
A Semantic Framework for Object-OrientedDevelopmentTony Clark (a.n.clark@comp.brad.ac.uk)April 14, 1999AbstractA categorical model of object-oriented systems is proposed and de-noted using a �-calculus. The model is used to provide a de�nition ofdesign re�nement. An example system is rigorously developed in Javafrom an initial user requirements by re�ning an initial design.Contents1 Introduction 12 Object-Oriented Design Features 23 Object Behaviour 33.1 Object States . 33.2 Object Calculation Graphs . 43.3 Object-Oriented Designs . 63.4 Object Semantics . 63.5 Behaviour Re�nement . 74 Object-Oriented Design Notation 84.1 Behaviour Functions . 94.2 Example Behaviour Functions . 104.3 Message Handling . 114.4 System Execution . 124.5 Semantics of Behaviour Functions 124.6 Behaviour Morphisms . 135 Systems 145.1 Products . 145.2 Coproducts . 155.3 Equalizers . 161

6 System Behaviour 176.1 System Diagrams . 186.2 Limits of Diagrams . 186.3 Constructing Limits . 197 An Example Design 197.1 Software Requirements . 197.2 Initial Behaviour . 207.3 Re�nement Of Initial Behaviour 217.4 Correctness Proof . 237.5 Completing the Re�nement . 247.6 Behavioural and Structural Analysis 257.7 Implementation . 278 Conclusion 278.1 Review . 278.2 Analysis . 288.3 Related Work . 298.4 Future Plans . 30A Library Implementation in Java 331 IntroductionCurrent object-oriented design notations such as OMT [Run91], Booch [Boo94]and UML [UML98] are syntax-bound and semantic-free in the sense that theytypically employ a large and rigorously enforceable collection of constructionrules, but rarely provide a model to explain what is being constructed. Whilstthis omission clearly does not prevent such notations being used e�ectively inthe development of object-oriented software systems, it must raise questionsregarding the long-term viability of notations which are not adequately anchoredin a semantic theory.The aims of this work are to provide a semantic framework suitable for suchnotations and which can form a basis for rigorous object-oriented development.Our approach is to take as a starting point the computational behaviour ofobjects and to provide a semantic model of incremental system development.A system is de�ned as the solution to a set of simultaneous equations whichspecify its computational behaviour and structure. We use category theory[Bar90] [Ryd88] [Gog89] as a tool to express the equations since this theory pro-vides standard constructions and results which conveniently express semanticswithout getting unnecessarily entangled in issues of syntax.An object-oriented design can be characterised with respect to the structureof system states and a given set of atomic computation steps. An initial systemdesign tends to abstract away from structural and computational detail. One ofthe aims of object-oriented system development is to re�ne an initial design into2

an object-oriented design. This paper proposes a de�nition of object-orientedre�nement which supports veri�able step-wise system development.This paper is structured as follows. Section 2 identi�es a number of keyfeatures which are common to all object-oriented design notations. These fea-tures are the motivation for the design of a behavioural object model describedin section 3. The model expresses behaviour as objects in a category and re-�nement as a relationship between objects in a category. A notation based onthe �-calculus is proposed for denoting behaviours in section 4. Systems arebuilt from collections of behaviour descriptions expressed as standard categor-ical constructions de�ned in section 5. A system is a collection of constraintson possible object behaviours. The overall system behaviour must satisfy all ofthe constraints. A standard result from category theory is described in section6 which provides an algorithm for �nding a system behaviour. Section 7 showsan example object-oriented design using all the design features de�ned in thepaper. Finally, section 8 analyses the work, discusses related work and outlinesfuture research.The paper aims to be self contained with respect to the necessary categorytheory. Readers are directed to [Pri97] for an overview of graphical object-oriented design notations and to [Fie88] for an overview of �-notation and func-tional programming.2 Object-Oriented Design FeaturesObject-oriented designs, as expressed using a typical design notation such asUML, consist of a number of di�erent models. Each model is used to expressa di�erent feature of the required system. Although the design notations dif-fer syntactically, we propose that there are a number of characterising featurescommon to all object-oriented systems. This section lists these features whichare then formalised in the rest of the paper. A more detailed analysis of object-oriented features can be found in [Weg87], [Mey88], [Cla96], [Cla94]. The fea-tures listed below are discussed at length in [Cla99b].Design Feature 1 Objects have state consisting of names and values.Design Feature 2 Messages are passed via named associations.Design Feature 3 Object state transitions involve input and output messages.Design Feature 4 A class represents a collection of objects with the same be-haviour.Design Feature 5 Two instances of the same class di�er with respect to theiridentity.Design Feature 6 Object-Oriented designs are (possibly) non-deterministic.Design Feature 7 Object-Oriented designs support inheritance.3

Design Feature 8 Object designs are compositional.Design Feature 9 Object designs may be partial.Design Feature 10 Communication may be synchronous or asynchronous.Design Feature 11 Object designs can be inter-dependent.Design Feature 12 Global behaviour satis�es all local behavioural constraints.Design Feature 13 A design re�nement involves soundness and completenesschecks.3 Object BehaviourObject-oriented designs denote the structure and behaviour of systems. Objectscalculate by performing state transitions and communicate by passing messages.System behaviour is represented as a graph labelled with states and messages.Object-oriented behaviours conform to a particular class of states and transi-tions. Re�nement transforms behaviours so that they are more object-orientedwhilst preserving their meaning.3.1 Object StatesAt any given moment in time, an object exists in a particular state. The stateof an object provides a complete description of its type, its identity and itsattributes.All objects have a class (feature 4) which de�nes the behaviour of the object.It is possible to distinguish between instances of two di�erent classes which bothde�ne the same attributes. Class identity is represented as a type tag � whereeach class is allocated a di�erent tag.All objects have an identity (feature 5). An object's identity distinguishesit from all other instances of the same class in the same state. Object identityis represented as an object tag � where each object has a di�erent tag.All objects have attributes which are named values (feature 1). The at-tributes of an object determine the behaviour of the object when it receives amessage. The attributes of an object may change when a message is processed.The attributes of an object are represented as a partial function � from attributenames to values. An attribute j is renamed i in � to produce a new attributefunction �[i=j] de�ned as follows:�[i=j](k) = � �(i) when k = j�(k) otherwiseA state is <�; �; �> and represents a partial view of an object. Two di�erentviews of the same object must have the same type and identity but may di�erwith respect to the attributes providing that the attribute views are consistent.4

Consistency is de�ned as follows. Let � (is more de�ned than) be a partialorder on attribute descriptions such that �1 � �2 when �1(a) = �2(a) for allattributes a 2 dom(�2). Any two attribute descriptions are consistent whenthere is a greatest lower bound attribute description �1 u �2.The partial order on attribute descriptions can be extended to states byrequiring that <�1; �1; �1> � <�2; �2; �2> holds if and only if �1 = �2, �1 = �2and �1 � �2.Object-oriented systems consist of sets of object states. A set is well formedwhen it contains only one state for a given object identity. We can de�ne apartial order on well formed sets of object states as follows. Let �1 and �2 betwo well formed sets of object states. The relation �1 � �2 holds when for eachobject state in �2 there is an object state in �1 which is consistent. This canbe stated formally as:8<�2; �2; �2> 2 �2 � 9<�1; �1; �1> 2 �1 � �1 = �2 ^ �1 = �2 ^ �1 � �2Given two well formed sets �1 and �2 of object states the greatest lower bound�1 u�2 is the smallest set containing all of the object states from both �1 and�2 where di�erent views of the same object have been merged consistently.3.2 Object Calculation GraphsSystems are constructed as a collection of objects. Each object is a separatecomputational system with its own state (feature 1) modi�ed in response tohandling messages (feature 2). A message is a package of information sent fromone object to another.The computation performed when a message is handled by an object dependson the object's current state and causes the object to change state and produceoutput messages (feature 3). If we observed an object over a period of time wewould see a sequence of messages and state changes: : : : �1 (I1;O1)7�! �2 (I2;O2)7�! �3 : : :where each �j is an object state, Ij are input messages, and Oj are outputmessages. Such a sequence is an object calculation and describes a single objectin state �j receiving messages Ij causing a state change to �j+1 and producingoutput messages Oj .A message consists of a source object, a target object and some messagedata. The source and target objects are identi�ed by their object identity tags.For a given object system, the data items which can be passed as messages willbe de�ned for each type of target object. A message, whether input or output,is represented as <�s; �t; �> where �s identi�es the source object, �t identi�esthe target object and � is the message data.Object systems are constructed from multiple objects interacting by passingmessages. The state of an object system is a well formed set of object states �.Computation in an object system occurs when the messages in set I are sentto the objects in � producing a new set of object states �0 and a collection ofoutput messages O: : : : 7�! � (I;O)7�! �0 7�! : : : Object-oriented designs representnon-deterministic computational systems (feature 6). We can therefore de�ne5

all the possible object calculations performed by an object system O in responseto handling sequences of input messages of length n.Object calculations are represented as a calculation graph O(n) where thenodes of the graph are labelled with well formed sets of states and the edges arelabelled with pairs of input and output message sets. An example graph Gx is:
Σ

Σ Σ

Σ

3

(I,O)(I,O)

(I,O) (I,O)
2

22

1

1 1

3 3
4 4

4Starting in state �1, the graph Gx can produce the following possible objectcalculations of length 2: �1 (I1;O1)7�! �3 (I4;O4)7�! �4�1 (I2;O2)7�! �2 (I3;O3)7�! �3A graph G = (N;E; s : E ! N; t : E ! N) is a set of nodes N , a set of edgesE and a pair of mappings s which maps an edge to its source node, and t whichmaps an edge to its target node. A graph homomorphism (�n; �e) : G1 ! G2is a mapping from graph G1 to graph G2 consisting of a pair of mappings�n : N1 ! N2 and �e : E1 ! E2 such that the following diagrams commute:E1?t2 E2?t1-�e
N1 N2-�n

E1?s2 E2?s1-�e
N1 N2-�nConsider the following graph Gy :

ΣΣ

(I,O)

(I,O) Σ

Σ

6

(I,O)

5

8

6 6

7 7
7

(I,O)
5 5

8 8We can de�ne a graph homomorphism � : Gx ! Gy such that �n = f�1 7!�5;�2 7! �6;�3 7! �6;�4 7! �7g and �e = f(I1; O1) 7! (I5; O5); (I2; O2) 7!(I5; O5); (I3; O3) 7! (I6; O6); (I4; O4) 7! (I7; O7)g so that �(Gx) is included inGy. 6

3.3 Object-Oriented DesignsObject-oriented designs must conform to certain structural and behaviouralprinciples. The structure of all objects in the design should uphold the principleof encapsulation which requires that the format of data within each object ishidden and accessible only through its message interface. This implies that thevalue of each object attribute must be atomic and that objects refer to eachother via their object identi�ers.The behaviour of objects in an object-oriented design should uphold theprinciple of atomic communication whereby a single system state transition,occurring in response to a message m, may only a�ect the state of the targetof m. This implies that a design in which a single message a�ects objects otherthen the target must be re�ned in order to decompose the single transition intoa sequence of transitions involving multiple messages.3.4 Object SemanticsThe meaning of an object is de�ned to be the calculation graph describing allof its possible behaviours. We will give a precise object semantics using simpleconstructions from category theory. In order to be self contained we includede�nitions of category, terminal object, functor, and natural transformation.A category consists of a collection of objects1, a collection of arrows and anin�x binary associative operator �. Upper case letters A, B, : : : are used to rangeover objects. Lower case letters f , g, : : :, are used to range over arrows. Eacharrow has a domain object A and a range object B and is written f : A ! B.The operator � which maps a pair of arrows f : A ! B and g : B ! C toan arrow g � f : A ! C. Every object A in a category has an identity arrowidA : A! A which is the left and right identity of �. An example category is Intwhose objects are integers. There is an arrow f : n ! m in Int for every pairof integers n and m such that n � m. Another example category is Calc whoseobjects are calculation graphs and whose arrows are graph homomorphisms.A terminal object in a category is an object A such that for all objects Bin the category there is an arrow f : B ! A. The terminal object in Calc isa graph with a single node labelled ; and a single edge (from ; to ;) labelledwith (;; ;). For each object in Calc there is exactly one arrow which maps allnodes to ; and all edges to (;; ;).A functor consists of a source category C and a target category D, and afunction F1 which maps objects of C to objects of D, and function F2 whichmaps arrows of C to arrows of D. For every C arrow f : A ! B, F2(f) :F1(A) ! F1(B) in D. For every C object A, F2(idA) = idF1(A). For every pairof composable C arrows g � f , F2(g � f) = F2(g) � F2(h) in D.Given two functors F : C ! D and G : C ! D a natural transformation : F ! G is de�ned as a family of arrows A indexed by objects A of C suchthat A : C(A) ! D(A) for every object A of C and the following diagram1The term object is used in the mathematical rather than the software sense.7

commutes for all C arrows f : A! B:C(A)?C(F) D(A)?D(f)-AC(B) D(B)-BAn object O is described in terms of its calculations. A collection of graphsO(0); O(1); O(2); : : : ; O(n) describe calculations arising out of sequences of mes-sages of length 0; 1; 2; : : : ; n. Consider two integers n and m such that n � m.Both integers produce calculation graphs O(n) and O(m). If the object O iswell-behaved then there must be a graph homomorphism � : O(n)! O(m).This leads us to de�ne objects as functors from the category Int, whoseobjects are integers and morphisms f : n ! m hold when n � m, to thecategory Calc, whose objects are object calculation graphs and morphisms aregraph homomorphisms.Let Obj be a category whose objects are functors from Int to Calc andwhose arrows are natural transformations between functors. An object in Objwill be referred to as a behaviour and an arrow as a behaviour morphism.Object-oriented design notations provide models which express objects interms of states, associations and messages. The semantics of these models isprovided by objects in Obj de�ned using standard categorical constructions.3.5 Behaviour Re�nementNot all system designs are object-oriented. It is often convenient in the earlystages of development to ignore the principles of encapsulation and atomic com-munication. By ignoring them it is possible to abstract away from computationaldetails.During system development it is necessary to modify a design in order thatit conforms to the principles underlying object-orientation. Assuming that theinitial design is correct, any modi�cations will change the structure and com-putation of the system but must preserve the overall behaviour.This section de�nes behavioural equivalence in terms of behaviour isomor-phisms. An equivalence relation on behaviours is then restricted to producea directed re�nement relation de�ned as adjoint functors between behavioursviewed as categories. A re�nement relation can be used in system developmentin order to transform an initial design into an object-oriented design.Consider two behaviours O1 and O2 such that O1 � O2. Every computationperformed by O1 can be performed by O2 and vice versa. This is de�ned byrequiring equivalent behaviours to be related by a behaviour isomorphism: thereare two behaviour morphisms 1 : O1 ! O2 and 2 : O2 ! O1 such that2 � 1 = O1id and 1 � 2 = O2id.Software development is directed; we start with an initial design and wishto terminate with an object-oriented design. Veri�cation of the process must8

ensure that all the initial behaviour is preserved (completeness) and that nojunk behaviour is introduced (soundness). Equivalence can be relaxed slightlyto reect development as follows.Any behaviour O can be viewed as a category in which the objects arebehaviour states and arrows are sequences of message pairs. Category-hoodfollows from: every object � has an identity arrow []; and for every pair ofarrows f : �1 ! �2 and g : �2 ! �3 there is an arrow g � f : �1 ! �3 whichis constructed as f ++g; and the associativity of � follows from the associativityof ++.A re�nement R is a functor R : O1 ! O2 between behaviour categories; O2is a more computational version if O1. In order to check the re�nement theremust be an anti-re�nement (or coarsening) U : O2 ! O1. U forgets the extracomputational structure in O2.Let �1 be a state of behaviour O1 and �2 be a state of behaviour O2.Now consider two computations f : �1 ! U(�2) and g : R(�1) ! �2 whichare performed by behaviour O1 and O2 respectively. The re�nement can beexpressed as a diagram: �1? U(�2)-fR(�1) �26-g (1)The diagram states that performing a computation in the source object is thesame as translating the source state, performing the computation in the targetobject and then translating the target state. This issues are similar to thosearising in compiler correctness [Sab97]. Given any �1 the re�nement is sound iffor every f there exists a g and is complete if for every g there is an f .4 Object-Oriented Design NotationRather than use a graphical design notation such as UML to denote behaviours,a textual design language is de�ned whose semantics is given by constructionsin Obj. In principle, there are many di�erent possible choices of languageto denote constructions in Obj. One possibility is to use a form of modallogic where statements in the logic express properties about multiple worlds. Aworld can correspond to a set of object states and relationships between worldscorrespond to transitions arising due to messages.A problem with this approach is that formal logic tends to have a at struc-ture and does not lend itself to modular system construction. In addition, oneof the strengths of formal logic, namely its ability to describe systems by ab-stracting away from computational detail, can be a weakness when we know thecomputational model which must be used.Following Landin [Lan64] we take a di�erent approach which is to use anextension of �-notation as our design language. Since �-calculi are the canonical9

programming languages this allows us to express the computational features ofthe design whilst the extensions abstract away from unnecessary computationaldesign choices.4.1 Behaviour FunctionsA family of behaviours can be represented as a function with the following form:M = �i1:�i2:�i3:�i4:N where i1 { i4 are parameters and N is the body. The�rst parameter is supplied with a type tag �. The result is a function whichdescribes the behaviour of a class of objects. The second parameter is suppliedwith an object tag � . The result is a function which describes the behaviourof a single object in all possible states. The third parameter is supplied with avalue v which is the state of an object. The result is a function which describesthe behaviour of a single object starting with a particular initial state v. Thefourth parameter is supplied with a set of messages I . The result is a set of pairs:M(�)(�)(v)(I) = Si=1;nf(Pi; Oi)g where Pi are replacement behaviours and Oiare corresponding output messages. The replacement behaviours are functionswhich determine the response to subsequent messages. Actor theory [Agh91][Agh86] uses the same approach to functionally model concurrent systems.Suppose that �1 is a set of states described by P , �2i is the set of statesdescribed by Pi for i = 1; 3 then the calculation graph which is described by theapplication of P is:
Σ

(I,O)

Σ

Σ

1

(I,O)

(I,O)

Σ
22

21
21

23

22

23Subsequent components of the graph are constructed using the appropriate re-placement object Pi. The body N of behaviour function handles messages byperforming case analysis on the value of m. The body is of the form:case m ofp1 ! e1p2 ! e2: : :pn ! enelse eendwherem is an expression whose value is a set of input messages2, pi are patternswhich match input messages, ei and e are transition expressions whose valuesare pairs of replacement object behaviour functions and sets of output messages.2To avoid notational clutter singleton sets are identi�ed with their element and messageswhose source tag is unused are associated with their data compoment.10

The operational semantics of case is as follows: m is evaluated and matchedagainst all of the patterns pi. Pattern matching produces a collection of vari-able bindings whose scope is the corresponding transition expression ei. Foreach pattern which matches, the transition expression is evaluated to produce acollection of pairs (P;O). If no pattern matches then the optional default tran-sition expression is evaluated. The result of evaluating case is the set of pairsresulting from evaluating transition expressions whose patterns match the inputmessages. A case expressions of the form case m of else e end is equivalent tojust the expression e.A transition expression denotes a collection of pairs of the form (P;O). Inprinciple a transition expression can be of arbitrary complexity, however thefollowing forms are frequently used:e when c where e is a transition expression and c is aboolean expression. The boolean expression actsas a guard on the transition.e whererec b where e is a transition expression and b is a collec-tion of mutually recursive bindings whose scope ise.(P;O) where P is an expression denoting a replacementbehaviour function and O is an expression denot-ing a set of output messages.4.2 Example Behaviour FunctionsA terminal object in Obj has no state and can respond only to an empty set ofmessages. It is de�ned below and is unique up to isomorphism since we do notspecify a type or object tag:letrec empty(;) = f(empty; ;)gConsider describing the behaviour of a single cell which stores a value. A cellobject can be sent a message set which changes the value of its value and amessage get which retrieves its value. The behaviour is as follows (note that weomit the source and target tags from message patterns when they are not used):letrec cell(�)(�)(v)(m) =case m ofset(v0)! (cell(�)(�)(v0); ;)<� 0; �; get>! (cell(�)(�)(v); f<�; � 0; v>g)else (cell(�)(�)(v); ;)endA class is created by sealing the type tags which occur in the object calculations.Suppose that �1 is a type tag for a class of cell objects:let cellClass = cell(�1)11

A cell object is created by supplying the values of the attributes and the objecttag: let c1 = cellClass(�1)(0)Suppose that we wish to set the contents of cell c1 to 1 and then to retrieveits value. This is achieved by sending it messages from a hypothetical sourceobject �0: c1(<�0; �1; set(1)>) = f(c2; ;)gc2(<�0; �1; get>) = f(c2; f<�1; �0; 2>g)g4.3 Message HandlingComputation occurs in an object-oriented system in terms of message passing. Abehaviour is expressed in the design notation as a function which maps incomingmessages to a pair (P;O) where P is a replacement behaviour and O is a set ofoutgoing messages. Once the messages O have been produced, the behaviour isimmediately ready to handle new incoming messages as speci�ed by P .The basic model of message handling is therefore asynchronous. This de-cision arises because object-oriented design notations can express both syn-chronous and asynchronous message passing. Typically there are di�erent no-tations to express send message and wait for reply and send message withoutwaiting for reply.Basing the semantic model on asynchronous message passing does not pre-clude synchronous message passing since an asynchronous model which incorpo-rates replacement behaviours can implement synchronous messages. A messagem 2 O is sent synchronously when P is a behaviour that waits for an incom-ing message m0 such that m0 is the response to m. When m0 is received thebehaviour reverts to its original functionality.Variations on the synchronous model described above are possible. For ex-ample, the waiting behaviour may permit a sub-set of the functionality, or mayimplement a priority based interrupt mechanism, or may allow the behaviourto send messages to itself.The example program development described in this paper uses a form ofsynchronous message passing. It is convenient to add syntactic sugar to thedesign notation capturing this form of message passing. The sugar is a form oflet expression occurring in the context of a behaviour function as follows:letrec agent(�)(�)(�)(m) =case m of: : :p1 !let p2 e1in e2: : :end 12

A let expression occurs in the context of a behaviour, represented here by thefunction agent. The expression e1 is a set of messages or a single message whichis to be sent in response to receiving a message matching p1. The behaviouragent may carry on handling messages3. Any incoming message matching p2 isa reponse to the messages e1; the response of agent is de�ned by e2.The semantics of let is de�ned by a syntax translation to the basic designnotation: letrec agent(�)(�)(�)(m) =case m of: : :p1 ! (agent(�)(�)(�) + wait; e1)whererec wait(m) =case m ofp2 ! e2else (wait; ;)end: : :endThe locally created behaviour wait is used to extend agent with a handler forthe response to messages e1. Typically, when the response occurs, e2 will revertback to the original behaviour agent.4.4 System ExecutionA variety of system execution mechanisms are possible using object designs inthe format described above. Typically we wish to inject a single message intoa system and then observe the messages which emerge. Suppose that, given asystem of objects expressed as a behaviour function o and a set of messages mthat: o=m is a set of messages produced by restricting m to those whose targetsare in o; and, onm is m� (o=m), i.e. the messages in m whose targets are notin o. The function exec is supplied with a system of objects o and a set of initialmessages m and produces a sequence of messages:letrec exec(o)(m) =let (o0;m0) = o(m)in (m0no0) : (exec(o0)(m0=o0))4.5 Semantics of Behaviour FunctionsThe meaning of a behaviour function is de�ned by a partial mapping from�-terms to behaviours. Before de�ning the semantics we establish some ter-minology. A set of behaviours which di�er only with respect to object tags isreferred to as a class behaviour. A set of class behaviours which di�er only withrespect to the class tags is referred to as a family of behaviours.3In fact we only require agent to handle messages which it sends to itself. The extramachinery for this feature is straightforward but would clutter the example so we omit it.13

Suppose thatM is a behaviour functionM = �i1:�i2:�i3:�i4:N . Let [[M(�)(�)(v)]]be the behaviour constructed by supplying all possible sequences of messagesto object � in state v. Let [[M(�)(�)]] be the behaviour constructed by sup-plying the object � with all possible message sequences in all possible states.Let [[M(�)]] be the class behaviour formed by supplying all possible instancesof � in all possible states with all possible message sequences. Finally, let [[M]]be the family of behaviours constructed by supplying M with all possible classtags, object tags, states and message sequences.4.6 Behaviour MorphismsArrows in Obj are families of graph homomorphisms which must be well-behaved with respect to message sequences (see section 3.4). This is expressedby stating that behaviour morphisms are natural transformations. Let O1 andO2 be behaviours (i.e. functors from Int to Calc). A morphism : O1 ! O2from O1 to O2 is a family of graph homomorphisms n for each object in Intsuch that for any arrow f : n! m in Int the following diagram commutes:O1(n)?O1(f) O2(n)?O2(f)-nO1(m) O2(m)-mAn arrow is de�ned in the design language as a homomorphism implementedas a pair of functions (f; g) where f maps sets of states and g maps pairs ofsets of messages. Behaviour transformation is performed by applying an arrowto a behaviour to produce a new behaviour. The application of (f; g) to thebehaviour function M1 produces a behaviour function M2 which makes thefollowing diagram commute for any �, � and v:M1(�)(�)(v)?[[:]] M2(�)(�)(v)?[[:]]-(f;g)
G1 G2-(f;g)Application of arrows to produce class behaviours and families of behaviours fol-lows from an extension of the above de�nition. Given a homomorphism betweengraphs we can uniquely extend this to a homomorphism between sets of graphs(class behaviours) and then sets of sets of graphs (families of behaviours).For each behaviour function there is exactly one possible morphism to theterminal behaviour function empty: term = (K(;);K(;; ;))

14

5 SystemsObject-oriented systems are compositional (feature 8). Composition can occurin order to extend the possible system behaviour and also occur in order torestrict possible system behaviour. Extension can occur when new methods orattributes are added to a class. Extension also occurs when partial behavioursare combined to produce a \larger" behaviour (feature 9). Restriction occurswhen behaviours are composed and required to behave consistently (feature 11).This section shows how systems are constructed from sub-systems. Thesystem building operations are de�ned in terms of standard constructs fromcategory theory. The design language is extended with system building opera-tors.5.1 ProductsGiven objects A and B, a product is an object A�B together with two arrows�1 : A�B ! A and �2 : A�B ! B such that for any object C with morphismsf : C ! A and g : C ! B there is a unique arrow u : C ! A�B such that thefollowing diagram commutes: CAAAAAAAUg�������� f ?uA�B@@@R�2���	 �1A BFollowing the standard product construction for two graphs (see [Bar90]),products in Calc are constructed as follows. Given two calculation graphsG1 and G2, a product G1 � G2 is a calculation graph whose nodes and edgesare labelled with pairs of labels from G1 and G2 respectively. For every noden 2 G1 and node n2 2 G2 there is a node n 2 G1 � G2 such that label(n) =(label(n1); label(n2)). For every edge e1 2 G1 and edge e2 2 G2 there is an edgee 2 G1 � G2 such that label(e) = (label(e1); label(e2)). The source and targetnodes of e correspond to the pairing of the corresponding source and targetnodes of e1 and e2. The projection arrows are graph homomorphisms whichproject onto the �rst and second co-ordinates of the labels respectively.This leads us to de�ne product of two behaviours O1 and O2 for all n asfollows: (O1 �O2)(n) = O1(n)�O2(n)Unfortunately, this can produce inconsistent system states. A product statecould be formed by composing two views of the same object:(f<�; �; fx 7! 1g>g; f<�; �; fx 7! 2g>g)15

in which the object � associates the attribute x simultaneously with the values1 and 2. Furthermore, a tree structure is imposed on system states which isundesirable since system composition becomes non-associative: (O1�O2)�O3 6�O1 � (O2 �O3).We propose a structure for system composition which ensures consistentstates. When two systems are composed, the resulting behaviour has thelargest consistent state. Let merge be the calculation graph homomorphism(merge1;merge2) which is de�ned as follows:merge1(�1;�2) = �1 u �2merge2((I1; O1); (I2; O1)) = (I1 [I2; O1 [O2)The composition of behaviour functions is de�ned by a design language operator� as follows: [[M1 �M2]] = merge([[M1]]� [[M2]])The combination of behaviour composition and consistency allows a systemdevelopment technique to be compositional. For example we may de�ne twoviews of the same object. Each view is speci�c with respect to a di�erent aspectof the object's behaviour, otherwise each view leaves the object free to performany behaviour. The composition of the two views, as de�ned by a product,allows each view to constrain the free behaviour of the other.Object-oriented design notations de�ne partial object behaviours (feature9). A partial behaviour describes the state changes and messages which occurwhen a message is sent to an object. The description is partial because it doesnot apply to all possible system states. A total description is constructed bycomposing a su�ciently complete collection of partial descriptions.The product operator � combines partial behaviours using the morphismmerge. For example, a two-dimensional point object can be de�ned as thecomposition of independent behaviours describing the x-view and y-view re-spectively.5.2 CoproductsGiven two objects A and B, a coproduct is an object A+B together with twoobject morphisms �1 : A! A+B and �2 : A! A+B such that for any objectC and arrows f : A! C and g : B ! C there is a unique arrow u : A+B ! Csuch that the following diagram commutes:AAAAAAAAUf@@@R�1 B�������� g���	�2A+B?uC16

A coproduct of two calculation graphs G1 and G2 in Calc is a calculation graphG1 + G2 which contains all of the nodes and edges of G1 and G2. The nodesand edges are labelled in order to record whether they originated from G1 orG2. This allows the arrow u to test the origin of a node or edge in order toapply the appropriate arrow f or g. Behaviour coproducts are de�ned for all nas follows: (O1 +O2)(n) = O1(n) +O2(n)Coproducts ensure that the calculations performed by the component objectsare represented separately by labelling the states and edges. In an object designwe will often not be interested in the origin of a transition and can thereforelose the labels which encode this information. The result is a restriction on thecoproduct which produces an object for which we cannot necessarily guaranteea unique arrow u.The implication of a non-unique arrow u is that the design is non-deterministicwhich is a required feature (feature 6) of object-oriented design systems. Thisleads to an operator + which is used to merge two objects to produce a (possi-bly) non-deterministic composite object.Suppose that G1+G2 is a coproduct of G1 and G2 such that nodes and edgesfrom G1 and G2 are labelled pink and blue respectively. A de-labelling operationcan be expressed as a morphism delabel de�ned as a forgetful graph homomor-phism (strip; strip) which is de�ned as strip(pink(v)) = v and strip(blue(v)) = v.Given object calculation functions M1 and M2 then we de�ne the operator +as follows: [[M1 +M2]] = delabel([[M1]] + [[M2]])5.3 EqualizersObject-oriented design notations often allow the engineer to produce di�erentviews of the same component using di�erent modelling notations. The behaviourof the resulting system is constructed as the largest set of behaviours consistentwith all possible views.Consistency between views is achieved using equalizers. Let A and B betwo objects and let f : A ! B and g : A ! B be two object morphisms. Anequalizer of the arrows is an object E together with a morphism e : E ! Asuch that f � e = g � e and for any object E0 and arrow h : E0 ! A such thatf �h = g�h there is a unique arrow u such that the following diagram commutes:E A B-e -f-gE0����h6uIn Calc an equalizer between two graph homomorphisms f : G1 ! G2 andg : G1 ! G2 is a graph G and a homomorphism e : G ! G1 such that epicks out the largest sub-graph of G1 which produces the same image under f17

and g. If the equalizer is de�ned in terms of the largest sub-graph then thehomomorphism u is unique up to isomorphism.The design language provides a builtin operator eq which constructs equal-izers. If M1 is a function implementing an object and f , g are pairs of functionsfrom M1 to another object M2 then (N; e) = eq(M1)(f)(g) such that [[N]] ande is an equalizer for [[M1]], [[M2]], f and g.Equalizers can be used to force consistency. System design often leavesthe behaviour of a local component under-de�ned by permitting a variety ofcomputations. When components are composed, the possible computations arereduced by requiring pair-wise consistency. The result is still under-de�ned,however certain illegal computations are ruled out.An example of consistent behaviour is constructed using a categorical con-struction called a pullback. Consider three objects O, O1 and O2:O1 O-f O26gwhere the behaviour of O1 and O2 can be understood in terms of O. A pull-back is an object O0 with two arrows k and l such that the following diagramcommutes: O1 O-fO06k O26g-land for any other object O00 with arrows k0 : O00 ! O1 and l0 : O00 ! O2 forwhich the diagram commutes there exists a unique arrow u : O00 ! O0.The pullback object O0 is the largest object behaviour which makes thearrows f �k and g � l equal. Therefore pullback objects can be used to constructthe smallest composite behaviour from O1 and O2 which makes the behaviouralviews f and g equivalent. For example, this may arise when requiring that anargument value in two di�erent method calls must be the same. This occurs inan object-oriented design language such as UML where a variable occurs on adesign more than once.6 System BehaviourA system is composed of multiple objects. Each object is designed by providingmultiple views of its behaviour. The di�erent views of an object's behaviourare not independent. The dependencies are constraints which hold betweenthe di�erent views and which serve to rule out possible combined behaviours.The constraints can be viewed as simultaneous equations a�ecting the overallbehaviour of the system. A solution to the equations is a system behaviour(feature 12). This section describes how constraints on system components18

are expressed as diagrams in Obj, de�nes system behaviour as a limit on asystem diagram and describes an algorithm for constructing limits in the designlanguage.6.1 System DiagramsThe behaviour of a system is described by an object in Obj. Objects in Objare non-deterministic partial views of object systems. Consistent with currentobject-oriented development processes, we claim that the meaning of an object-oriented design is the composition of the meanings of the constituent designmodels.Systems consist of a collection of co-ordinated objects. An overall systemtransition will typically involve a collection of controlled individual object tran-sitions. Such co-ordination implies a constraint on the free behaviour of theindividual objects. The constraints can be expressed as behaviour morphismswhich express how one behaviour can be interpreted in terms of another.A single behaviour may be the source of multiple morphisms. This maybe used to \glue" together individual behaviours and also to require them tointeract. A single behaviour may be the target of multiple morphisms. This maybe used to require individual morphisms to behave consistently under certaincircumstances.A system is expressed as a collection of Obj objects and morphisms betweenthem. A system diagram is a graph whose nodes are labelled with behavioursand whose edges are labelled with behaviour morphisms.6.2 Limits of DiagramsIn order to solve the equations we use the categorical construct of limits whichhas been proposed by Goguen in [Gog90] as a means for expressing the behaviourof a system. In general, a diagram � is a graph with a mapping from the nodesof � to objects and a mapping from the edges of � to morphisms between thesource and target objects. Let �n represent an object N in the diagram � and�e represent a morphism. A cone on a diagram � is an object A (which isnot necessarily in the diagram) together with, for each object �n a morphismn : A ! �n such that for all edges e : n ! m in � the following diagramcommutes: A @@@Rm���	n�n �m-�eA cone on a system expressed as a diagram is a composite behaviour which isconsistent with the behaviours on the diagram. Notice however, the there is nocondition on which particular behaviour to pick for the cone. There are manypossible choices for cones including the behaviour with no states or transitions19

(this is an initial object which can always be mapped to another behaviour usingthe empty morphism).A cone arrow on a diagram � from cone n : A ! �n on � to cone0n : A0 ! �n is an object morphism : A0 ! A such that for all nodes n in �the triangle below commutes:A @@@Rn A0���	 0n� �nCone arrows allow us to place restrictions on cones. For example if there is acone arrow : A0 ! A we know that the behaviour described by A0 is morerestricted than that described by A.A limit on a diagram � is a cone A, on � such that for any other cone A0 on� there is a unique cone arrow u : A0 ! A. The de�nition of a limit capturesthe behaviour of a system because it must contain all of the behaviours on thediagram and must obey all of the constraints on the diagram.6.3 Constructing LimitsA standard result of category theory is that any category having a terminalobject, binary products and equalizers of pairs of arrows has all �nite limits[Ryd88]. This result allows the construction of a limit on a diagram providingthat these simple properties hold in the appropriate category. An algorithm forconstructing limits of object-oriented design diagrams is described in [Cla99b].The algorithm constructs limits incrementally using a terminal object, productsand equalizers.7 An Example DesignThis section shows how the design language can be used to give a meaningto a small object-oriented design expressed as a static class diagram and acollection of dynamic object interaction diagrams. We present a requirementfor the example application, produce a collection of object-oriented models andthen construct the corresponding behaviours.7.1 Software RequirementsSoftware to control a library is required. The library has readers who mayborrow copies of books. At any given time each reader has a number of bookson loan. New readers may join the library at any time. The library has anumber of copies of books. Each book has a unique title. A copy is either onthe shelf in the library or is being borrowed by a reader. Libraries operate ashares readership policy whereby joining one library permits readers to borrowbooks at all participating libraries. 20

7.2 Initial BehaviourAn initial analysis of the requirements leads us to design a simple structurefor a system. A library system consists of a single object with a state (R;B)consisting of readers R and books B. Each reader is a pair (n;C) where n is aname and C is a set of borrowed copies. Each book is a pair (n; i) where n is aname and i is the number of shelved copies.In the initial system design we will treat R and B as lookup tables. Let Tbe a table implemented as a set of pairs containing keys and values. The keysof a table are produced by the operator dom. Table lookup T � k is de�ned andhas the value v when there exists exactly one pair (k; v) 2 T . Table extensionis de�ned as: T [k 7! v] � T [f(k; v)g. The following sugar for adding andremoving elements in a table will be useful:T [k � v] � � T [k 7! T � k [fvg] when isSet(T � k)T [k 7! T � k + v] when isInt(T � k)T [k 	 v] � � T [k 7! T � k � fvg] when isSet(T � k)T [k 7! T � k � v] when isInt(T � k)Initial system behaviour can be decomposed into the sucess and failure modes.The design operator + allows us to de�ne these modes separately and thencombine them.letrec libOk(�)(�)(R;B)(m) =case m ofaddReader(n)! (libOk(�)(�)(R[n 7! ;]; B); ;) when n 62 dom(R)addBook(n)! (libOk(�)(�)(R;B[n 7! 0]); ;) when n 62 dom(B)addCopy(n)! (libOk(�)(�)(R;B[n � 1]); ;) when n 2 dom(B)borrow(n1; n2)!(libOk(�)(�)(R[n1 � n2]; B[n2 	 1]); ;)when n1 2 dom(R)&n2 2 dom(B)return(n1; n2)!(libOk(�)(�)(R[n1 	 n2]; B[n2 � 1]); ;)when n1 2 dom(R)&n2 2 dom(B)else (libOk(�)(�)(R;B); ;)endEach of the state transitions in libOk is guarded by a condition. If any of theseconditions do not hold then the library should not change state. In practice,
21

such error transitions would send a message back to the source of the message.letrec libFail(�)(�)(R;B)(m) =case m ofaddReader(n)! (libFail(�)(�)(R;B); ;) when n 2 dom(R)addBook(n)! (libFail(�)(�)(R;B); ;) when n 2 dom(B)addCopy(n)! (libFail(�)(�)(R;B); ;) when n 62 dom(B)borrow(n1; n2)!(libFail(�)(�)(R;B); ;)when n1 62 dom(R) jn2 62 dom(B)return(n1; n2)!(libFail(�)(�)(R;B); ;)when n1 62 dom(R) jn2 62 dom(B)else (libFail(�)(�)(R;B); ;)endThe initial design is then constructed by composing the two class alternativeclass behaviours: library = libOk+ libFail7.3 Re�nement Of Initial BehaviourAlthough the initial design speci�es the correct system behaviour it fails toqualify as an object-oriented design. The reason for this is that the systemstate is not structured as a collection of communicating objects.A library object contains a set of books, each book is a pair (n; i). Pairs arestructured data which can only exist in an object-oriented program as an object.Furthermore, the initial design does not uphold the principle of encapsulation.The representation of books (as pairs) is known to the library object.The initial design is re�ned to become more object-oriented. The statemust be changed to implement all structured data components as objects. Thebehaviour must be changed correspondingly to uphold the principle of encapsu-lation.Given a state (R;B) in the source behaviour, the re�nement acts as identityon R and transforms B = fn1 7! i1; : : : ; nk 7! ikg into a set of object identi�ersf�1; : : : ; �kg and introduces new objects �1 7! (n1; i1); : : : ; �k 7! (nk; ik) to thesystem state. A book behaviour is as follows:letrec book(�)(�)(n; i)(m) =case m of<� 0; �; getName>! (book(�)(�)(n; i); f<�; � 0; n>g)borrow! (book(�)(�)(n; i � 1); ;) when i > 0addCopy ! (book(�)(�)(n; i + 1); ;)else (book(�)(�)(n; i); ;)endThe successful library behaviour is modi�ed to take account of book objects.The transitions for libOk are rede�ned as follows. There is no change to the22

addReader transition. The initial design uses set membership to test for theexistence of a book. This must now be implemented as a private method of thelibrary:<� 0; �;�ndBook(;; n)>! (libOk(�)(�)(R;B); f<�; � 0;noBook>g)<� 0; �;�ndBook(fog [S; n1)>!let n2 <�; o; getName>in if n1 = n2then (libOk(�)(�)(R;B); f<�; � 0; book(o)>g)else (libOk(�)(�)(R;B); f<� 0; �;�ndBook(S; n1)>g)When a library recieves an addBook message with a name n which does notalready exist then a new book object is created. We assume that � 00 is a newobject identi�er and that � is the type tag for books:addBook(n)!let noBook <�; �;�ndBook(n)>in (libOk(�)(�)(R;B [f� 00g)� book(�)(� 00)(n; ;); ;)A copy of a book may be added when there is a book currently registered in thelibrary. The book is found using �ndBook and then is sent a message addCopy:addCopy(n)!let book(b) <�; �;�ndBook(n)>in (libOk(�)(�)(R;B); f<�; b; addCopy>g)A copy is borrowed by �nding the book using �ndBook and then modifyingboth the reader and the book. The reader can be modi�ed directly because therepresentation is known to the library object. The book is modi�ed by sendingit a message borrow.borrow(n1; n2)!let book(b) <�; �;�ndBook(n2)>in (libOk(�)(�)(R[n1 � n2]; B); f<�; b; borrow>g)when n2 2 dom(R)Correspondingly, a copy is returned by directly removing the copy from thereader and sending a return message to the book.return(n1; n2)!let book(b) <�; �;�ndBook(n2)>in (libOk(�)(�)(R[n1 	 n2]; B); f<�; b; addCopy>g)when n2 2 dom(R)This completes the re�nement of the behaviour libOk. The behaviour libFail isre�ned using the same principles using the outcomes from set membership of Rand sending �ndBook messages. 23

7.4 Correctness ProofIn order to show that the re�nement is correct we must show that it is soundand complete as described in section 3.5. In particular we must show that thediagram 1 holds.The following source state is used: f� 7! (R;B)g where R is a set of readersand B is the set fn1 7! i1; : : : ; nk 7! ikg. The corresponding target state isf� 7! (R; T)g [O where T is the set of object identi�ers f�1; : : : ; �kg and O isthe state f�1 7! (n1; i1); : : : ; �k 7! (nk; ik)g.To prove soundness and completeness with respect to diagram 1 we mustestablish that given the source state, for every arrow g there is an arrow fwhich makes the diagram commute and vice versa. This is done for each systemfunction independently. The format of each proof is similar; the rest of thissection states the conditions for each function and proves the �rst two soundand complete.In order that the re�nement of addReader is sound and complete we musthave the following:f� 7! (R;B)g? f� 7! (R[n 7! ;]; B)g-addReader(n)
f� 7! (R; T)g [O f� 7! (R[n 7! ;]; T)g [O6-addReader(n) (2)The proof of 2 follows from the de�nition of the source and target behavioursof the re�nement. The re�nement of addBook is sound and complete when:f� 7! (R;B)g? f� 7! (R;B[n 7! 0])g-addBook(n)
f� 7! (R; T)g [O f� 7! (R; T [� 00)g[O[� 00 7! (n; 0)]6-c�addBook(n) (3)

The proof of 3 is by induction on the size of the set B and the length of thecomputation c. There are two cases to consider:1. When B = ; the computation c is [noBook] and therefore the propositionholds by de�nition.2. When B is non-empty then we assume that B = fn0 7! i0g [B0 forsome n0 6= n and that the proposition holds for B, therefore there is somecomputation c0 such that there is a computation g0 : c0 �addBook(n) whichis both sound and complete with respect to the state f� 7! (R;B0)g. Bythe de�nition of both behaviours there is a computation:c00 = [�ndBook(f� 0g; n); getName; n0;noBook]24

such that c00 � c0 � addBook(n) exists.Therefore we conclude that the re�nement of addBook is sound and complete.The conditions for the soundness and completeness of re�nements for systemfunction addCopy is expressed as diagram 4.f� 7! (R;B[nj 7! ij])g? f� 7! (R;B[nj � 1])g-addCopy(nj)
f� 7! (R; T)g[O[�j 7! (nj ; ij)] f� 7! (R; T)g[O[�j 7! (nj ; ij + 1)]6-c�addCopy(nj) (4)

The condition for borrow is expressed in diagram 5.f� 7! (R;B[n2 � i])g? f� 7! (R[n1 � n2; B[n2 	 1])g-borrow(n1,n2)
f� 7! (R; T)g[O[�2 7! (n2; i)] f� 7! (R[n1 � n2; T)g[O[�2 7! (n2; i� 1)]6-c�borrow(n1,n2) (5)

The proof of 4 and 5 are by induction on the size of the set B. The conditionand proof for return are similar to those for borrow.7.5 Completing the Re�nementThe behaviour de�ned in section 7.3 is a re�nement of the initial behaviour, butis not an object-oriented behaviour. The reader component R of the systemstate must be re�ned to a set of objects. This section outlines the re�nementstep. A reader behaviour is de�ned as follows:letrec reader(�)(�)(n;C)(m) =case m of<� 0; �; getName>! (reader(�)(�)(n;C); f<�; � 0; n>g)borrow(c)! (reader(�)(�)(n;C [fcg); ;)return(c)! (reader(�)(�)(n;C � fcg); ;)else (reader(�)(�)(n;C); ;)endThe libOk behaviour is re�ned as follows. The transitions for �ndReader, ad-dBook and addCopy are unchanged. Since readers are represented as objects,a new message handler �ndReader is added which behaves like �ndBook. The25

message handler for borrow is re�ned to use both �ndBook and �ndReader:borrow(n1; n2)!let book(b) <�; �;�ndBook(n2)>in let reader(r) <�; �;�ndReader(n1)>in (libOk(�)(�)(R;B); f<�; b; borrow>;<�; r; borrow(n2)>g)The message handler for borrow is modi�ed as follows:return(n1; n2)!let reader(r) <�; �;�ndReader(n1)>in let book(b) <�; �;�ndBook(n2)>in (libOk(�)(�)(R;B); f<�; b; return>;<�; r; return(n2)>g)7.6 Behavioural and Structural AnalysisThe re�nement described in sections 7.3 and 7.5 produce an object-orientedbehaviour description. Such a behaviour is analysed for common features whichcan be factored out. Structural and behavioural properties factored in this wayindicate that inheritance may be used when the behaviour is implemented usinga concrete programming language.Consider the behaviours book and reader. Both provide a state componentn which is used to index into collections of behavioural instances using themessage getName. This indicates that there is a common behaviour named andprojection morphisms: namedbook���� reader@@@IIn an implementation named will occur as a super-class of both book and reader.The de�nition of named is as follows:letrec named(�)(�)(n)(m) =case m of<� 0; �; getName>! (named(�)(�)(n); f<�; � 0; n>g)else (named(�)(�)(n); ;)endAnalysis of libOk indicates that the message handlers for �ndBook and �nd-Reader are very similar. Subsequent de�nition of the common behaviour namedsuggests that both �ndBook and �ndReader can be replaced by a single be-haviour de�ned entirely in terms of named.Consider a behaviour functor F1 which acts on system states by projecting allbook objects to equivalent named objects by forgetting the copy count. F1 actsas identity on all arrows except that �ndBook(O; n) is replaced by �nd(O; n),book(b) is replaced by found(b) and noBook is replaced by notFound.26

In order for F1 to be valid, it must be sound and complete with respectto indexing into collections of books. Therefore, for any system state �, thefollowing diagram must commute:�? �?-[�ndBook(O; n)] ++c
F1(�) F1(�)-[�nd(O; n)] ++F1(c)Similarly, a behaviour functor F2 is de�ned to project states and calculationsinvolving indexing readers. Both sets of indexing calculations are produced bythe following behaviour:<� 0; �;�nd(;; n)>! (libOk(�)(�)(R;B); f<�; � 0;notFound>g)<� 0; �;�nd(fog [S; n1)>!let n2 <�; o; getName>in if n1 = n2then (libOk(�)(�)(R;B); f<�; � 0; found(o)>g)else (libOk(�)(�)(R;B); f<� 0; �;�nd(S; n1)>g)The shared readership policy is expressed as behaviour morphisms which requireall libraries to share the same R component. Consider the behaviour cell whichcontains a single value and responds to messages which set and access the value.Two libraries can be projected onto cell:lib1@@@R1 lib2���	 2cellThe object morphisms 1 and 2 project both libraries onto a single cell whoseobject identity is the same in each case and whose value is the readers of bothlib1 and lib2. Library messages which access and update readers are mappedby 1 and 2 to corresponding access and update messages from cell. All otherlibrary messages are ignored by cell since they do not change the value of thereaders.System behaviour is constructed by taking a limit on a diagram containingall of the component behaviours and constraints between them. The constraintexpressed using 1 and 2 above requires that the readers in lib1 and lib2 are

27

always the same. This is shown as S on the pullback diagram:S @@@R���	lib1@@@R1 lib2���	 2cellThere are a number of implementation choices for the shared readership policywhose behaviour is de�ned by S. If the programming language supports shareddata between class instances (such as static in Java) then the R componentof a library class may be shared. Alternatively, a library may be able to accessall other instances of the library class and therefore send appropriate messageswhen its readers are updated. Finally, a controller object may be used to containall libraries and federate messages between them. The controller would beresponsible for ensuring that all libraries have consistent readers.7.7 ImplementationOnce the library system has been speci�ed, re�ned and analysed it is possible toimplement the behaviour as an object-oriented program. Any object-orientedlanguage is suitable. Each independent behaviour is de�ned as a class. Thestate components of the behaviour are de�ned as �elds and the message handlersare de�ned as methods. Any common behaviour is de�ned using inheritance.The implementation of the library system is de�ned in appendix A. The mainfeatures of the implementation are:� The class Named de�nes the common behaviour for readers and books.� The attribute readers in Library is declared static so that librariesimplement the shared readership policy.� The class Library de�nes a method find which is used to index bothreaders and books.8 Conclusion8.1 ReviewThe aims of this work are to de�ne a semantic framework which is suitablefor rigorous object-oriented development. In order to do this, we have taken abehavioural view of object-oriented systems and de�ned object behaviour as agraph of states and transitions arising from message passing. Object behaviourshave been de�ned using standard constructions in category theory. Systems be-haviours arise from the solution to a collection of simultaneous equations which28

constrain a collection of freely de�ned object behaviours. We have shown thatsuch constraints can be expressed as behaviour morphisms on a diagram whosesolution is constructed as a limit. Behaviour equivalence and re�nement hasbeen de�ned using isomorphisms and adjoint functors respectively. Re�nementis a relation between a source and target behaviours whereby both have thesame functionality and the target is closer to an implementation in terms ofobject-oriented design principles.A notation for expressing object designs has been proposed as a �-notationextended with built-in operators for system construction. The semantics of thenotation is given by constructions in category theory. The notation has beenused to express a small but representative object-oriented design.The design notation is highly expressive and facilitates a variety of ap-proaches to system design. In particular it allows systems to be designed usingmodular units and then composed using the operators � and +. The systemconstraints are enforced using an operator eq.Section 2 lists a collection of features which are essential to object-orienteddesign. Current graphical object-oriented design notations o�er these featureswhich are the motivation for the behavioural model of object systems de�ned insection 3. This leads to the claim that the semantics of current object-orienteddesign notations are represented by the model and therefore the design notationwhich is de�ned in this paper.8.2 AnalysisThe model which is proposed for object-oriented systems is universal and repre-sentative of other approaches to the semantic de�nition of dynamic systems. Inparticular, concurrent object systems are often expressed as labelled transitiongraphs. The use of such a semantic model to express the semantics of currentgraphical design notations is new and o�ers potentially fruitful feedback for theinvention and modi�cation of such notations.There is always a tension between the simplicity of an informally de�nednotation (as represented by the class of graphical design notations) and thenotational overload of a rigorously de�ned notation (as represented by the designnotation used in this paper). The use of �-notation can o�er some help in thisregard since it is higher-order (and can therefore encode very high-level controlabstractions) and has a distinguished history of being sweetened through theuse of syntactic sugar.A question arises regarding the expressiveness of the proposed notation withrespect to logic notations. Certainly with respect to complex control issues,�-based approaches permit the construction of respectable control abstractionssuch as replacement behaviours, which are not readily available in standard log-ics. By making the �-notation non-deterministic, either as part of the executionmechanism or by encoding it using sets, we claim that many of the useful prop-erties relating to logic based abstraction from computational mechanisms areinherited by a notation such as that proposed in this paper.29

It is envisaged that the semantic model and notation which is de�ned in thispaper would be used in conjunction with the graphical design notations currentlyavailable. The bene�ts of graphical notations lie in their ease of assimilation,a property which arises directly from their approximate nature. A suitabledevelopment process may be to use graphical notation as a �rst attempt atdesigning a system and then to clarify the meaning of system components andsystem composition using the model and notation proposed here.8.3 Related WorkThe analysis and semantic foundations of object-oriented designs and develop-ment is currently an active research area [Rui95]. For example [Cit95] showshow message diagrams (equivalent to UML collaboration diagrams) can be givena semantics in terms of a partial order on events; [Bou95] shows how the speci-�cation language Larch can be used to give a formal semantics to static objectdiagrams; and, [Mor96b] [Mor96a] can be used to produce executable object-oriented designs.The use of category theory to capture the essential characteristics of systemsdates back to Goguen [Gog75] who updated the approach to address concurrentobject-oriented systems in [Gog90]. Sheaf theory is a general mechanism formaking global observations about locally de�ned phenomena. In addition toGoguen, sheaves are used in [Mal96] and [Ehr91]. Category theory is used toexpress static properties of object-oriented designs in [Pie96]. Kent [Ken99][Ken97] uses a graphical notation called constraint diagrams to express systemproperties. The diagrams achieve a similar aim to equalisers as used in thispaper.The use of operators such as � and + to construct system descriptions datesback to the speci�cation language clear [Bur77b] which lead to the OBJ familyof speci�cation languages [Gog99] which di�er from the approach taken in thispaper by using a semantic framework based on rewriting terms in order sortedequational logic.A related approach which addresses object-oriented system execution is theuse of modal logics; examples are Object Calculus [Bic97], [Cla97] and [Lan98].This approach di�ers from that taken here in that it uses a modal logic frame-work to express and analyse object execution. By abstracting away from no-tational issues we are able to select a notation (executable or otherwise) asappropriate.A number of researchers such as [Dup97] have used �rst order logical nota-tions for expressing the semantics of object-oriented design notations. Althoughthis approach will capture the behaviour of abstract systems, these notations donot have an executable semantics and are weak at capturing temporal systemproperties.A number of researchers such as [Par83] and [Luq93] advocate program trans-formation and step-wise program re�nement in the system development process.Transformation of programs in a functional notation started with [Bur77a] andcontinued with [Bir87]. Re�nement of UML object-oriented designs using Z30

and the Object-Calculus is described in [Eva98] and [Eva99]. Both of theseapproaches use logic as the design language this is contrasted with the morecomputational approach taken in this paper. A general approach to programre�nement is described in [Mor90].8.4 Future PlansA next step in this work is to develop a proof theory for the design notationwhich can be used to establish system properties. The theory will be used as thebasis of an interpreter for the language since design animation can be viewed asa restricted form of proof. Other types of property include: querying whether ornot a particular message is ever generated, identifying the circumstances underwhich a system state arises, and establishing that the system is deterministicand therefore ready for translation to a concrete programming language. Thework described in [Cla99a] discusses how properties of behaviour diagrams canbe established.A proof theory is also required in order to establish a rigorously de�neddevelopment process. This could take the form of a re�nement relation betweensystem diagrams. One diagram can be viewed as a re�nement of another whendeterminacy and execution detail is increased whilst remaining consistent withthe original behaviour. The work described in [Cla99a] gives an example of howan object-oriented design expressed as a collection of �-function behaviours canbe re�ned.References[Agh86] Agha, G.: Actors: A Model of Concurrent Computation in DistributedSystems. MIT Press, 1986.[Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In pro-ceedings of REX School/Workshop on Foundations of Object-OrientedLanguages, Lecture Notes in Computer Science 489, Springer-Verlag, 1991.[Bar90] Barr, M. &Wells, C.: Category Theory for Computing Science. PrenticeHall International Series in Computer Science, 1990.[Bic97] Bicarregui, J., Lano, K. & Maibaum, T.: Towards a Compositional In-terpretation of Object Diagrams. Technical Report, Department of Com-puting, Imperial College of Science, Technology and Medicine, 1997.[Bir87] Bird, R., S.: A Calculus of Functions for Program Derivation. OxfordUniversity Programming Research Group Monograph, 1987.[Boo94] Booch, G.: Object-Oriented Analysis and Design with Applications, 2ndedition. Benjamin/Cummings Publishing Company Inc., 1994.[Bou95] Bourdeau, R. & Cheng, B.: A Formal Semantics for Object ModelDiagrams. IEEE Transactions on Software Engineering, 21(10), 1995.31

[Bur77a] Burstall, R. M. & Darlington, J. A Transformation System for Devel-oping Recursive Programs. Journal of ACM, 24(1), 1977.[Bur77b] Burstall, R. M. & Goguen, J. A.: Putting Theories Together to MakeSpeci�cations. In the proceedings of IJCAI '77, 1977.[Cit95] Citrin, W., Cockburn, A., von Kanel, J. & Hauser, R.: Formalized Tem-poral Message Flow Diagrams. Software Practice and Experience, 25(12),1995.[Cla94] Clark, A. N.: A Layered Object-Oriented Programming Language. GECJournal of Research, 11(3), The General Electric Company p.l.c., pp 173 {180, 1994.[Cla96] Clark, A. N.: Semantic Primitives for Object-Oriented ProgrammingLanguages. PhD Thesis, Queen Mary and West�eld College, University ofLondon, 1996.[Cla97] Clark, A. N. & Evans, A. S.: Semantic Foundations of the Uni�edModelling Language. In the proceedings of the First Workshop on Rig-orous Object-Oriented Methods: ROOM 1, Imperial College of ScienceTechnology and Medicine, London, June, 1997.[Cla99a] Clark, A. N.: A Semantics for Object-Oriented Systems. Presentedat the Third Northern Formal Methods Workshop. September 1998. Toappear in BCS FACS Electronic Workshops in Computing, 1999.[Cla99b] Clark, A. N.: A Semantics for Object-Oriented Design Notations.Technical report, 1999.[Dup97] Dupuy, S.: Chabre-Peccoud, M. and Ledru, Y., Integrating OMT andObject-Z. In the proceedings of the First Workshop on Rigorous Object-Oriented Methods, Imperial College of Science Technology and Medicine,London, June 1997.[Ehr91] Ehrich, H-D., Goguen, J. A. & Sernadas, A.: A CategoricalModel of Objects as Observed Processes. In the proceedings of REXSchool/Workshop on Foundations of Object-Oriented Languages, LectureNotes in Computer Science 489, Springer-Verlag, 1991.[Eva98] Evans, A. S.: Reasoning with UML Class Diagrams. In WIFT '98,IEEE Press, 1998.[Eva99] Evans, A. S. & Lano, K. C.: Rigorous Development in UML. To appearin the proceedings of the ETAPS '99, FASE Workshop, 1999.[Fie88] Field, A. J. & Harrison P. G.: Functional programming. Addison-Wesley,International Computer Science Series, 1988.[Gog75] Goguen, J.: Objects. International Journal of General Systems,1(4):237{243, 1975. 32

[Gog89] Goguen, J.: A Categorical Manifesto. Technical Report PRG-72, Pro-gramming Research Group, Oxford University, March 1989.[Gog90] Goguen, J. A.: Sheaf Semantics for Concurrent Interacting Objects.Mathematical Structures in Computer Science, 1990.[Gog99] Goguen, J. A., Winkler, T., Meseguer, J., Futstsugi, K.& Jouannaud, J-P.: Introducing OBJ. Technical report athttp://www-cse.ucsd.edu/users/goguen/pubs/iobj.ps.gz.[Ken99] Kent, S. & Gil J.: Visualising Action Contracts in Object-OrientedModelling. To appear in the IEE Software Journal, 1999.[Ken97] Kent, S.: Constraint Diagrams: Visualising Invariants in Object-Oriented Models. In the proceedings of OOPSLA 97, ACM Press, 1997.[Lan64] Landin P.: The Next 700 Programming Languages. Communication ofthe ACM, 9(3), 1966, pp 157 { 166.[Lan98] Lano, K. & Bicarregui, J.: UML Re�nement and Abstraction Transfor-mations. In the proceedings of the Second Workshop on Rigorous Object-Oriented Methods: ROOM 2, Bradford, May, 1998.[Luq93] Luqi, V. B. & Yehudai, A.: Using Transformations in Speci�cation-Based Prototyping. IEEE Transactions on Software Engineering, 19(5),1993.[Mal96] Malcolm G.: Interconnections of Object Speci�cations in Formal Meth-ods and Object Technology, (eds.) Goldsack, S. J. & Kent, S. J., Springer-Verlag, 1996, pp 205 { 226.[Mey88] Meyer, B.: Object-Oriented Software Construction. Prentice Hall In-ternational Series in Computer Science, 1988.[Mor96a] Moreira A. & Clark R. G.: LOTOS in the Object-Oriented AnalysisProcess. In Formal Methods and Object Technology, (eds.) Goldsack, S. J.& Kent, S. J., Springer-Verlag, 1996, pp 33 { 46.[Mor96b] Moreira, A. & Clark, R.: Adding Rigour to Object-Oriented Analysis.Software Engineering Journal, September 1996.[Mor90] Morgan, C.: Programming from Speci�cations. Prentice-Hall, 1990.[Par83] Partsch, H. & Steinbruggen, R. Program Transformation Systems.ACM Computing Surveys, 15(3), 1983.[Pie96] Piessens F. & Steegmans E.: Categorical Semantics for Object-OrientedData Speci�cations. In Formal Methods and Object Technology, (eds.) Gold-sack, S. J. & Kent, S. J., Springer-Verlag, 1996, pp 302 { 316.[Pri97] Priestley, M.: Practical Object-Oriented Design. McGraw-Hill, 1997.33

[Rui95] Ruiz-Delgado, A., Pitt, D. & Smythe, C.: A Review of Object-OrientedApproaches in Formal Speci�cation. The Computer Journal, 38(10), 1995.[Run91] Rumbaugh, J.: Object-Oriented Modeling and Design. Prentice HallInternational, 1991.[Ryd88] Rydeheard, D. E. & Burstall, R. M.: Computational Category Theory.Prentice Hall International Series in Computer Science, 1988.[Sab97] Sabry, A. & Wadler, P.: A Reection on Call-by-Value. ACM Transac-tions on Programming Languages and Systems, 19(5), pp 111 { 136,1997.[UML98] The UML Notation version 1.1, UML resource center,http://www.rational.com.[Weg87] Wegner, P.: Dimensions of Object Based Language Design. In Meyrow-tiz N. (ed.), ACM Symposium on Object-Oriented Programming: Systems,Languages and Applications, ACM, 1987, pp 168 { 182.A Library Implementation in Javaclass Named {private String name;public Named(String name){ this.name = name; }public String getName(){ return name; }}class Book extends Named {private int copies = 0;public Book(String name){ super(name); }public void borrow(){ if(copies > 0)copies = copies - 1;else throw new Error("no copies left");}public void addCopy(){ copies = copies + 1; }}class Reader extends Named {private Vector copies = new Vector();public Reader(String name,Vector copies){ super(name);this.copies = copies;}public void borrow(String name){ copies.addElement(name); }public void ret(String name){ copies.removeElement(name); }} 34

class Library {private static Vector readers = new Vector();private Vector books = new Vector();public void addReader(String name){ readers.addElement(new Reader(name,new Vector())); }public void addBook(String name){ books.addElement(new Book(name)); }public void addCopy(String bookName){ Book book = (Book)find(bookName,books);if(book != null)book.addCopy();else throw new Error("cannot find book");}private Named find(String name,Vector table){ Named named = null;for(int i = 0; (named == null) && (i < table.size()); i++) {Named n = (Named)table.elementAt(i);if(n.getName().equals(name))named = n;}return named;}public void borrow(String readerName,String bookName){ Reader reader = (Reader)find(readerName,readers);Book book = (Book)find(bookName,books);if((reader != null) & (book != null)) {reader.borrow(bookName);book.borrow();}else throw new Error("illegal name in borrow");}public void ret(String readerName,String bookName){ Reader reader = (Reader)find(readerName,readers);Book book = (Book)find(bookName,books);if((reader != null) & (book != null)) {reader.ret(bookName);book.addCopy();}else throw new Error("illegal name in ret");}}

35

