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Abstract

A categorical model of object-oriented systems is proposed and de-
noted using a A-calculus. The model is used to provide a definition of
design refinement. An example system is rigorously developed in Java
from an initial user requirements by refining an initial design.
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1 Introduction

Current object-oriented design notations such as OMT [Run91], Booch [Boo94]
and UML [UML98] are syntax-bound and semantic-free in the sense that they
typically employ a large and rigorously enforceable collection of construction
rules, but rarely provide a model to explain what is being constructed. Whilst
this omission clearly does not prevent such notations being used effectively in
the development of object-oriented software systems, it must raise questions
regarding the long-term viability of notations which are not adequately anchored
in a semantic theory.

The aims of this work are to provide a semantic framework suitable for such
notations and which can form a basis for rigorous object-oriented development.
Our approach is to take as a starting point the computational behaviour of
objects and to provide a semantic model of incremental system development.

A system is defined as the solution to a set of simultaneous equations which
specify its computational behaviour and structure. We use category theory
[Bar90] [Ryd88] [Gog89] as a tool to express the equations since this theory pro-
vides standard constructions and results which conveniently express semantics
without getting unnecessarily entangled in issues of syntax.

An object-oriented design can be characterised with respect to the structure
of system states and a given set of atomic computation steps. An initial system
design tends to abstract away from structural and computational detail. One of
the aims of object-oriented system development is to refine an initial design into



an object-oriented design. This paper proposes a definition of object-oriented
refinement which supports verifiable step-wise system development.

This paper is structured as follows. Section 2 identifies a number of key
features which are common to all object-oriented design notations. These fea-
tures are the motivation for the design of a behavioural object model described
in section 3. The model expresses behaviour as objects in a category and re-
finement as a relationship between objects in a category. A notation based on
the A-calculus is proposed for denoting behaviours in section 4. Systems are
built from collections of behaviour descriptions expressed as standard categor-
ical constructions defined in section 5. A system is a collection of constraints
on possible object behaviours. The overall system behaviour must satisfy all of
the constraints. A standard result from category theory is described in section
6 which provides an algorithm for finding a system behaviour. Section 7 shows
an example object-oriented design using all the design features defined in the
paper. Finally, section 8 analyses the work, discusses related work and outlines
future research.

The paper aims to be self contained with respect to the necessary category
theory. Readers are directed to [Pri97] for an overview of graphical object-
oriented design notations and to [Fie88] for an overview of A-notation and func-
tional programming.

2 Object-Oriented Design Features

Object-oriented designs, as expressed using a typical design notation such as
UML, consist of a number of different models. Each model is used to express
a different feature of the required system. Although the design notations dif-
fer syntactically, we propose that there are a number of characterising features
common to all object-oriented systems. This section lists these features which
are then formalised in the rest of the paper. A more detailed analysis of object-
oriented features can be found in [Weg87], [Mey88], [Cla96], [Cla94]. The fea-

tures listed below are discussed at length in [Cla99b].

Design Feature 1 Objects have state consisting of names and values.
Design Feature 2 Messages are passed via named associations.

Design Feature 3 Object state transitions involve input and output messages.

Design Feature 4 A class represents a collection of objects with the same be-
haviour.

Design Feature 5 Two instances of the same class differ with respect to their
identity.

Design Feature 6 Object-Oriented designs are (possibly) non-deterministic.

Design Feature 7 Object-Oriented designs support inheritance.



Design Feature 8 Object designs are compositional.

Design Feature 9 Object designs may be partial.

Design Feature 10 Communication may be synchronous or asynchronous.
Design Feature 11 Object designs can be inter-dependent.

Design Feature 12 Global behaviour satisfies all local behavioural constraints.

Design Feature 13 A design refinement involves soundness and completeness
checks.

3 Object Behaviour

Object-oriented designs denote the structure and behaviour of systems. Objects
calculate by performing state transitions and communicate by passing messages.
System behaviour is represented as a graph labelled with states and messages.
Object-oriented behaviours conform to a particular class of states and transi-
tions. Refinement transforms behaviours so that they are more object-oriented
whilst preserving their meaning.

3.1 Object States

At any given moment in time, an object exists in a particular state. The state
of an object provides a complete description of its type, its identity and its
attributes.

All objects have a class (feature 4) which defines the behaviour of the object.
It is possible to distinguish between instances of two different classes which both
define the same attributes. Class identity is represented as a type tag a where
each class is allocated a different tag.

All objects have an identity (feature 5). An object’s identity distinguishes
it from all other instances of the same class in the same state. Object identity
is represented as an object tag 7 where each object has a different tag.

All objects have attributes which are named values (feature 1). The at-
tributes of an object determine the behaviour of the object when it receives a
message. The attributes of an object may change when a message is processed.
The attributes of an object are represented as a partial function p from attribute
names to values. An attribute j is renamed i in p to produce a new attribute
function pi/j] defined as follows:

P = { ) S

A state is <a, T, p> and represents a partial view of an object. Two different
views of the same object must have the same type and identity but may differ
with respect to the attributes providing that the attribute views are consistent.



Consistency is defined as follows. Let < (is more defined than) be a partial
order on attribute descriptions such that p; < p» when py(a) = pa2(a) for all
attributes a € dom(p2). Any two attribute descriptions are consistent when
there is a greatest lower bound attribute description p; M ps.

The partial order on attribute descriptions can be extended to states by
requiring that <ay, 7, p1> < <, T2, p2> holds if and only if ay = as, 11 = 7
and P1 S pP2-

Object-oriented systems consist of sets of object states. A set is well formed
when it contains only one state for a given object identity. We can define a
partial order on well formed sets of object states as follows. Let X1 and X5 be
two well formed sets of object states. The relation ¥; < Y5 holds when for each
object state in X, there is an object state in ¥; which is consistent. This can
be stated formally as:

V<ag, To, p2> € Yo @ A<y, T, p1> €EX10a; =as A1y =T Ap1 < p2

Given two well formed sets X1 and X5 of object states the greatest lower bound
31 M Xy is the smallest set containing all of the object states from both 3; and
35 where different views of the same object have been merged consistently.

3.2 Object Calculation Graphs

Systems are constructed as a collection of objects. Each object is a separate
computational system with its own state (feature 1) modified in response to
handling messages (feature 2). A message is a package of information sent from
one object to another.

The computation performed when a message is handled by an object depends
on the object’s current state and causes the object to change state and produce

output messages (feature 3). If we observed an object over a period of time we

1,0 1,,0
would see a sequence of messages and state changes: ... o ( »1—)1) o9 ( »2—>2) o3

where each o; is an object state, I; are input messages, and O; are output
messages. Such a sequence is an object calculation and describes a single object
in state o; receiving messages I; causing a state change to 0;4, and producing
output messages O;.

A message consists of a source object, a target object and some message
data. The source and target objects are identified by their object identity tags.
For a given object system, the data items which can be passed as messages will
be defined for each type of target object. A message, whether input or output,
is represented as <7y, Ty, v> where 74 identifies the source object, 73 identifies
the target object and v is the message data.

Object systems are constructed from multiple objects interacting by passing
messages. The state of an object system is a well formed set of object states 3.
Computation in an object system occurs when the messages in set I are sent

to the objects in ¥ producing a new set of object states ¥’ and a collection of

1,0 . . .
output messages O: ... — % (»—>) ¥+ ... Object-oriented designs represent

non-deterministic computational systems (feature 6). We can therefore define



all the possible object calculations performed by an object system O in response
to handling sequences of input messages of length n.

Object calculations are represented as a calculation graph O(n) where the
nodes of the graph are labelled with well formed sets of states and the edges are
labelled with pairs of input and output message sets. An example graph G, is:

Starting in state ¥;, the graph G, can produce the following possible object
calculations of length 2:
y, W)y, %)y,

5, %) 5, U%) 5,

A graph G = (N,E,s: E = N,t: E — N) is a set of nodes N, a set of edges
FE and a pair of mappings s which maps an edge to its source node, and ¢ which
maps an edge to its target node. A graph homomorphism (¢,,¢.) : G — G2
is a mapping from graph G to graph G5 consisting of a pair of mappings
¢n : N1 = Ny and ¢, : E; — E5 such that the following diagrams commute:

B Ge By B [0 N
to i1 82 81
Ny No M — No

Consider the following graph G:

(1,O)
@/@
&)
We can define a graph homomorphism ¢ : G, — G, such that ¢, = {£; —
25722 — 26723 — 26724 — 27} and d)e = {(11701) — (15,05),(12,02) —

(I5,05), (I3, O3) = (Is, O¢), (Is, Os) = (I7,07)} so that ¢(G,) is included in
G,.




3.3 Object-Oriented Designs

Object-oriented designs must conform to certain structural and behavioural
principles. The structure of all objects in the design should uphold the principle
of encapsulation which requires that the format of data within each object is
hidden and accessible only through its message interface. This implies that the
value of each object attribute must be atomic and that objects refer to each
other via their object identifiers.

The behaviour of objects in an object-oriented design should uphold the
principle of atomic communication whereby a single system state transition,
occurring in response to a message m, may only affect the state of the target
of m. This implies that a design in which a single message affects objects other
then the target must be refined in order to decompose the single transition into
a sequence of transitions involving multiple messages.

3.4 Object Semantics

The meaning of an object is defined to be the calculation graph describing all
of its possible behaviours. We will give a precise object semantics using simple
constructions from category theory. In order to be self contained we include
definitions of category, terminal object, functor, and natural transformation.

A category consists of a collection of objects!, a collection of arrows and an
infix binary associative operator o. Upper case letters A, B, ... are used to range
over objects. Lower case letters f, g, ..., are used to range over arrows. Each
arrow has a domain object A and a range object B and is written f : A — B.
The operator o which maps a pair of arrows f : A - B and g : B — C to
an arrow go f : A — C. Every object A in a category has an identity arrow
id4 : A — A which is the left and right identity of o. An example category is Int
whose objects are integers. There is an arrow f : n — m in Int for every pair
of integers n and m such that n < m. Another example category is Calc whose
objects are calculation graphs and whose arrows are graph homomorphisms.

A terminal object in a category is an object A such that for all objects B
in the category there is an arrow f : B — A. The terminal object in Calc is
a graph with a single node labelled §) and a single edge (from @ to () labelled
with (@, (). For each object in Calc there is exactly one arrow which maps all
nodes to () and all edges to (0, 0).

A functor consists of a source category C and a target category D, and a
function F; which maps objects of C to objects of D, and function F5 which
maps arrows of C to arrows of D. For every C arrow f : A — B, Fy(f) :
Fi(A) — Fi(B) in D. For every C object A, Fy(ida) = idp,(a). For every pair
of composable C arrows go f, Fy(go f) = Fx(g) o F5(h) in D.

Given two functors F : C — D and G : C — D a natural transformation
v : F — G is defined as a family of arrows 4 indexed by objects A of C such
that v4 : C(A) — D(A) for every object A of C and the following diagram

IThe term object is used in the mathematical rather than the software sense.



commutes for all C arrows f: A — B:

C(4) —~ D(4)
C(F) D(f)

C(B) —~ D(B)
An object O is described in terms of its calculations. A collection of graphs
0(0),0(1),0(2),...,0(n) describe calculations arising out of sequences of mes-
sages of length 0,1,2,...,n. Consider two integers n and m such that n < m.
Both integers produce calculation graphs O(n) and O(m). If the object O is
well-behaved then there must be a graph homomorphism ¢ : O(n) — O(m).

This leads us to define objects as functors from the category Int, whose
objects are integers and morphisms f : n — m hold when n < m, to the
category Calc, whose objects are object calculation graphs and morphisms are
graph homomorphisms.

Let Obj be a category whose objects are functors from Int to Calc and
whose arrows are natural transformations between functors. An object in Obj
will be referred to as a behaviour and an arrow as a behaviour morphism.

Object-oriented design notations provide models which express objects in
terms of states, associations and messages. The semantics of these models is
provided by objects in Obj defined using standard categorical constructions.

3.5 Behaviour Refinement

Not all system designs are object-oriented. It is often convenient in the early
stages of development to ignore the principles of encapsulation and atomic com-
munication. By ignoring them it is possible to abstract away from computational
details.

During system development it is necessary to modify a design in order that
it conforms to the principles underlying object-orientation. Assuming that the
initial design is correct, any modifications will change the structure and com-
putation of the system but must preserve the overall behaviour.

This section defines behavioural equivalence in terms of behaviour isomor-
phisms. An equivalence relation on behaviours is then restricted to produce
a directed refinement relation defined as adjoint functors between behaviours
viewed as categories. A refinement relation can be used in system development
in order to transform an initial design into an object-oriented design.

Consider two behaviours O; and O, such that O; = O,. Every computation
performed by O; can be performed by O, and vice versa. This is defined by
requiring equivalent behaviours to be related by a behaviour isomorphism: there
are two behaviour morphisms v, : O; — O and v : Oy — O; such that
Y207 = 0144 and 1 02 = O244.

Software development is directed; we start with an initial design and wish
to terminate with an object-oriented design. Verification of the process must



ensure that all the initial behaviour is preserved (completeness) and that no
junk behaviour is introduced (soundness). Equivalence can be relaxed slightly
to reflect development as follows.

Any behaviour O can be viewed as a category in which the objects are
behaviour states and arrows are sequences of message pairs. Category-hood
follows from: every object ¥ has an identity arrow [|; and for every pair of
arrows f : Xy — Y9 and g : X9 — X3 there is an arrow go f : ¥y — X3 which
is constructed as f +Hg¢; and the associativity of o follows from the associativity
of #.

A refinement R is a functor R : O; — Oy between behaviour categories; Oa
is a more computational version if O;. In order to check the refinement there
must be an anti-refinement (or coarsening) U : Os — O;. U forgets the extra
computational structure in 0.

Let ¥; be a state of behaviour O; and ¥, be a state of behaviour O,.
Now consider two computations f : £; — U(Z2) and ¢g : R(X;) — ¥, which
are performed by behaviour O; and O, respectively. The refinement can be
expressed as a diagram:

f
E] —_— U(Zg)

(1)

R(El) —q> ZQ

The diagram states that performing a computation in the source object is the
same as translating the source state, performing the computation in the target
object and then translating the target state. This issues are similar to those
arising in compiler correctness [Sab97]. Given any ¥; the refinement is sound if
for every f there exists a g and is complete if for every g there is an f.

4 Object-Oriented Design Notation

Rather than use a graphical design notation such as UML to denote behaviours,
a textual design language is defined whose semantics is given by constructions
in Obj. In principle, there are many different possible choices of language
to denote constructions in Obj. One possibility is to use a form of modal
logic where statements in the logic express properties about multiple worlds. A
world can correspond to a set of object states and relationships between worlds
correspond to transitions arising due to messages.

A problem with this approach is that formal logic tends to have a flat struc-
ture and does not lend itself to modular system construction. In addition, one
of the strengths of formal logic, namely its ability to describe systems by ab-
stracting away from computational detail, can be a weakness when we know the
computational model which must be used.

Following Landin [Lan64] we take a different approach which is to use an
extension of A-notation as our design language. Since A-calculi are the canonical



programming languages this allows us to express the computational features of
the design whilst the extensions abstract away from unnecessary computational
design choices.

4.1 Behaviour Functions

A family of behaviours can be represented as a function with the following form:
M = Xii.Aig. Nig.Nig.N where i; 44 are parameters and N is the body. The
first parameter is supplied with a type tag a. The result is a function which
describes the behaviour of a class of objects. The second parameter is supplied
with an object tag 7. The result is a function which describes the behaviour
of a single object in all possible states. The third parameter is supplied with a
value v which is the state of an object. The result is a function which describes
the behaviour of a single object starting with a particular initial state v. The
fourth parameter is supplied with a set of messages I. The result is a set of pairs:
M(a)(T)(v)(I) = Uiz (P, 0i)} where P; are replacement behaviours and O;
are corresponding output messages. The replacement behaviours are functions
which determine the response to subsequent messages. Actor theory [Agh91]
[Agh86] uses the same approach to functionally model concurrent systems.
Suppose that ¥y is a set of states described by P, Y,; is the set of states
described by P; for i = 1,3 then the calculation graph which is described by the

application of P is:
(.Q @

(1,0)
e

Subsequent components of the graph are constructed using the appropriate re-
placement object P;. The body N of behaviour function handles messages by
performing case analysis on the value of m. The body is of the form:

case m of
p1— e
P2 — €2
Pn — €n
else e
end

where m is an expression whose value is a set of input messages?, p; are patterns
which match input messages, e; and e are transition expressions whose values
are pairs of replacement object behaviour functions and sets of output messages.

>To avoid notational clutter singleton sets are identified with their element and messages
whose source tag is unused are associated with their data compoment.

10



The operational semantics of case is as follows: m is evaluated and matched
against all of the patterns p;. Pattern matching produces a collection of vari-
able bindings whose scope is the corresponding transition expression e;. For
each pattern which matches, the transition expression is evaluated to produce a
collection of pairs (P, O). If no pattern matches then the optional default tran-
sition expression is evaluated. The result of evaluating case is the set of pairs
resulting from evaluating transition expressions whose patterns match the input
messages. A case expressions of the form case m of else e end is equivalent to
just the expression e.

A transition expression denotes a collection of pairs of the form (P, 0). In
principle a transition expression can be of arbitrary complexity, however the
following forms are frequently used:

e when ¢ where e is a transition expression and c¢ is a
boolean expression. The boolean expression acts
as a guard on the transition.

e whererec b where e is a transition expression and b is a collec-
tion of mutually recursive bindings whose scope is
e.

(P,0) where P is an expression denoting a replacement
behaviour function and O is an expression denot-
ing a set of output messages.

4.2 Example Behaviour Functions

A terminal object in Obj has no state and can respond only to an empty set of
messages. It is defined below and is unique up to isomorphism since we do not
specify a type or object tag:

letrec empty(() = {(empty, 0)}

Consider describing the behaviour of a single cell which stores a value. A cell
object can be sent a message set which changes the value of its value and a
message get which retrieves its value. The behaviour is as follows (note that we
omit the source and target tags from message patterns when they are not used):

letrec cell(@)(7)(v)(m) =

case m of

Set( ") = (cell(a)(1)(v'),0)
<t T, get> = (cell(a)(T)(v),{<T, 7", v>})
else (cell(a)(T)(v), D

end

A class is created by sealing the type tags which occur in the object calculations.
Suppose that a; is a type tag for a class of cell objects:

let cellClass = cell(ay)

11



A cell object is created by supplying the values of the attributes and the object
tag:
let ¢; = cellClass(m)(0)

Suppose that we wish to set the contents of cell ¢; to 1 and then to retrieve
its value. This is achieved by sending it messages from a hypothetical source
object 7p:

C1 (<T07T] s set(1)>) = {(627 @)}

ca (<70, 71, get>) = {(c2, {<71,70,2>})}

4.3 Message Handling

Computation occurs in an object-oriented system in terms of message passing. A
behaviour is expressed in the design notation as a function which maps incoming
messages to a pair (P,O) where P is a replacement behaviour and O is a set of
outgoing messages. Once the messages O have been produced, the behaviour is
immediately ready to handle new incoming messages as specified by P.

The basic model of message handling is therefore asynchronous. This de-
cision arises because object-oriented design notations can express both syn-
chronous and asynchronous message passing. Typically there are different no-
tations to express send message and wait for reply and send message without
waiting for reply.

Basing the semantic model on asynchronous message passing does not pre-
clude synchronous message passing since an asynchronous model which incorpo-
rates replacement behaviours can implement synchronous messages. A message
m € O is sent synchronously when P is a behaviour that waits for an incom-
ing message m' such that m' is the response to m. When m’ is received the
behaviour reverts to its original functionality.

Variations on the synchronous model described above are possible. For ex-
ample, the waiting behaviour may permit a sub-set of the functionality, or may
implement a priority based interrupt mechanism, or may allow the behaviour
to send messages to itself.

The example program development described in this paper uses a form of
synchronous message passing. It is convenient to add syntactic sugar to the
design notation capturing this form of message passing. The sugar is a form of
let expression occurring in the context of a behaviour function as follows:

letrec agent(a)(7)(o)(m) =
case m of

P —
let py < e

in e

end

12



A let expression occurs in the context of a behaviour, represented here by the
function agent. The expression e; is a set of messages or a single message which
is to be sent in response to receiving a message matching p;. The behaviour
agent may carry on handling messages®. Any incoming message matching p, is
a reponse to the messages e;; the response of agent is defined by es.

The semantics of let is defined by a syntax translation to the basic design

notation:
letrec agent(a)(7)(o)(m) =
case m of

p1 = (agent(a)(7)(0) + wait, e;)
whererec wait(m) =
case m of
p2 — €2
else (wait, ()
end

end

The locally created behaviour wait is used to extend agent with a handler for
the response to messages e;. Typically, when the response occurs, e, will revert
back to the original behaviour agent.

4.4 System Execution

A variety of system execution mechanisms are possible using object designs in
the format described above. Typically we wish to inject a single message into
a system and then observe the messages which emerge. Suppose that, given a
system of objects expressed as a behaviour function o and a set of messages m
that: o/m is a set of messages produced by restricting m to those whose targets
are in o; and, o\m is m — (o/m), i.e. the messages in m whose targets are not
in 0. The function exec is supplied with a system of objects 0 and a set of initial
messages m and produces a sequence of messages:

letrec ezec(o)(m) =
let (o', m') = o(m)
in (m'\0') : (exec(o)(m'/0"))

4.5 Semantics of Behaviour Functions

The meaning of a behaviour function is defined by a partial mapping from
A-terms to behaviours. Before defining the semantics we establish some ter-
minology. A set of behaviours which differ only with respect to object tags is
referred to as a class behaviour. A set of class behaviours which differ only with
respect to the class tags is referred to as a family of behaviours.

3In fact we only require agent to handle messages which it sends to itself. The extra
machinery for this feature is straightforward but would clutter the example so we omit it.

13



Suppose that M is a behaviour function M = Xij.\ig.Aig.Aig.N. Let [M(a)(7)(v)]

be the behaviour constructed by supplying all possible sequences of messages
to object 7 in state v. Let [M(«)(7)] be the behaviour constructed by sup-
plying the object 7 with all possible message sequences in all possible states.
Let [M(a)] be the class behaviour formed by supplying all possible instances
of a in all possible states with all possible message sequences. Finally, let [M]]
be the family of behaviours constructed by supplying M with all possible class
tags, object tags, states and message sequences.

4.6 Behaviour Morphisms

Arrows in Obj are families of graph homomorphisms which must be well-
behaved with respect to message sequences (see section 3.4). This is expressed
by stating that behaviour morphisms are natural transformations. Let O; and
O2 be behaviours (i.e. functors from Int to Cale). A morphism v : O — O,
from O; to Oy is a family of graph homomorphisms -, for each object in Int
such that for any arrow f : n — m in Int the following diagram commutes:

In

O1(n) — Oz(n)
O1(f) O2(f)
O1(m) —— O2(m)

Ym

An arrow is defined in the design language as a homomorphism implemented
as a pair of functions (f,g) where f maps sets of states and g maps pairs of
sets of messages. Behaviour transformation is performed by applying an arrow
to a behaviour to produce a new behaviour. The application of (f,g) to the
behaviour function M; produces a behaviour function M, which makes the
following diagram commute for any «, 7 and v:

M () (7) () — L2

My(a)(7)(v)
L1 [.1

G (f.9) G

Application of arrows to produce class behaviours and families of behaviours fol-
lows from an extension of the above definition. Given a homomorphism between
graphs we can uniquely extend this to a homomorphism between sets of graphs
(class behaviours) and then sets of sets of graphs (families of behaviours).

For each behaviour function there is exactly one possible morphism to the
terminal behaviour function empty: term = (K(0), K(0,0))

14



5 Systems

Object-oriented systems are compositional (feature 8). Composition can occur
in order to extend the possible system behaviour and also occur in order to
restrict possible system behaviour. Extension can occur when new methods or
attributes are added to a class. Extension also occurs when partial behaviours
are combined to produce a “larger” behaviour (feature 9). Restriction occurs
when behaviours are composed and required to behave consistently (feature 11).

This section shows how systems are constructed from sub-systems. The
system building operations are defined in terms of standard constructs from
category theory. The design language is extended with system building opera-
tors.

5.1 Products

Given objects A and B, a product is an object A x B together with two arrows
m : AXx B — Aand my : AXx B — B such that for any object C with morphisms
f:C — Aand g:C — B there is a unique arrow u : C — A x B such that the
following diagram commutes:

Following the standard product construction for two graphs (see [Bar90]),
products in Calc are constructed as follows. Given two calculation graphs
G1 and G, a product G; X G is a calculation graph whose nodes and edges
are labelled with pairs of labels from G; and G5 respectively. For every node
n € GG; and node ny € G5 there is a node n € G; x G2 such that label(n) =
(label(ny), label(ns)). For every edge e1 € G and edge ex € G there is an edge
e € G1 X GGy such that label(e) = (label(eq), label(ez)). The source and target
nodes of e correspond to the pairing of the corresponding source and target
nodes of e; and es. The projection arrows are graph homomorphisms which
project onto the first and second co-ordinates of the labels respectively.

This leads us to define product of two behaviours O; and O, for all n as
follows:

(O] X Oz)(’n) = O] (n) X Og(n)

Unfortunately, this can produce inconsistent system states. A product state
could be formed by composing two views of the same object:

({<a,m,{z— 1}>} {<a, 7, {z — 2}>})
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in which the object 7 associates the attribute z simultaneously with the values
1 and 2. Furthermore, a tree structure is imposed on system states which is
undesirable since system composition becomes non-associative: (O; x O2)x O3 #
01 X (02 X Ofg)

We propose a structure for system composition which ensures consistent
states. When two systems are composed, the resulting behaviour has the
largest consistent state. Let merge be the calculation graph homomorphism
(merge,, merge,) which is defined as follows:

merge; (X1,X9) = X1 M Xy

mergeQ((Ih()]L(Ig,O])) = (I] UIQ,O] UOQ)

The composition of behaviour functions is defined by a design language operator
x as follows:
[My x M>] = merge([M1] x [M2])

The combination of behaviour composition and consistency allows a system
development technique to be compositional. For example we may define two
views of the same object. Each view is specific with respect to a different aspect
of the object’s behaviour, otherwise each view leaves the object free to perform
any behaviour. The composition of the two views, as defined by a product,
allows each view to constrain the free behaviour of the other.

Object-oriented design notations define partial object behaviours (feature
9). A partial behaviour describes the state changes and messages which occur
when a message is sent to an object. The description is partial because it does
not apply to all possible system states. A total description is constructed by
composing a sufficiently complete collection of partial descriptions.

The product operator x combines partial behaviours using the morphism
merge. For example, a two-dimensional point object can be defined as the
composition of independent behaviours describing the z-view and y-view re-
spectively.

5.2 Coproducts

Given two objects A and B, a coproduct is an object A + B together with two
object morphisms t; : A - A+ B and 13 : A — A+ B such that for any object
C and arrows f: A — C and g : B — C there is a unique arrow u: A+ B — C
such that the following diagram commutes:



A coproduct of two calculation graphs G; and G5 in Calc is a calculation graph
G1 + G5 which contains all of the nodes and edges of G; and G2. The nodes
and edges are labelled in order to record whether they originated from G; or
G>. This allows the arrow u to test the origin of a node or edge in order to
apply the appropriate arrow f or g. Behaviour coproducts are defined for all n
as follows:

(O] + Oz)(’n) = O] (n) + 02 (n)

Coproducts ensure that the calculations performed by the component objects
are represented separately by labelling the states and edges. In an object design
we will often not be interested in the origin of a transition and can therefore
lose the labels which encode this information. The result is a restriction on the
coproduct which produces an object for which we cannot necessarily guarantee
a unique arrow u.

The implication of a non-unique arrow u is that the design is non-deterministic
which is a required feature (feature 6) of object-oriented design systems. This
leads to an operator + which is used to merge two objects to produce a (possi-
bly) non-deterministic composite object.

Suppose that G1 + G is a coproduct of G and G5 such that nodes and edges
from G; and G are labelled pink and blue respectively. A de-labelling operation
can be expressed as a morphism delabel defined as a forgetful graph homomor-
phism (strip, strip) which is defined as strip(pink(v)) = v and strip(blue(v)) = v.
Given object calculation functions M; and M, then we define the operator +
as follows:

[[Ml + MQ]] = delabel([[Ml]] + [[MQ]])

5.3 Equalizers

Object-oriented design notations often allow the engineer to produce different
views of the same component using different modelling notations. The behaviour
of the resulting system is constructed as the largest set of behaviours consistent
with all possible views.

Consistency between views is achieved using equalizers. Let A and B be
two objects and let f : A — B and g : A — B be two object morphisms. An
equalizer of the arrows is an object E together with a morphism e : E — A
such that foe = goe and for any object E' and arrow h : E' — A such that
foh = goh there is a unique arrow u such that the following diagram commutes:

f
E—E>A—q>B
‘ k
u 'V
v h
El

In Calc an equalizer between two graph homomorphisms f : G; — G5 and
g : G — (G5 is a graph G and a homomorphism e : G — G such that e
picks out the largest sub-graph of G; which produces the same image under f
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and g. If the equalizer is defined in terms of the largest sub-graph then the
homomorphism u is unique up to isomorphism.

The design language provides a builtin operator eq which constructs equal-
izers. If M; is a function implementing an object and f, g are pairs of functions
from M; to another object Ms then (N, e) = eq(M1)(f)(g) such that [N] and
e is an equalizer for [M;1], [M.], f and g.

Equalizers can be used to force consistency. System design often leaves
the behaviour of a local component under-defined by permitting a variety of
computations. When components are composed, the possible computations are
reduced by requiring pair-wise consistency. The result is still under-defined,
however certain illegal computations are ruled out.

An example of consistent behaviour is constructed using a categorical con-
struction called a pullback. Consider three objects O, Oy and Os:

0, _f.o
9
0-

where the behaviour of O; and Oy can be understood in terms of O. A pull-
back is an object O' with two arrows k and [ such that the following diagram
commutes:

()]_f.()

0" —= O
and for any other object O" with arrows k' : 0" — O7 and I' : O" — O, for
which the diagram commutes there exists a unique arrow u : 0" — O'.

The pullback object O' is the largest object behaviour which makes the
arrows fok and gol equal. Therefore pullback objects can be used to construct
the smallest composite behaviour from O; and Oy which makes the behavioural
views f and g equivalent. For example, this may arise when requiring that an
argument value in two different method calls must be the same. This occurs in

an object-oriented design language such as UML where a variable occurs on a
design more than once.

6 System Behaviour

A system is composed of multiple objects. Each object is designed by providing
multiple views of its behaviour. The different views of an object’s behaviour
are not independent. The dependencies are constraints which hold between
the different views and which serve to rule out possible combined behaviours.
The constraints can be viewed as simultaneous equations affecting the overall
behaviour of the system. A solution to the equations is a system behaviour
(feature 12). This section describes how constraints on system components
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are expressed as diagrams in Obj, defines system behaviour as a limit on a
system diagram and describes an algorithm for constructing limits in the design
language.

6.1 System Diagrams

The behaviour of a system is described by an object in Obj. Objects in Obj
are non-deterministic partial views of object systems. Consistent with current
object-oriented development processes, we claim that the meaning of an object-
oriented design is the composition of the meanings of the constituent design
models.

Systems consist of a collection of co-ordinated objects. An overall system
transition will typically involve a collection of controlled individual object tran-
sitions. Such co-ordination implies a constraint on the free behaviour of the
individual objects. The constraints can be expressed as behaviour morphisms
which express how one behaviour can be interpreted in terms of another.

A single behaviour may be the source of multiple morphisms. This may
be used to “glue” together individual behaviours and also to require them to
interact. A single behaviour may be the target of multiple morphisms. This may
be used to require individual morphisms to behave consistently under certain
circumstances.

A system is expressed as a collection of Obj objects and morphisms between
them. A system diagram is a graph whose nodes are labelled with behaviours
and whose edges are labelled with behaviour morphisms.

6.2 Limits of Diagrams

In order to solve the equations we use the categorical construct of limits which
has been proposed by Goguen in [Gog90] as a means for expressing the behaviour
of a system. In general, a diagram A is a graph with a mapping from the nodes
of A to objects and a mapping from the edges of A to morphisms between the
source and target objects. Let A,, represent an object N in the diagram A and
A, represent a morphism. A cone on a diagram A is an object A (which is
not necessarily in the diagram) together with, for each object A, a morphism
Yn : A = A, such that for all edges e : n — m in A the following diagram
commutes:

A cone on a system expressed as a diagram is a composite behaviour which is
consistent with the behaviours on the diagram. Notice however, the there is no
condition on which particular behaviour to pick for the cone. There are many
possible choices for cones including the behaviour with no states or transitions
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(this is an initial object which can always be mapped to another behaviour using
the empty morphism).

A cone arrow on a diagram A from cone v, : A —» A, on A to cone
v+ A = A, is an object morphism «y : A" — A such that for all nodes n in A
the triangle below commutes:

Cone arrows allow us to place restrictions on cones. For example if there is a
cone arrow v : A’ = A we know that the behaviour described by A’ is more
restricted than that described by A.

A limit on a diagram A is a cone A, on A such that for any other cone A’ on
A there is a unique cone arrow u : A’ — A. The definition of a limit captures
the behaviour of a system because it must contain all of the behaviours on the
diagram and must obey all of the constraints on the diagram.

6.3 Constructing Limits

A standard result of category theory is that any category having a terminal
object, binary products and equalizers of pairs of arrows has all finite limits
[Ryd88]. This result allows the construction of a limit on a diagram providing
that these simple properties hold in the appropriate category. An algorithm for
constructing limits of object-oriented design diagrams is described in [Cla99b].
The algorithm constructs limits incrementally using a terminal object, products
and equalizers.

7 An Example Design

This section shows how the design language can be used to give a meaning
to a small object-oriented design expressed as a static class diagram and a
collection of dynamic object interaction diagrams. We present a requirement
for the example application, produce a collection of object-oriented models and
then construct the corresponding behaviours.

7.1 Software Requirements

Software to control a library is required. The library has readers who may
borrow copies of books. At any given time each reader has a number of books
on loan. New readers may join the library at any time. The library has a
number of copies of books. Each book has a unique title. A copy is either on
the shelf in the library or is being borrowed by a reader. Libraries operate a
shares readership policy whereby joining one library permits readers to borrow
books at all participating libraries.

20



7.2

An initial analysis of the requirements leads us to design a simple structure
for a system. A library system consists of a single object with a state (R, B)
consisting of readers R and books B. Each reader is a pair (n,C') where n is a
name and C is a set of borrowed copies. Each book is a pair (n,i) where n is a
name and i is the number of shelved copies.

In the initial system design we will treat R and B as lookup tables. Let T
be a table implemented as a set of pairs containing keys and values. The keys
of a table are produced by the operator dom. Table lookup T e k is defined and
has the value v when there exists exactly one pair (k,v) € T. Table extension
is defined as: T[k — v] = T U {(k,v)}. The following sugar for adding and
removing elements in a table will be useful:

Initial Behaviour

_ [ Tk Teku{v}]
T[k@v]—{ T[k:T°k+U]
Tk Tek—{v}]

T[k@v]E{ Tk— Tek—uv]

when isSet(T o k)
when isInt(T e k)

when isSet(T o k)
when isInt(T e k)

Initial system behaviour can be decomposed into the sucess and failure modes.
The design operator + allows us to define these modes separately and then
combine them.

letrec libOk(a)(7)(R, B)(m) =

case m of

addReader(n) — (libOk(a)(t)(R[n — (], B),0) when n ¢ dom(R)
addBook(n) — (libOk(a)(7)(R, B[n +— 0]),0) when n ¢ dom(B)
addCopy(n) — (libOk(a)(7)(R, B[n & 1]),0) when n € dom(B)
borrow(ny, na) —
(HbOK(@) () (Rl & na), Blns © 1)), 0)
when n; € dom(R) & no € dom(B)

return(nq, ny) —
(libOk(a)(7)(R[m © n»], Blny & 1]),0)
when ny € dom(R) & na € dom(B)
else (libOk(a)(7)(R, B), )

end

Each of the state transitions in libOFk is guarded by a condition. If any of these
conditions do not hold then the library should not change state. In practice,
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such error transitions would send a message back to the source of the message.

letrec libFail(a)(T)(R, B)(m) =
case m of
addReader(n) — (libFail(a)(7)(R, B),0) when n € dom(R)
addBook(n) — (libFail(a)(7)(R, B), ) when n € dom(B)
addCopy(n) — (libFail(a)(7)(R, B),0) when n ¢ dom(B)
borrow(ny,n2) —
(b Fail(a) (1)(R, B), 0)
when n; ¢ dom( ) | ne & dom(B)
return(nq, ny) —
(libFail(a)(T)(R, B), )
when n; ¢ dom(R) |
else (libFail(a)(7)(R, B), )

end

ny & dom(B)

The initial design is then constructed by composing the two class alternative
class behaviours: library = libOk + libFail

7.3 Refinement Of Initial Behaviour

Although the initial design specifies the correct system behaviour it fails to
qualify as an object-oriented design. The reason for this is that the system
state is not structured as a collection of communicating objects.

A library object contains a set of books, each book is a pair (n,7). Pairs are
structured data which can only exist in an object-oriented program as an object.
Furthermore, the initial design does not uphold the principle of encapsulation.
The representation of books (as pairs) is known to the library object.

The initial design is refined to become more object-oriented. The state
must, be changed to implement all structured data components as objects. The
behaviour must be changed correspondingly to uphold the principle of encapsu-
lation.

Given a state (R, B) in the source behaviour, the refinement acts as identity
on R and transforms B = {n; — iy,...,n, > iy} into a set of object identifiers
{71,...,m7} and introduces new objects 7 — (n1,i1),...,7 — (ng,i) to the
system state. A book behaviour is as follows:

letrec book(o;,')(r)(n,i)(m) =
<T/;T, getName> — (book(a)(7)(n, i), {<1,7",n>})
borrow — (book(a)(7)(n,i — 1),0) when i > 0
addCopy — (book(a)(7)(n,i + 1), 0)
else (book(a)(7)(n,i),0)

end

The successful library behaviour is modified to take account of book objects.
The transitions for libOk are redefined as follows. There is no change to the

22



addReader transition. The initial design uses set membership to test for the
existence of a book. This must now be implemented as a private method of the
library:

<7, 1, findBook(§,n)> — (libOk(a)(7)(R, B),{<7, 7", noBook>})
<7, 7, findBook({o} U S,n1)> —
let ny < <7, 0, getName>
in if n; = ne
then (libOk(a)(T)(R, B),{<T, 7, book(0)>1})
else (libOk(a)(T)(R, B),{<7', T, findBook(S,n1)>})

When a library recieves an addBook message with a name n which does not
already exist then a new book object is created. We assume that 7" is a new
object identifier and that g is the type tag for books:

addBook(n) —
let noBook < <, T, findBook(n)>
in (1ibOK(0)(7) (R, B U {7"}) X book(B)(~")(n, 1), )

A copy of a book may be added when there is a book currently registered in the
library. The book is found using findBook and then is sent a message addCopy:

addCopy(n) —
let book(b) < <, T, findBook(n)>
in (libOk(a)(7)(R, B), {<T,b, addCopy>1})

A copy is borrowed by finding the book using findBook and then modifying
both the reader and the book. The reader can be modified directly because the
representation is known to the library object. The book is modified by sending
it a message borrow.

borrow(ny,ng) —
let book(b) < <, T, findBook(nzy)>
in (libOk(a)(7)(R[n1 @ nao], B),{<T,b, borrow>})
when ny € dom(R)

Correspondingly, a copy is returned by directly removing the copy from the
reader and sending a return message to the book.

return(ni, ny) —
let book(b) < <, T, findBook(nzy)>
in (libOk(a)(7)(R[ny € nal, B),{<7,b, addCopy>1})
when n, € dom(R)

This completes the refinement of the behaviour libOk. The behaviour libFail is
refined using the same principles using the outcomes from set membership of R
and sending findBook messages.
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7.4 Correctness Proof

In order to show that the refinement is correct we must show that it is sound
and complete as described in section 3.5. In particular we must show that the
diagram 1 holds.

The following source state is used: {7 — (R, B)} where R is a set of readers

and B is the set {ny — i1,...,n, — ir}. The corresponding target state is
{r = (R,T)}UO where T is the set of object identifiers {r,..., 7} and O is
the state {71 — (n1,41),..., 7% = (ng,ix)}-

To prove soundness and completeness with respect to diagram 1 we must
establish that given the source state, for every arrow g there is an arrow f
which makes the diagram commute and vice versa. This is done for each system
function independently. The format of each proof is similar; the rest of this
section states the conditions for each function and proves the first two sound
and complete.

In order that the refinement of addReader is sound and complete we must
have the following;:

addReader(n)
{r = (R,B)} {r = (R[n~ 0],B)}

{r—= (R, T)}UO = (R[n— 0], T)}U0O

- . {7-
addReader(n)
The proof of 2 follows from the definition of the source and target behaviours
of the refinement. The refinement of addBook is sound and complete when:

addBook(n)
{r— (R,B)} {r = (R,B[n~0])}

{r=(RT}IUVO —————— {7~ (R TUT")}U
coaddBook(n) O[r" + (n,0)]

The proof of 3 is by induction on the size of the set B and the length of the
computation c¢. There are two cases to consider:

1. When B = ) the computation ¢ is [noBook] and therefore the proposition
holds by definition.

2. When B is non-empty then we assume that B = {n' — i'} U B’ for
some n' # n and that the proposition holds for B, therefore there is some
computation ¢’ such that there is a computation ¢’ : ¢’ o addBook(n) which
is both sound and complete with respect to the state {r — (R, B')}. By
the definition of both behaviours there is a computation:

¢ = [findBook({7'},n), getName, n', noBook]

24



such that ¢’ o ¢’ o addBook(n) exists.

Therefore we conclude that the refinement of addBook is sound and complete.
The conditions for the soundness and completeness of refinements for system
function addCopy is expressed as diagram 4.

addCopy(n;
{r s (R.Blny - i)} 0 L s (R Biny 1))
(4)
{r— (R,T)}U {7+~ (R,T)}U
Olrj = (ng,is)] coaddCopy(n;) Olrj v (nj,ij + 1)]

The condition for borrow is expressed in diagram 5.

borrow(ni,ns )

{r— (R,Blny ®i])} {7+ (R[m @ ns, Blna © 1))}
(5)
{r= (R,T)}U {r — (R[n1 ®ny, T)}U
Olrs = (na,4)] coborrow(ny ,ng) Ofrs = (n,i — 1]

The proof of 4 and 5 are by induction on the size of the set B. The condition
and proof for return are similar to those for borrow.

7.5 Completing the Refinement

The behaviour defined in section 7.3 is a refinement of the initial behaviour, but
is not an object-oriented behaviour. The reader component R of the system
state must be refined to a set of objects. This section outlines the refinement
step. A reader behaviour is defined as follows:

letrec reade:'(a)(T)(mC)(m) =
<T’;T,getName> — (reader(a)(t)(n,C),{<1,7",n>})
borrow(c) — (reader(a)(7)(n,C U {c}),)
return(c) — (reader(a)(r)(n,C — {c}),0)
else (reader(a)(7)(n,C),0)

end

The libOk behaviour is refined as follows. The transitions for findReader, ad-
dBook and addCopy are unchanged. Since readers are represented as objects,
a new message handler findReader is added which behaves like findBook. The
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message handler for borrow is refined to use both findBook and findReader:

borrow(ny,ng) —
let book(b) < <, T, findBook(nzy)>
in let reader(r) < <7, T, findReader(n,)>
in (libOk(a)(7)(R, B), {<T,b, borrow>, <t,r, borrow(ns)>})

The message handler for borrow is modified as follows:

return(ni, ny) —
let reader(r) < <7, 7, findReader(n,)>
in let book(b) < <, T, findBook(nz)>
in (libOk(a)(7)(R, B), {<T,b, return>, <, r, return(nz)>})

7.6 Behavioural and Structural Analysis

The refinement described in sections 7.3 and 7.5 produce an object-oriented
behaviour description. Such a behaviour is analysed for common features which
can be factored out. Structural and behavioural properties factored in this way
indicate that inheritance may be used when the behaviour is implemented using
a concrete programming language.
Consider the behaviours book and reader. Both provide a state component

n which is used to index into collections of behavioural instances using the
message getName. This indicates that there is a common behaviour named and
projection morphisms:

named

<

v
v \
v
book reader

In an implementation named will occur as a super-class of both book and reader.
The definition of named is as follows:

letrec named(fa)(r)(n)(m) =
<7'I’77'7 getName> — (named(a)(7)(n),{<7,7",n>})
else (named(a)(7)(n),0)

end

Analysis of libOFk indicates that the message handlers for findBook and find-
Reader are very similar. Subsequent definition of the common behaviour named
suggests that both findBook and findReader can be replaced by a single be-
haviour defined entirely in terms of named.

Consider a behaviour functor F; which acts on system states by projecting all
book objects to equivalent named objects by forgetting the copy count. F) acts
as identity on all arrows except that findBook(O,n) is replaced by find(O,n),
book(b) is replaced by found(b) and noBook is replaced by notFound.
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In order for F7 to be valid, it must be sound and complete with respect
to indexing into collections of books. Therefore, for any system state X, the
following diagram must commute:

[findBook(O,n)] +c .

B o mwa" ™

Similarly, a behaviour functor F5 is defined to project states and calculations
involving indexing readers. Both sets of indexing calculations are produced by
the following behaviour:

<7r', 7, find(0,n)> — (libOk(a)(7)(R, B),{<7, 7', notFound>})
<t',7, find({o} US,n1)> —
let ny < <7,0, getName>
in if n; = ny
then (libOk(a)(7)(R, B),{<1, 7', found(o)>})
else (libOk(a)(7)(R, B),{<7', 7, find(S,n1)>})

The shared readership policy is expressed as behaviour morphisms which require
all libraries to share the same R component. Consider the behaviour cell which
contains a single value and responds to messages which set and access the value.
Two libraries can be projected onto cell:

liby liby

v
71 vo2
v

cell

The object morphisms 7; and - project both libraries onto a single cell whose
object identity is the same in each case and whose value is the readers of both
liby and liby. Library messages which access and update readers are mapped
by 1 and 7, to corresponding access and update messages from cell. All other
library messages are ignored by cell since they do not change the value of the
readers.

System behaviour is constructed by taking a limit on a diagram containing
all of the component behaviours and constraints between them. The constraint
expressed using y; and 7, above requires that the readers in lib; and lib, are
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always the same. This is shown as S on the pullback diagram:

S
v \
A\
v
liby liby
v
Y1 A )

v

cell

There are a number of implementation choices for the shared readership policy
whose behaviour is defined by S. If the programming language supports shared
data between class instances (such as static in Java) then the R component
of a library class may be shared. Alternatively, a library may be able to access
all other instances of the library class and therefore send appropriate messages
when its readers are updated. Finally, a controller object may be used to contain
all libraries and federate messages between them. The controller would be
responsible for ensuring that all libraries have consistent readers.

7.7 Implementation

Once the library system has been specified, refined and analysed it is possible to
implement the behaviour as an object-oriented program. Any object-oriented
language is suitable. Each independent behaviour is defined as a class. The
state components of the behaviour are defined as fields and the message handlers
are defined as methods. Any common behaviour is defined using inheritance.
The implementation of the library system is defined in appendix A. The main
features of the implementation are:

e The class Named defines the common behaviour for readers and books.

e The attribute readers in Library is declared static so that libraries
implement the shared readership policy.

e The class Library defines a method find which is used to index both
readers and books.

8 Conclusion

8.1 Review

The aims of this work are to define a semantic framework which is suitable
for rigorous object-oriented development. In order to do this, we have taken a
behavioural view of object-oriented systems and defined object behaviour as a
graph of states and transitions arising from message passing. Object behaviours
have been defined using standard constructions in category theory. Systems be-
haviours arise from the solution to a collection of simultaneous equations which
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constrain a collection of freely defined object behaviours. We have shown that
such constraints can be expressed as behaviour morphisms on a diagram whose
solution is constructed as a limit. Behaviour equivalence and refinement has
been defined using isomorphisms and adjoint functors respectively. Refinement
is a relation between a source and target behaviours whereby both have the
same functionality and the target is closer to an implementation in terms of
object-oriented design principles.

A notation for expressing object designs has been proposed as a A-notation
extended with built-in operators for system construction. The semantics of the
notation is given by constructions in category theory. The notation has been
used to express a small but representative object-oriented design.

The design notation is highly expressive and facilitates a variety of ap-
proaches to system design. In particular it allows systems to be designed using
modular units and then composed using the operators x and +. The system
constraints are enforced using an operator eq.

Section 2 lists a collection of features which are essential to object-oriented
design. Current graphical object-oriented design notations offer these features
which are the motivation for the behavioural model of object systems defined in
section 3. This leads to the claim that the semantics of current object-oriented
design notations are represented by the model and therefore the design notation
which is defined in this paper.

8.2 Analysis

The model which is proposed for object-oriented systems is universal and repre-
sentative of other approaches to the semantic definition of dynamic systems. In
particular, concurrent object systems are often expressed as labelled transition
graphs. The use of such a semantic model to express the semantics of current
graphical design notations is new and offers potentially fruitful feedback for the
invention and modification of such notations.

There is always a tension between the simplicity of an informally defined
notation (as represented by the class of graphical design notations) and the
notational overload of a rigorously defined notation (as represented by the design
notation used in this paper). The use of A-notation can offer some help in this
regard since it is higher-order (and can therefore encode very high-level control
abstractions) and has a distinguished history of being sweetened through the
use of syntactic sugar.

A question arises regarding the expressiveness of the proposed notation with
respect to logic notations. Certainly with respect to complex control issues,
A-based approaches permit the construction of respectable control abstractions
such as replacement behaviours, which are not readily available in standard log-
ics. By making the A-notation non-deterministic, either as part of the execution
mechanism or by encoding it using sets, we claim that many of the useful prop-
erties relating to logic based abstraction from computational mechanisms are
inherited by a notation such as that proposed in this paper.
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It is envisaged that the semantic model and notation which is defined in this
paper would be used in conjunction with the graphical design notations currently
available. The benefits of graphical notations lie in their ease of assimilation,
a property which arises directly from their approximate nature. A suitable
development process may be to use graphical notation as a first attempt at
designing a system and then to clarify the meaning of system components and
system composition using the model and notation proposed here.

8.3 Related Work

The analysis and semantic foundations of object-oriented designs and develop-
ment is currently an active research area [Rui95]. For example [Cit95] shows
how message diagrams (equivalent to UML collaboration diagrams) can be given
a semantics in terms of a partial order on events; [Bou95] shows how the speci-
fication language Larch can be used to give a formal semantics to static object
diagrams; and, [Mor96b] [Mor96a] can be used to produce executable object-
oriented designs.

The use of category theory to capture the essential characteristics of systems
dates back to Goguen [Gog75] who updated the approach to address concurrent
object-oriented systems in [Gog90]. Sheaf theory is a general mechanism for
making global observations about locally defined phenomena. In addition to
Goguen, sheaves are used in [Mal96] and [Ehr91]. Category theory is used to
express static properties of object-oriented designs in [Pie96]. Kent [Ken99]
[Ken97] uses a graphical notation called constraint diagrams to express system
properties. The diagrams achieve a similar aim to equalisers as used in this
paper.

The use of operators such as x and + to construct system descriptions dates
back to the specification language clear [Bur77b] which lead to the OBJ family
of specification languages [Gog99] which differ from the approach taken in this
paper by using a semantic framework based on rewriting terms in order sorted
equational logic.

A related approach which addresses object-oriented system execution is the
use of modal logics; examples are Object Calculus [Bic97], [Cla97] and [Lan98].
This approach differs from that taken here in that it uses a modal logic frame-
work to express and analyse object execution. By abstracting away from no-
tational issues we are able to select a notation (executable or otherwise) as
appropriate.

A number of researchers such as [Dup97] have used first order logical nota-
tions for expressing the semantics of object-oriented design notations. Although
this approach will capture the behaviour of abstract systems, these notations do
not have an executable semantics and are weak at capturing temporal system
properties.

A number of researchers such as [Par83] and [Luq93] advocate program trans-
formation and step-wise program refinement in the system development process.
Transformation of programs in a functional notation started with [Bur77a] and
continued with [Bir87]. Refinement of UML object-oriented designs using Z
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and the Object-Calculus is described in [Eva98] and [Eva99]. Both of these
approaches use logic as the design language this is contrasted with the more
computational approach taken in this paper. A general approach to program
refinement is described in [Mor90].

8.4 Future Plans

A next step in this work is to develop a proof theory for the design notation
which can be used to establish system properties. The theory will be used as the
basis of an interpreter for the language since design animation can be viewed as
a restricted form of proof. Other types of property include: querying whether or
not a particular message is ever generated, identifying the circumstances under
which a system state arises, and establishing that the system is deterministic
and therefore ready for translation to a concrete programming language. The
work described in [Cla99a] discusses how properties of behaviour diagrams can
be established.

A proof theory is also required in order to establish a rigorously defined
development process. This could take the form of a refinement relation between
system diagrams. One diagram can be viewed as a refinement of another when
determinacy and execution detail is increased whilst remaining consistent with
the original behaviour. The work described in [Cla99a] gives an example of how
an object-oriented design expressed as a collection of A-function behaviours can
be refined.
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A Library Implementation in Java

class Named {
private String name;
public Named(String name)
{ this.name = name; }
public String getName()
{ return name; }

}

class Book extends Named {
private int copies = 0;
public Book(String name)
{ super(name); }
public void borrow()
{
if(copies > 0)
copies = copies - 1;
else throw new Error("no copies left");
}
public void addCopy()
{ copies = copies + 1; }

}

class Reader extends Named {
private Vector copies = new Vector();
public Reader(String name,Vector copies)
{
super (name) ;
this.copies = copies;
}
public void borrow(String name)
{ copies.addElement(name); }
public void ret(String name)
{ copies.removeElement(name); }
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class Library {
private static Vector readers = new Vector();
private Vector books = new Vector();
public void addReader(String name)
{ readers.addElement(new Reader(name,new Vector())); }
public void addBook(String name)
{ books.addElement(new Book(name)); }
public void addCopy(String bookName)

{
Book book = (Book)find(bookName,books);
if (book != null)
book.addCopy () ;
else throw new Error("cannot find book");
}
private Named find(String name,Vector table)
{
Named named = null;
for(int i = 0; (named == null) && (i < table.size()); i++)
Named n = (Named)table.elementAt(i);
if(n.getName() .equals(name))
named = n;
}
return named;
}

public void borrow(String readerName,String bookName)
{
Reader reader = (Reader)find(readerName,readers);
Book book = (Book)find(bookName,books);
if((reader '= null) & (book !'= null)) {
reader.borrow(bookName) ;
book.borrow();
}
else throw new Error("illegal name in borrow");
}
public void ret(String readerName,String bookName)
{
Reader reader = (Reader)find(readerName,readers);
Book book = (Book)find(bookName,books);
if ((reader '= null) & (book != null)) {
reader.ret (bookName) ;
book.addCopy() ;
}

else throw new Error("illegal name in ret");
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