined goals. In recent years, AI has

become very popular in the research and the technology industry. It has been applied intensively to

many fields like the robotics and visual perception [48]. AI has diverse techniques that are equipped
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in machines to make them behave and decide in an intelligent manner. Knowledge engineering is

considered the main part of AI where gathered data from the environment is analyzed to extract

adequate information. In general, there is no unified and unique AI paradigm to be applied for

solving the existing problems in different fields. AI includes diverse methods and they need to be

structured together to fulfill the application needs.

Another important core part of AI is ML. It enables computer systems to learn from experiences.

Learning takes place by generating and collecting training data. The approach becomes very promising

for decision-making system. It has been applied to wide spectrum of applications like finance and

computer vision. ML has mainly three approaches: Supervised Learning, Unsupervised Learning, and

Reinforcement Learning. In this research, the focus is on RL due to the nature of this technique that

fits the research problem. RL is used to learn the agent to choose the best action by trial-and-error.

By this, the agent interacts with an unknown dynamic environment and by using the feedback it

learns and decides the action to perform [20]. The RL algorithm consists of three main elements:

state space, action space, and reward. Unlike other machine learning methods, Figure 2.3 represents

the RL agents that learn from the interaction with the environment. Initially, the agent observes

the state of the environment and chooses the action that maximizes the expected long-term reward.

Based on the agent interaction, the environment returns a numerical reward accordingly, which the

agent aims to maximize. However, there is a trade-off between exploration and exploitation in RL.

Exploration is essential to explore actions other than the best candidate. However, it can decrease the

network performance due to the randomness. On the other hand, exploitation takes the best decision

but other unvisited actions may perform better.

Agent

(Learning System)
Environment

State

Reward

Action

Figure 2.3: RL, Agent, and Environment
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2.6 Chapter Summary

This chapter presented the background technologies used for this research work. QoS delivery repre-

sents a vital feature in networking nowadays especialy with the increase of multimedia-based applica-

tions which are known to have strict QoS requirements. This work focuses on the delivery of QoS over

SDN-based environments for multimedia-based applications. The QoS provisioning for multimedia

traffic and the main approaches for measuring the video quality as perceived by the end-user are

discussed. Moreover, the new networking paradigm, SDN was introduced. It has been identified that

SDN has key features that can bring major benefits to the network. Additionally, the basis behind

policy management systems and the functions of its components were described. Finally, AI could

play an important role for enhancing the system performance. Thus, one of the main goals of this

research is to integrate the above mentioned technologies into a single intelligent network management

framework.
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Chapter 3

State-of-the-Art

This chapter presents a comprehensive survey of the current research on the following topics: QoS

provisioning over SDN, PBNM for SDN, routing management and the use of AI in SDN. The existing

industry solutions, and solutions approaches in the research literature are presented and compared. The

main challenges and open issues that need to be addressed in the evolution towards a unified solution

for enabling QoS over multimedia-based SDN networks are outlined.

3.1 Current Industry Solutions

Nowadays, Software Defined Networking represents an attractive solution for the industry for driving

the traditional network solutions to the new era of programmable networking management. Due

to this, a new nonprofit trade organization Open Networking Foundation (ONF) was founded by

several well known networking companies to promote networking-related innovations towards SDN

solutions [49]. The ONF origination defined the OpenFlow standards and SDN architecture [50].

Alongside, the requirements of advanced 5G network such as large degree of networking flexibility

and high reliability gives the SDN concept more importance to be an enabler in the new 5G network.

The main feature of SDN is the separation of the control plane from the network hardware, which

places SDN as one of the main candidates for the achievement of 5G requirements [51,52].

With respect to market trends, different SDN controller vendors like Brocade, Cisco, Juniper, or

Aruba have brought the realization of SDN controller towards the commercial level. However, some

networking companies like Brocade and Extreme Networks leverage on the OpenDaylight framework

for their SDN controller solutions. Other controller like Floodlight was used widely for teaching

and research [53]. The Floodlight controller is originally based on Beacon controller from Stanford
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university and it provides simpler programing interfaces with various code samples. On the other hand,

several hardware OpenFlow enabled switches are introduced in the commercial market. For example:

Hewlett Packard presented a high performance switch to be used within the SDN infrastructure.

Network companies like Brocade, Extreme Networks, Dell and IBM came out as well with their own

OpenFlow-based vendor-specific SDN switches [54,55].

Moreover, many enterprises accelerated the innovative solution by offering the entire network

infrastructure of SDN to the end customers. Such a solution supports wide examples of network

services like data center, cloud applications, policy management, and networking visualization. Cisco,

as one of the major player in the networking industry, presented the SDN concept through the

introduction of Application Centric Infrastructure (ACI) and Cisco Nexus 9000 series switches [56,57].

The solution unveils for the entire SDN infrastructure and through partnership with IBM, offers wider

networking solutions like the full life-cycle services. On the other hand, Nokia, Verizon, and Extreme

Networks presented a business solution with SDN infrastructure. Large service providers like Google

are deploying the SDN stack in their network infrastructure and they boost it with the networking

services for SDN. Another acceleration towards SDN adoption, VMware has launched the network

virtualization for the SDN [58–60].

Beyond that, the main unique objective which makes the SDN concept more popular among the

industries is the sharing of common programmable interface. Despite the networking devices being

manufactured with different hardware modules, they are kept to comply to the requirements of the

OpenFlow interface. Hence, different devices by various vendors can be integrated easily by using the

same OpenFlow interface [61].

3.2 QoS Provisioning in SDN

This section presents an overview of the existing state-of-the-art in SDN network management for

QoS provisioning. Various research groups have studied different approaches to enable QoS provi-

sioning over SDN-based networks. Earlier studies have investigated the role of routing algorithms

in traditional network architecture [62, 63]. However, with the evolution of SDN, many researchers

have investigated the employment of SDN concept and addressed further its benefits. A performance

analysis of SDN and Openflow with the main focus on wireless networks is presented by Araniti et al.

in [64]. The study in [65] presented a comparison of different centralized routing algorithms under the

SDN network. The study considers two constraints for the routing calculation, namely the bandwidth

and path delay. The bandwidth rejection ratio and the average route length are used to evaluate the

performance of the routing algorithms. However, the performance evaluation was limited to specific

network scenarios in terms of topology size and network loads.

22



MC Lee et al. [66] presented a heuristic algorithm for segment routing under SDN-based network.

The solution considers the link residual bandwidth and it takes into account the current loading of

each link while it estimates the predicted future traffic load on the link. The results show that the

proposed method outperforms other routing algorithms in terms of average rejection rate and average

network throughput. However the drawback by using the segment routing for routing determination is

the requirement of extra per-packet header size overhead in order to represents the route information

as a set of labels. The simulation setup is based on JAVA program to model different network

environments and different traffic flow distributions. On the other hand, the work in [67] studied the

performance analysis of SDN versus Open Shortest Path First (OSPF) networks. The OSPF networks

are widely used for the intra-domain routing where the link-state information is advertised across the

network routers to maintain a global view of the network topology. The results indicate better delay

performance in large-scale networks when compared to SDN.

One of the most common proposed method in the research field is the flow routing frame-

work [68–75]. Under this method, the flows’ routes are adjusted dynamically according to the network

state. This solution uses mainly the key features of SDN such as the utilization of the global network

view to compute the proper route and the centralization of network management. One of the earliest

contributions in this area is Egilmez et al. in [68–70]. The authors presented an optimization frame-

work for QoS routing under SDN-enabled network. The work is based on an end-to-end dynamic

QoS routing solution for the multimedia delivery over SDN-based networks. The work proposes and

solves different optimization problems to reroute the base layer of video streams on alternate routes.

In one of their study, the experimental setup is based on three hardware OpenFlow-enabled switches

and three host computers that are connected to form a triangular network topology [68]. While other

study by them, the simulation test was based on the Georgia Tech internetworks topology modeling

tool. However it is unclear how the integration of OpenFlow-enabled network is taken place under

this tool [69,70].

Other works like [71–73] presented an approach for adaptive video streaming over SDN networks.

The work in [71] treated the base layer and enhancement layer of video streaming separately on

different routing paths. For the case when the video quality degrades, the base layer packets are

rerouted on a feasible path that satisfies the QoS requirements while the enhancement layer packets

stay on the same shortest path. The experimental test was based on mininet and floodlight, the results

show that packet loss rate of base layer packets can be improved when the load level of the shortest

path increases. While the work in [72] routes all the flows in the network along the shortest path,

with the minimum cost. The work solves the the optimization problem that is formulated as integer

linear programming for the multi-commodity flow and constrained shortest path model. The scenario

is composed of both an emulated network using mininet network emulator with a real wired and
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wireless network topology. By this, the topology is composed of six switches and various servers like

video straining server to emulate the traffic for the experiment. The results shows that it is possible

to avoid the link congestion effects and the solution finds a mapping between the mathematical basics

and the quality assessed by the user. The work in [73] proposes a network path selection scheme

by rerouting the flows based on the predicted measurements. The work employs Kalman filter to

predict the bit rate in the upcoming time frame. By this, the solution reroutes the flows based on

the predicted measurements. The experiment setup is composed of four OpenvSwitches switches,

OpenDaylight controller and media server and client.

Other related works like [76,77] proposed a framework for the QoS provisioning based on per-flow

routing. The work in [76] presents a control logic that contains online and offline components. The

online component sets up the route of the traffics for quality service, while the best-effort traffics

are routed over multiple links. The offline component, on the other hand, runs continuously to

optimize the load balancing across the network to meet the SLA policies. The framework solves the

optimization problem that minimizes the maximum link utilization. The aim is to increase acceptance

ratio for QoS requests. The experiment test was simulated using Python program, however it is unclear

how the integration of OpenFlow-enabled network (such as the OpenFlow protocl and the flow-table

statistical data) is taken place under this tool. Haitham Ghalwash et al. [77] proposed a framework

for the QoS guarantee under SDN-based network. The framework is composed of monitoring and

route determination modules. The algorithm tested for the route selection is either the shortest-path

or QoS-enabled route selection. The experiment setup was based on mininet network emulator and

OpenDaylight SDN controller. The fat-tree topology was employed to evaluate the performance of the

proposed solution. The results show a reduction by the overall average delay, packet loss and jitter.

Similar works in [74, 75, 78–82] adopted similar principle of per-flow routing. For example, the work

in [78] uses the SDN-based architecture to improve the performance of IP video surveillance networks.

By this, the framework performs bit-rate adjustment and rerouting in order to allocate more resource

for quality services. The framework is tested using mininet network emulator and Ryu controller.

While [79] proposes a framework of the QoS guarantee for streaming media. The framework employes

the network calculus to model the QoS parameters of deterministic buffer size, effective bandwidth

and delay. The performance of the framework was tested under mininet emulator network and Ryu

controller. The topology for the experimental setup was composed of five switches.

On the other hand, other works in this area have employed the queuing and scheduling techniques

to prioritize the flows in the SDN switch. The principle is similar to the DiffServ technique, in

which flows are classified according to the application priority and prerequisite, then the flows are

forwarded accordingly to the intended queues. Though the approach presents inevitably the problem

of performance loss due to the class discretization and the fixed number of preconfigured traffic
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classes [83]. The work in [84] presents a system framework for QoS guaranteed technique under SDN-

based network. The work implements a queue scheduling technique on SDN switch. It handles the

application flows into different queues with different priorities. The study was evaluated under the

theoretical and experimental analysis, though the experiment topology was composed of only one

SDN switch and two hosts. Similarly, the work in [85] proposed a framework with classifiers and

queuing schemes. The flow classification is used to associate the flow to the proper service class.

While the queuing mechanism is used to allocate resources for certain traffic types. In order to realize

it, multiple queues are set and assigned to different priorities. Each queue is associated to certain

service class. The performance of the method was evaluated using OpenvSwitch SDN switch and

Floodlight controller. The topology is SDN-based network of three switches that are connected to

each other.

The work in [86] proposes a framework based on queuing technique for QoS provisioning over

SDN-based networks. The framework reroutes the high priority flow by route optimization algorithm

when the congestion is detected, however if no feasible route is available then the queue is enabled for

the flow. The scheme sets and assigns queues to traffic depending on the priority level. The framework

was evaluated using mininet emulator network and Ryu controller. The authors in [87, 88] propose

a video over SDN architecture to support end-to-end QoS for video applications. In the proposed

solution, the SDN controller pulls the data plane periodically to build its resource and topology

databases. With the help of the centralized database, the controller selects an optimum path between

the two ends. Alongside, they introduced solely a traffic management architecture for the SDN switch

to prioritize the QoS packets properly along the optimum path. The test was implemented using ns3

tool. Other work in [89, 90] presented model-based QoS provisioning framework under SDN-based

network. The work uses network calculus theory to define network model. The network models are

defined: multi-hop model and threshold-based model.

The work in [91] proposes a meter-based QoS algorithm for multicast. The study uses a learning-

based method to adopt intelligently the limit of packet rate. When link congestion occurs, the low

priority traffics are routed among a number of different paths to release the congestion on the common

link with multimedia traffic. The performance of the proposal was tested using a realistic SDN

environment and Ryu as an SDN controller. The topology is composed of three OpenFlow switches,

two servers and three hosts. Similarly, the authors in [92] propose a traffic shaping management for

the SDN network. The application reduces the bandwidth of a given link in order to offload certain

data traffic.

Among other solutions to enable QoS provisioning is the resource reservation for QoS-based ap-

plications. The work in [93] introduces an architecture defines certain number of different queues

with a rate shaping in the SDN switch. The flows are classified based on the application priority
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and they are forwarded to the appropriate rate shaping queue to satisfy the business needs. By this,

the resource reservation is realized through shaped virtual links. The implementation was based on

OpenvSwicth OpenFlow-enabled switch and the POX SDN controller. The topology is composed of

two SDN switches to validate the concept. The study was aimed for home broadband access networks.

While the work in [94] presents a QoS framework using SDN architecture. The framework configures

three queues for different priorities, two queues for the high and medium priority applications while

the third queue dedicated for the best-effort traffics. The framework reserves resources for high priory

flow at the ingress switch. The work was evaluated using Ofelia testbed and CityFlow project to

validate the concept.

The work in [95] presents a resource reservation scheme for the end-to-end QoS provisioning under

SDN-based networks. The proposal presents a new signaling mechanism for the resource allocation

between inter-domain SDN networks. When the admission control accepts the traffic request, the

controller setup the path in the network. The aim of the work is to solve the interoperability prob-

lem in provisioning end-to-end guaranteed service. The implementation was taken place on ONOS

controller, a specific type of software implementation of the SDN controller. Similarly, the work

in [96, 97] integrates the Resource ReSerVation Protocol (RSVP) protocol in the SDN controller for

messaging exchange between the RSVP provider and requester. It utilizes the protocol to adjust the

network performance through resource reservation and traffic prioritization. The performance of the

concept was evaluated using the mininet network emulator and POX SDN controller. The topology

is composed of three SDN switches, one SDN controller, two hosts and two servers.

Other work like [98,99] presents a network architecture to ensure the resource reservation for the

intended flows with the help of token-based authorization. By this, the SDN controller is used to

orchestrate and automate the resource reservation in the network. The framework is composed of

orchestrator to handle the requests and managing the network resources, while another controller is

responsible for the advance reservation and it connects the sites between each other. The experiment

was made using the ESNet SDN testbed that contains two sites while each site has two SDN switches

and Ryu SDN controller. Similar work is done by [100], the reservation is established through network

snapshots that represents the time during which resource availability remains constant. When a traffic

request arrives, a list of possible paths which includes available path is calculated. The solution has

been validated using minimet network emulator and ONOS SDN controller. The ESNet topology was

employed for the experimental setup.

As a summary, the previous research in the area of QoS provisioning is divided mainly into three

groups as summarized in Table 3.1. The first group uses the optimum dynamic routing method to offer

QoS provisioning over SDN-based networks. By this approach, the flows are dynamically rerouted

over time in order to cope with the business needs. The approach can control specific flow needs in
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fine-grained control way. The advantage of this approach is the network resources are not assigned

directly over unlimited time to the group of flows. Instead, the resources are utilized in a more

efficient way to adopt the network state with the business needs. Despite the benefits, the approach

comes with difficulties associated to the need of high intelligence and observation in order to route

the flow cleverly. With respect to SDN network, the complexity of control is shifted to the high-level

management in the application layer in order to route the flows dynamically and intelligently over the

network.

The second group utilizes the queue and scheduling management with optimum routing to reach

improved delivery of the high priority traffic over regular traffic. By this approach, certain group of

flows can benefit from the queue configuration. However the disadvantages by this approach lie in the

needs of realizing the packet scheduling mechanisms on every SDN switch in the network domain. With

respect to the SDN network, the OpenFlow is still in the early phases of development. Furthermore,

another disadvantage is introduced by the classification and prioritization according to group of certain

flows. This presents inevitably the problem of performance loss due to the class discretization and

the fixed number of preconfigured traffic classes. Finally, the third group investigates the potential

of employing resource reservation principle in QoS provisioning for SDN networks. By this, the SDN

controller creates virtual network slices. The approach provides the capability of certain group of

flows to meet the business needs, however the approach becomes unpractical to set on real network

due to the limited network resources and high number of traffic flows.

Table 3.1: Table of comparison with different approaches for the QoS provisioning in SDN

Networking
Framework

Objective Proposed Solution

Flow Routing
[68–82]

Optimum path (e.g. low delay
and packet loss) are selected for
the flow of quality services.

QoS flows are rerouted dynamically to
satisfy the requirements of quality ser-
vices.

Queue and Scheduling
Management

[84–92]
Queues are allocated for the class
of service.

Flow classifiers identify the flow for cer-
tain class of service. According to the
type of flow, flow packets are forwarded
to the associated queues depends on the
priority.

Resource
Reservation

[93–96,98,100–102]
Dedicated network resources are
selected for QoS-based flows.

Resources like link bandwidth are ex-
plicitly reserved for certain flows.
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3.3 Policy-based Network Management for SDN

With the evolution of SDN, many researchers have addressed the various challenges of the SDN

concept and studied further its benefits. Unlike the traditional network, the SDN network emerged

with unique features such as centralized approach, virtual network, interoperability and predefined

interface between the control and data layers [8]. In the literature, number of works have studied

and discussed the use of policy-based network management in the SDN architecture. By definition,

the policy-based is a technique used to simplify the process definition of applying the constraint

rules on the network underlying layer. Various applications can be realized with the use of policy-

based management depending on the research sectors such as QoS provisioning and security. The

work in [103] proposed a general combined architecture based on the SDN and PBNM concepts. It

discusses the coexistence between the two networking technologies and it shows how SDN and PBNM

can benefit from each other. However the study discusses the coexistence from the theoretical point

of view and there is no experimental setup are performed to evaluate the architecture in a practical

way.

A group of researcher focused on the integration of policy-based management under SDN for the

autonomic QoS provisioning. For example, Bari et al. in [104] have addressed the use of PBNM

under SDN. The authors present an automatic QoS policy enforcement framework for SDN called

PolicyCop. The framework monitors the network parameters and adaptively reacts upon the detection

of a policy violation. The flow of decision making considers the routing management as a main element

for the policy enforcement. The test was evaluated using five OpenvSwitch SDN switches, floodlight

SDN controller and four hosts that form a small size network topology. The experimental results

consider a primitive use-case in terms of the traffic load and topology size for the throughput and

link failure scenario, where the rerouting of QoS path is only considered at a solution. Further details

on the monitoring scheme that PolicyCop uses can be found in [105]. Benet et al. introduced the

work in [106] an SDN-based framework for the policy-driven data center interconnection. The work

applies the SDN to enhance policy-based routing for Ethernet VPN-based data centers. In order to

meet the SLA, the framework translates the high-level policies to low-level network configuration,

the bandwidth reservation is taken place by the queue configuration, however the queue is set the

bandwidth allocation for the entire aggregated traffic, instead of making per-flow reservation. The

framework is evaluated using the fat-tree topology to demonstrate the geo-distributed networks. The

framework was implemented on the OpenDayLight SDN controller. The scope of the study was

focused on the application of SDN and policy-based management for other scale of network that is

the interconnection between the data centers by using the Ethernet VPN method. Other works in [107,

108] combine the autonomic network mechanisms with the QoS management for SDN. The authors
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presented an extension for OpenFlow and OF-Config protocols to fulfill the needs of integration. To

summarize, the aforementioned research works share a common goal of defining an architecture for

the dynamic QoS network management under SDN-based network.

The work in [109] presented an autonomic QoS management architecture based on SDN-based

network. The architecture reroutes the flow through the less congested route in the network. The

framework is equipped with threshold-based policy so that it enforces the low-level policies when

the threshold is violated by the measured values. The performance was evaluated using Mininet

network emulator, Floodlight controller and OpenvSwitch switch. The results show that the approach

optimizes the use of resources and improves the performance of QoS. Other work like [110] describes

the integration of monitoring, policy, SLA management in the SONATA NFV service platform. The

work extends the management and orchestration MANO framework that is used for the 5G network

development. It aims to improve the service platform for autonomic policy-based network for the

SONATA platform. On the other hand, the policy driven framework has been applied widely in the

network security applications [110–112]. For example the work in [112] proposed a policy conflict

detection in order to ensure the policies are conflict free for the security applications. Avoiding policy

conflict means a policy does not invalidate another policy. Similarly the work in [110] presented an

integrated security architecture for the SDN-based enterprise networks. The proposed architecture

deals with the security attacks and it adopts the network dynamic accordingly. While, the work

in [113] presented a policy enforcement framework over SDN network and it guarantees the consistency

between the defined policies and the network behaviour. The work in [114] proposed a mechanism for

automatic enforcement of security policies under SDN network. By this, it defines a policy refinement

for translating the high-level requirements to low-level settings in the network. The work does not

consider inference reasoning to detect policy conflict. The work in [115] presents a policy refinement

for security application. The framework allows network operators to describe security policies and

the system implement and refines them across the network.

In general most of the proposed approaches in the area of autonomic QoS provisioning have

employed only the rerouting method as a measure when a policy is violated. The studies have not

considered the comparison between the rate limiting and rerouting measures against the default SDN-

based network. By this, the impact of the feedback closed-loop between the underlying SDN switches

layer and the application layer was not studied. On the other hand, the test scenarios were limited

in terms of topology size and traffic load including traffic types. While the evaluation metrics were

limited to the QoS parameters and it is not extended to the expectation of the user. Here one

contribution of this research aims to assess the routing and rate limiting methods against the default

SDN-based network. The study uses metrics such as the PSNR and MOS values in order to evaluate

the expectation of video streaming by the user. In addition to that, the experiment was evaluating
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towards a network mimic a realistic environment. In this research, the contribution in 1.4 proposes

a complete QoS provisioning framework for the policy-based network management over SDN-based

network. The contribution is the first step towards an intelligent SDN framework for routing control

using data driven reinforcement-learning. Moreover, the contribution is a step towards applying a

realistic test environment using video streaming and HTTP/FTP traffic mix.

Other related works introduce a programming language for the policy management. The policy

language is used to define high level policy rules in the network. By definition, the policy rules is

composed of a set of conditions and a set of actions to perform if the conditions are met. Kim et

al. [5,116] propose an event-driven network control framework using a high-level policy programming

language. Similar work is presented in [117] by introducing a policy language. Han et al. [118]

presents a layered policy management for SDN. However, the study mainly focuses on the detection

mechanism and resolution strategy of different policies between various application domains such as

load balancing and firewall. Similarly, other work in [119] integrates the PBNM into SDN and NFV

networks. In the proposed approach, the PBNM solution is employed to design and manage service

chaining in NFV-based network. It enables the network administrators to write SLAs using the policy

language in order to guide the building of service chaining graphs. The work introduces a controlled

natural language to create requirements and contrivances for the policies writing. The work in [120]

developed a language for policy driven security architecture. The security policy language controls the

flow of information according to defined constraints between end users across multiple SDN networks.

For example, the unauthorized flows across multiple domains such flooding and spoofing are detected

by the security policies defined in different SDN Controllers. Similarly, other work like [121] proposed

a formal verification of security policies.

Other group of study investigated the policy refinement. The refinement process involves stages of

decomposition, operationalization, deployment and re-refinement, and operates on policies expressed

in a logical language flexible enough to be translated into many different enforceable configurations

[122]. Machado et al. [123, 124] introduces a policy refinement framework over SDN. The policy

authoring is based on logical reasoning. Whereas the QoS management is based on the routing decision

only. Although the framework is used for high-level policy refinement based on logical reasoning, the

solution did not investigate techniques for detection and resolution of policy conflicts. The policy

refinement is used to translate the policies at the SLA level to the SLO level. However the configuration

of SLOs on the lower-level network can be realized by different approaches like rerouting or queuing.

The scope of this research work is to perform a study on the intelligent implementation of the SLO

agreement on the network low-level. Similar work was done by [125], they introduce a policy authoring

framework with logical reasoning for the SLA goals and to automate the refinement and the work

in [126] introduces a policy refinement in cloud infrastructure.
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As a summary, table 3.2 illustrates the different approaches of PBNM under SDN-based network.

The first group presents the autonomic policy enforcement. The advantage by this approach lie in

handling the network misbehavior automatically without the interaction from the network operator.

Despite the benefit, the framework design becomes challenging and complex to address the policy

validation and enforcement in an automatic way. On the other hand, the second group introduces

languages in the network policy. The approach draws benefits to the network operator by configuring

the network elements based on a high-level policy language. By this, the network operators do

not interact with the lower details of the network devices. However the difficulties arise in defining

a network policy language that represents flexibly a wide range of policies and at the same time

formal enough to support automatic translation to logic [127]. While the third group presents the

policy refinement. The benefits are observed in the automatic translation of high level requirements

into many different enforceable configurations. However the problem of policy refinement is that of

automating the movement from a high-level, abstract characterization of a policy, to policies in the

languages of the various enforcement points [122].

Table 3.2: Table of comparison with different approaches of PBNM under SDN-basd network

Networking
Framework

Objective Proposed Solution

Autonomic Policy
Enforcement

[109–113]
[104,106–108,112]

Configuring the network adap-
tively without the intervention of
administrators, when the change
of network state does not satisfy
the business needs.

Introducing network monitoring with
the classical PBNM system shall re-
alize the autonomic network. The
enforcement of high-level policies into
the lower-level network configuration is
realized through measures like traffic
flows rerouting.

Network Policy
Language

[5, 116–119,119–121]
The need for a unified network
configuration language.

The definition of arithmetic function,
constraints and events are the basis for
constructing the policy language.

Policy Refinement
[114,115,119,123–126]

Automatic translation of high
level requirements into enforce-
able configurations.

Techniques like the logical reasoning are
be utilized for policy refinement.

3.4 Artificial Intelligence in SDN

With the evolution of SDN architecture, the southbound and northbound interfaces are introduced

in order to program the underlying network layer. Based on such interfaces, the intelligent-based

network solutions can be centralized in software-based SDN controller and the decision that is met

by the AI solution can be configured easily on the lower-level network switches. One of the biggest
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challenges is the integration of intelligence solutions on the traditional networks due to the distributed

view on network nodes. By SDN architecture, the feature of a centralized global view brings benefits

to the AI applications for the decision making. Several studies in [128–133] present surveys on the

application of AI techniques over the SDN paradigm. The research studies used the AI techniques to

solve several problems related to the load balancing, security, and traffic engineering. They show that

the integration of AI techniques within SDN is promising, with several research groups introducing

the use of reinforcement routing over SDN-based network. In general, the ML techniques bring wide

benefits such as to learn and understand the hidden knowledge behind the large data set that generated

by the dynamic environment. However, the integration of ML technique comes with challenges like

the design complexity [134].

ML is seen as a promising solution for the next generation networks. In the meanwhile, ML has

been applied widely in the networking applications, such as traffic classification, network routing

and security monitoring. The work in [135] surveyed the ML and deep learning methods used for

traffic classification and prediction under SDN-based network. In practice, most of the applications

classify the traffics according to the port numbers and addresses. However the work in [136] applied

semi-supervised ML to classify the traffic flows into different QoS-aware classes. The deep packet

inspection technique is used to detect the traffic based on the service type. By this, the traffic flows

can be treated adequately to allocate more resources for the QoS flows. The solution was evaluated

using a real internet data set. The success of the solution is compared with other algorithms such

as K-means algorithms. The proposed solution outperforms the K-means algorithm by reaching a

testing accuracy of 90%.

The work in [137] presents a traffic classification architecture based on SDN. The study uses the

supervised learning to classify traffics into various applications like Youtube and Facebook. The results

shows a high accuracy classification using supervised learning. It reaches a classification accuracy

of 90% for the Facebook data, while 73% for the Linkedin data traffic. While the work in [138]

presented a neural network estimator for application recognitions of flow resources. The algorithm

finds a model to match the training traffic patterns. The aforementioned studies introduced traffic

classification methods with high accuracy results. The solution was evaluated using one software

Open-flow enabled switch, one controller and two hosts. Another work by Mestres et. al. [139]

introduces the concept of knowledge-defined networking. The study discusses the integration between

SDN, network analytic and ML to ultimately provide automated network control. Additionally, the

study presents a set of specific use-cases that utilizes the benefits of knowledge-defined networking

such as routing and resource management.

Furthermore, ML technique has been applied for the intrusion detection system under SDN-based

networks [140–143]. The goal of the works is to recognize the network attack patterns by using various
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ML techniques. For example, the work in [144] proposed a deep-reinforcement-learning-based QoS-

aware routing protocol that focuses on the security threads. Two kinds of attacks on the switches are

considered in the study, they are gray hole and Denial-of-Service attacks. The system decides which

path is available to be assigned with the goal of avoiding malicious nodes.

Other kind of research is investigated by several researches to apply the RL for network routing.

The direction of research for the application of RL in network routing is in line with the objectives

and scope of this research. Therefore this section focuses on this kind of research topic. The research

in [145] proposed an adaptive video streaming method based on Q-learning approach. The method

determines the right time to re-route the traffic in SDN-based network to minimize the packet loss,

quality changes and controller cost. The experimental results showed that the proposed system out-

performs other algorithms such as the shortest path routing and greedy-based approaches. However,

complex scenarios such as the large-scale topologies and high traffic volume were not addressed in the

study. Similarly, Sendra et al. [146] proposed a distributed intelligent routing protocol for SDN-based

network. The proposal uses reinforcement learning algorithm to find the best route that returns the

most reward value. Through the learning process, the algorithms assigns different weights periodi-

cally to the paths and by learning it finds the best weights that leads to better reward. However, the

calculation of cost function was not specifically defined in the study. The test was carried out using

the mininet network emulator.

Whereas, Lin et al. [147] proposed a Q-learning based routing algorithm in a multi-layer hierarchi-

cal SDN environment. The SDN-based architecture is composed of recursive hierarchical control plane

with three levels of controllers. Each domain controller is responsible for the routing inside its own

domain. The domain controller determines the path inside the own domain, while the super controller

determines the global path among the domains in the entire network. For the reinforcement-learning,

the rewards function is based on the delay, packet loss adn available bandwidth. The reward function

is described by a reward value closes to one means the link selection is preferred, while the value closes

to negative one as the penalty. The proposed framework is evaluated using Sprint GIP network topol-

ogy with multi-layer hierarchical architecture. The work in [148] proposed a RL-driven for routing

management under SDN-based network. The study develops a system that addresses situation-aware

and intelligent network routing management. The framework is composed of two modules, the first

module responsible of continuous monitoring the network state based on the QoS metrics such as

packet loss and delay. While the second module performs intelligent routing optimization task by

using the reinforcement learning. The QoS-aware scheme is developed to detect and prevent network

problems such as congestion and link over-utilization. The work was evaluated using mininet network

emulator. It uses POX as a type of SDN controller with OpenFlow-enabled switch. To evaluate

the performance, two normal scenarios without congestion is performed and a third scenario with

33



congestion scenario. The proposed method is compared with Dijkstra algorithm-based method and

the results showed that the proposed approach outperforms the Dijkstra algorithm-based method.

The work in [149] explores ML for selecting the least congested path for routing in SDN-based

network. Two methods were proposed for path selection from a list of possible paths to route the

traffic flow, K-means clustering and vector space model with cosine similarity. The network state is

represented by weights on the links, in which at the end of training phase a number of cluster set

are generated. The set indicates the best paths in the network to be candidate for selection. The

evaluation was made against the conventional network based on Dijkstra’s algorithm where cost for

each link set to one. The results showed that cosine similarity outperforms other variants. The work

is evaluated using mininet network emulator and Ryu SDN controller, while the topology is composed

of 5 SDN switches. On the other hand, the work in [150] proposed a deep reinforcement learning for

routing optimization under SDN-based network. The approach utilizes the off-policy and actor-critic

deep learning method. By this, the state is represented by the traffic matrix based on the bandwidth

request and the action is the path, while the reward is the average network delay. Though the approach

tends to minimize the network’s delay, however the state and action space can be exploded with the

network size and number of flows. The approach was evaluated using the OMNeT++ simulator with

a network topology of 14 nodes. The study discusses as well the advantages of reinforcement learning

compared to approaches like approach with the heuristics methods.

As a summary, table 3.3 illustrates the type of network applications categorized according to the

study objective and solution. In the table, the first group presents the introduction of ML techniques

for the network traffic classification. Based on the classification of traffic, the network providers are

able to detect the malicious attacks, reallocate network resources, and perform traffic modeling [151].

Traditional traffic classification was port-based classification, however nowadays the growing of traffic

volume with data encryption raises the challenges for designing accurate traffic classification. On the

other hand, the second group presents a special case of traffic classification of the first group. The

research investigates mainly the techniques such as the signature-based and anomaly-based detection

to identify the malicious activities in the network. Finally, the third group investigates the ML

techniques for the network traffic routing. The work of this research is in line with the third group.

The research objective aims to integrate the AI solution for network routing in SDN-based network.

In most of the current research, the objective is to invent a new routing algorithm with the help of

AI techniques. However the research here utilizes the RL-based method to use the existing routing

algorithms and find the best selection of routing algorithms to fit the network needs. Moreover, most

of the current researches uses test setup based on limited scenarios such as single network topology.

Though the research here evaluate the proposed solution on different scenarios in terms of traffic load

and network topology.
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Table 3.3: Table of comparison with the different approaches of AI/ML techniques for SDN

Networking
Application

Objective Proposed Solution

Traffic Classification
[135–138]

Traffic are classified in general
according to the applications.

ML learning methods (e.g. Nueral Net-
work estimator) are utilized to train the
model for the type of application traffic.

Intrusion Detection
System [140–144]

Traffic belong malicious activi-
ties to be identified.

Predicting network attack patterns by
using ML learning algorithms (e.g.
deep learning).

Network Routing
[144–150]

Enhance the performance of
quality applications (e.g. multi-
media traffic).

Reinforcement learning, as an ML algo-
rithm, is used to drive intelligently the
traffic routing in the SDN network.

3.5 Remaining Challenges and Open Issues

Recently researchers have shown the wide studies of QoS provisioning and policy management under

SDN-based network. However, there are still a number of research challenges and open issues that need

to be further studied. The QoS policy management under SDN-based network remains a challenging

topic. This section outlines some of the remaining challenges related to this research:

• Including Artificial Intelligence Techniques for SDN Network Management: The

lack of intelligence meaning in the decision making of policy management represents one of

the fundamental issue. The current researches use the predefined pick of actions for a certain

condition. For example, when a policy violation is detected, measures like finding the optimum

path is triggered primitively to reroute the flows on alternative paths. The intelligent aspect

based on learning or modeling is not involved to choose the adequate measure for resolving the

network conflict. An approach to tackle this problem is the use of Reinforcement learning to

enforce the learning of past experiences and modeling to gain a long term reward. The aim of

this research is to introduce the intelligence inside the PDP component of PBNM framework,

while utilizing the key features of SDN architecture. Alongside, the design by itself of the RL

algorithm is certainly a fundamental challenge.

• The Utilization of SDN Key Features: The utilization of SDN features, for example the

centralization, the visibility and the programmability, is considered one of the most important

issues. A research challenge comes from the design of the network functional component under

the SDN infrastructure. For example the dispatch of resilient and consistent data to the upper

layer of making decision. The study presents at how the integration solutions between the four

aspects QoS, SDN, PBNM and ML are utilized in a single network management framework.
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• Self-organized Network Management: Another challenge to be addressed is the design of

the closed-loop control structure between networking monitoring, decision making, and agree-

ment violation in order to draw the maximum benefits for the perspective of autonomic network

management. A self-organization concept shall be realized in the underlining network devices.

In general, the network shall adjust its behavior according to the network state. If a state breaks

the business agreement, the network control management shall make the change to have a state

that complies to the needs.

3.6 Chapter Summary

This chapter aims to present the related works done in the area of SDN-based networks. It introduces

the current industrial solutions for driving SDN solutions into the networking commercial market.

Various research groups have investigated the QoS provisioning under SDN-based network. Routing,

queuing management, and explicit resource reservation were among the current research topics for

the QoS provisioning. This chapter also described the existing research on policy management solu-

tions. For the autonomic policy scheme network, network monitoring becomes an essential network

component. The QoS policy management provides benefits for the QoS management by operating

networking applications under the SLA agreement. The low-level policies are created to adhere the

rules in high level contract between service providers and customers. On the other hand, AI and

ML added motivation for the research community to integrate intelligent applications over SDN. ML

techniques has been applied widely for the applications like traffic classification, network security and

routing optimization in the academia field. Finally, the chapter ends up with a summarize of the cur-

rent remaining challenges and opening issues related the QoS policy management under SDN-based

network.

This research presents entirely a complete framework for end-to-end QoS provisioning under SDN-

based network. In order to achieve this, the research combines three main elements into single

framework. These elements are: SDN, AI, PBNM, in which every element is taken advantages of the

other. For example through the centralization and programmability of SDN network, it becomes viable

to implement a complex AI solution in a centralized way. On the other hand, the AI techniques brings

various benefits of accommodating algorithms to cope with a complex networking problem. PBNM

provides a management solution to manage network services that meet compliance needs. Though

via the centralization, controlling and monitoring in SDN, a self-organized network for end-to-end

QoS provisioning becomes visible. The aim of this research is the notion of bringing SDN and PBNM

together with AI techniques to networking.

The novelty of the proposed framework is reflected in several directions along the research. A
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novel scheme is introduced for accommodating the compression techniques at the data collection level

of monitoring traffic data. The sparsity approximation algorithms are employed to compress the

aggregated data in the SDN switch, while the SDN controller recovers the sparse data. According

to several existing studies, the impact of this approach is to reduce the bandwidth usage by network

monitoring along the link between control and forwarding planes. The proposed method offers an

increase of the network observability by reconstructing the compressed data to a long time series of

original data. This method helps to reduce the amount of exchanged data in terms of amounts of

bytes between the controller and switches if the SDN controller is embedded inside the network while

sharing the same network resource of link bandwidth with the switches. Such an approach reduces

the network link utilization by reducing the overhead of monitoring.

Section 4.2.1.3 illustrates in detail the metric performance used for evaluating the method. More-

over, in this research an innovative probabilistic routing is proposed. The solution utilizes Bayes’

theorem in order to determine the link probability. This in turn is used to select the route that satis-

fies the given bandwidth constraint. The impact of this contribution is to enable the routing algorithm

to calculate the routing path when less information is advertised by the switch plane. The impact is to

reduce the overhead on the link between control and forwarding plane in an SDN-based environment.

The method uses the link probability to compute a path that satisfies the given bandwidth constraints

as described in section 4.2.2.

Furthermore, a novel approach is presented in section 4.4 by integrating RL in the routing decision

making module. The RL-based approach selects the most appropriate routing algorithm from a set

of algorithms while maintaining the flow satisfaction with respect to the defined SLA requirements.

In contrast to the existing studies, the proposed approach enhances the other state-of-the-art rout-

ing algorithms in terms of performance metrics such as: higher average throughput, lower average

packet loss, better average PSNR and MOS. Moreover, the proposed method offers a test bench to

evaluate the method against the existing solution using an experimental setup under a realistic SDN

environment and the work studies the impact of network topology and traffic load.
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Chapter 4

Proposed System Architecture and

Algorithms

This chapter introduces the proposed conceptual framework and operational definitions. It starts with

the description of the overall proposed system architecture, followed by the details of the three main

contributions of this research, such as: (1) measurement collection and probabilistic-based routing, (2)

policy-based QoS management framework, and (3) RL-based Decision Making for Routing Algorithms

under Policy-based SDN Environment

4.1 Overall Proposed System Architecture

Figure 4.1 shows the high level overview of the functional block diagram for the proposed framework.

It illustrates the integration of the three element into one single framework for the purpose of end-to-

end QoS provisioning. The framework is based on SDN architecture (as described in 2.2). Moreover it

utilizes the three layers of PBNM architecture for (as described in 2.3) and it contains an end-to-end

management module to determine the way to set up routes on the network while maintaining the SLA

requirements. The end-to-end management module is realized by a decision making process based on

AI principle (as described in 2.5). In general the functional process in the proposed framework works

as follows: in order to establish an end-to-end QoS communication between two end users in the SDN

network, the source sends first a request to the SDN controller to set up an end-to-end QoS path.

Based on the network services, the controller on behalf forwards the message to the upper layer,

in which the intelligence of end-to-end management is located. The management is comprised on

intelligent decision unit to decide on the right action to apply that complies to the SLA requirements
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stored in the policy repository.
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Figure 4.1: High level functional block diagram of the proposed framework

On the other hand, figure 4.2 illustrates the overall proposed system architecture as a high level

view of the system. It shows the main functional block diagram of the proposed system, while the

detailed description is presented in the upcoming sections. The proposed framework builds on top

of the classical SDN architecture and adds three main contributions: (1) measurement collection

and probabilistic-based routing solution (indicated by light green colored block), (2) policy-based QoS

management solution (indicated by light blue colored block) and (3) RL-based Decision Making for

Routing Algorithms under Policy-based SDN Environment (indicated by light orange colored block).

The measurement collection and probabilistic-based routing solution intends to reduce the moni-

toring overhead on the control link between the data and control planes while increasing the network

state observability. The monitoring in SDN represents an essential engine, the application in upper

layer needs to observe the underlying network condition and to check whether the network perfor-

mance is complying to the business needs. On the other hand, the global knowledge of network state

contains uncertainties, a probabilistic routing is proposed to overcome this problem by utilizing the

probability theory in the routing computation. The proposed probabilistic-based routing is coupled

with the monitoring component via link state update. In this thesis, the QoS provisioning over SDN
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is realized through a PBNM. The proposed PBNM-based solution, contains techniques for network

monitoring and decision making. Finally, the integration of a reinforcement learning algorithm for

routing management is proposed. It intends to maximize the network utilization and fulfill the QoS

application requirements by finding the most suitable trade-off between throughput, packet loss and

quality.

The three main contributions of the overall proposed framework are described in detail in the

following sections.
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Network Operating System
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Figure 4.2: Overall proposed system architecture

4.2 Measurement Collection and Probabilistic-based

Routing

4.2.1 Monitoring Techniques under SDN Infrastructure

Network monitoring represents one of the fundamental pillar in the autonomous and intelligent net-

works. In order to meet the policy agreement, network monitoring needs to observe the underlying

network infrastructure and check whether its performance satisfies the business needs. In the mean-
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while, the research area of SDN monitoring can be classified into two main categories based on how

and where the measurement is taking place. The first approach utilizes the existing architectural

design of SDN. While the second extends the internal architecture of SDN switch in order to achieve

other goal of monitoring like high accuracy and observability, as well as low network overhead.

In general, there are two main mechanisms to observe the state of SDN: active or passive methods.

They mainly differ in the way the network state is dispatched to the SDN controller. With the active

method, the SDN controller injects query packets into the network in order to request the underlying

network state. While no extra query packets are added in the passive method. On the other hand, the

SDN switches push the status regularly to the controller. This section introduces the two techniques

and it proposes additional concept for measurement collection.

4.2.1.1 Monitoring based on Continuous Measurement Update

OpenFlow mainly supports the request-reply technique for active monitoring. Under the continuous

monitoring, the controller requests explicitly the flow statistics from the switches. As a result, the

controller can build a centralized global view of the network state. Due to the principle of request-

reply, the continuous update can add high overhead on the control link between the two planes

if the statistics are frequently requested. In this thesis, the continuous measurement update was

implemented in the proposed framework 4.3.

4.2.1.2 Monitoring based on Link State Update

Another approach to reduce the monitoring overhead is the use of link state update. Under this

method, the switch publishes passively the statistics only when certain conditions are fulfilled. Gen-

erally, the network state changes over time according to several factors, such as: the failure of a

network node or instantaneous traffic overload. In this case, only the most important performance

profiles are published to the controller while other profiles are kept unpublished. The low observability

of entire traffic profiles remain the main disadvantage of this method.

The Link State Update Policy consists of a threshold-based triggering policy combined with Hold-

Down Timer (HDT) [152]. By this, HDT is used to push the statistics to the controller, if the threshold

is not met during the time window of HDT. This ensures that the controller shall be updated with

the flow statistics regularly. Thus, the link state update is triggered only if a certain threshold thr is

exceeded or the HDT is expired. For the bandwidth availability, the threshold-based policy checks if∣∣∣ blast−bk
blast

∣∣∣ > thr is met, where blast is the last updated value of the available bandwidth metric and

bk is the current state of the bandwidth metric. To this extend, when the threshold and HDT are set

to very low, the SDN switches push data to the controller frequently.
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4.2.1.3 Measurement Collection Through Compression Technique

This research establishes a further study on monitoring scheme. It proposes a data collection scheme

based on a compression technique for SDN-based network. Finding the solution for the trade-off

between the network overhead and accurate network view poses a significant challenge. The motivation

for utilizing the compression method is to reduce the size of data transfer over the control path, while

it increases the network observability. It employs sparsity approximation algorithms for compressing

the aggregated data in the SDN switch, while the recovery of the sparse data is taking place at the

controller.

The proposed technique presents a data collection scheme based on the compression technique

under SDN. Here the sparsity approximation algorithms are utilized to compress the aggregated data

in the SDN switch, while the SDN controller recovers the sparse data. The approach aims at further

decreasing the control link usage while increasing the network observability. In order to do this, it

extends the existing functionality of the SDN switch by integrating the dictionary learning algorithms.

The current method is applied for the throughput metric.

4.2.1.3.1 Sparsity Approximation Algorithms The research employs the K-SVD

algorithm to train the dictionary, while the Orthogonal Matching Pursuit (OMP) algorithm is used

for the sparse approximation.

4.2.1.3.2 The K-SVD Algorithm The K-SVD algorithm is an iterative algorithm used

to train an over-complete dictionary D [153]. The training of a dictionary of finite K basis vectors is

performed iteratively by solving the following minimization model:

min
D,{xi}

N∑
i=1

‖yi − D̂xi‖2 s.t. ∀i, ‖xi‖0 ≤ ε (4.1)

where D̂ ∈ <M×K is the estimated trained dictionary and K > M for an over-complete dictionary,

y ∈ <M is the training data and x ∈ <K is the sparse approximation coefficients vector that contains

non-zero components denoted by s. While ε is the maximum number of basic vectors in the sparse

representation stage. The K-SVD algorithm iterates between two stages: (1) the calculation of sparse

coefficients and (2) the dictionary update. Finding the dictionary solution that approximates the

true minimum is NP-hard [154]. For K-SVD with OMP as pursuit algorithm, the computational

complexity per training iteration is O
(
sMK +MK2 +M2K

)
[154].
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4.2.1.3.3 The OMP Algorithm The OMP algorithm is an iterative greedy algorithm for

sparse approximation [155]. The sparse approximation problem is modeled to find a linear combination

of basis vectors from a trained dictionary. Having an over-complete dictionary D̂ and an observation

vector y, OMP algorithm finds the corresponding sparse approximation coefficients vector x with s

non-zero components by fulfilling the following formula:

yi = D̂xi (4.2)

Finding the best approximation is an NP-hard problem, however OMP converges for the sub-optimal

solution in no more than K iterations. In each iteration, the errors are minimized until it reaches the

stopping criterion. The OMP algorithm has a computational complexity of O (sMK) [156]. Table

4.1 shows the set of used variables in the problem definition.

Table 4.1: Notation Definition

Variable Definition

D̂ The estimated trained dictionary
x The sparse approximation coefficients vector
y The measurement or observation vector that is used for dictionary

training
T The set of training data for dictionary

K The number of columns in the trained dictionary D̂

M The number of rows in the trained dictionary D̂
s The number of non-zero components in the sparse vector x
ε The maximum number of basic vectors in the sparse representa-

tion stage
CR The compression ratio

4.2.1.3.4 Proposed Monitoring Architecture Figure 4.3 shows the high-level picture

of component-based architectural design. At the forwarding layer, the SDN switch contains three

main components: Flow Aggregation, Dictionary Training and Sparse Approximation. The Flow

Aggregation is responsible to compute the overall link throughput metric. It aggregates the flow

statistics that exist in the flow tables. In the Dictionary Training, the K-SVD algorithm estimates

the dictionary D̂ based on the observation of the training data set. To do this, the throughput data of

one-dimensional structure is divided into sections of length M . When the dictionary D̂ is predicted,

the OMP algorithm in the Sparse Approximation is used to calculate the sparsity approximation on

defined time window. By then, the data in the sparsity form is ready to be sent to the controller.

To this end, the OpenFlow-enabled switch does not yet support this mechanism of data transfer

and the proposed method is evaluated in the next chapter using Matlab. On the other side, the
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application layer contains two components: the topology component which maintains the current

network topology. The recovery of sparse approximation is responsible to reconstruct the original

data from the sparse approximation.

Forwarding Layer

SDN Switch (N)SDN Switch (1)

Flow Aggregation

Dictionary Training 

Sparse Approximation

SDN Controller
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Flow Entry 
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Figure 4.3: Foreseen Architecture of the Compression-based Monitoring

4.2.1.4 Methods Comparison

Table 4.2 summarizes the aforementioned approaches of network monitoring under SDN-based net-

work.

4.2.2 Probabilistic-based QoS Routing Algorithm

The QoS routing approaches mainly rely on the instantaneous metric observations without the con-

sideration of imprecision in the state information. However, in general, the global knowledge of

the network state information contains uncertainties caused by various perturbation factors, such as

the inaccurate metric measurement methods. Thus, the employment of probabilistic schemes into

QoS routing shall be favorable to the traditional cost-optimization solutions. This section proposes

BaProbSDN, a probabilistic QoS routing mechanism for SDN. The QoS routing algorithm employs

the bandwidth availability metric as a QoS routing constraint for unicast data delivery. BaProbSDN
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Table 4.2: Table of comparison with different approaches for network monitoring in SDN

Networking
Monitoring

Objective Proposed Solution

Continuous Update
4.2.1.1

Simple and adopted for variable
monitoring interval. Frequent re-
quest for statistics can introduce
high monitoring overhead.

Existing OpenFlow-enabled switches
support the feature.

Link State Update
4.2.1.2

Only interesting measurement
profile are published to the con-
troller. It can maintain low mon-
itoring overhead, however the
network traffic observability re-
mains low.

Later versions of OpenFlow support
partial implementation of the feature.

Compression-based
Update 4.2.1.3

High network observability with
high accuracy and low monitor-
ing overhead.

The OpenFlow protocol needs to be ex-
tended to support the functionality.

utilizes the Bayes’ theorem and Bayesian network model in order to determine the link probability,

in which it selects the route that satisfies the given bandwidth constraint.

Figure 4.4 illustrates the proposed functional units built on top of the classical SDN architecture.

The figure shows the detailed functionality of a high description block (indicated by light blue colored

block) in Figure 4.2. The approach exploits the benefits of SDN in terms of centralized management

and configuration. The Link State Update Policy is integrated here so that the SDN switch pushes

the link state information to the SDN controller every time a certain criterion is met. As each

link has its own bandwidth capacity, the SDN switch computes the bandwidth availability metric

through the Metric Computation unit. The application layer contains two blocks, namely the proposed

Probabilistic QoS Routing Algorithm (BaProbSDN) and the Global Information State Management

which maintains a consistent global network state information matrix.

4.2.2.1 BaProbSDN

BaProbSDN is a probabilistic-based QoS routing algorithm that utilizes the directed acyclic graph

Bayesian network and Bayes’ theorem to obtain the link probability of bandwidth availability. The

probability is determined along a window of observation, referred to as Window Size (WS) (i.e., a

window size gives the observation period that contains a number of measurement samples which are

updated by the SDN switches). The following states are defined to model the bandwidth availability

of a link as described by the Bayesian network listed in Fig. 4.5:

• L ≡ bk > breq: Does the link has enough bandwidth

• ∆B ≡ |breq − blast|: The amplitude of last advertised bandwidth value blast relative to the
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Figure 4.4: SDN architecture with proposed functional units

requested bandwidth breq

• T ≡ t (blast) = i : The temporal order of last advertised bandwidth t (blast) where i is the

location of bandwidth measurement in the observation window

where bk is the current state of the bandwidth availability and breq is the requested bandwidth.

While blast is the last updated value of the available bandwidth metric. Given the above mentioned

states, T and ∆B are independent but they become dependent when L is given, therefore the prior

joint probability is defined as:

Pr [L,∆B, T ] = Pr [L|∆B, T ]Pr [∆B]Pr [T ] (4.3)

In order to find the probability of a link, it is essential to compute the posterior probability

Pr [L|∆B, T ] which informs whether the link supports a bandwidth larger than the requested one

when the last advertised measurement and the requested bandwidth are given. It is rather difficult

to calculate directly the probability of hypothesis L given the evidence of ∆B and T , therefore Bayes

rule simplifies the problem by considering the observables quantities as formulated in 4.4:

Pr [L|∆B, T ] =
Pr [∆B, T |L]Pr [L]

Pr [∆B]Pr [T ]
=

Pr [L,∆B, T ]

Pr [∆B]Pr [T ]
(4.4)
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The likelihood Pr [∆B, T |L] is estimated from the system observations of a large training dataset

in advance. Here the likelihood is calculated approximately by the means of a counting process. The

proposed approach is based on Bayes’ theorem and the causal relation in Bayesian network. Given

the location of the last advertised bandwidth availability within the observation window and the value

of current requested bandwidth, the model estimates the link probability based on this information.

Basically, a link is more likely to support the request as the location of the last update approaches

the request arrival time and the difference ∆B becomes larger. However, the model reaches moderate

probability as the difference ∆B becomes smaller, this indicates that there is no evidence whether

the link supports lower or higher bandwidth at the time of the arrival request. Table 4.3 shows the

set of used variables in the problem definition.

The probability-based routing algorithm is formulated as a path finder of p∗ that is most likely to

satisfy the bandwidth constraint B, and the following condition is met for every other path p [157]:

πB (p∗) ≥ πB (p) (4.5)

where πB (p) =
∏

(i,j)∈p Pr [b (i, j)] and b (i, j) is the residual bandwidth of the link (i, j). The

solution of eq. 4.5 is carried out by assigning to each link a weight of −log (Pr [b (i, j)]), so that

the problem is transformed to additive operation in path finding. To find the path πB (p∗) the

standard Dijkstra shortest path algorithm is executed on the associated weights with a computational

complexity of O(L logN ). This algorithm is known as the Most Probable Bandwidth Constrained Path

(MP-BCP) problem [157]. According to the observations, the model produces different probabilities

depending on the order of the observation sequence. When a request arrives, the probability is

determined by equation 4.4 for each link in the network. Therefore the group of links that shape

a QoS path between the source and destination hosts can be calculated by solving the MP-BCP

problem. The problem solution was modified so that the group of paths that most likely satisfy the

QoS requirements are selected first. Then the path which contains the links with higher probabilities

is chosen. Additionally for lonely threshold-based policy, the BaProbSDN algorithm can determine

if the bandwidth availability that is not advertised by the switch supports enough bandwidth for

the QoS request. This can be achieved by checking if the requested bandwidth lies in the range of

breq /∈ [bk−1 (1 + thr) , bk−1 (1− thr)].

4.3 Policy-based QoS Management Framework

In order to overcome the challenges of network traffic growth, the policy-based management proposes

a solution to automate the process of network configuration via a set of constraint rules. The use of
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Figure 4.5: Bayesian network model in BaProbSDN for link probability

Table 4.3: Notation Definition

Variable Definition

breq The requested bandwidth by the traffic flow
bk The current state of the bandwidth availability at time k
blast The last advertised value of the bandwidth availability
b(i, j) The residual or available bandwidth of the link (i,j)
WS The size of observation window
L Indicator if a link has a higher bandwidth availability than the requested

∆B The amplitude of last advertised bandwidth value blast relative to the requested
bandwidth breq

T, t(blast) The temporal order of the last advertised bandwidth blast
B The bandwidth constraint that is met by the path
p∗ The path that it is most likely satisfies the bandwidth constraint B
thr The threshold of the link state update policy

SDN and PBNM brings several benefits compared to legacy networks. On the one hand, the SDN

concept reduces the management complexity through the centralization of the entire management.

While the PBNM enables a simplified management of the data plane as compared to the complex

middleboxes in the traditional networks [6]. It controls the resource provisioning in order to meet the

business requirements.

This section illustrates the integration of policy network management architecture under the SDN-

based network. It proposes a policy-based management framework over SDN for QoS provisioning.

By this, the proposed approach monitors the QoS parameters of the active flows and it enforces

dynamically new decisions on the underlying SDN switches in order to adapt the network state to

the current demanded high-level policies. In the proposed framework, the continuous monitoring

update 4.2.1.1 is realized. By using the loop chain approach between the network monitoring and

policy validation/enforcement, the framework can achieve end-to-end QoS. Upon detection of a policy
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violation two flow management techniques are implemented, such as: rerouting and rate limiting.

4.3.1 Framework Architecture

The proposed PBNM-based SDN framework is illustrated in Figure 4.6 and consists of the following

main components: (1) Policy Repository - stores the entire high-level policy rules that reflect

the requirements for the agreed services between the service provider and customers. (2) Topology

Tracker - maps the physical network elements into a graphical structure. The output of this compo-

nent is fed into the QoS metrics monitoring unit to build a global image of the instantaneous network

state. (3) Admission Control - accepts or declines network connections based on the availability of

network resources. (4) QoS Metrics Monitor - measures the QoS metrics (e.g., throughput, packet

loss rate and delay) of each flow in the network. The metrics are determined by periodically sending

flow statistics query messages to the switches. The constructed view on the network load is used

later by the violation detector to indicate the misbehaving traffic flows. (5) Violation Detector

- represents the validation engine to release the necessary measures to converge the network to the

state agreed by SLO requirements. (6) Active Flows Tracker - it tracks the active flow routes in

SDN. The built routing table is utilized by the monitor unit to estimate the throughput per active

flow. (7) Route Manager - computes the least loaded path demanded by the application’s QoS

based on the instantaneous network state. While it seeks the shortest path for the best-effort traffic.

(8) Rate Limiting Manager - configures the rate limit parameter along the best-effort route.

For the purpose of this work, the SLO requirements are defined directly without deriving them

from the SLA. The translation and verification between SLA and SLO levels is out of the scope of

this work. The framework maps the SLO policies to network policies by manipulating the flow tables

of the SDN switches. The SLO policies are stored in an integrated database container.

4.3.2 Network Management Function

The functional components of the proposed architecture design are mapped to the general three-level

PBNM framework (PIP layer, PDP layer, and PEP layer) [41]. Two cases are identified for managing

the network state: (1) upon receiving a new route request - Initially, the controller receives a packet-in

message and the admission control decides whether to reject or accept the upcoming request based on

the resources availability. If the request is accepted, the application type is identified, such that in case

of best-effort request, the shortest path is determined using a method based on Dijkstra’s algorithm.

Whereas in case of QoS application, the least congested path is chosen. (2) a policy violation is

detected - The case is illustrated in Figure 4.7. Initially, the network monitoring component collects
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Figure 4.6: Proposed PBNM-based SDN Framework

periodically flow statistics from the switches. The measurements are used to calculate the available

bandwidth and packet loss rate of all flows in the routing table. As a result, the controller builds a

global view of the network load. The violation detector determines whether a high-level policy rule

is broken. If the policy is broken, it identifies the flow that causes the violation by comparing the

measured quality metrics against the high-level policy. This is further used to identify the congested

link along the misbehaving (violated) flow that causes the violation. Upon a violation, the violation

detector either trigger the route manager to choose an alternate route for the background traffic over

other shortest path routes or it triggers the rate limiting manager to reduce the bandwidth budget

for the background violating the best-effort flows.

4.4 RL-based Decision Making for Routing Algo-

rithms under Policy-based SDN Environment

One of the most significant paradigm shifts within the networking industry is represented by the intro-

duction of SDN. To this extend, SDN comes with key advantages in comparison with the traditional
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network. Some of the features are centralization, programmability via standardized interface, the

decoupling of control and forwarding planes, and feasibility through global network image [36]. These

advantages encourage to centralize the RL-based solution on the application layer of SDN network.

With SDN, network design becomes simplified as the entire network is controlled by a SDN controller

using the open interfaces [37]. Additionally by introducing the closed-loop system through monitoring,

controlling and validation, a self-organization concept shall be realized in general in the underlining

network devices. The network shall adjust its state to comply with the business needs [158,159].

On the other hand, artificial intelligence has recently gained increasing popularity due to its

applications in almost every sector [160–163]. AI technologies bring many benefits when integrated

into any system [48]. For example through the learning process, the system builds a knowledge to

improve the decision making in a more efficient way. The objective of this research is to integrate the

learning method in the decision-making unit of the policy management system. This work applies

and utilizes the Q-learning method to decide on the most suitable conventional routing algorithm
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to be applied on the traffic flows. It is used to select the most appropriate routing algorithm from

a set of centralized routing algorithms that maximizes the return reward from the network. Here

for proof of concept, the set of routing algorithms is MHA, WSP, SWP, MIRA. Furthermore, this

study investigates the impact of Q-learning method against the routing algorithms (e.g. MHA, WSP,

SWP, MIRA) on multimedia QoS traffic under a realistic environment in terms of PSNR, Throughput,

Packet Loss, Delay and flow rejection. By this, the decision drives the network to meet the requirement

in SLA agreement by allocating the right routing in the network life. The main contribution of this

work are as follows:

• RL-based Network Routing Management: The proposed framework is incorporated to employ

statistical decision-making methods for traffic distribution. By this, the network management

becomes self-organizing in applying an adaptive bandwidth provision scheme on learning basis

from the experiments of past trails. The inclusion of AI in SDN-based network shall increase

the cognitive capabilities of the decision-making procedure. Based on the learning concept,

the proposed approach shall choose the best action from a set that optimizes the network

performance. As a result of that, policy management system can improve its decision in order

to reduce the risk of policy violation.

• Intelligent Network Resource Allocation: Resources in the network are planned to be dynami-

cally allocated depend directly on the network state. The aim is to intelligently distribute the

bandwidth over the network in order to cope with the continuous changes in the network. With

the help of intelligent decision-making process, the network shall dynamically adjust its state

depends on the business needs.

Nowadays diverse traffic classes (such as video and data) are transferred across the communication

networks. Due to the limitation of network resources, the quality of the traffic flows is affected as a

consequence from the network congestion. This leads to several traffic problems such as packet loss,

low throughput, which have a great impact on the users’ perceived quality. Therefore, to guarantee

certain requirements, traffic classes poss different QoS requirements. Guarantee of QoS provisioning

has become an active field of research especially considering its importance for applications that

require data delivery under certain QoS constraints (e.g., multimedia and voice data). The QoS-

enabled networks provide significant performance improvements for QoS services by ensuring sufficient

bandwidth, controlling latency and reducing packet loss [164–166].

Over the past years, two QoS architectures were defined by IETF: IntServ [167] and DiffServ [168].

IntServ is a flow-based with fine-grained mechanism for traffic management. Under this approach,

the network resources are reserved explicitly for specific individual traffic flows while it guarantees

an end-to-end QoS delivery. However, IntServ has scalability and complexity issues [169]. On the
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other hand, DiffServ is a class-based with coarse-grained mechanism. It works at class level, where

a class is an aggregate of many flows. The specification of policies are saved at the border nodes of

DiffServ domains. According to a certain level of treatment, packets belonging to a desired service

are marked and classified by the border nodes of the network domain. Core nodes in the domain

use packet queuing and scheduling management techniques to forward packets according to a per

hop behavior and to their class priority. Border nodes in different network domains need to map the

flows carefully in other domains in order to reduce the loss of performance quality. Due to the per

hop behavior and flow-aggregation model by the approach, the guarantee for end-to-end QoS solution

becomes unpredictable and approximate [170]. Although DiffServ solved the problem of scalability

by IntServ, it presents inevitably the problem of performance loss due to the class discretization and

the fixed number of preconfigured traffic classes [83]. The current QoS architectures are still not the

successful QoS support for service providers, enterprises and end users [42,169].

In this work, the research proposes a new framework based on a set of routing algorithms while

integrating reinforcement learning. The approach is not focusing on designing a routing algorithm

that meets multiple constraints. Instead it utilizes the reinforcement learning method to select the

optimal routing algorithms that achieves the best results on the network under dynamic network

conditions. It decides intelligently on the routing algorithm based on the reward that complies to

the SLA requirement of service. With the help of reinforcement learning, the research proposes a

framework towards autonomic system with respect to the QoS guarantee. The framework satisfies

the properties of autonomic system with self-configuration, self-healing, self optimization [158,159].

4.4.1 Framework Architecture

Figure 4.8 illustrates the proposed RL-based framework built on top of the SDN architecture, that

consists of:

(1) RL-based Decision Making Algorithm - makes use of Q-learning to add intelligence capability

into the network. It decides on the most suitable routing algorithm to be applied from a set of routing

algorithms. (2) Routing Manager - reroutes the active flows with the routing algorithm decided by

the RL-based decision making algorithm. (3) Policy Repository - stores the Service Level Objective

(SLO) policy rules that describe the technical interpretation in measurable terms (i.e. throughput,

packet loss, rejection rate). (4) Topology Tracker - maps the physical network diagram to the

graphical structural representation and it tracks a global image of the instantaneous network state.

(5) Admission Control - responsible for accepting/rejecting incoming traffic requests. (6) Flow

Monitor - maintains the flow state within the network by periodically collecting statistics of all flows.

(7) Active Flow Tracker - tracks active/inactive flows in the network.
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Figure 4.8: Proposed PBNM-based SDN Framework

As proof of concept, four centralized routing algorithms are adopted and implemented into the

framework, such as: (1) Minimum Hop Algorithm (MHA) chooses the path with the minimum number

of links between the source and destination nodes [45]; (2) Shortest Widest Path (SWP) finds the

feasible path with the maximum available bandwidth among the set of existing routes [45]. If there are

multiple such paths, the one with the shortest route is selected; (3) Widest Shortest Path (WSP) finds

the feasible path with the shortest path among the set of existing routes [45]. If there are multiple

such paths, the one with the maximum available bandwidth is selected; (4) Minimum Interference

Routing Algorithm (MIRA) exploits the knowledge of ingress egress pairs in order to minimize the

interference between the paths when a new request arrives [46].

For the purpose of this work, the SLO requirements are defined directly without deriving them

from the SLA. The translation and verification between SLA and SLO levels is out of the scope of

this work. The framework maps the SLO policies to network policies by manipulating the flow tables

of the SDN switches. The SLO policies are stored in an integrated database container.
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4.4.2 Network Management Function

The functional components of the proposed architecture are mapped to the general three-level PBNM

framework (PIP layer, PDP layer, and PEP layer) [41]. Two cases are identified for managing the

network state: (1) upon receiving a new route request - Initially, the controller receives a packet-in

message belongs to the newly incoming request. On behalf, the admission control in the application

layer decides whether the request is accepted or rejected based on the resource availability. This is

realized by building a reduced network graph while eliminating all links that has residual bandwidth

less than the requested one. If the source and destination node are not connected in the reduced

graph, then the request is rejected. On the other hand if the request is accepted, the service type

is identified at first and the group of routing algorithm belonging to the service type (e.g. QoS) is

applied. By this, the routing algorithm finds a feasible path where the links have residual bandwidth

equal or greater than the demanded bandwidth. (2) upon monitoring the network state - Figure 4.9

shows the work flow of this case. Initially, the flow monitor component collects periodically the flow
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statistics from the network. On behalf, the topology tracker builds a global view of the network

state. Based on the current state, the Q-learning algorithm finds the best action (namely the routing

algorithm) that returns the highest reward. For this, it invokes the reroute manager to apply the

current routing algorithm on the actual active flows in the network.

4.4.3 System Model

Figure 4.10 illustrates the proposed system model that contributes to making decisions based on the

RL algorithm through interactions with the SDN-based network environment. The system is composed

of the RL-based decision making algorithm that aims at finding the most suitable routing algorithm

that maximizes the long-term reward from the environment. While the routing control block performs

the rerouting tasks by utilizing the knowledge of network topology and active flows. Here the environ-

ment is defined as a network of certain topology size ψ with the flows f ∈ (Fqos ∪ Fbkg) transmitting

through it, while the RL-based algorithm senses the network by measuring the throughout ãfv , packet

loss b̃fv and rejection rates c̃v of the actual flows f in the network.

Let a network topology of certain size γ contains a set of possible paths P that connects the

source and destination nodes. Based on the knowledge of the network topology and the active flows,

the routing algorithm routes the flow fv of a certain class v on one path p ∈ P based on the action

oqos decided by the RL-based decision making algorithm. By this, the routing control block updates

the flow table of the SDN switches to reroute the actual flows accordingly. While using the reward

feedback Rv through an interaction with a dynamic environment, the RL-based algorithm can train

itself progressively, from state to state, such as: in a certain current state s(t), an action oqos is decided

from a set of routing algorithms Oqos = {MHA, WSP, SWP, MIRA} and applied; when the SDN

system moves into the next state s(t + 1), the reward function evaluates the system performance

and updates the value of the action selection in the previous state s(t). In order to satisfy the

objective, each flow fv is assigned to an indicator set {xf , yf , zf} that determines if the flows respect

the requirement set qv,thr, qv,loss, qv,rej ∈ Qf . Based on the reward value, the Q-learning algorithm

updates the Q-table based on the following equation [20]:

Q(s(t), oqos(t)) = Q(s(t), oqos(t)) + α
{
R+ λmaxoqosQ(s(t+ 1), oqos(t))−Q[s(t), oqos(t)]

}
(4.6)

where Q[s(t), oqos(t)] represents the Q value of the state-action (s(t), oqos(t)) pair. Let s(t) and

oqos(t) denote the state and the action, respectively, executed by an agent at a time instant t. The

reward earned from the environment is represented by R, while maxoqosQ(s(t + 1), oqos(t)) is the
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maximum estimated future reward given the next state s(t+1) and its all possible actions oqos ∈ Oqos.

At last, λ and α represent the discount factor and the learning rate respectively, with values between

0 and 1.

Figure 4.10: The proposed system model

4.4.4 Design of the Learning Framework

This section introduces the problem formulation and describes the optimization problem with the

design of RL-based solution.

4.4.4.1 Problem Formulation

Let the SDN data plane be modeled by an undirected graph G(V,E), where E is the set of links

and V is the set of nodes which represent the SDN switches. Each link in the network l ∈ E is

associated with a finite bandwidth capacity Cl, it indicates the maximum amount of flow that can

pass through the link. Each traffic flow f belongs to a set of flows F = (Fqos ∪ Fbkg) where Fqos

stands for the QoS-based flows, while Fbkg stands for the background flows. In general, a flow in the

network is identified by 5-Tuple attributes (source and destination IP, source and destination port and

the transport protocol) and it refers to data transmission between the source and destination nodes.
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Table 4.4: Notation Definition

Variable Definition

G The undirected graph
E The set of links
V The set of nodes

Fqos, Fbkg The set of QoS and background flows
Qqos, Qbkg The set of requirements for QoS and background service

Cl The bandwidth capacity of link l
af The total bit rate or throughput of flow f
BWl The remaining available bandwidth of link l
P The set of possible paths p in the network
l The link in the network

up,f The path selection p by the flow f
dl,f The link selection l by the flow f
xf The throughput requirement is met by the flow f
yf The packet loss requirement is met by the flow f
zf The rejection rate requirement is met by the flow f
γ topology size
ψ traffic load
βqos The throughput requirement is met by all QoS flows
αqos The packet loss requirement is met by all QoS flows
φqos The rejection ratio requirement is met by all QoS flows
Rv, R The total reward of traffic class v
RTH,fv The sub-reward of throughput for traffic class v
RPL,fv The sub-reward of packet loss for traffic class v
RRR,v The sub-reward of rejection ratio for traffic class v
Oqos The set of actions applied on the QoS flows
fv The traffic flow belongs to a certain traffic class v
v The traffic class (e.g. video, HTTP, FTP)
ãfv The measured end-to-end throughput of traffic class v

b̃fv The measured packet loss rate of traffic class v
c̃v The measured rejection rate of traffic class v

However, each flow f that belongs to a certain flow set {Fqos, Fbkg} is further classified according to

the network services of certain traffic class v (e.g. video, HTTP, FTP), this flow of a certain traffic

flow is denoted by fv. As data is transmitted through the network, the remaining available bandwidth

BWl of link l is determined by BWl = Cl −
∑
af , where af is the total bit rate or the throughput of

the passing flow f ∈ F . Table 4.4 shows the set of used variables in the problem definition.

The traffic flows in the network are requested by the network services or users in order to setup a

feasible routing path. If P is the set of possible paths, then the routing algorithm is used to find the

feasible path p ∈ P , where a path is described by a set of links p = l1, ..., ln that connects the source

and destination nodes. Each flow in the network shall be routed on one path only, and therefore, the

first constraints of our optimization problem are formulated as follows:
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∑
p∈P

up,f = 1, ∀f ∈ F, (4.7)

up,f ∈ {0, 1} , ∀f ∈ F,∀p ∈ P, (4.8)

where up,f ∈ {0, 1} is a decision variable that takes the value up,f = 0 if path p is not selected by flow

f , and the value up,f = 1, otherwise.

When the link becomes heavily loaded and congested due to multiple flows that are passing through

the same link, then the involved traffic flows shall exhibit higher data loss and delay. To this extent,

constraints (4.9) and (4.10) are introduced to indicate that the sum of throughput of all flows, passing

through a given link l, should not exceed the maximum link capacity Cl.

∑
f∈F

dl,f · af ≤ Cl, ∀l ∈ E, (4.9)

dl,f ∈ {0, 1} , ∀f ∈ F,∀l ∈ E, (4.10)

where dl,f ∈ {0, 1} that indicates if a link l is passed by a flow f (i.e. dl,f = 1 if the flow f is passing

along the link l and dl,f = 0, otherwise).

Network applications are usually associated to a set of service requirements Qf ∈ {Qqos, Qbkg},

where requirement qf ∈ Qf of flow f is described for example by certain packet loss, delay or through-

put level. Here Qqos stands for the requirement of QoS-based service type, while Qbkg stands for the

requirement of background service type. The requirements vary based on the type of service and the

tolerance level of user acceptance to the service, for example, multimedia applications can tolerate

some amount of data loss, while financial application requires no data loss [171]. Here, constraints

(4.11)-(4.16), and 4.16 are defined to indicate that the active flow f should satisfy the SLA require-

ment. For this, we denote by xf ∈ {0, 1} the decision variable set to xf = 0 if flow f of a certain traffic

type satisfies the minimum throughput requirement Qf,thr and xf = 1, otherwise. By yf ∈ {0, 1}, we

define the decision variable with value yf = 0 if f satisfies the packet loss rate requirement Qf,loss

and yf = 1, otherwise. Finally, zf = {0, 1} is a decision variable is set to a value of zf = 0 if the

rejection rate of the flow f satisfies the requirement Qf,rej , and zf = 1, otherwise. Here, a given flow

f is assumed to belong to a certain set {Fqos, Fbkg}.
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∑
xf = 0, ∀f ∈ F, (4.11)∑
yf = 0, ∀f ∈ F, (4.12)∑
zf = 0, ∀f ∈ F, (4.13)

xf ∈ {0, 1} , ∀f ∈ F, (4.14)

yf ∈ {0, 1} , ∀f ∈ F, (4.15)

zf ∈ {0, 1} , ∀f ∈ F (4.16)

The main objective is to route the flows in a network to maximize the flows that satisfy the SLA

requirement in terms of throughput, packet loss and rejection rate. However the optimization problem

is subject to constraints that needs to be satisfied to solve the problem as below:

maximize
∑
f∈F

∑
p∈P

up,f (xf · yf · zf ), (4.17)

subject to (4.7)-(4.16). (4.18)

Solving the above problem using the RL approach brings several benefits compared to the tradi-

tional methods (e.g. heuristics). For example, RL algorithm is used for solving sequential decision

problems without the knowledge about the analytical model of the underlying system. Furthermore,

RL is well designed for learning to optimize combinatorial problems [172]. Moreover, the generaliza-

tion of decision-making given by RL is more flexible [173,174].

4.4.4.2 RL-Based Solution

RL as a type of machine learning technique is used to solve the sequential decision making problems.

RL interacts with the dynamic environment and it improves iteratively its knowledge while exploring

and observing the rewards and punishments from the environment. By this, it finds a suitable action

model that would maximize the total cumulative reward of the agent [175]. In this research, RL is

used to solve the optimization problem in (4.17) and (12) given the RL ability to deal with objective

maximization problems [48]. Moreover, without having some specific rules to indicate the most

appropriate routing algorithm each time, RL is considered as one of the best ML candidates to deal

with such complex decision-making problems. Through RL, the best routing algorithm is learnt while

interacting with the SDN environment based on the trial and error learning principle. Combining

60



the optimization problem in (4.17) with the research problem defined in 4.4.4.1, the role of RL-

based solution is to find the most suitable routing algorithm while the RL agent interacts with the

network environment with the objective of maximizing the network utilization and respecting the QoS

requirements for each flow.

To solve the optimization problem, the RL decision-making is achieved on a discrete state space,

and thus, the state-action pairs can be enumerated exhaustively. Therefore, Q-learning as a model-

free RL algorithm, is used to learn the most appropriate routing algorithm to be employed on each

particular network state [48]. In decision-making problems with discrete state and action spaces,

Q-learning converges to the optimal action selection on each state if all possible state-action pairs are

visited for a consistent number of iterations [176]. Next, we introduce the state and action spaces, as

well as the proposed reward function used to model the proposed decision-making problem.

4.4.4.3 State Space

Since the primary goal is to improve the QoS satisfaction of the active flows fqos with more stringent

requirements Qqos, then the system state S is defined as:

S = [γ, ψ, βqos, αqos, φqos] , (4.19)

where γ ∈ {scalesmall, scalemedium, scalelarge} is the topology size, while the size of traffic load

is denoted by ψ ∈ {loadlow, loadmedium, loadhigh}. Parameter βqos indicates if the throughput

requirement is met for the particular QoS service type. Similarly, the state parameter αqos indicates

if the packet loss rate requirement of QoS service type is met. Finally, φqos shows if the rejection ratio

is satisfying a certain level. All these parameters have a binary representation calculated as follows:

βqos =


1 if

∑
xfqos = 0,

0 if
∑
xfqos > 0,

(4.20)

αqos =


1 if

∑
yfqos = 0,

0 if
∑
yfqos > 0,

(4.21)
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φqos =


1 if

∑
zfqos = 0,

0 if
∑
zfqos > 0.

(4.22)

4.4.4.4 Action Space

Since the objective is to find the best fitting routing algorithm that drives a long-term optimal solution

for QoS flows, then the action space Oqos is defined as a set of routing algorithms. As a proof of

concept, four routing algorithms MHA, WSP, SWP and MIRA are considered in this paper, such as:

Oqos = {MHA, WSP, SWP, MIRA}. The action taken on state st at time t is denoted as oqos(t),

where oqos(t) ∈ Oqos stands for the routing algorithm applied on the QoS flow fqos at time t. The goal

is to find the best action oqos(t) ∈ Oqos for the QoS service class such that the overall QoS revenue in

all service classes is maximized.

4.4.4.5 Reward Function

When an action is executed on a given state, the system shall observe a new state of the network

and it receives a reward as a feedback. The reward is determined by a function that maps the action

taken in a given state into a scalar value. More precisely, it measures the performance of the applied

routing algorithm in a particular state. In this work, the proposed reward function is decomposed

into three sub-rewards that are computed independently. The first sub-reward function measures the

level of throughput reported to its associated SLA requirement, such as:

RTH,fv =


1−

[
qv,thr−ãfv

qv,thr

]
if ãfv ≤ qv,thr

1 if ãfv > qv,thr

(4.23)

where ãfv is the measured throughput of flow fv that belongs to a certain traffic class v ∈

{HD video, SD video, HTTP, FTP} and qv,thr ∈ Qf is the minimum throughput requirement

of a certain traffic class v. Here, for proof of concept, the QoS service type is represented by the HD

video traffic class, while the background service type is represented by SD video, HTTP, and FTP

traffic classes. If the requirement of a flow is met, the reward function returns the highest reward

value of 1.

Similarly, the second sub-reward represents the flow performance in terms of the packet loss rate.

The sub-reward is computed as follows:
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RPL,fv =


1−

[
b̃fv−qv,loss

b̃fv

]
if b̃fv ≥ qv,loss

1 if b̃fv < qv,loss

(4.24)

where b̃fv is the measured packet loss rate of a flow fv that belongs to the traffic class v, while

qv,loss ∈ Qf is the maximum packet loss requirement. On the other hand, the third sub-reward is

based on the rejection rate for a specific traffic class v and given by:

RRR,v =


1−

[
c̃v−qv,rej

c̃v

]
if c̃v ≥ qv,rej

1 if c̃v < qv,rej

(4.25)

where c̃v is the measured rejection rate that belongs to the traffic class v, while qv,rej ∈ Qf is the

rejection rate requirement.

The overall reward for each traffic class v, is computed based on the following equation:

Rv = wTH ∗
∑

fv∈Fv
RTH,fv

N
+ wPL ∗

∑
fv∈Fv

RPL,fv

N
+ wRR ∗RRR,v (4.26)

where wTh, wPL and wRR represent the weights of sub-rewards calculated for throughput, packet

loss, and rejection rate, respectively. In this work it is assumed that all three parameters are equally

important, and consequently, wTh=wPL=wRR = 1/3. Finally, the overall reward function is computed

as the sum of rewards of all traffic classes {HD V ideo, SD video, HTTP, FTP} as given by:

R = wHD V ideo ∗RHD V ideo︸ ︷︷ ︸
QoS service type

+ wSD V ideo ∗RSD V ideo + wftp ∗RFTP + whttp ∗RHTTP︸ ︷︷ ︸
Background service type

(4.27)

The weights are assigned based on the traffic ratios in the setup. The ratios are provided by

Cisco [177] as described later in Section 8.1. For the QoS service represented by HD video traffic, the

weight wHD V ideo is assigned to a ratio of 63%. For the background traffic, wSD V ideo is the weight

for SD video assigned to the traffic ratio of 19%, while wftp and whttp are the weights for the web

browsing and FTP traffic, respectively. Each weight is assigned to the traffic ratio of 9%.
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4.5 Chapter Summary

This chapter introduces the overall system architecture of the proposed framework and provides details

of the three main contributions of this research: (1) measurement collection and probabilistic-based

routing (2) Policy-based QoS Management under SDN, and (3) RL-based Decision Making for Routing

Algorithms under Policy-based SDN Environment.

Monitoring in SDN-based network is considered a vital engine to realize autonomous and intelligent

networks. Three main monitoring techniques are introduced: a) The first method is based on the

continuous update where flow statistics data are either pushed to the controller or requested from the

controller periodically; b) To reduce the monitoring overhead, the link state update is introduced to

impose the push of state only when certain constraints are fulfilled; c) The third method is based on the

compression technique and it extends the existing functionality of the SDN switch. The compression-

based monitoring solution is proposed to decrease the monitoring overhead on the control link between

forwarding and control layers, while increasing the observability of network state.

However, to overcome the problems introduced by the inconsistent update state of the switches, a

probabilistic-based routing solution is also proposed, referred to as BaProbSDN. BaProbSDN makes

use of the probability distribution information to find the most probable feasible path that has the

best chance to satisfy the QoS constraints. Furthermore, to improve the QoS provisioning over

SDN the integration of PBNM into the proposed framework is introduced. By using a loop chain

approach between network monitoring and policy validation/enforcement, the framework can achieve

end-to-end QoS. Upon detection of a policy violation, the proposed framework implements two flow

management techniques: rerouting and rate limiting. Finally, reinforcement learning algorithm for

routing management under SDN environment is proposed. The proposed solutions are evaluated

through simulations and experimental testing as described in the following chapters.
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Chapter 5

Measurement Collection and

Probabilistic-based Routing

This chapter presents the performance evaluation of the first contribution of this research, namely:

measurement collection and probabilistic-based routing. The chapter presents the details of the ex-

perimental setup environment, the scenarios and case studies used for the performance evaluation and

provides a comprehensive discussion on the results obtained

5.1 Compression-based Monitoring Technique

5.1.1 Simulation Setup Environment

In order to evaluate the the proposed sparsity approximation algorithm for SDN monitoring appli-

cations (as described in 4.2.1.3), the experimental setup deployed in this study is illustrated in Fig.

5.1. The test-bed consists of three main elements: (i) Mininet [178] - used to emulate the SDN

switching data plane; (ii) external Floodlight OpenFlow controller [53] - provides RESTful API and

network services like the flow entry update; and (iii) the application layer - containing the routing

and log management for performance evaluation. The Floodlight SDN controller is widely used in

the research community especially because it is user friendly and the implementation of new services

is easy. Furthermore, it is used in this research because it supports the necessary functionality for

the study requirement such as the query of flow statistics [179]. The log management collects the

statistical data for performance comparison. To evaluate the proposed method Iperf [180] tool is used
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to generate the network traffic between the hosts. Iperf tool is originally used to measure network

and bandwidth performance [181]. A linear network topology of two hosts and four SDN OpenFlow

1.3 switches is used to evaluate the proposed method. The link speed is set to 50 Mbps in order to

avoid congestion in the network links. By this, the data set include the dynamic changes of the flow

patterns. For the test, the data set of a single switch is used to validate the solution.

Mininet Network on Real Device

Host 1

(Iperf Client)

Host 2

(Iperf Server)

Data Traffic 

Real Device

Physical 

Link

OpenFlow

Data Logger

SDN Controller

(Floodlight)

RESTful API

Switch Switch Switch Switch

Figure 5.1: Testbed for experiment evaluation

5.1.2 Network Emulation Scenarios

A definite number of UDP sessions are distributed uniformly over the entire test period of 72 hours

with a new UDP flow created every 25sec up to a total of 10000 UDP sessions. In the test a UDP

protocol is used for traffic generation in order to avoid TCP’s hand-shake and data retransmission

and by this a fixed transmitted amount of data is guaranteed. The data rate per session is distributed

uniformly between 0.1 and 1.0Mbps, while the session duration is distributed exponentially with a

mean of 1/µ seconds [182]. In the data logger (see Fig. 5.1), the statistical request and query between

the control and data plane are stored at every second. The data are captured and sampled frequently

in order to evaluate the solution using Matlab tool.

The following performance metrics are used to quantify the reliability of the proposed algorithm:
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• Signal-to-Noise Ratio (SNR): It represents the ratio between the signal power to the noise

power contained in the signal [183]. To validate the operation of technique, the parameter indi-

cates the level of noise introduced by the concept in the recovered signal. SNR value calculated

as follows:

SNR = 10 · log10
(
Ps

PN

)
[dB] (5.1)

where Ps is the power of the recovered signal and PN is the power of the noise.

• PSNR: It is the ratio between the peak value of the signal with respect to the noise level

contained in the signal. The calculation is based on section 2.1.2. In order to compute the SNR

and PSNR in this chapter, the real signal is represented by the original measured throughput

data, while the noise is the error introduced by the compression process.

• Normalized Mean Absolute Error (NMAE): It is the normalized value of the mean of

the absolute errors over the average of original signal [184]. In this chapter, the absolute error

is the absolute value of the difference between the recovered signal built by the reconstruction

method and the original signal. It indicates a measure of the noise introduced by the algorithm

and it is calculated as follows:

NMAE =

( 1
n

∑n
i=1 |rt − st|

1
n

∑n
i=1 |st|

)
(5.2)

where |rt − st| is the absolute error between the recovered signal r and the original signal s.

• Cross Correlation (CC): It is a measure of similarity between the input and output signal

of the system [183]. In this chapter It used to find whether a phase shift is introduced between

the original and recovered signals. For discrete-time signal, it is calculated as follows:

CC =

∞∑
n=−∞

x[k] · y[n− k] (5.3)

where x is the input or original signal and y is the output or recovered signal.

5.1.3 Network Emulation Results and Analysis

This section presents the performance evaluation of the proposed sparsity approximation algorithm

for SDN monitoring applications (as described in 4.2.1.3). For the evaluation purpose, the data set is

divided into two groups: (1) the training data for establishing the dictionary, and (2) the testing data

for system performance evaluation. In general, the testing data set is selected in a lower proportion
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than the training set. In this study, the percentage is divided approximately 60% for the training

data, while 40% for the testing data. In this study, the size of the training data set is studied to

examine the impact of the training data set in the performance and accuracy of the proposed method.

By this, a different size of training data within the entire training set is selected to study the accuracy

of proposed sparsity approximation algorithm in terms of performance metrics like the signal noise.

The data of the experiment is split into the first part is dedicated for the training purpose while the

second part is made for the testing. In order to evaluate the performance of the proposed method,

it was compared against another prediction algorithm based on the ARIMA model. The results

were averaged over 50 independent runs of the algorithm with a confidence interval of 95%. The

experimental setup is used to generate the data traffic over a period of 72 hours with a sampling

rate of 1sec which allows us to undertake the evaluation on a large data set. The amount of data

exchanged between the control and data planes is controlled through the Compression Ratio (CR).

The CR defines the level of compression performed on the data according to the formula CR = s/M

where s is the sparsity level which is the number of non-zero components in the sparse vector x and

M is the raw data set length which is equal to the length of dictionary raw. In order to evaluate

the proposed compression technique, different sparsity levels indicated by CR are examined. CR

has direct impact on the overhead introduced on the control link between the two planes. In this

work, the goal is to decrease the overhead by achieving the highest possible compressible data, while

maintaining a high accuracy of the recovered signal at controller. The reconstruction accuracy is

studied from two perspectives: the size of the training data |T | used for the learning process and the

size of the dictionary |D|. The training data |T | is selected in the range of 2000 to 38000 throughput

elements with an interval of 6000 elements. The aim is to find the appropriate size of |T | and |D|

that bring considerable performance benefits. For the optimal network operation, it is desired to use

a relatively low amount of data for training as the sparsity approximation algorithm starts after the

dictionary D̂ is estimated. On the other hand, the performance of different dictionary sizes is also

investigated. The size condition for sparse approximation over an over-complete dictionary is satisfied

when K > M . For this purpose, the dictionary size is incremented according to K = M+f ·M where

f is set to {0.5, 0.75, 1.0} and this leads to the corresponding size of {1350, 1560, 1800} respectively.

Figure 5.2 shows that for the training data size of 2000 and 8000, there is a gain in the SNR and

PSNR of about 2.2dB. However the impact on SNR and PSNR reduces when the training data size

goes above 8000. For example, for |D| = 1560 the SNR increased from 32.8dB to 32.9dB when the

training data increased from 14000 to 32000 respectively. The main reason is that the dictionary

reaches a state where even with additional training data there is no further improvement achieved.

Similarly, Fig. 5.3 shows that NMAE decrease, while CC is not effected by the size of |D| and |T |. In

contrast, the increase in the dictionary size |D| has slight impact on the recovered signal inaccuracy.
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Figure 5.3 also shows that a dictionary size and training data size of 2000 are not desirable as the

training data is not large enough to capture the optimal shape. Thus, in this work the training data

size is set to 8000 and the dictionary size of 1560 is further used for the performance evaluation.
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Figure 5.2: Comparison of performance metrics SNR and PSNR with different training data size |T |
and dictionary size |D|, while sparsity level s = 10
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Figure 5.3: Comparison of performance metrics CC and NMAE with different training data size |T |
and dictionary size |D|, while sparsity level s = 10

Table 5.1 shows the trade-off between the sparsity level and the quality of the recovered signal

in terms of PSNR, SNR, NMAE and CC. A high SNR and PSNR with a low NMAE value means

a better recovery quality due to the small error introduced to the recovered signal. It can be seen

that the inaccuracy between the original and the recovered data decreases as CR increases. This is

because for a lower sparsity level the number of dictionary basis vectors used for recovery is smaller
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than for higher sparsity level.

Table 5.1: Performance metrics for the experimental setup under different sparsity levels, for |T | =
8000 and |D| = 1560

CR PSNR [dB] SNR [dB] NMAE CC

0.067 36.353 26.117 0.03835 0.9968
0.167 42.697 32.741 0.01650 0.9993
0.333 46.089 36.269 0.01063 0.9997
0.500 51.369 41.538 0.00586 0.9999
0.667 57.493 47.683 0.00278 1.0000
0.833 63.562 53.752 0.00146 1.0000
1.000 73.214 63.408 0.00048 1.0000
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Figure 5.4: Comparison of original with recovered signal under different CR, while |T | = 8000, and
|D| = 1560

To find the CR that leads to good performance measures, the strength level of the original data is

taken as a reference level to define an absolute power value. Overall, the experimental results show

that for the case where |D| = 1560 and CR = 0.333 the SNR value of 36.269 dB indicates a recovered

signal with power of -0.00095 dB to the reference level and NMAE value of 0.01063. This means that

the errors do not have a significant impact.

In order to evaluate further the performance of the proposed system, real Internet traffic traces

from Center for Applied Internet Data Analysis (CAIDA) were employed [185]. CAIDA collects traces

on several backbone links and it provides a big data set of recorded traffics. For the study, four one-

hour long data sets are employed and two data sets are used for training and the other two are used

for the system evaluation. Table 5.2 shows the comparison of sparsity level for CAIDA traces. The

results show that the performance with real traces is close to that of the experimental results.

Table 5.3 shows the total communication amount in kilo-bytes for the original OpenFlow messages

exchanged without compression and the proposed compression technique with flow aggregation. The
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Table 5.2: Performance metrics for CAIDA data set under different sparsity levels, for |T | = 8000
and |D| = 1560

CR PSNR [dB] SNR [dB] NMAE CC

0.067 25.496 16.860 0.11699 0.9747
0.167 34.047 26.558 0.03823 0.9970
0.333 45.798 38.772 0.00921 0.9998
0.500 54.446 47.464 0.00339 1.0000
0.667 62.766 55.809 0.00126 1.0000
0.833 68.554 61.598 0.00066 1.0000
1.000 68.729 61.776 0.00064 1.0000

Table 5.3: Total Overhead Communication per Switch [KB]

CR Without Compression With Compression

0.067 16623.047 144.066
0.167 16623.047 185.624
0.333 16623.047 254.887
0.500 16623.047 324.149
0.667 16623.047 393.412
0.833 16623.047 461.435
1.000 16623.047 505.214

results show that the compression method reduces significantly the communication overhead in the

control plane. For example, for CR = 0.333 the proposed method reduces the overhead with up to

98% when compared to the case without compression. Figure 5.4 shows the quality of the sparse

approximation and its signal recovery in the time domain. As expected, the results show that the

recovery accuracy is increasing as CR increases. Although Fig. 5.4 is subject to higher CR value

and lower SNR value, the recovered signal captures mainly the signal’s profile. For this, further

post-processing filter mechanisms can be introduced to improve the signal quality.

Furthermore, the proposed compression method is also compared to the case where the statistical

parameters are first estimated by the switch and then sent to the controller. For the purpose of

comparison, an Auto-Regressive Integrated Moving Average (ARIMA) (r, d,m) model [186] is im-

plemented and evaluated for the same experimental setup. However, instead of carrying out the

compression method, the ARIMA model estimates the statistical parameters for the Auto-Regressive

term (r), Integrated term (d) and Moving-Average term (m) of a stationary and non-stationary

time-series data [186]. The model is identified with ARIMA(1,1,1) by using the training data and

auto-correlation function. The results of ARIMA model show, compared to Table 5.3, that it reduces

the control overhead with up to 98% to 342KB when compared to the solution without compres-

sion (e.g., 16623.047KB). However, these benefits come at the cost of low SNR (e.g., 14.2dB) and

NMAE of 0.1591. The proposed compression-based approach achieves further reductions in the con-

trol overhead for CR >= 0.50. Moreover, compared to the compression-based approach, for a CR of
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0.50 there is up to 65% increase in SNR (e.g., 41.538dB) and NMAE of 0.00586. Furthermore, an

alternative time series prediction method like the Kalman filter and Hidden Markov Model can be

applied to estimate the measurement. As a prerequisite, Kalman filter requires to define the modeling

of measurement and system space in order to operate within the expected output. However finding

the modeling of prediction and measurement update that suits the network real-world data becomes

difficult to describe mathematically. On the other hand, this research proposes another way to utilize

the compression-based algorithm to exchange less statistical data from the forwarding plane to the

control plane.

5.2 Probabilistic-based QoS Routing

5.2.1 Simulation Setup Environment

The performance of the proposed probabilistic routing algorithm BaProbSDN (as described in 4.2.2),

is assessed through simulations using Matlab. The implementation is carried out using the generic

Matlab toolbox. Matlab is widely used in the research area to run simulation and validate algorithms.

In this work, the standard Matlab is used with no need of special toolbox. The entire software is

created where the necessary code and functions are implemented. Additional Matlab scripts are

implemented to evaluate the output signals and draw the statistical comparison images for analysis.

In this work, the entire Matlab-based simulation is hosted on a Windows system (1.80GHz processor

of 4 cores with memory size of 8GB). The Internet Service Provider (ISP) topology as illustrated in

Figure 5.5 is implemented for performance evaluation, the topology is well known in study of routing

algorithms and it represents the nationwide network of US ISP [187–189]. The number of switches

in the topology is 18, while the number of links inter-connecting the switches is 30. Each switch is

connected to a single host that generates the traffic flows. In the simulation. the link capacity is set

to 100Mbps. As the study is executed by MATLAB simulation, the link speed was set to represent a

realistic link capacity.

5.2.2 Simulation Scenarios

The network simulation employs a traffic generation model that loads the network using two kinds

of request arrivals: one kind of request is triggered by each host in order to generate the best-effort

traffic in the background while the other kind of request is generated by the source host (H1) to

destination node (H2) for QoS traffic.

The traffic arrival follows a Poisson distribution with rate λ while the active period of a connection
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Figure 5.5: Considered ISP topology

exhibits an exponential distribution with a mean of 1/µ seconds [182]. The destination node is chosen

at random other than the source node. For the traffic load, the request arrival rate λ is chosen to

determine the overall load. In the simulation, two traffic patterns are used to load the network, the

first behaves for long duration with a mean of µ = 70 seconds and small bandwidth requirements

distributed uniformly between 1Mb and 10Mb, while the second indicates a short duration with a

mean of µ = 10 seconds and larger bandwidth requirements of uniform distribution between 20Mb

and 30Mb. The two patterns were shared equally in the simulation. The links are assumed to be

bi-directional with the same bandwidth capacity C. For the QoS routing traffic, the source and

destination pairs are fixed during the simulation period and their requested bandwidth is uniformly

distributed between 10Mb and 40Mb. Within the SDN network, every switch samples the link metric

at every 1 second interval and it sends the link state information to the controller based on the link

state update policy decision as described in 4.2.1.2.

In order to assess the algorithm, the performance metric of bandwidth blocking rate is employed to

reflect the success of the algorithm to set an end-to-end QoS path according to the bandwidth metric.

A rejected request indicates that the end-to-end QoS path contains at least one link that does not

satisfy the bandwidth constraint. Therefore by measuring the rate, it shows if the algorithm generates

an end-to-end QoS path P with the following rule min(i,j)∈P bb (i, j)c > breq. The bandwidth blocking
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rate is defined as in eq. 5.4 [190].

bandwidth blocking rate = bbr =

∑N
i brej(i)∑M
j breq(j)

(5.4)

where brej is the bandwidth of the rejected request and N is the number of rejected requests, while

breq is the requested bandwidth,
∑M

j breq(j) is the sum of the bandwidth of the arrived requests and

M is the number of arrived requests.

5.2.3 Simulation Results and Analysis

The performance of the proposed BaProbSDN algorithm (as described in 4.2.2) is evaluated through

simulations using Matlab and it is compared against WSP [191] as described in 2.4. The WSP algo-

rithm selects the route with the largest amount of available bandwidth, while the proposed probability-

based algorithm finds the path that is most likely to satisfy the bandwidth availability. Therefore the

WSP routing algorithm is chosen to be compared with the proposed algorithm in terms of finding the

path that satisfies the bandwidth availability constraint.

This section presents the performance comparison of the two algorithms under various settings of

the link state update policy. The results were averaged over 50 simulation runs and they were obtained

with a 95% confidence interval. The 95% confidence interval is a range of values calculated from the

data set that, most likely, includes the true value of what is estimated about the population [192].

Similar definition, it is the 95 percent confidence and certain that the estimate lies within the range

of the upper and lower values specified by the confidence interval [193]. The lower and upper limit of

the confidence interval is computed in Matlab by using the formula ci = µ± z · σ/
√
n where µ is the

mean and σ is the standard deviation, while z is the z-value and it sets to 1.96 for 95% confidence

interval and n is the number of samples. As SDN separates the control plane from the data plane, the

control and information messages are exchanged frequently between the switches and the controller for

reasons like checking of resource availability or capacity planning. In particular, for routing purposes,

a significant amount of overhead is often introduced to keep the network state at the controller, as

accurate as possible especially when the network size becomes larger. Therefore, it is essential to

quantify the algorithm performance and the overhead introduced due to frequent update messages.

The aim is to minimize the overhead associated with the routing in the SDN network while ensuring

that the QoS guarantees are satisfied. To this extent, the threshold-based triggering policy together

with the HDT are introduced. Figure 5.6 illustrates the state information update rate under various

threshold and HDT values. It can be noticed that the introduction of threshold-based link update

policy reduces the number of advertised states in the network. For example, for the threshold value

of 0.5 and HDT=0s there is 84.05% decrease in the state information update rate. It can be seen that
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the variation of update percentage decreases with the increasing threshold and HDT values. For a

threshold value of 0.3 and HDT=20s the update rate reaches 3.78%.
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Figure 5.6: State information update rate for different HDT and threshold-based link update policy

As previously mentioned, the BaProbSDN method computes the link probability on a set of

observations taken over a WS. Therefore, Fig. 5.7 shows how the WS impacts the performance of

BaProbSDN method. The result shows that the blocking rate becomes steady as WS increases. For

example, for HDT = 10s and threshold value of 0.3 BaProbSDN achieves 26.90% in the bandwidth

blocking rate when WS = 100. Thus for the rest of simulation, the WS is set to 100 seconds.

Figure 5.8 illustrates a comparison of the algorithms under varying threshold values. It can be

seen that BaProbSDN reduces the bandwidth blocking rate when compared to the WSP algorithm.

For example, for Thr=0.6, BaProbSDN can achieve up to 5.50% decrease in the bandwidth blocking

rate when compared to WSP. Moreover, WSP has a close performance to the BaProbSDN method

because the group of links that support enough bandwidth depend on the requested bandwidth lying

in the range of breq /∈ [bk−1 (1 + thr) , bk−1 (1− thr)]. WSP will present an improved performance in

the presence of imprecision only if those links that contribute to the QoS path do not lie in this range.

Figure 5.9, presents the results in terms of bandwidth blocking rate, obtained when HDT value was

varied between from 5 to 40 seconds. The results show that as HDT becomes larger the performance

of the two algorithms decreases noticeably. It can be seen that BaProbSDN outperforms the WSP

algorithms. For example, for HDT=15s and Thr=0.5, BaProbSDN can achieve up to 9.43% decrease

in the bandwidth blocking rate when compared to WSP.

In order to study the impact of the traffic load, the traffic arrival rate λ was varied while other
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Figure 5.7: Bandwidth blocking rate of BaProbSDN method under different WS (Threshold=0.3)
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Figure 5.8: Bandwidth blocking rate for different threshold values and HDT=0s

simulation parameters were kept fixed. Figure 5.10 shows the performance of the two algorithms as a

function of the network traffic load. Due to the aggregated cross traffic the link will be more exploited

as the traffic load increases. It can be seen that under highly loaded network, the blocking rate of

the two algorithms increases. However, when compared to WSP, BaProbSDN achieves up to 7.96%

decrease in the bandwidth blocking rate for a traffic load of 140Mbps.
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Figure 5.10: Bandwidth blocking rate for different traffic loads (Threshold=0.3, HDT=10s)

5.3 Chapter Summary

This chapter illustrates the experimental setup and the performance evaluation of the proposed so-

lutions under the first contribution of this research, measurement collection and probabilistic-based

routing. Network experimental setups and simulation scenarios are performed to evaluate the mon-
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itoring and probabilistic routing solutions. The data collection through compression technique has

shown further reduction in the control link usage for network applications while increasing the net-

work observability. The results show that the proposed method reduces the control link overhead

cost with up to 98% when compared to the case of periodic acquisition network monitoring of the

SDN network. The solution was analysed over a range of sparsity levels, showing that it reduces the

overhead significantly while the controller recovers the sparse data with an SNR of 36.269dB and an

NMAE of 0.01063 for a CR = 0.333. On the other hand, BaProbSDN makes use of Bayes’ theorem

and Bayesian network model to determine the link probability in terms of bandwidth availability.

The proposed algorithm was compared against the WSP algorithm. The results demonstrate that

BaProbSDN can achieve up to 8.02% decrease in the bandwidth blocking rate when compared to

WSP For example, it achieves up to 7.41% decrease in the bandwidth blocking rate, for a threshold

value of 0.5, HDT=10s, while a reduction of 95.38% is achieved in the control messages overhead.

This chapter demonstrates how the concept of compression and probabilistic routing can be used to

bring benefits to SDN-based environments. In order to realize the application service, the application,

control and forwarding layers are involved in the adaptation. While novel, this solution may face

major difficulties in implementation on the forwarding layer. In order to do this, the realization

of measurement collection through compression technique requires major updates on the OpenFlow

switch design which may not be easily adopted. For example, the data in the sparsity form needs to

be advertised to the application layer as described in 4.2.1.3. The data of interest is not supported

by the OpenFlow protocol. As a consequence, this has an impact on the Openflow specification.

On the other hand, the approach of compression needs to be trained on regular basis. Additionally,

the concept needs at the final stage to be deployed on a commodity device. At the hardware level,

the OpenFlow switch possess limited memory resource [194]. This added another computational and

resource burden of how the training process is adopted to overcome this limitation.

In the following chapter the second contribution of this research on the integration of policy-based

QoS management within SDN is evaluated and the performance of the rerouting and rate limiting

methods for QoS provisioning is demonstrated. The monitoring utilizes the existing features of the

switch complaint to OpenFlow specification and the approach is mainly adopting the control and

application layer for the research purpose, while no extra modification on the switch level is performed.

Consequently, the proposed framework is based on the approach of continuous measurement update

4.2.1.1 and utilizes the standard OpenFlow specification.

78



Chapter 6

Policy-based QoS Management

This chapter presents the setup of experimental environment used for testing and illustrates the re-

sults of the scenarios and case studies used for the performance evaluation of the second research

contribution: policy-based QoS management.

6.1 Emulation Setup Environment

The proposed PBNM-based SDN framework (as described in 4.3) was implemented and tested under

the experimental setup illustrated in Figure 6.1. The testbed consists of three main elements: (i)

Mininet [178] - used to emulate the SDN data plane; (ii) external Floodlight OpenFlow controller [53] -

provides RESTful API and network services like the flow entry update; and (iii) the PBNM application

layer (described in Section 4.3) - containing the decision making for QoS policy configurations.

For the network testing, two kinds of testing experimental setup are generally existing for the

validation of proposed solution. The test can be carried out either by network emulation-based

setup or network simulation-based setup. The network emulation setup mimics virtually the realistic

environment by replicating the real network setup on a single machine and it can be deployed easily

to prototyping the real network. While the network simulation demonstrates the behaviour of a

network by modelling the network [195]. Here, an emulation experiment setup is employed to validate

the proposed algorithm under various scenarios. Mininet is a network emulator which is utilized to

emulate a customized SDN-based network with OpenFlow compatible switch [178]. The tool enables

researcher to run fast prototyping and experimental evaluation at no cost. The SDN controller and

the entire PBNM application run on a computer and they are connected via a physical Ethernet

link to other computer hosting Mininet. Ofsoftswitch13 and Dpctl [196] are used as a OpenFlow 1.3
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compatible user-space software switch. The Ofsoftswitch13 is implemented in user space with Linux

and the code is originally based on Ericsson Traffic Lab 1.1. One of the primary application of the

switch is the support of per-flow meter to rate limit the packets.
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Figure 6.1: Experimental Setup using the Sprint network topology

In order to evaluate the approach, a realistic ISP topology is used. The Sprint IP backbone and

customer topology as depicted in Figure 6.1 were used for the experimental setup, with the network

nodes being replaced by SDN-Openflow enabled switches. The topology was taken from Internet

zoo topology [197] and consists of 11 nodes that are interconnected through 18 connectivity links.

Each switch has a host directly connected that generates traffic flows. The entire network topology

is treated as a one SDN domain with a single global SDN controller. Consequently, the experimental

scenario is simplified to prevent complexity and problems arising by integration of multiple controllers

such as efficient communication process, load balancing [198,199]. On the other hand because of the

processing capacity limitations in the experimental setup, each link in the topology operates at the

rate of 1 Mb/s. A larger link capacity in the topology engages a higher number of HTTP and FTP

flows in order to sustain the traffic mix ratio provided by Cisco. Thus, larger number of flows requires

higher processing time to accomplish adequate task by individual flow such as the flow statistics query

or rerouting.
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Table 6.1: Parameters of traffic modeling and setup

Parameters Value

Video bit-rate 563 kbps
Video frame rate 24 fps
Video duration for QoS traffic 10 minutes
Video duration for best-effort traffic 2 minutes
Experiment duration 30 minutes
Traffic mix Video = 80%

HTTP = 20%

Video streaming traffic is generated using the VLC player, while background traffic like HTTP is

generated using Ostinato [200], a network traffic generator tool. In this way, it is possible to evaluate

different traffic mix and load on the network. The traffic generated within the experimental setup

consists of: guaranteed QoS traffic such as video streaming and best-effort traffic represented by a mix

of video and web flows used as background traffic. Table 6.1 illustrates the parameters used for video

traffic, the experiment duration as well as the traffic mix. The traffic mix ratio is determined based

on the statistics provided by Cisco [201] such that 80% of the total traffic is represented by video

traffic and the remaining 20% is represented by HTTP traffic. The parameters for the HTTP traffic

model [2–4] used are listed in Table 6.2. The HTTP traffic is modeled as ON/OFF period, where the

ON period corresponding to the transmission time and the OFF period corresponding to the packet

inter-arrival time. For each traffic request, the source and destination host pairs are selected randomly

following a uniform distribution.

Table 6.2: Model parameters of web traffic [2–4]

Parameters
Best-fit

Distribution
Mean &

Std. Deviation

Main object size Truncated Mean = 10710 bytes
Lognormal Std. dev. = 25932 bytes

Embedded object size Truncated Mean = 7758 bytes
Lognormal Std. dev. = 126168 bytes

Number of embedded Truncated Mean = 5.64
objects per page Pareto Max. = 53
Reading time Exponential Mean = 30 sec
Parsing time Exponential Mean = 0.13 sec

6.2 Emulation Scenarios

In order to evaluate the proposed PBNM-based SDN framework under dynamic network conditions

and policy violations, a scenario with a mix of QoS and best-effort flows is considered. The proposed
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PBNM framework integrates two methods that could be triggered to overcome the policy violation,

namely the rerouting and rate limiting. For the purpose of performance evaluation, the QoS policy

rule is defined for this scenario as: the QoS video traffic from source Host 2 (H2), as indicated in Fig.

6.1, directed to the destination Host 4 (H4) has a minimum bandwidth threshold of 600 Kb/s and the

maximum threshold for packet loss rate is set to 2%. The characteristics of the QoS video traffic are

listed in Table 6.1. The host pair (H2 to H4) was selected to represent the longest distance within the

network to increase the likelihood of disturbing the QoS video flow by other background traffic. The

distance between two nodes representing here the minimum number of hops between them. In order

to disturb the QoS video flow, a mix of video and HTTP traffic as background traffic are generated

between random hosts maintaining the 80% to 20% ratio, with the traffic characterized according

to [201].

6.3 Emulation Results and Analysis

For the performance evaluation, the performance of the proposed PBNM-based SDN framework is

compared against the default configuration of the SDN-based network without the PBNM framework.

The default SDN is a plain SDN controller without PBNM capability and it maintains a minimal

routing logic based on finding the shortest path when a new traffic request arrives. The comparison is

performed on the same random seed to reproduce a deterministic trail. Each experiment is repeated

three times and the average outcomes are evaluated. Both approaches, such as rerouting and rate

limiting of the proposed PBNM-based SDN framework are considered. The performance evaluation

is done in terms of Throughput, Packet Loss Rate, Latency, PSNR, SSIM and MOS of the QoS video

flow as defined in 2.1.

6.3.1 PBNM-based SDN Framework with Rerouting

In this setup the proposed PBNM-based SDN framework has the rerouting module enabled. Thus,

when QoS policy violation is detected the framework reroutes the disturbing traffic and gives priority

to the QoS video flow. As a first step in the route setup phase, the route manager selects the least

loaded path (S2-S11-S5-S4) for the QoS video traffic between H2 and H4. Figure 6.2 illustrates the

throughput, packet loss rate and latency measurements for the QoS video flow under PBNM-based

SDN framework with rerouting and the default SDN without PBNM. It can be noticed that three

policy violations were detected by the framework.

The results show how the policy condition on the shared link S11-S5 is being strictly violated for

the first violation. During the experimental run, the monitoring component identifies at time-stamp
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64 that the packet loss rate exceeded the limit of 2% imposed by the QoS policy rule. The packet

loss rate is caused due to the shared resources on the common link which becomes congested. Due

to this, the violation detector identifies the best-effort flow from Host 11 (H11) to Host 5 (H5) as a

disturbing flow and it routes it on an alternative path S11-S10-S5. In order to determine the sharing

link causing the problem, the violation detector uses the supervised neural network to check if the

given link is involved. As a consequence, the violation detector releases the event of policy constraint

breaching and notifies the route manager. Other violations are identified in the time-stamp 132 and

252.
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Figure 6.2: Throughput, packet loss rate, and latency of QoS traffic flow for PBNM-based SDN
framework with rerouting and default SDN without PBNM

Table 6.3 lists the average PSNR and SSIM for the QoS video flow as well as the mapping to the

MOS done according to Table 2.1, of both the proposed PBNM-based SDN framework with rerouting

and the default SDN. The MOS value is a five point scale as illustrated in section 2.1.2. The results

indicate that when using the PBNM-based SDN with rerouting, the user perceives the video quality

as Excellent based on both PSNR and SSIM to MOS mapping. Whereas in the case of default SDN,

the user perceived quality for the QoS video flow is Poor (based on PSNR to MOS mapping) towards

Fair (based on SSIM to MOS mapping). Thus, by using the proposed PBNM-based SDN framework

with rerouting there is an increase of 94% in PSNR as compared to the default SDN.

Figure 6.3 illustrates a comparison snapshot of the QoS video frame from the original transmit-

83



Table 6.3: Average PSNR to MOS and SSIM to MOS Mapping

Performance Metrics

PSNR MOS SSIM MOS

PBNM with rerouting 46.61 5 (Excellent) 0.99 5 (Excellent)

Default SDN 23.97 2 (Poor) 0.94 3 (Fair)

ted video, the video frame received after the proposed PBNM-based SDN framework performed the

rerouting and the video frame as received using the default SDN. It can be noticed that the QoS video

frame quality becomes noticeably poorer relative to the original video frame when the default SDN

framework is used with a PSNR of 15.39dB indicating a Bad user perceived quality according to the

MOS mapping in Table 2.1. However, by enabling the proposed PBNM-based SDN framework with

rerouting the quality of the video frame improves considerably, with a PSNR of 50.52dB representing

Excellent user perceived quality.

a) original video frame b) PBNM-based SDN rerouting c) default SDN

Figure 6.3: Quantitative video frame quality comparison: a) original image, b) proposed PBNM-based
SDN framework with rerouting (PSNR = 50.52dB, MOS = 5 - Excellent), and c) default SDN (PSNR
= 15.39dB, MOS = 1 - Bad)

6.3.2 PBNM-based SDN Framework with Rate Limiting

In this setup the proposed PBNM-based SDN framework has the rate limiting module enabled. When

a QoS policy violation is detected, the rate limiting module will throttle the output rate of the

background best-effort traffic by dropping packets while the traffic flows maintain the same route.

This is done, in order to ensure an end-to-end QoS guarantee for the video flow and to control the

high throughput aggregates in the network.

Figure 6.4 illustrates the throughput, packet loss rate and latency measurements for the QoS

video flow under PBNM-based SDN framework with rate limiting and the default SDN without

PBNM. In this case, the metering manager takes a rate limiting measure to resolve the misbehavior
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of the background best-effort traffic flows. The results show that if no network adjustment would be

considered (e.g., default SDN-based network without PBNM), the QoS video flow throughput would

continue to suffer from the impact of packet loss and delay.
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Figure 6.4: Throughput, packet loss rate, and latency of QoS traffic flow for PBNM-based SDN
framework with rate limiting and default SDN without PBNM

Table 6.4 lists the average PSNR and SSIM for the QoS video flow as well as the mapping to

the MOS done according to Table 2.1, of both the proposed PBNM-based SDN framework with

rate limiting and the default SDN. The results are similar to the case where the PBNM-based SDN

framework with the rerouting approach is used. It is observed that both methods led to user perceived

quality improvements when compared to the default SDN approach. Results show that the proposed

PBNM-based SDN framework with rate limiting can achieve up to 91% increase in PSNR with a

Excellent user perceived quality compared to the default SDN where the user perceived quality is

Poor (based on PSNR to MOS mapping) towards Fair (based on SSIM to MOS mapping).

Table 6.4: Average PSNR to MOS and SSIM to MOS Mapping

Performance Metrics

PSNR MOS SSIM MOS

PBNM with rate limiting 45.81 4 (Excellent) 0.99 5 (Excellent)

Default SDN 23.97 2 (Poor) 0.94 3 (Fair)
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Figure 6.5 illustrates a comparison snapshot of the QoS video frame from the original transmitted

video, the video frame received after the proposed PBNM-based SDN framework performed the rate

limiting and the video frame as received using the default SDN. Similarly to the previous rerouting

setup, it can be noticed that the QoS video frame quality is significantly improved by using the

proposed PBNM-based SDN framework with rate limiting from Bad quality as perceived with the

default SDN to Excellent quality.

a) original video frame b) PBNM-based SDN rate limiting c) default SDN

Figure 6.5: Quantitative video frame quality comparison: a) original image, b) proposed PBNM-based
SDN framework with rate limiting (PSNR = 50.45dB, MOS = 5 - Excellent), and c) default SDN
(PSNR = 15.39dB, MOS = 1 - Bad)

6.3.3 Monitoring Overhead vs. Application Performance

This section analyzes the trade-off between the monitoring overhead introduced and the application

performance. For this purpose, several experimental runs are conducted using the same setup but

with different monitoring update intervals, such as 3, 6 and 9 seconds. The choice of the monitoring

update interval values, starting from 3 seconds above is done because the SDN controller from the

experimental setup needs time to perceive a consistent image of the entire network and to take the

necessary measures in order to avoid the aftermath of policy violation. The results are listed in Table

6.5 for the default SDN and the proposed PBNM-based SDN framework with rerouting and with

rate limiting. The results indicate that as the monitoring update interval increases the application

performance decreases. This is because the SDN controller will take longer to detect and respond

to the misbehaving best-effort traffic that affects the quality of the QoS video flow. However, even

with the increased monitoring update interval both methods of the proposed PBNM-based SDN

framework outperform the default SDN. For example, for an monitoring update interval of 9 seconds

the quality of the QoS video flow is still perceived as Good (based on PSNR to MOS mapping)

towards Excellent (based on SSIM to MOS mapping) for both proposed approaches, rerouting and

rate limiting compared to Poor (based on PSNR to MOS mapping) towards Fair (based on SSIM to
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MOS mapping) as perceived when the default SDN framework is used.

Table 6.5: Averaged performance evaluation for different monitoring update intervals (3, 6, and 9
seconds)

Performance
Metrics

Default
SDN

PBNM with
rerouting

PBNM with
rate limiting

3 6 9 3 6 9
Throughput
[Kb/s]

605 645 651 648 621 616 630

Packet Loss
[%]

10.22 0.65 1.02 1.35 0.69 0.97 1.38

Latency [ms] 268.67 14.87 13.06 12.15 14.04 13.60 12.43
PSNR [dB] 23.97 46.61 45.13 43.46 45.81 44.47 43.22
MOS (PSNR) 2 (Poor) 5 (Exc.) 5 (Exc.) 4 (Good) 5 (Exc.) 4 (Good) 4 (Good)
SSIM 0.94 0.99 0.99 0.99 0.99 0.99 0.99
MOS (SSIM) 3 (Fair) 5 (Exc.) 5 (Exc.) 5 (Exc.) 5 (Exc.) 5 (Exc.) 5 (Exc.)

Figure 6.6 shows the overall amount of monitoring overhead introduced on the control path and for

different monitoring update intervals for the proposed PBNM-based SDN framework regardless of the

approach being used, such as rerouting or rate limiting. Messages of typeOFPT STATS REQUEST

and OFPT STATS REPLY are used for measuring the throughput and packet loss, while the

latency measurement is based on injecting OFPT PACKET OUT messages as probe packets into

the network and waiting for receiving OFPT PACKET IN messages from the controller. The results

show that the monitoring overhead is inversely proportional to the update interval. For example, the

communication overhead is reduced by up to 63% when the update interval changes from 3 to 9

seconds. However, this comes at the cost of twice the packet loss rate and 10% decrease in PSNR.

Thus, the trade-off between the introduced overhead and the application performance needs to be

considered.

Although the introduction of PBNM scheme in SDN network adds more network overhead than the

default SDN, the results show that the performance of the QoS application is significantly improved.

6.4 Chapter Summary

This chapter presented the performance evaluation of the second contribution of this research, a

policy-based network management framework over SDN. Upon detection of a policy violation two

flow management techniques are implemented, such as: rerouting and rate limiting. The proposed

framework was implemented and evaluated within an experimental testbed setup. The results indicate

that the proposed PBNM-based SDN framework enables QoS provisioning and outperforms the default

SDN in terms of throughput, packet loss rate and latency. For example, the proposed PBNM-based

SDN framework for rerouting can achieve up to 94% increase in the average PSNR when compared

to the default SDN, increasing the user perceived quality from Poor to Excellent. On the other hand,
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Figure 6.6: Monitoring Overhead for different update intervals (3, 6, and 9 seconds)

the proposed PBNM-based SDN framework, like rerouting and rate limiting demonstrate comparable

performance.

Based on the approach discussed in this chapter a comprehensive study on the performance eval-

uation of various state-of-the-art routing algorithms under SDN is introduced. Consequently, the

work in the following chapter will extend the experimental setup introduced here to accommodate

a more realistic and dynamic network environment for evaluating a group of state-of-the-art rout-

ing algorithms. While the results of the performance evaluation in this chapter demonstrated that

routing can be employed to manage the QoS provisioning under SDN network, the next chapter will

investigate this further for the ultimate goal of allocating routing algorithms intelligently within the

framework by employing machine learning.
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Chapter 7

Performance Evaluation of Routing

Strategies over SDN

This chapter presents a study that compares state-of-the-art routing algorithms over multimedia-based

SDN networks considering a more realistic environment with dynamic network conditions and various

topologies. Routing algorithms remain a key element of the networking landscape as they determine the

path the data packets are to follow. This study investigates the impact of state-of-the-art centralized

routing algorithms (e.g. MHA, WSP, SWP, MIRA) on multimedia QoS traffic under a realistic

environment. The performance evaluation is carried out under an experimental setup environment

and is done in terms of PSNR, Throughput, Packet Loss, Delay and QoS rejection.

7.1 Experimental Setup Environment

This section presents the experimental setup, and the evaluation scenarios considered. The experi-

mental setup deployed in this study is illustrated in Fig. 7.1. The test-bed consists of three main

elements: (i) Mininet [178] - used to emulate the SDN data plane; (ii) external Floodlight OpenFlow

controller [53] - provides RESTful API and network services like the flow entry update; and (iii) the

application layer - containing the routing and log management for performance evaluation. The log

management collects the statistical data for performance comparison, while the route management

represents the network element that makes routing decisions based on the pool of algorithms.

In the work of this chapter, the entire experiment is hosted on a powerful machine to accommodate

the traffic load. The SDN controller and the entire routing management application run on a virtual

computer (2.2GHz multiprocessor of 4 CPU units with memory size of 16GB), while the Mininet test-
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bench is running on another virtual machine (2.2GHz multiprocessor of 4 CPU units with memory

size of 32GB). Each virtual machine is running Linux-Ubuntu Server. Open vSwitch [202] is used as

a software SDN switch (see Fig. 7.1). The Open vSwitch is implemented in kernel space with Linux.

The switch is employed in the work to avoid the system call overheads between the user space and

kernel space in Linux environment. The switch is commonly used with Mininet emulator.

Computer

SDN Controller (Floodlight)

RESTful API

Log Management

Physical LinkOpenFlow

Route Management

Application 

Layer

Control

Layer

Network 

Monitoring

Mininet Network on actual Computer

Figure 7.1: Experimental Setup for Performance Testing (The shown topology here is an example for
illustration purpose only)
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Figure 7.2: Experimental Setup using the following network topologies: AT&T (large-scale topology),
Sprint (middle-scale topology), and GetNet (small-scale topology)

The performance evaluation of the routing algorithms is performed under dynamic network con-

ditions and over three realistic network topologies selected from Internet Topology Zoo as illustrated

in Fig. 7.2:

• AT&T (large-scale topology): 25 nodes and 56 links;

• Sprint (middle-scale topology): 11 nodes and 18 links;
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• GetNet (small-scale topology): 7 nodes and 8 links.

For each topology, the network nodes being replaced by SDN-Openflow enabled switches. Each

switch has a host directly connected that generates data traffic.

Video streaming traffic with a Variable-Bit-Rate (VBR) encoder is generated using the VLC player,

while HTTP and FTP traffic are generated using Ostinato [200] traffic generator tool. In this way, it

is possible to evaluate different traffic mix and load on the network. The traffic generated within the

experimental setup consists of: guaranteed QoS traffic such as the video streaming and best-effort

traffic represented by video, web, and file transfer flows used as background traffic. The traffic mix

ratio is determined based on the statistics provided by Cisco [201] such that 80% of the total traffic is

represented by video traffic at year 2020 and the remaining 20% is represented by other traffic such as

HTTP and FTP. In this work the ratio is calculated based on the amount of traffic generated within

the network. The same ratio is maintained for different topologies and under different traffic loads.

The HTTP and FTP are built on a client-server model architecture. However, the two com-

munications have differences. An HTTP session is used to access websites based on a sequence of

request-response transactions. A web browser represents a client side that sends a request message

to the web server. Upon receiving the request, the server sends the web page data. Web page traffic

is usually based on smaller amount of data than the FTP traffic. On the other hand, the FTP traffic

is used to transfer files over the network incorporating in general larger data to transfer.

The parameters for the HTTP traffic model [2, 3] used are listed in Table 7.1. The HTTP traffic

is modeled as ON/OFF period, where the ON period corresponding to the transmission time and the

OFF period corresponding to the packet inter-arrival time. For each traffic request, the source and

destination host pairs are selected randomly following a uniform distribution. On the other hand, the

parameters for the FTP traffic model [3] used are listed in Table 7.2. With each call, the session is

used to transfer a file of a random generated size.

Table 7.1: Model parameters of web traffic

Parameters
Best-fit

Distribution
Mean &

Std. Deviation

Main object size Truncated Mean = 10710 KBytes
Lognormal Std. dev. = 25932 KBytes

Embedded object size Truncated Mean = 7758 KBytes
Lognormal Std. dev. = 126168 KBytes

Number of embedded Truncated Mean = 5.64
objects per page Pareto Max. = 53
Reading time Exponential Mean = 30 sec
Parsing time Exponential Mean = 0.13 sec

Several experimental scenarios are considered to validate the performance of the routing algorithms

over the multimedia-based SDN environment. The aim is to study the impact of various routing
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Table 7.2: Model parameters of ftp traffic

Parameters
Best-fit

Distribution
Mean &

Std. Deviation

File size Truncated Mean = 2048 KBytes
Lognormal Std. dev. = 739.328 KBytes

Reading time Exponential Mean = 180 sec

algorithms on multimedia QoS traffic within SDN under a realistic environment with dynamic network

conditions such as different topology, traffic patterns and traffic load. The performance evaluation

is done in terms of throughput, packet loss, delay, QoS rejection and user perceived QoE for video

streaming, using PSNR [35].

7.2 Network Emulation Scenarios

To evaluate the routing algorithms under dynamic network conditions, a scenario with a mix of

QoS and best-effort flows is considered. In the performance evaluation, the following parameters are

considered in order to drive a dynamic network evaluation:

• Network topology: Three different size of network topologies are employed: AT&T (large-scale

topology), Sprint (middle-scale topology), and GetNet (small-scale topology). The network

topologies were taken from Internet zoo topology [197].

• Traffic type: multiple QoS traffic flows are mixed with background traffic. For the guaranteed

traffic, QoS-based video streaming is employed. While background traffic is represented by

video, HTTP and FTP.

• Network load level: In order to evaluate the performance of routing algorithms under various

network load, the number of active flows in the network at any given moment are adjusted in

order to achieve the requested network load. The average load per one link is computed by

dividing the current traffic load to the link capacity, while the total network load is calculated

based on the average link load of the overall network. Three different configurations for the

network load are considered: 0.5 (low load), 0.75 (medium load), and 1.0 (high load). The

network load NL is calculated as follows:

NL =

∑N
i

LLi

LCi

N

where LL is the load over the link, LC is the link capacity, and N is the number of links in the

network topology.
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The entire experimental time is divided into several overlapped sessions in order to maintain a

continuous traffic flow. The traffic arrival follows a uniform distribution over the duration of each

session while the active period of each connection is distributed exponentially with a mean of 1/µ

seconds. The destination node is chosen at random other than the source node within the network.

However, because of the processing capacity limitations as described in section 6.1, each link in the

topology operates at the speed of 1 Mb/s.

7.3 Network Emulation Results and Analysis

Four routing algorithms MHA, WSP, SWP and MIRA as described in 2.4 were implemented in the

SDN application layer. The performance evaluation of the four routing algorithms is assessed under

dynamic network conditions. For each of the routing algorithms, the impact of the network topology

and traffic load are studied on the multimedia QoS traffic. This section presents the evaluation results

of the routing algorithms from the experimental trails. In the experimental setup shown in Fig. 7.1,

the Log Management module collects the statistical traffic data (e.g. time-stamp, throughput, latency)

for the performance comparison. Various performance metrics are used to assess the QoS-based video

and background traffic, such as: average throughput, average packet loss, average latency, average

PSNR, and the number of rejected QoS services. In this section, the average PSNR value is calculated

using the PSNR values of the QoS-based videos belonging to a single scenario. The QoS-based video

PSNR values are obtained by comparing the received QoS-based video with the original QoS-based

video. Moreover, in order to study the impact of the traffic load on the rejection of QoS-based traffic,

the results show the number of rejections for the upcoming QoS-based requests along the experiment

as a function of the network traffic load. When a new request of the QoS-based services arrives, the

algorithm finds a feasible path where the links have residual bandwidth equal or greater than the

demanded bandwidth. In case there is no path that satisfies the bandwidth constraint, the request is

rejected.

The results are summarized in tables 7.3, 7.4 and 7.5. The tables show the numerical results to

demonstrate the performance differences among the four routing algorithms (MHA, WSP, SWP, and

MIRA) and the impact of factors like the network load, traffic classes and topology size. The tables

show the results in terms of various performance metrics for the evaluation of the QoS-based video

traffic as well as background traffic such as the average throughput, packet loss, and latency. By this,

it can be shown that there is generally no routing algorithm that fulfills the best expectation under

all considered scenarios and networking conditions. For example, it is concluded that under the low

traffic load that MHA, WSP and SWP achieve the best results in terms of minimizing the packet loss

for QoS-based flows for the small scale networks, while MIRA achieves the best results for medium
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scale networks and SWP for large scale networks. While it is observed on the other hand that under

the high traffic load, algorithms SWP and MIRA perform better than other algorithms under lower

scale networks. Similarly, SWP achieves better results for medium and large scale networks like Sprint

and AT&T. In the following sections the overall results are discussed in detail.

7.3.1 Impact of Network Topology

In this section, the impact of the network topology on the performance of the four algorithms is

studied. As shown in Fig. 7.2, the comparison of algorithms are taken place on three different

network sizes: GetNet - small scale, Sprint - medium scale, and AT&T - large scale. To simplify the

comparison, this category is classified based on the type of traffic load.

7.3.1.1 Low Traffic Load

In this section the performance of routing algorithms under the low traffic is evaluated. When the

size of network topology increases, MIRA and SWP algorithms achieved better results than MHA

and WSP algorithms in terms of the packet loss, throughput and latency. For example, it has been

observed in Tables 7.3 and 7.5 that as the size of the topology increases from GetNet to AT&T, the

packet loss of quality traffic for the MHA algorithm has risen by 6.1% as compared to the MIRA with

an increase of 3.6%. Similarly, the throughput of quality traffic for MHA algorithm has decreased by

9.5% while MIRA is decreased by 7.2%.

In general, the results in Fig.7.3 show that the performance of all routing algorithms decreases

noticeably when the size of network topology increases. For example, when there is increase in the

network size from GetNet to AT&T, the average PSNR for MHA, WSP, SWP and MIRA algorithms

are decreased by 10.8, 7.7, 7, and 11.2 dB respectively. Similarly, it can be observed in Figure 7.4

that the number of rejection for quality services grows in proportion to the increase in topology size.

In fact, as the size of topology increases, higher volume of flows are generated in order to achieve the

same load under various topologies.

When looking at maximizing the throughput for QoS-based video flows, it has been noticed that

MIRA, WSP and SWP perform the best for small scale such as GetNet. While for the medium scale

network such as Sprint, MIRA outperforms other algorithms by achieving a throughput level of 508

Kb/s. For large-scale networks such as AT&T, WSP achieves better throughput for QoS-based video

flows. In terms of minimizing the packet loss for QoS-based flows, MHA, WSP and SWP achieve the

best results for small scale networks, while MIRA achieves the best results for medium scale networks

and SWP for large scale networks. In terms of minimizing the latency, WSP outperforms the other

algorithms for small scale networks, MIRA obtains the minimum latency for medium scale networks
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while for large scale networks WSP performs the best.

7.3.1.2 Medium Traffic Load

As depicted in Tables 7.3 and 7.5, the increase in the size of network topology from GetNet to AT&T

showed that the packet loss for the quality traffic of MHA algorithm rises by 5.9%, while the WSP and

SWP has a rise of 3.7% and 4.2% respectively. On the other hand, MIRA algorithm shows slightly

better results as the packet loss of the quality traffic gets a value of 2.7%.

In addition, the user perceived quality of experience depicted in Fig. 7.3 shows a decrease for

MHA, WSP, SWP and MIRA algorithms by 10.2, 11.3, 11.7, and 6.8 dB, respectively. Although the

size of network topology affects the quality of videos, it is observed that the performance variation

between the routing algorithms shows similar trends under the medium traffic load.

The measurement shows that, for the small scale network like GetNet, WSP and SWP algorithms

perform the best while giving the highest throughput for QoS-based video flows. In medium and large

scale networks such as Sprint and AT&T, MIRA achieves better throughput for QoS-based video flows.

In terms of minimizing the packet loss for QoS-based flows, MHA, WSP and SWP achieves the best

results for small scale networks. However, MIRA obtains better results for QoS-based video flows

for medium and large scale networks such as Sprint and AT&T. In terms of minimizing the latency,

WSP and SWP outperform the other algorithms for small scale networks. SWP obtains the minimum

latency for medium scale networks while for large scale networks MIRA performs the best.
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Figure 7.3: The average PSNR at different various traffic loads and network topologies

7.3.1.3 High Traffic Load

In this section, the obtained results shows different outcomes when compared to the previous sections.

The routing algorithms exhibits relatively lower packet loss in larger size of network topology than

in the smaller networks. For instance, the SWP algorithm shows a decrease in packet loss for quality
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traffic from 17.1% (GetNet) to 13.9% (AT&T). In the GetNet network the distribution of traffic are

carried on smaller number of network links than in the AT&T network. Therefore it is expected to

have higher traffic congestion and packet loss.

In general, it is observed in Tables 7.3, 7.4 and 7.5 that the average statistics for the back-

ground traffic show smaller values than the quality services. In fact, the background traffic contains

HTTP/FTP and video traffic, while the quality services contain the QoS-based video traffic only. The

HTTP/FTP traffic flows have usually much smaller load than the video traffic, hence the averaging

becomes smaller for the background traffic.

To summarize the results exposed in Tables 7.3, 7.4 and 7.5, the WSP algorithm performs the

best in terms of maximizing the throughput for small scale network like GetNet. For the medium

scale such as Sprint, SWP provides best results. However, for large-scale networks such as AT&T,

MHA achieves better throughput for QoS-based video flows. In terms of minimizing the packet loss

for QoS-based flows, SWP and MIRA perform better than that of other algorithms under lower scale

network. Similarly, SWP achieves better results for medium and large scale networks like Sprint and

AT&T. In terms of minimizing the latency, SWP performs better when compared to other algorithms

for small, medium and large scale networks.

Fig. 7.4 shows the number of rejections of the QoS-based video services. It can be seen that under

highly loaded network, the rejection rate of routing algorithms increases considerably. For example,

under AT&T network there is an increase of 97.2% for MHA when the load increases from low to

high.
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Figure 7.4: The number of rejection for quality requests at different various traffic loads and network
topologies

7.3.2 Impact of Traffic load

This section presents the impact of the traffic load on the performance of the routing algorithms. The

traffic load has a different impact on the performance under the same network topology. Therefore it
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has been classified according to the network topology.

7.3.2.1 GetNet Topology

The results depicted in Table 7.3 show that all routing algorithms reach larger packet loss when the

load becomes higher. For example, MHA, WSP, SWP and MIRA algorithms gets an increase in

packet loss of 19%, 18%, 17%, and 16%, respectively. On the other hand, it can be observed in the

results from Fig. 7.3 that with low traffic load, MIRA algorithm performs better by reaching an

average PSNR value of about 43.3dB when compared to other candidates. Under higher traffic load,

SWP performs slightly better than other algorithms by reaching an average PSNR value of about

21.9dB.

While looking at the results within the same network topology but under different traffic loads,

it has been noticed that under low traffic, the maximum throughput for QoS-based flows is obtained

by MIRA. However, as the traffic load increases for medium traffic, WSP and SWP gets the highest

throughput for the QoS-based traffic. While for high traffic load, WSP achieves the best results.

In terms of minimizing the packet loss for QoS-based flows, MHA, WSP and SWP achieve the best

results under low traffic, while for medium traffic load MHA performs better and SWP achieves the

minimum packet loss under high traffic load. In terms of minimizing the latency for QoS-based flows,

WSP performs the best for low and medium traffic while SWP achieve the best results for medium

and high traffic load.

7.3.2.2 Sprint Topology

For the Sprint network topology, Fig. 7.3 shows that MIRA algorithm performs better under low and

medium traffic load. For example, at low traffic load, MIRA achieves an increase of 8.3dB in averaged

PSNR when compared to MHA algorithm. In contrast, at high traffic load, the WSP algorithm shows

a slight improvement when monitoring the average PSNR as compared to other routing algorithms.

When looking at maximizing the throughput for QoS-based video flows, it has been noticed that

MIRA achieves better results than other algorithms under low and medium traffic load. However, as

the traffic load increases from low to high, the SWP algorithm maximizes the system throughput for

the QoS-based traffic. In terms of minimizing the packet loss for QoS-based flows, MIRA outperforms

other algorithms under low and medium traffic load. By increasing the traffic load, SWP algorithm

achieves better results. In terms of minimizing the latency for QoS-based flows, MIRA performs the

best for low traffic load while SWP achieves the best results for medium and high traffic load.
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7.3.2.3 AT&T Topology

Table 7.5 shows in general that the throughput level decreases considerably as the traffic load increases,

while the packet loss and latency increases correspondingly. As the network load increases on the same

network topology, the links experiences higher congestion rate, increasing at same time, the latency

and packet drop rate of the corresponding flows. Fig. 7.3 indicates that as the traffic load increases

from low to high, MIRA algorithm achieves a decrease in average PSNR of about 8.8dB. On the other

hand, MHA, WSP and SWP algorithms obtain higher decrease of about 10.2dB, 12.7dB, and 13dB,

respectively.

The measurement shows that the WSP algorithm achieves the maximum throughput for QoS-based

flows under low traffic. When the traffic load becomes medium, MIRA gets the highest throughput

level. If the traffic load is high, then MHA achieves better results when compared to other candidates.

In terms of minimizing the packet loss for QoS-based flows, SWP achieves the best results under low

and high traffic load, while MIRA reaches better results under medium traffic load. In terms of

minimizing the latency for QoS-based flows, WSP performs the best for low traffic. For medium

traffic, MIRA performs better than other algorithms, while SWP achieves the best results for high

traffic load.

7.3.3 Impact on the QoS-based Video Traffic

This section presents the impact of routing algorithms on the PSNR for the QoS-based video traffic.

Fig. 7.3 shows the average PSNR for the traffic of quality services. At the low traffic load under

GetNet and Sprint networks, it can be seen that MIRA algorithm performs better in comparison to

other routing algorithms. For example, in low traffic load under GetNet network, MIRA algorithm

achieves an increase of 4.2dB when compared to MHA algorithm. In fact, MIRA algorithm attempts

as much as possible to avoid placing the route requests along the links that leads to highly probable

congestion. On the other hand, the results shows as well that the WSP and SWP algorithms have a

close performance to MIRA algorithm under low traffic load and AT&T network topology. The WSP

and SWP algorithms try to balance the network loads to avoid network bottlenecks.

As the traffic load becomes high, the average PSNR decreases and the routing algorithms behave

differently in terms of the PSNR performance. For example, the WSP and SWP routing algorithms

show similar results under GetNet network. Under the Sprint topology, the WSP algorithm gets better

results than other algorithms as it reaches an increase in PSNR performance of about 2.9dB when

compared to MHA algorithm. In contrast, MIRA algorithm performs better than other algorithms

as it shows an increase of 5.2dB when compared to MHA algorithm.
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7.4 Chapter Summary

A vital peripheral within the networking landscape is represented by the routing algorithm as it effi-

ciently routes the flows over the underlying network. There is a wide range of routing algorithms in

networking, each with different properties and purpose. The choice of routing algorithm can heavily

impact the QoS provisioning within multimedia-based SDNs. In this chapter, a comprehensive perfor-

mance evaluation is studied for four state-of-the-art centralized routing algorithms (MHA, WSP, SWP

and MIRA) over multimedia-based SDN. The experimental setup is demonstrated under a realistic

environment with dynamic network conditions and topology. The four algorithms were implemented

and evaluated by using an experimental setup based on Mininet, Floodlight controller and Open

vSwitch switches. Several scenarios are considered to demonstrate the impact of the state-of-the-

art routing algorithms under realistic conditions, on QoS-based video traffic in terms of throughput,

packet loss, PSNR, rejection ratio, etc.

This chapter presents the study of the research contribution that leads to the motivation of the

proposed reinforcement learning approach for enabling QoS over PBNM-based SDN networks. The

aim of this chapter is to assess the performance of four routing algorithms under different dynamic

network scenarios like network loads and topology. It is attributed to how different network load and

network topology can have an impact on the routing algorithm performance. The results of the study

highlights the importance of the integration of learning-based methods and other entire QoS-based

solutions under SDN-based environments. The results of this extensive performance evaluation study

show that there is no single routing algorithm that would perform best under highly dynamic network

conditions and demonstrates the applicability of machine learning in this context. The results draw

benefit to the entire thesis by studying and understanding the experimental setup scenario that is used

for the next step towards a machine learning-based traffic management solution in the framework. In

general, the results show that there is no one single routing algorithm that can perform the best for all

considered scenarios and networking conditions. It was noticed that the routing algorithms perform

differently under various traffic load and network topology. The following chapter discusses the

integration of an intelligent traffic management scheme that can adapt to the changeable networking

conditions (traffic load, topology, etc.) and decide the most convenient routing algorithm to be used

each time.
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Chapter 8

RL-based Decision Making for

Routing Algorithms over SDN

This chapter presents the performance evaluation of the research contribution: RL-based Decision

Making for Routing Algorithms under Policy-based SDN Environment. The chapter presents the

details of the experimental setup environment, the scenarios and case studies used for the performance

evaluation and provides a comprehensive discussion on the results obtained

8.1 Experimental Setup Environment

The experimental setup is used to evaluate the RL-based method (as described in 4.4). The overall

test-bed is comprised of three main elements: (i) Mininet [178] - used to emulate the SDN data

plane; (ii) external Floodlight OpenFlow controller [53] - provides RESTful API and network services

like the flow entry update; and (iii) the application layer - containing the network management for

performance evaluation. During the test execution, the relevant data are collected and are stored

for post performance comparison. In the work of this chapter, the entire experiment is hosting on

a powerful machine to accommodate the traffic load. The SDN controller and the entire application

layer run on a virtual computer (2.2GHz multiprocessor of 4 CPU units with memory size of 16GB),

while the Mininet test-bench is running on another virtual machine (2.2GHz multiprocessor of 4

CPU units with memory size of 32GB). Each virtual machine is running Linux-Ubuntu Server. Open

vSwitch [202] is used as a software SDN switch. The Open vSwitch is implemented in kernel space

with Linux. The switch is employed in the work to avoid the system call overheads between the user

space and kernel space in Linux environment. The switch is commonly used with Mininet emulator.
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Figure 8.1: Experimental Setup using the following network topologies: AT&T (large-scale topology),
Sprint (middle-scale topology), and GetNet (small-scale topology)

The performance evaluation of the proposed method is performed under dynamic network condi-

tions and over three realistic network topologies, modeled by an undirected graph G(V,E), selected

from Internet Topology Zoo as illustrated in Fig. 8.1:

• AT&T (large-scale topology): 25 nodes and 56 links;

• Sprint (middle-scale topology): 11 nodes and 18 links;

• GetNet (small-scale topology): 7 nodes and 8 links.

For each topology, the network nodes being replaced by SDN-Openflow enabled switches. Each

switch has a host directly connected that generates data traffic.

In the experimental setup, two types of services are generated: the flows of QoS-based multimedia

services Fqos and the flows of the background services Fbkg. Under the two service types, four traffic

classes v ∈ {HD video, SD video, HTTP, FTP} are emulated: live High-Definition (HD) video

streaming as part of the QoS-based multimedia services and buffered Standard-Definition (SD) video

streaming, web browsing and file transfer traffic as part of the background services. In order to stream

the live HD and buffered SD video streaming, VLC player tool is employed. The video streaming is

represented by one-way transmission with a CBR encoder. The video source is created by using the

FFMPEG video and audio converter [203]. The FFMPEG tool is an open-source library that is used

to convert between arbitrary sample rates and re-size the audio and video data separately. On the

other hand, HTTP and FTP traffic are generated using Ostinato [200] traffic generator tool. In order

to create a realistic environment different traffic mix and load on the networks are considered.

According to Cisco forecast, video traffic volume will reach 82% of all IP traffic by the year

2022 [29]. Based on this statistics, the traffic mix ratio in our experiment setup is determined such

that 82% of the total traffic is represented by video traffic and the remaining 18% is represented by

HTTP and FTP traffic. Additionally based on the Cisco facts in [177], the total volume of 82% for

video traffic can be divided into 63% live HD video and 19% buffered SD video. In this work the
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same ratios are maintained for different topologies and under different traffic loads. The parameters

for live HD and buffered SD video traffic are listed in Table 8.1.

Table 8.1: Parameters of video traffic

Traffic Parameters Value

Live HD video

Average bit-rate [Kb/s] 665 Kb/s
Frame rate [fps] 24
Resolution [pixels] 1280× 720
Duration [minutes] 5

Buffered SD video
Average bit-rate [Kb/s] 285 Kb/s
Frame rate [fps] 24
Resolution [pixels] 640× 360
Duration [minutes] 5

The HTTP and FTP are built on a client-server model architecture. However, the two com-

munications have differences. An HTTP session is used to access websites based on a sequence of

request-response transactions. A web browser represents a client side that sends a request message

to the web server. Upon receiving the request, the server sends the web page data. Web page traffic

is usually based on smaller amount of data than the FTP traffic. On the other hand, the FTP traffic

is used to transfer files over the network incorporating in general larger data to transfer.

The parameters for the HTTP traffic model [2, 3] used are listed in Table 6.2. The HTTP traffic

is modeled as ON/OFF period, where the ON period corresponding to the transmission time and the

OFF period corresponding to the packet inter-arrival time. For each traffic request, the source and

destination host pairs are selected randomly following a uniform distribution. On the other hand,

the parameters for the FTP traffic model [3] used are listed in Table 7.2. With each call, the session

is used to transfer a file of a random generated size. Several experimental scenarios are considered

to validate the performance of the proposed framework. Here the performance of proposed learning

based algorithm is to be assessed within SDN under a realistic environment with dynamic network

conditions such as different topology, traffic patterns and traffic load. The performance evaluation is

done in terms of throughput, packet loss, delay, flow rejection and PSNR [35].

8.2 Network Emulation Scenarios

To evaluate the routing algorithms under dynamic network conditions, a scenario with a mix of QoS

and background flows is considered. The total experiment duration is set to 1500 seconds. The

destination node is chosen at random other than the source node within the network. In order to

maintain the traffic mix ratio based on the statistics provided by Cisco [29], each link in the topology

operates at the speed of 1 Mb/s. A larger link capacity in the topology requires a higher number
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of HTTP and FTP flows to sustain the traffic ratio. In the performance evaluation, the following

parameters are considered in order to drive a dynamic network evaluation:

• Network topology size (γ): Three different size of network topologies are employed in the study

γ ∈ {scalesmall, scalemedium, scalelarge}: AT&T (large-scale topology) denoted by scalelarge,

Sprint (middle-scale topology) denoted by scalemedium, and GetNet (small-scale topology) de-

noted by scalesmall. The network topologies were taken from Internet zoo topology [197].

• Network load (ψ): In order to evaluate the performance of routing algorithms, three network load

are employed ψ ∈ {loadlow, loadmedium, loadhigh}. This is realized by adjusting the number

of active flows in the network at any given moment in order to achieve the requested network

load. The average load per one link is computed by dividing the current traffic load to the link

capacity, while the total network load is calculated based on the average link load of the overall

network. Three different configurations for the network load are considered: 0.5 (low load)

denoted by loadlow, 0.75 (medium load) denoted by loadmedium, and 1.0 (high load) denoted by

loadhigh. The network load is calculated as follows:

ψ =

∑
l∈E

∑
f∈F

dl,f ·af

Cl

n(E)
(8.1)

where
∑

f∈F dl,f · af is the load over the link, Cl is the link capacity, and n(E) denotes the

number of links in set of links E.

• Service type: Traffic flows of two service types are generated (QoS traffic Fqos and background

traffic Fbkg). Under the two service types, four traffic classes are emulated in this study, namely

v ∈ {HD video, SD video, HTTP, FTP}. For the guaranteed traffic, live HD video streaming

is employed. While the background traffic is represented by buffered SD video streaming, web

browsing and file transfer. For simplicity, traffic classification in the framework is based on the

port identification to associate the incoming flow with the correct service type.

In general, the service performance can be measured in terms of defined metrics. In this work the

following end-to-end parameters are considered that are relevant to the service performance [204,205].

Throughput and packet loss rate are measured according to the definition in 2.1. While the rejection

rate is defined as the ratio of the total number of rejected traffic request over the total number of

traffic requests. The measured rejection rate c̃v that belongs to the traffic class v can be calculated

as follows:

c̃v =
nrej

nrej + nacc
× 100 (8.2)
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where nrej and nacc are the total number of rejected and accepted incoming traffic requests,

respectively.

Two traffic services are generated in this work: QoS traffic and background traffic. Each type of

service requires different demand of requirements Qf ∈ {Qqos, Qbkg} [206]. In general, the background

traffics do not make strong guarantee compared with QoS traffic. The network makes its best-effort

to deliver the packets to the destination [207]. Therefore requirement based on the traffic service

and class can be initially separated. In the experiment, between the ingress-egress pairs, a set of

requirement demands for the live HD video traffic need to be satisfied. In general, video is considered

sensitive to network degradation. In order to satisfy the human perception, video quality becomes

noticeable at packet loss of 0.5% and annoying when greater than 2% [30, 208–212]. Similarly, other

literature like [213–215] indicates that video conferencing with a packet loss between 1% and 2.5% is

considered acceptable and above 4-6% packet loss video conferencing becomes irritating. Based on

this, the maximum acceptable packet loss rate qqos,loss is defined for the live HD video traffic of QoS

service to 1%. On the other hand, in order to meet an acceptable video perception the maximum

acceptable packet loss of background traffic qbkg,loss is defined for the buffered SD video traffic by 2%.

Other background traffic like HTTP and FTP shall have a guarantees of zero packet loss rate [30,209].

The minimum throughput requirement qv,thr is obtained based on the average video bit-rate and

the corresponding packet loss requirement. It is calculated based on:

qv,thr = (100%− qv,loss)× brv (8.3)

where qv,loss is the maximum packet loss requirement and brv is the total average video bit-rate, both

associated to traffic class v. Table 8.2 illustrates the set of requirements for QoS and background

services. The rejection rate indicates the maximum acceptable rejection rate for that particular

traffic class. The values were chosen to represent a reasonable rejection distribution among different

traffic classes.

Table 8.2: Requirement set for QoS and background traffic

Traffic Class qqos,thr qqos,loss qqos,rej

QoS Service
Live HD video 658 Kb/s 1% 25%

Traffic Class qbkg,thr qbkg,loss qbkg,rej

Background Service
Buffered SD video 279 Kb/s 2% 35%
Web browsing 14 Kb/s 0% 35%
File transfer 180 Kb/s 0% 35%
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8.3 Network Emulation Results and Analysis

The proposed RL-based framework as described in section 4.4.4.2 operates as follows: after the current

network state is measured, the RL-based framework finds the optimal action for rerouting the QoS

traffic under the actual network state while the background traffic is routed using MIRA for the entire

duration of all the experiments. The performance evaluation of the proposed RL-based framework was

compared against the other four state-of-the-art routing algorithms (e.g., MHA, WSP, SWP, MIRA)

under varying traffic load and topology networks in terms of average throughput, average packet loss,

average PSNR. The average PSNR was estimated based on [216]. In the outcome results, the total

number of flows indicates the total amount of generated flow under the trail for a certain service type,

while the number of rejected flows indicates the number of flows rejected and no setup is carried on

the network during the experiment trail.

As illustrated in the framework architecture in Subsection 4.4.1, the flow monitor maintains the

state of the network by periodically collecting the statistics of all flows in the network switches. In

GetNet topology, the monitoring update interval of the flow monitor was set to 15 seconds. Due to

the amount of traffic volume and the way to iterate through all switches to collect the flow statistics.

Through several experimental runs, it has been observed that this value of 15 seconds is suitable to

maintain a full image of the network state. Other lower values of the monitoring update interval would

lead to incompleteness of dataset which leads to inaccurate results. Similarly, in order to monitor the

network periodically in Sprint topology, the monitoring update interval was set to 15 seconds. While

due to the topology size, high volume of traffic flows and processing limitation, the monitoring update

interval was set to 45 seconds in AT&T topology.

One of the main objective of RL is to train the agent from their experiences by interacting with their

environment and improving its knowledge through trial and error [20]. In this work, the Q-learning

method is employed as an RL technique in order to find the optimal action-selection policy that

maximizes the discounted cumulative reward over time. For this, two phases are typically involved

in the RL process: training and exploitation or testing. The training phase is used to learn the

algorithm and find the optimal policy that maximizes the long-term reward. In the training phase, a

large training data set is employed to learn the algorithm. While in the exploitation phase, the agent

exploits the learned Q-table to choose the best action.

In general RL has a trade-off between exploration and exploitation. The exploration is essential to

explore actions other than the best candidate. However, it can decrease the network performance due

to the randomness. On the other hand, exploitation takes the best decision but other unvisited action

may perform better. In this work, ε-greedy algorithm is used to give a chance to execute random

action. In order to apply a fair exploration-exploitation trade-off, the ε-greedy was set to zero in the
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training phase in order to explore more the environment. After the system is trained, the exploitation

phase is executed afterwards. In this phase, the algorithm exploits the learned Q-table based on the

actual network state. For the ε-greedy, the ε value was set to 1 in the exploitation phase.

In the training stage, the phase was executed on 60 individual trials for each given scenario that is

defined by certain topology size and traffic load (e.g., GetNet topology with low traffic load). By this,

an individual trail is defined as a test scenario of a total run time of 1500 seconds. With respect to

the traffic, the setup generates for each trail new values of the random seed in order to get a random

set of traffic. The Q-learning algorithm updates the Q-table based on the equation described in 4.6.

The discount factor determines how much to weigh the value of maximum expected future rewards

on the cumulative rewards. A discount factor closer to 0 results in higher preference to the immediate

reward. By this, learning becomes weak and only the current knowledge is utilized in the decision

making. While a discount factor equal to 1 makes the agent to consider all of its future rewards. In

particular, the discount factor is chosen near 1 to ensure convergence to the optimal policy. For the

study, the discount factor is set to λ = 0.9 in order to let the agent propagate long-term rewards [20].

On the other side, the learning rate determines how fast the model learns from the changes imposed

by the environment. The learning rate of 0 means that the Q-values are never updated with the new

reward, meaning that, the learning is not taking place. While a high value of the learning rate leads

to the learning happening very quickly and the results become fluctuating and error-prone. In this

study, the learning rate is set to α = 0.01. In order to compare fairly the routing algorithms under

various baseline factors (e.g. traffic load and network topology), 5 simulation trials for each single

scenario (e.g. MHA routing algorithm under GetNet topology with low traffic load) were averaged.

The same sequences of experiment condition are run for each routing algorithm. In the upcoming

section, the comparison of the RL-based framework against the other routing algorithms (MHA, WSP,

SWP and MIRA) is presented with respect to the impact on the topology level and traffic load. Thus,

the four routing algorithms are applied individually and remained fixed for routing both QoS-based

and background flows during the experiment. The RL-based framework dynamically selects a routing

algorithm for the HD live video traffic each time when a new state is monitored, while the MIRA

algorithm is kept static to route all flows belonging to SD video, HTTP and FTP traffic.

8.3.1 Impact of Traffic load

This section presents the impact of the traffic load on the performance of the proposed RL-based

framework as compared to other routing algorithms under different topologies. It shows the perfor-

mance comparison across various network loads taking into account the same topology.
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Figure 8.2: GetNet network topology: Packet loss of the traffic classes under different traffic loads

8.3.1.1 GetNet Topology

The results for the small scale network like GetNet topology are illustrated in Tables 8.3, 8.4, and

8.5 and Figures 8.2 and 8.3. The results in Table 8.3 and Figure 8.2 show that all routing algorithm

including the RL-based framework produce the highest throughput and lower packet loss for all types

of traffic services under the low traffic load. For example, all solutions get throughput of 650Kb/s and

packet loss between 0.05-0.1% for the QoS-based traffic. Similar trend of results is observed when the

level of traffic load increases to medium. In general, the QoS-based traffic flows meet the requirements

given by Table 8.2. This can be attributed to the fact that the algorithms route the newly coming

flows efficiently while rejecting those that are causing the network congestion.

As the load increases to high, the network gets congested and the traffic flows experience packet

losses. However, the results show that the proposed RL-based solution performs better in terms of

throughput, packet loss and PSNR when compared to other routing algorithms on their own. With

the RL-based solution, the packet loss for QoS-based service reaches 2.14% as compared to MHA

algorithm with 3.06% (as shown in Figure 8.2). Consequently, it can be seen that under the small

scale network, all the solutions maintain an Excellent QoE (see Table 8.5) for the QoS-based services

when the traffic load increases from low to medium. However, under high traffic load only the RL-

based method maintains a Good QoE, while the other solutions drop the user perceived quality for

QoS-based services to Fair.
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Figure 8.3: GetNet network topology: The total number of rejected flow and the total number of
flows that are generated in the experiment test

On the other hand, Figure 8.3 shows the number of rejected flows for each solution. As expected,

the results show that the flow rejection of QoS-based traffic grows with the increase in network load.

This is due to the throughput of HD video and the high arrival rate of new flows. This in general

leads to more QoS-based flows to be rejected. In other words, the routing algorithm cannot allocate a

path to the newly coming flows on the network. For example at high traffic load, MHA, WSP, SWP,

MIRA, and the proposed RL-based approach achieve an HD video flow rejection of 21.8, 21.8, 22.4,

21.8, and 22, respectively, from a total traffic volume of 32 flows. Compared to the RL-based solution,

all other routing algorithms attempt to accommodate more QoS-based flows even under high load,

at the cost of decreasing the users’ QoE to Fair, while the RL-based method finds the best trade-off

between the throughput, packet loss and rejection rate and maintains a Good QoE for the QoS-based

services without sacrificing the other traffic classes either.

8.3.1.2 Sprint Topology

The results for the medium scale network like Sprint topology are illustrated in Tables 8.3, 8.4, and 8.5

and Figures 8.4 and 8.5. Table 8.3 and Figure 8.4 show that all algorithms under the low traffic load

perform similarly with low packet loss and high throughput measurements. This is due to the fact

that the algorithms successfully find a path for the incoming flows under a low number of generated

traffic flows and reject the flows that are causing link congestion. For example, MHA, WSP, SWP,

MIRA, and the proposed RL-based solution get low average packet loss of 0.3%, 0.27%, 0.13%, 0.25%,

and 0.25% respectively. However, as the network load increases to medium, the proposed RL-based

method starts to outperform other routing algorithms. The RL-based method shows better results

with 0.33% packet loss for QoS-based traffic as compared to other routing algorithms such as MIRA
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Figure 8.4: Sprint network topology: Packet loss of the traffic classes under different traffic loads

with a packet loss of 3.83%. Similarly, the RL-based method outperforms MIRA algorithm in terms

of PSNR by an increase in the estimated averaged PSNR of 21.3dB (as shown in Table 8.5). Thus,

there is a considerable decrease in packet loss when the RL-based method is applied. For example,

the RL-based method shows a packet loss of 0.33%, while MHA, WSP, SWP, MIRA get an average

packet loss of 4.68%, 4.57%, 4.06%, and 3.83%, respectively. In terms of maximizing throughput for

QoS-based services, it is observed that on average the RL-based algorithm outperforms others by

achieving 643Kb/s throughput and latency of 47ms. In particular, in the Sprint topology the classical

routing algorithms suffer from a significant increase in packet loss when the network load increases

from low to high, while the RL-based solution shows better results in this respect. For example, the

RL-based method shows an increase of only 0.25% from low to high load.

Thus, as the network load increases to high, the packet loss for the classical routing algorithms

increases significantly while the RL-based method makes a significant improvement in terms of min-

imizing the packet loss by reaching 0.5% only. For example, MHA algorithm achieves packet loss of

6.76%. When looking at maximizing the throughput and minimizing the packet loss for HD video, the

RL-based method achieves better results compared to other algorithms under medium and high loads.

For example, even when the traffic load increases from low to high, the RL-based solution finds the

best trade-off between the throughput, packet loss and rejection rate and maintains an Excellent user

perceived QoE (as per Table 2.1 and Table 8.5) for the QoS-based traffic class, without penalizing the
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Figure 8.5: Sprint network topology: The total number of rejected flow and the total number of flows
that are generated in the experiment test

other traffic classes. However, in the case of all other routing algorithms as the traffic load increases,

the routing algorithms try to accommodate more QoS-based flows at the cost of a severe degradation

in the user perceived QoE, by dropping the MOS from Excellent under low load to Poor under high

load. Consequently, the QoS requirements for the QoS-based traffic class are not met.

8.3.1.3 AT&T Topology

The results for the large scale network like AT&T topology are illustrated in Tables 8.3, 8.4, and 8.5

and Figures 8.6 and 8.7. While looking at the results within the AT&T network topology but under

different traffic loads, it can be observed that on average, the proposed RL-based method outperforms

other routing algorithms with respect to the HD video traffic. Table 8.3 and Figure 8.6 show that all

routing algorithms reach lower throughput and higher packet loss when compared to the proposed

RL-based method. For example, under low traffic load, the RL-based algorithm reaches 1.07% packet

loss for the QoS-based services while MHA, WSP, SWP, MIRA achieved an average packet loss of

5.34%, 4.09%, 7.03%, and 4.47% respectively. As seen in Table 8.5, this translates in an estimated

averaged PSNR of 39.4dB for the proposed RL-based method. Thus, the RL-based method makes a

significant improvement in terms of minimizing the packet loss when compared to the classical routing

algorithms.

Figure 8.7 shows that all solutions lead to rejecting more of the incoming flows of QoS-based

traffic class when the network load increases. Due to the increase in the total amount of generated

video traffic while the network capacity stays fixed, the flow rejection rate of the QoS-based services

becomes implicitly higher. In particular, it is noticeable that the proposed RL-based method draws

advantages when applied on a large scale network. It outperforms other classical routing algorithms in
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Figure 8.6: AT&T network topology: Packet loss of the traffic classes under different traffic loads

terms of maximizing throughput and minimizing the packet loss when the network load increases from

low to high. Even under a large-scale network, the proposed RL-based solution provides a Good (see

Table 2.1) user perceived quality under low and medium traffic loads, and a Fair user perceived QoE

under high traffic load without penalizing the other traffic classes. In contrast, all the other routing

algorithms provide a Fair (e.g., WSP and MIRA) and Poor (e.g., MHA and SWP) user perceived

QoE under low traffic load which drops to Poor (e.g., MHA, WSP, and MIRA) and Bad (e.g., SWP)

user perceived QoE under medium and high traffic loads. Consequently, in order to accommodate

more QoS-based traffic flows, the classical routing algorithms will sacrifice the users’ perceived quality

for this traffic class as well as will penalize the performance of the other traffic classes.

8.3.2 Impact of Network Topology

This section studies the impact of the network topology on the performance of the RL-based framework

based on the traffic load level. It shows the performance comparison of various solutions across the

network topologies taking into account the load level.
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Figure 8.7: AT&T network topology: The total number of rejected flow and the total number of flows
that are generated in the experiment test

8.3.2.1 Low Traffic Load

As depicted in Figures 8.2, 8.4, and 8.6, it can be seen that the proposed RL-based method shows

relatively a lower packet loss in the range of 0.05% and 1.07% under various network topologies

(i.e. GetNet, Sprint, and AT&T). By contrast, looking at other classical routing algorithms, it can

be observed that they experience higher packet loss as the topology increases from small to large

scale network. For example, as the network size increases from GetNet to AT&T, the packet loss

of HD video under the proposed RL-based method only increased by 1.02% on average as compared

to MHA that has an increase of 5.24%. This comparison also corresponds to a smaller decrease in

the estimated averaged PSNR of the QoS-based video service by 26.6dB for the proposed RL-based

method. Whereas MHA showed a larger drop by 34.6dB (see Table 8.5). Similarly, in terms of

minimizing the latency for QoS-based flows, the proposed RL-based method performs better than

other classical routing algorithms. For instance, MIRA produces on an average four times higher

delay than the RL-based method for AT&T large scale network (see Table 8.4). The results show

that under low traffic load, as the network size increases, the proposed RL-based solution decides the

most suitable routing algorithms to be applied at each decision interval, in such a way that, the QoS

requirements for the QoS-based traffic class are met while the other traffic classes are not penalized.

Figures 8.3, 8.5, and 8.7 show on average the number of rejected flows. The rejected flows represent

the newly incoming flows that cannot be allocated a path on the network, because the network reaches

a level where the links are mostly utilized. In terms of the flow rejection of QoS-based services, the

figures show that the classical routing algorithms produce lower flow rejection of the QoS-based service

when compared to the RL-based method. Consequently, even if the network size increases, e.g., AT&T

under low load, the RL-based method maintains a Good QoE for the QoS-based traffic as seen in Table
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8.5, while the other solutions sacrifice the QoE of the QoS-based traffic by dropping the MOS to Poor

(e.g., MHA, SWP) and Fair (e.g., WSP, MIRA) in an attempt to accommodate more QoS-based

flows.

From the results in Table 8.3 and the Figures 8.2, 8.5 and 8.7, it is noticeable that the background

traffic (i.e., SD video, FTP and HTTP) achieve a considerably good overall performance. Referring to

the requirements set in Table 8.2, the earlier results demonstrate that the proposed RL-based dynamic

routing algorithm meets on average the requirement of the QoS-based traffic under low traffic load

over the GetNet, Sprint and AT&T topologies.

8.3.2.2 Medium Traffic Load

For the medium load, the results in Figures 8.2, 8.4, and 8.6 illustrate that on average the proposed

RL-based algorithm outperforms other routing algorithms in terms of maximizing the throughput and

minimizing the packet loss and latency while maintaining an acceptable user perceived quality for the

QoS-based services without penalizing the other traffic classes. As the network size increases from

GetNet to AT&T, the results show that other routing algorithms (i.e., MHA, WSP, SWP and MIRA)

experience higher packet loss by an increase of 8.46%, 7.6%, 12.98%, and 7.95%, respectively. While

the proposed RL-based method achieves considerably better results with an increase of packet loss by

2.11% for the quality service. Likewise, when looking at maximizing the throughput for the QoS-based

video flows, the RL-based method performs better by achieving 630Kb/s throughput under AT&T

large-scale network as compared to WSP with a throughput of 604Kb/s (see Table 8.3). Similar trend

is observed by the RL-based method in terms of latency and PSNR. For example, as the network

size increases from GetNet to AT&T, the RL-based method implies a small decrease in PSNR of

QoS-based video service by 26.9dB, while there is a larger decrease for MHA, WSP, SWP and MIRA

algorithms by 34.6, 33.2, 31.4, and 33.6dB, respectively. It is important to be noted that the policy

of the RL-based method is trained to maximize the expected cumulative long-term reward in terms

of throughput and packet loss. Based on the trained policy, at each time-slot of the monitoring cycle,

the algorithm chooses the best candidate of the routing algorithm that suits the actual state. This can

significantly reduce loss rates across congested links by rerouting the actual traffic flows accordingly.

With respect to the number of rejections for the QoS-based flows, it can be observed in Figures 8.3,

8.5, and 8.7 that in general, the number of flow rejections for the HD video grows with the increase

in the network size under the same network load. However, the classical routing algorithms exhibits

lower number of rejections than the RL-based method. Accommodating more flows comes at the

cost of decrease in user perceived quality. For example, under medium load, the proposed RL-based

method maintains an Excellent (e.g., GetNet, Sprint) to Good (e.g., AT&T) QoE (see Table 8.5) as

the network size increases, while the other solutions drop the QoE from Excellent (e.g., all routing
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algorithms over GetNet) to Fair (e.g., SWP and MIRA over Sprint), Poor (e.g., MHA and WSP

over Sprint and AT&T, MIRA over AT&T) and even Bad (e.g., SWP over AT&T). Consequently,

the proposed RL-based method finds the best trade-off between the throughput, packet loss and the

rejection rate so that it maintains an acceptable user perceived quality for the QoS-based traffic even if

the network size increases, without sacrificing the other traffic classes. All classical routing algorithms

are showing difficulty in accommodating good performance across the topology changes. This is due to

the fact that the classical routing algorithm cannot react to the network changes when newly coming

flows arrive within the time-slot of the monitoring interval. On the contrary, the RL-based method

initiates a rerouting mechanism at every time-slot of monitoring interval and it applies the optimal

routing on the actual network state. According to the QoS requirements stated in Table 8.2, the

RL-based method conforms to the requirement under the GetNet and Sprint network. Though, under

the AT&T network, the results in Figure 8.6 show that the RL-based method deviates from the given

requirement by only 1.21% in the average packet loss. The other classical routing algorithms show

higher deviations from the requirements under the medium and large scale networks. For example,

above 3% under the Sprint network, while it becomes higher than 7% in the case of AT&T network.

8.3.2.3 High Traffic Load

Figures 8.2, 8.4 and 8.6 reveal that there is a variation in performance for the RL-based method under

the high load with the increase in the network topology size. It can be noted an increase in packet

loss of 1.26% and 2.9% when the network size increases from GetNet to AT&T and from Sprint to

AT&T, respectively. The increase from GetNet to Sprint topology leads to a decrease in the packet

loss of 1.64%. On one hand, these results are due to the fact that the GetNet network is small and the

proposed RL-based method cannot resolve the network congestion by rerouting the traffic flows. On

the other hand, it can be observed that the classical routing algorithms exhibit higher packet loss in

larger network than in smaller network. For example, as the network topology increases from GetNet

to AT&T, the packet loss for MIRA algorithm is increased considerably by 6.38% when compared to

the RL-based method of only 1.26%.

In terms of rejection rate, the RL-based method has a higher rejection of flows in order to avoid

packet loss caused by network overload and drop in QoE. Consequently, it can be noticed that under

high load, as the network size increases, the RL-based method still maintains an Excellent (e.g.,

Sprint), Good (e.g., GetNet) and Fair (e.g., AT&T) user perceived quality (see Table 8.5) for the

QoS-based service without penalizing the other traffic classes. In contrast, the other solutions are

only able to maintain a Fair QoE under GetNet, and as the network topology size increases, this

drops to Poor for all the other scenarios except for SWP over AT&T where it drops to Bad. Thus,

the size of the network determines the performance of the routing algorithms under the high load.
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Though in general, the results of the proposed RL-based method are very promising when compared

to the classical routing algorithms.

8.3.3 Impact of the Background Traffic Routing Algorithm

In order to validate the choice of the routing algorithm for the background traffic (e.g., MIRA), a

set of experiments have been conducted that compare the system performance when using any of the

four routing algorithms as a choice for routing the background traffic. For the validation purposes,

only the Sprint topology under the three network loads was used. The scenarios were evaluated under

the same environment conditions (e.g. the total number of generated flows) and they were averaged

over 5 simulation trails for each single scenario. The results are illustrated in Table 8.6. It can be

seen that all routing algorithms exhibit relatively similar averaged performance under various traffic

loads. Therefore, because the routing algorithm MIRA performs generally well at the network level,

it was selected to route the background flows when employing the RL-based approach.

8.4 Chapter Summary

This chapter presents an innovative Reinforcement Learning (RL)-based framework for multimedia-

based SDN environments. The proposed RL-based framework makes use of ML to decide on the most

suitable routing algorithm to be applied on the QoS-based traffic flows within a realistic multimedia-

based SDN environment in order to enable QoS provisioning. The proposed RL-based solution was

implemented and evaluated using an experimental setup based on Mininet, Floodlight controller and

Open vSwitch switches. Several scenarios are considered under realistic network conditions.

The results show that the proposed RL-based solution outperforms the other state-of-the-art rout-

ing algorithms (i.e., MHA, WSP, SWP and MIRA) and finds the best trade-off between throughput,

packet loss and rejection rate for the QoS-based traffic class without penalizing the other traffic

classes. Even under the largest network topology (e.g., AT&T) and highest traffic load, the RL-based

solution ensures a Fair user perceived QoE for the QoS-based services while all the other solutions

will significantly degrade the user perceived QoE to Poor in the case of MHA, WSP, and MIRA and

Bad in the case of SWP in an attempt to accommodate more QoS-based flows as well as the other

traffic classes are penalized with increased packet loss rate. Under all the other considered scenarios,

the proposed RL-based method maintains an Excellent to Good user perceived QoE, while all the

other state-of-the-art go as low as Poor in case of MHA, WSP and MIRA, and even Bad, in case of

SWP.

116



T
ab

le
8.

3:
T

h
e

m
ea

n
an

d
st

an
d

ar
d

d
ev

ia
ti

on
of

th
e

th
ro

u
gh

p
u

t
m

ea
su

re
m

en
t

fo
r

th
e

ro
u

ti
n

g
a
lg

o
ri

th
m

s
u

n
d

er
G

et
N

et
,

S
p
ri

n
t

a
n

d
A

T
&

T
,

w
h

er
e

l
=

lo
w

lo
ad

,
m

=
m

ed
iu

m
lo

ad
,

an
d

h
=

h
ig

h
lo

ad
M

H
A

T
h

ro
u

gh
p

u
t

[K
b

/s
]

W
S

P
T

h
ro

u
gh

p
u

t
[K

b
/s

]
S

W
P

T
h

ro
u

g
h

p
u

t
[K

b
/
s]

M
IR

A
T

h
ro

u
g
h

p
u

t
[K

b
/
s]

R
L

-b
a
se

d
M

et
h

o
d

T
h

ro
u

g
h

p
u

t
[K

b
/
s]

l
m

h
l

m
h

l
m

h
l

m
h

l
m

h
G

e
tN

e
t

H
D

65
0

65
1

62
4

65
0

65
1

62
6

6
5
0

6
4
9

6
2
5

6
5
0

6
5
1

6
2
6

6
5
0

6
5
1

6
3
1

±
3.

96
±

3
.9

6
±

10
.2

±
4
.1

6
±

1.
17

±
7.

95
±

3.
6
2

±
4
.5

5
±

8.
7
9
±

4.
1
2
±

2.
1
7
±

7
.8

2
±

4.
1
1
±

3
.5

6
±

1
2.

5
7

S
D

23
8

23
5

23
2

23
9

23
5

23
3

2
3
8

2
3
4

2
3
2

2
3
9

2
3
3

2
3
3

2
3
8

2
3
5

2
3
3

±
1.

81
±

0
.6

1
±

1.
57

±
1
.1

8
±

0.
78

±
1.

71
±

1.
7
9

±
1
.5

8
±

1.
9
5
±

1.
7
6
±

3.
2
5
±

1
.3

2
±

1.
1
±

0
.8

7
±

0
.4

5
H

T
T

P
15

.8
15

.3
16

.2
16

.4
15

.3
16

.3
1
5
.9

1
5
.6

1
6
.1

1
6

1
5
.7

1
6
.3

1
5
.8

1
5
.5

1
5
.9

±
1.

5
±

0
.9

8
±

0
.5

±
1.

5
±

1.
39

±
0.

55
±

1.
7
3

±
0
.9

5
±

0.
3
9
±

1.
7
3
±

3.
2
5
±

0
.7

8
±

1.
7
9
±

1
.2

4
±

0.
6

F
T

P
17

2.
9

18
5.

6
17

8.
4

17
3.

6
18

4.
4

17
7.

3
1
7
2
.2

1
8
4
.4

1
7
8
.8

1
7
3

1
8
4

1
7
9
.1

1
7
2

1
8
4
.4

1
7
8
.6

±
3.

95
±

2
±

3.
46

±
4
.5

5
±

1.
85

±
4.

6
±

3.
6
7

±
2
.4

9
±

3.
1
5
±

4.
1
5
±

2.
0
4
±

5
.2

5
±

3.
6
±

3
.2

4
±

4
.5

5
S

p
ri

n
t

H
D

64
8

62
0

59
6

64
8

62
0

60
6

6
4
9

6
2
4

6
0
6

6
4
8

6
2
6

6
0
6

6
4
6

6
4
3

6
3
8

±
1.

17
±

11
.0

±
7
.4

±
1
.1

8
±

10
.1

±
8.

6
±

0.
7
6

±
1
1
.6

±
1
.8

±
1.

5
2
±

1
1
.9
±

1
3
.4

±
1.

5
2
±

2.
0

±
5.

4
S

D
23

6
23

5
23

3
23

6
23

5
23

3
2
3
6

2
3
4

2
3
4

2
3
6

2
3
5

2
3
4

2
3
6

2
3
4

2
3
5

±
0.

51
±

1
.5

8
±

1
.3

±
0
.5

3
±

0.
93

±
2.

2
±

0.
1
6

±
1.

3
±

1.
5

±
0
.6

±
1.

3
±

2.
5
±

0.
5
1
±

1
.1

5
±

1
.7

7
H

T
T

P
15

.2
16

14
.6

15
.2

15
.7

14
.4

1
5
.3

1
6
.1

1
4
.6

1
5
.2

1
5
.7

1
4
.5

1
5
.3

1
5
.9

1
4
.3

±
1.

6
±

1.
0

±
1
.5

±
1
.2

5
±

0.
84

±
1.

9
±

1.
2
7

±
0
.8

4
±

1.
8
5
±

1.
4
2
±

1.
0

±
2.

0
±

1.
3
7
±

1.
0

±
1.

7
F

T
P

18
6.

7
17

7.
8

16
1.

7
18

5.
7

17
7.

8
16

5.
7

1
8
6
.8

1
7
4
.8

1
6
4

1
8
6
.6

17
8
.7

1
6
6
.3

1
8
6
.3

1
7
7
.8

1
6
7
.9

±
3.

5
±

7.
6

±
4
.9

±
2.

6
±

5
.9

±
5.

0
±

3
.2

±
5.

2
±

3
.1

±
2.

7
2
±

7.
3

±
4.

7
±

2.
5

±
7.

6
±

2.
7

A
T

&
T

H
D

61
6

59
4

60
5

62
4

60
4

60
7

6
1
7

5
7
6

5
6
7

6
2
2

6
0
4

6
0
1

6
5
3

6
3
0

6
3
3

±
18
.9

±
9.

9
±

18
.9

±
14
.9
±

16
.1
±

14
.6

±
2
8.

4
±

2
0.

3
±

4
2
.4

±
1
7.

5
±

2
0
.8
±

1
6
.2

±
1
0
.0

±
8.

4
±

8.
7

S
D

23
2

23
3

23
6

23
2

23
0

23
7

2
3
1

2
2
7

2
3
2

2
3
2

2
3
2

2
3
6

2
3
2

2
3
6

2
3
9

±
0.

66
±

3.
2

±
2
.8

±
0
.8

7
±

4
.3

±
2.

8
±

3
.5

±
4
.7

2
±

4.
8
7
±

0.
8
8
±

2.
8

±
4.

0
±

0.
7
±

0
.4

2
±

1.
1

H
T

T
P

11
.3

11
.5

13
.3

10
.8

11
.6

12
.4

1
1
.1

1
2
.2

1
3
.9

1
1
.3

1
1
.4

1
2
.6

1
1
.3

1
0
.8

1
3
.1

±
0.

5
±

2.
1

±
3
.8

±
0
.3

5
±

2
.6

±
3.

0
±

0.
2
3

±
2.

7
±

4.
0
±

0.
3
8
±

1.
6

±
3.

5
±

0.
3
±

0
.5

4
±

4.
1

F
T

P
16

2.
5

15
5.

7
14

9
16

4.
2

15
5

14
9.

4
1
6
0
.9

1
4
9
.7

1
4
4
.6

1
6
2

1
5
4

1
4
8

1
6
4

1
5
5
.9

1
4
9
.7

±
2.

9
±

2.
1

±
1
.0

±
3.

2
±

3
.3

±
1.

85
±

3
.8

±
3.

5
±

1
.6

±
5
.3

±
2.

1
±

1.
8
±

3.
7
2
±

3.
3
±

0.
8
6
6

117



T
ab

le
8.

4:
A

ve
ra

ge
d

la
te

n
cy

ev
al

u
at

io
n

fo
r

ro
u

ti
n

g
al

go
ri

th
m

s
u

n
d

er
G

et
N

et
,

S
p

ri
n
t

a
n

d
A

T
&

T
,

w
h

er
e

l
=

lo
w

lo
a
d

,
m

=
m

ed
iu

m
lo

a
d

,
a
n

d
h

=
h

ig
h

lo
ad

M
H

A
L

at
en

cy
[m

s]
W

S
P

L
at

en
cy

[m
s]

S
W

P
L

a
te

n
cy

[m
s]

M
IR

A
L

a
te

n
cy

[m
s]

R
L

-b
a
se

d
M

et
h

o
d

L
a
te

n
cy

[m
s]

l
m

h
l

m
h

l
m

h
l

m
h

l
m

h
G

e
tN

e
t

H
D

7.
5

20
13

79
9

90
13

20
1
3

2
1
9

1
7
5
8

9
9
1

1
2
1
4

8
1
8

9
0
0

S
D

3
34

31
4

3
14

3
12

7
4

1
8
9

4
2
4

4
1
4
2

7
6

3
5
9

4
6

H
T

T
P

2
9

81
2

19
12

3
3

5
5

2
3
5

2
1
9

8
4

2
1
8

2
8

F
T

P
2

30
24

5
2

67
17

3
2
3
0

3
5
4

2
6
8

3
3

2
4
1

2
5

S
p

ri
n
t

H
D

84
66

2
83

8
70

75
4

83
5

2
7

6
3
3

7
8
2

6
6

6
5
0

7
3
9

6
0

4
7

7
8

S
D

38
60

66
27

73
12

4
1
4

6
1

6
6

3
8

2
6

7
5

3
2

5
1

5
0

H
T

T
P

17
52

92
19

43
11

9
9

7
3

8
0

1
2

2
9

6
7

1
5

2
5

3
0

F
T

P
72

62
74

62
65

11
8

2
0

1
2
4

1
3
0

4
6

3
9

8
3

5
1

4
6

5
2

A
T

&
T

H
D

52
3

67
5

68
7

48
3

60
2

58
9

6
0
4

3
9
9

2
9
2

5
7
1

7
0
8

6
1
3

1
4
1

1
9
1

2
6
5

S
D

28
40

54
16

90
43

1
0
0

1
0
5

4
5

2
3

8
1

3
9

1
7

4
8

4
4

H
T

T
P

40
58

70
14

50
41

8
3

7
0

3
0
.5

2
2

4
2

5
0

1
3

2
2

2
1

F
T

P
67

10
8

11
2

18
10

1
72

1
2
4

1
4
1

5
2

2
2

8
8

8
1

3
3

4
4

3
8

118



T
ab

le
8.

5:
A

ve
ra

ge
d

es
ti

m
at

ed
P

S
N

R
an

d
M

O
S

ev
al

u
at

io
n

fo
r

th
e

ro
u

ti
n

g
a
lg

o
ri

th
m

s
u

n
d

er
G

et
N

et
,

S
p

ri
n
t

a
n

d
A

T
&

T
,

w
h

er
e

l
=

lo
w

lo
a
d

,
m

=
m

ed
iu

m
lo

ad
,

an
d

h
=

h
ig

h
lo

ad
M

H
A

W
S

P
S

W
P

M
IR

A
R

L
-b

a
se

d
M

et
h

o
d

l
m

h
l

m
h

l
m

h
l

m
h

l
m

h
G

e
tN

e
t

H
D

P
S

N
R

[d
B

]
60

55
.9

30
.3

60
55

.4
3
0
.7

6
0

4
8
.9

3
0
.7

6
0

5
5
.4

3
1
.1

6
6

6
0

3
3
.4

M
O

S
E

x
c.

E
x
c.

F
ai

r
E

x
c.

E
x
c.

F
a
ir

E
x
c.

E
x
c.

F
a
ir

E
x
c.

E
x
c.

F
a
ir

E
x
c.

E
x
c.

G
o
o
d

S
D

P
S

N
R

[d
B

]
60

53
.9

46
60

50
.5

5
4
.9

5
8
.4

4
8
.6

4
4
.7

6
0

5
2
.8

5
8
.4

6
0

5
2
.8

4
9
.4

M
O

S
E

x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

G
o
o
d

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

S
p

ri
n
t

H
D

P
S

N
R

[d
B

]
50

.5
26

.6
23

.4
51

.4
26

.8
2
5
.2

5
7
.7

2
7
.8

2
5

5
2

2
8
.3

2
4
.9

5
2

4
9
.6

4
6

M
O

S
E

x
c.

P
o
or

P
o
or

E
x
c.

P
o
or

P
o
o
r

E
x
c.

P
o
o
r

P
o
o
r

E
x
c.

P
o
o
r

P
o
o
r

E
x
c.

E
x
c.

E
x
c.

S
D

P
S

N
R

[d
B

]
52

.7
47

.9
47

.3
53

.5
49

.8
4
4

5
9
.1

4
4

4
6
.1

5
3
.1

5
1
.7

4
8
.6

5
2
.3

4
9
.1

4
9
.8

M
O

S
E

x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

G
o
o
d

E
x
c.

G
o
o
d

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

E
x
c.

A
T

&
T

H
D

P
S

N
R

[d
B

]
25

.4
21

.3
21

27
.8

22
.2

2
1
.6

2
3

1
7
.5

1
6
.5

2
7

2
1
.8

2
0
.7

3
9
.4

3
3
.1

2
9
.4

M
O

S
P

o
or

P
o
or

P
o
or

F
ai

r
P

o
or

P
o
o
r

P
o
o
r

B
a
d

B
a
d

P
o
o
r

P
o
o
r

P
o
o
r

G
o
o
d

G
o
o
d

F
a
ir

S
D

P
S

N
R

[d
B

]
51

.7
41

.1
35

.6
60

33
.4

3
8
.2

3
4
.5

2
6
.7

2
6
.1

5
7
.7

3
7
.6

3
7
.1

5
6

5
0
.5

4
4
.2

M
O

S
E

x
c.

G
o
o
d

G
o
o
d

E
x
c.

G
o
o
d

G
o
o
d

G
o
o
d

P
o
o
r

P
o
o
r

E
x
c.

G
o
o
d

G
o
o
d

E
x
c.

E
x
c.

G
o
o
d

119



T
ab

le
8.

6:
S

p
ri

n
t

n
et

w
or

k
to

p
ol

og
y
:

A
ve

ra
ge

d
p

er
fo

rm
an

ce
ev

a
lu

a
ti

o
n

fo
r

th
e

R
L

ro
u

ti
n

g
a
lg

o
ri

th
m

s
(R

er
o
u

ti
n

g
th

e
Q

o
S

-b
a
se

d
tr

a
ffi

c
u

si
n

g
th

e
R

L
-b

as
ed

m
et

h
o
d

,
w

h
il
e

th
e

ro
u

ti
n

g
of

b
ac

k
gr

ou
n

d
tr

affi
c

is
b

a
se

d
o
n

th
e

st
a
ti

c
a
lg

o
ri

th
m

)

P
er

fo
rm

a
n

ce
M

et
ri

cs

Q
oS

fl
ow

s
⇒

R
L

,
B

k
g

fl
ow

s
⇒

M
H

A
Q

o
S

fl
ow

s
⇒

R
L

,
B

k
g

fl
ow

s
⇒

W
S

P
Q

o
S

fl
ow

s
⇒

R
L

,
B

k
g

fl
ow

s
⇒

S
W

P
Q

o
S

fl
ow

s
⇒

R
L

,
B

k
g

fl
ow

s
⇒

M
IR

A

l
m

h
l

m
h

l
m

h
l

m
h

H
D

T
h

ro
u

gh
p

u
t

[K
b

/s
]

64
6

64
4

6
3
0

6
4
7

6
4
5

6
3
9

6
4
4

6
4
5

6
3
5

6
4
6

6
4
3

6
3
8

P
ac

k
et

L
os

s
[%

]
0.

23
0.

52
0
.7

5
0
.2

0
.4

2
0
.5

2
0
.2

3
0
.4

0
.4

6
0
.2

5
0
.3

3
0
.5

L
at

en
cy

[m
s]

58
98

1
0
5

4
2

7
2

7
5

4
6

5
2

7
7

6
0

4
7

7
8

E
st

im
at

ed
P

S
N

R
[d

B
]

52
.8

45
.7

4
2
.5

5
4

4
7
.5

4
5
.7

5
2
.8

4
7
.9

4
6
.7

5
2

4
9
.6

4
6

#
of

R
ej

ec
te

d
F

lo
w

s
12

.4
25

3
6

1
2
.2

2
5
.4

3
5

1
2
.2

2
4
.6

3
6
.8

1
2
.4

2
4
.4

3
6

S
D

T
h

ro
u

gh
p

u
t

[K
b

/s
]

23
6

23
5

2
3
5

2
3
6

2
3
5

2
3
4

2
3
6

2
3
5

2
3
4

2
3
6

2
3
4

2
3
5

P
ac

k
et

L
os

s
[%

]
0.

24
0.

27
0
.2

6
0
.1

8
0
.3

3
0
.3

6
0
.1

9
0
.2

3
0
.4

6
0
.2

4
0
.3

5
0
.3

2
L

at
en

cy
[m

s]
33

36
3
5

2
2

4
9

2
7

1
9

3
1

4
1

3
2

5
1

5
0

E
st

im
at

ed
P

S
N

R
[d

B
]

52
.4

51
.4

5
1
.7

5
4
.9

4
9
.6

4
8
.9

5
4
.4

5
2
.7

4
6
.7

5
2
.3

4
9
.1

4
9
.8

#
of

R
ej

ec
te

d
F

lo
w

s
1.

2
3.

6
7
.2

1
4
.2

8
.4

1
.4

4
.8

7
.8

2
.2

3
.4

9

H
T

T
P

T
h

ro
u

gh
p

u
t

[K
b

/s
]

15
.6

16
.0

1
6
.7

1
5
.4

1
6
.3

1
6
.7

1
5
.5

1
7
.1

1
6
.5

1
5
.3

1
5
.9

1
4
.3

P
ac

k
et

L
os

s
[%

]
0.

23
0.

31
0
.3

4
0
.2

5
0
.2

5
0
.4

5
0
.2

0
.3

8
0
.4

8
0
.2

3
0
.2

6
0
.3

7
L

at
en

cy
[m

s]
14

24
2
0

1
4

2
6

2
3

1
1

2
4

2
9

1
5

2
5

3
0

#
of

R
ej

ec
te

d
F

lo
w

s
0.

4
2.

4
5
.2

0
.4

4
3
.6

0
2
.2

6
.8

0
.2

5
.8

3
.4

F
T

P

T
h

ro
u

gh
p

u
t

[K
b

/s
]

18
7

17
7

1
6
9

1
8
8

1
7
7

1
6
9

1
8
8

1
7
8

1
7
1

1
8
6
.3

1
7
7
.8

1
6
7
.9

P
ac

k
et

L
os

s
[%

]
0.

25
0.

45
0
.4

8
0
.2

2
0
.3

2
0
.3

8
0
.1

9
0
.3

9
0
.4

0
.3

4
0
.2

8
0
.3

6
L

at
en

cy
[m

s]
35

43
6
5

2
4

5
5
.6

5
8

1
4

4
1

4
8

5
1

4
6

5
2

#
of

R
ej

ec
te

d
F

lo
w

s
1

1.
4

8
.8

0
.8

3
.2

1
0
.2

0
.6

3
.2

9
0
.6

2
.8

9
.2

120



Chapter 9

Conclusions and Future Work

This chapter presents a summary of the work and the key contributions of this research. It is fol-

lowed by a discussion about the future work and it highlights the suggestions for deeper analysis and

improvement under the taken research.

9.1 Summary of Contributions

The research proposes a framework for enabling end-to-end QoS provisioning over SDN-based envi-

ronments. Nowadays, QoS provisioning represents a vital entity in the network infrastructure in order

to fulfill the business needs of the Internet Service Providers. Moreover, the emergence of SDN-based

networks opens up new opportunities for new features in terms of management and programming

compared to the traditional networks.

In this regard, the work presented in this thesis brings the following main contributions:

• Measurement Collection and Probabilistic-based QoS Routing: The proposed solution

described in 4.2.1.3 proposes the use of a compression technique for SDN-based networks to

reduce the control plane overhead. The contribution of this work is introduced by the proposed

architecture which facilitates the delivery of QoS metric data with less overhead and high accu-

racy. This is achieved by the use of the sparse techniques. The performance evaluation results

presented in Chapter 5 show that by employing a CR = 0.333 the controller recovers the sparse

data with an SNR of 36.269dB and an NMAE of 0.01063. Moreover, in terms of communica-

tion overhead cost the results show that the proposed compression-based technique reduces the

overhead significantly.

On the other hand, the solution given in 4.2.2 proposes, BaProbSDN a probabilistic-based QoS
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routing algorithm for SDNs. BaProbSDN makes use of a Bayes’ theorem to determine the link

probability in terms of bandwidth availability. In order to decrease the overhead on the control

plane between the SDN switches and the controller, BaProbSDN makes use of a threshold-based

triggering link update policy combined with a hold-down timer. The performance evaluation

results presented in Chapter 5 show that the overhead can be greatly reduced with less signif-

icant impact on the performance in terms of bandwidth blocking rate. Moreover the proposed

BaProbSDN algorithm was compared against the WSP algorithm in the presence of link state

update policy. The results show that BaProbSDN can achieve up to 7.41% decrease in the

bandwidth blocking rate when compared to WSP, for a threshold value of 0.5, HDT=10s, and

a reduction of 95.38% in the control messages overhead.

• Policy-based Network Management Framework: The solution given in 4.3 proposes a

policy-based network management framework over SDN for QoS provisioning. The proposed

solution considers the route management for finding the optimal route for QoS flows and for

rerouting and rate limiting the disturbing flows in case of policy violation. The PBNM frame-

work was designed and implemented over the SDN architecture and the OpenFlow protocol

is used to collect information and configure the underlying SDN network switches. The per-

formance evaluation results presented in Chapter 6 show that by applying QoS policies for

bandwidth and loss rate, the PBNM framework can dynamically reconfigure the network state

by rerouting and rate limiting the best-effort background flows to ensure QoS provisioning

for the priority flows. The experimental results show that the proposed PBNM-based SDN

framework outperforms the default SDN in terms of throughput, packet loss rate and latency.

Moreover, both proposed approaches, like rerouting and rate limiting demonstrate comparable

performance. The results show that the proposed PBNM-based SDN framework for rerout-

ing can achieve up to 94% increase in the average PSNR when compared to the default SDN,

increasing the user perceived quality from Poor to Excellent.

• RL-based Decision Making for Routing Algorithm: The comprehensive study presented

in Chapter 7 evaluates the performance of four state-of-the-art routing algorithms MHA, WSP,

SWP, and MIRA over realistic multimedia-based SDN environments with dynamic network

conditions and topology. The results indicate that there is no one single routing algorithm that

can perform best under all considered scenarios and networking conditions. These findings led

to the solution described in 4.4 that proposes a machine RL-based method by making use of

RL under SDN-based networks. As SDN comes with key features such as the centralization and

programmability via standardized interface, this makes it possible to implement the proposed

RL-based solution in a centralized way under the SDN network architecture. The proposed
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framework contains a continuous monitoring scheme to build a global centralized view of the

network state. It collects periodically the flow statistics from the network switches. The system

is first trained while it interacts with the surrounding environment from the experiments of past

trails. Based on the trained Q-table, the system exploits the most suitable routing algorithm to

be applied on the underlying network. The proposed RL-based method enables dynamic routing

decisions and it reroutes the QoS-based traffic flows in order to find the best solution to the

problem by choosing the right routing algorithm to be applied from a set of routing algorithms,

i.e., MHA, WSP, SWP, and MIRA.

The performance evaluation results are presented in Chapter 8 where the RL-based method was

evaluated over realistic SDN-based network environment with dynamic network conditions and

topology and compared against other centralized routing algorithms (MHA, WSP, SWP and

MIRA). The results show that the proposed RL-based solution outperforms the other state-

of-the-art routing algorithms and finds the best trade-off between throughput, packet loss and

rejection rate for the QoS-based traffic class without penalizing the other traffic classes. Even

under the largest network topology (e.g., AT&T) and high load the RL-based solution ensures a

Fair user perceived QoE for the QoS-based services while all the other solutions will significantly

degrade the user perceived QoE to Poor in the case of MHA, WSP, and MIRA and Bad in the

case of SWP in an attempt to accommodate more QoS-based flows as well as the other traffic

classes are penalized with increased packet loss rate. Under all the other considered scenarios

the proposed RL-based method maintains an Excellent to Good user perceived QoE while all

the other state-of-the-art go as low as Poor in case of MHA, WSP and MIRA and even Bad in

case of SWP.

9.2 Future Work

Future work is a place for further suggestions and ideas to analyze deeper the proposed solution

with particular techniques and experiment tools. The topics addressed in this thesis (as described

in Chapter 4) offer different directions to research in the future. In the current research the PBNM

architecture is mapped into the entire framework in its three layers: PIP, PDP, and PEP layer. In the

context of PBNM-based SDN framework, future work could extend the functionality of the proposed

framework by making use of policy language and refinement. This shall add more abstraction layer

and automation principle to the framework. By this, the network administrator shall deal with a

higher abstracted language with less detail about the networking infrastructure. Due to the lack of

physical network resources and big scaled real network infrastructure, the proposed framework has
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been evaluated entirely under simulation environment with the help of various networking simulation

tools (such as Mininet, Ostinato and Matlab) while keeping realistic conditions as much as possible.

An essential step in the further assessment is the evaluation with real data under a real SDN network.

Regarding the entire applications, an idea for further enhancement in terms of faster algorithm is

to employ parallelism concept in the implementation of the intelligence application core. On the other

hand, due to many factors: the lack of time, the availability of necessary features and the dependencies

and mismatch between modules, the current network is realized with OpenFlow 1.3 protocol. A higher

version of OpenFlow protocol can be employed and realized in the current framework. As a proof

of concept, the routing algorithms in this research consider the bandwidth availability metric to

find the feasible path. From a theoretical point of view, the centralized routing algorithms can be

extended by considering the delay constraint in the routing calculation. Though, even if it was not

addressed here due to the computation limitation, this represents an interesting challenge for future

work. With respect to the monitoring scheme under SDN network, the continuous monitoring (as

described in 4.2.1.1) is applied currently in the framework in order to build a global image of the

underlining networking devices in terms of the flow throughput and packet loss. An approach which

is not addressed in the thesis under the dynamic simulation experimental setup is the monitoring

using the link state update in 4.2.1.2 and compression based technique in 4.2.1.3. Due to the reason

given earlier in section 5.3, the test was limited under simulation tool based on Matlab. An interesting

study is its application and interaction with other component in the framework such as the RL-based

solution.

A further topic that can be addressed potentially for future work is the use of multiple SDN

controllers, which gives the chance to scale the concept on wider network environment. Though

the synchronization by involving intra- and inter-domain communications between multiple SDN

controllers becomes challenging, while maintaining the research goals. In SDN-enabled network,

the multi-controller architecture can improve the performance in terms of reliability, scalability, and

availability when compared to the single controller. However this increases more network complexity

and opens new challenges such as the controller placement problem. To this end, The proposed

solution in this research can be scaled with multi-controller architecture, to achieve this it is essential

to share and synchronize globally the entire training data and network view between the controller,

and the same operational logic are duplicated between the controllers. By this, many challenges are

raised like the propagation latency and the load balancing are while placing the controllers in the

network.
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