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ABSTRACT 

This Thesis describes a study of the impacts of traffic calming on exhaust emissions, the most 
detailed and extensive of its kind to date. The main objectives of the work were to measure the 
effects of different types of traffic calming measure on vehicle emissions, to develop a system 
of comparative performance indicators and guidance for local authorities, and to assess and 
improve the performance of an existing micro-scale emission model in traffic calming 
applications. There were several elements to the research which have not previously been 
reported, including the development of driving cycles for traffic calming based on external 
speed me 

' 
asurements, and the use of remote sensing to assess the impacts of traffic calming on 

emissions in situ. 

Nine different types of measure were investigated, including a mixture of vertical deflections 
(e. g. road humps, speed cushions) and horizontal deflections (e. g. chicanes). Driving cycles 
were formulated to represent vehicle operation before and after the introduction of the 
schemes, based on traffic speeds measured using both an instrumented car and an external 
method (LIDAR). Fuel conswnption and emissions of CO, HC, NO,,, and C02 from a total of 
22 cars (including petrol non-catalyst, petrol catalyst, and diesel vehicles) were measured on 
a chassis dynamometer using the cycles. Emissions of total particulate matter were also 
recorded from the diesel vehicles. 

The results from the laboratory emission tests were used to compare the performance of an 
'average speed'emission model (MEET) and a 'modal' emission model (MODEM). Also, an 
attempt was made to improve the accuracy of MODEM model in such applications by 
developing a variant model (MODEM-TC) for use in traffic calming applications. In MODEM- 
TC the original MODEM emission matrices were replaced with ones derived from the 
laboratory test results. 

The emission tests indicated that traffic calming increases exhaust emissions. For the three 
types of car tested, emissions of CO, HC, and C02 increased by between 20% and 60%. Only 
the diesel cars showed a substantial (30%) and statistically significant increase in NOx 
emissions. Emissions of total particulate matter from diesel cars also increased by 30%. The 
more 'severe' traffic calming measures (e. g. road humps) tended to result in the greatest speed 
reductions and some of the largest increases in emissions. 

The 50-73% increase in mass emissions of CO per kilometre (for all vehicles) determined by 
remote sensing agreed reasonably well with the range of impacts measured in the laboratory 
emission tests, but the remote sensing HC results were less conclusive. 

For almost all combinations of vehicle type and pollutant, the MEET model provided a more 
reliable indication of the likely impact of traffic calming than the MODEM and MODEM-TC 
models, in spite of the fact that the latter employ a more detailed mechanism for representing 
vehicle operation. It was concluded that the most fundamental Problem with modal models is 
that the analyser emission signals on which they are based are delayed and damped relative to 
the 'true' signal. It appears that further advances in the field of modal emission modelling will 
not be forthcoming until realistic continuous emission data are available. Other workers are 
currently developing a mathematical model of the measurement system which can be used to 
reconstruct the original emission signal in the exhaust pipe from the one measured at the 
analyser. 
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CHAPTER I INTRODUCTION 

1.1 The National Air Quality Strategy and the role of traffic management 

One function of the Environment Act 1995 was to impose on the Secretary of State a duty to 

prepare, and periodically review, a strategy for the management and improvement of air quality 

in the UK. Section 82(l) of Part IV of the Act also laid the foundations for a nation-wide 

system of local air quality management. Local authorities were presented with new 

responsibilities, including obligations to perform periodic reviews and assessments of the air 

quality in their areas, and to assess current and likely future air quality against standards and 

objectives which were set out in regulation. These obligations fell to district and unitary 

authorities in England, and to all local authorities in Scotland and Wales. The Government's 

standards and objectives were detailed in the National Air Quality Strategy (NAQS) 

(Department of the Environment et al., 1997), and covered the pollutants carbon monoxide 

(CO), nitrogen dioxide (N02),, lead, ozone, sulphur dioxide (S02). the hydrocarbons benzene 

and 1,3-butadiene, and particulate matter of aerodynamic diameter less than 1011ra (PM, o). 
Since the publication of the NAQS, the original air quality standards and objectives have been 

revised in the LJK Air Quality Strategy (AQS) (DETR et al., 2000). 

The Government expected local authorities to have completed their initial review and 

assessment of local air quality by April 1999. In areas where the assessment showed that air 

quality objectives would probably not be met by 2005, the authority was required to designate 

an Air Quality Management Area (AQMA) and to draw up an air quality management plan 

which would lead to the objectives being met on time. 

Because road vehicles are a major source of some of the pollutants given prioiity In the NAQS 

and AQS, particularly CO, PMo, N02, and hydrocarbons (HQ (including the two compounds 

identified above), the achievement of the air quality objectives, and continued compliance with 

the standards, requires substantial reductions in emissions from the road transport sector. 

Accordingly, the Government set out the four key principles that it would follow to secure 

reductions in air pollution resulting from road transport (Department of the Environment et aI, 

1997). These were: 
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(i) Improvements in vehicle and fuel technology to reduce emissions. 

(ii) Tighter controls on the existing vehicle fleet, its management, and its operation. 

(iii) Development of environmental responsibilities by fleet operators, particularly public 

service fleet operators, and by the public at large, in transport and vehicle use. 

(iV) Changes in planning and transport policy wl-dch would reduce the need to travel and 

reduce reflance on the car. 

The Government recognised that an effective strategic policy had to incorporate all these four 

elements. It indicated that the largest reductions in emissions would result from improvements 

in vehicle technology, although such reductions alone would not be sufficient to meet all of the 

air quality objectives. In the words of the Department of the Environment et- A (I 996a): 

'Cleanerfuels and vehicles must be the backbone to any strategy to reduce 
emissionsfrom vehicles. However, technological changes can take a long time 
to impact and will not tackle local problems .. The Government therefore 
accepts that afurther contribution should be soughtfrom national and local 

measures on vehicle maintenance and traffic management. ' 

The Environment Act 1995 also confirmed that traffic management schemes could be used for 

air quality management purposes. Plans drawn up by local authorities under Section 84(2) of 

the Act could include alterations to eAsting schemes, or the development of new schemes, on 

air quality grounds. Where local authorities considered that traffic management could make an 

appropriate contribution to improving air quality, they were advised to consider and carefully 

evaluate all the opportunities available to them, and set out a balanced and integrated approach 

tailor-made to their specific local circumstances (Department of the Environment et aL, 1996b). 

The introduction of the NAQS meant that local authorities had to be aware of any air quality 
impacts resulting from their traffic management operations. However, at the time the Strategy 

was drawn up there was little information relating to the effects of different traffic management 

schemes on vehicle exhaust emissions and air quality. Therefore, in order to facilitate the 

approach proposed by the Government, Abbott et aL (1995) suggested that: 
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'The congestionlsafetylenvironmental aspects of the different types of traffic 
management will need to be integrated into a multi-criteria framework such 
that each aspect can be quantified and the relative effects ofdifferent policies 
examined and optimal solutions obtained' 

At the time the NAQS was published, the investigation of the relationships between traffic 

management and its environmental impacts was a relatively new and inexact science. 
Consequently, the extent to which schemes brought about environmental improvements or 

otherwise was difficult to quantify. The Government commissioned an extensive programme 

of work aimed at improving the level of understanding. A large proportion of the work 

programme was, and is still being, conducted at the Transport Research Laboratory (TRL). The 

environmental appraisals undertaken at TRL have been spread over number of projects, and 
have covered a range of subject areas. These subject areas have included noise, vibration, 

vehicle emissions, air pollution, and perceived impacts. 

This Thesis incorporates a large proportion of the TRL research relating to the impacts of a 

particular type of traffic management - traffic calming - on vehicle emissions and air quality. 

1.2 Research objectives 

Traffic calming schemes, which generally incorporate physical measures such as road humps, 

chicanes, and road narrowings, are designed primarily to reduce vehicle speeds. Indeed, they 

have been found to be particularly effective in this respect, and have also been successful at 

reducing the frequency and severity of accidents. As with other types of traffic management 

scheme, there is little information relating to the effects of traffic calming on emissions and air 

quality. Thus, in order to guide local authorities in their traffic calming operations, the 

emissions impacts of various traffic calming schemes were subjected to extensive investigation. 

The main objectives of the research undertaken for the PhD programme were: 

(i) To review the existing level of understanding regarding traffic calming and emissions. 

(H) To determine the effects of different types-of traffic calming measure on exhaust 

emissions, primarily from passenger cars but also from goods vehicles and buses. 

Subordinate objectives in this respect included: 
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e To assess the impact of traffic calming on vehicle speed profiles. 

41 To develop driving cycles using external speed measurement techniques. 

e To determine the impact of traffic calming on emissions from passenger cars, based 

on the driving cycles. 

9 To measure emissions from large numbers of vehicles on the road using remote 

sensing in the vicinity of traffic calming measures. 

(iii) To develop a system of comparative performance indicators and guidance for local 

authorities which would enable them to predict the effects of their proposed traffic 

calming schemes. 

(iv) To assess the performance of an existing micro-scale emission model in traffic calming 

applications, and to explore the ways in which its performance could be enhanced. 

A general procedure for assessing the environmental impact of aU traffic management schemes 

was proposed by Abbott et aL (1995). For traffic calming schemes, this procedure is 

characterised by the Mowing five stages: 

(i) The imposition of a traffic calming scheme wiU introduce changes to the traffic which 

need to be defined accurately so that environmental appraisal can proceed to the next 

stage. Drivers will respond to controls by modifying their behaviour. Such changes may 
include modifications to average and maximum speeds, rates and numbers of 

accelerations and decelerations, gear changing, etc. Trip lengths, traffic flows, traffic 

composition, and modal split may also be affected. 

(ii) Changes in driver behaviour will result in modified patterns of vehicle operation. These 

are specified by various engine and vehicle parameters Eke engine speed, engine load, 

engine temperature, and exhaust temperature, as weR as their rates of change. 

(iii) These changes will influence emissions rates. 

(iV) If vehicle emissions are affected then local levels of air pollution exposure will also be 

affected. 

(V) Finally, the impact of changes in exposure on people in different community settings 

must be adequately assessed. This would complete the connection between the 
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introduction of a traffic calming scheme and the environmental impact that the resulting 

traffic changes have on people whether they are drivers, pedestrians, or at home. 

The primary aim of the, research was to gain an insight into the effects of traffic calming on 

vehicle emissions; stage (iv) of this procedure was not considered in detail, and stage (v) was 

not considered at A 

1.3 Thesis structure 

The logical progression of the research, and the structure of the Thesis, are illustrated in Figure 

1.1. The time scale of the programme of research is given in Table 1.1. From Table 1.1 it can 

be seen that some of the work presented in this Thesis was conducted by the author before the 

official registration date. This work is included to clarify the progression of the work. The 

remaining Section of Chapter 1 lists publications and conferences attended by the author. 

Chapter 2 contains a literature review which is a condensed version of TRL Report 307 

(Boulter and Webster, 1997). The aim of the review was to summarise existing knowledge of 

the effects, or potential effects, of traffic calming on vehicle emissions. A brief outline of the 

philosophy of traffic calming, and short descriptions of the enginegring measures employed to 

calm, traffic, are followed by a discussion of the first step in the assessment procedure: driver 

behaviour and the changes in behaviour imposed by traffic calming schemes. The review also 

deals with the factors affecting emissions from road vehicles in the context of traffic cahning, 

and includes a summary of previous case studies relating to emissions impacts. 

Chapter 3 des 
, 
cribes the research 'methods and tools that are available for determining the 

impacts of traffic calming schemes on emissions. These include the appropriate techniques for 

evaluating driver behaviour, and techniques for measuring and modelling emissions. At the end 

of the Chapter, recommendations are provided on the design of an appropriate experimental 

methodology. 
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I Ch 1: Introduction I 

Ch 2: Literature Review Ch 3: Review of available research III 
methods and tools 

Ch 4: Development of a speed 
measurement procedure 

I Ch 5: Site descriptions I 

Traffic flow 

Ch 9: Remote sensing of 
vehicle ern 

I 

Ch 6: Method and results of 
traffic measurement campaign 

Vehicle speed Traffic composition 

I Ch 7: Driving cycles I 

I Ch 8: Laboratory emission tests I 

Ch 10: Performance indicators 

Ch 11: Emission 
model assessment & 

development 

I Ch 12/13: Summary, discussion, conclusions, & recommendations I 

Figure 1.1 Progression of research and Thesis structure. 
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The main focus of the methodology was the determination of the impacts of traffic calming 

schemes on emissions frompassenger cars. The methodology involved the development of 
driving cycles to represent vehicle operation (speeds, accelerations, and gear selections) before 

and after the introduction of a traffic calming, with the cycles subsequently being used to 

measure emissions from a sample of passenger cars on a chassis dynamometer. The driving 

cycles were based on real-world measurements of vehicle speed. The development of a speed 

measurement procedure is described in Chapter 4, the traffic cahning measures investigated 

during the study are described in Chapter 5, and the method and results of the speed 

measurement campaign are presented in Chapter 6. The development of the driving cycles, 

based on the speed data, is described in Chapter 7. 

A total of 22 different passenger cars were then submitted to exhaust emission testing. The 

tests were conducted by AEA Technology in the company's Vehicle Emissions Laboratory. 

Chapter 8 of the Thesis describes the selection of vehicles for testing and the test procedure, 

and includes a summary of the results. 

In order to determine whether the emission behaviour of the sample of vehicles tested over 

specific cycles on the dynamometer could be related more generally to the emission behaviour 

of large numbers of vehicles on the road, remote sensing surveys were conducted in the vicinity 

of two traffic calming measures. The method, results, and conclusions of this on-road study are 

presented in Chapter 9. 

One of the objectives of the research was to develop a system of performance indicators for 

different traffic calming measures. These indicators would have to account for how vehicle 

speed and emissions were affected, and would demonstrate how speed reduction and 

minfinisation of emissions could be balanced against other requirements. The main findings of 

the study, as well as any relevant information drawn from other sources, have been used to 

develop guidance on the implementation of traffic calming measures. The methods by which 

these performance indicators were developed, the results for the different types of traffic 

calming measure, and the guidance for local authorities, are presented in Chapter 10. 

Modelling emissions is a cost-effective alternative to direct measurement. Estimating changes 

in emissions on the spatial scale of a traffic cahning scheme probably requires the use of a 

micro-scale emission model, in which vehicle emissions are related to a detailed vehicle 
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operation profile. Such applications represent the state of the art in emission modelling, and at 

present they are few in number. One model, MODEM (Jost et al., 1992), has been shown to 

underestimate the changes in emissions arising from the introduction of traffic calming 

measures (Sturm et al., 1998). However, Sturm et al. only reported emission test results for 

a single vehicle. The results from the experimental work presented in this Thesis were used 
firstly to assess the performance of the model in more detail, and secondly to examine how its 

performance in traffic calming applications might be improved. The MODEM model, and the 

assessment and development of the model for use in traffic calrning applications, are described 

in Chapter 11. 

Chapter 12 contains a summary and discussion of the research. The conclusions and 

recommendations for future work are presented in Chapter 13. 

1.4 Associated publications and conferences attended 

Publications 

e Boulter, P. G., Hickman, A. J., Latham, S., Layfield, R., Davison, P. (AEA Technology), 

& Whiteman, P. (AEA Technology) (200 1). 'The impacts of traffic calming measures on 

vehicle exhaust emissions. TRL Report 482. Transport Research Laboratory, Crowthorne. 

Boulter, P. G. (2000). 'Remote sensing of vehicle emissions near traffic calning measures'. 

Proceedings of 9'h international Umposium on Transport and Air Pollution, Avignon, 

France, 5-8 June, ISBN 2-85782-533-1, pp529-534. 

Green, J. & Boulter, P. G. (2000). 'Traflic management: an evaluation of parking duration 

and vehicle exhaust emissions using remote sensing techniques. TRL Report 469. 

Transport Research Laboratory, Crowthorne. 

Boulter, P. G. (2000). 'Remote sensing of vehicle emissions as a tool for assessing traffic 

management policies'. TRL Annual Research Review. Transport Research Laboratory, 

Crowthome. 
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o Boulter, P. G. (2000). 'The impacts of the Safer City Project on road traffic emissions in 

Gloucester: 1996-1998'. TRL Report 444. Transport Research Laboratory, Crowthome. 

o Boultef, P. G., Latham, S. & Ainge, M. (1999). Driving cycles for measuring passenger 

car emissions on roads with traffic calming measures'. The Science of the Total 

Environment, 235, p77-89. 

e Boulter, P. G. (1999). 'Remote sensing of vehicle emissions near two traffic cahning 

measures in Gloucester'. TRL Report 423. Transport Research Laboratory, Crowthorne. 

9 Cloke, J., Webster, D., Boulter, P., Harris, G., Stait, R., Abbott, P. & Chinn, L. (1999). 

Traffic cahning: Environmental assessment of the Leigh Park Area Safety Scheme, Havant'. 

TRL Report 397. Transport Research Laboratory, Crowthome. 

o Boulter, P. G., Evans, R., Guthrie, N. & Savill, T. (1999). Tngineering for Change. A 

submission to the BNC/PLARC essay competition on Infrastructure and Transportation in 

the 21' century. TRL Report PA3487/99. Transport Research Laboratory, Crowthome. 

9 Boulter, P. G. &Cox, J. (1999). 'A review of European emission measurements and models 
for diesel-fueHed buses'. TRL Report 378. Transport Research Laboratory, Crowthome. 

9 Stunn, P. J., Boulter, P., de Haan, P., Jouniard, R., Hausberger, S., Hicknmn, A. J., KeUer, 

M., Niederle, W., Ntziachristos, L., Reiter, C., Samaras, Z., Schinagl, G., Schweizer, T. 

& Pischinger, R. (1998). Instantaneous emission data and their use in estimating passenger 

car emissions'. EC MEET Proiect Deliverable no. 6. Task 1.1: Instationary vehicle 

emissions. Published by the Technical University of Graz, Institute for Internal Combustion 

Engines and Thermodynamics, A-8010 Graz Inffeldgasse 25, Austria, Editor Univ. -Prof 
Dr. R. Pischinger. 

e Boulter, P. G. (1998). 'The perceived environmental impact of traffic management 

schemes'. TRL 362. Transport Research Laboratory, Crowthorne. 

Cloke, J., Boulter, P. G., Davies, G., I-Eckman, A. J., Layfield, P, E., McCrae, L S., & 

Nelson, P. M. (1997). Traffic management and air quality research programme'. TRL 327. 
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Transport Research Laboratory, Crowthome. 

Boulter, P. G. &Webster, D. C. (1997). 'Traffic calming and vehicle emissions: a 
literature review'. TRL 307. Transport Research Laboratory, Crowthorne. 

Boulter, P. G. (1997). Environinental traffic management: a review of factors affecting cold 

start emissions'. TRL 270. Transport Research Laboratory, Crowthorne. 

Conferences, workshops, and meetings attended 

e TRAMAQ (Traffic Management and Air Quality) meeting. DETR, 7 November 2000. 

9" International Scientific Symposium on Transport and Air Pollution. Avignon, France, 

5-8 June 2000. Poster presentation: Remote sensing of vehicle emissions near traffic 

calming measures. 

e Workshop on Particles Research. DETR, 24 May 2000. 

e TRAMAQ (Traffic Management and Air Quality) meeting. DETR, 4 November 1999. 

9 Final meeting of the EC NffiET project and COST 319 Action (Estimation of Pollutant 

Emissions from Transport), Graz, Austria, 18 June 1998. 

9 6h International I-Eghway and Urban Pollution Symposium, Baveno, Italy, 18-22 May 1998. 

Oral presentation: Driving cyclesfor measuring passenger car emissions on roads with 

traffic calming measures. 

e National Society for Clean Air and Environmental Protection Spring Workshop. 15116 
A 
. ýpril 1997. 'Air Quality Mahagement'. Abingdon, Oxfordshire. Oral presentation: Traffic 

management and vehicle emissions. 
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CHAPTER 2 TRAFFIC CALMING: A REVIEW OF MEASURES AND 

EFFECTS 

2.1 Traffic calming 

Detailed histories of traffic calming and numerous case studies have been presented by several 

authors, notably Hass-Klau et aL (1992), Pharoah and Russell (1989), Tolley (1989), the 

County Surveyors' Society (1994), and Devon County Council (199 1). There is no intention 

to repeat the work of these authors in this Thesis. The philosophy and objectives of traffic 

calming, and the devices commonly employed, are therefore described only in outline. 

Changes in traffic speed have been shown to be related to changes in accident occurrence. By 

examining the results from studies on various types of road in several countries, Finch et aL 
(1994) found that aI mph reduction in mean vehicle speed gave a 5% reduction in accidents. 

A sirnilar relationship has been observed for 20 mph zones, where it has been demonstrated that 

the same reduction in mean vehicle speed equates to a 6.2% reduction in accidents (Webster 

and Mackie, 1996). More recent research by TRL (Taylor et aL, 2000) has both confwmed an 

expanded on these findings, and it is clear that such results have encouraged the use of physical 

engineering measures - or 'traffic calming' - to reduce speeds. 

Devon County Council (1991) noted that the term 'traffic calming' is largely open to 

interpretation, although it does convey the basic ob ective of the approach - to reduce the j 

adverse effects of road traffic by adapting the volume, speed, and behaviour of traffic to the 

primary functions of the streets through which it passes. Alternatively, Pharoah and Russell 

(1989) have defined traffic calming as: 

the attempt to achieve calm, safe, and environmentally improved conditions 
on streets' 

It was acknowledged by Pharoah and Russell that the principal objectives vary from scheme 

to scheme, but generally include reduction of accidents, reclamation of space for non-traffic 

activities, promotion of greater feelings of security (particularly among residents, pedestrians, 

cyclists, and others engaged in non-traffic activities), creation of environmental improvements, 

and promotion of local economic activity. 
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Since traffic calming works by adapting the characteristics of traffic to the functions of the 

streets through which it passes (Devon County Council, 1991), it follows that different 

approaches will be required for different sections of the road network. For example, vehicle 

speeds must be kept low throughout an urban residential 20 mph zone. The position in the road 
hierarchy that a 20 mph zone occupies ensures that vehicles entering the zone are not travelling 

at particularly high speeds, and consequently fairly severe traffic calming measures can be 

employed. In contrast, vehicles entering a rural village on a main road will be travelling at 

higher speeds, and the proportion of HGVs in the traffic will be considerably greater. The 

design of any traffic calming measures employed to reduce speeds through such a village would 

need to take these factors into account. 

In order to inform local authorities of the recommended procedures and legislative 

requirements concerning the implementation of schemes, the Government has published an 

extensive series of Traffic Advisory Leaflets (e. g. Department of Transport, 1996). The 

publications mentioned at the start of this Chapter also offer advice on implementation. 

Descriptions of the more important traffic calming measures are provided in the following 

Sections of the Review, but for a more in-depth view these publications should be consulted. 

Photographs of typical examples of some of these measures can be found in Chapter 5 of the 

Thesis. 

2.2 Specific traffic calming measures 

The rules governing the design of traffic calming measures were relaxed with the introduction 

of the Highways (Road Humps) Regulations 1996 (for a brief chronology of traffic calming 

legislation, refer to Appendix A). This has led to the implementation of a diverse range of 

measures on UK roads, although many of the measures now seen in the UK have been used 

extensively on the continent for several years. The main traffic calming measures currently in 

use in the UK are described in the fol. lowing Sections. They have been separated into three 

categories: measures which result in a vertical deflection in vehicle path, measures which result 

in a horizontal deflection in vehicle path, and other measures. 

Measures may be implemented individually, but it is increasingly common for authorities to 

implement a combination of measures in area-wide schemes. Indeed, this approach has been 

encouraged for a number of years. For example, Devon County Counc; H (199 1) have regarded 
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the list of available measures as a 'palette' to be used in combination to meet specific objectives. 

2.2.1 Vertical deflections 

2.2.1.1 Road humps 

A road hump is a raised portion of carriageway laid at right angles to the direction of traffic. 

Humps generally have either a circular (round-top) profile, or a trapezoidal (flat-top) profile 

with ramps leading up ýo and down from a plateau. Road humps are the most commonly used 

traffic calming measure in Britain (Hass-Klau et aL, 1992), and this is no doubt due to their 

effectiveness as speed-reducing devices. Round-top humps were first used in the UK in the 

1980s (Baguley, 1981), though their design was tightly controlled. Flat-top humps made their 

first appearance in the UK during the 1990s. It is common to see the latter used in conjunction 

with a Pelican or Zebra Crossing. The most effective humps at reducing vehicle speeds are 100 

mm high but, because of passenger discomfort or grounding, they are not usually suitable for 

use on bus routes, or on routes which are frequented by the emergency services. The use of 75 

mm humps can substantially lessen the likelihood of grounding with little or no erosion in the 

speed reduction obtained using 100 mm humps (Webster and Layfleld, 1996). Where the higher 

humps would have been unacceptable to the emergency services, bus operators, and residents, 

humps with lower profiles and shallower gradients have been implemented. 

2.2.1.2 Speed cushions 

As Layfield (1994) indicated, one of the main problems with road humps is that the effect on 

larger vehicles such as buses, mini-buses, and emergency vehicles is more severe than for cars, 

and therefore the discomfort for passengers in larger vehicles can be more pronounced. Road 

humps can also cause delays for emergency vehicles, and can be uncomfortable for cyclists. On 

the continent, and more recently in Britain, the solution to these problems has taken the form 

of speed cushions. 

Speed cushions are raised areas in the carriageway which occupy only part of the traffic lane. 

Cars and other vehicles with narrow track widths cannot avoid them, and have to cross with 

at least one wheel of each axle on the cushion. Larger vehicles with wider axles can cross by 

straddling the raised area. Thus, buses, fire appliances, and some ambulances should be able 
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to cross them relatively unimpeded, whilst car drivers have to slow down to avoid discomfort 

(Layfield, 1994). However, on many British roads operators run different makes of bus, which 

often have various axle widths and ground clearances. An 'ideal' speed cushion is therefore 

difficult to design. 

Speed cushions are generally located in pairs arranged transversely across the carriageway, 

although single cushions centrally positioned, 'three abreast' versions, and double-pair 

an-angements have also been used (Department of Transport, 1994c). Other alternative designs, 

comprising of sets of three and five cushions, have been evaluated in on-road trials by Layfield 

(1994). 

2.2.1.3 Raised junctions 

Webster (1993 a) explained that raised junctions are a development of the flat-top hump. The 

whole junction is raised to road-hump level with ramps on all arms. Such features can make 

drivers more aware at problem junctions, can form an attractive speed-reducing feature, and 

can help pedestrians to cross the road if constructed to footway level. They are most useful in 

an area-wide scheme at junctions which are known to be haza dous, and where major 

reconstruction would not be justifiable or viable. 

2.2.1.4 Thumps 

Thumps are thermoplastic mini-humps which span the full width of the carriageway. According 

to the Government (Department of Transport, 1994d), it is a matter for individual authorities 

to determine whether thumps provide a suitable alternative to road humps in particular 

circumstances. For the design of thumps, the DoT suggested that they be circular in profile, 37 

mm high, around 900 mm wide, spaced at around 50-metre intervals, and used on roads with 

speed limit no greater that 30 mph. 

2.2.1.5 Rumble devices 

Rumble devices (rumble strips and jiggle bars) introduce particular t3rpes of noise and vibration 

which contrast with those associated with a tarmac surface, and therefore give a clear indication 

to drivers that they should reduce their speed. Designs and materials may vary, but the strips 
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are generally formed as a vertical change in the road surface material applied across the 

carriageway. The Highways (Traffic Calming) Regulations (1993) stipulate a maximum height 

of 15 mm for rumble devices. However, when used in residential areas, there can be problems 

with this traffic calming measure specifically because of increased noise and vibration levels. 

In some cases the strips have been removed after complaints from residents (Hass-Klau et al., 

1992). 

2.2.2 Horizontal deflections 

According to Hass-Klau and Nold (1994), the opposition to road humps from emergency 

services, bus operators, and residents has encouraged local authorities to shift the emphasis 

from measures that cause a vertical deflection in vehicle path to those resulting in a horizontal 

deflection. Horizontal measures were defined by Hass-Klau and Nold as lateral shifts that are 

introduced in the carriageway with the intention of reducing vehicle speeds and, in some cases, 

creating pedestrian crossing points. To achieve this effect, and to limit the driveeslong-distance 

view of the road, the paths of vehicles must be deflected to some degree, often in conjunction 

with a narrowing of the carriageway. 

2.2.2.1 Bufld-outs/Half-chicanes 

A build-out consists of a feature which extends into the road to narrow the existing 

carriageway. Build-outs can be constructed in various ways; they may be introduced as 

pavement extensions, as planted areas, or in the form of plant pots or tubs. The narrowed 

carriageway, even if reduced to a single lane, still allows most vehicles to be driven relatively 

quickly through the available gap, unless there is opposing traffic to prevent this (Department 

of Transport, 1994e). 

2.2.2.2 FuU Chicanes 

A full chicane is formed when two build-outs are implemented on alternate sides of the 

carriageway. The number of chicane designs appears to be almost unlimited. The most effective 

chicanes require a narrow carriageway width, but these are only recommended when the traffic 

flow is very low (Hass-YJau et aL, 1992). Chicanes are generally not suitable for use on main 

roads with large volumes of traffic, although they may be applicable to certain main roads if 
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traffic flows are lower. However, where this occurs the stagger length may need to be so long 

that car drivers can adopt a relatively straight line through the chicane, with the result that the 

speeds of cars are not reduced (Department of Transport, 1994e). 

2.2.2.3 Pinch points 

Pinch points are created when two build-outs are constructed on directly opposite sides of the 

carriageway, thus reducing the width of both lanes over a distance of around 5- 10 metres. The 

form and shape of pinch points can vary substantially, and the distinction between pinch points 

and chicanes is often blurred. By implementing this measure the carriageway width can be 

restricted so that only one vehicle at a time can negotiate the point (when the width is around 

2.8-3.2 metres), or so that two cars can pass each other slowly (when the width is around 4.6- 

4.8 metres). If rat-running traffic is the problem, rather than excessive traffic speed, reducing 

the carriageway to one lane by using pinch points can be effective at deterring through traffic 

by causing delays (Hass-Klau et aL, 1992). 

2.2.2.4 Carriageway narrowing 

The varied objectives of carriageway narrowing are: to limit the ability of vehicles to pass one 

another (and thus to limit speeds and/or to interrupt traffic flow), to Unit overtaking, to reduce 

pedestrian crossing distance, to restrict the size of vehicles entering a road' to provide priority 

for buses, to prevent on-street parking, and to define or shelter on-street parking spaces. In 

contrast to the construction of pinch points, carriageway narrowing is carried out over the total 

stretch of road that needs to'be traffic calmed. Roads can be narrowed by hatched road 

markings or by physical measures in the form of wider pavements, central reservations, cycle 

and bus lanes, side strips, and tree planting (Hass-Klau et aL, 1992). 

2.2.2.5 Traffic islands/Pedestrian refuges 

Traffic islands can provide refuge for crossing pedestrians, improve lane discipline by restricting 

overtaking, lower vehicle speeds by reducing lane width, and separate cyclists from other traffic 

when used with cycle lanes. They are most cornmonly implemented either to reduce the 

carriageway width, or to form chicanes and pinch points (Hass-YJau et aL, 1992). 
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2.2.3 Other devices 

2.2.3.1 Roundabouts 

Roundabouts have been used as a traffic management device in Britain for many decades. They 

are used to reduce speeds, smooth the traffic flow, and reduce vehicle conflicts. The speed 

reduction results from the creation of a lateral shift in the carriageway, and priority being given 

to traffic approaching from the off-side. A disadvantage of roundabouts is the increased danger 

faced by cyclists as a result of conflicting movements. Also, pedestrians can find them difficult 

to negotiate (Hass-Klau et aL, 1992). The design of conventional roundabouts tends to limit 

their use to larger roads, and therefore mirii-roundabouts are often installed in residential areas 
(Devon County Council, 199 1). These are an effective way of treating specific junctions with 

poor accident records. 

2.2.3.2 Road markings/Surface treatments 

A change in the surface material or colour of the carriageway can define a central reservation 

or cycle lane, and will help to create the impression of a reduced carriageway width (Hass-Klau 

and Nold, 1994). According to Devon County Council (199 1), the objectives of road markings 

are to guide drivers, to improve predictability of vehicle paths for the benefit of pedestrians and 

cyclists, and to indicate priority. 

2.2.3.3 Entrance treatments 

Entrance treatments are features designed to make car drivers more aware when they are 

entering a traffic calmed area, or to generally mark the beginning of an area where reduced 

speed is required (Hass-Klau and Nold, 1994). Hence, they can be an effective means of 
identifying the beginning of a 20 mph zone. Entrance treatments have been developed for use 

at side roads so that drivers leaving a major road are in no doubt that they are entering a road 

of different character. They may be used alone, generally to indicate to a driver that he is about 

to encounter other traffic calming measures, or may be combined with traffic calming measures 

themselves. The design of an entrance treatment can itself incorporate a wide variety of 
features, including bufld-outs, pinch points, changes in surface texture or colour, vertical 
deflections, and planting (Department of Transport, 1994a). 
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2.2.3.4 Gateways 

Gateways are most often implemented at the approach to villages on principal rural roads. They 

usually incorporate vertical features at the sides of the road, but can also include a village 

nameplate, speed limit signs, and warnings of further traffic calming (examples are given in 

Wheeler et aL, 1997). According to the County Surveyors' Society (1994), gateways tend to 

be ineffective at reducing speeds unless they incorporate some form ofphysical road narrowing. 
The effect of gateways can be short-lived, and repeater features are usually required to maintain 

speeds at a lower level. 

2.2.3.5 Road closure 

Road closure is a well-established approach to traffic calming in Britain. Whatever traffic 

calming measures are implemented on a particular road, through traffic cannot be completely 

eliminated where arterial roads are blocked or congested. In such circumstances drivers will 

try to avoid the congestion by taking residential roads, whether they have traffic calming 

measures or not (Hass-Klau et aL, 1992). Road closure is a step that is taken specifically to 

remove the possibility of rat-running. 

The effects of road closure on parallel streets, and the actual number of road closures in a 

residential area, are both important. If one street is closed, and through traffic can move into 

parallel streets, this can cause problems for the residents living there. If there are too many road 

closures in one area, then the additional trip distances created can become a significant 

problem. Another argument against road closure is that it lengthens trips for emergency 

vehicles. The need to close roads is often a sign that other car-restraining policies are needed. 

2.2.4 Area-wide traffic calming 

As stated above, car drivers who have been forced to give up one rat-run because it has been 

traffic calmed often switch to another. This can be avoided by area-wide calming, and the best 

results can be achieved through the implementation of a combination of traffic calming 

measures. During the design phase of the scheme it has to be made clear how emergency 

services would be affected if they had to get to a location in the middle of a network of streets 
featuring traffic calming, and it is important to consider the comfort of patients being carried 

19 



in ambulances (Hass-Klau et aL, 1992). 

Webster (1993a) noted that, with the area-wide approach, the aim is to ensure that only 

appropriate traffic uses each type of road. This can be achieved by establishing a hierarchy for 

the roads enclosed by main thoroughfares, and by installing physical measures to encourage 

traffic onto appropriate roads. Varying the type and height of measures can help to define the 

hierarchy of the area; the most severe measures can be placed on the roads which are unsuitable 
for through traffic, and less severe measures on other roads. 

2.2.5 Speed limits 

2.2.5.1 Speed cameras 

Speed cameras have become an increasingly common sight along main and local distributor 

roads in urban areas in the UK, but their effects on speed tend to be very localised. Abbott et 

aL (1995) observed that the development of speed-enforcement technology that can detect 

excessive speeds along a route rather than excessive speeds at particular locations may give 

speed-enforcemqt technology a greater role in accident reduction and traffic calming. Cameras 

operating on this principle - called 'SPECS' - are already on trial in the UK (Totton, 2000). 

2.2.5.2 20 mph speed limits and zones 

The use of signing alone to define a 20 mph speed limit is most appropriate where the 85'h 

percentile speeds are already low, and further traffic calming measures are not needed (DETR, 

1999). 

DETR (1999) advises that 20 mph zones are most appropriate in areas where there is a record 

of accidents to children, or where concentrations of pedestrians and/or cyclists are anticipated. 
The zone itself will normally be residential in character. Until June 1999, specific consent from 

the Secretary of State for Transport was required. The legislation has now been changed, and 
local authorities no longer need to obtain consent before implementing 20mph speed limits and 

zones. Previously, in order that zones did not become too large, no road within it could be 

more than one kilometre from the boundary of the zone. This no longer applies, but it remains 

sound general advice (DETR, 1999). Hodge (1992) noted an apparent lack of variation in the 
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type of measure implemented in 20 mph zones. Flat-top humps appeared to be the device most 
frequently used. 

2.2.6 Most frequently implemented types of measure in the UK 

The traffic calming measures to be included in the PhD research programme were selected 

according to their popularity (in terms of how many had already been implemented by local 

authorities). The types of traffic calming measure most frequently implemented in the UK (as 

of 1997) are listed in Table 2.1. The ranking is based on details of schemes authorised by the 

Road Safety Division of DETR, a ntunber of TRL reports, and the personal knowledge of TRL 

staff. Each measure has'been. evaluated according to the percentage of schemes implemented 

in which that particular measure was the most prevalent device. The percentage values 

presented are very approximate, since some of the features listed are often used in combination 

with each other or with mini-roundabouts. The relative positions of the measures in the fist are 

changing constantly, and regional disparities in the ranking will also exist. The main point to 

note is that, up to 1997, schemes comprised mainly of road humps were by far the most 

common type, although the proportion of schemes containing speed cushions was increasing. 

Table 2.1 Most frequently implemented traffic calming measures in the UK by 1997. 

Popularity 
Ranking 

Approx. % 
of schemes 

Main type of measure 
in scheme 

Description 

1 40% Flat-top hump 75 mm high 

2 35% Round-top hump 75 mm high 

3 10% Speed cushions' 1700-1800 mm wide 
4 7% Chicanes Single lane working 
5 5% Thumps 37 or 42 mm high 
6 3% Chicanes 2-way working 

' Cushion width can vary from 1600 to 1900 nim. 
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2.3 Traffic calming and driver behaviour 

The first main stage in the determination of the environmental impact of a traffic calming 

scheme (see Section 1.2) is an assessment of the modifications to driver behaviour imposed by 

the scheme, and a common approach is to consider behaviour before and after implementation. 

The following Section is mainly concerned with the factors which influence driver behaviour 

in urban areas in general, since in this context traffic calming has not been studied in detail. 

2.3.1 What is driver behaviour ? 

Defining driver behaviour precisely is not a straightforward task. Two basic types of 

information that describe it were identified by the COST 319 Action, 'Estimation of Pollutant 

Emissions from Transport' (European Commission Directorate General for Transport, 1996). 

These are: 

(i) Vehicle operation/control data. These include detailed data on parameters such as speed 

and gear selection 

(H) Activity data. These include information on trips such as journey purpose, duration, 

mode, time of day, time of year. 

'Vehicle operation' data describe the driver's choice of speed and driving style. In urban traffic 

drivers normally have a choice of possible gear, clutch, brake, and accelerator positions. They 

thereby determine the operating parameters of their engines, and consequently the fuel 

consumption and exhaust emissions of their vehicles. The variety of possible control options 

means that measurements of parameters that are dependent on these options are likely to be 

quite variable. For example, Waters (1992) stated that different drivers can obtain substantially 

different fuel consumption figures in the same model of car. When nine drivers were asked to 

drive the same car around a TRL test route, Waters reported that there was a large difference 

(50%) between the least economical and most economical drivers. 

Abbott et al. (1995) understood that the detailed assessment of the veMcle operation element 

of driver behaviour was one of the key stages in the environmental appraisal of traffic 

management schemes. Drivers will respond to traffic controls by modifying the way in which 
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they operate their vehicle. Such changes may include modifications to average and maximum 

speeds, rates and numbers of accelerations and decelerations, braking patterns, and gear 

selection. This will result in modified patterns of vehicle operation, as specified by various 

engine and vehicle parameters (e. g. engine speed and load and their rates of change), and hence 

changes in emission rates. 

It is important to understand the diverse aspects of vehicle operation, and to discover where 

and why particular modes of driving are encountered so that, hopefully, drivers can be coerced 

into driving safely and economically, and encouraged to treat a particular road in the manner 
for which it was designed. 

'Although there is no single effective overall model of how people drive, Evans (1991) has 

noted that a great deal has been learned about various specific aspects of the driving task. The 

techniques for studying driver capabilities and perfon-nance have included observing actual 

drivers in traffic, experiments using instrumented vehicles, and studies using driving simulators 

of varying degrees of complexity and realism. Work relating to driver behaviour has usually 

been concerned with its relationship with accident causation rather than with accidents. 

Consequently, existing studies invariably relate to speed selection and not necessarily to the 

other parameters known to affect emission rates (e. g. vehicle type, acceleration rates, gear 

selection, pedal operation). 

Personal choices concerning, for example, mean speed, speed variation, and steering behaviour 

certainly depend on a large number of factors, some of which have not been subject to 

extensive study. These factors can be differentiated in a number of ways, but for the purposes 

of this literature review they have been separated into the five general categories fisted below. 

However, there are probably numerous interactions between factors that are in these different 

groups. 

(i) Personal characteristics: e. g. gender, attitudes, age and experience, reaction times, and 

vehicle ownership. 

(H) The vehicle envirorunent: e. g. factors relating to the interior layout, ergonorr&s (such 

as actuating forces of the steering wheel, foot pedals, and gear lever) and comfort, and 
factors relating to vehicle performance (such as available power). 
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(iii) The road enviromnent: e. g. gradient, width, lateral slope, curvature, surface quality, 

speed limit, adjacent land use, number of pedestrians. 

(iV) The traffic environment: e. g. volume of traffic, behaviour of other drivers. 

(V) Other factors relating to the trip: e. g. available time, time of day, weather and fight 

level, commercial pressures. 

These distinctions appear to fit in reasonably well with the way in which information on vehicle 

operation has been reported. For example, Jorgensen and Polak (1993) observed that the topic 

of drivers' speed selection is one that has attracted considerable research e ffort in recent 

decades, with most of the work having concentrated on the relationship between speed 

selection and the characteristics of the road (alignment, number of lanes, surface condition, 

etc. ) or the vehicle (type, age, engine capacity, etc. ). Researchers have also sought to develop 

a better understanding of the factors affecting speed selection by extending the scope of 

analysis to include drivers' personal characteristics and attitudes (e. g. Quimby and Watts, 

1981). Such work has established the importance of a number of factors, including drivers' 

perception of safety, their sensitivity to the perceived cost implications of alternative speeds, 

and the availability and comprehension of information regarding speed limits. Rothengatter 

(1993) noted that the relative importance of the different factors underlying specific behaviour 

is still largely uncharted territory and requires further study, since these determine to a large 

extent the efficacy of the various behaviour modification approaches. 

In-depth summaries of the five factors listed above would be too large to warrant inclusion in 

this review. The report by Boulter and Webster (1997) includes more detailed coverage. 

In the context of the type of research presented in this Thesis, the term 'activity data' relates 

to the type of data obtained from traffic counts and travel surveys, such as the volume and 

composition of traffic and on different roads, the lengths of trips, the time elapsing between 

successive trips, and the origin, destination and chosen route, all as a function of the hour, day, 

month, season, or year. 

Whereas vehicle operation deftes, to some extent, emission rates, activity data are required 

to determine scaling factors which can then be used to calculate the total ýmissions from traffic 

associated with a given scenario. For example, in the case of traffic calming, the types of 

24 



activity data required to determine the impact of a given scheme on emissions include traffic 

composition and traffic flow, both along the calmed section and along potential diversionary 

routes before and after the implementation of the scheme. For the specific purpose of 

determining the emissions associated with a particular scenario, it is also important to 

disaggregate the activity data in terms of the characteristics of vehicles which affect emissions, 

such as engine type and the level of emission control. There is clearly some degree of overlap 

between this type of information and that relating to vehicle operation. 

2.3.2 Effects of traffic calming on driver behaviour 

The engineering elements of a traffic calming scheme fall into two broad modes of function: 

those that physically restrain road users and prevent them from certain actions, and those that 

might be termed 'psychological' and encourage certain types of behaviour. It is possible for a 

single feature to combine both, functions. A road hump that looks severe, for example, may 

have an effect over and above the effect due to physical restraint alone. A single feature can 

also function difIerently for different road users; a flat-top hump may act as a physical restraint 

on vehicle speeds, whilst at the same time draw pedestrians to use it as an easy-to-negotiate 

crossing place (Transnet, 1992). 

According to Devon County Council (1991), the immediate environment of urban roads needs 

to convey to the motorist that it would be wholly inappropriate and anti-social to drive at high 

speed. For Pharoah and Russell (1989), the measures or factors which create a direct and 

perceived risk or discomfort to the driver are the most effective at ensuring slow speeds. The 

same authors feared, however, that very low speeds could create driver frustration, and thus 

greater dangers, where they are required over long distances. It was suggested that drivers 

might be more likely to reduce their speed if schemes were more varied. Driver acceptance of, 

and compliance with, low speeds might depend not only on the physical measures themselves, 

but also on the visual appearance of the street as a 'living area' rather than a 'traffic road'. 

Some drivers may wish to avoid traffic calming schemes altogether. Drivers may completely 

change their route and consequently penetrate areas well away from the treated zone. In the 

view of Collins (1990), up to a certain individual 'acceptance threshold', a driver will tolerate 

and absorb the increased 'behavioural cost' (an expression describing the inconvenience 

incurred by the driver) resulting from traffic calming. Above this threshold, other alternative 
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options will be considered. Collins fisted alternative options open to drivers wishing to avoid 

calmed areas. Drivers can, in theory, change their origin, destination or route. They can also 

change their mode of travel or combine theirjourney with another one. Finally, they can simply 

not travel at all. Collins added that the ways in which these options are exercised are both 

individual and complex, and the greater the impedance that drivers encounter, the more radical 

are likely to be the reactions. Severe traffic calming may therefore reduce the volume of traffic 

using the calmed route. It was reported by Sumner and Baguley (1979) that the extent to which 

traffic flow is affected was also related to the availability of alternative routes. 

Although the interactions between the factors listed in Section 2.3.1 are complex, when 

combined they manifest themselves in the form of measurable vehicle and traffic parameters. 
The most obvious examples are the route choice and the speed profile (with associated gear 

selections) of a given driver between two points, and changes in traffic flow and composition 

on all affected roads. Knowledge of this continuous vehicle operation, as well as changes in 

traffic flow and composition, are fundamental requirements for accurately determining changes 
in vehicle emissions along the roads with traffic cahning, as well as any other affected roads. 

However, although vehicle speeds at given points are one of the most frequently measured 

parameters in the assessment of traffic calming schemes, it is precisely this kind of continuous 

information that is not widely available. 

Much work has been done on the optimum spacing of road humps to reduce speeds. Webster 

and Layfield (1996) derived empirical relationships between the speed between humps, V 

(mph), their spacing S (m), and the speed before the measures were installed, Vb (mph). For 

75 -1 00mm high round-ýop and flat-top -humps the relationship is given by: 

V=3.9 + 0.057S + 0.40 Vb 

According to Fwa and Liaw (1992), drivers will usually decelerate on the approach to a hump 

and accelerate after crossing the hump. Driver behaviour on calmed roads in Leicester was 

evaluated subjectively by Buxton and Newby (1995) and drivers were categorised in terms of 

their acceleration and braking at the humps. These observations indicated that, for most drivers, 

the road humps were associated with only slight acceleration and braking. In a Finnish study 
(Huttenen, 1995), the height and separation of the road humps were found to influence 

deceleration and acceleration, although the mean rates were again comparatively low. Average 

decelerations were in the range 0.43 - 0.77 rn/sý and acceleration values were 0.49. - 0.85 mlsý. 
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De Wit and Slop (1984) observed that the effect of a traffic calming hump extends along a 
length of about 50m before to 60m after. Webster and Layfield (1996) showed that a hump 

spacing of less than 70m is required to achieve a speed difference of less than 5 mph between 

the mean speed at the humps and the mean speed mid-way between the humps. A more even 

speed profile might be obtained by using less severe measures (e. g. lower height humps) at 

closer spacing, but such an arrangement might raise problems of public acceptability regarding 

the effectiveness and number of the measures within an area. 

2.4 Factors affecting vehicle emissions 

In order to determine the impact of traffic calming schemes on exhaust emissions, it is 

important to understand, as fully as possible, the complex relationships between traffic 

characteristics, vehicle operation, and rates of emission. This Section of the Thesis presents an 

overview of the factors known to affect the emission rates of individual vehicles. 

It has been generally observed that the exhaust emissions produced by a particular vehicle 

depend on a large number of factors. Abbott et aL (1995) divided these factors into two broad 

categones: 

(i) Technical factors relating to the design and engineering of the vehicle: its weight, engine 

type, exhaust after-treatment, aerodynamic properties, etc.; 

(ii) Operational factors relating to the way in which the vehicle is used: its speed, rate of 

acceleration, maintenance, road gradient, etc. 

Of these two groups, the factors most likely to be influenced by traffic calming schemes are 

those relating to vehicle operation (e. g. speed, acceleration). Indeed, it should be clear from 

the preceding Sections of the Thesis that changing vehicle operation is the primary objective 

of traffic calming. Consequently, more attention has paid to the dependency of emissions on 

vehicle operation in this Review. Technical factors affecting vehicle en-dssions have been 

summarised in less detail, since traffic calming does not usually influence these unless it leads 

to the exclusion of certain vehicle types. However, in any assessment of road traffic emissions 

the differences between the emission rates of different vehicle types must be appreciated. 
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2.4.1 Technical factors 

The emissions that ayehicle produces are influenced, to an extent, by all aspects of its design 

and construction. The fundamental differences between vehicles are very significant in 

accounting for variations in their emission rates (Abbott et aL, 1995). Some of the technical 

factors that are known to affect vehicle errýssions are listed in Table 2.2. 

Table 2.2 Some technical factors affecting vehicle emissions. 

Factor Example options ' 

Engine design Spark ignition/compression ignition/rotary engine/engine size 
Fuel type/composition Petrol/diesel/altemative fuels 
Transmission Automatic/manual 
Engine management Electronic ignition/mechanical timing 
Exhaust after-treatment Oxi. dation or three-way catalyst/particulate trap/no controls 
Maintenance level uning 
Other characteristics Aerodynamics/ vehicle size/weight/age 

It was noted by Abbott et al. (1995) that there may also be effects that are not listed above. 

Either these effects are relatively small, or there are insufficient data to quantify them. An 

example of this type would be the material from which an engine is constructed: steel and 

alurninium. have different thermal properties which will influence the combustion of fuel and 

therefore the formation of pollutants. 

2.4.1.1 Engine type 

Most road vehicles are powered by either a petrol or diesel engine. Petrol and diesel have a 

similar chemical composition, and so when they are cornbusted the exhaust products, or types 

of poUutant, are similar. However, the differences in their combustion are sufficient to make 

a sizeable difference to pollutant emission rates. Table 2.3 is taken from Abbott et aL (1995), 

and gives an indication of the relative pollutant emission rates for petrol and diesel passenger 

cars under fypical urban driving conditions. 
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Table 2.3 Comparison of emission rates for some pollutants from petrol (non-catalyst) and 
diesel cars (adapted from Abbott et al., 1995). 

Pollutant 
Emission rate (g/km) 

Petrol Diesel 

Oxides of nitrogen 2 0.8 
Hydrocarbons 4 0.3 

Carbon monoxide 40 1 
Methane 0.1 0.03 

Sulphur dioxide 0.1 0.5 
Lead 0.02 - 

Particulates 0.02 0.5 

2.4.1.2 Engine management systems 

Emission rates are strongly dependent on the combustion conditions in the engine, and the 

optimal settings to achieve the desired performance and minimise emission rates vary according 

to operation. MechanicaUy-timed systems cannot modify the timing over as wide a range of 

operating conditions as an electronic system. Emission rates therefore tend to be higher for 

mechanically-timed engines. It should be noted that neither system responds well to rapid 

changes in operation (e. g. during acceleration), and it is during these conditions that the highest 

emission rates are observed. 

2.4.1.3 Shape, size, and weight 

The physical characteristics of a vehicle, such as aerodynamic properties, size and weight can 

affect its emission rates. More power is needed to move a large, heavy vehicle than one that 

is smaller and lighter, and hence fuel consumption increases systematically with increasing 

vehicle weight (Bleijenberg and Rutten, 1991). 

2.4.1.4 Engine capacity 

Engine capacity has been found to be an important parameter affecting pollutant emission rates 
for petrol passenger cars (Samaras et al. 1997a). For modem petrol cars equipped with 

catalysts it was found that vehicle engine capacity affected CO and HC en-dssions only at low 

speeds, and NO,, emissions only at high speeds. For non-catalyst petrol cars, engine capacity 
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correlated well with NO., emissions in all speed ranges, and also with CO and HC emissions at 
higher speeds. 

2.4.1.5 Age and mfleage 

From their statistical analysis of emissions data from European laboratories, Samaras et al. 
(1997a) found that vehicle mileage had a strong influence on the emissions of all pollutants for 

modem petrol cars equipped with a catalyst, but not for older petrol cars. This is likely to be 

a result of the gradual degradation of the catalyst with accumulating mileage. 

2.4.1.6 Exhaust after treatment 

Pol. lutant emission rates can be reduced by treating the exhaust after it leaves the engine. 

Generaffy, methods of after treatment can be categorised according to the three technologies 

identified below. The applicability of each technology is strongly dependent on the type of 

engine and fuel. 

(i) Three-way catalysts which, when used on petrol vehicles, can remove most of the CO, 

HC and NO.. Emission rates of these poflutants are typicaUy an order of magnitude 

lower than those given for non-catalyst cars in Table 2.3. 

Oxidation catalysts, which can be used on both petrol and diesel-engined vehicles (but 

are generally fitted to diesel vehicles) and remove CO and HC, but not NO,, 

Particulate traps, which are used solely on diesel vehicles. The most recent systems have 

been shown to remove 90 per cent or more of the exhaust particles (by mass). 

2.4.1.7 Maintenance level 

The control of emissions from an in-service vehicle is the responsibility of the owner, and there 

is evidence that emission rates and fuel consumption of in-service. vehicles are worse than when 

they are new (Hickman, 1994). The most common way of investigating the influence of vehicle 

maintenance on rates of emission has been to conduct tests before and after the tuning of 

vehicles in normal service. In an investigation of 204 passenger cars by Williams and Everett 

(1983), emissions of CO before tuning were much higher than the type approval levels, but 

30 



those of NO. were lower. After tuning, all emission rates were much closer to the legislative 

limits. Joumard et aL (1990) carried out a similar study of 50 petrol and 5 diesel cars, and 
found that, after tuning, CO emission rates were reduced to 78-85% of the pre-tuning value 
for petrol cars (84-97% for diesel cars), and total particulates were reduced to 64-75% for 

diesel cars. Latham and Davies (199 1) suggested that half of the heavy-duty vehicles in the UK 

were en-ýitting smoke levels above specified limits, again based on tests carried out before and 

after tuning. It was estimated that these vehicles were responsible for approximately 80% of 

total smoke emissions. 

2.4.2 Operational factors 

A single vehicle of a particular type wiH display wide variations in emissions depending on the 

way it is being used. Much of the information relating to the importance of operational factors 

on emission rates has been obtained from studies geared to finding improved ways for 

modelling emissions (e. g. Jost et aL, 1992). The effects of some operational factors are better 

known than others; most of the existing work has related to the speed-dependence of emissions 

and, more recently, to the influence of acceleration. There is also some information relating to 

the effects of gear selection, road gradient and altitude. 

2.4.2.1 Average speed 

The most common way of representing vehicle emission rates has been as a fimction of average 

speed and, for passenger cars at least, the characteristic variation of emissions with speed is 

well known. The average speed is determined from the time taken, including stops, to cover 

a driving cycle of a given length. Typical emission rates for passenger cars as a function of 

average speed are shown in Figure 2.1. The presentation of emissions data in this way became 

customary during the early 1980s (Abbott et aL, 1995). 

I-Egh emissions of CO and HC are associated with low average speeds. Apart from the fact that 

emissions per kilometre naturally tend towards infinity as speeds approach zero, low speed 

journeys are typified by frequent stops, starts, accelerations, and decelerations in response to 

traffic congestion or other disruptions to a vehicle's progress, and these operations are 

inefficient in fuel usage, fuel combustion, and the operation of emission control systems. As the 

average speed increases, the operation of the vehicle becomes more efficient, so less fuel is 
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used and less pollutant emissions are produced. At high speeds, there is a tendency for CO and 
HC emissions to increase again because the operation of an engine to deliver the power needed 

to travel at high speeds is not the optimum in terms of fuel consumption and pollutant 

formation. Oxides of nitrogen display rather different behaviour. They are created by the 

combination of nitrogen and oxygen in the air and fuel mixture delivered to their engine, and 

their rate of formation is governed largely by the peak temperatures and pressures reached 

during combustion. Because temperatures are highest when an engine operates under high 

speed and load conditions, NOx emission rates are highest at high average vehicle speeds. 

E 
0.8 

0.45 

0.4 

0.6 

0 0.4 

02 

0 
0 20 40 60 80 100 120 

Speed (lTft) 

0.35 

0.3 

0.25 U) 

0.2 

0 0.15 C. ) 

0.1 

0.05 

-40 
140 

Figure 2.1 Emissions of CO, HC, and NOx as a function of 
average speed for petrol catalyst cars with an engine size between 
1.41 and 2.01 (adapted from Ntziachristos el al., 1999). 

Some studies (e. g. Jensen, 1995) have shown that the average vehicle speed over a given 

stretch of road is the dominant factor in determining emissions. However, Journard et al. 

(I 995a) noted that there can be significantly different emission results for different cycles with 

approximately the same average speed. The way in which a particular average speed is achieved 

is therefore of importance in determining the emission performance of the vehicle. 

Driver behaviour through traffic calming schemes has usually been represented in terms of 

mean vehicle speed. However, it is obvious that there are substantial problems involved in using 

average speed/emission relationships to establish the impact of traffic calming schemes on 

emissions. Speeds before and after calming often conform to significantly different operational 
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regimes. Although schemes are usually successful in reducing vehicle speeds, calming often 

appears to have had the additional effect of increasing speed variation, and the pattern of gear 

changes may be affected significantly. For example, Hansen et aL (1995) noted that as the flow 

of traffic becomes limited by either traffic regulation or congestion, it is expected that the 

variability of the traffic speed will increase as the number of accelerations and decelerations 

increases. When the authors normalised both the average speed and the standard deviation of 

speed for a trip along a given road to the rated speed of the road, they observed a clear trend 

of increasing speed variation as the average trip speed decreased. Also, during emission tests 

the average speed is almost invariably the overall mean speed of the vehicle for the complete 

test. However, surveys of traffic speeds are often made at individual locations on the road 

network, and then the average speed represents not that of a vehicle during ajourney, but the 

average of all vehicles at one point of their journeys. Depending on the location of the 

observation the two could be quite Merent (Hickman et aL, 1997). 

2.4.2.2 Average speed and speed variation 

An improved representation of exhaust emissions should result if variations in speed around a 

mean are also taken into account. Hickman et aL (1997) showed that the description of a trip 

in terms of its basic driving modes (e. g. acceleration, deceleration, cruising and idling) could 
be used to calculate overall emissions as the sum of those produced when driving in each mode. 

Hansen et aL (1995) also considered the relationships between statistical descriptors of driving 

patterns and emissions. The authors measured emissions from a number of passenger cars using 
driving cycles selected to represent a wide range of average trip speed and speed variation. The 

parameter chosen to represent speed variation was the standard deviation of the instantaneous 

driving speed over the entire driving cycle. Average trip speeds ranged between 10 and 90 

km/h, and standard deviations from 0-20 km/h. The results for both catalyst and non-catalyst 

petrol cars showed similar trends. For CO and HC the average trip speed was seen to be the 

most significant factor, though at the lowest and highest speeds emissions increased with 
increasing speed variation. Speed variation had little effect on emissions at the intermediate 

speeds. For HC emissions the effect of speed variation was generally smaller than for CO. For 

NO,, the lowest emissions were observed at the lowest speeds and lowest speed variation, while 

the highest emissions were found for cycles with lowest speeds and highest variations. In 

general, it was noted that for CO and HC, trip speed was the more dominant factor in 
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determining emissions, with speed variation playing a lesser role. In the case of NO,,, the 

relative effects of speed and deviation were more equal. 

2.4.2.3 Instantaneous speed and acceleration 

According to Joumard et aL 1995, the acceleration rate of a vehicle is a direct measure of the 

variation in speed and is therefore an important parameter to consider. However, the operation 

of a vehicle's engine necessary to achieve a certain rate of acceleration also depends on the 

vehicle's speed. For a given engine input, a slow moving vehicle wiU accelerate at a 

considerably higher rate than a fast moving vehicle. A better indication of the power demand 

on the engine, which ultimately detennines the rate of emission, is given by the product of the 

vehicle speed and acceleration, as instantaneous parameters. If the emissions and fuel 

consumption recorded at one second intervals can be successfully related to the corresponding 

driving and operating conditions (through detailed modal analysis), then it is possible to present 

emissions and fuel consumption as functions of instantaneous speed and acceleration in order 

to characterise driver behaviour (Jost et aL, 1992). Examples of instantaneous emission rates 

are presented in Figure 2.2. 
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Figure 2.2 CO ernissions per hour as a function of instantaneous speed 
and acceleration for petrol catalyst cars with an engine size between 1.4 

and 2.0 fitres (Jost et al., 1992). 
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2.4.2.4 Other operational parameters 

Gear selection 
The speed of the engine in relation to the speed of the vehicle is determined by the gear 

selected. As the speed of the engine affects the rate of fuel consumption, gear selection should 
be an important factor determining emission rates. 

Pearce and Davies (1990) performed constant-speed emission tests on passenger cars. The 

vehicle sample comprised just one catalyst and one non-catalyst petrol car, but the study did 

provide a little information on the effect of gear selection on emissions. Some of the tests were 

carried out with the car in fifth gear (at speeds of 60,80 and 100 km/h) and some in third gear 
(at speeds of 30,50 and 70 km/h). The results of the study suggested that for a given speed in 

the 50-70 kni/h range, emission rates did not differ greatly if either third gear or fifth gear was 

selected. Potter and Savage (1982) found that on-road CO emission rates at steady-state speeds 

varied with speed and selected gear, but did not follow a consistent Pattern. 

Gradient 

The power required to propel any vehicle at a given speed will increase or decrease according 

to the inclination of the road on which it is travelling. During on-road driving, it was observed 
by Potter and Savage (1982) that hill ascents produced consistently high NO., emission rates, 

whilst descents resulted in low NO,, emissions. However, it was noted by Hassel (1996) that 

it cannot be assumed that the extra emission when travelling uphill is fully compensated by a 

corresponding reduction in emissions when travelling downhill. Hassel calculated gradient 

factors that reflected the change in emissions along roads with a range of gradients compared 

to the case of a flat road. 

The effects of gradient are greatest for heavy-duty vehicles, although Hickman et aL (1997) 

argued that road gradient could be an important factor governing emissions from catalyst cars 
if the necessary performance of the engine is outside the range for which the engine 

management system is optirnised. 
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Altitude 

When a vehicle with a normally-aspirated engine operates at high altitude, the lower air density 

means that there is a reduction in the mass of air entering the combustion chamber. This leads 

to enrichment of the air/fuel mixture. For petrol-engined vehicles driven at an altitude of 

3000m, Sorrels et al. (1974) found that emissions of CO and HC were approximately twice as 
high, and NO., half as high, than at sea level. 

Cold start emissions 
The operational effects mentioned so far have all related to 'hot' engines working at around 80- 

900C. This Section summarises the factors affecting cold start emissions. A more detailed and 

technical discussion of the defmition, measurement, and modelling of cold starts can be found 

in the review by Boulter (1997). 

The term 'cold start' is used to describe the portion of ajourney which is driven with the engine 

operating below its design temperature. During the cold start period, fuel consumption and 

emissions of the main gaseous poRutants (CO, HC, NO.,, and C02) are generally elevated. This 

originates as a result of the problems associated with the combustion process. The normal 

operational temperature of an engine is greater than the ambient temperature, and because fuel 

condenses on cold metal surfaces in the engine during the warm-up phase, extra fuel must be 

delivered to the engine to prevent misfire and maintain driveability. However, as the engine is 

running 'rich, emissions of CO and HC are elevated accordingly. Emissions of NO., tend not 

to be as elevated during the cold start period. 

For cars equipped with a three-way catalyst, running rich is still the primary reason for the 

elevated CO and HC emission levels associated with cold starting, since the efficient conversion 

of pollutants cannot be achieved with a fuel-rich exhaust gas. In addition, the catalyst operates 

inefficiently at temperatures below what is termed the 'Hght-o fP temperature (generally around 

300T). 

Absolute values of cold start emissions tend to be highest for petrol non-catalyst cars, followed 

by petrol catalyst cars, and then diesel cars. However, for CO and HC the ratio of cold start 

to hot start emissions is greater for petrol cars with a catalyst than for petrol cars without a 

catalyst. This is mainly because the emissions from a catalyst-equipped car are particularly low 

during hot operation. Cold start emissions of NO,, from all categories of car are usually small. 
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Limited data exist for heavy-duty diesel vehicles, but the evidence suggests that (excess) cold 

start emissions are quite low. The ratios of cold start to hot start emissions for several vehicle 

categories and pollutants are shown in Table 2.4. 

Table 2.4 Ratio of cold-start to hot-start emissions for light-duty vehicles and heavy-duty 
vehicles ( adapted from Pavfidis and Joumard, 1995; Holman, 1996). 

Ratio of cold start to hot start emissions 

C02 Co HC NO,, 
I 

PM 

Liaht-du! y vehicles: 
Petrol, three-way catalyst 1.1 5.1 7.1 1.9 
Petro], non-catalyst 1.1 3 3.3 0.8 - 
Diesel 1.2 1.6 1.8 1.1 1.6 

Heayy-duty-diesel vehicles 1.0 1.2 1.0 0.9 1.2 

Low engine and/or catalyst temperature is the fundamental cause of cold start emissions. The 

rate at which an engine warms up may be dependent on how the vehicle is operated (i. e. the 

pattern of speed and gear selection), but an engine will generally be 'hot' after around 8 minutes 

or 3-6 km of driving (Journard et al., 1995b). It appears that the catalyst reaches its full 

operational temperature well before the engine, but emissions will not be minimised until the 

engine ceases to run rich. 

The temperature of the engine and catalyst at the outset of a journey will also affect the 

duration of the cold start period and cold start emissions. When a vehicle is parked and remains 
inoperative, the engine cools down. The relationship between the length of time a vehicle has 

been left to cool down and cold start emissions is, in turn, affected by the prevailing weather 

conditions, and possibly engine size. As ambient temperature decreases, the rate of cooling 

increases, so that the time between successive cold starts is shorter. A small engine should cool 

at a faster rate than a large engine, indicating that the time between cold starts may be shorter. 

However, there is little information relating to cold start emissions at engine and catalyst 

temperatures which are between the ambient temperature and the temperatures at which they 

normally operate. 
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Cold starts pose a particular problem during the assessment of emission changes associated 

with traffic calming since, in the residential areas where calming is employed, car engines will 
frequently be running cold. At present, there is little information relating to the impact of 

detailed vehicle operation on cold start emissions, and it is therefore unclear how the such 

emissions are affected by traffic calming. 

Evaporative emissions 

Apart from the incomplete combustion of fuel, hydrocarbon emissions may arise by evaporation 

from the fuel systems of vehicles. The largest evaporative losses occur from petrol-fuelled 

vehicles. Evaporative emissions occur as a result of the volatility of the fuel and the variations 

in both the ambient temperature and the temperature of the fuel system during a journey. Four 

types of evaporative loss can occur: 

(i) Filling losses due to the displacement of vapour-saturated air when the fuel tank is 

filled. 

(H) Diurnal losses resulting of the expansion and contraction of the contents of the fuel tank 

during the daily temperature cycle. 

(iii) Hot soak emissions arising from the evaporation of fuel after the engine is switched off 

(iV) Running losses resulting from the evaporation of fuel during operation of the vehicle. 

Filling losses, however, are generally not regarded as vehicle emissions, but are considered as 

an emission which arises during fuel handling and distribution. 

Evaporative losses from vehicles are dependent upon four major factors (Samaras et al., 

1997b): 

(i) Vehicle technology. Although there are little data on the effectiveness of carbon 

canisters in preventing evaporative losses, modelling procedures suggest losses can be 

reduced to between 10 and 70 % of uncontroBed emissions. 

(H) The diurnal variation of ambient temperature. 
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(iii) The volatility of the fuel. The presence of fighter hydrocarbons causes petrol to have 

a relatively high volatility compared to diesel. Petrol-engined vehicles are consequently 

a greater source of evaporative emissions. 

Driving conditions (average trip length, parking time, etc. ). 

Barlow (1993) estimated that 45 per cent of hydrocarbon emissions derived from road vehicles 
in the UK are produced by evaporation, and found that diurnal emissions tend to increase with 
both vehicle size (Le. engine size, vehicle weight, and fuel tank capacity) and age. The factors 

affecting diurnal losses appear to have little effect on hot soak losses. Barlow suggested that 

many factors could lead to the variations in the evaporative emissions from different vehicles, 

including differences in the fuel and carburation, and faulty components. 

As significant amounts of evaporative emissions can be produced by vehicles with hot engines 

after they are switched off, this itype of emission should be taken into account when evaluating 

traffic management schemes that induce changes in the frequency and duration of car parking. 

Evaporative emissions are less likely to be an important consideration in the evaluation of 

traffic calming schemes. 
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2.5 Traffic calming schemes and vehicle exhaust emissions: case studies 

2.5.1 Background 

Where traffic calming schemes have been implemented in the LTIC, the main objective has almost 

always been to reduce the speed of traffic in order to reduce the frequency of accidents. When 

judged by the criteria of speed reduction and accident reduction, many schemes have been 

successful. For example, from their survey of 35 traffic calming schemes in Britain, Hass-Klau 

et A (1992) calculated that the schemes resulted in a typical speed reduction of around 10 

mph. 

The other aims of traffic cahning, including the freeing of road space for non-traffic activities, 

the removal of extraneous traffic, and the encouragement of motorists to drive 'calmly', have 

often been viewed as secondary. The experience of Bicknell (1993) indicates that for schemes 

where the secondary objectives have received attention, local conditions have tended to 

determine which objectives have been afforded priority. Only recently have engineers used the 

environmental impact of traffic as a criterion in the design of traffic controls, though the 

'environmentally improved conditions' desired by Pharoah and Russell (1989) have often been 

compromised as a result of budgetary restrictions. 

Because the environmental impacts of traffic cahning have not previously been a major 

consideration in the design of schemes, there is little information on the impacts of different 

measures on vehicle emissions. This has not, however, prevented -authors from airing their 

views on the-subject. Many have remained optimistic about the potential benefits of traffic 

cahning in terms of environmental improvement in general, and in relation to vehicle emissions 

in particular: 

Traffic calming techniques .. can directly improve the safety and environmental 
quality ofstreets in built-up areas and, in combination with otherpolicies, can 
help to limit the growth of traffic andpromote the use ofalternative means of 
travel with the associated environmental benefits'(Devon County CounciI, 
1991) 

'A eb enefil is of reduc ing the spe ed and dominance of traffic include... reducing 
noise and airpollution... '(Durkin and Pheby, 1992) 
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'Redesigning streets .. creates opportunities to make streets more attractive and 
liveable' Noise and exhaustpollution can also be reduced if (traffic calming 
is) carried out on an area-wide basis. '(Stonharn, 1992) 

Sufficient experience exists that demonstrates that (traffic calming) techniques 
are available to ... improve the environment(Bicknell, 1993) 

ý.. environmental characteristics are enhanced by lowering the noise and 
vehicle emissions. '(Craus et al., 1993) 

Traffic calming measures may have significant effects in noise and air 
pollution reduction" (Velasco, 1996) 

However, these claims probably rely to some extent on the removal of extraneous traffic, and 

suggestions that traffic calming can lead to environmental improvement can often appear to be 

at odds with the findings of opinion surveys. For example, Bulpitt (1995) found that although 

schemes in Kent were reducing both speeds and accidents, opinion surveys showed that many 

residents considered that the reductions were achieved at some cost to their local environment 
in terms of increased air pollution. 

There has been some debate about the impact of the reduced speeds associated with traffic 

calming on emissions per vehicle-km. On the one hand, there has been a degree of awareness 

that the changes in driver behaviour following the implementation of a traffic calming scheme 

might well increase emissions: 

'One of the problems with the use ofphysical traffic calming measures is that 
speeds are reduced to a low level at the traffic calming measure but rise on the 
stretch of road between measures. This uneven speed profile may result in 
increasedfuel consumption and vehicle emissions but one would also need to 
take into account any absolute changes in speed, traffic volume, and 
composition when calculating the net effect. The interactions between the 
changes can be complex and all of them need to be taken into account when 
calculating the net effect' (Abbott et al., 1995). 

Alternatively, D61dissen (1990) has argued that reductions in emissions could be achieved if 

traffic calming resulted in 'smoother' driving - driving with less variation of speed - at lower 

engine speeds, although she recognised that this principle would not hold under congested 

traffic conditions, where acceleration, deceleration, and idling are more common. However, 

congestion is not generaUy a problem associated with traffic calming schemes, since schemes 
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tend to be located in areas where traffic flow is comparatively low. 

The idea of a smooth driving espoused by D61dissen (also referred to earlier in the review as 

a 'cahn driving style') is a common theme in strategies to reduce the environmental impact of 

traffic. D61dissen believed that this idea should be used to influence the placement of new traffic 

calming measures, in that measures should not be placed so far apart that the result is high 

speeds between measures followed by abrupt braking. 

Since the effects of traffic calming on vehicle emissions have not been studied in great detail, 

any claims concerning its benefits or drawbacks in terms of air pollution appear to be somewhat 

speculative and premature. There has not yet been a detailed study of the effects of traffic 

calming on vehicle emissions and/or air pollution. The remainder of Section 2.5 is dedicated 

to existing studies of the changes in vehicle emissions associated with traffic calming schemes 

that incorporate physical engineering measures. Some of these studies relate to the changes in 

emissions associated with area-wide schemes, whilst others relate to single sections of road. 
The studies included here have been categorised according to the country of origin, and a 

summary of the results is provided at the end of the Chapter. 

2.5.2 Case studies 

2.5.2.1 Results by country 

Germany 

In a series of Federal demonstration projects during the 1980s, area-wide traffic calming, using 

30 km/h zones and physical traffic calming measures, was carried out on an experimental basis 

in the large cities of Berlin and Mainz, and in the medium-size cities of Ingolstadt, Esslingen, 

and Buxtehude. The effcctý of the schemes on vehicle emissions were evaluated, but only the 

results of the Buxtehude study were reported extensively. 

Buxtehude is a medium-sized town (population 30,000) lying 35 kin west of Hamburg. The 

northern half of the town was chosen for area-wide traffic calming. The scheme has been 

acclaimed as achieving all-round benefits at reasonable cost (Krause, 1986; Holzmann, 1988). 

The area-wide scheme was implemented in two stages. In October 1983 the first stage was 
implemented at low cost. This included a change of speed limit from 50 kni/h ('Tempo 50) to 

30 kni/h ('Tempo 30), a change of priority rule at junctions, and some narrowing of 

42 



carriageways using temporary objects. Stage 2 involved more permanent measures to create 

a self-enforcing speed limit of 30 krn/h. This included the provision of new surfaces and fighting 

at all entrances, footpath and cycle crossings at important junctions, carriageway narrowing, 

re-designed on-street parking, road width restrictions, road humps, and gateways. This work 

was completed in November 1986. A planned third stage, designed to exclude through traffic 

by road closures and barriers, turned out to be unnecessary. The 'after' study of the 

environmental effects of the second phase was completed in October 1987 (Holzmann, 1988). 

As part of the investigation, vehicle emissions were assessed before and after the introduction 

of traffic calming. Using a floating vehicle to reflect the local driving behaviour, test journeys 

were made over 6 routes (each 1-2 krn long) within the scheme. Vehicle speed, gear selection, 

and fuel consumption were recorded, and the routes were later reproduced in laboratory 

emission tests. Emissions were measured from seven test vehicles. The results indicated that 

the scheme had led to reductions in NO,,, CO, and HC emissions per vehicle-krn of around 

30%, 20%, and 10% respectively, but an increase in fuel consumption of around 5% 

(Holzmann, 1988). According to Pharoah and Russell (1989), however, these improvements 

related mainly to the residential streets which carried only 20-30% of total traffic, and were 

therefore unlikely to have had a major effect on regional air pollution. 

Holzmann (1988) also showed that the nature of the speed reduction measures, and the styles 

of driving which they generated, were important factors in determining the impact on 

en-dssions. If drivers were encouraged to adopt a calmer driving style, further improvements 

could be achieved. The cahn driving style was also simulated in the emission tests. This calm 

style implied an earlier changing-up of gear, and always using the highest possible gear (i. e. 

driving at low rpm). Under these test conditions, emissions per vehicle-km of NO,,, CO, and 

HC were reduced by 50%, 25% and 25% respectively, and fuel consumption was reduced by 

10%. It was noted by Holznmm that these results contradicted the usual assumption that 

slowing down traffic can be expected to result in a general worsening of emissions. The 

Buxtehude study is therefore regularly cited as an example of traffic calming being beneficial 

in terms of vehicle emissions. These results formed the basis of D61dissen's argument (Section 

2.5.1). 

Results from the other demonstration projects have not been as widely reported. In Esslingen, 

where only three small 30 km/h zones were established, the measurement of emissions was only 
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carried out over short distances. The results indicated a significant decrease in NO, and a 

significant increase in CO. In Mainz the 30 krn/h zone incorporated single, severe (though 

infrequent) traffic calming measures. This led to local speed reductions and an uneven driving 

pattern, although reductions in NO. emissions per vehicle-km (-22% to -5%) were recorded. 

The effects on emissions of HC and CO (HC, -23% to +1%; CO, -16% to +28%) were less 

clear. In Berlin, where extensive traffic calniing resulted in low vehicle speeds, emissions of 

NO,, and HC were found to have decreased significantly. Emissions Of C02 and fuel 

consumption were found to have increased (German Federal Ministries of Planning, Transport 

and Environment, 1992). 

Overall, the emission results were variable, with consistent decreases in NO,, but with increases 

and decreases in fuel consumption and emissions of CO, HC, and C02. The variation reflected 

the local differences in the type and extent of the physical traffic cahning measures that were 

used to control speed (German Federal Ministries of Planning, Transport and Environment, 

1992). 

Holland 

Two areas in the Dutch towns of Eindhoven and Rijswijk were selected as sites for an 

experiment to investigate the effects of urban restructuring. The areas contained three types of 

traffic calming on residential roads. The most limited 'Option P measures included the 

introduction of one-way streets, road humps, and parking bays. The'Option H' and'Option IX 

measures were progressively more extensive. In addition to the Option I measures, Option II 

also included raised junctions and the realignment of the road axis. In Option 111, partial 

pedestrianisation, narrowing of the carriageway, and other features were also added. 

The effects of the three Options on air pollution were ascertained by measuring exhaust gas 

emissions on a number of test trips (SWOV/ DVV, 1985). Although the type of vehicle used 

in the measurement campaign was not specified, judging by the date of the report it is likely 

that these results relate only to petrol non-catalyst cars. Also, the changes in emissions were 

only expressed qualitatively. The measurements showed that emissions of CO per vehicle-kin 

increased slightly in Option H streets. Emissions of NO,, decreased, and HC emissions remained 

unchanged. In Option III streets, emissions of CO and HC per vehicle-kin also increased, 

whereas NO,, emissions decreased. The increase in CO emissions in Option IIII streets was 

thought to be due to the road axis realignments, which caused drivers to release and then 
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depress the accelerator frequently. Because of the halving of traffic flow in Option III streets, 

total emissions of each pollutant decreased (SWOV/ DVV, 1985). 

United Kingdom I 

Webster (1993b) constructed speed profiles for hypothetical traffic calming schemes that had 

either round-top or flat-top road humps placed at 50,75, and 100 metre intervals on a 300 

metre stretch of road. 'Sawtooth' speed profiles were derived using empirical relationships 
between the speed at, and between, humps and hump separation. These speeds were based on 
large numbers of measurements conducted at a range of sites. 

It was assumed that vehicles accelerated for . two thirds of the distance between the humps, and 
decelerated for the remaining third. The speed profiles associated with a scheme with a 75 

metre hump spacing had an average speed of 15-17 mph (24-27 kni/h), accelerations of 0.2-0.3 

m/s', and decelerations of 0.5-0.7 M/S2. 

Using these profiles, Webster calculated the emissions of CO, HC, NO,,, and C02 from petrol 

catalyst and non-catalyst cars of two engine sizes. The emissions data used in the estimates, 

which had been collected by Jost et aL(1992) and were subsequently used in the MODEM 

emissions model, were based on tests on a large number of vehicles. Emission rates were also 

obtained by Webster for steady-speed profiles at 20,25, and 30 mph (32,40, and 48 km/h) 

oveF the same stretch of road, in order to give an impression of the emissions before calming. 

The calculated emissions for schemes with flat-top humps and circular-profile humps were 
found to be similar for each engine size. When these were compared with emissions at a 

constant speed of 30 mph, petrol non-catalyst cars showed increases in CO and HC of 70-90% 

and 70-120% respectively, and an increase in C02 of 50-60%. NO. emissions were predicted 

to be 0-20% lower than the level before calming. Petrol cars with catalysts showed an increase 

in CO of 125-160% and an increase in C02 Of 90%, but no change in HC or NO,. For both 

types of car, fuel consumption increased by between 50 and 60%. For a constant speed of 25 

mph before calming, the increases in CO, HC and C02 were predicted to be lower, and NO. 

emissions were calculated to be reduced by about a further 20%. 

In order to examine the effect of 'smoother' driving after the instaflation of humps, Webster 

also calculated the change in emissions associated with changing from a constant speed of 30 
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mph before calming to a constant speed of 20 mph after calming. For this scenario, CO and HC 

were now found to have increased by around 40-80%, and C02 increased by 30-40%. 

Emissions of NO, however, were also found to have increased by around 20-30%. 

United Kingdom 2 

Using the same emission model employed by Webster (1993 b), the emission changes resulting 
from the implementation of a traffic calming scheme in York, featuring road humps and speed 

cushions, were estimated by Boulter (1996). The evaluation was based on mean speeds 

measured at a number of points along the calmed section, both before and after the introduction 

of the scheme. The speed profile before calming was fairly smooth, with an average speed of 

around 30 mph. The 'after'proffle had an average speed of about 20 mph, but speeds varied 
between 15 and 24 mph. The calculated changes in emissions exhibited some similarities to 

those obtained by Webster (I 993b), although they were generally smaller. For example, for 

non-catalyst petrol cars CO and HC emissions per vehicle-km were predicted to increase by 30- 

60% and NO., emissions reduced by around 30%. For catalyst-equipped petrol cars, CO and 
HC emissions per vehicle-km were predicted to increase by up to 30%, although the change 
in NO. emissions was less certain. 

United Kingdom 3 

The environmental impacts of an area-wide traffic calming scheme, introduced in the Leigh 

Park area of Havant, Hampshire were studied by Cloke et al. (1999). The study covered the 

impact of the scheme of vehicle emissions, air quality, noise, vibration, and public perception. 

Leigh Park was identified in 1992 as having a high level of casualties to vulnerable road users. 

In order to reduce road casualties, Hampshire County Council implemented a comprehensive 

traffic calming scheme in January 1997. The scheme comprised speed cushions, humped pelican 

crossings, a raised junction, pedestrian refuges, gateways at the entrances to the area, build- 

outs to protect on-street parking spaces, and mini-roundabouts. 

The measures were successful at reducing vehicle speeds and discouraging through traffic from 

using the residential streets. The cushions, raised junction, and mini-roundabout were the most 

effective, giving average two-way speed reductions of 11 - 12 mph (18-19 km/h) at the measure. 
Average daily flows were reduced on the roads with cushions by 15-35%. A smaller flow 

reduction (10%) was seen where only traffic islands had been installed. There was some 

46 



diversion of flow within the scheme onto roads with fewer or less effective measures, and some 

transfer of traffic (around 600 vehicles per day) onto roads outside the scheme. 

Exhaust emissions were estimated using the MODEM model for passenger cars, and speed- 
dependent emission functions for heavy-duty vehicles. The introduction of speed cushions on 

a particular stretch of road led to a change in driving pattern, and an estimated increase in 

emissions of CO, HC, and C02 per vehicle-krn, but a decrease in NO.,. However, when changes 
in flow within, and away from, the scheme were taken into account, the total daily emissions 

of all the modelled pollutants were reduced. Daily emissions of CO were reduced by 6%, and 

emissions of HC, NO., and C02 were reduced by 5%, 15%, and 8% respectively. Finally, when 

changes in the vehicle fleet (i. e. the introduction of more vehicles equipped with a catalytic 

converter during the 'after' period) were taken into account, then a greater percentage reduction 

in the emissions of all pollutants was observed. Traffic diverting onto roads outside a traffic 

calming scheme could have an adverse effect on emissions on these roads, but in this scheme 

the volume of diverted traffic was relatively small and any increase in emissions is unlikely to 

have had a significant effect on air quality on these roads. 

Benzene and N02 concentrations were measured at eight locations where traffic was directly 

affected by the measures installed as part of the safety scheme. Air quality surveys carried out 

before and after implementation of the safety scheme indicated that modest reductions in N02 

and benzene concentrations had occurred. Following implementation of the scheme, 

concentrations of benzene and N02 in the Leigh Park area were found to be lower by about 5% 

and 1% respectively. These changes were, however, not statistically signific ant. The largest 

(and only significant) reductions in poflutant concentratiodoccurring as a'result of individual 

measures were seen for the roads where speed cushions have been installed, and then only for 

N02- 

Sweden 

H6glund (1995) modelled the changes in emission associated with a small number of alternative 

and idealised scenarios involving the placement of road hwnps on a section of road. The Nordic 

Calculation Model for Vehicle Exhaust Pollution was used to estimate emissions. 

H6glund firstly considered the effects of introducing road humps on vehicle speed profiles. 

Four scenarios were assumed for a 1.5 km section of road: 
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(i) No humps, with a constant vehicle speed (50 krn/h). This was taken to represent the 

situation before cahning. 

One hump, resulting in a speed change of 50 km/h to 30 km/h before the hump, and 

then back up to 50 km/h after the hump. 

Ten humps, resulting in ten of the speed changes described in scenario (ii). 

(iv) Ten humps, but only one decrease in speed (50-30 km/h) at the beginning of the road 

and one increase (30-50 km/h) at the end. A constant speed of 30 kni/h was assumed 
for the mid-section. 

The percentage changes in fuel consumption and emissions of CO and NO,, per vehicle-km 

associated with calming were calculated by comparing each of the 'after' scenarios (H, iH and 

iv) with the 'before' scenario (i). The results generated by the emission model were presented 

for both non-catalyst and catalyst-equipped cars. 

It was found that the introduction of a single hump increased emissions per kilometre along the 

section of road by up to 20%, and fuel consumption by around 5%. The predicted increases in 

emissions were magnified when ten humps were introduced. The transient profile (scenario iii) 

resulted in a 200% increase in CO emissions per vehicle-krn, and a 300% increase in NO. 

emissions, from both types of vehicle, and increases in fuel consumption of 40-50%. However, 

the rates of both acceleration and deceleration were assumed by H6glund to be a constant 1.5 

mlsý, a value which is somewhat larger than those used in the modelling exercise conducted by 

Webster (1993b) and those measured by Huttunen (1995) (see Section 2.3.2). Even so, 

H6glund argued that, in normal braking, a deceleration of 1.9 M/S2 would be typical, but hard 

braking can result in a deceleration rate of 3.5-4.5 Mls' and, in first or second gear, 

accelerations are normally between 1.8 and 2.7 m/s2. Because the acceleration and deceleration 

values used were limited by the lack of emission data for more rapid changes, it was concluded 

that real changes in emissions could actually be greater than those predicted by the model. 

H6glund predicted that the adoption of a constant speed of 30 km/h over the humps would 

result in a smaller increase (up to 50%). 

It has also been reported that the Swedish city of Vasteras has been the site of 'negative 

humps', or hoHows and depressions in the road surface. An investigation of the effects of this 
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device revealed that fuel consumption had increased by 20% (Moses, 1988). 

Denmark 

In Denmark, measurements and calculations of air pollution have been performed in 

conjunction with pilot traffic calming projects on the main through roads in the smaH towns of 
Vinderup, Ugerlose, and Skxrbxk. 

Before the introduction of traffic cahning there was a speed limit of 60 km/h in all three towns. 

After the installation of traffic calming measures the speed limit was 40 kni/h in Vinderup and 
Ugerlose, and 50 km/h in Skxrbwk. The exact nature of the traffic calming varied in each town, 

but features generally included rumble strips, gateways, surface markings, narrowing of traffic 

lanes, side and central islands, staggering (bufld-outs), and parking spaces (Herrstedt, 1992). 

The atmospheric concentrations of lead, CO, and N02 were studied before and after the 

conversions in the three towns. The lead content of the air was determined by means of 
biological monitoring. The CO and N02 concentrations were calculated using a Scandinavian 

air pollution model (Herrstedt, 1992). In the outer zones of Vinderup, where speeds had been 

reduced by almost 10 km/h whUst flow remained smooth, lead concentrations were reduced, 
but the lower speed resulted in a very small increase in CO and N02. The fuel consumption of 

the through traffic had decreased by 9% after the conversion. There was no reported change 
in the daffy traffic flow (Herrstedt, 1988). In Skxrbwk, air pollution was unchanged on the 

central part of the stretch of road. Lead concentrations dropped on the edges of town, while 

the quantities of CO and N02 rose slightly. In Ugerlose, lead pollution reduced slightly in the 

central part of town, while it increased at the newly-installed roundaboutsý. 

The overall conclusion from the studies of traffic calming in Denmark was that, in most cases, 

the ensuing reduction in vehicle speed would have had no great influence on air pollution, and 

any adverse impacts on en-dssions could be reduced if a more 'even' driving pattern could be 

employed (Danish Road Directorate, 1993). 

Austria 

On-road measurements using an individual catalyst-equipped petrol car have shown NO,, 

emissions to increase dramatically after the introduction of road humps (Zilger and Blessing, 

1995). The test vehicle, which was equipped with emission analysers, was driven over a 1.5 km 
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stretch of road featuring six road humps spaced at 200 metre intervals. Emissions were 

measured for three different vehicle operating profiles. 

The speed of the vehicle was Hrnited to 30 km/h. In the first test the driver slowed down to 15 

kni/h at the humps and accelerated to 30 kni/h after the humps. In the second test, the driver 

ahnost came to a halt at each hump before accelerating to 30 km/h. In order to detennine what 

the emission level of the vehicle would have been before cahi-dng, a third test was conducted 
in which the vehicle was driven at a constant speed of 30 km/h. 

When the results of the first test where compared with the results of the third test, it was found 

that traffic calming had caused NO,, emissions per kilometre to increase by an order of 

magnitude. Emissions of NO., during the test were eight times higher than during the third test. 

Both C02 emissions and fuel consumption per kilo. rnetre were found to have risen by around 

25% with the humps in place, whilst CO emissions increased by 160%. The equipment 

employed was not sensitive enough to measure hydrocarbon emissions. 

A ustralia 
Van Every and Holmes (1992) calculated passenger car fuel consumption on a 500 metre 

calmed stretch of a local street system using a theoretical model. The model was used to 

calculate fuel consumption for three scenarios: five road humps spaced at 100 metre intervals, 

five flat-top road humps spaced at 100 metre intervals and two roundabouts spaced at 250 

metre intervals. The average speed before calming was assumed to be 50 kni/h. The assumed 

average speeds at, and between, the measures are given in Table 2.5. 

Table 2.5 Assumed speeds associated with traffic calming measures (Van Every and Holmes, 
1992). 

Measure Speed at Speed between 
measure (km/h) measures (km/h) 

Round-top road humps (Vatts humps') 15 20 
Flat-top road humps ('plateaux') 20 25 

Roundabouts 25 40 

The model predicted that fuel consumption per vehicle-km would increase after the 

implementation of the round-top humps, flat-top humps and roundabouts by 73%, 36%, and 

33% respectively. 
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2.5.2.2 Review of case studies 

The results from the case studies that have been reviewed here are summarised in Table 2.6. 

The percentage changes in the Table relate to changes in emissions per vehicle-km, and do not 

take into account changes in traffic flow. 

The studies have generally indicated that fuel consumption and emissions of CO, HC, and C02 

per vehicle-krn increase after the introduction of traffic calming, although the range of results 
for each pollutant is rather wide. For NO,,, both increases and decreases in emissions have been 

observed, and the variability in impacts was the most pronounced of any pollutant. One study 

has shown a decrease in NO,, emissions of 60%, whilst another has shown an increase of 900%. 

Unfortunately, no further information has been made available to suggest why the large 

increases in NO. emissions obtained in the Austrian study (Zilger and Blessing, 1995) were so 

great. 

It is likely that the variability of the impacts is related to a number of factors. These include: 

(i) The method of assessment. 

Some of the studies fisted in Table 2.6 involved the direct measurement of emissions 
from a single vehicle or a small sample of vehicles (both on the road and in the 

laboratory), whilst others relied upon an emission model based on tests on a sample of 

vehicles. 

(ii) The types of vehicle considered. 

Older petrol-engined vehicles without emission control could be expected to exhibit 

moderate changes in emissions around a relatively high baseline, whereas newer 

technology vehicles equipped with an engine management system and catalyst would 

tend to have low baseline emissions. With these newer vehicles, some modes of 

operation, such as rapid accelerations, can result in fuelling conditions that deviate from 

those required for the optimum control of pollutants. Any deviation from optimum 

conditions can result in a momentary emission rate that is an order of magnitude higher 

than the baseline rate. However, the limited results in Table 2.6 appear to indicate that 

there are no clear differences between the percentage effects of traffic calming on 

emissions from petrol non-catalyst cars, and the effects on emissions from petrol 

catalyst cars. A controlled experiment is required to exanfme this hypothesis further. 
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(iii) The nature of the traffic calming. 
The severity and spacing of the traffic calming measures, as well as speeds before and 

after calming, will strongly influence the impacts on emissions. The number of traffic 

calming measures employed on a given length of road should be an important factor in 

determining changes in emissions, since whatever effect one measure has on emissions, 

the effect will be magnified if more measures are employed. H6glund (1995) predicted 

that the introduction of ten road humps (spaced at 150 metre intervals) along a section 

of road would produce a change in emissions approximately ten times greater than that 

caused by the installation of a single hump on the same road, but again there is a need 
for further evidence to substantiate this hypothesis. With large hump spacings, such as 

those used by HOglund and employed in the study by Zflger and Blessing (1995), 

drivers would be able to accelerate up to a speed level similar to that which they would 
have chosen had the humps not been installed, even with comparatively low 

acceleration rates. These studies, where several widely-spaced humps have been 

employed, appear to have produced the largest increases in emissions. However, there 

is no conclusive evidence to support the suggestion that hump spacing is an important 

factor. 

(iv) The configuration of the road and prevailing traffic conditions. 
It is -possible that the large changes in NO, emissions by observed ZUger and Blessing 

may have arisen because of the particularly low speeds and the deceleration and 

acceleration rates. These were described as 'rapid' by, but no values were quoted. The 

relationships between vehicle speed and emissions per kilometre are not linear, and the 

change in emissions associated with two different speeds depends greatly on the speeds 

themselves, and hence the road layout prevailing traffic characteristics. In the low-speed 

region (below around 30 km/h), the emission rate per kilometre increases rapidly, and 

approaches infinity as speed approaches zero (see Figure 2.1). In addition, emissions 

tend to be very variable in this low-speed region. Therefore, when comparing the 

emissions associated with two driving cycles, it is likely that a large change in emissions 

will be observed if one of these cycles is in the low-speed region. The speed at the road 
humps was 15 km/h (9 mph), and therefore well into this region. Further on-road tests 

of this type need to be conducted at speeds which are more representative of driver 

behaviour in the vicinity of traffic calming measures. 
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2.6 Summary and conclusions of literature review 

This literature review has described the main stages in the assessment of how traffic calming 

schemes affect vehicle emissions. The topics covered include specific traffic calming measures, 

the changes in driver behaviour imposed by traffic calming schemes, and the factors affecting 

emissions from road vehicles in the context of traffic calming. A summary has also been 

presented of case studies in which the effects of traffic calming on emissions have been 

determined, either by direct measurement or by the use of emission models and databases. 

The review has provided information on the most common traffic calming measures in the UK 

These were found to be 75 mm high flat-top humps, 75 mm high round-top humps, speed 

cushions, single lane working chicanes, thermoplastic humps ('thumps') and 2-way working 

chicanes. Schemes featuring road humps are currently the most common type, although the 

proportion of schemes containing speed cushions in increasing. This information was used as 

the basis for the selection of schemes to be investigated in the research. 

It was noted in the review that descriptions of driver behaviour include both detailed data on 

parameters relating to vehicle operation, such as speed and gear selection, and information on 

trips such as journey purpose, duration, mode, time of day, and time of year. The factors 

influencing vehicle operation are numerous, and the relative importance of these factors is 

unclear at present. Thýre are also few quantitative data relating to how emissions might be 

influenced by traffic calming. Work relating to driver behaviour has usually been concerned 

with its relationship to accident causation, rather than to vehicle emissions. Consequently, 

existing studies usually relate to speed selection, and rarely to other parameters known to affect 

emission rates (e. g. acceleration rates, gear selection). 

Average vehicle speed at specific locations on a road is one of the most frequently measured 

parameters in the assessment of traffic calining schemes. However, emission impacts could be 

determined more accurately if data on continuous vehicle operation were available. Also, 

changes in traffic flow and composition are required to determine the overall impact of a traffic 

calming scheme, especially where a diversion of traffic has occurred. 
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A review of previous case studies led to the conclusion that, to date, there has been only limited 

agreement on the effects of traffic calming on vehicle emissions. This is particularly evident in 

the case of NO,,, for which some studies have shown decreases of up to 60%, whilst one study 

has shown a dramatic increase. It is likely that the variability of the impacts is related to a 

number of factors, including the method of assessment, the types of vehicle considered, the 

configuration of the road, and the arrangement of the traffic calming scheme. 

Most of the information on emissions that has been presented in these case studies has been 

obtained through the use of emission models or databases. The results of a few studies in which 

measurements have actually been taken have often been used to make general predictions about 

the effects of traffic calming on emissions. However, there is a need for more empirical 

information, gathered at a more detailed level, and derived using a consistent method at a wider 

variety of schemes. The research presented in this Thesis has been designed to address this 

issue. 
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CHAPTER 3 RESEARCH TOOLS AND METHODS 

A general procedure for assessing the environmental impact of all traffic management schemes 

was described in the introduction. The procedure requires that any changes in driver behaviour 

and vehicle operation are accurately defined before the appraisal can proceed to the next stage 

- the assessment of emissions. This Chapter of the Thesis covers the experimental techniques 

and models which are available for use in the assessment of driver behaviour and vehicle 

emissions. A summary at the end of the Chapter includes recommendations for the design of 

the experimental work. 

3.1 Recording driver behaviour 

it was noted in Chapter 2 that there are two basic types of information which describe driver 

behaviour. These are 'vehicle operation data' (including data on parameters such as speed, 

acceleration, and gear selection), and 'activity data' (including information on trips such as 

journey purpose, duration, mode, time of day, time of year). Methods for recording these 

aspects of driver behaviour are discussed in the foHowing paragraphs. 

3.1.1 Vehicle operation data 

3.1.1 .1 Vehicle speed and acceleration 

The results in Table 2.6 indicate that vehicle emissions can be rather sensitive to the modes of 

vehicle operation which are associated with traffic calming. In order to accurately determine 

changes in vehicle emissions on the spatial scale of traffic calming schemes, these operational 

modes must be identified, and continuous measurement of vehicle speed (from which 

acceleration can subsequently be derived) is therefore required. Consequently, any technique 

which is only capable of recording speed at a unique point on a road, such as a radar speed gun, 

has not been considered here. 

Essentially, there are three techniques for measuring and logging vehicle speeds continuously 

over a section of road. These techniques are described in the following paragraphs. 
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Instrumented car 
Microwave Doppler devices for measuring vehicle road speed are commercially available. The 

devices employ a sensor which is attached to the side of the vehicle and directed so that it faces 

the road surface. The sensor emits and receives microwaves and, as it is moved parallel to the 

surface, the Doppler shift in the reflected signal is measured. From this, the road speed of the 

vehicle can be calculated. Such systems can measure the speed of the vehicle up to 180 mph 
(290 km/h), and to an accuracy of d: 0.5% (Datron-Messtechnik, 1994). 

There are also a number of ways in which a data acquisition system can be fitted inside a car 

to record vehicle operation parameters on a continuous basis. TRL has developed a PC-based 

system which can be fitted inside the passenger compartment of a vehicle to enable its road 

speed and engine speed to be logged every second. A commercially available shaft encoder has 

been mounted in line with the vehicle's speedometer cable and connected to a data logger. The 

encoder generates a number of electrical pulses for each revolution of the speedometer cable. 

In order to derive calibration factors, the vehicle is usually driven several times over a fixed 

route of known length. This generally gives a speed resolution of 1.4 km/h. A hand control is 

also connected to the data logger. This hand control, operated by a navigator, features an 

on/off toggle switch used to start and stop logging at the beginning and end of each trip, and 

a press button for marking specific node points during the trip. TRL has previously measured 

typical speed profiles on roads with traffic calming using this system in traffic (Cloke et aL, 

1999). However, there were concerns that awareness of the measurements on the part of the 

driver could mean that this approach does not always give representative results. Therefore, 

in this research it was likely that speed data would have to be collected using a method of 

measurement that does not affect the behaviour of drivers. Two potential techniques are 

identified below. 

LIDAR 

LIDAR (LIght Detection And Ranging) devices for measuring vehicle speed are also 

commercially available. These allow the operator to isolate a single vehicle within the traffic, 

and to measure both its speed and distance continuously. When the trigger on the instrument 

is pulled, hundreds of pulses of infrared light are emitted every second. The fight, collimated 

into a narrow beam, is reflected from part of the vehicle. As each pulse is emitted, a timer is 

started and, when a reflected pulse of light is detected by the sensor, the timer is stopped. From 

the time elapsing between the emission and detection of each pulse, the distance to the target 
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can be calculated. If the target is moving with respect to the instrument, an algorithm is used 

to derive its speed from a successive number of range calculations. The speed and range values 

are displayed continuously on the instrument, and recorded on a data logger. 

Such instruments can measure a wide range of vehicle speeds to an accuracy of ±1.6 km/h, and 

the distance to the target vehicle can be measured to an accuracy of ±0.3 m. For a target 

travelling at 100 km/h the data acquisition time is 0.3 seconds. The LIDAR detector requires 

a few seconds to 'lock on' to the target vehicle, by which time the vehicle has usually travefled 

20-30 metres. As with conventional RADAR equipment, the LIDAR system is subject to a 

cosine error when monitoring along a direction that deviates from the true direction of travel 

of the target vehicle. The magnitude of this error is less than 1% at angles below 8', and less 

than 3% for angles under 14". 

An important factor in selecting a suitable location is that a clear line of sight to the target 

vehicle must be available during the entire measurement period. Intervening objects such as 

signposts and tree branches, as well as other vehicles, cyclists, and pedestrians will interrupt 

the measurement. The manufacturers claim that rain, smoke, fog and airborne dust particles 

adversely affect operation, but tests at TRL have shown that the devices operate satisfactorily 

under a range of conditions. 

Synchronised road tubes 

A system has been developed by Leeds University for continuously measuring the speed of* 

Vehicles in traffic over a distance of around 100m. The system contains four main components: 

16 road tubes equipped with* transducers, a Japtop - cornputerý a data logger, and data 

transmission cables. The road tubes are installed along the stretch of road at known distances 

apart. Each time a vehicle wheel passes over one of the tubes a pressure pulse arrives at a 

transducer which sends an electrical signal down the transmission cables to the data logger. The 

logger 'the stamps' the event and passes the channel number plus event the to the computer. 

The resolution of the time data is 1 millisecond. The precise timing of the pulses from each of 

the 16 tubes is sufficient to calculate the speed and acceleration of a vehicle at various points 

along the road, once the wheelbase of each passing vehicle has been determined. The first two 

tubes of the system are placed one metre apart, and the average spot speed is obtained from 

the difference between the passing times of the first axle over the two tubes, and from the 

difference between the passing times of the second axle over the two tubes. The wheelbase is 

58 



then calculated as the mean difference in passing times of the first and second axles multiplied 

by the spot speed. In order to ensure that the data are correctly interpreted, there must be a 

synchronous complementary record (e. g. video) of unexpected events such as parked vehicles, 

overtaking, conflicts, and incomplete journeys (Barbosa, 1995). There appears to be no 

software available to interpret the output for a complex traffic situation. 

Gear selection 

Gear selection is an important determinant of fuel consumption and emissions. The most 

straightforward method of logging gear use on a section of road is by manual observation. 

However, such a method is cumbersome if gear changes are frequent, and the accuracy with 

which the time of each gear change is determined may be poor. 

Alternatively, instrumentation installed in vehicles to measure speed continuously may also be 

adapted for the determination of gear selection patterns. For example, the on-board equipment 

used by TRL can also be used to measure and record engine speed. The combination of road 

speed and engine speed data for the same points in time enables the user to identify the gear. 

3.1.2 Activity data 

In the context of this research, the term 'activity data' relates to the volume and composition 

of the traffic on the roads affected by traffic calming. For the specific purpose of determining 

the emissions associated with a particular scenario, it is also important to disaggregate this 

information in terms of the characteristics of vehicles that affect emissions, such as engine type 

and emission control technology. 

Traffic flow 

Traffic flows may be determined manually or automatically. The manual method is used either 

where the flow is low, the count is of short duration, or if the data needed are difficult to gather 

automatically (e. g. turning counts). There are a number of automatic counting devices which 

provide information with varying degrees of accuracy and reliability (OECD, 1979). These 

include: 

59 



Pressure detection (pneumatic tubes) 

Magnetic detection 

Inductive loop detection 

(iv) Sonic detection 

(V) - Optical detection 

For the type of traffic counts required in the research (Le. short-term automatic counts), 

pneumatic tubes are generally favoured. 

3.1.2.1 Traffic composition 

For the assessment of emissions, as much information as possible is required on the 

composition of the traffic. This includes vehicle type (passenger cars, LGVs, HGVs, buses, 

etc. ), engine size, fuel type, and emission control level (catalyst, non-catalyst, etc. ). Because 

all this information cannot be recorded manually, or by the use of conventional automatic 

counters, the most effective method of determining the composition of the traffic is the use of 

video recording. If the registration plates of vehicles can be recorded, then extensive 

information on the vehicles may be provided by DVLC or DETR. Magnetic systems are also 

available for identifying vehicle types according to the 'signature' wavefonn they present at a 

detector whilst passing. However, such system may not be able to identify vehicles according 

to the criteria required in the assessment of emissions. 

3.2 Measurement of vehicle emissions 

3.2.1 Background 

The engines used in light- and heavy-duty vehicles are designed to comply with legal limits for 

exhaust emissions. A manufacturer must demonstrate during the type approval test that an 

example of a particular model satisfies the necessary requirements before the model can be 

marketed. Production vehicles are also required to undergo 'conformity of production! tests to 

ensure that the standards that are achieved during type approval are maintained during mass 

production. Once a vehicle is purchased and is in service, emissions are only checked during 

the annual MoT, and then only for vehicles older than three years. 

60 



Type approval, conformity of production, and experimental tests are performed under 

standardised laboratory conditions to maxirnise repeatability. A number of experimental on- 
board systems also exist for measuring emissions during normal driving. An additional 

experimental technique, the remote measurement of vehicle emissions, has been developed 

comparatively recently. These various methods of measurement are described in the following 

Sections. 

3.2.2 Laboratory testing 

3.2.2.1 Exhaust emissions 

Type approval and conformity of production tests are required by law for all new vehicles. It 

was noted in Section 2.4.2 that a single vehicle of a particular type will display wide variations 

in emissions depending on its operation, and so the best way to ensure that an emission test is 

reproducible is to perform it under standardised laboratory conditions. 

Pollutant sampling and analysis 

The procedures for the collection and analysis of the pollutants specified in the type approval 

and conformity of production tests have largely been standardised. For gases (Le. HC, NO,,, 

and CO) there are two main methods by which sampling and analysis may be conducted. 

Throughout the test a constant proportion of the diluted exhaust gas can be collected, via a 

constant volume sampler (CVS), in a bag made from an inert-material. The gases are analysed 

later (infta red absorption for CO, flame ionisation for HC, and chemiluminescence for NO. ) 

to provide average values for the whole of the test cycle. Alternatively, the sample may be 

introduced directly to analysers that give a continuous reading of pollutant concentrations in 

the exhaust. For particulate matter, a probe continuously extracts a sample of the diluted 

exhaust gas, and the sample is drawn through a pre-weighed filter. The change in mass of the 

filter allows the total amount of particulate matter, and hence the rate of emission, to be 

calculated. 

Bag sampling has the advantage of relative simplicity, but it provides average values that 

cannot be directly related to detailed vehicle operation. Bag sampling is also unsuitable for the 

analysis of hydrocarbons in diesel exhaust, as non-volatile compounds tend to condense on the 
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surface. 

Continuous sampling and analysis requires that the analysers be physically attached to the 

exhaust. The data from continuous sampling must be interpreted carefully if they are to be 

evaluated in relation to the vehicle's operating conditions on a short time scale. The sampling 

system and each of the gas analysers used will have a characteristic response time that may be 

of the order of a few seconds to a minute. Thus, a result measured at a particular moment may 

well be a damped and delayed response to an event some time earlier (Abbott et al., 1995). 

Some pollutants, including PMIO, 1,3-butadiene, and benzene are not regulated by law, and 

there are no standardised measurement procedures. The determination of benzene emissions 

could be achieved relatively easily using gas chromatography or IR absorption spectroscopy. 

Emissions of 1,3-butadiene may also be determined by gas chromatography, but this could be 

problematic on account of its low concentration in vehicle exhaust. Some form of pre- 

concentration (such as cryogenic trapping) would be required to ensure values above 

instrument detection limits. 

The characterisation of vehicle particulate emissions, including size distribution, has been 

investigated in detail in recent years (e. g. Kittleson and Abdul-Khalek, 1998; Sbd et al., 1999). 

Moon and Donald (1997) considered a number of techniques that could be used to determine 

the size distribution of particles in vehicle exhaust in terms of mass and number. The Scanning 

Mobility Particle Sizer (SMPS) and the Electrical Low Pressure Impactor (ELPI) techniques 

were considered to be the most useful. The former measures number-size distributions, and the 

latter can be used in both mass and number modes. Both techniques give real-time data for 

number-size distributions. The Anderson Impactor may also be a useful instrument providing 

mass distributions for sizes greater than 0.41im, although not in real time. The use of the 

Tapered Element Oscillating Microbalance (TEOM), as used in the DETR air quafity 

monitoring network), was not recommended for use in monitoring particulates in vehicle 

exhausts. Further evaluation of both the ELPI and SMPS were recommended. 

Moon and Donald (1997) also found that the use of the CVS system may lead to a loss in 

particles, particularly those above 2-3[Lm in diameter. Consequently, the emission 

measurements made for regulatory purposes are likely to be dominated by particles with a 

diameter of less than 5[Lm. This may mean that any emission factors derived from these 
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measurements would underestimate the true impact of vehicles on airborne particulate 

concentrations. Amongst their recommendations for future research, it was suggested that 

further work could focus on the sampling efficiency of the CVS for vehicle exhaust particles. 

Driving cycles 

Laboratory tests involve the operation of the vehicle or engine on power-absorbing apparatus 

such as a chassis dynamometer for light-duty petrol and diesel vehicles, or an engine test-bed 

for heavy-duty diesel engines. 

With a chassis dynamometer, the drive wheels are positioned so that they are in contact with 

rollers. The rollers can be adjusted to simulate friction losses and aerodynamic resistance. The 

sampling of emissions is performed as the vehicle progresses through a pre-defined driving 

cycle constructed to represent the speeds, accelerations, and gear changes associated with 

normal driving patterns. Figure 3.1 shows the driving cycle used in the European test for light- 

duty vehicles. 
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Figure 3.1 The ECE driving cycle for fight-duty vehicles. 

Type-approval emission tests for heavy-duty vehicle engines are usually performed on engine 

test beds using the ECE 13-mode cycle (ECE Reg. 49). Emissions from the engine under test 

are sampled at three engine speeds (idle, intermediate, and rated), and under six load 

conditions. Emissions are then calculated using an equation which applies different weighting 

factors to the emissions from each of the test modes. The EC emissions legislation for heavy- 

duty vehicles applies to lorries, buses, and coaches of weight greater than 3.5 tonnes. 
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3.2.2.2 Evaporative erriissions 

The standard European test procedure for the measurement of evaporative emissions (EC 

Directive 91/441/EEC) is carried out by placing the test vehicle in a gas-tight measuring 

chamber equipped with sensors to monitor the temperature and HC concentration. 'Cold soak' 

emissions are determined from the quantity of HC emitted during the period when the 

temperature of the fuel tank is increased gradually from 140C to 30T. 'Hot soak'emissions are 

determined from the quantity of HC emitted during a period of one hour when the vehicle is 

allowed to cool down after having undergone the EC cold start urban and the extra-urban drive 

cycles. 

As with exhaust emissions, there is no standard procedure for measuring evaporative emission 

raies-of benzene and 1,3-butadiene. Gas chromatography could be used for both, but again this 

would require some pre-concentration, particularly for 1,3-butadiene. 

3.2.2.3 Problems associated with laboratory testing 

It should be noted that vehicle exhaust emission rates are inherently very variable, and repeat 

tests on a single vehicle can give results that differ by tens of percent; tests on different vehicles 

of the same type may vary by a factor of ten (Abbott et aL, 1995). This variability will be 

encountered whatever measurement technique is employed, although laboratory conditions 

provide the best way to control repeatability. However, recent evidence suggests that even 

average emission measurements for pollutants can vary considerably between laboratories 

(Samaras et aL, 1997a). 

There is also concern that tests carried out in the laboratory do not accurately reflect the 

emission rates encountered on the road. Emission rates are dependent on the operation of the 

vehicle, and this may not be adequately represented by standardised cycles. For example, Bang 

et aL (1993) suggested that emission rates for heavy-duty vehicles measured during the ECE 

13-niode test are a good approximation of those from heavy-duty vehicles engaged in suburban 

and rural driving. However, the test is not at all representative of the driving cycles, and hence 

the emissions, from buses on scheduled routes in towns. Other difficulties are encountered 

when using the engine test data to represent emissions from in-service vehicles. Engine tests 

cannot account for factors such as chassis/body weight and aerodynamic performance. 
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Emission levels from a public service vehicle could also vary substantially according to its level 

of occupancy. Therefore, the emission rates measured in Type Approval tests cannot be easily 

converted to real-world emission rates. Also, it is likely that well-maintained vehicles win be 

over-represented in the tests carried out in the laboratory. 

There is considerable interest in the development of driving cycles for both fight- and heavy- 

duty vehicles that reflect operation in urban areas more adequately than the type approval test. 

Examples of alternative cycles include those developed by BP (Reynolds et al., 1992) and TNO 

(Van de Weijer et al., 1993). Both were developed from measurements of bus operating 

patterns, but are quite different in nature (Figure 3.2). However, comparisons between bus 

operation in Southamptondnd both the BP and TNO cycles have shown that the cycles do not 

simulate well the speeds and accelerations attained in normal service (TRL et al., 1997). Two 

further cycles were developed by TRL for bus operations in Southampton, one each for the 

diesel and CNG fuelled buses, to take into account the different engine capabilities. 

Because of these difficulties and uncertainties, alternatives to laboratory-based emission tests 

have been the focus of interest for a number of years. The following two Sections examine two 

on-road measurement techniques that have been developed. These are on-board sampling and 

remote sensing at roadside locations. 
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Figure 3.2 BP and TNO bus cycles. 
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3.2.3 On-board emissions measurement 

When vehicle emissions are measured under standardised conditions during laboratory tests, 

the measurements do not cover the variety of operational modes encountered in real-world 

driving. Realistic vehicle operation is most easily achieved during an on-road test, where it is 

usually only necessary to drive the vehicle in a normal way in the traffic. However, because 

there is considerable variation in traffic conditions, both diurnally and from location to location, 

it is not possible to provide highly repeatable test conditions. 

A number of on-board techniques exist for making emission measurements during normal 

driving, and systems are available from institutions in several different countries. One such 

example is the system developed and evaluated by the Warren Spring Laboratory (Potter et al., 

1986; Potter and Savage, 1982). With this system, a proportional sampler (Plate 3.1) attached 

to the exhaust pipe of a vehicle enables emissions to be measured while the vehicle is being 

driven on the road. 

Plate 3.1 Warren Spring Laboratory exhaust sampler. 

The sampler is essentially a scaled-down version of the CVS used in laboratory tests. It is 

therefore known as a'mini-CVS. The mini-CVS sampling system relies on an exhaust splitter, 

which is a passive device used to divide the total exhaust gas flow through a number of 

identical tubes each having the same nominal flow resistance. The exhaust gas sample is drawn 

from one of the tubes and then diluted with air. A sub-sample of the diluted flow is pumped to 

a bag made from inert material, where it is stored for analysis in the laboratory. Exhaust 

particles may also be sampled using a filter. Because it is much smaller than the sampling 
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system used in laboratory tests, the device can be used to sample emissions over the range of 

operating conditions encountered in urban, rural, and motorway driving. 

Several years ago, TRL developed an on-board electronic sampling system which automatically 

controls a sample of exhaust gas in proportion to the exhaust flow. This was achieved using 

two flow meters, one measuring the engine air intake flow rate and another measuring a sample 

of exhaust taken from the exhaust tailpipe. A servo-assisted valve was used to control the 

sample flow in proportion to the air intake flow; further calculations were required to adjust 

for the small discrepancy between the engine intake air flow rate and the exhaust flow rate. The 

device was primarily used for particulate sampling; gaseous emissions were sampled and 

measured separately by using conventional gas analysers mounted in the vehicle. 

The Flemish Institute for Technical Research (VITO) has also developed a system for obtaining 

on-road emission measurements, and Lenaers and de Vlieger (1996) have reported 

measurements on a small petrol car and two diesel buses. The sampling technique differs from 

the mini-CVS system in that the sample is drawn off from the main exhaust gas flow using a 

pump. The test vehicle is fitted with gas analysers so that emissions can be measured 

continuously. The effective surplus weight of the system is approximately equivalent to that of 

two people. The on-fine collection of exhaust gas, the 'real-time' processing of measurements, 

and an automatic calculation of emissions on a g/km basis, are all featured. 

For the laboratory measurement of C02, CO, HC, and NO., from light-duty petrol vehicles over 

the European and US standard drive cycles, Warren Spring Laboratory and VITO have claimed 

that their on-board systems are accurate to within around 10% of full-size CVS/chassis 

dynamometer results. However, their accuracy on the road is Rely to be poorer due to 

dynamic or aerodynan-dc effects (Whiteman, 1995). Systems to analyse benzene, 1,3-butadiene 

and PMjo have not specifically been developed for on-board- measurements. However, in 

theory, the procedures suggested earlier may be adapted for this purpose. 

3.2.4 Remote sensing 

Remote sensing is an on-road emissions measurement technique which is non-intrusive and 

requires no participation from vehicle owners or operators. Vehicles can be monitored at a rate 

of more than 1000 per hour, and the technique can therefore be employed at a fraction of the 
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cost that would be incurred using conventional, time-consuming measurement methods. 

The first successful devices for remotely sensing the CO content of vehicle exhaust plumes 

were introduced at the University of Denver in 1987 (Bishop et aL, 1989), and at the General 

Motors Research and Development Centre in 1988 (Stephens and Cadle, 1991). By 1990 the 

sensors could also determine hydrocarbons concentrations. The Denver method was developed 

under a grant from the Colorado Office of Energy Conservation primarily as an energy 

conservation measure - identifying vehicles that were wasting fuel using CO emissions as an 

indicator. This explains the acronym by which the system is widely known: FEAT (Fuel 

Efficiency Automobile Test). Both the Denver and General Motors remote sensing devices 

operate on the same general principles of infra red spectrometry. Because the FEAT system 

was used in the traffic calming research programme, it is described in detail in the following 

Sections. 

3.2.4.1 Equipment and principles of operation 

The FEAT system consists of four main components: an infra red source, a detector, a 

computer, and a video system. Under the standard operating procedures the IR source is 

positioned on one side of a stream of traffic and the detector on the opposite side, so that the 

distance between the source and detector units is typically 6 to 15 metres. The general 

arrangement of the system when in use at the roadside is illustrated in Figure 3.3. The 

collimated IR bearn, generated continuously by the source unit, is directed horizontally towards 

the detector. The beam is positioned around 25 cm above the road surface, a height which 

corresponds to the average position of fight-duty vehicle exhaust pipes. 

The FEAT system is based upon a conventional non-dispersive infra, red (NDIR) gas analyser. 

The system relies on the principle that most species will absorb light at a particular wavelength. 

C02 C02 and HC will all absorb in the IR spectrum at wavelengths between 2.5 and 25 ýLrn. 

Optical filters allow the specific measurement of CO at 4.6 PM4 C02 at 4.3 ýLrn, HC at 3.4 ýIrn, 

and a background reference channel in a non-absorbing region at 3.9 ýtm. 

The system operates by continuously measuring the intensity of the IR beam. Voltages from 

each of the signal channels (C02. CO. FIC, and reference) are recorded before a car enters the 

beam. When a vehicle passes through the beam path the voltages recorded at the detector drop 
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to zero. Correction voltages for each channel are acquired while the vehicle is completely 

blocking the beam, thus enabling the determination of background levels. This beam block 

triggers both the video system to record an image of the passing vehicle and the measurement 

procedure. When the vehicle passes the beam is reformed, and the change in intensity of the 

light due to the presence of the exhaust gas plume is recorded. Filly independent measurements 

of CO, C02, and FIC are recorded over a period of half a second. Data collection times longer 

than this provide little benefit, since dispersion of the exhaust plume is very rapid. 
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Figure 3.3 Remote sensing: arrangement at roadside. 

There is some interference from water vapour in the measurement of hydrocarbons. Water 

vapour in the atmosphere can be ignored because it is accounted for In the background reading 

and does not fluctuate rapidly. Guenther et al. (1991) have also argued that water vapour in 

the exhaust causes little interference. However, water in the particulate phase in the exhaust 

gas is more problematic. particularly at low ambient temperatures where thick 'steam' plumes 

are observed (Bishop and Stedman, 1996). 

The University of Denver has also added nitric oxide (NO) remote sensing to their instrument 

by attaching a co-linear UV source and detection system. Because 95% or more of the NO, 

emitted by vehicles is NO, this is effectively a NO, instrument (Zhang el al., 1996). 

The speed and acceleration of a vehicle at the time of a remote sensing measurement are 
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obtained using two infra red detectors placed alongside the beam used to detect exhaust gas 

pollutants. An image of the rear of each target vehicle, including the registration plate, is stored 

on video tape along with the vehicle's emission measurements and the time and date at which 

it interrupted the beam. In addition, the emission data and associated beam block time details 

are recorded numerically onto computer media. Subsequently, information on the vehicle from 

the registration plate allows for correlation between emissions and make, model, and age. To 

date, the license plate numbers have been read manually from the video records. According to 

Cadle and Stephens (1994), this labourious process will be eliminated when a reliable 

automated licence plate reader becomes available. Also, research to develop practical methods 

for remotely measuring exhaust gas temperature is continuing. Exhaust gas temperature data 

could be used to screen for vehicles started while cold. 

3.2.4.2 Calculation of emissions 

The concentration of a particular pollutant at different points within any exhaust plume may 

vary widely due to dispersion after emission. The IR beam passes through only a small portion 

of the exhaust plume, and therefore the measured concentrations cannot be directly converted 

into aggregate emission rates. Instead, the CO/CO2 and HC/C02 ratios are used to determine 

concentrations. Theoretically, these ratios remain the same within the exhaust plume, 

irrespective of dispersion and dilution. Therefore, for CO for example, a plot of the CO and 

C02 readings at the points measured within the plume gives a straight fine through the origin. 

The slope of the linear regression fit to the data gives the CO/CO2 ratio. A high ratio 

corresponds to a vehicle with high emissions, a low ratio to a cleaner vehicle. 

Vehicle emission data are not normally reported in terms of the CO/CO2 and HC/C02 ratios. 

It is more common to see percentage by volume concentrations (e. g. %CO), or mass emissions 

(per unit time or distance). The ratios can be readily converted to volumetric concentrations 

using equations describing combustion chemistry. The derivation of mass emission rates is more 

complicated, and the results are less certain (this will be discussed in more detail later in the 

Thesis). The mass of a pollutant emitted per unit of fuel burnt (e. g. grammes of CO per litre 

of fuel bumt) can be obtained by estimating the empirical formula and density of the fuel. 

However, information on fuel consumption is required in order to estimate the mass emitted 

per uruit time or distance. The fuel consumption rate must be estimated from existing statistics. 
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Propane gas is used to calibrate the hydrocarbon channel, and therefore quoted %HC values 

are propane equivalents. Estimates of emissions per unit distance travelled can only be obtained 
for each vehicle using fuel economy figures, such as those reported by manufacturers. For 

example, Cadle and Stephens (1994) have reported conversion factors for 1% CO and 0.1 % 

HC at 20 mpg of 17.4 g/mfle and 2.73 g/mfle, respectively. However, there is no way of 
knowing the fuel economy of the vehicle at the time of the remote sensing measurement and 

g/mfle emission rates for individual vehicles are therefore highly uncertain. 

The FEAT software operates a number of data rejection criteria. The two main criteria are 
insufficient change in the signal and excessive scatter in the data. In the first instance, the 

change in the signal received at the FEAT unit may be insufficient where the beam is blocked 

without the presence of exhaust gas (e. g. with pedestrians). In the second instance, as a large 

number of data points are recorded the software can interrogate the data scatter and reject 

entire vehicle data sets if the data scatter is excessive. Rejected beam blocks are recorded by 

the FEAT system as invalid data. 

The accuracy and lower limit of detection of individual remote measurements depend on how 

the exhaust Plume disperses and what part of the plume is intersected by the beam. Thus, it is 

difficult to give an absolute accuracy for remote sensing devices. Overall accuracies have been 

reported by the University of Denver as 5% and 15% for CO and HC respectively, and by 

General Motors as 15% for the CO/CO2 and HC/C02 ratios. 

3.2.4.3 The variability of emissions 

The remote sensing technique provides only a'snapshot'of the emissions from each vehicle at 

a single location, and during the measurement period a particular vehicle may be in any one of 

a number of operational modes. The operational dependency of emissions can be observed in 

remote sensing studies in which repeat tests have been made on the same vehicles. For example, 

Sadler et al. (1996) found only a slight correlation between repeat measurements of CO from 

the same vehicle; the Spearmarfs rank correlation coefficient varied between 0.50 and 0.71. 

When a vehicle is operated over a complex driving pattern, its exhaust emission rates vary 

considerably. Part of the observed variability of remote sensing data will be a consequence of 

this operational dependency of emission rates. Depending on the instant at which a reading is 
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taken, almost any vehicle can produce results indicating 'high' or 'low' emissions. Engine 

temperature can be a particularly important parameter in urban driving, and a vehicle in cold 

start mode would be identified as a high-emission vehicle. Vehicles under high load conditions, 

such as wide-open throttle accelerations, are designed to operate at rich air: fuel ratios, and CO 

emissions during this enrichment are very high. Alternatively, very rapid throttle closure can 

result in a flash of gasoline into the engine, and the resulting low air: fuel ratio and possible 

misfire may cause high emissions. Therefore, any single measurement made by remote sensing 

will give only an indication of a vehicle's, emission behaviour at a particular point in time. 

The ability of remote sensing to monitor a large number of vehicles allows the generation of 

emission distribution profiles. For CO, the distribution of instantaneous emission rates for both 

catalyst and non-catalyst petrol cars from remote sensing depart significantly from the normal 

distribution. Most vehicles tend to show mean emissions of 1% CO or less in the exhaust, 

although a few vehicles (termed 'gross polluters') are particularly polluting. Stedman et al. 

(1994) obtained emission distributions in 24 world cities. It was found that in Toronto half the 

emissions came from only 8% of the vehicles, whilst in Kathmandu half the emissions came 

from 25% of the vehicles. For CO in particular, the distribution can be described statistically 

as leptokurtic (more peakedthan a normal distribution) with a high positive skew, and Zhang 

et al. (1994) have shown that it is well represented by a gamma distribution. Because of 

ongoing improvements in emission control technology, it appears that the newer the fleet, the 

more skewed the distribution (Peterson and Stedman, 1992). This is because many more of the 

fleet have near-zero emissions and thus a smaller number of gross polluters strongly dominate 

the fleet emissions (Zhang et al., 1994). 

For HC, the fleet emissions tend to be less skewed than for CO, with more vehicles 

contributing to the overall fleet emissions. Nevertheless, there still tends to be only a few gross 

polluters and many low emitters. For example, only four of the cities studied by Stedman et al. 

(1994) - Bangkok, Hong Kong, Kathmandu and Taipei - had half of the HC emissions 

produced by more than 15% of the fleet. Most of the same conclusions that are drawn 

regarding CO emissions and fleet characteristics hold true for HC emissions. This is because 

HC emissions increase as engine combustion gets richer and produces more CO (Stedman et 

al., 1994). 
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3.2.5 In-service inspections 

In the UY, emission checks have been included in the annual MoT test for light-duty vehicles 

since November 1991. The UK regulations cover light-duty vehicles over three years old and 

heavy-duty veb&les. For light-duty petrol vehicles emissions of carbon monoxide and 

hydrocarbons are measured at idle (and fast idle for catalyst-equipped petrol vehicles) against 

specified limits. For light-duty and heavy-duty diesels, the check is on visible smoke emissions 

during a free acceleration' operation. 

As discussed earlier, conventional laboratory emission measurements involve the use of 

specialist and expensive equipment that is not appropriate for use in the average garage 

environment. In-service checks are therefore based on simplified operations of the vehicle, and 

make use of measuring equipment that is less precise and less expensive than that used in the 

laboratory. As a consequence, there is concern that the test does not reflect a vehicle's 

emissions when it is used on the road (Hickman and McCrae, 1995). The tests take place only 

once a year, and therefore it can be argued that they ensure only that the vehicle is operating 

satisfactorily at the time of the test. There is evidence that engine settings can drift over a much 

shorter time scale. Some vehicle operators may intentionally alter settings after a test because 

of a belief that the vehicle performs better if tuned differently. On average, in the year to March 

1994, less that 8% of fight-duty vehicles presented for annual inspection failed the emission 

test. Random roadside surveys, on the other hand, produced a failure rate of more than 35% 

(Hickman and McCrae, 1995). On behalf of DETR, TRL is examining the effectiveness of the 

current MoT emission tests, and specifically the failure trends in emission control equipment. 

The database will be based on the MoT emission tests conducted at around 200 garages 

throughout the UK, and other sources including roadside spot-checks. 

3.3 Emissions modelling 

3.3.1 General principles 

The general principle underlying the estimation of pollutant emissions from road traffic is the 

summation of the product of an emission factor and the amount of traffic, for each type of 

vehicle and each type of vehicle operation, as expressed by the following equation (Hickman 

I ATree acceleration'operation is one in which the engine speed of a stationary vehicle is increased continuously from idle. 
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et al., 1997): 

nn 
Ei = 1: 1: ei, j, k X 

-Tj, k 
j=I k=I 

where: E is the amount of pollutant i emitted 

e is an en-dssion factor 

T is the amount of traffic 

j identifies different types of vehicle 
k identifies different types of vehicle operation. 

This expression shows the broad categories of data that are required in emission modelling, but 

it hides the large number of variables within each category. For example, there are hundreds 

of types of vehicles in service, and each will have different characteristics in terms of emissions. 
The categories are therefore usually sub-divided, according to the characteristics of vehicles 

and vehicle operation that exert an influence on emission rates, as discussed in Section 2.4. 

Methods of predicting the emissions of pollutants from road traffic have been the subject of 

extensive research and development. Traditionally, modelling has concentrated on hot exhaust 

emissions. More recently, procedures to estimate cold start and evaporative emissions have 

been developed. The following Sections describe the diffferent approaches adopted in modelling 
hot, cold start, and evaporative emissions. 

3.3.2 Modelling hot emissions 

A recent survey conducted as part of the DRIVE IPKITE'project identified around 30 models 

used throughout Europe to estimate hot emissions on a variety of spatial and temporal scales 
(Negrenti, 1995). These emission models can be divided into three basic groups of increasing 

complexity: 

(1) emission factor models 
(ii) average speed models 
(ifi) modal models. 
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3.3.2.1 Emission factor models 

Emission factor models operate on the simplest level, with a single emission factor used to 

represent a particular type of vehicle and a very general type of driving (e. g. urban, rural, or 

motorway). The emission factors are calculated as mean values of repeat measurements over 

given driving cycles, and are usuafly stated in terms of the mass of pollutant emitted per unit 
distance (e. g. g/vehicle-km). These factors are useful in applications covering a large spatial 

scale, such as national and regional emissions inventories, where there is Uttle detail on flows 

and operation. However, this approach probably has disadvantages in terms of predicting 

emissions on the microscale, such as with a traffic management scheme, not least because the 

emission factors are based on driving conditions which are not representative of traffic 

management. 

3.3.2.2 Average speed models 

Average speed emission models arc, at present, the most common type in use. Emission rates 

are measured for a variety of trips, each with a different average speed, and this yields speed- 

dependent emission functions such as those shown in Figure 3.1. Examples of this type of 

model are COPERT (Eggleston el al., 1993), MM (Highways Agency et al., 1996), and 

NEET (European Commission, 1999). This approach is considered to be best suited to the 

compilation of emission inventories for road networks. Only Urnited variations in vehicle 

operation (e. g. changes in speed, cold starts) are accommodated in this type of model, and so 

their use in microscale applications is not really appropriate. 

3.3.2.3 Modal emission models based on speed and acceleration 

Modal emission models have been designed to provide an estimation technique which is 

applicable to a small spatial scale, and in this way complement the more simple models. Modal 

modelling improves on the average speed approach by relating the modes of vehicle operation 

encountered on a given trip, in terms of the phases of steady speed, acceleration, deceleration, 

and idling, to the emissions produced during those modes. The most complex modal models 

employ a matrix of combinations of instantaneous (Le. second-by-second) speed/acceleration 

and emission rates. Such models can therefore be used to calculate the second-by-second 

emissions and fuel consumption for a particular vehicle type from a given driving cycle. Speed- 
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acceleration modal emission models represent the state-of-the-art in ernission modelling, but 

cannot yet take into account other important variables such as road gradient. 

3.3.2.4 Modal emissions modelling based on engine power 

The engine load, as described in Section 3.1, has a significant impact on emission rates. 
Emissions modelling based on engine power and speed may prove to be more effective than 

using relationships based on speed and acceleration, because effects such as gradient can be 

taken into account directly (Barth et al., 1996). Such models are based on the engine power 
demand, and the emissions process is broken down into the physical parameters relating to 

vehicle operation. This type of model is undergoing development in the US and Australia 

(Barth et al., 1996; Taylor, 1992), but its establishment as a research tool could be expensive 
because of the amount of data required. 

3.3.3 Modelling cold start emissions 

Cold start emission factors are usually incorporated into emission models that operate on a 
large spatial scale, where vehicle emissions are related to trip lengths and average speeds. In 

many models and inventories, the general approach towards introducing cold start emissions 
has been to apply a penalty (e. g. Eggleston et al., 1993) to hot emission levels over the 

assumed cold start period, and to the number of vehicles assumed to be travelling in the cold 

start modc. 

Modal emissions models have so far been developed only for vehicles with 'hot' engines. In 

order to calculate cold start emissions, the same penalty factors must be employed. This means 

that if modal models are to be used in urban scenarios, then the potential increase in accuracy 

that they afford can be somewhat negated by the need for these relatively crude conversion 
factors for cold start emissions. In addition, these conversion factors are usually derived from 

secondary testing on vehicles that have not been used to develop the modal modpls. 

3.3.4 Modelling evaporative emissions 

Models that estimate evaporativp emissions generally split the processes into diurnal losses, hot 

(and warm) soak and hot (and warm) running losses as described in Section 3.1. The emission 
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rates are then calculated according to equations involving fuel volatility, ambient temperature, 

temperature variation, and the presence of emission control systems. The more sophisticated 

procedures distinguish between hot and warm soak/running losses (dependent on trip length) 

and different parking duration. 

3.3.5 Considerations when modelling traffic calming schemes 

A primary consideration in the selection of an emission model to apply to a traffic management 

scheme is the spatial scale on which the scheme operates. It is rare to find a scheme that has 

clearly-defined spatial boundaries, and even those schemes that appear to operate on a 

relatively small section of the network can affect the volume or operation of traffic on adjacent 

roads. However, there are obvious differences between the spatial scale of, say, a park and ride 

scheme and that of a junction improvement. 

It is generally rather easier to estimate emissions on a large spatial scale than on a small scale. 

Local variations in the composition and operation of traffic may be important factors in the 

immediate vicinity, but as the scale becomes larger there will be a tendency to approximate 

more closely to regional or national trends. Many types of traffic management schemes are 

intended to improve the circulation of traffic in a particular locality, and their effects on 

poflution are confined to that area. Schemes can influence the volume, composition and 

behaviour of the traffic, so their consequences for air poflution depend on departures of such 

parameters from normal, average conditions. It is usually insufficient, therefore, to base an 

assessment on generalised data (Abbott et al., 1995). This rules out emission factor models for 

most traffic management applications. 

However, the more complex approaches necessitate detailed and extensive input data which 

can Umit their appfication. Even on the smaflest of road sections, complete driving cycles for 

every vehicle can never be obtained, and therefore representative cycles must be determined. 

As Zachariadis and Samaras (1996) indicated, calculations of vehicle emissions along individual 

streets are associated with a high degree of uncertainty, and the representativeness of aU input 

data is crucial. 

Certain types of traffic management schemes, such as those that control parking, could 

influence the overall magnitude and spatial distribution of cold start and evaporative emissions 
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in a particular area. It is therefore important that these aspects are modefled as accurately as 

possible. A further consideration in the selection of an appropriate model is its compatibility 

with the National Air Quality Strategy. As discussed in Section 4.1, few measurements of 
benzene, 1,3-butadiene and PMjo have been made largely because, in terms of exhaust 

emissions, they are not regulated pollutants. 

3.3.6 Available models 

Here, details of the main modal and averag6-speed emission models suitable for determining 

the impact of traffic management schemes are described. Emission factor models are not 
included, as they are only designed for use on spatial scales that are generally much larger than 

those covered by traffic management schemes. Whilst it is acknowledged that other emission 

models are available outside Europe, they are not suitable for use in the LTK, largely because 

of the differences in emissions control legislation and, consequently, emission rates. 

3.3.6.1 DMRB (Design Manual for Roads and Bridges) 

Volume II of the Design Manual for Roads and Bridges (Highways Agency et al., 1996) 

provides guidance on the environmental assessment of trunk road schemes. In Section 3 of the 

Manual, a step-by-step procedure is presented for the calculation of emissions from road 

transport. The average-speed emission factors are applicable to hot engines, and were derived 

from measurements made by TRL the members of the CORINAIR working group (Eggleston 

et al., 1993). 

3.3.6.2 COPERT (Computer Program to calculate Emissions from Road Traffic) 

COPERT is the computer program developed by the CORINAR working group on behalf of 

the European Commission, and is mainly applied to mediurn- and large-scale emission estimates 

using average-speed emission factors for hot engines. The model also includes simple 

expressions for cold start and evaporative emissions, and takes into account national variations 
in parameters such as vehicle fleet, vehicle age, driving patterns, fuel composition and climate. 
A full explanation of the method of calculation is provided by Eggleston et aL (1993). 
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3.3.6.3 MEET 

The MEET project (Methodologies for Estimating Emissions from Transport) was undertaken 
in order to provide a basic Europe-wide procedure for evaluation the impact of transport on 

air poButant emissions and fuel consumption. It brings together the most comprehensive and 

up-to-date information on emission rates and activity statistics, and enables the estimation of 

the emissions resulting from virtually any transport operation. The road transport sub-model 

in MEET allows the estimation of emissions at various levels of detail, but essentiaHy uses an 

average-speed approach. 

3.3.6.4 MODEM 

MODEM is a modal emission model that was produced from the data collected during the 

European Commission's DRIVE V 1053 project, "Modelling of emissions and consumption in 

urban areas". One of the objectives of the research reported in this Thesis was to assess 

MODEM's accuracy in terms of predicting the emission impacts of traffic calming and to 

explore ways in which it could be improved for use in traffic calming applications. A more 

detailed description of the model, as well as details of the model assessment and development, 

are presented in Chapter 12. 

3.3.6.5 Workbook of Emission Factors (BBEFA) 

The Workbook was developed on behalf of the German Federal Environmental Agency and the 

Swiss Federal Ministry for the Environment, Forestry and Agriculture. It is based on chassis 

dynamometer measurements of hot reference emission functions for a representative sample 

of 286 passenger vehicles with petrol and diesel engines, 31 fight-duty vehicles, 35 diesel 

engines from HGVs, and 40 motorcycles (Hassel et al., 1993). Additional 'correction factors' 

were derived in order to take into account the effects of cold starting, gradient, altitude, special 

driving conditions, and degradation of emission control systems. In extensive additional studies, 

the behaviour of passenger car and HGV drivers were also recorded, and the two data sets 

were combined (Keller, 1996). 

The different correction factors, which relate to the particular traffic conditions the user is 

interested in, are applied to the reference emission functions in order to generate appropriate 
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emission estimates. In the Workbook, a specific set of driving patterns is associated with a 

particular set of traffic conditions. These traffic conditions are characterised by the features of 

the section of road concerned (e. g. 'motorway with 120 knVh limit'; 'main road outside built-up 

area), and the driving patterns are defined in terms average speed and acceleration. The 

emission factors produced by the Workbook must then be further weighted by traffic flow and 

composition. The user is led through a selection procedure by different menus, and can select 

from several options, including: 

(i) the type of emission factor (hot/cold/evaporative); 

(H) the type of vehicle (passenger car/HGV/motorcycle); 

(Hi) the year (to give traffic composition); 

(iv) the pollutant; 
(V) traffic situation (motorway, urban freeway, stop-go, roads in residential areas); 

(vi) temperature, distribution of standing times; and 

(vii) additional parameters for calculation of evaporative emissions. 

3.3.6.6 Digitalised Graz Method (DGV) 

The Graz model is used in Austria for small- and medium-scale operations. The model 

calculates emissions from passenger cars with the aid of instantaneous emission maps, although 

it is based on a database developed from measurements on just 12 cars. The emission maps 

were produced for each car, and describe the emissions (in mg/s) of CO, HC, NO.,, particulates 

and fuel consumption for a large combination of speeds and accelerations. Three maps were 

developed: one for non-catalyst (ECE 15/04) cars, one for petrol catalyst cars, and one for 

diesel cars. With the -aid of these maps, an average emission map for any given vehicle fleet 

composition can be constructed. The emission maps apply to hot emissions, and cold start 

emissions are applied independently of the speed and acceleration sequence. These emission 

maps can be combined with real-world measurements of driving behaviour to produce 

instantaneous emission estimates (Sturm et al., 1994a, 1994b; Sturm, 1996). 

3.4 Summary and recommendations for experimental design 

The exhaust emissions produced by a stream of traffic depend principally on the volume of the 

traffic, the types of vehicle present, and the emission rates of each type of vehicle. Vehicle 

emission rates depend to a large extent on the way in which the vehicles are operated. This 
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consideration is particularly important in the assessment of traffic calming, since its very 

rationale is to improve safety via the control vehicle operation. 

Apart from the MoT test which, it is acknowledged, does not provide a realistic estimate of on- 

road emissions, three types of emissions measurement techniques are currently in use: on-board 

sampling, laboratory sampling, and remote sensing. Gas sampling equipment and analysers can 
be fitted to individual vehicles to enable on-road exhaust emission rates to be measured under 

conditions which are representative of on-road operation. However, it is not cost-effective to 

extend this approach to the wide range of vehicle types and operating conditions encountered 

in reality. Consequently, a surrogate indicator of vehicle operation is usually employed in order 

to characterise the emissions from a representative sample of vehicles driven under 

representative operating conditions. Currently, the most widely used surrogate indicator is 

vehicle speed, and the characteristic variation of emissions with average trip speed is well 

known. For CO, HC, particulate matter, and other products of incomplete combustion, the 

highest emissions per vehicle-krn occur at the lowest average speeds, whereas NO., emissions 

per vehicle-krn generally increase with an increase in average speed. It has also been observed 

that accelerations and decelerations contribute to emission rates. A vehicle will tend to emit 

higher levels of pollutants when it is driven over a transient cycle than when it is driven over 

a cycle with the same average speed but less speed variation. Once the speed-time profiles of 

vehicles in the traffic are known, it is possible to estimate their emissions by either driving the 

profiles in similar vehicles on a chassis dynamometer and measuring them directly, or by using 

the profiles as an input to a suitable emissions model. 

The advantage of laboratory testing is the potential to achieve reproducible results. The main 

disadvantages of testing individual vehicles relate to the dependence of emission rates on 

vehicle type and operation; there are several hundred different types of vehicle on the road in 

the UK, and during any one journey vehicle operation can vary quite markedly. Remote 

sensing can be used to determine emissions from both individual vehicles and traffic and it is 

relatively inexpensive. However, it can only give a 'snapshot' of emissions at one particular 

monitoring point on the road network. 

Given that emission test results can be highly variable, a high degree of repeatability was 

required in this study. Chassis dynamometer testing, which, though expensive, is conducted in 

a control. led environment, was therefore selected as the primary method by which emission 
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rates would be established. Consequently, the effect of traffic calming on vehicle operation 

would have to be defined in the form of driving cycles which could be used on a dynamometer. 

Driving cycles would be formulated to characterise vehicle operation before and after the 
installation of the nine different traffic calming measures identified in Chapter 1. The cycles 

would have to represent the observed ranges of speed and acceleration on the road where each 

measure was introduced. This required the use of a non-intrusive method for determining 

vehicle speed and gear selection on a continuous basis. The techniques which were available 
included an instrumented car, a LIDAR system, and road tubes. 

It was initially proposed that a separate set of speed profile measurements, obtained using 
instrumented cars driven through the same schemes by selected subjects, would be used to 
determine the gear-change points across the operating speed ranges. Each speed profile 

measured using one of the external techniques and the instrumented cars would be 

characterised using statistical descriptors of the speed data, thus defining several modes of 

vehicle operation. A sample of speed profiles, reflecting the range of vehicle operation through 

the scheme, would then be taken from the external measurements and used to select 

corresponding speed profiles (with associated gear selections) from the instrumented car 

measurements. The latter profiles would be combined to form a driving cycle representing the 

range of vehicle operation on the section of road at the time the speed measurements were 

taken. This process was simplified in the early stages of the study. 

The proposed methodology would rely, in part, on the matching of speed profiles obtained by 

external measurement and those measured using instrumented cars. Preliminary tests were 

required to confirm that the speed profiles measured using these techniques were directly 

comparable. These tests were conducted at the TRL site. Detafls of the three measurement 

techniques, the test procedure employed, and the results of the tests are provided in Chapter 

4. In order to establish the feasibility of the proposed methodology in a real-world situation, 

a field trial was conducted on a stretch of road along which traffic calmffig measures had 

already been instafled. Chapter 4 of the Thesis also includes the details and results of this trial. 

WeH established methods for determining traffic flow and composition would subsequently be 

used to weight the emission rates resulting from the chassis dynamometer measurements. In 

order to assess the representativeness of the emission test results, on-road measurements of 

emissions from a large number of vehicles would be conducted using a remote sensing system. 
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CHAPTER 4 SPEED MEASUREMENT 

The proposed methodology for the development of driving cycles relied in part on a statistical 

method for matching the speed profiles obtained using instrumented cars with those measured 

externally. Tests were required to confirm that the speed profiles measured using these two 

types of technique were directly comparable. These tests were conducted at the TRL site, on 

a 200m section of road featuring two flat-top road humps. 

The speed of a vehicle passing along the road section was monitored using simultaneously the 

three techniques described in Section 3.1.2.1: on-board instrumentation and two external 

methods of measurement (a laser-based system and pneumatic road tubes). Details of the test 

procedure and the results are provided in Section 4.1. In order to establish the feasibility of the 

proposed methodology in a real-world situation, a field trial was conducted on a stretch of road 

where traffic calming measures had already been installed. The trial is described in Section 4.2. 

4.1 Comparison of speed measurement techniques 

The LIDAR was placed in an appropriate position to measure vehicle speed over the section 

of road on which the pneumatic tubes had been installed. A Ford Escort instrumented with a 

microwave Doppler sensor was driven over the road section several times in each direction, 

whilst its speed was recorded using all three systems simultaneously. 

Figure 4.1 shows that there was a good agreement between the speed profiles measured by all 

three devices, including those profiles exhibiting a large variation in speed. However, it is not 

certain which technique provided the most accurate representation of true vehicle speed. 
Largely because of its ease of installation, ease of use, and less conspicuous nature, the LIDAR 

system was selected in preference to the road tubes as the means by which external 

measurements would be obtained during the study. 
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Figure 4.1 Comparison of speed measurement techniques. 

4.2 Field trial 

The location for the trial was chosen according to its suitability for the measurement process, 

which in practical terms meant finding a site at which interruptions to the LIDAR beam would 
be minimised. Ile road had to be straight, unobstructed by parked vehicles, relatively flat, and 

possess a suitable location for monitoring traffic without inteffering with moving vehicles or 

pedestrians. Even for this preliminary study, difficulties arose in finding a suitably straight 

stretch of road where speeds could be measured over distances of more than around 200m. 

The site selected for the field trial was a section of Owlsmoor Road in Sandhurst which 
featured round-top road hwnps. Around one and a half days were spent measuring speeds using 

the LIDAR system, which was positioned in a Renault Espace with the laser beam directed 

through the rear window. The laser was manually directed at each target vehicle as it passed 

through the traffic calming scheme. The speed of, and distance to, the vehicle were recorded 

every second on a data logger, and the data were periodically downloaded to a portable 

computer. The time of the measurement and the registration number of each target vehicle were 

recorded on video so the vehicle specification could be cross-referenced with the recorded data. 

Other veWcles passing through the scheme were also recorded on video. 

The mounting of the LIDAR system and video equipment in the Renault Espace was 

considered to be impractical on a long-term basis. Therefore, after the field trial a small van was 

used as a dedicated housing for the LIDAR system. The comparatively small width of the van 
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enabled it to be parked on a pavement or verge without causing a major obstruction to the 

traffic or pedestrians. A frame and shelving system were bolted to the interior of the van to 

support the various components of the external measurement system. The laser unit and video 

camera were fixed together on a bracket and aligned. The bracket was attached to a pan-and- 

tilt head which was, in turn, fixed to the frame. Figure 4.2 depicts the general arrangement of 

the external measurement system when used at the roadside, and Plate 4.1 shows the system 
installed in the van. The rear door of the van was closed during operation, and the rear window 

was blacked out except for a smaH aperture through which the laser beam and video camera 

could be directed. 
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Figure 4.2 General arrangement of LIDAR system. 

Initially, in order to gain famifiarity with the measurement procedure and to determine the 

feasibility of the methodology, TRL employees were asked to drive the Ford Escort equipped 

with the microwave Doppler sensor through the scheme. In a more thorough experiment which 

represented the intended approach during the study, twelve external subjects, selected from a 

large TRL database containing a representative cross-section of UK drivers, were asked to 

drive a Ford Mondeo fitted with internal instrumentation thorough the scheme. It was assumed 

that the Ford Escort represented a typical medium-size car, whflst the Ford Mondeo 

represented a typical large car. Each speed-time profile for the road section was characterised 

by the mean and the standard deviation (Le. variabil-ity) of the second-by-second data 

comprising it. The overafl mean speed, and the overall standard deviation of speed (both 
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averaged over all speed profiles) tbr the instrumented cars were compared with those of the 

exterrial measurements. 

-- ---- - -Nj 

Platc 4.1 I-IDAR sN. stem. 

As stated earlier, the proposed methodology relied in part on the matching of speed profiles 

obtained by external measurement with those measured using an instrumented car. It was 

therefore important that the comparatively small number of instrumented car profiles. which 

would be used to construct the final driving cycle, exhibited a sufficiently wide range of speeds 

and speed variation to reflect the speed range of the LIDAR measurements. T-tests confirmed 

that the overall mean speeds obtained using the two instrumented cars were different from the 

mean speed recorded using the LIDAR system at the 95% confidence level. It can be seen from 

Figure 4.3 that the mean speed of the Escort was somewhat lower, and that of the Mondeo 

higher, than the mean speed ofthe vehicles measured by the LIDAR. Figure 4.3 also shows that 

large differences in the overall standard deviation of speed were apparent. The speed profiles 

measured using the LIDAR had a lower overall standard deviation than those measured using 

either of the instrumented cars. 
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Figure 4.3 Mean speeds and standard deviations of profiles measured using 
LIDAR and two instrumented cars (the I-bearns represent 95% confidence 
intervals, the horizontal bars in the distributions correspond to individual speed 
profiles, and N is the number of measurements). 
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These results were not particularly surprising, and there were probably a number of reasons for 

there being differences between the mean speeds measured using the LIDAR and the on-board 
instruments. These included the following: 

The subjects driving the instrumented cars were aware that they were being monitored 

and might therefore have altered their natural driving style, whereas the LIDAR 

measurements were unobtrusive. 

The performance and handling of the TRL instrumented car may have been untypical 

of the vehicles in the area. 

(iii) The subjects driving the instrumented vehicles were unfamfliar with the area. 

(iV) The LIDAR system stopped logging once a vehicle came to rest during measurement, 

and the speed profile had be rejected. Consequently, no LIDAR profiles included a 

speed recording of zero. The data logger in the instrumented car, however, continued 

to operate when the car stopped, and so the zero values were included in the calculation 

of the mean speed of the associated profile. In the absence of other factors, this would 

have resulted in a general tendency for the overall mean speed of all the instrumented 

car profiles to be lower than that of all the LIDAR profiles. 

(V) If a vehicle was travelling at low speed, there was a tendency for other vehicles to 

queue behind it. This occasionaUy led to the interruption of the LIDAR beam and the 

subsequent rejection of the speed profiles for some vehicles. 

The distributions of the measurements are also shown in Figure 4.3 (each horizontal bar relates 

to a single speed profile). If the LIDAR measurements accurately reflected the range of real- 

world vehicle operation, then the results showed that in an experiment of this kind, where an 

attempt is being made to determine representative speed profiles over specific, and 

comparatively short sections of road, the use of a single instrumented car may produce 

unrepresentative results. The representativeness of the final driving cycles should therefore be 

improved if the instrumented car profiles comprising them are selected using the LIDAR 

measurements, as proposed. 
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As the range of the combined instrumented car measurements reflected the majority of the 

LIDAR measurements, it was considered that the trial confirmed the overall feasibiEty of 

applying the proposed methodology to a real-world situation. It was thought that the speed of 

a particular vehicle passing through a traffic calming scheme might well be affected by its 

characteristics, such as its performance, its wheel-base, the stiffness of its suspension, and the 

general ride comfort. Therefore, it was considered that the possibility of covering the entire 

speed range observed in the external measurements could be increased by using three 

instrumented cars. Subsequently, a Ford Fiesta, a Ford Escort, and a Ford Mondeo were 

instrumented for this purpose. It was anticipated that the data collected using these three 

vehicles could be used to develop driving cycles applicable to small, medium, and large cars. 

4.3 Summary 

The methodology for the development of driving cycles relied on a statistical matching of the 

speed profiles measured internally (using an instrumented car) with those measured extemal1y. 

The methodology was tested in two experiments: a basic comparison between different 

measurement techniques (at TRL), and a full field trial. 

The experiment at TRL showed that was a good agreement between the speed profiles 

measured simultaneously using on-board instrumentation and two external methods of 

measurement (a LIDAR system and pneumatic road tubes). Largely because of its ease of 

instal. lation, ease of use, and less conspicuous nature, the LIDAR system was selected in 

preference to the road tubes as the means by which external measurements would be obtained 

during the study. 

The field trial was conducted on a public road featuring road humps. Drivers were asked to 

drive either a'medium-size'orlarge' instrumented car thorough the scheme. The overall mean 

speed, and the overall standard deviation of speed for the instrumented cars were compared 

with those of the external measurements. The overall mean speeds obtained using the two 

instrumented cars were different from the mean speed recorded using the LIDAR system at the 

95% confidence level. The mean speed of the medium-size car was lower, and that of the large 

car higher, than the mean speed of the vehicles measured by the LIDAR. Large differences in 

the overall standard deviation of speed were apparent; the speed profiles measured using the 

LIDAR had a lower overall standard deviation than those measured using either of the 

89 



instrumented cars. The reasons for the differences between the internal and external 

measurements probably linked to the driving styles of the two samples, one being a small 

sample of drivers who were unfamiliar with the area, the other being a large sample of local 

drivers, as well the performance and handling of the instrumented cars compared with those 

of local vehicles, and limitations of the external measurement technique. 

However, it was concluded that the representativeness of the final driving cycles should be 

improved if the instrumented car profiles comprising them are selected using the LIDAR 

measurements. As the range of the combined instrumented car measurements reflected the 

majority of the LIDAR measurements, it was considered that the trial confirmed the overall 
feasibifity of applying the proposed methodology to a real-world situation. It was considered 

that the possibility of covering the entire speed range observed in the external measurements 

at all sites could be increased by using three instrumented cars. Subsequently, a Ford Fiesta, 

a Ford Escort, and a Ford Mondeo were instrumented for this purpose. It was anticipated that 

the data collected using these three vehicles could be used to develop driving cycles appEcable 

to smafl, medium, and large cars. 
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CHAPTER 5 SITE DESCRIPTIONS 

Nine types of traffic calming measure were selected for investigation. These measures, which 

as described in this Chapter of the Thesis, were primarily selected according a list of those most 
frequently implemented (Table 2.1). However, the selection was also governed, to some extent, 

by the types of measure employed in the traffic calming schemes which were actually installed 

by local authorities during the experimental phase of the research, as well as the practicality of 

conducting the appropriate measurements at potential sites. A summary of the characteristics 

of the traffic calming measures is presented in Table 5.1 at the end of the Chapter. 

5.1 Scheme A: 75mm flat-top road humps 

As part of Surrey County Council's Accident Reduction Programme, an Area Road Safety 

Study was undertaken in a residential area of Walton-on-Thames. The Safety Study revealed 

that 150 personal injury accidents (PI. As) had occurred within the area between January 1989 

and December 1991. Fifty per cent of the accidents involved vulnerable road users such as 

pedestrians, children, the disabled, the elderly, cyclists, and motorcyclists. Vehicle speeds were 

found to be inappropriate for the type of roads in the area, and traffic flows along the main 

roads in the area confirmed their use as 'rat runs' (Stillwell Bell and Ehnbridge Borough 

Council, 1994). 

In order to address these problems, Eimbridge Borough Council proposed a package of traffic 

caln-dng measures for the area. The measures were designed to reduce the risk of accidents, to 

emphasise the needs of vulnerable road users, to improve the environment, to achieve lower 

vehicle speeds, and to direct vehicles onto preferred routes. The proposed package included 

road humps, chicanes, pedestrian refuges, trafTic islands, entry treatments, raised junctions, 

narrowings, parking management, one-way streets, road closures, and restricted turns. 

The flat-top humps installed on Ambleside Avenue, one of which is depicted in Plate 5.1, were 

among the first features to be implemented in the Safety Study area. They were introduced in 

November 1997. The humps, being of a standard design, were 75mm high, with an overall 

length of 8.5m and a plateau length of 6m. (giving a ramp gradient of 1: 15). There was a 

distance of approximately 90m between the humps. The layout of the road section investigated 

by TRL is represented in Figure 5.1. 
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5.2 Scheme B: 80mm round-top road humps 

In January 1998 the London Borough of Sutton introduced five road humps on Milton Road, 

a residential road in the Beddington area, in response to the problems of vehicle speed and 
traffic flow perceived by residents. The road humps, shown in Plate 5.2, were constructed of 
hot rolled asphalt. They were 80mm. high, with a round-top profile, tapered edges, and 

appropriate white lining. The humps were spaced at intervals ofý on average, around 60m. The 

layout of the section of Milton Road investigated by TRL is represented in Figure 5.2. 

5.3 Scheme C: 1.7m-wide speed cushions 

In 1997 The London Borough of Harrow embarked on a programme of traffic calming. A 

points allocation system was applied for the purposes of prioritising roads for traffic calming. 
The system accounted for reported PlAs, traffic speed, traffic volume and composition, and 
land use. Welbeck Road, which is a residential road in the Borough, was one of the roads given 

priority. Between January 1995 and August 1997, seven PlAs were reported on the road. As 

a result of this accident record, speed cushions were installed in January 1998. The cushions, 

which were constructed of hot rolled asphalt, were arranged in 'in-line' groups of three (Plate 

5.3), spaced at an average (but rather variable) interval of around 75m. Each cushion was 
80mm, high, had an overall length of 2.5m, an overall width of 1.7m, a plateau width of 0.75m, 

and a ramp gradient in the direction of travel of 1: 8. The layout of the section of Welbeck Road 

investigated by TRL is represented in Figure 5.3. 

5.4 Scheme D: combined pinch point and speed cushion 

Slough Borough Council introduced a 20 mph zone in the Upton Lean area of Slough in June 

1998. The introduction of the scheme provided the opportunity for TRL to monitor the effects 

on speed of a combined pinch point and speed cushion. Four pinch point/speed cushion 

combinations were installed at intervals of between 90 and 100 metres on Broadmark Road. 

One of these measures is depicted in Plate 5.4. 

The effective carriageway width at each pinch point was around 3.3 m, and in each case the 

pinch point was accompanied by a single speed cushion located directly between the kerb build- 

outs. The speed cushions were constructed of hot rofled asphalt. They were 75 mm. high, 3.7 

m long, and 1.6 m wide. The locations of the measures on Broadmark Road are indicated in 

Figure 5.4. 
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5.5 Scheme E: raised junction 

The introduction of the 20 mph zone in the Upton Lean area of Slough also provided an 

opportunity to investigate the effects of raised junctions. Two such measures were introduced 

on Carlton Road, and the implementation date broadly coincided with that of the measures 
described in Section 5.4. 

One of the junctions is depicted in Plate 5.5. The plateau of each raised junction was I 00mm 

high and constructed of block paving, with the ramps being formed from rofled asphalt. One 

of the raised junctions was 22m long in the direction of travel (including the ramps), whilst the 

other was 17m long. Each plateau extended approximately 5m into the side road, and the 

centre-to-centre distance between the two raised junctions was approximately 70m. The 

locations of the measures on Carlton Road are indicated in Figure 5.5. 

5.6 Scheme F: chicane 

The site selected for the study of a chicane was located on Great Hollands Road in BrackneH, 

and the actual chicane investigated in pictured in Plate 5.6. Several measures of this type were 
introduced on the road in 1994 to reduce vehicle speeds and traffic flow. At the narrowest 

point of the chicane, the road width was 3.7 metres. Illuminated boflards were placed either 

side of the road narrowing, and also on traffic islands located in the centre of the road at the 

entrance and exit of the chicane. Hatching was also used at the traffic islands to define the 

layout of the chicane. The overall length of the measure, including the traffic islands but 

excluding the hatching, was 28 metres. The distance between the chicanes on Great Hollands 

Road was comparatively large, and therefore the spacing has not been reported. No map of the 

section of Great Hollands Road investigated by TRL was avaflable. 

5.7 Scheme G: build-out 

Owlsmoor Road in Sandhurst was used as the site for the field trial described in Section 2.3. 

In order to reduce vehicle speeds in the vicinity of a secondary school on OwIsmoor Road, a 

variety of traffic calming measures were introduced in November of 1991. Round-top road 
humps (50mm-high and 75mm-high) were installed along a large section of the road, a single 
build-out was constructed near the entrance to the school, and a mini-roundabout was 
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introduced at the junction with Yeovil Road. 

The build-out (Plate 5.7) was selected as the seventh traffic calming measure in the study. The 

build-out extended 1.5 m into the northbound carriageway, resulting in an effective road width 

of 3.9 rn and, as a result, drivers in the northbound carriageway were forced to give priority to 

oncoming vehicles. Although road humps featured prominently on Owlsmoor road, none were 
installed in the immediate vicinity of the build-out. No map of OwIsmoor Road was available 
for inclusion here. 

5.8 Scheme H: mini-roundabout 

The mini-roundabout installed on Owlsmoor Road in Sandhurst (at the junction with Yeovil 

Road) was also selected as an appropriate measure for inclusion in the TRL study. The measure 
is depicted in Plate 5.8. 

5.9 Scheme 1: 1.9m-wide speed cushions 

West Grove in Walton-on-Thames is one of the main traffic routes between the A244 and the 

A317, even though it is a residential road. Elmbridge Borough Council introduced traffic 

calming measures on West Grove in 1997 in an attempt to reduce vehicle speeds and traffic 

volume from levels which were inappropriate for the road. Because the route is also used by 

the emergency services, the Council opted mainly for speed cushions. 

The speed cushions were instafled in pairs, and were constructed of hot'rolled asphalt to a 

height of 75 nun. They were 1.9 rn wide, and 1.9 m long in the direction of travel. The plateau 

of each cushion was 1.3 m wide and 0.7m. long, giving a ramp gradient in the direction of travel 

of 1: 8, and a side-ramp gradient of 1: 4. In each cushion pair, there was a gap of 1.2 m between 

the outer edges of the cushions and the k-erb, and also a gap of 1.2 m between the inner edges 

of the two cushions. The speed cushion pairs, pictured in Plate 5.9, were instafled at intervals 

ot on average, approximately 50 metres. The layout of the section of West Grove investigated 

by TRL is represented in Figure 5.6. 
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This map is reproduced from the CIS map by TRI. with the 
permission ofthe Ordnance Survey on bLhalfofthe Controller 

of Fier Majesty's Stationery Office, @ Crown copyright. All 

rights reserved. Unauthorised reproduction infringes Crown 
Copyright and may lead to prosecution or civil proceeding. 
Licence Number GD272671. 
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Figure 5.1 Site map: Ambleside Avenue, Walton-on-Thames (the red arrows indicate the 
locations of the measures, and the red dotted lines indicate the extent of the monitoring zone). 
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Plate 5.1 Flat-top road hump: Ambleside Avenue, Waito n-o n- Thames. 
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Figure 5.2 Site map: Milton Road, Sutton (the red arrows indicate the locations of the 
measures, and the red dotted lines indicate the extent of the monitoring zone). 
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Plate 5.2 Round-top road hump: Milton Road. Sutton. 
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Figure 5.3 Site map: Welbeck Road, Harrow (the red arrows indicate the locations 
of the measures, and the red dotted lines indicate the extent of the monitoring zone). 
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Figure 5.4 Site map: Broadmark Road, Slough (the red arrows indicate the 
locations of the measures, and the red dotted lines indicate the extent of the 
monitoring zone). 
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Plate 5.4 Combined pinch point and speed cushion: Broadmark 
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Figure 5.5 Site map: Carlton Road, Slough (the red arrows indicate 
the locations of the measures, and the red dotted lines indicate the 
extent of the monitoring zone). 
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Plate 5.5 Raised junction: Carlton Road, Slough. 
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Plate 5.6 Chicane: Great Hollands Road, Bracknell. 

PILItC 5.7/ BUIld-OUL ()%ýIsiiioor Road, Sandhurst. 
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Plate 5.8 Mini-roundabout: Owlsmoor Road, Sandhurst. 

Plate 5.9 1.9m-wide speed cushions: West Grove, Walton-on-Tharnes. 
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Figure 5.6 Site map: West Grove, Walton-on-Tharnes (the 
red arrows indicate the locations of the measures, and the 
red dotted lines indicate the extent of the monitoring zone). 
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6 TRAFFIC FLOW, COMPOSITION AND SPEED 

6.1 Field measurements 

Where possible, vehicle speed profiles were measured before and after the introduction of the 

nine schemes identified in the previous Chapter. These speed profiles were subsequently used 

to develop driving cycles for use in laboratory emission tests. It has been shown that traffic 

calming tends to result in the diversion of traffic away from the affected roads (e. g. Webster 

and Mackie, 1996; Webster and Layfield, 1996). In principle, diversions and any changes in 

traffic composition will also have an impact on overall emissions. Traffic flow and composition 

were also therefore recorded in the study where possible, so that the overall effect of each 

scheme on emissions from the traffic on the affected roads could be calculated. However, 

consistent results were not obtained in practice. 

The dates of the main traffic surveys conducted during the work are presented in Table 6.1. 

Speed and flow measurements were conducted before and after the installation of each of the 

first five traffic calming schemes listed in Chapter 5. Two-way 24-hour traffic flows were 

recorded using automatic counters. For scheme C, traffic flow data had already been collected 

by the local authority in 1995, prior to the introduction of the scheme. No subsequent traffic 

count was conducted at this site before calming. The flow counts for scheme C were therefore 

separated by 26 months, for schemes A, B, D, and E, the counts were separated by 4-12 

months. Vehicle speed profiles were measured externally using the LIDAR system, and 

infon-nation on traffic composition was derived from the video reco rd of the LIDAR 

measurements. For the first scheme only, instrumented car measurements were also undertaken 

before and after calming, with the information being used to derive gear-selection patterns for 

the driving cycles. The instrumented cars were not employed at the other sites for reasons 

which will be explained later. 

During the experimental phase of the study it was not possible to identify sites where a chicane 

(scheme F), a build-out (scheme G), or a mini-roundabout (scheme H) would have been 

introduced early enough for the measures to be included, or where the layout was suitable for 

external speed measurement. Consequently, the speed measurements designed to reflect vehicle 

operation after the installation of these measures were obtained at sites where they had already 

104 



been introduced. The traffic flows after calming at the three sites were estimated using the 

video record of the external speed measurements. 

For the 1.9m-wide speed-cushions (scheme I), external speed measurements were conducted 

on one road before calming, but on a different road after calming. As part of the package of 

traffic calming measures proposed by Elmbridge Borough CouncH for the area of Walton-on- 

Thames described in Section 5.1, there was an intention to include 1.9 m-wide speed cushions 

on one of the roads. However, the cushions were not installed early enough for measurements 

to be conducted. A nearby road, which already featured 1.9 m-wide speed cushions, was 

therefore adopted as an altemative. Although traffic flows were recorded before the 

introduction of scheme I, the measurements were not used because of the change of site. 

Table 6.1 Surveys undertaken during the study. 

Scheme Traffic calming measure 
Traffic flow measurements 

Before calming After calming 

External speed measurements 
Before calming After calming 

A 75mm, flat-top road humps 7/97 11/97 7/97 11/97 

B 80mm round-top humps 10/97 6/98 10/97 4/98 

1.7m-wide speed cushions 11/95 1/98 1/98 3/98 
inch point and speed cushion 4/98 4/99 2/98 8/98 

E Raisedjunction 4/98 4/99 2/98 7/98 

F Chicane No survey 11/98' No survey 11/98 

G Build-out No survey 6/98 ' No survey 6/98 

H Mini-roundabout No survey 9/98 a No survey 7/98 

1 1.9m-wide cushions No survey No survey 7/97 1/99 
a Flow estimated from video record. 

Where speed measurements could be conducted at the same site both before and atier calming, 

the time period between the surveys varied from two to six months. Because of the difficulties 

associated with scheme I, there was an 18-month time gap between the before and after speed 

surveys. The external speed measurement were conducted between 06: 00-11: 00,11: 00-15: 00, 

and 15: 00-20: 00, on a Tuesday, Wednesday and Thursday respectively. Monitoring was also 

conducted on a Saturday and Sunday between 09: 00 and 15: 00. A complementary video record 

of the traffic was obtained each day. The periods of monitoring were designed to account for 

potential changes in the mean speed, or variability in speed, of vehicles at different times of day. 

It was assumed that the speeds measured during a particular time period on any particular day 

would be representative of those during the same period on other days of the week. Attempts 

were made to monitor speeds away fromiunctions, and in both directions along the stretch of 
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road under investigation. 

The LIDAR speed profile of each vehicle passing through the traffic calming section was 

classified in terms of the mean and the standard deviation of the second-by-second speed 

measurements. All the vehicles measured using the LIDAR were classified according to their 

type and direction of travel. Passenger cars were identified by model, and subsequently 

categorised according to size and level of emission control. In emission test work, the size of 

light-duty vehicles is usually defined in terms of engine capacity. However, because engine 

capacities could not be determined from the video record, passenger car size was defined in 

terms of vehicle length ('small' = shorter than 3.8 1 n-4 'medium' = 3.8 1 rn to 4.19m, 'large' = 

longer than 4.19m) which was, in turn, determined by make and model. The level of ernission 

control (the presence or absence of a catalytic converter) was loosely defined in terms of year 

of registration. The exhaust emission legislation wMch effectively required most petrol cars in 

the UK to be fitted with a catalyst (EC Directive 91/441/EEC) came into effect on January 1 

1993. It was assumed that all petrol cars registered after August 1 1993 (Le. Vregistration or 

after) were equipped with a catalyst, and that all petrol cars registered before this date (i. e. pre- 

'L) were not. However, there are a few points to note concerning this system of classification. 

Firstly, many cars registered between January 1 1993 and August 1 1993 would have been 

equipped with a catalyst. Also, some manufacturers produced catalyst-equipped vehicles well 

before the date of the 91/441 legislation, and some manufacturers managed to produce vehicles 

after this date that were compliant with the pollutant limits but were not equipped with a 

catalyst. Finally, no distinction could be made between petrol and diesel cars from the video 

analysis, and it can only be assurned that the ratio between non-catalyst and catalyst petrol cars 

would not have changed had such a distinction been possible. 

Those commercial vehicles having a weight less than 3.5 tonnes were labelled as light goods 

vehicles (LGVs), and commercial vehicles having a weight greater than 3.5 tomes were 

identified as heavy goods vehicles (HGVs). All buses were combined in a single category. 

The LIDAR measurements and video data were analysed to established whether significant 

differences existed between the speed profiles measured for different sizes of vehicle, at 

different times of day, and in different directions of travel. Differences in the speed profiles of 

convoy and non-convoy vehicles were also examined. This was thought to be an important 

consideration, as any variation in the ease with which different types of vehicle could be tracked 

with the LIDAR could have led to a sampling bias. 
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During the investigation of the first scheme (scheme A- 75mm flat-top road humps), twelve 

people were asked to drive the instrumented cars along a route in Walton-on-Tharnes which 
included the section of road of interest. Each subject was asked to drive an instrumented car 

which corresponded most closely to their own car in terms of size and engine capacity. The 

driving sessions were conducted over a period of three days. The results of these instrumented 

car measurements, and their role in the process of developing gear-selection patterns for the 

driving cycles, are presented in the next Chapter. 

6.2 Traffic flow 

The traffic flows recorded during the study are presented in Table 6.2. Automatic 24-hour 

counts were only undertaken for schemes A-E, with the information being supplied by the 

appropriate local authorities. No automatic counts were available for schemes F-1, though for 

schemes F, G and H an estimate of traffic flow after caMng was made using the video record. 

The numbers in brackets in the last column of Table 6.2 indicate the percentage change in flow 

after calming. Although the flow of traffic through scheme A (75mm flat-top road humps) was 

found to have decreased, it actually increased at schemes B, C, D and E. The largest increase 

occurred at scheme B (80mm round-top road humps), where the total weekly two-way flow 

increased by 28% after calming. In some cases factors other than the traffic calming measures, 

such as seasonal variations and general growth in traffic, may have contributed to the observed 

changes in flow. Ideally, traffic counts would have been conducted immediately before and after 

the installation of each scheme. However, scheme implementation can often be sub ect to 

unforeseen delays, and this was one reason for the extended periods between the flow 

measurements at some of the sites. 
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Table 6.2 Mean 24 hour traffic flows at each site. 

Traffic calming St Di i 
Traffic flow (vehicles per day) 

Scheme age rect on measure Weekdays Saturdays Sundays Weekly total 
(2-way) 

Before calming 
Westbound 3477 2924 2338 45981 75mm flat-top Eastbound 3541 3183 2446 

A 
road humps 

After calming 
Westbound 2591 2253 1820 36298 

I Eastbound 2894 2689 2111 (-21116) 

Before calming 
Northbound 694 526 289 8023 80mm round-top Southbound. 600 529 210 

B humps 
After calming 

Northbound 788 673 442 10248 
Southbound 843 546 431 (+28Yo) 

Before calmin g 
Westbound 1232 1094 970 15886 

1.7m-wide speed Eastbound. 1126 1107 925 
C 

cushions After calming 
Westbound. 1294 1236 957 18073 

J 
- 

Eastbound 1417 1281 1044 (+14? lo) 

Before calming 
Eastbound 2356 2061 1267 31164 

Pinch point/ Wcstbound 2478 2287 1379 
D 

speed cushion After calming 
Eastbound 2219 1843 1719 31976 
Westbound 2546 2380 2209 (+ 3 Yo) 

Before calming 
Northbound 733 708 430 

9776 
i d i - 

Southbound 777 710 369 
E Ra se junct on 

Aftercalming Northbound 699 703 668 10485 
' SO thbound 845 741 656 (+7Yo) 

Before calming Not available 
F Chicane Northbound 3924 After calming SouthboUnd 

: 
2654 Not available 

Before calming Not available 
__ __ G Build-out Ro Zb 

ound 2235 After calming Southbound 
: 

2242 Not available 

Before calming Not available 
H Mini-roundabout Northbound 1670 After calming Southbound 

: F 1575 Not available 

1.9m-Wide speed 
Before calming Not available 

I 
cushions After calming Not available 

'Approximate 12-hour count multiplied by a factor for residential roads of 1.26 (Boulter and Cloke, 1996) to 
covert to 24-hour count. 

6.3 Traffic composition 

The percentages of the traffic flow in each vehicle category before and after the installation of 

the traffic calming measures are shown in Table 6.3. In general, most of the traffic flows 

comprised of passenger car and fight goods vehicles. Very few HGVs and buses were observed 

on the roads investigated. 
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Where information on traffic composition was available before and after calming, there was 

generally good agreement between the proportions of vehicles in each category. However, 

there were a number of discrepancies which cannot easily be explained. For example, there was 

a difference of 20 percentage points between the proportions of medium-size cars in the Tre-L' 

category before and after the introduction of the raised junction. The main exception was 

scheme 1, for which the large discrepancies were probably due to the surveys before and after 

calming having been conducted on different roads. 

Because older vehicles in the fleet are continually being replaced, there should have been a 

general trend towards an increase in the proportion of cars and LGVs in the I and after' 

category. In fact, this only occurred in just over half of the reported cases. 

There is a possibility that the introduction of traffic calming could cause a change in the 

composition of the traffic on a particular road. For example, the drivers of heavy goods vehicles 

might be inclined to adopt an alternative route in order to avoid road humps. Figure 6.1 shows 

the average percentage of traffic flow in each vehicle category before and after calming. 

30 

25- N Before calming 

OAfter calming 
0 20- 

HE 
[2 15- 

0 10 - 

5- 

0 
Small Medium Large LGVs HGVs Buses 
cars cars cars 

Vehicle category 

Figure 6.1. Average proportion of traffic flow in each vehicle 
category before and after the introduction of traffic calming 
(schemes A-E only). 

The data for schemes F-I are excluded from this calculation. The results relate to measurements 

on a smaU number of schemes, but they do suggest that there was no strong tendency for the 

composition of the traffic to be affected. However, it could be argued that the balance between 
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medium-size and large cars had shifted slightly in favour of the latter after calming. 

6.4 Vehicle speed 

Statistics relating to the mean speed, and the mean standard deviation of speed, of the profiles 

for the vehicle categories targeted using the LB)AR are shown in Tables 6.4 and 6.5. For each 

scheme and vehicle category the sample sizes can be inferred from the information presented 

in Table 6.3. 

At the six sites where external speed measurements were obtained before calming, the mean 

speed of passenger cars varied between 38 km/h and 53 km/h. This suggests that, even though 

each road was in a residential area and had a 30mph speed limit, there were some differences 

in the nature of the sites monitored. The differences in the speeds before calming may have 

been attributable to factors which could not be controlled, such as carriageway width, the 

extent of on-road parking, and pedestrian activity. The speeds of passenger cars after calming 

varied between 23 km/h and 42 km/h, with the actual speed reduction, excluding the three sites 

for which no measurements were obtained before calming, ranging from 10 kni/h to 19 km/h. 

The extent of the speed reduction effected by each traffic calming measure was much larger 

than the error on the speed measurements. The largest speed reductions were observed for 

scheme I, and once again this was probably due in part to the surveys before and after calming 

having been conducted on different roads. There was no evidence to suggest that passenger car 

size had an impact on speed before or after calming, or on the magnitude of the speed reduction 

achieved. 

The speeds of LGVs changed from between 36 and 50 km/h before calming to between 20 and 

42 km/h after calming, with a speed reduction of between 10 and 17 km/h. As with passenger 

cars, the extent of the speed reduction effected by each traffic calming measure was much 

larger than the error on the speed measurements. 

The effects of traffic calming on the speeds of HGVs and buses were more variable, but this 

was probably due in part to the small sample sizes. The relatively low number of measurements 

for these vehicle categories also produced a larger degree of uncertainty on each mean value, 

a point that is illustrated by the larger confidence limits in Table 6.4. 
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The mean standard deviation of the speed measurements in the profiles of vehicles travelling 

through most of the schemes tended to increase after calming. These increases reflect the 

tendency of drivers to accelerate and decelerate between discrete traffic calming measures. The 

main exception was scheme B (round-top road humps), where the speed standard deviation of 

most vehicles decreased after calming. The reason for this is unclear. 

6.5 Implications for emission test programme 

Only small differences were observed between the means and standard deviations of the speed 

profiles for the small, medium, and large car categories before calming. Larger, but still small, 

differences were apparent after calming. The main issue concerning these measurements is not 

whether statistically significant differences in speed existed between the three car categories, 

but whether these differences would have been significant when t ranslated to emissions. In 

practice, quite large differences in speed are necessary to show significant differences in 

emission rates, since emission measurements tend to show a large amount of variation and poor 

repeatability. For these reasons, one driving cycle was considered sufficient to represent all 

three categories of car. 

An assessment of the means and standard deviations of the speed profiles for each category of 

vehicle indicated that there were only small differences between those travelling in a convoy 

and those not in a convoy. Small differences were also observed between the means and 

standard deviations of the profiles obtained during different periods of the week. Once again, 

it has been assumed that the effects of these diffierences on emissions would have been minimal, 

and as the cycles were built from random sets of profiles they would include all of this potential 

variation. 
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Table 6.4 Mean speeds of the vehicles measured using the LIDAR before and after the 
installation of traffic cahning measures at each site. 

Traffic 
Mean speed of vehicles in category in km/h, with 95% confidence 

intervals in brackets 
Scheme calming 

measure 
Stage 

Small cars Medium cars Large cars LGVs HGVs Buses 

75mm flat- Before calming 52.1 (±0.6) 52.2 (±0.4) 52.5 (±I. O) 50.0 (±I. O) 45.6 (±2.4) 48.8 (±2.4) 

A top road 
- After calming 34.9 (±0.7) 36.8 (±0.5) 36.6 (±I. I) 33.1 (±1.3) 25.9 (±1.5) 28.5 (±2.7) 

humps Change (km/h) -17.2 -15.4 -15.9 -16.9 -19.7 -20-3 

80mm Before calming 42.7 (±1.2) 41.7 (±0.7) 42.5 (±1.5) 41.6 (±1.5) 34.9(±9.2) 
. 
34.0(±9.2) 

B round-top 
. After calming 28.1 (±I. O) 27.7 (±0.6) 28.0 (±1.5) 26.7 (±1.3) 25.3 (±2.4) I 23.0 (N/A) 

humps Change (kni/h) -13.4 -14.0 -14.5 -14.9 -9.6 -11.0 

7m-wide 1 Before calming 45.4 (±1.4) 43.5 (±0.8) 44.3 (±1.6) 44.2 (±1.7) 43.3 (±4.0) 
. 
42.5 (±5.1) 

C 
. 
speed After calming 28.2 (±1.3) 31.2 (±0.7) 32.1 (±1.9) 33.3 (±1.5) 42.4 (±5.7) 29.4 (±3.7) 

cushions Change (km/h) -17.2 -12.3 -12.2 -10.9 -0.9 -13.1 

Pinch Before calming 45.2 (±1.9) 47.1 (±I. O) 47.4 (±2.1) 47.1 (±2.2) 41.1 (±6.7) 
. 
36.7 (±1.8) 

D point/speed Aftercalming 35.1 (-+1.1) 35.5 (±0.6) 36.4 (±1.3) 37.4 (±1.5) 36.3 (±3.4) 34.4 (±2.0) 
cushion Change (km/h) -10.1 -11.6 -11.0 -9.7 -4.8 -2.3 

Before calming 38.9 (±1.5) 38.3 (±I. I) 37.9 (±2.0) 35.6 (±2.7) 39.5 (N/A) 33.9 (N/A) 

E 
Raised 

junction After calming 23.8 (±1.3) 23.1 - (±I. I) 23.9 (±0.9) 20.3 (±1.5) 
- 

19.6 (±1.3) N/A 

Change (kin/h) -15.1 -15.2 -14.0 15.3 -19.9 N/A 

Before calming Not available 

F Chicane After calming 42.1 (± 1.0)1 41.8 (± 1.0) 42.4 (± 0.8)1 41.6 (± 1.5) 29.6 (±3.5)132.4 (±5.0) 

Change (km/h) Not available 
Before calming Not available 

G Build-out After calming 34.7 (±0.9) 35.1 (±0.7) 35.7 (±0.8) 2 (±2.2) 

Change (km/h) Not available 

Before calming Not available 

H 
roundabout 

After calming 
Change (km/h) 

29.5 (±1.2) F2 

_1.5 
1.6)1 28.6 22.9 (±1.9)121.3 (±1.2) 

Not available 

1 9m-wide Before calming 51.0 (±I. O) 52.8 (±0.8) 51.6 (±1.6) 49.4 (±2.2) 36.2 (±5.7) 45.3 (N/A) 

I 
. 
speed After calming 33.6 (±1.5) 33.7 (±1.4) 34.4 (±1.2) 32.6 (±2.3) Not available 

cushions Change (km/h) -17.4 -19.1 -17.2 -16.8 Not available 
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Table 6.5 Mean speed standard deviation of the vehicles measured using the LIDAR before 

and after the installation of traffic calming measures at each site. 

Standard deviation of speed of vehicles in category in km/h, with 95% 
Traffic confidence intervals in brackets 

Scheme calming Stage 
measure Small cars Medium cars Large cars LGVs HGVs Buses 

75mm-high Before calming 1.6 (±O. I) 1.6 (±O. I) 1.5 (±0.2) 1.7 (±0.2) 1.7 (±0.4) 2.0 (±0.3) 

A flat-top road After calming 3.1 (±0.2) 2.9 (±O. I) 2.9 (±0.2) 3.8 (±0.3) 3.9 (±0.6) 5.5 (±0.7) 
humps Change (krn/h) +1.5 +1.3 +1.4 +2.1 +2.2 +3.5 

Before calining 3.4 (±0.3) 3.4 (±0.2) 3.5 (±0.4) 3.4 (±0.4) 3.5 (±2.3) 7.1 (±2.3) 

B 
Round-toP After calming 3.0 (±0.3) 3.3 (±0.2) 3.3 (±0.4) 3.3 (±0.3) 4.4 (±0.8) 4.8 (N/A) 

hum s p 
Change (kmlh) -0.4 . 0.1 -0.2 -0.1 +0.9 -2.3 

1.7m-wide Before calming 3.4 (±0.4) 3.3 (±0.2) 2.9 (±0.5) 3.8 (±0.4) 3.6 (±I. O) 4.0 (±0.8) 

C speed After calming 5.2 (±0.4) 4.4 (±0.2) 4.6 (±0.5) 4.2 (±0.4) 4.1 (±0.8) 3.6 (±0.8) 

cushions Change (kmfh) +1.8 +1.1 +1.7 +1.4 +0.5 -0.4 
Before calming 3.2 (±0.5) 2.7 (±0.2) 2.6 (±0.3) 2.7 (±0.4) 2.2 (±I. O) 1.0 (±0.1) 

Pinch , 
D point/speed After calming 3.4 (±0.2) 3.5 (±0.2) 3.6 (±0.3) 3.5 (±0.4)- 2.9 (±0.6) 2.9 (±0.8) 

cushion Change (km/h) +0.2 +0.8 +1.0 +0.8 +0.7 +1.9 

Before calming 3.4 (±0.5) 3.4 (±0.3) 2.9 (±0.6) 3.4 (±0.5) 3.1 (N/A) 4.2 (N/A) 

E 
Raised Afler calming 3.5 (±0.3) 3.4 (±0.2) 3.8 (±0.2) 3.8 (±0.5) 3.2 (±0.6) N/A 

ti on junc 
Change (km/h) +0.1 0.0 +1.1 +0.4 +0.1 N/A 

Before calming Not available 

F Chicanes After calming 3.0 (±0.3ý) 2.8 (±O 1 

_1.1 
(±0.4) 5.2 (±1.7) 3.7 (±0.9) 

Change (km/h) Not available 

Before calming Not available 

G Build-out After cahning 2.9 (±0.3) 1 2.6 (±0.2) 4.9 (±I. I) 

Change (krn/h) Not available 

Before calming Not available 

H 
Mini- After calming 2.8 (±0.5) 1 2.7 (±0.4) 2.8 (±0.6) 3.5 (±0.7) 

roundabout 
Change (km/h) Not available 

1.9m-wide Before calming 2.7 (±0.3) 2.7 (±0.2) 2.8 (±0.5) 3.1 (±0.5) 2.7 (±0.7) 

1 speed After calming 3.1 (±0.4) 2.8 (±0.3) 2.8 (±0.3) 3.3 (±0.6) Not available 

I 
cushions 

, Change (km/h) +0.4 +0.1 0 +0.2 Not available 
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CHAPTER 7 DEVELOPMENT OF DRIVING CYCLES 

7.1 Introduction 

Laboratory emission tests for light-duty vehicles involve the operation of the vehicle on a 

power-absorbing chassis dynamometer. So that the impacts of each traffic calming measure on 

passenger emissions could be determined under controlled laboratory conditions, driving cycles 

were formulated to represent vehicle operation before and after the introduction of the 

schemes. For the reasons expressed in Section 6.5, each driving cycle was used to test all the 

vehicles included in the emission measurement programme. 

The development of the cycles took place at TRL over a 16-month period, though much of the 

effort was concentrated in the early stages, and thereafter the cycles were constructed 

intermittently, depending on when the speed data from the sites were available. 

7.2 Construction of driving cycles 

7.2.1 Original method 

For the first scheme investigated in the study (scheme A: 75MM flat-top road humps), the speed 

profiles of around 500 cars were measured using the LIDAR before and after calming. The 

speed profile of each vehicle was characterised by its mean speed and standard deviation of 

speed, and the vehicle itself was classified according to its direction of travel and the size 

criteria given in Chapter 6. From each of these sets of measurements, a random sample of 

around 100 profiles was selected. An equivalent number of instrumented car speed profiles, 

each having mean and standard deviation values corresponding to those of one of the LIDAR 

profiles, were then identified from the instrumented car measurements. These instrumented car 

, mini-cycles', containing road speed and engine speed data, were combined to form the two 

final driving cycles for the scheme, one representing vehicle operation before calming and one 

representing operation after cah-ning. 

Each fmal driving cycle was constructed by matching the ends of the 100 mini-cycles in a way 

that maximised the number included, although a number of artificial joining sections had to be 
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employed. These joining sections were only inserted to ensure a smooth transition between 

some of the mini-cycles, and their total duration was short compared to the duration of the 

entire driving cycle. 

The driveability of these first two cycles on a chassis dynamometer was tested by AEA 

Technology in Harwell. The tests showed that, although the cycles were driveable, they tended 

to have an 'unnatural' feel. This was attributed to the short, but rapid, accelerations and 

decelerations required to follow the cycle at some points. The coarse resolution of the speed 

measurements was considered to be responsible for this problem. Subsequently, a 'moving 

average' smoothing function was applied to the driving cycle data, and further dynamometer 

tests showed that the resulting cycle was much easier to drive. This smoothing function took 

the form s, = (st-I + (2st) + s,, 1)14, where st is the speed at time t, and s, is the smoothed speed 

at time t. The function was applied to all the driving cycles developed during the study. 

in each mini-cycle contributing to a final driving cycle, every value of road speed was 

accompanied by a value denoting engine speed, and for each pair of readings in the final driving 

cycle, an overall gear ratio (km/h per 1000 revshnin) was calculated. In order to determine gear 

selection patterns for small, medium, and large cars, it was then necessary to determine the gear 

selection corresponding to each gear ratio value for the three instrumented cars. Using over 

four hours of second-by-second data for each instrumented car from the scheme A study, 

frequency distributions of gear ratio were obtained. 

The example provided in Figure 7.1 illustrates the shape of the gear ratio distributions obtained 

for the Ford Fiesta before and after calming. The Figure shows that the second and third gears 

were used more frequently after calming than before calming. From the distribution for each 

instrumented vehicle, it was possible to estimate a range of gear ratios corresponding to each 

gear selection. A change from one gear to the next was defined as the n-dnimurn frequency 

value between peaks. For example, for the Fiesta the range of gear ratios corresponding to 

fourth gear was taken to be 23.4 to 31.9. For each instrumented car, the ranges of gear ratio 

thus obtained were then used as the criteria by which the gear-selection pattern of the driving 

cycle was determined. 
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Figure 7.1 Gear ratio distribution: Ford Fiesta before and after cahning. 

However, the application of this approach resulted in a series of gear selections which were 

unlikely to have occurred in reality, in terms of both their nature and frequency. Two main 

reasons were identified for this problem: 

(i) The driving cycles incorporated road speed and engine speed data for three different 

vehicles, each with their own characteristic gear ratios. This was caused by the 

amalgamation of the data from the three instrumented cars. Therefore, the criteria used to 

determine gear selections were being applied to incompatible engine speed data. 

(ii) A large number of short mini-cycles (5-7 seconds duration) were linked to form the driving 

cycles. This meant that there were many instances where the data associated with one 

driver were joined to the data from another. For example, a particular mini-cycle from one 

driver could end at 40 km/h in third gear. The subsequent mini-cycle could come from 

another driver and, although starting at 40 km/h, could be associated with fifth gear. This 

resulted in a gear change (third to fifth) in the final driving cycle which would probably not 

have occurred often in reality. Additionally, it was considered that such a pattern of gear 

selections, when combined with a complex driving cycle, would prove difficult to follow 

on the chassis dynamometer. 
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7.2.2 Simplified method 

Because of the problems encountered when using the original approach for determining a gear- 

selection pattern for the driving cycles, an alternative approach was adopted. This entailed the 

determination of a pattern of gear selections based on the typical speed associated with each 

gear change. From the large data set used to determine the ranges of gear ratios associated with 

each gear, the mean speeds associated with each gear change were determined. Only changes 

between adjacent gears were considered, and the range conditions were separated according 

to acceleration and deceleration phases. The peak corresponding to fifth gear was poorly 

defined for all three instrumented vehicles. An analysis of the gear selections through the road 

section also showed that usage of fifth gear was minimal, and this gear was therefore omitted 

from the driving cycle development. 

The differences between the gear-change speeds for the three vehicles were small, as were the 

differences before and after cahning. Therefore, a single set of mean gear-change speeds was 

adopted for use with all vehicles and all driving cycles. As a result, the instrumented cars were 

no longer required for the other traffic calming measures, and the LIDAR speed profiles alone 

were used to construct the final driving cycles. These profiles were selected at random from 

the larger sample of measured profiles. The overall mean speeds associated with each gear 

change are given in Table 7.1. It was assumed that when decelerating a driver would remain 

in gear until either the speed attained during the deceleration phase coincided with one of the 

change-down speeds in Table 7.1, or until an acceleration was required from a speed lower 

than a change-up speed. A period of two seconds was allowed for each gear change. This is 

the same time period that is allowed for a change of gear during the ECE-15 legislative test 

cycle. 

Table 7.1 Mean speed associated with each gear change: all vehicles. 

Gearchange 
Mean speed of gear change 

(km/h) 

1-2 23.78 
2-3 37.38 
3-4 46.63 
4-3 26.87 
3-2 16.97 
2-1 6.69 
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Using this approach, driving cycles were developed to represent vehicle operation before and 

after calming for schemes A-E. Once the fmal method for constructing the cycles had been 

determined, each cycle could be constructed within two days following the reception of the 

speed data. For schemes F, G and H, external speed measurements could only be obtained 

after the traffic calming measures had been installed. Consequently, substitute cycles 

representing vehicle operation before the introduction of these measures were developed from 

the cycles constructed for some of the other schemes. 

For scheme F (chicane), it was assumed that the last 90 seconds of the 'before calming' cycle 

for scheme D (pinch point/speed cushion) would provide the most accurate representation of 

vehicle operation before calming on Great Hollands Road. This portion of driving cycle was 

selected because it had an average speed which corresponded to the typical speed at chicane 

schemes before calming. This typical speed was reported by Sayer et aL (1998) to be around 

56'km/h (35 mph), based on spot speed measurements at a number of locations. It should be 

noted that the resulting cycle was unique in the study, in that no gear changes were required. 

However, this was probably a fair reflection of the real world situation given that the road was 

comparatively wide, with an open aspect and a low volume of traffic. 

A similar process was used to develop 'before calming, driving cycles for schemes G (build-out) 

and H (mini-roundabout). For these two schemes, the same cycle was used. The cycle was a 

shortened version of that used for scheme B (round-top road hump). Because no spot speed 

measurements were available for these two measures, the cycle was selected because it had an 

average speed which was close to the average speed of aU the other 'before calming' driving 

cycles. 

7.3 Driving cycle characteristics 

The final driving cycles representing vehicle operation at all schemes before and after calming, 

including the associated patterns of gear selection, are illustrated in Figures 7.2-7.10. Statistics 

relating to each driving cycle are provided in Table 7.2. 
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Table 7.2 Driving cycle characteristics. 

Traffic Driving cycle 
Scheme calming Stage Duration Speed (km/h) Acceleration 

measure (s) Mean St. Dev. Max Min Range (M/S 2) 

75mm flat- 
d 

Before calming 
- 

1204 50.71 6.95 67.36 26.98 
-1.5 to +1.0 

A top roa 

-humps 
After calming 903 34.97 5.44 45.33 20.51 

-1.7 to +1.4 
80mm 

d 
Before calming 434 43.91 7.52 69.19 24.94 

-1.9 to +1.5 
B roun -top 

road humps After calming 632 26.65 5.85 49.48 8.45 
-1.6 to +1.2 

1.7m-wide 
d 

Before calming 547 42.46 8.06 56.32 18.10 
-1.8 to +1.5 

C spee 
cushions After calming 678 30.53 7.98 53.90 10.46 

-2.1 to +1.8 
Pinch 
i / d 

Before calming 422 46.05 8.10 62.75 20.11 
-1.8 to +1.2 

D po nt spee 
cushion After calming 454 36.39 10.21 72.41 13.68 

-1.6 to +1.5 

Raised Before calming 465 41.08 6.92 61.95 22.53 
-2.2 to +1.6 

E junction After calming 587 25.56 5.43 41.82 15.68 
-1.3 to +1 .8 

hi 
Before calming 429 55.61 3.76 62.75 48.67 

-0.9 to +0.7 
F C canes 

After calming 480 40.73 6.19 61.95 23.33 
-1.5 to +0.5 

ild 
Before calming 

- 
401 43.64 7.46 58.73 24.94 

-1.9 to +1.2 
G Bu -out After calming 679 34.43 7.96 57.52 7.64 

- 1.7 to + 1.4 

mini- Before calming 401 43.64 7.46 58.73 24.94 
- 1.9 to + 1.2 

H 
roundabout After calming 316 29.27 6.07 47.47 10.06 

- 1.6 to + 1.7 

1.9m-wide 
d 

Before calming 331 50.20 9.24 76.83 18.93 
-1.8 to +1.7 

I spee 
cushions After calming 464 33.77 7.50 57.52 16.09 

-1.2 to +1.2 
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Figure 7.2 Driving cycles - Scheme A: 75mm, flat-top road humps. 
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Figure 7.3 Driving cycles - Scheme B: 80mm. round-top road humps. 
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Figure 7.4 - Driving cycles - Scheme C: 1.7m-wide speed cushions. 
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Figure 7.5 Driving cycles - Scheme D: combined pinch point and speed cushion. 
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Figure 7.6 Driving cycles - Scbeme E: raised junction. 

Before calming After calming 

70 70 

60 60 

50 

WIWIIPNý 

50 
240 140 

13 
030 830 v CL CL 
U) 20 - 

to 20 
3 Gear 3 Gear 

10 2 10 2 

0a 
100 200 300 400- 00 

ioD 200 300 400 
Time(s) Time(s) 

Figure 7.7 Driving cycles - Scheme F: chicane. 

After calming 

100 2DO 300 400 0 100 200 300 400 
Time (s) Time (s) 

122 

Before calming 



Before calming After calming 

70 70 

60 60 

so 50 

E 40 : 
140 

V 130 
030 0 

Afill, 

ý 

0.4 U) 4 
U) 20 3 Gear 

20 
3 Gear 

10 
j 12 

10 2 

0 100 200 300 400 
00 

i0o 200 300 400 500 GM -jI 
Time (s) Time (s) 

Figure 7.8 Driving cycles - Scheme U: build-out. 
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Figure 7.9 Driving cycles - Scheme H: mini-roundabout. 
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Figure 7.10 Driving cycles - Scheme I: 1.9m-wide speed cushions. 
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CHAPTER 8 EXHAUST EMISSIONS 

Exhaust emission measurements were conducted by AEA Technology, based on the driving cycles 

supplied by TRL. This Chapter includes details of the vehicles subjected to emissions testing, the 

test procedure, and a summary of the test results. 

8.1 Vehicle selection and test procedure 

Twelve in-service petrol cars and three in-service diesel cars were selected from a variety of 

sources by AEA for the emission test work, based on criteria defined by TRL. The petrol cars were 

categorised according to the level of ernission control (i. e. whether or not the car was equipped 

with a catalyst) and vehicle size. The distinction between 'small', 'mediud, and 'large' cars was 

defined in temis of engine size, rather than the vehicle length criteria used during the speed 

measurements. No size differentiation was applied to the diesel cars. The distribution of the test 

cars between the categories is shown in Table 8.1. 

Table 8.1 Vehicle categories in emission test programme. 

Engine size 
Petrol non-catalyst 
(pre-91/441/EEC) 

Petrol catalyst 
(91/44 1 /EEC and after) 

Diesel 

Small (<1.4 litres) 2 2 
Medium (1.4 to 1.7 litres) 2 2 3 

Large(> 1.7 litres) 2 2 

Although an effort was made by AEA to ensure that the same fifteen vehicles were used 

throughout the entire test programme, this could not be achieved in practice and several changes 

were required. When a vehicle had to be withdrawn from the programme, it was replaced by a 

vehicle which fitted in the same category. Consequently, some vehicles were used throughout the 

emission test programme, whilst others were only used with some of the schemes. The 

characteristics of the vehicles used in the test programme are fisted in Table 8.2. It was not 

assumed that the emission rates measured for each of these particular models were related to the 

model itself or the manufacturer, simply that they were examples of in-service vehicles in the 

selected categories. 
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In order to check that the vehicles were in a reasonable condition, and to ensure basic catalyst 

function where appropriate, they were subjected to the normal garage MoT emissions test 

(conforming to Regulation 92/55/EEC) at AEA prior to being driven over the traffic calming 

cycles. 1hey were also subjected to basic safety checks to ensure their suitability for dynamometer 

operation. No adjustments were made, and the vehicles were tested 'as received'. 

Equipment approved by the Vehicle Certification Agency (VCA) was used for all tests. The cars 

were mounted on a standard chassis dynamometer, with the exhaust being connected to a constant 

volume sampling (CVS) system fitted with an 8"(200mm) diameter dilution tunnel. To determine 

the cycle average emissions, exhaust gas samples were collected in standard 60-fitre tedlar bags. 

On completion of the driving cycle the sample was passed through a chernfluminescence analyser 

to determine NO,, concentrations, and a non-dispersive infra-red (NDIR) analyser to determine CO 

and C02. The concentration of total hydrocarbons (THC) was determined using a flame ionisation 

detector (FID). For the diesel vehicles, particulate mass samples were collected on 47mm teflon- 

coated filter papers using a regulation sample train approved by the VCA, and hydrocarbons were 

measured using an on-line FID. 

In addition to the bag sampling, emissions were logged on a continuous basis, with the regulation 

analyser suite being fed with a sample from the dilution tunnel and the output signals recorded on 

a PC-based logger. 

Four tests (L e. two 'calmed' and two 'uncahned') were carried out on each of the fifteen vehicles 

used in- conjunction with a particular scheme. Each -emission test was conducted with the engine 

and catalyst of the vehicle at their full operational temperatures prior to the first test. In order to 

warm up these components, a regulation EUDC cycle was driven until, a target oil temperature of 

900C was attained. This so-called 'preconditioning' of the vehicle is often employed in emission 

testing to avoid any variability in emissions arising from cold start effects.. The first test cycle was 

then started with minimal delay in order to ensure a consistent starting temperature. Two test 

cycles were driven, and then the bag samples were analysed. The vehicle was again warmed up 

over the EUDC cycle, and the two remaining tests and analyses were completed. In the tests 

relating to schemes G and H, for which the same'before cahning'cycle was used, six tests (Le. 

four 'calmed' and two 'uncalmed') were conducted on each vehicle, with the bag analysis taking 

place after the third and sixth tests. However, some alterations were made to the order of the 
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'cahned' and 'uncahned' tests during the test programme, and later in the programme the ELJDC 

cycle was replaced as the means of achieving engine and catalyst warm-up by a 120krn/h steady- 

speed cycle. The implications of these changes in the sampling procedure are discussed later in the 

Chapter. 

Table 8.2. Details of Vehicles Tested. 

Vehicle 
reference 
number 

Make Model Fuel 
Type Catalyst Emission 

Control level Size/ class Year Ei , ngme 
size (1) Mileage' 

I Ford Fiesta SmaU 1990 1.1 86,000 

2 Ford Fiesta Small 1991 1.1 98,000 

3 Fiat Panda Small 1987 1.0 92,000 

4 Rover Metro 83/351/EEC Smafl 1991 1.1 26,000 

5 Rover 214Si 
Petro] No (ECE Reg. 

15.04) Medium 1990 1.4 _ 100,000 

6 Bedford Astra Medium 1987 1.6 21,000 

7 Ford Scorpio Large 1987 2.9 111,000 

8 Renault Savanna Large 1990 1.7 84,000 

9 VW Polo SmaH 1993 1.1 57,000 

10 Rover Metro Small 1992 1.1 43,000 

11 Corsa Small 1993 1.2 79,000 

12 Nissan Micra SmaH 1996 1.0 9,000 

13 Rover 214Si Medium 
-- 

1993 1.4 NIA 

14 Ford Mondco Petrol N es 
91/441/EEC 
(EURO 1) Medium. 1993 1.6 43,000 

15 Ford Moudeo Medium 1995 1.6 N/A 

16 Ford Mondeo Medium 1993 1.6 NIA 

17 Vauxhall Astra Medium 1996 1.6 27,000 
-5 Volvo 940 Large 1991 2.0 95,000 

19 Saab 900SE Large 1996 2.0 26,000 

20 Rover Montego 88/436 and No size 1991 2.0 170,000 
- 21 -Teugeot 405DT Diesel No 91/441/EEC discrim- 19ý2 199 :: 19: 9 112,000 

22 Peugeot 30613t (EURO 1) ination 19 9T6- 1.9 26,000 

' Mileage at start of test programme (to nearest 1,000 miles) 
N/A = Not available 

8.2 Emission test results 

A total of 542 individual emission tests were conducted by AEA Technology, with fuel 

consumption and exhaust emissions of four pollutants (CO, HC, NOx, and C02) being recorded 

in each test. Total particulate matter was also recorded during the tests involving diesel vehicles. 

The results of the tests are fisted by pollutant, scheme, and vehicle in Appendix B. For each pair 

of tests associated with a given pollutant, vehicle, and driving cycle, the emission values were 

126 



averaged by AEA, and the average values were used to determine the overall impact of a particular 

scheme in terms of the percentage change in emissions per vellicle-kilometre. AR subsequent 

analysis of the emission test data was performed at TRL. 

8.2.1 Emissions by vehicle type and by vehicle 

The overall effects of all the traffic calming measures on the mean emissions of each pollutant from 

the petrol non-catalyst, petrol catalyst, and diesel vehicle samples are illustrated in Figure 8.1. 

Clearly, emissions of all pollutants tended to be higher over the driving cycles designed to reflect 

vehicle op6ration after calming than over the cycles representing operation before calining. The 

percentage increases in the mean emission levels after calming are given in Table 8.3. The asterisks 

against some of the changes in Table 8.3 indicate where paired-sample Mests showed that the 

increase in emissions was significant at the 95% confidence level. 

For petrol non-catalyst, petrol catalyst, and diesel cars, the increases in the mean emissions of CO 

were 34%, 59%, and 39% respectively. In each case, the increase in emissions was significant at 

a high level of confidence. For each vehicle category the increase in mean HC emissions was close 

to 50%, and again the increases were statiýtically significant. The mean emissions of NO,, from 

petrol vehicles increased slightly, but the change was not significant at the selected confidence 

level. NO. emissions from diesel vehicles increased by around 30%. Emissions Of C02 increased 

by 20-26%, and the increase was significant for each type of vehicle. For diesel vehicles, emissions 

of particulate matter increased by 30%. These are some of the most important results of the study, 

since they appear to indicate that, for the vel-licle fleet in the UK, the larger impacts of traffic 

calming on emissions which were recorded in some of the previous studies (see Table 2.6) are not 

Rely to be typical. 

For each vehicle tested, the mean emissions and fuel consumption after cahning were plotted 

against the mean emissions and fuel consumption before calming in order to examine the 

consistency of the data. Some examples of these plots for petrol non-catalyst cars are shown in 

Figure 8.2. Similar plots for petrol catalyst and diesel cars are presented in Appendix C. 
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Table 8.3 Percentage increases in mean emissions due to traffic calming. 
Percentage increase In mean emission 

Vehicle category CO HC NO, C02 PM 
Petrol non-catalyst 34% 50% 1% 20% N/A 

Petrol catalyst 59% 54% 8% 26% N/A 

Diesel 39% 48% 28% 26% 30% 
Change significant at 951/0 confidence level 
N/A = Not available 
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Figure 8.2. Emissions after calming plotted against emissions before calming for petrol 
non-catalyst cars (results for all nine schemes). 

In most cases there was a reasonably good correlation between emissions before calming and 

emissions after calming, and the fitting of a quadratic regression function (forced through the 

origin) to the experimental data often resulted in a comparatively high R2 value. For petrol non- 

catalyst cars, the R2 values for CO, HC, and NO, ranged between 0.76 and 0.88. For the same 

pollutants, the range of R2 values for petrol catalyst vehicles was 0.72-0.75, whilst for diesel 

vehicles the range was 0.82-0.91. For the fuel consumption and emissions Of C02 of petrol 
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vehicles, there was a good correlation between the values before and after calming. with the R-' 

value equal to 0.91-0.95. For diesel cars the R, values for CO, 
- and fuel consumption were 0.84 

and 0.80 respectively. En-fissions of particulate rriatter from diesel vehicles after calming were also 

well correlated with emissions before calming, with the relationship being characterised by an R2 

value of 0.81. The shapes of the fitted curves suggest that there was a slight tendency for the 

proportional increase in emissions associated with traffic cah-ning to be slightly lower for vehicles 

which had high emissions before calming, and which might therefore be described as'high emitters'. 

However, it should be noted that in some cases the R2 value was strongly influenced by a few high 
2s fi or low emitters. For example, for petrol catalyst cars the R value for CO wa reduced rom 0.72 

to 0.57 when the results for the two highest emitters were removed. For the individual vehicles 

within a particular category, the range of impacts of traffic calming on emissions of CO, HC, and 

NO, was particularly wide. The ranges were largest for petrol catalyst cars. For these vehicles 

emissions of CO changed by between -30% and +639%, and HC emissions changed by between 

-91 % and +285%. 

The general representativeness of the absolute emission rates measured in the study was assessed 

by comparing them with the results from a large-scale survey. It was noted in the outline of the 

study methodology that vehicle speed is currently the most widely used surrogate indicator for 

emissions, and that the characteristic variation of emissions with average trip speed is weIl known. 

Hence, for the purpose of this comparison, the average speed model (see section 3.3.2.2) 

developed in the European Commission's 4 th Framework MEET project (European Commission, 

1999) was selected. The MEET model contains up-to-date speed-dependent emission functions 

(based on polynomial regression) for European road vehicles. The mean emission rates measured 

in the TRL study are compared with the equivalent MEET emission rates in Table 8.4. The TRL 

and MEET values have been calculated in the same way; an emission rate was determined for each 

cycle, and the nine values for a given pollutant, vehicle type, and situation (i. e. before or after 

calming) were then averaged. Where equations are provided in the MEET report for different 

engine size bands, the emission rates were weighted according to the distribution of engine sizes 
in the TRL vehicle sample. Although the emission rates in the TRL study (both before and after 

calming) were of the same order of magnitude as those in the MEET Report, there was generally 

only a fair level of agreement between the two. The observed differences are not particularly 

surprising given the variability of the underlying WET emission data (i. e. the data used to develop 
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the regression equations) and the relatively small vehicle sample in the TRL study. The variabflity 

of the MEET emission data was particularly high for petrol catalyst cars (equations fitted to the 

measurements for CO. HC, and NO, were characterised by R'values of between 0.014 and 0.207). 

In addition. the relationships between speed and emissions described in NEEET do not relate 

specifically to the modes of vehicle operation associated with traffic cahning. Typical examples 
illustrating the discrepancies between the absolute emission rates measured in the TRL study and 

those provided in MEET are shown in Figure 8.3. 

Table 8.4. Mean emission rates in TRL traffic calming tests compared with emission rates for 
equivalent vehicle categories in EC MEET Report (all correct to 3 significant figures). 

Before calming After calming % change in emissions Vehicle Pollutant TRL MEET TRL category 
(g/km) (g/km) (yZkm) 

MEET (g/km) TRL MEET 

CO 13.9 9.00 18.5 11.1 +34"N +40% 
Petrol HC' 1.52 ..... ..... 1.34 2.28 ...... ... 1.73 . .......... +50% +29% 
non- NO, b 1.08 - 2.0 ,2 1.1.0 -8 -. I-9.. 4 1.11. - +1 11 % .. ..... .... . .. 9% 

catalyst C02 b - 116 - 142 139 168 +20% --- --- --- +19% 
CO 2 3.95 2.11 6.26 3.87 +59% +83% 

Petrol HC 'b 0.13 0+19 0.20 0.27 +54% +40% 
catalyst No xb 0.09 0.35 0.09 0.38 +8% +9% 

C02 132 172 
........ ... 

167 
......... . ...... .... 

219 +26% +28% 
CO 0.61 0.42 0.84 0.63 +39% +49% 
HC 0.22 0.09 0.32 0.12 +48% +44% 

Diesel NO, ' 0.53 
.......... ... ... 

0.67 0.68 . 0.81 
........ ......... -- I- - 

... ... .......... .- ------ +28% +22% 
C02' 119 159 150 -11 - 191 l............. +26% +20% 
PM,; 0.10 1 0.13 0.12 +30% +30% 

a Stated as VOC in MEET. 
b MEET emission rates weighted according to engine size distribution in TRL vehicle sample. 
C MEET emission rates weighted according to technology level in TRL vehicle sample. 

However, it could be argued that there tended to be a fairly good agreement between the overall 

percentage impacts recorded in the TRL study and those calculated using the MEET equations. 

These comparisons suggest that the average speed modefling approach used in MEET does, to a 

first approximation, give a good indication of the relative impacts of traffic calming on emissions 

per vehicle, though the reliability of the comparison between the different vehicle samples is 

somewhat hindered by the differences in absolute en-dssion rates. Further comparisons between the 

percentage impacts calculated using the MEET emission functions and the TRL emission data at 

the level of individual schemes generally revealed a poor level of agreement, but this is discussed 

in more detail in Chapter II- 
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Figure 8.3 Speed dependency of absolute emission rates in TRL study and NIEET model for petrol 
catalyst cars (the solid lines are derived from the MEET emission functions, the data points are 
average enussion values over each TRI driving cycle, and the dotted line is a linear regression fit to 
the data points). 

The mean emission levels of each test vehicle for all schemes before and after calming were also 

calculated. Some of the results IZ)r petrol catalyst cars are presented in Figure 8.4. No confidence 

limits could be plotted for vehicles 9,10,14,15, and 16, because each of these vehicles was only 

tested over the cycles for one scheme. The variation in the absolute emission rates of individual 

vehicles was most pronounced for this category. For example. there was a difference of two orders 

of magnitude between the HC output of the highest and lowest emitters. The CO and HC emission 

levels of vehicle 10 appear to have been particularly high. This vehicle, which was equipped with 

a catalyst and a carburetor (rather than a fuel injection system), may therefore have had a 

disproportionate influence on the effects on petrol catalyst cars reported for scheme B (80mm 

round-top hump). There was less variation in the mean emission levels of the different petrol non- 

catalyst and diesel vehicles tested (see Appendix D). 
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Figure 8.4 Emissions after calming plotted against emissions before calming for individual 

petrol catalyst cars (the emission levels have been averaged over all the schemes for which 
a vehicle was tested, and the I-beams represent the 95% confidence intervals on the means). 

8.2.2 Emissions by scheme 

The mean emission rates of all the petrol catalyst vehicles tested over the cycles for each scheme 

are presented in Figure 8.5. The equivalent plots for petrol non-catalyst and diesel cars are shown 

in Appendix E. It should again be noted that the vehicle sample changed during the test 

programme, although for each scheme six petrol non-catalyst, six petrol catalyst and three diesel 

vehicles were tested. As before, the results for the petrol catalyst vehicles showed the most 

variation, and this is reflected in the wide confidence intervals for CO, FIC, and NO, in Figure 8.5. 

The impact of vehicle 10 on the mean absolute CO and HC emission values and confidence 

intervals for scheme B (80mm round-top road humps) is also evident. However, it appears that the 

percentage impacts of scheme B on emissions of the various poflutants were not exceptional. 
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Figure 8.5 Emissions from petrol catalyst cars after calming plotted against emissions before 

calming for individual schemes (the emission levels have been averaged over all the vehicle 
tested tbr a particular scheme, and the I-beams represent the 95% confidence intervals on 
the means). 

8.3 Implications of test results for local air quality 

The UK Air Quality Strategy (Department of the Environment et al., 1997) detafled the 

Government's policies with respect to the management of local air pollution in the LJK. Air quality 

objectives have been set for the poHutants carbon monoxide, nitrogen dioxide, lead, ozone, sulphur 

dioxide, the hydrocarbons benzene and 1,3-butadiene, and particulate matter of aerodynamic 

diameter less than 10ýtm (PM, o). The ambient concentrations of these pollutants were not 

measured at the study sites, nor was any pollutant dispersion modelling undertaken. However, a 

number of general observations suggest that the observed increases in traffic emissions would have 

been unlikely to have resulted in breaches of the air quality standards at the sites. Firstly, given the 

volume of traffic on each of the roads in question, air pollution would probably not have been a 

major problem either before or after calming. Furthermore, local pollutant emissions from traffic 

are superimposed on a background concentration that includes emissions from traffic in 

surrounding areas, and a range of sources and phenomena unrelated to traffic also affect 
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atmospheric concentrations. Therefore, concentrations will tend to show a damped response to any 

localised changes in vehicle emissions. In the context of traffic calming, Cloke et al. (1999) found 

that traffic en-ýssions of HC and NO,, decreased by 10% and 20% respectively following the 

introduction of speed cushions, whereas average benzene and N02 concentrations decreased by 

5% and I% respectively. Moreover, the proportion of catalyst-equipped vel-iicles in the passenger 

car fleet is increasing with time, resulting in a reduced contribution of traffic to local air pollution. 

8.4 Statistical analysis of emission data 

8.4.1 Within-scheme comparisons 

For each combination of pollutant, vehicle category, and scheme, paired sample t-tests were 

conducted in order to determine whether the mean emission of the vehicle sample after calming 

was significantly different from the mean emission before calming at the 95% confidence level. The 

results of this analysis are presented in Table 8.5. It should be noted, once again, that the vehicle 

samples differed between the schemes. 

Table 8.5 Pollutants, vehicle categories, and schemes for which the mean emission after calming 
was different from the mean emission before calming at the 95% confidence level. 

Scheme Traffic calming measure Petrol non-catalyst Petrol catalyst Diesel 

A 75mm. high flat-top road humps COMCPNOxjCO2 C02 NOxiCO2 

B 80mm-high Round-top humps CO, HC, C02 COiCO2 NOX9CO2 

C 1.7m-wide speed cushions COMCNO., C02 C02 NOXCO2 

D Pinch point/speed cushion CO, HC, C02 C02 HCNO, C02 

E Raisedjunction CO, HC, C02 COHC, CO2 CONOxqCO2 

F Chicane COHC, NO., CO2 C02 COqNOx2CO2 

G Build-out CO, HC, C02 COIC02 NO.,, CO2 

H Mini-roundabout COHC, C02 C02 NOX02 

1.9m-wide cushions CO, HCPNOX9CO2 C02 

For petrol non-catalyst cars, the changes in enfissions of CO, HC, and C02 were statistically 

significant for all schemes, whHst the changes in NO,, were only significant for selected schemes. 

The results were rather different for petrol catalyst cars. Although the changes in C02 emissions 
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were significant for all schemes, the changes in CO and HC were generally not significant. The 

change in NO, emissions from petrol catalyst cars was not statistically significant for any scheme. 

For diesel cars, the significant changes tended to occur for NO, and C02. The changes in CO and 

HC emissions were generally not significant, and emissions of particulate matter did not change 

significantly for any scheme. 

8.4.2 Between-scheme comparisons 

One of the objectives of the research was to develop a system of comparative emission 

performance indicators for the different traffic calming measures. The development of these 

indicators, and the determination of an appropriate hierarchy for each vehicle type and poflutant, 

are described in Chapter 10 of the Thesis. 'However, the impacts of the different schemes had to 

be compared statistically in order to assess the relevance of the hierarchy in each case. This 

assessment was more complex than the one reported in the previous Section, since the variation 

in the whole emission data set was due not only to the between-vehicle variability of emission 

levels, but also to the between-scheme variability. Furthermore, the fact that the vehicle sample 

changed during the emission test programme would have introduced variation into the data that 

was unrelated to the effects of the traffic calming measures. In order to assess the impacts of the 

schemes relative to one another, all between-vehicle variability in emission levels had to be taken 

into account. 

The results in Table 8.4 indicated that the mean absolute emission levels recorded in the study did 

not correspond particularly well with the mean absolute emission levels of a larger sample of 

vehicles, though there was a fairly good level of agreement between the percentage impacts. 

Consequently, it was assumed that the percentage change in emissions would be a better indicator 

of 'impact' than the absolute change, and all the statistical tests were conducted on the percentage 

changes. In other words, for the purpose of the statistical tests, the percentage change in the 

emission level of each vehicle (for a given vehicle category and pollutant) was calculated, and then 

the resulting values were averaged. Therefore, any further reference to 'means' in this Section 

relates to the percentage change in the mean emission level associated with a given scheme, 

poflutant, and vehicle category. Elsewhere in the Thesis, the calculated impacts relate to the 

percentage change in the mean of the pooled'before calming'and pooled'after calming, values, 

as this method gives results which are more likely to be representative of the impacts on fleet 
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emissions. As the interpretation of the results of the statistical tests is somewhat subjective, this 

difference was not considered to be problematic. 

Because more than two (in this case 9) means were being compared for each poNutant and vehicle 

type, an Analysis of Variance (ANOVA) F-test was initially conducted in order to establish 

whether the means were significantly different from each other. However, the F-test did not explain 

which means differed from which other means. For this purpose a multiple pairwise comparison 

method, the Student-Newman-Keuls (SNK) test (described in NliHer, 1981), was used. The SNK 
, 

test grouped schemes according to whether significant differences existed between the means. The 

test ensured that the experimentwise error rate was held to a constant significance level regardless 

of how many comparisons were being made. The results of the tests are presented in Tables 8.6- 

8.10. For example, the results for CO presented in Table 8.6 indicate that for petrol'non-catalyst 

cars only the impact of scheme F (chicane) was significantly different to the impacts of all the 

remaining schemes. The CO results for petrol catalyst cars show that the schemes could be 

separated into two groups, but also that there was a considerable amount of overlap between the 

groups. The inference from such an outcome would be that the differences between the impacts 

of all the schemes were slight. 

The scheme order in each of Tables 8.6-8.10 is slightly different to that presented in Chapter 

10, because of the differences in the calculation method explained previously. The results have 

only been used to determine whether the impacts of the different schemes are statistically 

distinguishable. In this Chapter, the results have been used to assess, in general terms, whether 

an. ordering for a particular vehicle category and pollutant category is appropriate. 

Table 8.6 Student-Newman-Keuls (SNK) test results: Carbon monoxide. 

Vehicle 
category 

SNK 
Group Decreasing impact 

Scheme 

Increasing impact 

-Tetrol H G C D E A B F 

non- 
catalyst H 

l Petro 
catalyst H M70/1 

D CI H G F AEI B 

l i ese D 
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Table 8.7 Student-Newman-Keuls (SNK) test results: Hydrocarbons. 

Vehicle SNK Scheme 

category Group Decreasing impact Increasing impact 

G D H E A' B F 
P t l e ro I 
non- 

st catal 
H 

y H 
Petrol DHC I E G BAF 

catalyst I 

l i 
DE C G H F B A 

ese D 

Table 8.8 Student-Newman-Keuls (SNK) test results: Oxides of nitrogen. 

Vehicle 
category 

SNK 
Group 

Scheme 

Decreasing impact Increasing impact 

II F IG IE IH ID IBI C I-A 

Petrol I 
non- H 

catalyst 1H 
IV 

Petrol EF I GI HI DI CIA B 
catalyst. I MXX--ý, 0--l''I'l--, 

I GI F D C HIAIE B 
Diesel I 

11 

Table 8.9 Student-Newman-Keuls (SNK) test results: Carbon dioxide. 

Vehicle 
category 

SNK 
Group 

Scheme 

4- Decreasing impact Increasing impact 
-- 

-F I D IG IC E- FH ] B A- 

Petrol 
non- 

catalyst IV 
v 
VI 

F G I D C EA 11 B 
Petrol I 

catalyst H m// "+ 7-, - M , ý 
I 

GIFI D C 11 BI EIA 

Diesel E[ oo oo 

I 
IV 
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Table 8.10 Student-Newman-Keuls (SNK) test results: Particulate matter. 

Vehicle 
category 

SNK 
Group 

Scheme 

Decreasing impact Increasing impact 

I B E DG H C F 
Diesel I 

I H V1110A 

In general, there was a great deal of overlap between the impacts of the different traffic calming 

measures. The extreme examples of this were the cases where there were no significant differences 

between the impacts of the different measures (petrol catalyst HC/ NO,,, and diesel HC). The most 

distinct differences between schemes tended to occur with the petrol non-catalyst cars. 

8.5 Influence of sampling conditions 

The test procedure during the sampling of emissions was described in Section 8.1. It was found 

that the changes in the preconditioning and test sequence increased the variability of the results in 

general, and for petrol catalyst cars in particular. Figures 8.6,8.7, and 8.8 show the mean emission 

rates of CO, HC, and NO, from the three car categories when driven through the various test 

sequences. The letters U and 'C' stand for 'uncahned' and 'calmed' respectively. The sample of 

vehicles, the schemes included, and the number of vehicles tested, varied according to the test 

sequence. This accounts for the differences in the absolute emission rates between the sequences. 

The number of vehicles tested over each sequence is shown in Table 8.11. 

Table 8.11 Numbers of vehicles tested by test sequence. 

Preconditioning Test se uence 

Percentage of all vehicle-cycle test combinations by 
test seque ce and vehicle category 

cycle 
q 

Petrol non-catalyst Petrol catalyst Diesel 

U_U_C_C 6% 11% 4% 
U-C-U-C 23% 15% 21% 

EUDC U_C_C_U 33% 23% 29% 
C_U_C_U 0% 2% 0% 
C_U_U_C 2% 0% 0% 

120 km/h U_C_C_U 30% 36% 33% 
U-C7-C8-C7-C8-U 6% 13% 13% 

Total 100% 100% 100%, 
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Figure 8.6 Emissions of CO, HC and NO,, from petrol non-catalyst cars over various 
test sequences (I-beams show 95% confidence intervals). 

140 



Petrol catalyst: CO 

14 

EUDC Preconditioning] 120kph Precondjtioninýg 
12 

10 
E 

8 
0 

6 

4 

2 

0 
UUCCCUCUUCUCUCCUUCCUU C7 (M C7 CZ U 

Testsequence 

Petrol catalyst: HC 

1.2 

EUDC Preconditioning 120kph Preconditioning 

I 

0.8 

0.6 

OA 

0,2 

0 
UUCCcUCUUCUcUCCUUCCUU C7 C8 C-7 C8 U 

Test sequence 

Petrol catalyst: NOx 

0 6 
. 

EUDC Prý 
ýOnditjionin]g 

120kph Preconditioning] 

0.5 

0.4 

0,3 
z 

02 

01 

0 
uUccCUCUUCUCUCcU 

I 

UCCUU C7 CS C7 CS U 

Testsequence 

Figure 8.7 Emissions of CO, HC and NO, from petrol catalyst cars over various test 
sequences (1-beams show 95% confidence intervals). 
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Figure 8.8 Emissions of CO, HC and NO, from diesel cars over various test sequence 
(1-bean-is show 95% confidence intervals). 
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From Figure 8.6, it can be seen that neither the sequence of the calmed and uncalmed cycles, nor 

the type of preconditioning cycle used, exerted a strong influence over the results of the emission 

tests for petrol non-catalyst cars. For example, within a given test sequence the emission rates of 

the vehicle sample were generally similar over the two calmed cycles, and over the two uncalmed 

cycles. The only exceptions to this were the emission rates over the C-U-U-C sequence, where 

only a single vehicle was tested over one cycle. Also, with the possible exception of NO,,, emission 

rates over the U-C-C-U sequence were similar when both the EUDC and 120 km/h preconditioning 

cycles were used. 

A similar, possibly even better, level of consistency was observed for diesel cars (Figure 8.8). 

However the plots for petrol catalyst cars (Figure 8.7) suggest that the results for these vehicles 

should be treated with less confidence. Although during some test sequences the emissi6n rates 

over the cahned or uncalmed cycles agree quite well, such as the C-U-C-U, U-C-U-C, and U-C-C- 

U sequences with EUDC preconditioning, the emission rates during the other sequences showed 

a general tendency to increase as the sequence progressed. This is most clearly illustrated by the 

co and HC emissions from catalyst cars driven over the U-C-C-U cycle with 120 km/h 

preconditioning. Here, emissions over the second calmed cycle are much higher than over the first 

calmed cycle, and emissions over the second uncahned cycle are much higher than over the first 

uncalmed cycle (to such an extent that emissions over the second uncalmed cycle are higher than 

emissions over the first calmed cycle). The tests where 120 krn/h preconditioning was used seem 

to be the worst affected. 

The extent to which some of the results for catalyst cars are an artifact of the test procedure is not 

clear. Subsequent testing by AEA has indicated that the nature of the preconditioning cycle, and 

any time gaps introduced during the testing, can influence the emission values obtained. However, 

the problem has not been entirely resolved, and the analysis of the data at this level of detail is 

beyond the scope of this Thesis. From the numbers in Table 8.11, it has been estimated that 

approximately half of all the results (CO, HC, and NO,, ) for petrol catalyst cars were affected. 

Emissions Of C02 from catalyst cars were not affected. 
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8.6 Summary 

Exhaust emission measurements were conducted by AEA Technology, based on the driving cycles 

supplied by TRL. Twelve cars (6 petrol non-catalyst, 6 petrol catalyst, and 3 diesel) were tested 

over each cycle. A total of 542 individual emission tests were conducted by AEA, with fuel 

consumption and exhaust emissions of four pollutants (CO, HC, NOx, and C02) being recorded 

in each test. Total particulate matter was also recorded during the tests involving diesel vehicles. 

For each vehicle category emissions per kilometre were higher over the driving cycles designed to 

reflect operation after calming than over the cycles representing operation before calming. For 

petrol non-catalyst, petrol catalyst, and diesel cars, the increases in the mean emissions of CO were 

34%, 59%, and 39% respectively. For each vehicle category the increase in mean HC emissions 

was close to 50%. The mean emission of NQ, from petrol vehicles increased slightly, whereas NO., 

emissions from diesel vehicles increased by around 30%. Emissions Of C02 increased by 20-26%. 

For diesel vehicles, emissions of particulate matter increased by 30%. These results appeared to 

indicate that, for the vehicle fleet in the UK, the larger impacts of traffic calming on emissions 

recorded in some previous studies are not likely to be typical. For example, ZUger and Blessing 

(1995) found that the CO and NO., emissions from a single catalyst-equipped petrol car increased 

by 160% and 900% respectively after the introduction of road humps. Here, a more extensive test 

programme revealed that although catalyst cars tended to have the lowest absolute emission rates, 

they also had the most variable emission rates and generally showed the greatest sensitivity to 

traffic calming. For example, there was a difference of two orders of magnitude between the HC 

output of the highest and'lowest emitters. Emissions of CO from catalyst-equipped vehicles 

changed by between -30% and +639% as a result of calming, and HC emissions changed by 

between -91% and +285%. For NO,, emissions in particular, where a large increase had occurred, 

the emission rate before calming tended to be very low. There was less variation in the mean 

emission levels and percentage impacts of the petrol non-catalyst and diesel vehicles tested. 

However, whilst it was found that large increases in emissions can occur for catalyst cars as a result 

of calming (i. e. over 600% in the case of CO, and around 160% in the case of NO. ), such effects 

do not appear to be dominant. 

144 



Given the inevitable variation between the findings from different studies of this kind (due to the 

different assessment methods and scenarios employed, as well as the general variability of exhaust 

emissions), the overall results for CO show quite a good agreement with those from previous TRL 

studies using the MODEM model (Cloke et al., 1999), and fall within the range of results reported 

by GFMPTE (1992) for a petrol non-catalyst car. The mean HC results fall within the overall range 

of those reported previously, though they do not concur with those quoted in any single study. As 

implied above, the NO. results tended to show more similarity to the predictions of the MODEM 

model (Webster, 1993a; Cloke et al., 1999) than to the results of the on-board measurements 

conducted by ZUger and Blessing (1995). For C02, there was a better level of agreement between 

the studies. In the study by Cloke et al. (1999), where MODEM was used to estimate impacts, 

a range of vehicle operating conditions (i. e. different roads) were assessed. The results of the 

current study appear to agree quite well with the largest increases in CO, HC, and C02 reported 

by Cloke et al., and the smallest decrease in NO,,. 

The mean emission rates measured in the study were also compared with those predicted by the 

NIEET average-speed model. There was only a fair level of agreement between the absolute 

measured and modelled emissions. However, there tended to be a fairly good agreement between 

the overall percentage impacts recorded in the TRL study and those calculated using the NMET 

equations. These comparisons suggest that the average, speed modelling approach used in MEET 

does, to a first approximation, give a good indication of the relative impacts of traffic calming on 

emissions per vehicle-kilometre. Further comparisons between the percentage impacts calculated 

using the MEET emission functions and the TRL emission data at the level of individual schemes 

generally revealed a poor level of agreement. 

Although no study of ambient pollutant concentrations was undertaken, it was considered unlikely 

that the observed increases in emissions would have resulted in breaches of air quality standards 

at the study sites. 

A multiple pairwise comparison method (the SNK) test) was used to examine the differences 

between the scheme means. The SNK test enabled schemes to be grouped according to whether 

significant differences existed between the means. In general, there was a great deal of overlap 

between the impacts of the grouped traffic calming measures. The extreme examples of this were 

the cases where there were no significant differences between the impacts of any of the different 

145 



measures (Le. petrol catalyst HC/ NO.,, and diesel HQ. The most distinct differences between 

schemes tended to occur with the petrol non-catalyst cars. 

Some alterations were made to the order of the 'calmed' and 'uncalmed' tests during the test 

programme, and later in the programme the EUDC cycle was replaced as the means of achieving 

engine and catalyst warm-up by a 120km/h steady-speed cycle. It was found that the changes in 

the preconditioning and test sequence increased the variability of the results in general, and for 

petrol catalyst cars in particular. 
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CHAPTER 9 ON-ROAD REMOTE SENSING MEASUREMENTS 

The emission test results presented in the previous Chapter of this Thesis were based on a total 

sample of 22 passenger cars. This sample was less than one millionth of the number of fight-duty 

vehicles on British roads. Clearly, there was a need to determine the extent to which the effects 

of traffic calming measured in the dynamometer tests were reflected in the emission behaviour of 

a larger number of vehicles. In response to this need for representative information, a remote 

sensing study was conducted near traffic caln-dng measures in Gloucester to examine changes in 

the on-road emissions of a local fleet of vehicles. There appears to be no previous record in the 

literature of remote sensing techniques being used in this manner. 

The study was conducted in the residential Longlevens area of Gloucester, and formed part of 

TRL's assessment of the DETR-funded Safer City Project. In the Safer City Project, a coherent 

range of road safety and traffic management measures are being implemented over a five year 

period, and in Longlevens the area-wide traffic calming approach was adopted. The remote sensing 

work is summarised in this Chapter. Further details can be obtained in a TRL report describing the 

study (Boulter, 1999). 

9.1 Site selection 

During the experimental design stage of the remote sensing study in the spring of 1997, the airn 

was to investigate the effects of two similar road humps. The actual traffic calming measures to 

be studied, and suitable sites for the 'before' surveys, were identified from plans of the scheme 

provided by Gloucester City Council, with particular consideration given to certain restrictions. 

For example, the road had to be comparatively narrow to limit attenuation of the fight beam of the 

iemote sensing system, the traffic flow had to be sufficient to generate a large sample size, and the 

traffic had to be free-flowing to maximise the effects of changes in operation. 

Two suitable sites were identified. At these sites, on Longford Lane and Oxtalls Lane, flat-top road 

humps were due to be installed in November 1997. However, after the 'before calming' surveys 

had been completed (July 1997) the plans for part of Oxtalls Lane scheme were changed by the 

local authority. The authority decided not to proceed with the road hump on Oxtalls Lane, but to 

introduce a pair of speed cushions at a different location on the road. Consequently, the assessment 
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on Oxtaffs Lane focussed on the speed cushions. 

Selection of the exact locations for the 1997 surveys was comparatively straightforward. It was 

assumed that once a vehicle was moving freely along the roads, its operation would be similar at 

different points. The exact locations for the surveys were therefore not considered critical. In fact, 

they were conducted near the proposed locations for the measures. Site selection was governed 

more by practical considerations, particularly the need to park the vehicle housing the FEAT 

system in a safe position. 

However, selection of the locations for the 1998 'after calming' surveys was more difficult, since 

it was likely that the introduction of the traffic calming measures would cause vehicle operation 

to vary considerably at various points along the roads. The approach- adopted was analogous to 

the one used commonly to measure the effects of traffic calming measures on vehicle speeds - that 

is to take measurements both near the measure and between measures (see, for example, Webster 

and Layfield (1996)). For the assessment of the road hump, the 'near hump' location was identical 

to the location of the 'before calming' survey. However, no suitable 'between humps' location 

could be found on Longford Lane, and a site on Innsworth Lane (actuafly between a hump and a 

raised junction) was used as an alternative. Suitable sites on OxtaRs Lane were found near and 

between the cushions. In this case, the 'between cushions' site was identical to the location of the 

'before calming' survey, whilst anear cushion' site was found near the junction with Alder Close. 

The road hump on Longford Lane had a nominal height of 75mm, with an overall length of 6.5m. 

and a rarnp gradient of 1: 13.5. The centre of the hump was 150m from the junction with Innsworth 

Lane and OxtaHs Lane. The speed cushions on Oxtafls Lane were instafledin pairs. 

Each cushion was 75mm high, with an overall length of 3.5m and an overall width of 1.7m. The 

on-off ramp gradient was 1: 10, and the side rmnp gradient was 1: 4. The cushions near the junction 

with Alder Close, and those near the junction with Bradley Close, were separated by a distance of 

170m. At the Innsworth Lane site, the hump and the raised junction were separated by a distance 

of 106m. 

The timetable for the experimental work is given in Table 9.1. The part of the Longlevens; road 

network investigated in the study is depicted in Figure 9.1, and the layout of one of the survey 

sites (near speed cushions) is shown in Plate 9.1. 
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Table 9.1 Timetable for the experimental work. 

Measure Survey Location Survey date 

Before calming Oxtalls Lane 22/7/97 
Speed cushions After calming: near cushions Oxtalls Lane 21/9/98 

After calming: between cushions Oxtalls Lane 22/9/98 

Before calming Longford Lane 23/7/97 
Road hump After calming: near hump Longford Lane 23/9/98 

Afler calming: between humps Innsworth Lane 24/9/98 
'Actually between a flat-top hump and a raised junctions. 

1998: between humps 
Brionne Way =AA 

TOT 
BrIonne 

Way 48m 
Beam Uttle Normans locadon'lo' 

To 
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59M 

Normans 

1998: near cushions 

63 
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1997 & 1998: near hump 

2.2m 

A 

m 
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67.2m 100m 
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Figure 9.1 Study area and locations of survey sites (not to scale). 
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An additional site was employed in the 1998 survey in the hope that this would account for any 

changes in fleet emission levels resulting from changes in variables not related to vehicle operation 

(e. g traffic composition and ambient temperature). An attempt was made to identify a suitable site 

in the study area which had a character similar to that of the calmed roads but was located away 

from any traffic calming measures. This proved to be difficult. and the only suitable site at which 

the character of the roads was retained, and where the other site selection criteria were satisfied, 

was located between two widely-spaced traffic calming measures on Longford Lane. The mean 

speed and CO level recorded at this site were similar to those recorded at the 'between hump' site 

on Longford Lane, and it was concluded that the site was too close to traffic cahTdng measures to 

act as intended. Consequently, no further use was made of the data from the site. 

9.2 Field measurements 

The FEAT remote sensing system developed by the University of Denver (Section 3.2.4) was used 

to measure pollutant concentrations in the exhaust plumes of vehicles. Each remote sensing survey 

was conducted on a separate weekday, between approximately 08: 30 and 18: 30. During the 

surveys the detector unit of the FEAT system was placed on one side of the road, with the source 

unit located directly opposite so that vehicles in both lanes could be monitored. Concentrations 

(% by volume) of CO, C02, and YIC in the exhaust plume of individual vehicles were measured 

using the remote sensing equipment. Although the FEAT equipment can measure NO, the NO 
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channel of the TRL unit was inoperative at the time of the surveys. The speed and acceleration of 

each vehicle at the time of each FEAT recording were also recorded using two infta red detectors 

placed alongside the FEAT beam and lm apart. 

During the 1997 surveys a video recording was only obtained for one lane of traffic, since it was 

felt that the emission distributions would not be lane-specific. However, after the traffic cahnýing 

had been introduced, it was felt that vehicle operation would be different in each lane. For example, 

in one lane vehicles would be approaching a measure and would generally slow down, whereas 

vehicles in the other lane would be departing from the measure and would tend to accelerate. 

Therefore, a second video camera was introduced for the 1998 surveys so that vehicles travelling 

in both lanes could be identified. 

9.3 Analysis of FEAT data and video tapes 

All emission measurements not rejected by the FEAT system were assumed to be valid (including 

negativa values, which are discussed in more detail at the end of this Chapter). Very occasionally, 

incorrect speed and acceleration values were recorded. These values, which were caused mainly 

by extraneous reflections received by the sensors, were excluded from the analysis. 

For two of the surveys conducted on Longford Lane - the before survey and the after survey near 

the hump - the video tapes were transcribed. The registration and direction of travel of each vehicle 

were noted down alongside the corresponding FEAT measurements. A note was also made of the 

type of vehicle. From the results of the -0deo analysis the vehicles monitored by the FEAT system 

were separated by their direction of travel: the lane closest to the FEAT vehicle and detector unit 

was designated as 'lane V, whflst the far-side lane was designated as 'lane 2'. In both the surveys 

conducted near the traffic calming measures, vehicles travelling in lane 1 were approaching the 

measure, whilst those in lane 2 were departing from it. 
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Vehicles were then separated according to three pre-defined emission categories. The emission 

categories were defined as follows: 

Passenger cars and light goods vehicles without a catalyst (taken to be all conforming 

vehicles registered before August 1 1993 -Le. pre V registration). 

Passenger cars and light goods vehicles with a catalyst (taken to be all conforming vehicles 

registered after and including August 1 1993 - i. e. V registration and later). 

OR) AH other vehicles, including buses, heavy goods vel-&les, medium goods vehicles, and 

motorcycles. 

The classification of the first two categories in this way was discussed in Section 6.1 

For each traffic calming measure and pollutant studied, a statistical test was conducted to examine 

the significance of the difference between the emission values before and after calming. Because 

the values recorded at each site were not normally distributed, the main assumptions underlying 

the use of the Mest were violated. Therefore a non-parametric test - the Mann-Whitney test - was 

used. All valid FEAT readings obtained at each site were used in the tests. 

9.4 Results 

9.4.1 Valid FEAT readings 

All en-ussion measurements that were not rejected by the FEAT software, and all valid speed and 

acceleration measurements were used. The numbers of valid data collected during each survey are 

surnmarised in. Table 9.2. This data includes measurements for all vehicle types. It can be seen that 

several thousand valid remote sensing results were obtained in each of the surveys. 

Similar numbers of beam interruptions were recorded on Oxtalls Lane and Longford Lane before 

and after cahning (i. e. 3 200-3400). Although inferences about traffic flow could be made from this 

information, there are inaccuracies that result from variations in the length of tirne for which the 

FEAT system was not operational (e. g. for re-calibration). Probably more reliable for assessing 

changes in traffic flow are the average daily flows on these roads recorded by Webster (1998) using 
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automatic counters. The counters were located near to the FEAT survey sites. The daily flows on 

Oxtalls Lane and Longford Lane before implementation of the scheme were around 5700 and 5400 

respectively. After the scheme had been implemented, the traffic flow was 7% lower on Oxtalls 

Lane, and 9% lower on Longford Lane. However, these changes were not statistically significant. 

Table 9.2 Summary of the data collected. 

Measure Survey Location Beam 
interruptions 

Valid 
CO 

Valid 
C02 

Valid 
HC 

Valid speed/ 
acceleration 

Speed Before calming Oxtalls Lane 3181 (291)' 2499 2519 1496 2830 

cushions Near cushions Oxtalls Lane 3308(337) 2525 2550 1776 1080 
Between cushions Oxtalls Lane 3560(349) 2836 2843 1725 2648 

Flat-top Before calming Longford Lane 3371 (331) 2424 2447 1253 3076 
hump Near hump - Longford Lane 3281 (322) 2627 2649 2045 408 

Between humps I Innsworth Lane 1 4559(421) 3942 1 3984 2398 1717 

' The figure in brackets is the average number of beam interruptions per hour. 

The number of beam interruptions at the 'between hump' site on Innsworth Lane was considerably 

higher than at the other sites, at around 4500. No FEAT survey had been conducted on Innsworth 

Lane before cahning. Webster recorded average daily flows on Innsworth Lane of 7768 before 

calming and 7090 after calming. This equated to a 9% reduction in traffic flow. 

Repeated failure of the speed-measurement system during the after calming surveys resulted in the 

loss of large amounts of data, particularly near the flat-top hump. However, even the sample 

obtained in this survey was still large enough to give standard errors on the mean speeds of less 

than 4%. 

9.4.2 Flat-top road humps 

9.4.2.1 Traffic composition 

The composition of the traffic on Longford Lane was determined from the video recordings for 

two of the surveys: (i) before calming and (H) after calming near the hump. The composition was 

based on the vehicles in lane I that were identifiable, and the results are presented in Table 9.3. The 

results of manual classified traffic counts undertaken by Webster (1998) are included for 

comparison. 
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The two classification systems used were slightly different. The definitions used by Webster were 

those recommended by the Highways Agency et aL (1996). However, in the FEAT analysis 

broader categories were used. All light-duty vehicles (including passenger cars, mini-vans, pick- 

ups, four-wheel drive vehicles, and all commercial vel-iicles not powered by heavy-duty diesel 

engines) were included in the same category. Heavy goods vehicles were defined in the FEAT 

analysis as all vehicles powered by heavy-duty diesel engines. The vehicle categories used in the 

FEAT analysis that corresponded approximately to those used by Webster are shown in Table 9.3. 

Table 9.3 Composition of 12-hour traffic flow on Longford Lane before and after calming. 

FEAT surveys Webster (1998) 
Vehicle type Before After calming 

Vehicle type Before 
(remote sensing calming (September (HA calming 

After calming 
classification) (July 1997) 1998) classification) (June 1997) (July 1998) 

N N CY-) M 

Cars and Cars 84.0 80.0 
92.2 91.7 

Light goods Light goods 8.7 8.5 

Heavy goods 2.3 4.4 Medium goods 2.8 3.1 
and heavy goods 

Buses/coaches 1.8 0.0 Buses/coaches 2.4 3.0 

Motorcycles 1.3 1.4 Motorcycles 0.4 1.0 

Pedal cycles 2.4 2.5 Pedal cycles 1.7 4.4 

Total 100.0 100.0 Total 100.0 100. 

The most important point to note is that, irrespective of how the vehicles were classified, passenger 

cars and fight goods vehicles formed around 90% of the identifiable vehicle fleet on Longford Lane 

before and after the introduction of the traffic caln-dng scheme. As the FEAT system is optimised 

to measure emissions from passenger cars and fight duty veMcles, it is clear that the emission values 

that were measured relate to a large proportion of the traffic flow. The proportion of passenger 

cars and light goods vehicles equipped with a catalyst was obtained based on the criteria given in 

Section 9.3. It was estimated that during the 1997 FEAT survey on Longford Lane around 32% 

of these vehicles had a catalyst. By the 1998 FEAT survey the proportion had increased to 39%. 

It is not clear why no buses were observed on the FEAT video recording for Longford Lane after 

calming. It -may have been possible that during this survey the video camera was aligned in such 

that any bus interrupting the beam was out of picture when the image was frozen. 
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9.4.2.2 Speed and acceleration 

The mean speeds and accelerations recorded before and after the introduction of the hump were 

normally distributed. The overall mean values for the three categories of vehicle identified in 

Section 9.3 are given in Table 9.4. Blank ceHs in the Table indicate where no video analysis was 

conducted to categorise vehicles. When the results for all vehicles travelling in both lanes were 

combined, the mean speed was found to have reduced from 45 kni/h (28 mph) before cahning to 

33 km1h (21 mph) between humps, and 27 km/h (17 mph) near the hump. The mean acceleration 

rates were found to be smaH. There was only a slight difference between the mean accelemtion rate 

measured before calming and that measured near the hump, with both surveys yielding a small net 
deceleration. With the results for all vehicles at the 'near hump' site separated according to 

direction of travel, the mean deceleration-of vehicles in lane I (approaching the hump) was 1.3 

rn/sý, whereas in lane 2 (departing from the hump) the mean acceleration was +0.6 m/s2. 

Table 9.4 Mean speeds and accelerations. 

Vehicle type Survey 
Mean speed 

(km/h) 
Mean acceleration 

(m/s) 
Lane V Lane 2b Both lanes' Lane I Lane 2 Both lanes 

Before calming 44.7 44.9 44.5 -0.6 -0.5 -0.5 
All vehicles After calming (near hump) 27.7 26.0 26.7 -1.3 +0.6 0.4 

After calming (between humps) 32.5 +0.1 

' 
Before calming 45.2 -0.5 

reg. Cars: Pre T 
non-catalyst) (Le 

After calming (near hump) 28.1 26.2 -1.3 +0.5 
. After calming (between humps) 

Cars: Ureg. and -Beforecalming 
45.0 -0.5 

after After calming (near hump) 28.3 26.8 -1.4 +0.6 
(Le. catalyst) After calming (between humps) 

Before calming 41.4 -0.1 

All other vehicles After calming (near hump) 24.9 23.7 -1.1 +0.9 

After calming (between humps) 

' Lane I= near-side lane (approaching the hump in survey conducted near the hump). 
b Lane 2= far-side lane (departing from the hump in survey conducted near the hump). 
' Including vehicles for which the direction of travel was not identified. 

Only slight differences were apparent between the speeds of the three vehicle categories near the 

hump and the speeds before cahning. There was also little difference between the effects of the 

hump on the acceleration and deceleration of non-catalyst and catalyst cars. All other types of 
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vehicle (motorcycles, buses, medium goods vehicles and heavy goods vehicles) were treated as a 

single category. Other vehicles tended to decelerate before the hump at a slower rate, and 

accelerate away from the hump at a faster rate than passenger cars. 

9.4.2.3 Carbon monoxide 

Figure 9.2 shows the CO distributions recorded for all vehicles before and after the introduction 

of the road hump on Longford Lane. The negative CO values obtained during each survey are 

included, and the distributions are normalised for the number of valid readings obtained. The 

distributions are typical of those produced by remote sensing - they are highly skewed with large 

numbers of vehicles emitting a low amount of CO. It can be seen immediately that the three 

distributions are very similar in shape and location. 
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Figure 9.2 CO distributions, flat-top road humps. 

The mean and median CO levels recorded before and after the introduction of the hump are given 

in Table 9.5. The median values are of interest because the skew in each distribution meant that 

more that 50% of the vehicles had a %CO value lower than the mean. In addition, statistical tests 

to determine the significance of any differences between the distributions related to the median 

values. Again, blank cells in the Table indicate where no video analysis was conducted to 

categorise vehicles. 
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Table 9.5 Mean and median levels of carbon monoxide in the exhaust plume. 

S 
Mean CO (%) Median CO (%) 

Vehicle type urvey Lane I Lane 2 Both lanes' Lane I I Lane 2 113oth lanes' 
Before cahning 1.36 1.08 1.19 0.42 0.31 0.34 

All vehicles After cahning (near hump) 1.84 1.24 1.56 0.79 0.39 0.53 
After calming (between humps) 1.64 0.47 

Before calming 1.93 1 1.28 
Cars: Pre U reg. 

on-catal st) i 
After calming (near hump) 2.78 1.82 2.22 2.13 1.11 1.51 

. e. n y ( 
After calming (between humps) 

Cars: U reg. and 
Before calming 0.36 0.06 

after After calming (near hump) 0.57 0.46 0.51 0.18 0.10 0.13 
(Le. catalyst) After calming (between humps) 

Before calming 0.91 0.12 

All other vehicles After calming (near hump) 1.57 0.81 1.00 0.64 0.10 0.20 

I After calming (between humps) 

I T 
2 Including ve icles for which the direction of travel was not identified. 

]For all vehicles travelling in both lanes, the mean level of CO in the exhaust gas recorded near the 

hump and between humps was higher than the level recorded before calming by 30% and 38% 

respectively. The equivalent increases in the median levels were 56% and 38%. Mann-Whitney 

tests conducted on these results showed that the observed increase in the median CO level near the 

hump and between humps was significant at a confidence level greater than 99%. The results of 

the tests are given in Appendix F. At the 'near hump, site the increase in the mean and median was 

absolutely and proportionately larger for lane I (approaching the hump, net deceleration) than for 

lane 2 (departing from the hump, net acceleration). 

Prior to the experiment it was hoped that the disaggregated before data from lane 1 could also be 

used to represent the before situation in lane 2 for the different vehicle categories. However, the 

mean and median CO levels were consistently higher in lane I than in lane 2. This suggests that a 

comparison of lane I before data with lane 2 after data is probably not valid for the three vehicle 

categories. The disaggregated data for the different vehicle categories have only therefore been 

interpreted for lane 1. Based on the disaggregated data for lane 1 alone, the largest proportional 

increase in the mean CO level (73%) was observed for vehicles other than passenger cars. The 

mean CO level for non-catalyst cars increased by 44%, and that for catalyst-equipped cars by 60%. 
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9.4.2.4 Hydrocarbons 

Figure 9.3 shows the HC distributions recorded for all vehicles before and after the introduction 

of the road hump on Longford Lane. Again, the distributions obtained have been normalised to the 

number of valid readings for each of the surveys. The mean and median HC concentrations are 

given in Table 5.6. 
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Figure 9.3 HC distributions, flat-top road humps. 

0.6 

The measurements showed that both overall mean and median hydrocarbon levels increased after 

the introduction of traffic calming. The tests in Appendix F show that the increase in the median 

level was significant at a confidence level greater than 99%. The HC distributions were far less 

skewed than the corresponding distributions for CO, though it can be seen that there were 

proportionally far more negative readings obtained for HC emissions. A further point that should 

be noted is that the HC concentrations are substantially lower (around a factor of 10) than those 

found for CO. The fact that the concentrations are comparatively weak probably accounts for the 

large number of negative readings observed. From these results it therefore appears that the 

instrument is unable to discriminate between the relatively weak absorption of the hydrocarbons 
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in the exhaust plume and the inherent fluctuations of the measurement technique. The fact that the 
distributions shown in Figure 9.3, and the values given in Table 9.6, exhibit mean values very close 
to zero further underlines this particular point. It should be noted that HC distributions obtained 

at other sites using the same instrument have shown that a stronger signal can be obtained. 
However, at present it is unclear whether the differences are due to changes in the nature of the 

site or changes in the configuration of the instrument. TRL will be reassessing the HC channel in 

further experiments. 

Table 9.6 . Mean and median levels of hydrocarbons in the exhaust plume. 

Vehicle type Surve 
Mean HC (%) Median HC (%) 

y 
Lane I Lane 2 Both lanes' Lane II Lane 2 Both lanes' 

Before calming 0.02 0.01 0.01 -0.0041-0.012 -0.009 
All vehicles After calming (near hump) 0.07 0.03 0.05 0.010 0.021 0.019 

After calming (between humps) 0.03 -0.004 
Before calming 0.047 

- 
0.001 

Cars: Pre U reg. 
non-catalyst) (Le 

After cahning (near hump) 0.11 0.05 1 0.07 0.042 1 0.039 1 0.039 
. After calming (between humps) I i __1 

Cars: U reg. and 
Before calming 

- 
-0.03 -0.033 

1 I 

after After calming (near hump) -0.02 0.00 -0.01 -0.0321 
--- 

-0.004 -0.008 
(Le. catalyst) After calming (between humps) 

Before calming 0.07 0.0091 

All other vehicles After calming (near hump) 0.08 0.07 0.07 0.016 0.019 0.019 
After calming (between humps) I 

including vehicles for which tile direction of travel was not identified. 

9.4.3 Speed cushions 

Video recordings of the surveys carried out at, and between, the speed cushions located on Oxtalls 

Lane were not transcribed, since the similarity between the overall, mean results from the two traflic 

calming measures suggested that this would yield no further information. At these sites it was 

assumed that all decelerating vehicles were approaching the speed cushions (i. e. in lane 1), and all 

accelerating vehicles were departing from the speed cushions (i. e. in lane 2). In other words, the 

mean acceleration of vehicles in lane one was calculated using all negative acceleration values, and 

the mean acceleration of vehicles in lane two was calculated using all positive acceleration values. 

The validity of this approach was confhned by examination of the Longford Lane acceleration 
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data. The resulting disaggregation was further used to obtain ýpeecl and emission data for the 

vehicles travelling in each lane. 

9.4.3.1 Traffic composition 

Although no data on traffic composition was obtained from the FEAT surveys, the data recorded 

by Webster (1998) show that passenger cars and fight goods vehicles formed over 90% of the 

traffic before and after cahning. 

9.4.3.2 Speed and acceleration 

The overall mean speeds and accelerations measured before and after the introduction of the 

cushions are given in Table 9.7. 

Table 9.7 Mean speeds and accelerations. 

Vehicle type Survey 
Mean speed 

(km/h) 
Mean acceleration 

(m/s) 

Lane I' Lane 2b Both lanes' Lane I I Lane 2 1 Both lanes' 

Before calming 43.3 1 +0.1 

All vehicles Afier calming (near cushions) 25.22 23.20 24.0 -1.5 +1 8 +0.4 
After calming (between cushions) 35.6 +0. 

' Lane I= near-side lane (approaching the cushions in survey conducted near the cushions). 
b Lane 2= far-side lane (departing from the cushions in survey conducted near the cushions). 
c Including vehicles for which the direction of travel was not identified. 

The mean speeds measured before and after the introduction of-the speed cushions were very 

similar to the corresponding speeds for the road hump. The mean speed was reduced from 43 kni/h 

(27 mph) before cahning to 36 km/h (22 mph) between cushions, and 24 km/h (15 mph) near the 

cushions, after cahning. There was little difference in the speed of traffic in each lane near the 

cushion. The speed reduction at the cushion was greater than that observed at the road hump. 

With the results for all vehicles at the 'near cushion' site separated according to direction of travel, 

the mean deceleration of vehicles in lane I (approaching the cushions) was 1.5 M/S2, whereas in 

lane 2 (departing from the cushions) the mean acceleration was +1.8 mlsý. These accelerations and 

decelerations were slightly larger than those recorded for the road hump. This was probably due 

in part to the way in which the data for each lane were defined (i. e. based on the assumption that 
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there were no positive values in lane 1 and no negative values in lane 2). 

9.4.3.3 Carbon monoxide 

The CO distributions recorded for all vehicles before and after the introduction of the speed 

cushions on OxtaUs Lane were very similar to those obtained at the road hump sites. However, 

although the proportion of negative values obtained at the 'near cusbiotf site appears to be sirailar 

to the proportion obtained at the other sites on OxtaHs Lane, at the 'near hump' site on Longford 

Lane the proportion of negative values was lower than that obtained in the 'before' and 'between 

hump' surveys. 

The mean and median %CO values recorded before and after the introduction of the cushions are 

given in Table 9.8. 

Table 9.8 Mean and median carbon monoxide levels. 

S 
Mean CO (%) Median CO (%) 

Vehicle type urvey Lane I Lane 21 Both lanes' Lane II Lane 2 Both lanes' 

Before calming 1 1.30 0.45 

All vehicles After calming (near cushions) 1.89 1.57 1.72 069 0.66 0.67 

After calming (between cushions) 1.55 

Including vehicles lor witicli the (Mcnon ol travel was not i(lentmea. 

For all vehicles travelling in both lanes, the mean level of CO in the exhaust gas recorded near the 

cushions and between cushions was higher than the fraction recorded before cahning by 32% and 

20% respectively. The equivalent increases in the median %CO value were 47% and 2%. In both 

cases the increase in the median %CO value was statistically significant. 

As with the road hump, the mean and median %CO values at the 'near cushion' site were higher 

for the vehicles lane 1 (approaching the cushions, net deceleration) than for those in lane 2 

(departing from the cushions, net acceleration). 

9.4.3.4 Hydrocarbons 

The HC distributions recorded for all vehicles before and after the introduction of the speed 
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cushions on Oxtalls Lane were also similar to those obtained at the road hump sties. Again, the 

distributions were less skewed than those for CO, and the proportion of negative values in each 

distribution was much higher. The mean HC levels recorded before and after the introduction of 

the cushions are given in Table 9.9. 

Table 9.9 Mean and median hydrocarbon levels. 

l 
Mean HC (%) Median HC (%) 

e type Vehic Survey Lane I Lane 2 Both lanes" Lane II Lane 2 Both lanes' 

Before calming 0.02 "0.03 
All vehicles After calming (near cushions) 0.11 0,08 0.10 

- 
0.035 0.033 0.036 

After calming (between cushions) 0.03 -0.0 
Including vehicles for which the direction of travel was not identified. 

The effects of the speed cushions on hydrocarbon emissions were similar to those associated with 

the road hump. OveraU mean and median HC concentrations were found to have increased after 

cahnffig. The results in Appendix F show that the increase was significant near the cushions, but 

not between cushions. Again, the same provisos apply to quantifying the changes. That is to say, 

it appears that the instrument errors were similar in magnitude to the measured signals. 

9.4.4 Relationships between emissions and speed/acceleration 

The mass of CO emitted per unit distance or time is dependent upon the mass of fuel consumed. 

The relationship between the fuel consumption of a vehicle and speed therefore dictates, to some 

extent, the nature of the CO speed dependency (see Figures 2.1 and 2.2). The %CO values 

measured for different vehicles by remote sensing, on the other hand, are independent of fuel 

consumption. 

The CO data obtained in each remote sensing survey were plotted as a fimction of speed and 

acceleration for individual vehicles. No significant relationship was observed between the %CO 

value and the speed or acceleration of individual vehicles. This is a common finding of remote 

sensing studies. For example, using data from 102 sites Walsh (1998) found that there was no 

statistically significant relationship between the mean %CO value at a site and the mean speed at 

the same site (le = 0.05). A similar analysis, using individual %CO and speed readings at a single 
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site, produced comparable results. Koplow et al. (1997) have found a similar lack of correlation 

between individual NO emissions measured by remote sensing and vehicle speed or acceleration. 

However, Koplow et al. did observe a clear correlation between the mean of the NO and 

acceleration values averaged at decile intervals W=0.87). 

However, the vehicle-to-vehicle variation in emissions resulted in a large degree of scatter. In order 

to investigate whether any underlying pattern in the data existed, the combined measurements for 

all sites before and after cahning were ranked according to speed, and mean values were calculated 

for decfle intervals. In the plot of decile mean %CO as a function of decffe mean speed (Figure 

9.4), it can be seen that the CO level in the exhaust gas remained relatively steady between speeds 

of around 10 km/h and 30 km1h, and decreased thereafter. Based on the reductions in speed at each 

site, the observed changes in the site mean %CO value could be accurately predicted using the 

polynomial curve-fit presented in Figure 9.4. 
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Figure 9.4 Decile mean %CO as a function of decile 
mean speed (aU sites combined). 
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However, the relationship is based on the UK fleet in two particular years. If vehicle speeds are to 

be used to predict site mean CO levels at other sites, in other countries, or in other years where the 

fleet mix is different, more fundamental relationships are required that account for vehicle type and 

age. There was no obvious relationship between the %CO value and the acceleration of individual 

vehicles, or between the decile mean values. 

9.4.5 Estimation of mass emission rates 

Remote sensing measures the percentage by volume of a given pollutant in vehicle exhaust plumes. 

To enable a direct comparison to be made between the Impacts of traffic cahning measured on the 

AEA dynamometer and those measured by remote sensing, there was a need to derive mass-based 

information (L e. g/km) on pollutant emissions from the remote sensing data. 

A situation can be envisaged in which the CO level in the exhaust plume of a single vehicle is 

recorded using the FEAT system at two points in time. If the volume of fuel consumed by the 

vehicle per unit distance (i. e. 1/km) does not change, but its mass emission rate (i. e. g/kM) 

increases, the FEAT system will register an increase in the %CO value. However, if the volume 

of fuel consumed by the vehicle and the mass emission rate increase by the same percentage, then 

the FEAT system should, in theory, produce identical results for the two measurements since the 

proportion of CO by volume in the exhaust gas will not have changed. Therefore, in order to 

estimate the change in the mass of CO emitted by the vehicle using the FEAT system, it is essential 

to also have some indication of the change in the fuel consumption of the vehicles measured. 

The changes in fuel consumption of the vehicles observed were not known. One way of deducing 

the change in fuel consumption is to use the results of other studies of traffic cakning schemes 

where it has been measured. A large sample of vehicles (for which age, composition, and operation 

are constant) should give rise to the same distribution of %CO values in independent surveys, 

unless there has been a systematic change in the fuel consumption of the sample. 

The dynamorneter-based tests conducted by AEA showed that the fuel constunption (and therefore 

to a first approximation the volume of gas emitted) per kilometre of passenger cars increased by, 

on average, 25.4 ± 0.8% as a result of traffic calming. The fuel consumption test data for petrol and 

diesel cars are shown in Figure 9.5. There was no significant difference between the mean 

percentage changes for the three different types of car. Consequently, this change in fuel 

164 



consurription has been applied systematically to the FEAT results to provide a reasonable estimate 

of the change in the average mass of CO emitted per vehicle-km on the roads investigated. For this 

purpose, it was assumed that motorcycles. buses, medium goods vehicles, and heavy goods 

, passenger cars, and the change in fuel consumption of each vehicle was vehicles were eficctively C, 1: ý 

also 25.4%. For these other types of vehicle the numbers observed were relativelv small, and even 

fewer gave valid emission readings. It was therefore unlikely that this assumption would introduce 

a large error in the overall estimate. 
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Vehicle type R2 Gradient 

Petrol non-catalyst 0.86 1.22 

40 Petrol catalyst 0.90 1.28 

Diesel 0.80 1.25 

3456789 10 

Fuel consumption (1/1100km) before calming 

Figure 9.5 Fuel consumption after calming as a runction or ruel 

consumption before calming for three categories of passenger car. 

The change in the average mass of CO emitted per vchicle-krn on each of the roads investigated 

was given by the equation: 

% change in CO mass emilled per km =x+y 
(x + 100 

ý 100 
) 

Where x is the % change in exhaust gas volume (with fuel consumption used as a proxy 

and assuming complete combustion of the fuel) 

y is the percentage change in the measured %CO 
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The changes in mass emission calculated in this way for each type of measure are presented in 

Table 9.10. It can be seen that the results of the analysis indicate that traffic calming would cause 

the average mass of CO ernitted per vehicle-km to increase by between 50% and 73%. However, 

this is only a broad estimate of the likely effect. 

Table 9.10 Estimated changes in the mass of CO emitted. 

Measure Survey Mean %CO 
(All vehicles) 

Increase in 
mean %CO 

Estimated, increase in mass 
of CO per vehicle-km 

Flat-top Before calming 1.19 - - 
After calming (near hump) 1.56 30% 63% 

road humps 
After calming (bctNvccn humps) 1.64 38% 73% 

Speed Before calming 1.30 - - 

hi 
After calming (near cushions) 1.72 32% 65% 

Cus ons After calming (between cushions) 1.55 20% 50% 

The increases in mass emissions quoted in Table 9.10 relate to all the vehicles travelling on each 

road studied. They accounts for changes in the composition of the traffic on those roads, including 

the introduction of newer and cleaner passenger cars, but they do not account for changes in traffic 

flow. On average, traffic flows on the two roads investigated were reduced by 8% after cahning. 

This would have -slightly reduced the impact of the changes in operation on these roads, though 

the diverted traffic would have contributed to the emission levels on other roads unless it had been 

suppressed completely. 

9.5 Discussion 

Remote sensing is potentially a useful tool for assessing the impact on emissions of changes in 

vehicle operation. However, there are currently a number of uncertainties relating to the 

interpretation of remote sensing data in any such assessment. 

Four main sources of uncertainty were identified in this particular study: 

(i) The effects of field calibration of different days. 

(ii) The method of analysing the emission data, and in particular the treatment of negative 

values. 

(iii) The calculation of changes in mass emission rates from existing fuel consumption data. 
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(iv) The impact of cold start emissions. 

These problems are discussed in the following Sections. 

9.5.1 Calibration 

There are two separate calibration procedures performed on every remote sensing unit. The first 

procedure, which is conducted in the laboratory, establishes the fundamental sensitivity of each 

gas/filter combination to the gas of interest. During the second calibration, which is undertaken by 

the operator in the field at the start of each day's operation, known concentrations Of M C021 

propane, and NO are introduced into the path of the beam. The ratio readings from the instrument 

in the field are compared with those in the calibration mixture (Bishop and Stedman, 1996). In this 

study comparisons were made between the results of surveys conducted on different days, and this 

may have resulted in calibration errors. Bishop (1999) has estimated the error due to calibration 

on different days to be up to 10% of the measured ratios. 

9.5.2 Treatment of emission data 

A significant number of negative emission values were recorded during each survey. In principle, 

negative values are erroneous since they represent a condition where the concentration of a 

pollutant in the exhaust gas is lower than the recorded background. However, since the instrument 

itself will tend to produce fluctuations in the readings that are independentof the emissions that 

are being measured, it is reasonable to conclude that where the true result is close to zero on the 

scale, a negative reading is merely the result of system noise. By deduction, vehicles that produce 

negative readings can be assumed to be very low en-ýitters (i. e. their effects on background 

concentrations are effectively negligible). 

Negative exhaust pollutant concentrations have not been widely reported in the literature, and there 

is some confusion concerning how they should be treated in analyses. In previous remote sensing 

studies workers have tended to focus on identifying 'gross polluters' (e. g. Sj6din et aL, 1996) 

where, it is presumed, the signal-to-noise problem identified above has not posed a problem. 

However, negative values could introduce problems where the intention is to use the system to gain 
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an insight into changes in average fleet emission levels, since they could affect the mean value of 

a sample, particularly where relatively small vehicle samples are being studied. 

in the analysis reported here, the sample sizes were quite large, and so it is expected that the 

influence of negative values on the sample means would be small. Consequently, the data accepted 

by the FEAT system were used without further filtering or adjustment. However, the inclusion of 

negative values in the analysis of the distributions could be criticised from the standpoint that 

clearly in practice the concentrations of CO and HC in the exhaust plume should exceed the 

concentration in the ambient air. Alternative options would include omitting negative values, 

changing them to zero, or shifting the entire distribution in the positive direction by the most 

negative value (i. e. treating it as an offset). However, at this stage in the development of the 

method none of these approaches appears to offer a distinct advantage over simply using the raw 

data and accepting that the instrument itself will produce some degree of scatter which is 

independent of the concentrations being measured. The advantage of treating the data as recorded 

is that no arbitrary changes are made, and the interpretation of the results can be made from the 

data in its purest form. 

A similar view has been stated by Stedman (1999). He has noted that negative values are a result 

of instrument noise and therefore cannot be excluded from the analysis. Provided the 

concentrations ofpollutant are sufficient to give readings which are high enough to exceed the non- 

systematic random fluctuations in the system response then accurate and repeatable readings can 

still be obtained. For situations where the concentrations of pollutant are close to zero, then the 

system fluctuations may mask the measured effects, thus preventing any sensible measurements 

being taken. However, Stedman claims that system errors are relatively small so that in most cases, 

particularly where the system is being used to detect gross emitters, the signal-to-noise ratio will 

be high and the measurements reliable. 

The other approaches to treating the emission data have also been proposed include normalising 

each distribution to, for example, the mean, and determining an offset for each individual 

instrument (Bishop, 1999). However, no detailed analysis has been conducted to suggest that either 

of these approaches is more appropriate or accurate than treating the data as recorded. 
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9.5.3 Mass emission rates 

Two potential sources of error in the estimation of mass emission rates have been identified. These 

are errors due to the assumption of complete combustion, and errors associated with the use of 

pre-existing fuel consumption data to calculate mass emissions per kilometre. 

The CO/CO2 ratios measured by the FEAT system can be used, with only a small error in the 

conversion, to give the mass of CO per volume of fuel -burnt. However, when a fuel is burnt the 

energy produced is proportional to the amounts Of C02 and CO that are produced (and also the 

amounts of hydrocarbons, nitrogen oxides and other compounds, but these are generally much 

smaller and for this purpose may be neglected). Combustion to CO produces less energy per unit 

of fuel than complete combustion so, to perform the same work, more fuel must be used. Thus, 

for a conventional petrol engine, it is possible to relate the fuel consumption to the exhaust 

composition. When a catalyst is used, this modifies the exhaust composition by promoting the 

conversion of CO to C02. An estimate of fuel consumption based on the exhaust composition 

downstream of a catalyst is therefore uncertain because it is not known how much of the C02 

results from primary combustion (and thus contributes to the energy produced by the engine) and 

how much results from the catalytic conversion of CO without supplying combustion energy to the 

vehicle. If the mass of CO emitted per unit of fuel burnt is to be determined by remote sensing data, 

it must be assumed at present that this latter effect is not significant. It should be a future 

undertaking to investigate this effect in greater depth. 

In the current study, the need to use existing fuel consumption data to estimate mass emissions per 

vehicle-km introduced a further degree of uncertainty. This fuel consumption data was recorded 

in the laboratory using a comparatively small sample of vehicles and driving cycles which may not 

have been wholly representative of vehicles and driving behaviour on the roads investigated in 

Gloucester. 

9.5.4 Cold start emissions 

Differences in ambient temperature might also have affected the results of the surveys. In areas 

such as Longlevens cold start emissions are likely to be significant due to the presence of a 

substantial flow of residential traffic. Cold start emission rates have been shown to be dependent 
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upon ambient temperature (e. g. Lenner, 1994), but at present the technology is not available to 

measure relevant parameters in situ by remote sensing. Because the surveys were conducted at 

different times of year, it is possible that the contribution of cold start emissions to total emissions 

would have been different in each survey. The mean temperature during the July 1997 survey was 

23'C, whereas the mean temperature during the September 1998 survey was 18'C. Cold start 

emissions were therefore probably greater in the 1998 survey than in the 1997 survey because of 

the lower air temperature, and it is likely that part of the increases in the mass emissions of CO 

after calming would have been due to a larger contribution from cold start emissions during the 

1998 survey. 

It is difficult to quantify the extent to which any changes in cold start emissions would have 

contributed to the observed changes. From the linear regression equations presented by Sdrid and 

Journard (1997), which can be used to correct cold start emissions measured at 20'C for changes 

in ambient temperature, it can be shown that cold start emissions of CO (by mass) at 18'C are 

higher than those at 230C by, on average, 25% for diesel cars and petrol cars without a catalyst, 

and 33% for petrol cars with a catalyst. However, these values assume that a vehicle is started at 

the ambient temperature and is driven over the entire cold start period (Le. until the engine has 

warmed up). They therefore relate to the maximum effect of cold start operation. 

Unfortunately, the fraction of vehicles operating in cold start mode on the roads investigated in 

Gloucester was not known. The fraction of vehicles operating in cold start mode on the two 

residential distributor roads studied in Gloucester can only be estimated from the results of other 

studies, such as those given in Table 9.11. However, it should be noted that these studies do not 

relate to traffic on UK roads. 

If it is assumed that the majority of traffic is divided equally between the morning and evening 

peaks, then these studies suggest that during the course of the day 20-50% of all vehicles are 

operating in cold start mode. Given that the difference in air temperature would have resulted in 

an average increase in cold start emissions of CO of 25-30%, this indicates that changes in cold 

start emissions probably accounted for no more than around a third of the 50-73% changes in total 

CO emissions estimated earlier. 
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Table9.11 Percentage of vehicles operating in cold start mode on residential roads. 

Source 
Road type Time of day Percentage of vehicles 
description operating in cold start mode. 

07: 00-08: 00 52 
Bendtsen and Thorsen 'Residential' 08: 00-09: 00 36 

(1995) (Denmark) 15: 00-16: 00 0 
16: 00-17: 00 0 

'Urban local' AM peak 64 
Allen and Davies PM peak 31 

(1993) (United States) 'Urban minor AM peak 46 

1 arterial' PM peak 30 

9.6 Summary 

Apart from a few exceptions, most previous remote sensihg surveys have been conducted across 

a single lane of traffic. In this study it was found that remote sensing surveys could be conducted 

across two lanes of traffic on narrow residential roads, though the selection of suitable sites was 

governed largely by the road layout. Vehicle speed, vehicle acceleration, and carbon monoxide and 

hydrocarbon emissions were recorded near and between two types of traffic calming measure (flat- 

top road humps and speed cushions). 

The speeds, speed reductions, accelerations and decelerations observed in the remote sensing study 

were normal for traffic calming schemes. In the context of the case studies of emission impacts 

described in Section 2.5, the speeds were similar to those employed by Webster (1993) and 

H6glund (1995), but significantly higher than those used in the study by ZUger and Blessing 

(1995). The acceleration values recorded were lower than those used by Fl6glund (1995), but 

higher than those used by Webster (1993). 

The remote sensing instrument recorded a significant proportion of small negative CO values. It 

was decided that negative values occur as a result of the instrumentation errors associated with 

attempting to measure pollutant concentrations close to zero. It was decided, therefore, that all the 

recorded CO data should be used in the analysis without further filtering or adjustment. Alternative 

treatments, which included removing the negative values from the analysis and shifting the point 

corresponding to zero emissions, were considered but not used because they may have introduced 

a systematic bias in the results. 
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The mean percentages of carbon monoxide in the exhaust gas recorded near the hwup and between 

humps were found to be higher than the level recorded before cahning by 30% and 38% 

respectively. The corresponding median %CO values increased by 56% and 38%. The increases 

in the mean %CO near and between speed cushions were 32% and 20%, with corresponding 

increases in the median CO levels of 47% and 2%. In each case the increase in the median carbon 

monoxide level was statistically significant. 

No relationship was observed between the %CO value for individual vehicles and either speed or 

acceleration. With the CO and speed data ranked and averaged at decile intervals, the CO level in 

the exhaust gas remained relatively constant up to a speed of around 30 km/h, and dropped 

thereitfter. 'There was stiff no clear relationship between the CO and acceleration data averaged at 
decile intervals. However, measurements taken at both the road hump and speed cushion sites 

showed that the increase in the mean %CO after calming was absolutely and proportionately larger 

for vehicles having a net deceleration than for vehicles having a net acceleration. 

Based on the disaggregated data for a single lane of traffic near a road hump, the largest 

proportional increase in the mean %CO (73%) was observed for vehicles other than passenger 

cars. The mean CO level for non-catalyst cars increased by 44%, and that for catalyst-equipped 

cars by 60%. These values for passenger cars are close to the changes in CO mass emissions 

measured in the laboratory tests (Table 8.3). 

The level of instrument noise on the hydrocarbon'emission measurements was considered too great 

for firm conclusions to be drawn for this pollutant. The fact that the distributions exhibited mean 

values very close tozero underlined this particular point. It was therefore unclear whether the 

differences in the mean %HC value were due to changes in the nature of the site or changes in the 

configuration of the instrument, and TRL will be reassessing the hydrocarbon channel in finiher 

experiments. 

The emission tests conducted by AEA showed that passenger car fuel consumption per kilometre 

increases by, on average, 25% as a result of traffic calming. This change in fuel consumption was 

applied systematically to the remote sensing results for all vehicles to provide a reasonable estimate 

of the change in the total mass of CO emitted per vehicle-km by on each of the roads investigated. 

By using this estimate, it was found that traffic calming would cause the average mass of CO 
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emitted per vehicle-km to increase by 50-73%. This estimate included the effects of changes in the 

composition of the traffic between the two surveys, but it did not account for changes in traffic 

flow. On average, traffic flows on the two roads investigated were reduced by 8% after calming. 
This would have slightly reduced the impact of the changes in operation on these roads, though 

the diverted traffic would have contributed to the emission levels on other roads unless it had been 

suppressed completely. 

As the before and afler surveys were conducted at different ambient temperatures, it was also 

possible that tile contribution of cold start emissions to total emissions would have been different 

in each survey. However, the extent to which any changes in cold start emissions would have 

contributed to the observed changes could only be assessed by estimating both the effect of the 

change in ambient temperature on cold start emissions, and the proportion of vehicles operating 

in cold start mode. It was calculated that changes in cold start emissions of CO probably accounted 

for no more than around one third of the 50-73% change in mass emissions per vehicle-km. 

Given the uncertainties in the remote sensing estimate, the 50-73% increase in mass emissions of 

CO per kflomctre (for all vehicles) determined by remote sensing agrees reasonably well with the 

range of impacts measured in the laboratory emission tests, although the two sets of data were not 

wholly independent. In the laboratory tests, the mean CO emission of petrol non-catalyst, petrol 

catalyst, and diesel cars increased by 34%, 59%, and 39% respectively. However, the relatively 

high CO emission rate of petrol non-catalyst cars means that the effect on these vehicles would 

probably dominate the change in emissions of a stream of traffic. 
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CHAPTER 10 PERFORMANCE MICATORS FOR TRAFFIC 

CALMING MEASURES 

One of the objectives of the research was to develop a system of comparative performance 
indicators for different traffic calming measures. These indicators would have to account for how 

vehicle speed and emissions were affected, and would indicate how speed reduction and 

minimisation of emissions could be balanced against other requirements. The methods by which 

these indicators were developed are presented in this Chapter of the Thesis, with the input data 

being derived from the results presented in the previous Chapters and from other existing 
information. 

10.1 Construction of indicators 

10.1.1 Speed 

The speed reduction that is likely to be achieved afler the introduction of traffic calming measures 

will vary from site to site, and will mainly depend upon the type, geometry, and spacing of the 

measures, and the mean 'before' speed. The speeds before calming and the spacing between 

measures varied between the sites in this study and, in order to provide a consistent basis for 

comparison, the speed reduction indicators were based on a common mean 'before'specd of 30 

mph and a common separation between measures of 80m. The speed reduction data were obtained 
from a range of TRL studies at a large number of sites (Webster, 1993b; Webster and Layfield, 

1996; Layfield and Parry, 1998; Cloke et al., 1999; Sayer et al., 1998). 

10.1.2 Accidents 

Traffic calming measures are often introduced as part of an area-wide safety scheme, and there is 

a large body of research which indicates that, for most locations, the frequency of injury accidents 
is likely to be reduced (E vans, 1994; Amis, 1995; Hampshire County Council, 1996; Webster and 
Mackie, 1996; Sayer el al., 1998; Wheeler and Taylor, 2000). The mechanism for this accident 

reduction is thought to mainly result from the reduction in average speeds, which acts to reduce 

the likelihood of a collision and to reduce the severity of injury if a collision occurs. 
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Webster and Mackie (1996) reported reductions in injury accidents of around 60% after the 
introduction of 20mph zones using mainly road humps to reduce mean speeds (by about 9mph) and 
flows (by about 20%). While the overall effects of the introduction of traffic cahning measures are 

well documented, the relative effects of different traffic calming measures are less well established 
due to the small numbers of accidents recorded in surveys conducted before and after the 
introduction of individual traffic calming schemes, and the use of several different types of traffic 

cahning measure within individual schemes. 

An indication of the relative effect of the different types of traffic calming measure on injury 

accident frequency can be obtained by considering the likely reduction in mean speed that wiH be 

achieved at each type of traffic calming measure and applying established relationships between 

changes in speed and accidents (Taylor el al., 2000). Taylor et al. estimate that, for vehicles 
travelling on urban roads at a mean speed of about 25 mph (average of'beforc'and'aftee speeds), 

a 5% reduction in injury accidents can be expected, on average, per I mph reduction in mean 

speed. Because the accident reductions at the different types of traffic calming are based on 

reductions in speed, the order of the different measures in tenns of their accident reduction impact 

wHI be the same as the order in terms of their speed reduction impact. 

10.1.3 Unweighted passenger car emissions 

The traffic calming measures were ranked, by vehicle type and pollutant, in accordance with their 

percentage impacts on emissions per vehicle-km. The statistical tests reported in Section 6.3 have 

been used to assess the robustness of the rankings. 

10.1.4 Weighted traffic emissions 

The unweighted passenger car emission impacts do not account for the composition of the UK 

vehicle fleet, and how the composition is Rely to change in the future. Therefore, aggregate 

emission indicators, which combined the vehicle emission test data and fleet composition data, 

were constructed to describe the expected changes in emissions of CO, HC, NO,,, andC02 from 

road traffic afler the installation of the different traffic calming measures. Also, because the effects 

of traffic calming on emissions are different for different types of vehicle, the overaH effect at a 

given site will vary with the year of implementation. 
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A weighted impact was determined for the reference year 1998 using existing fleet information. 

Forecasts of future vehicle stock were used to estimate the effects of the schemes on emissions in 

two other reference years: 2000 and 2005. The overall breakdown of the fleet is given in Table 

10.1. The breakdown by vehicle class was based on the proportion of kilometres travelled by each 

vehicle class on unclassified roads in urban areas. The origin of the more detailed fleet breakdown 

within each vehicle class, and any other information used in the weightings, is described in the 

following paragraphs. 

Passenger cars 

The emission test data for passenger cars were weighted according to the composition of the UK 

, uv. et in terms of fuel type, emission control level, and engine size to pioduce indicators which were 

representative of UK national vehicle use. The proportions of the passenger car fleet in each 

category (petrol non-catalyst, petrol catalyst, and diesel) in the three reference years were not 

specific to urban minor roads, but were based on total vehicle kilometres travelled nationally. It 

was assumed that this was not a significant source of error. 

For the years 2000 and 2005, a weighted reduction factor was applied to the absolute emission 

rates of CO, HC and NO. for catalyst cars. This factor was derived from the proportions given 

above and the expected emissions reductions given in Table 10.2. It was assumed that all catalyst 

cars undergoing the dynamometer tests met the EURO I emissions standard. Due to the smaller 

sample size for diesel vehicles, adjustments for future emissions standards have not been appHed. 

The distribution of engine sizes within the UK petrol car fleet was estimated using a simple trend 

analysis of new registration data and total stock. The analysis demonstrated an increase in engine 

size, as catalyst-equipped vehicles become widespread and vehicles in general become larger and 

equipped with more energy-consuming accessories. This would tend to lead to increased fuel 

consumption and emissions of C02, though it is recognised that any such increases will probably 
be offset by the introduction of new technologies, as manufacturers strive to improve fuel 

efficiency. Diesel vehicles were not weighted by size. Also, a sub-division of diesel vehicles by 

emissions standards was not used. For technical reasons, particulate emissions from petrol vehicles 

were not measured during the dynamometer tests. Consequently, no weighted emission estimates 

were calculated. 
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Table 10.1 LIK Fleet composition on unclassified urban roads in 1998,2000, and 2005. 

Vehicle Fuel Size Emission control 
% of fleet in each category 

class 1998 2000 2005 
Non-catalyst (pre EURO 1 6.49 3.59 0.44 

Small Catalyst (EURO 1) 5.41 3.91 1.60 
(< 1.2 1) Catalyst (EURO 2) 3.78 6.36 3.35 

Catalyst (EU 0 3) - - 6.42 
Non-catalyst (pre EURO 1) 17.61 11.14 1.49 

P l Medium Catalyst (EURO 1) 14.67 12.15 5.47 
etro (1.2-1.81) Catalyst (EURO 2) 10.27 19.74 11.45 

Passenger Catalyst (EURO 3) - - 21.90 
Cars Non-catalyst (pre EURO 1) 6.80 4.34 0.64 

Large Catalyst (EURO 1) 5.66 4.74 2.36 
(>1.81) Catalyst (EURO 2) 3.96 7.70 4.93 

Catalyst (EURO 3) 9.44 
Uncontrolled 1.90 1.29 0.24 

i l All 
Controlled EURO 1 5.58 4.38 2.27 D ese Controlled EURO 2 3.68 7.21 4.52 
Controlled EURO 3 - - 9.26 
Non-catalyst (pre EURO 1) 2.52 1.48 0.17 

l All Catalyst (EURO 1) 0.35 0.26 0.09 Petro Catalyst (EURO 2) 0.17 0.44 0.26 
Catalyst (EURO 3) - - 0.52 

LGVs Uncontrolled 2.09 1.57 0.44 

l Controlled EURO 1 2.18 1.74 0.96 Diesel Al Controlled EURO 2 1.39 3.13 1.91 
Controlled EURO 3 - 4.35 
88/77 and before 1.10 0.62 0.05 

i i EURO 1 0.79 0.69 0.23 R g d EURO 2 0.71 1.29 1.01 
EURO 3 - - 1.30 

HGVs Diesel 88/77 and before 0.04 0.03 - 
i EURO 1 0.08 0.06 0.01 Art culated EURO 2 0.07 0.12 0.07 

EURO 3 - - 0.12 
Buses All All All cateýories 1.60 1.60 1.60 

Motorcycle All All All categories 1.10 1.10 1.10 
TOTA L 1 00.00 100.00 100.00 

Sources: Salway el A (1997), Department of Transport (1997), European Commission (1999). 

Table 10.2 Scaling (reduction) factors: future standards for petrol cars. 

Pollutant EURO I to EURO 2 EURO I to EURO 3 
co 0.95 0.76 
HC 0.60 0.39 
NO,, 0.45 0.27 

Source: European Commission (1999) 
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LGVs 
The mean speeds observed before and after calming at each scheme were used to derive emission 

rates using TRL speed-emission relationships based on previous vehicle measurements. For 

simplicity, a single medium-sized LGV (1250-1700kg) was chosen to derive the indicators. The 

en-ýissions for various van types were combined to a single index using forecasts of fleet vehicle 
kilometres prepared by Salway et aL (1997). This composition is shown in Table 10.1. 

vs 

The emissions from HGVs before and afler traffic calming were calculated using speed-emission 

relationships developed by TRL from previous emission tests. Mean veWcle speeds before and after 

calming for each scheme were used to derive emissions estimates for both rigid and articulated 
HGVs. As before, future emissions were calculated using emission reduction factors (Table 10.3). 

The basic emissions rates were assumed to be for vehicles meeting the 88/77 standard. Total 

emissions were derived by weighting these figures by the proportions of rigid and articulated 

vehicles in the HGV fleet on unclassified urban roads (92% rigid, 8% articulated; source: Salway 

ei aL, 1997). 

Table 10.3 Emission reduction rates (HGVs). 
co lic NO., PM 

88/77 to Euro 1 0.9 0.9 0.7 0.8 
88/77 to Euro 2 0.8 0.8 0.6 0.3 
88/77 to Euro 3 0.8 0.8 0.4 0.2 

Source: European Commission (1999) 

Buses 

Contributions for bus emissions were calculated in a simflar manner to those for HGVs. Mean 

vehicle speeds before and afler implementation of traffic calming from the on-site measurements 

were used to calculate emissions using relationships supplied by TRL and derived from previous 

emission tests. Again, reduction rates for future emissions standards were applied to absolute 

emission rates (calmed and uncalmed) for future years. These were identical to those used for 

HGVs. 
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10.2 Results' 

10.2.1 Speed and accidents 

The speed and accident impacts of the different schemes are presented in Table 10.4. These 

impacts are based on the gencralised speed-reduction data and the speed-accident relationships 

referred to in Section 8.1. The relative impacts of the traffic cahning measures generafly correspond 

to what might have been expected given their severity. 

Table 10.4 Speed and accident reduction impacts. 

Impact Scheme Traffic calming measure 
Absolute speed 

reduction 
mph (knM 

Accident 
reduction 

N 
Largest E I 00mm-high raised junction 12(19) 60 

A 75mm flat-top humps 10(16) 50 
B 80mm round-top hump 10(16) 50 
I 1.9m speed cushions 9(14) 45 

Mini-roundabout 8(13) 40 
C 1.71n-wide speed cushions 8(13) 40 
D Pinch point/speed cushion 7(11) 35 
F Single-lane-working chicane 7(11) 35 

Smallest G Build-out 5(8) 25 

10.2.2 Unweighted vehicle emissions 

The percentage impacts of the different schemes on the average emission levels of the three 

categories of vehicle are presented in Tables 10.5-10.7. The reasons for use of the percentage 
impact as a basis for ordering the schemes was discussed in Section 8.3.2. 

Clearly, the impact of a given scheme varied with the vehicle type and pollutant being considered, 

and it was therefore difficult to discern general trends. However, with some exceptions, it could 
be argued that for petrol cars schemes G (build-out) and I (1.9m-wide speed cushions) tended to 

be have a relatively low impact, whereas schemes A (flat-top hump) and B (round-top hump) 

tended to have a high overall impact. The relative impacts of the remaining schemes tended to vary. 
For diesel cars, schemes D (pinch point/speed cusilion) and scheme G (build-out) tended to have 

a lower impact than the other schemes, and scheme A (flat-top hump) tended to have a high 
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impact. Again, the relative impacts of the remaining schemes were more variable. There was a 

general but weak trend for the impacts of the traffic calming measures incorporating vertical 
deflections (i. e. road humps and raised junction) to be higher than those incorporating horizontal 

deflections or a requirement to give way. This observation may be related to the fact that in the 

second instance the measures were studied in isolation, whereas the vertical deflections were 

repeated at fairly regular intervals. A further point to note is that the passenger car fleet will 

eventually be dominated by petrol cars equipped with a catalyst, and therefore the results in Table 

10.6 are of most interest 

Given the extensive within-veWcle and between-vehicle variation in the emission data, the ordering 

of the impacts of the different schemes should only be considered in the fight of the statistical 

analysis of the results presented in Section 8.3. For example, the variability of emissions means that 

it is conceivable that the effect of a scheme listed as having a low impact in Tables 10.5-10.7 may 

not be significantly different to the effect of a scheme listed as having a high impact. The scheme 

order for a given vehicle category and pollutant was accepted if the following criteria were met: 

(i) The effects of most individual schemes were statistically significant (see Table 8.5). 

(ii) Several groups (with minimal overlapping) were identifiable in the ANOVA and multiple 

comparison tests (see Tables 8.6-8.10). This was partly a subjective judgement. 

The few cases for which these criteria were met are shaded in Tables 10.5-10.7. This outcome does 

not necessarily mean that the percentage changes and the order for the remaining cases were 

invalid or inappropriate, merely that the vehicle sample sizes were not large enough for any 

significant differences between the impacts of the different schemes to be observable. 

it is worth noting again at this point the poor level of agreement, at the level of individual schemes, 

between the percentage changes in emissions calculated using the NIEET functions and those 

measured in this study (see Section 8.2.1). This effectively suggests that the MEET model cannot 

be used with confidence to predict the relative ordering of the different schemes, as shown in 

Tables 10.5 to 10.7. 
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10.2.3 Weighted traffic emissions 

The weighted traffic emissions in t lie three retýrcnce years are presented in Tables 10.8-10.10.1 t 

is important to note that tile impacts ofthe diflerent schemes still only relate to the percentage 

change in emissions per vehicle-ki-ri. and that there will tv a gradual reduction in the absolute 

emission levels ofall road traffic between 1998 and 2005. In Figure 10.1 this gradual reduction is 

illustrated in the values tor CO and NO, averaged over all schemes. In 1998 the CO emission per 

vehicle-km on the roads before the introduction oftraffic calming varied. according to the scheme, 

by between 4.0 and 7.8 gramines. The corresponding CO emission before calrning in 2005 is 

expected to vary lwtween 1.2 and 4.0 grammes. Also. the rankings do not account for any 

differences that may exist hoween the impacts ofthe different schemes on traffic flow along the 

roads. 
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Figure 10.1 Emissions ot'Co and NO, before and after calming in the reference years 1998, 
2000. and 2005 (averaged over all nine schemes). 

The validity of the unwelghted emission indicators, and the information relating to how the 

passenger car fleet will change between 1998 and 2005, have been used to assess the validity of 

the weighted emission indicators. Consequently, the ordering of the impacts of the different 

schemes may only be statistically valid for C02 given the vehicle sample sizes used in the study. 
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Table 10.5 Unweighted emission impacts: petrol non-catalyst cars. 

Impact 
Scheme and mean Oo chan ge in emissions per vehicle-k 
CO 11C I NO, C( 

Smallest 1( -190/0) G (+ 19%) [( -21%) F (+7%) 
G (-2 1 %) C (+41 %) F (- 17%) 1( +10%) 
11 (+22%) D (+45%) G (-10%) G (+15%) 
C ( -240,6) H (+46%) E (0%) D (+16%) 
D (-340,0 1( +5 %) fl (+3%) C (+22%) 
F (-390/o) A (+69%) D (+60/o) E (+24%) 
B (-430/o) B (+71'//o) B (+7%) H (+25%) 
A (-440'o) I 

E (+77%) A (-1-- 19%) A (+28%) 
Largest F (+7)%) t F (+87%) C (+ 19%) B (-, --28%) 

Table 10.6 Unweighted emission impacts: petrol catalyst cars. 

Impact 
Scheme and mean % chan ge in emissions per vehicle-km 
CO 11C NO, CO, 

Sý ýllest H (-I 31, o) 1( +6%) E (-22%) F (+18%) 
D (+39%) H (+-7%) 1( -2 1 %) G (+18%) 

%) B (+4 1 q, o) F( - W/o) H +19%) 
B (, 2%) 6 (+48%) G (-50/6) D (+20%) 
1( +45%) D (+61 %) IJ (+18%) C (+24%) 
E (+84%) E (+62%) B (+2ý%) E (. +30%) 
C (+ 135%) A (+79%) D (-25%) A (+32%) 
F (+ 147%) C (+87%) C'( +26', o) It (ý-33%1-ý 

Largest A (+2 )"o) I F( + 196%) A (+34"/o) B (+I R/-'l 

Table 10.7 Unweighted emission impacts: diesel cars. 

Im act 
Scheme and mean % change in emiSsions per vehicle-km 

p Co 11C NO, CO, PM 
Smallest D (+ 19%) E (+2 1 %) 1( +17%) U +15%) D (-1%) 

C (+26P/0 D (+28%) 
- 

G (+19 G (+ 19%) G (+2%) 
H (+3 1 %) C (+38%) 'D (+20% F (+2 %) B (+21%) 
G (+340/o) 6 (+39%) 

ý 
F (+20%) D (+23%) H +27%) 

A (+4 %) B (-57%) C (+26%) C (+24%) E (+3 1 %) 
F (+43%) ll (+59%) A (+37%) B (+30%) H (+35%) 
H +44%) F (+70%) H (+37%) H - (+30%) C (+46%) 
E (+55%) H +8 %) B (+38%) E( +32%) F( +49%) 

Largest B (+56%) A E (+39%) A (+40%" A (+82%) 

Scheme Traffic calming measure Scheme Traffic calming measure 
A 75mm-high flat-top road humps F Chicane 

KEY B 80mm-high round-top humps G Build-out 
C 1.7m-%,. ide speed cushions H Mini-roundabout 

- D Pinch point and speed cushion I 1.9m-wide cushions 
E 100mm-hu, 

., 
h raised junction 

NB The shaded columns indicate where the scheme order for a given vehicle category and pollutant was 
considered to be statistically robust. 
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Table 10.8 Weighted emission impacts: reference year 1998. 

Impact 
Scheme and % change in emissions per vehicle-krn 

C(, FIC NO, C()--, 
Smallest 

-jjltlO%) 
6(, 21%) 1(-6%) F (+11%) 

[(-26%) C- 28%) F (-29, o) G (+ 13%) 
G-Lt27%) 11 (+350, o) G (-1%) 1(+13%) 
C (+3 Oo) IA-3 V/O) 1 If(-8%) D (+15%) 
B (+4 1 %) 1) -42% B (+ I Olo) C (+19%) 
D (+460/o)-- F 

--Wo) 
D (+ II H (+22%) 

E (+520,, )) j3A -i 7/6) 
A (+6iý/O Lý 

C (+ 16()A 
F (+23%) 

B (+30%) 
A (+3 1 %) ý 

Lar gest 1-(-4--860/. ' F (+8 1 %) A (+35%) E (+32%1 
ý 

Table 10.9 Weighted emission impacts: retýrence year 2000. 

Im act 
cherne and % change in emissions per vehicle-krn p CO I-IC NO, 

Smallest 1-1( 5%) G (-24%) 10%) F (+12%) 
30%) %) J-+29%) F (+ I %) G (+ 14%) 
t-3 I %) 11(-32%) 6(+2%) 1(+14%) 

B (+4 1 1(+32%) 11(+10%) D (+I 5%j 
C 

_L+ 
4 Y, /o l__ D (-ý--42% B (+ 13%) C (+ 19%) 

D (+56%) F (-54%) D (+ 13%) f1 (+22%) 
B (+55%) C (+ 17/6) B +31%) 

A (+82%) A E. (+28%) : ýA: 
j+3 

IN 
Laraeot- F (+95 F (+80"/o) A (+37%) F (+32%) 

Table 10.10 Weighted emission impacts: reference year 2005. 

I t 
Scheme and ý, o change in emissions per vehicle-km 

mpac CO HC NO, CO, 
Smallest If (--99-, ', oL- -B-LtL1%) 

1 (+6%) F (+13%) 
G (+39%) 1-(+2 G (+9%) G (+ 14%) 
B (+-40%) 6(+35%) F (+10%) 1(+15%) 
1(+-41%) C (+36%) 11(+17%) D (+ 16%) 
E 0-75%) D (+41% C (+19%) C (+20%) 
C (+79%) B (+48%)_ D (+20%) H (+23%) 
Df +91 %) E +55%) B (+22%) B (+32%) 
F (+ 126%) A (+67%) E (+39%) A +32%) 

Lames A (+ 15 7/6) IF (+72%) A (+42%) 
+ 

E 33%) 

Scheme Traffic calming measure Scheme Traffic calming measure 
A 7-5mm-high flat-top road humps F Chicane 

KEY B 80mm-high round-top humps G Build-out 
C I 7m-" idc speed cushions H Mini-roundabout 
D Pinch point and speed cushion I 1.9m-wldc cushions 
E 100mm-hii,, h raised iunction 

NB The shaded columns indicate where the scheme order for a given vehicle category and pollutant was 
considered to be statistically robust. 
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10.3 Guidance on scheme implementation 

A large amount of information relating to the various impacts of traffic calming has been generated 
in the study. In this Chapter of the Report, the information has been distilled into a simple set of 

guidelines, in the form of a general set of performance indicators, which can be used by local 

authorities during the process of selecting appropriate traffic cakning measures to implement. 

The general performance indicators for the nine types of traffic calming measure investigated in the 

study are summarised in Table 10.11. The format of the Table is based on the assumption that a 
local authority will hope to improve safety by acWeving a specific reduction in veWcle speeds 

through the introduction of traffic calming. Consequently, the first column of Table 10.11 lists a 

number of possible target speed reduction values, based on a mean speed before calming of 30 mph 
(48 krn/h). The second column of the Table identifies the type of traffic cahrdng measure Rely to 

acWeve a specific reduction in speed, and the remaining columns give the likely effects of each 

measure on accidents and emissions. The weighted emission estimates for the reference year 2000 

have been used to reflect the current traffic composition. Because of the large amount of variation 
in the measured emission rates, and the resulting uncertainty in the comparison of the impacts of 

the different schemes, a star rating system has been adopted. The relative importance of the 

individual effects may be defined by each local authority according to prevaihg circumstances. 

It is important to note that the guidance provided here does not take into account the various 

other factors which may influence the success of a traffic calming scheme in terms of acceptability 

to, for example, pedestrians, residents, drivers, and the emergency services. Such factors include 

physical levels of noise and vibration, perceptions relating to the visual appearance of the road 

environment, perceptions of safety, perceptions of 'smoke, 'dirt', 'fumes', 'noise', 'odour', etc., 

perceived damage to vehicles, and ride comfort. Information on the perceived effects of traffic 

cahiýng is rather scarce; an overview of perceived environmental impacts in relation to traffic 

management compiled by Boulter (1998) contains some relevant information on the subject. For 

information on noise and vibration impacts, authorities are directed towards a number of TRL 

reports (e. g. Abbott et al., 1995b and 1997; Harris et al., 1999). 
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TablelO. 11 SUMMarV OfDerformance indicators for the nine traffic calming measures investigated'. 

Targetspeed 
ti d Type of measure likely to achieve 

Likely 
accident 

Effect on traffic exhaust emissions (per average vkni) 
(*** = lowest impact) 

for the year 2000 

uc on re 
Mph (km/hp target speed reduction (scheme) reduction 

(0/0) CO HC NO. C02 PMC 

12(19) 1 00mm Raised junction (E) 60 (+589/0) (+54%) (+2 89/6) (+32%) (+311/16) 

75mm flat-top road humps (A) (+829/o) (+65%) (+371/1o) (+31%) (+82%) 
10(16) 

80mm round-top humps (B) 
50 

** (+4 1 'Yo) (+55%) (+13%) (+31%) (+21%) 

9(14) 1.9m-wide cushions 0) 45 ** (+30%) (+32'Yo) (-30/6) (+14%) (+271/o) 

Mini-roundabout (H) (+50/0) (+32%) (+10%) (+221/o) (+35%) 
8(13) 

1.7m-wide speed cushions (C) 
40 

(+43%) (+29%) (+ 17 'Yo) (+190/0) (+46%) 

Pinch point and speed cushion (D) (+56'Yo) (+42%) (+13%) (+150/0) (40/0) 
7(11) 

Single-lane working chicane (F) 
35 

(+95%) (+80%) (+1%) (+12%) (+49%) 

5(8) Build-out (G) 25 (+31%) (+24%) (+2%) (+14%) (+2%) 

The guidance provided here does not take into account other important factors, such as physical levels of noise and vibration, aesthetics, perceived safety, and perceptions 
of 'smoke', 'dirV, Tumes', 'noise', 'odoue. 
Based on a mean speed before calming of 30 mph (48 km/h). 
Based on unweighted emission test results for diesel cars only. 
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CHAPTER11 EMISSION MODEL ASSESSMENT AND 
DEVELOPMENT 

Modelling the impacts of traffic management schemes on emissions is an inexpensive and 
flexible alternative to direct measurement. Some of the emission models avaiIable for this 

purpose were described in Chapter 3. In the most commonly used models, average vehicle 

speed is the only operational parameter used to estimate emission rates, and the emission values 

obtained over the traffic calming cycles were compared with the output from a model of this 

type (MEET) in Chapter 8. It was found that there was generally only a fair level of agreement 
between the overall absolute emission rates in the traffic calming study (both before and afler 

calming) and those predicted by the MEET model. It is likely that this was mainly due to 
differences in the emission characteristics of the vehicles tested by AEA over the traffic calming 

cycles and those used in MEET, rather than to any inherent flaws in the average-speed 

modelling approach. However, there tended to be a fairly good agreement between the overall 

percentage impacts recorded in the traflic calming study and those calculated using the MEET 

equations. These comparisons suggest that the average-speed modelling approach used in 

MEET does, to a first approximation, give a good overall indication of the percentage impacts 

of traffic calining in general on emissions per vehicle, though the assessment of the reliability 

of the comparison between the different vehicle samples was somewhat hindered by the 

differences in absolute emission rates. However, initial comparisons (described later in tMs 

Chapter) between the percentage impacts calculated using the MEET emission functions and 

the traffic calming emission data at the level of individual types ofscheme generally revealed 

a poor level of agreement. 

It is often assumed that, in order to estimate accurately the changes in emissions on the spatial 

scale of a traffic calming scheme, a modal emission model (otherwise known as a micro-scale 

or instantaneous model) is required, whereby vehicle emissions are related to a detailed vehicle 

operation profile. Such applications represent the state of the art in emission modelling , though 

one model, MODEM (Jost el al., 1992), has already been found to underestimate the changes 
in emissions arising from the introduction of tmffic calming measures (reported in Sturm et al., 
1998). However, at the time of the study emission test results relating to traffic calming were 

only available for a single vehicle. 

In order to examine in greater depth whether the modal modelling approach was able to offer 
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any improvements over the average-speed approach in the assessment of traffic calming, the 

results from the experimental work presented in the Thesis were used to compare the 

performance of the MEET and MODEM models. Also, an attempt was made to improve the 

accuracy of MODEM model in such applications by developing a variant model (MODEM- 

TC), and a re-appraisal of the variant model was undertaken. 

11.1 The MODEM model 

MODEM is the modal emission model that was Produced from the data collected during the 

European Commissions DRIVE V1053 project, "Modelling of emissions and consumption in 

urban areas". Laboratory emission test data collected by various European laboratories - 
INRETS (France), TRL (UK), CEDIA (France), and TCJV PJJINELAND (Germany) - form 

the basis of the model. Through the statistical analysis of a large-scale survey of the operating 

characteristics of vehicles in urban areas, INRETS developed a set of 14 drive cycles to be 

repeated on a chassis dynamometer (Andrd et al., 1991). Using these cycles, emission 

measurements were obtained for a representative sample of 150 cars of different types. The 

gear shift points for each vehicle were calculated with respect to the specific gear and axle 

ratios, rated power, and maximum engine speed (Jost et al., 1992). 

In the model the different types of car tested are grouped according to layers'. These layers, which 

represent given combinations of engine type, technology level, and engine size, are listed in Table 

11.1. Petrol non-catalyst cars are divided into two groups according to compliance with en-fission 

control legislation ECE 15.03 (EC directive 78/665/EEC) and ECE 15.04 (EC directive 

83/3 51 AEEQ. The vehicles tested by AEA over the traffic calming cycles are also matched to 

the corresponding MODEM layers in Table 11.1. It should be noted that no ECE 15.03 cars 

were tested by AEA. For each layer, the model is capable of estimating fuel consumption and 

emissions of CO, HC, NO,,, and C02 on a second-by-second basis. It does not Provide 

estimates of cold start emissions, evaporative emissions, emissions from heavy-duty vehicles 

and motorcycles, or emissions of PM, o, benzene, and 1,3-butadiene (pollutants for which there 

are air quality standards in the LTK; DETR et al., 2000). 

From the analysis of the emission data collected during the DRIVE project, the best indicators 

of instantaneous emissions, in terms of instantaneous driving parameters, were found to be 

vehicle speed and the product of the vehicle speed and acceleration (see Figure 2.2). In 

MODEM the emission functions for a particular layer and pollutant have therefore been defined 
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in the form a two-dimensional matrix, with the columns representing speed intervals (knL/h), 

and the rows representing the speedxacceleration intervals (mýlsý). For a particular test vehicle 

the emission rate recorded each second is entered into the ceH of the matrix which corresponds 

to the speed and acceleration at the time of its measurement. The fmal emission function in a 

given cell of the matrix is calculated as the arithmetic mean of all the values entered in that cell 

(averaged over A cycles and appropriate vehicles). The CO ernission matrix corresponding to 

Figure 2.2 is shown in Table 11.2 

Table 11.1 Car category layers used in the MODEM model, and corresponding 
veWcles in dynamometer tests. 

MODEM model Corresponding vehicles in 

Layer Engine 
type 

Technology Engine Size 
traffic calming tests 

I N t l t < 1.4 1 
2 

on-ca a ys - 
ECE 15.03 1.4-2.01 None 

3 > 2.0 1 
4 N t l t < 1.4 1 1,2,3,4 
5 Petrol on-ca a ys - 

ECE 15.04 1.4-2.01 5,6,8 
6 > 2.01 7 
7 < 1.4 1 9,10,11,12 
8 Catalyst - Euro 1 1.4-2.01 13,14,15,16,17 
9 > 2.01 18,19 

103 1.4-2.01 21 22 
11 Diesel Euro 1 1.4-2.01 , 

12 > 2.0 1 20 
'As the majority of diesel cars have engine sizes >1400cc, layer 10 is 

identical to layer 11. 

Tablell. 2 MODEM emission factor matrix: CO emissions (g/h) from petrol catalyst vehicles 
(1.4-2.01) as a function of instantaneous speed and acceleration (Jost et al., 1992). 

Speed km/h) 
0 5 15 25 35 45 55 65 75 

-15 - 66 56 63 69 59 76 92 115 

-10 57 
- - - 

61 
- 

63 84 94 141 129 134 
m 
&. ' u - -5 - 53 1 5 3 T 73 85 102 130 204 194 1 325 
0 cn U -- 33 59 74 116 

- 
123 131 196 T9-3-1 274'1 152 

-E', 5 - 142 163 192 192 207 275 263 350 1 --Ell- 
- 0 

0 
- 

10 -1 -1 274 1 301 295 1 357 330 1 454 1 403 j 275 r_ -1 ý1 

cn 1 - 
15 1 - 

-1 -1 -1 469 1 568 1 603 1 779 1 706 1 1041 ! '308 
- 
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The model user inputs a driving cycle which describes vehicle speed as a function of time. From 

the input cycle the program evaluates the average speed and acceleration between each pair of 

adjacent speed readings, and the corresponding emission factor is then referenced for each 

vehicle category. Emissions over the entire driving cycle are calculated as the sum of the 

individual emission factors. 

OccasionaUy, operating conditions wiU be encountered which are outside the speed- 

acceleration envelope of the MODEM model. In such cases, the model defaults to the nearest 

emission value (Le. the Wghest or lowest) on the speed or speed x acceleration axis. 

11.2 Model assessment and development: method 

11.2.1 Model assessment 

The output from the MEET model, based on the traffic calming driving cycles developed 

during the study, was presented in Chapter 8. The individual driving cycles were also used as 

an input to the MODEM model. Subsequently, the MEET and MODEM predictions were 

compared with the results of the dynamometer test programme for petrol non-catalyst, petrol 

catalyst, and diesel cars. For this Purpose, the vehicles tested by AEA were assigned to the 

appropriate MODEM categories, as shown in Table 11.1. Comparisons were made between 

both the absolute emission rates before and after calming, and the associated percentage 

changes in emissions, both as average values for all schemes and for individual schemes. The 

MEET and MODEM predictions were weighted according to the engine sizes of the vehicles 

used in the traffic calming tests. 

11.2.2 Development of MODEM-TC model 

11.2.2.1 Options 

A number of potential sources of error in the modal modelling approach have been identified. 

These sources of error are well documented (e. g. Joumard et al., 1998; Sturm et al., 1998; 

Latham et al., 2000; Weilenmann et al., 2000), and are not just confined to MODEM. Sturm 

et al., 1998 summarised a number of studies relating to a number of these sources of error. The 

aspects of modal emission modelling which where covered included the following: 
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The types of cycle used to create emission matrices 

The experience gained during the development of various emission models suggests 

that they may not predict accurately the emissions associated with vehicle operations 

which are different to those used in their development. For example, Sturm et al. 

(1998) employ the term'dynaniics'to describe driving cycles. A cycle is described 

as having eitherlow dynarnics'or 'high dynamics' depending on the number of gear 

changes involved, and whether the cycle fills the cells of an emission matrix with low 

or high speedxacceleration values. Models are often based on cycles with 'low 

dynamics' (such as those defined in legislation), and might produce more accurate 

results if the emission database which it currently uses is replaced by ones based on 

the types of vehicle operation for which they are trying to predict 

The parameters used to describe vehicle operation 

Some modal models define the emission matrix according to speed and acceleration, 

whereas others use the parameters speed and speed x acceleration. Also, 

acceleration values can be calculated in a number of different ways from the speed 

profile. 

The grid size in the emission matrix 

Typical increments in an emission matrix are 5-10 km/h for speed, 0.1 -0.4 nits' for 

acceleration, and 1.3-5.0 mýls' for speed x acceleration. With smaller increments 

the operational conditions of the modelled driving cycle can be better represented, 

but proportionally more of the emission matrix cells will remain empty unless a 

wider variety of driving cycles are used in the development of the model. Larger 

increments allow more matrix cells to be filled with emission data, but subtle 

alterations in vehicle operation are not taken into account. 

(jv) The type of interpolation scheme 

Emission values are stored in a matrix with a given grid size, and the values in each 

cell relate to a range of operational conditions. An interpolation scheme can be used 

to calculate emission values for operational conditions which He within this range. 

The way in which the emission values are interpolated between the matrix values can 

lead to different emission results. The version of the MODEM model described in 
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this Thesis does not employ an interpolation scheme. 

it was concluded by Sturm et al. (1998) that the choice of driving cycles used to develop 

emission matrices is an important determinant of a moders accuracy, but neither the parameters 

used to describe operation, the grid size, nor the use of an interpolation scheme resulted in any 

improvements in accuracy. Consequently, in the development of the MODEM-TC model, a 

decision was taken to concentrate on the driving cycle element. This was considered to be 

particularly appropriate for traffic calming, as it tends to impose a particular regime of low- 

speed operation with'high dynamics, for which a specific emissions database might be more 

appropriate. 

11.2.2.2 Construction of emission matrices 

In the emission tests conducted by AEA, the volumetric concentrations of CO, HC, NO, and 

C02 in the exhaust gas, as well as vehicle speed, were recorded on a continuous basis. These 

measurements were used to develop emission matrices for the MODEM model for use in traffic 

calming applications. This version of the model was named MODEM-TC. 

Around 1600 individual continuous emission profiles were recorded by AEA. This was out of 

a possible 2168 (4 pollutants, 542 tests). Of these 1600 profiles, 1088 could be used in the 

development of the new emission matrices. The criteria used to reject data are given later in this 

Section. The distribution of the 1088 profiles by vehicle and pollutant is shown in Table 11.3. 

There were several stages involved in the development of the emission matrices for the 

MODEM-TC model. These are described in outline below. 
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Table 11.3 Valid emission profiles by vehicle, pollutant and scheme. 

Vehicle Vehicle 
Pollutant 

S h i l d d 
category number CO HC NO, C02 

c emes nc u e 

1 11 10 12 12 B, C, D 
2 
3 

- 
20 19 20 20 B, C, D, E, GH 

Petrol 4 6 5 7 7 B, C 
non- 5 23 21 25 25 B, C, D, F, GKI 

catalyst 6 - 21 11 23 
- 

25 24 B, C, D, E, F, GH 
7 3 - 

7 3 3 C 
8 49 48 51 50 B, C, D, E, F, GHl 
9 
10 - 
11 9 91 12 11 E, F, G, H 
12 9 7 6 8 B, C, D 
13 8 7 7 8 D, E 

Petrol - 14 - - - catalyst - 15 2 1 2 1 B 
16 3 2 5 5 C 
17 18 17 25 25 B, C, D, E, F, GHl 
18 4 2 3 4 B 
19 15 8 16 18 B, C, D, E, F 
20 27 26 26 28 B, C, D, E, F, GKI 

Diesel 

1 

21 15 14 23 24 B, C, D, E, F, QJLI:::: ] 

22 22 15 24 24 B, C, DE, F, GKI 

Correction of time lag 

Because of the time required to transport the exhaust gas to the analysers, and the actual 

response time of the analysers themselves, the emission signals are delayed relative to the 

driving cycle. The time lag between an emission event occurring and it being recorded at the 

analyser was different for each pollutant. Consequently, each concentration profiles was shifted 

in time (L e. corrected subjectively) so that the initial rise in concentration corresponded to the 

initial rise in speed. Other (preferred) methods for correcting the time lag have been developed. 

For example, TOV Rhineland have developed a statistical method called 'Virtual Time Shift' 

in which the standard deviation of the values in each cell of the emission matrix is minimised 

(Hassel et al., 1993). However, it was considered that, given the other sources of error in 

modal emission modelling, the application of this technique might only provide a small 

irnprovement in accuracy. 
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Conversion to mass emission rates 

The volumetric concentrations recorded during the tests were converted to mass emission rates 
(g/h) for each second of an en-ýission profile using the following equation: 

Mass emission rate (g/li) = 
3600 xCxfxM, 

lo6 XV 

Where: C is the poUutant concentration in ppm 
f is the gas flow rate (193.3 3 I/s) 

V. is the molar gas volume (22.4 1) 

M,. is the relative molecular mass of the pollutant - for CO = 28 

for HC = 13.85 (CHI. 
85) 

for NO., = 46 (N02) 

for C02 = 44 

Comparison of bag values with modal values 

In order to determine the usability of modal emission data, a comparison is usually made 
between the sum of the instantaneous emission values over a given driving cycle with the 

corresponding bag value from the CVS test in which the dilute exhaust gas has been sampled 
in a bag. The bag sample measurements should, in general, correspond to the sum of the modal 

values, but due to restrictions in the measurement set-up and the accuracy of the analysers, 
differences between the two are inevitable. Sturm et al. (1998) reported that the differences 

vary with pollutant and vehicle type. 

Comparisons between the bag values and aggregate modal values are shown in Figure 11.1. 

The best correlation between the bag and modal values was obtained for CO. There was also 

a good level of agreement for C02, though the modal data appear to be systematically higher 

than the bag data, with an offset of around 12 g/km- For HC and NO, the relationships were 

poorer, and there appears to be a gradient factor. Because different measurement techniques 

were used, and either the bag samples or the modal sample could have been correct, no modal 
data were actually rejected. 
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Figure II-1 Comparison between bag values and aggregate modal values over all 'before 
cahning' and 'after calming'driving cycles. The solid line represents a 1: 1 ratio, and the dotted 
line is the linear regression fit to the data. 

Data rejection criteria 

Emission data were either accepted or rejected according to a number of criteria. The 

conditions which led to emission data being rejected were: 

Errors in the emission profile. Problems included no emission profile, partial emission 

profile, large offsets, signal drifl, and an excessive noise-to-signal ratio. These were all 
judged subjectively. 

Errors in the speed profile, whereby the measured speed profile did not correspond to 

the driving cycle used in the test. The errors included the absence of a speed signal 
(whofly or in part), and exceptionally high momentary speeds and accelerations. 

Excessive time lag in the emission profile. This can lead to instability in the measured 

signal, and arises as a result of soiling or condensation in the analyser (Jost et al., 
1992). 
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(iV) Insufficient data in matrix cell. 114FRAS (1998) found that a minimum number of Io 

readings per matrix cell was necessary to minimise the standard deviation of the values 

without affecting the mean significantly, and Philippe (1996) suggested an optimum 

number of 30 values. Because only a relatively small sample of vehicles was tested over 

the traffic cahning cycles, a limit of 20 values per cell was adopted, and any cells with 
less than 20 values were left blank. However, it should be noted that, where cells 

contained few values, this was due to the operation they represented occurring 

infrequently. Consequently, the removal of the values from such cells had little effect 

on the predicted emissions. 

11.3 Model assessment and development: results 

11.3.1 AR schemes 

The results of the assessment for all schemes are shown in Figures 11.2 and 11.3. Six data series are 

presented in each Figure. 

The first three series (shown in blue) relate to measurements: 

Series 1: The average of the bag values for all the tests conducted 

Series 2: The average of the bag values for each emission trace used to develop MODEM-TC 

Series 3: The average of the summated modal vales for each emission trace used in MODEM-TC 

The second three series (shown in green) rate to model predictions: 

Series 4: The average MEET prediction for all the test cycles 

Series 5: The average MODEM prediction for all the test cycles 

Series 6: The average MODEM-TC prediction for all the test cycles 

The mean measured and modelled absolute emission rates are shown in Figure 11.2. There was 

generally good agreement between the bag values for all the tests (series 1) and the bag values 

of the tests used in development of MODEM TC (series 2), with the latter tending to be 

slightly higher. This indicated that the emission characteristics of vehicle sample used in the 

development of MODEM-TC were fairly representative of those of the entire vehicle sample 
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tested in the laboratory by AEA. The largest differences were observed for HC and NO,, 

emissions from petrol catalyst cars. The summated modal values (series 3) tended to be higher 

than both the series 1 and series 2 values, with the most pronounced differences occurring with 

HC emissions. Both the MEET and MODEM models exhibited a mixture of underestimation and 

overestimation compared with the series I results, though in some cases there was a good level of 

agreement between the measured and modelled values. MODEM-TC, on the other hand, 

overestimated bag emissions in ahnost all cases. The differences between the measured and 

predicted absolute emission rates are, one again, likely to reflect dfferences in the vehicle 

samples on which the results are based and, as such, are to be expected. As would also be 

expected, MODEM-TC model showed a better agreement with the MODEM-TC modal data, 

except in the case of HC emission from catalyst cars. 

The overall percentage impacts of traffic calming measured in the dynamometer tests, and the 

overall percentage impacts predicted by MEET, MODEM, and MODEM-TC for the three 

vehicle categories, are shown in Figure 11.3. The series 1,2 and 3 measurements showed a 

good level of agreement for petrol non-catalyst cars and diesel cars. However, the percentage 

changes for catalyst cars showed no consistent* pattern. This follows on from the earlier 

observations relating to the variability of the emissions from these vehicles. 

it has already been observed that the MEET model generally provided a good indication of the 

percentage change in emissions associated with traffic calming when assessed over a range of 

schemes, though the ability of MEET to predict these changes in emissions depends very much 

on the vehicle type and pollutant being considered. The percentage changes predicted by the 

MEET and MODEM models showed an unexpected pattern. For almost all combinations of 

vehicle type and pollutant, the MEET model provided a more reliable indication of the likely 

impact of traffic calming than the MODEM model, in spite of the fact that the latter employs 

a more detailed mechanism for representing vehicle operation. 

196 



Petro[ non-catalyst 

3.5 

3.0 
E 

2.5 

2.0 
cc 

GLNI U Nox 004100 

1.0 

05 

0.0 
lefore After Before After Before After Before Afte 

m Bag \alues ---- CalI-tesfs-)----- -cýBag \oalues (MODEM-TC iesTts-)- 
Modal \elues (MODEM-TC tests) EMEET (all cycles) 

m MODEM c3MODEM-TC 

8 

E6 

c 
.03 
E2 
uj 

NOý* 10 copoo 

Petrol catalyst 

Co HC*10 

Before After Before After Before After Before Afte 

N Bag Nalues (all tests) 6-Bag-%elues (MODEM-TC tests) 
OModal Qlues (MODEM-TC tests) a MEET (all cycles) 
coMODEM a MODEM-TC 

Diesel 

2.2 
2.0 
1.8 

E 1.6 
1.4 
1.2 
1.0 

0 0.8 
0.6 

LLJ 0.4 
0.2 
0.0 

w2fluu 

Before After Before After Before After Before Afte 

m Bag values (all tests) c3 Bag ýd ues (MODE M-TC tests 
Ei Modal ). oalues (MODE M-TC tests) m MEET (all cycles) 
mMODEM [3 MODEM-TC 

Figure 11.2 Mean dynamometer test results vs. weighted MEET and weighted 
MODEM predictions for petrol non-catalyst, petrol catalyst, and diesel cars. 
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Figure 11.3 Percentage change in mean emissions measured in 
dynamometer tests vs. percentage changes predicted by N/FEET and 
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Although for CO, HC and C02 the MODEM model correctly predicted that emissions would 

increase overall, the sizes of the increases were underestimated for all three vehicle categories. 

For petrol non-catalyst and diesel cars the measured increases (series 1) in emissions of CO, 

HC and C02 were around 4 times larger than the predicted increases (series 5), and for petrol 

catalyst cars the measured increases were 6,9, and 3 times larger than the predicted increases 

for CO, HC, and C02 respectively. For petrol cars the direction of the change in NO,, emissions 

resulting from the introduction of traffic calming was not correctly predicted by MODEM, 

though both the measured and modelled changes were relatively small. For diesel cars 

MODEM correctly predicted an increase in NO,,, but again the predicted was around one third 

of the measured increase. 

The most consistent changes, with the exception of MODEM, were observed for C02 

emissions. The measurements, the MEET model, and the MODEM-TC model indicated that 

C02 emissions from all vehicle categories increased by between 19% and 29%. MODEM 

predicted increases of between 5 and 8%. 

For most vehicle category-pollutant combinations the MODEM-TC model improved on the 

percentage impact predictions of the MODEM model. The most marked improvements 

occurred in the prediction of changes in C02 for all three vehicle categories, though greatly 

improved results were also obtained for emissions of CO, HC, and NO,, from diesel vehicles, 

and HC emissions from petrol non-catalyst and catalyst vehicles. However, the MEET model 

still tended to predict percentage changes in emissions which were closer to those measured 

on the dynamometer. 

11.3.2 Individual schemes 

Absolute emission rates 

For petrol non-catalyst, petrol catalyst and diesel cars, and for all the individual driving cycles, the 

(weighted) absolute emission rates predicted by NMET, MODM and MODEm-TC were plotted 

against the corresponding emission rates measured on the dynamometer, and linear regression 

analyses were conducted. The results for petrol non-catalyst cars are shown in Figure 11.4, and the 
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results of the regression analyses for the three vehicle categories are given in Table 11.4. 
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Figure 11.4 Emission rate of petrol non-catalyst cars predicted by MEET, MODEM, and 
MODEM-TC vs. emission rate measured in chassis dynamometer tests for all driving cycles 
(the dotted line represents a ratio of 1: 1). 

it is clear that none of the models produced very good results at this level. With the MODEM model 

in its original format, there was a poor level agreement between the absolute measured and modelled 

emission rates over both thebefore calming' and 'after calming'cycles. This lack of agreement is 

reflected in the low correlation coefficients observed in most cases. The MODEM-TC model 

improved on MODEM, but could hardly be considered much better than MEET, even though it was 

based on the very data it was being used to predict. 
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Percentage changes in emissions due to trqffic calming 

For the petrol non-catalyst, petrol catalyst and diesel cars, the percentage changes in emissions 

predicted by MEET, MODEM, and MODEM-TC for each appropriate layer in the model were 

plotted against the corresponding percentage changes measured on the dynamometer, and once 

again finear regression analyses were conducted (though it is accepted that the absolute emission 

rates varied substantially). The results for petrol non-catalyst cars are shown in Figure 11.5. The 

results of the regression an*ses are given in Table 11.5. Again, all three models performed badly, 

and the abflity of MODEM to predict the relative impact of traffic calming on emissions of a 

given pollutant was again found to be particularly poor. 
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Figure 11.5 Percentage changes in emissions from petrol non-catalyst cars predicted by 
M-EET, MODEM, and MODEM-TC vs. percentage changes in emissions measured in 

chassis dynamometer tests for all driving cycles (the dotted ae represents a ratio of 1: 1). 
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11.4 Improving the modal modelling approach 

There are clearly deficiencies in the modal modelling approach which cannot be entirely resolved by 

changing the emission factors or the way in which the models operate. It may be that any attempt at 

a comparison between emission models predictions and measurements is confounded by the general 

variability in the emission rates of the vehicle samples used in the models and the vehicle samples used 

in the measurements. Because the vehicle fleet is so large, and only a tiny proportion of it can be 

sampled, this will always lead to problems, to a greater or lesser extent, where emission model 

predictions (based on one sample of vehicles) are being compared with emission measurements 

(based on a second sample). Other than dramatically increasing the sample sizes in both cases, 

these two sources of uncertainty cannot be resolved, and this problem could not be addressed in 

this Thesis. 

A number of further suggestions for improving modal models have been proposed. Firstly, 

evidence suggests that catalysts tend to exhibit on/off control, and emission levels from catalyst- 

equipped vehicles are much more sensitive to operating conditions than those from non-catalyst 

vehicles. Under particular operating conditions the catalyst may be working at its maximum 

efficiency, but for slightly different conditions the conversion efficiency may be low. For example, 

measurements by Journard et al. (1998) have shown that for engine loads (the actual power divided 

by the maximum power at a given engine speed) greater than 75%, instantaneous CO emissions 

can be 20,000 times higher than for lower loads (Figure 11.6). Over an entire motorway driving 

cycle around 90% of the total CO emissions occurred during only 15% of the time. This feature 

of catalyst operation would have contributed to the observed sensitivity. Journard et al. have 

argued that efforts should concentrate on extreme engine operating conditions, particularly for 

catalyst-equipped vehicles, and this approach is being followed in France (Lacour et al., 2000). 

unfortunately, the work conducted so far indicates that a modal model which treats extreme events 

separately provides no improvement in accuracy over existing instantaneous models, or even over 

average speed models. In addition, research in Switzerland (INFRAS, 1998) has indicated that the 

introduction into models of a parameter relating to gear activity could help to reduce the variability 

of the emission values in matrix cells. 
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Figure 11 .6 
Instantaneous CO emissions from a catalyst car versus engine speed 
and load over a motorway cycle (Journard et al., 1998). 

However, the approaches investigated in this Thesis, as well as the alternatives highlighted, do not 

address the most fundamental problem relating to modal emission modelling: it is extremely 

difficult to measure emissions on a continuous basis with a high degree of precision, and the 

emissions and fuel consumption values recorded in the one-second steps might not be successfully 

allocated to the associated operating conditions. For example, because of the time required to 

transport the exhaust gas to the analysers, and the actual response time of the analysers themselves, 

the emýission signals are delayed relative to the driving cycle. Furthermore, the exhaust gas is mixed 

in the exhaust system. This results in a general flattening of instantaneous emission peaks over a 

period of more than one second. The dynamics of mixing also depend on the gas flow rate, and the 

situation is even worse when dilute exhaust gas is being sampled using a CVS. 

The phenomena of time lag and damping have been iflustrated by Weilenmann et al. (2000). In the 

experiment shown in Figure 11.7 a non-catalyst petrol car was mounted on a chassis dynamometer 

and a gas injection inlet was installed directly after the exhaust manifold. The engine was operated 

in three steady-state modes at loads associated with idling (test 1), urban driving (test 2), and inter- 

urban driving (test 3). The exhaust volume flow ranged from 0.005 rrO/s during idling to 0.130 M3/S 

during operation at the highest load. During the driving the gas (oxygen) valve was opened and 
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closed several times (resulting in a step input) and the gas analyser response was recorded. The 

figure clearly shows that the analyser signal is delayed, and that the delay between the emission 

peak and the signal peak is dependent on the exhaust gas flow rate (which is varying constantly). 

Also, the concentration recorded at the analyser takes much longer to reach its maximum value 

than the input signal. 
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Figure 11.7 Results of gas injection tests; the valve signal is represented by 
the solid fine, the analyser oxygen signal is represented by the dashed line 
(adapted from Weilenmann et al., 2000). 

In modem cars equipped with a three-way catalyst, oxygen peaks occur in fuel cut-off situations. 

Figure 11.8 shows a two-second fuel cut-off (-418s) at 60 km/h in such a car. The fuel cut-off 

creates an oxygen peak of 1.2 seconds at the lambda sensor downstream of the catalyst. The raw 

gas analyser response follows at time 425s, and is much smaller. This shows that the dynamics of 

the raw exhaust gas line and the analyser are too slow for a peak of this duration to be measured 

accurately. In the dilute gas measurement the peak occurs at 437 seconds, and is even wider and 

flatter than the raw exhaust peak. 
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Figure 11.8 Oxygen concentrations after a two-second 
fuel cut off In the top graph the raw exhaust valve 
signal is represented by the solid line, and the raw 
exhaust analyser oxygen signal is represented by the 
dashed fine. The bottom graph shows the signal 
recorded by the anlayser in the dilute exhaust (adapted 
from Weflenmann et al., 2000). 

These results have obvious implications for the development of modal emission models based on 

instantaneous vehicle operation. The time delay is usually taken into account by shifting the data 

backwards by a fixed number of seconds. However, Weilenmann et al. (2000) have shown that, 

when raw exhaust gas is being sampled, the delay is not constant, and varies by more than one 

second depending on the gas flow rate in the exhaust. Correcting the time lag by shifting the entire 

enission signal be a fixed number of seconds is clearly going to mean that emission events are 

temporally misaligned with the speed data, resulting in model inaccuracy. Over a transient driving 

cycle engine load varies every second, and hence there will inevitably be moments when the 

emission signal preceded the generation of the emission itself The damping of the raw exhaust 

signal means that, in general, the 'real' emission peaks will be underestimated, and the emission 

troughs overestimated. Even if no original emission has occurred in a given instant, a model can 

produce a value because of the temporal spreading of the emission peaks. 

Therefore, even if modal emission models were constructed using raw exhaust measurements, such 
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results indicate that there would clearly be problems matching an emission signal in any given 

second to the appropriate speed or acceleration measurement. MODEM is based upon 

measurements on dilute exhaust, even though Figure 11.8 indicates that the signal obtained from 

measurements in a dilution tunnel bears little relation to the real signal. Because the cells in each 

MODEM emission matrix contain average values for a particular mode of operation, the net result 

is that the second-by-second prediction by MODEM during a given driving cycle is damped even 

further. This is illustrated for a single petrol non-catalyst vehicle driven over one of the traffic 

calming cycles developed in the study in Figure 11.9. In Figure 11.9, the measured CO emission 

profile was obtained using the diluted exhaust gas, and the modelled CO emission profile was 

obtained using a MODEM emission matrix based on the measured profile alone. Although points 

A and B have similar speed and acceleration values, point A corresponds to a CO emission rate of 

almost 3000 g/h, whereas point B corresponds to an emission rate of less than 1000 g/h. It is likely 

that this variability in the emission rate associated with given operational parameters will occur 

throughout the emission profile, and therefore the model will tend not to pick up the peaks and 

troughs of the (already highly damped) emission trace. This would still probably occur, though 

hopefully to a much lesser extent, even if a 'true' emission profile could be obtained. 
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Figure 11 .9 
CO emission profile measured for a single vehicle in the traffic 

calming study compared with the emission profile predicted by MODEM 
using an emission matrix based on the measured profile (Vehicle 6, Scheme 
C after calming). 
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Clearly, advances in the field of modal emission modelling will not be forthcoming until realistic 

continuous emission data are available. Efforts are now underway to reduce the dynamic distortion 

of the emission data. Weilenmann et al. (2000) have developed a mathematical model of the 

measurement system which can then be 'inverted' or solved in order to reconstruct the original 

errussion signal in the exhaust pipe from the one measured at the analyser. This process increases 

in complexity with the level of exhaust dilution used. It is least complex when emissions are 

recorded at the exhaust manifold, more complex when emissions are recorded in the exhaust pipe, 

and the most complex when a dilution tunnel is used. However, the implication is that a ntunber 

of parameters relating to the sampling equipment and the vehicle need to be recorded for each test. 

The raw exhaust model is represented schematically in Figure 11.10. It contains three sub-models 

to represent gas transport, mixing, and the analyser response. 

_Raw gas signal Sub-models 

1 1. Transport, I I Time delay i 
Y, (t) = U(t - tt,. ) 

1 2. Mixing I 

1 3. Analyser I 

Measured signal 

V order tMr. 
ýY2 

= _Y2 (t) + YJ (t) 
I 

dt 

2" order 
ýLh 

+ cl 
dY3 

+ COY3 (t) = Y2 
I 

dt2 dt 

Figure 11.10 Schematic diagram of the raw gas system model (adapted from 
Weilenmann et al. (2000)). The variable yn(t) represents the output of sub-model n. 

The first sub model describes the time delay between the input signal u(t) (the gas concentration 

at the end of the exhaust pipe) and the output signal at the analyserý, (t). The value tt, represents 

the time delay in the raw exhaust gas fine. Mixing is modelled using a first order differential 

equation, with tm, at the niixing time constant. The analyser behaviour can be described by a 
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second-order differential equation. If the equations describing the three sub-models are combined, 

the overaU system can be described by the equation: 

d'y 
+ a2 

d 2y 

+ a, 
±Y- 

+ a,, y(t) = u(t - tt,. ) Yt T dt2 dt 

(a2and a, replace cl, co, and tm,. ) 

Because measurements arc obtained at discrete time intervals, this overall equation can be 

converted to a much simpler difference equation, and a simple experiment with zero gas and span 

gas must be carried out with each analyser to obtain the parameters required for the simplified 

equation (Weflertmann et al., 2000). 

Weilemnann et al. (2000) stated that their model could be used in conjunction with a dilute 

sampling system, but the calculation are complex and the results are less reliable than those 

obtained when the emission signal is being reconstructed using raw exhaust gas measurements. 

it was not possible to attempt any modification of this type to the existing MODEM model; the 

reconstruction of the 'true' emission signal at the analysers could also not be achieved because the 

relevant sampling parameters were not available. 
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CHAPTER 12 SUMMARY AND DISCUSSION 

12.1 Background 

The Environment Act 1995 confirmed that traffic management schemes could be used for air 

quality management purposes. Plans drawn up by local authorities under Section 84(2) of the Act 

could include alterations to existing schemes, or the development of new schemes, on air quality 

grounds. Where local authorities considered that traffic management could make an appropriate 

contribution to improving air quality, they were advised to consider and careffly evaluate aH the 

opportunities available to them, and set out a balanced and integrated approach tailor-made to their 

specific local circumstances (Department of the Environment et al., 1996b). The introduction of 

the UK National Air Quality Strategy meant that local authorities had to be aware of any air quality 

jMpacts resulting from their traffic management operations. However, at the time the Strategy was 

drawn up there was little information relating to the effects of different schemes on vehicle exhaust 
I 

emissions and air quality. In order to provide more robust information and guidance for local 

authorities, the Government commissioned an extensive programme of work aimed at improving 

the level of understanding. A large proportion of the programme was, and is still being, conducted 

at the Transport Research Laboratory (TRL). The environmental appraisals undertaken at TRL 

have been spread over number of projects, and have covered a range of subject areas. These 

subject areas have included noise, vibration, vehicle emissions3 air pollution, and perceived impacts. 

This Thesis has incorporated a large proportion of the TRL research relating to the impacts of a 

particular type of traffic management - traffic calming - on vehicle emissions. 

The main objectives of the research undertaken for the PhD progranune were: 

(j) To review the existing level of understanding regarding traffic cahiiing and vehicle 

emissions. 

I (ii) To determine the effects of different types of traffic cahning measure on exhaust emissions, 

primarily from passenger cars but also from goods vehicles and buses. Subordinate 

objectives here included: 
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e To assess the impact of traffic calming on vehicle speed profiles. 

* The development of driving cycles using external speed measurement techniques. 

Determination of the impact of traffic cahning on emissions from passenger cars based 

on the driving cycles. 

9 The measurement of emissions from large numbers of velicles on the road using remote 

sensing in the vicinity of traffic calming measures. 

To. develop a system of comparative performance indicators and guidance for local 

authorities which would enable them to predict the effects of their proposed traffic calming 

schemes on area-wide emissions. 

(jv) To assess the performance of an existing micro-scale emission model in traffic calming 

applications, and to explore the ways in which its performance could be enhanced. 

Nine types of traffic calming measure were selected for investigation. These were: 

A 75nun-high round-top road humps 

B 80mm-high flat-top road humps 

C 1.7m. -wide speed cushions 

DA combined pinch point and speed cushion 

EI 00mm-high raised junctions 

FA chicane 

GA build-out 

HA mini-roundabout 

I I. gm-wide speed cushions 

12.2 Review of traffic calming methods and effects 

The literature review described the main stages in the assessment of how traffic calming schemes 

affect vehicle emissions. The topics covered included specific traffic calming measures, the changes 

in driver behaviour imposed by traffic calming schemes, and the factors affecting emissions from 

road vehicles in the context of traffic calming. A summary was also been presented of case studies 

in which the effects of traffic calming on emissions have been determined, either by direct 
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measurement or by the use of emission models and databases. The review provided information 

on the most common traffic calming measures in the UK, and this information was used as the basis 

for the selection of schemes to be investigated in the research. 

It was noted in the review that descriptions of driver behaviour include both detailed data on 

parameters relating to vehicle operation, such as speed and gear selection, and information on trips 

such as journey purpose, duration, mode, time of day, and time of year. The factors influencing 

vehicle operation are numerous, and the relative importance of these factors is unclear at present. 

There are also few quantitative data relating to how emissions might be influenced by traffic 

cahning. Work relating to driver behaviour has usually been concerned with its relationship to 

accident causation, rather than to vehicle emissions. Consequently, existing studies invariably relate 

to speed selection, and rarely to other parameters known to affect emission rates (e. g. acceleration 

rates, gear selection). Vehicle speed at specific locations on a road is one of the most frequently 

measured parameters in the assessment of traffic calming schemes, but it is knowledge of 

continuous vehicle operation that is a fundamental requirements for accurately determining changes 

in vehicle emissions on the scale of an individual road, and this kind of continuous information is 

not widely available. Also, changes in traffic flow and composition are required to determine the 

overall impact of a traffic calming scheme, especially where a diversion of traffic is likely to occur. 

A review of previous case studies indicated that fuel consumption and emissions of CO, HC, and 

C02 per vehicle-km increase after the introduction of traffic calming, although the range of results 

for each ponutant. was rather wide. For NO,,, both increases and decreases in emissions have been 

observed, and the variability in impacts is the most pronounced of any pollutant. One study showed 

a decrease in NO,, emissions of 60%, whilst another showed an increase of 900%. It is likely that 

the variability of the impacts is related to a nurnber of factors, including the method of assessment, 

the types of vehicle considered, the configuration of the road, and the arrangement of the traffic 

calming scheme. Most of the information on emissions that has been presented in these case studies 

has been obtained through the use of emission models or databases. The results of a few studies 

in which measurements have actually been taken have often been used to make general predictions 

about the effects of traffic calming on emissions. However, there was clearly a need 0 MO fil r re 

detailed empirical information relating to a wider variety of schemes. 
_ 
The research presented in this 

Thesis was designed to address this issue. 
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12.3 Study methodology 

So that the impacts of each tmffic calming measure on emissions could be determined using a 

chassis dynamometer under controlled laboratory conditions, driving cycles were formulated to 

represent vehicle operation before and after the introduction of the schemes, based on in situ traffic 

survey data. The speed data used to develop the driving cycles for the traffic calming measures 

were obtained using both an external method of measurement, which should not have affected the 

behaviour of drivers as they negotiated the schemes, and an internal method. The speed-time 

profiles of vehicles passing through each scheme were measured using the external technique. 

Initially, a separate set of internal speed profile measurements, obtained using instrumented cars 

driven through the same schemes by selected subjects, were used to determine the gear-change 

points across the operating speed ranges. Each speed profile measured using the remote technique 

and the instrumented cars at a particular scheme were characterise d using statistical descriptors of 

the speed data, thus defining several modes of vehicle operation. A sample of speed profiles, 

reflecting the range of vehicle operation through the scheme, were then be taken from the remote 

measurements and used to select corresponding speed profiles (with associated gear selections) 

from the instrumented car measurements. The latter profiles were combined to form a driving cycle 

representing the range of vehicle operation on the section of road at the time the speed 

measurements were taken. This process was simplified after some early analysis. 

Speed measurement techniques 

The proposed methodology relied in part on a statistical method for matching the speed profiles 

obtained by external measurement with those measured using the instrumented cars. Tests were 

required to confirm that the speed profiles measured using these approaches were directly 

comparable. The speed of a vehicle passing along a section of road at the TRL site featuring road 

humps was monitored simultaneously using three techniques: one on-board instrurnent and two 

methods of external measurement (a laser-based LIDAR system and road tubes). There was found 

to be a good agreement between the speed profiles measured by all three devices, including those 

profiles exhibiting a large variation in speed. Mainly because of its ease of installation, ease of use, 

and less conspicuous nature, the LIDAR system was selected in preference to the road tubes as the 

means by which external measurements would be obtained during the study. 
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In order to establish the feasibility of the proposed methodology in a real-world situation, a field 

trial was conducted on a stretch of road along which traffic calming measures had already been 

instaRed. The overall mean speed, and the overall standard deviation of speed (both averaged over 

aH speed profiles) from two instrumented cars (one 'mediunf, one 'large') were compared with 

those of the external measurements. As the ranges of the combined instrumented car measurements 

reflected the majority of the LIDAR measurements, it was considered that the trial confirmed the 

overaH feasibility of applying the proposed methodology to a real-world situation, but it was 

considered that the possibility of covering the entire speed range observed in the external 

measurements at all sites could be increased by including a third ('smalr) instrumented car. 

12.5 Traffic surveys 

Traffic surveys were conducted before and after the installation of each of the first five traffic 

calming measures under investigation (schemes A-E). During the experimental phase of the study 

it was not possible to identify sites where a chicane, a build-out, or a mini-roundabout would have 

been introduced early enough for the measures to be included within the study, and where - the 

layout was suitable for external speed measurement. Consequently, the speed measurements 

designed to reflect vehicle operation afler calming were obtained at sites where these measures had 

already been introduced. Also, changes to the timetable for scheme implementation dictated that 

for the 1.9m-wide speed-cushions; external speed measurements had to be conducted on one road 

before calming, but on a different road afler calming. 

Trafficflow 

Automatic 24-hour counts were only undertaken for schemes A-E, with the information being 

supplied by the appropriate local authorities. No automatic counts were available for schemes F-I, 

though for schemes F, G and H an estimate of traffic flow after calming was made using the video 

record. Although the flow of traffic through scheme A (75mm flat-top road humps) was found to 

have decreased, it actually increased at schemes B-E. The largest increase occurred at scheme B 

(80mm, round-top road humps), where the total weekly two-way flow increased by 28% after 

calming. However, the counts were not conducted immediately before and after the introduction 

of each scheme, and any changes in flow due to the schemes were probably masked by seasonal 

differences, and possibly by a general increase in overaU traffic during the intervening periods. 
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Scheme implementation can often be subject to unforeseen delays, and this was one reason for the 

extended periods between the flow measurements at some of the sites. 

Traffic composition 
At each site, most of the traffic flows comprised of passenger cars and fight goods vehicles. Very 

few HGVs and buses were observed on the roads investigated. Where information on traffic 

composition was available before and after calming, there was generally a good agreement between 

the proportions of vehicles in each category. The main exception-was scheme L for which the large 

discrepancies were probably due to the surveys before and after calming having been conducted 

on different roads. 

There is a possibility that the introduction of traffic calming could cause a change in the 

composition of the traffic on a particular road. For example, the drivers of heavy goods vehicles 

might be inclined to adopt an alternative route in order to avoid road humps. However, the data 

for schemes A-E indicated that there was no strong tendency for the composition of the traffic to 

be affected, although the balance between medium-size and large cars had shifted slightly in favour 

of the latter after calming. 

Vehicle speed 

At the six sites where external speed measurements were obtained before calming, the mean speed 

of passenger cars varied between 38 kni/h and 53 krn/h. This implies that, even though each road 

was in a residential area and had a 30mph speed limit, there were some differences in the nature 

of the sites monitored. The differences in the speeds before calming may have been attributable to 

factors which could not be controlled, such as carriageway width, the extent of on-road parking, 

and pedestrian activity. The -speeds of passenger cars after calming varied between 23 km/h and 

42 kni/h, with the actual speed reduction, excluding the three sites for which no measurements 

were obtained before calming, ranging from 10 km/h to 19 km/h. The largest speed reductions 

were observed for scheme I (1.9m-wide speed cushions), and once again this was probably due in 

part to the surveys before and after calming having been conducted on different roads. There was 

no evidence to suggest that passenger car size had an impact on speed before or after calming, or 

on the magnitude of the speed reduction achieved. The speeds of LGVs changed from between 36 

and 50 km/h before calming to between 20 and 42 kni/h after calming, with a speed reduction of 

between 10 and 17 km/h. The effects of traffic calming on the speeds of HGVs and buses were 
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more variable, but this was probably due in part to the small sample sizes. As the mean speeds 

reported in this study were calculated from second-by-second LIDAR profiles, they are not directly 

comparable to the spot speed measurements at traffic calming schemes reported elsewhere. 

The mean speed standard deviation generally increased after calming. These increases reflect the 

tendency of drivers to accelerate and decelerate between discrete traffic calming measures. The 

main exception was scheme B (round-top road humps) where, for reasons which are not clear, the 

speed standard deviation of most vehicles decreased after calming. 

One of the disadvantages of using the LIDAR system was that it failed to record a speed of zero. 

This meant that idling will have been under-represented in some of the measurements, and hence 

in some of the driving cycles. The effect would have been most pronounced on the roads where 

periods of idfing might have occur-red more frequently, or on roads where the traffic calming 

measures would usually have resulted in periods of idling. For example, some vehicles would have 

been stationary at the rr-ýini-roundabout and the build-out, with drivers being forced to give priority. 

Also, the speeds recorded in the vicinity of the build-out and mini-roundabout may have been 

affected by the installation of round-top road humps nearby on the same road. 

implicationsfor emission test programme 

only small differences were observed between the means and standard deviations of the speeds of 

small, medium, and large car categories before calming. Larger, but still small, differences were 

apparent after calming. In practice, quite large differences in speed would be necessary to show 

significant differences in emission rates, since emission measurements tend to show poor 

repeatability. Therefore, one driving cycle was considered sufficient to represent all three sizes of 

car. An assessment of the means and standard deviations of the speed profiles for each category 

of vehicle indicated that there were only small differences between those travelling in a convoy and 

- those not in a convoy. Small differences were also observed between the mean and standard 

deviation of the profiles obtained during different periods of the week. Once again, it has been 

assumed that the effects of these differences on emissions would have been minimal. 

12.6 Driving cycles 

For the first scheme in the study (scheme A: 75mm-high flat-top road humps) the driving cycles 
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were derived from a combination of external speed measurements obtained using a LIDAR device, 

and speed and gear-change data recorded using instrumented cars. The feasibility of selecting a 

number of instrumented car speed profiles to correspond to a representative sample of LIDAR 

profiles was confirmed both in tests at TRL and in real traffic. It was found that the range of 
instrumented car measurements covered the range of the LIDAR measurements if the results from 

two different instrumented cars were used. However, although the LIDAR system was capable in 

principle of measuring 'real' driver behaviour, certain aspects of its operation indicated that it was 

probably not the definitive technique. 

The amalgamation of short instrumented car cycles resulted in driving cycles which were difficult 

to follow on the dynamometer, and had unrealistic gear-change patterns. Consequently, a 

smoothing function was applied to the speed data to make the cycle more driveable, and gear 

changes were simply set to occur at given speeds. As gear-selection measurements were no longer 

required for the remaining schemes, the LEDAR speed profiles alone were be used to construct the 

driving cycles. 

Using this approach, driving cycles were developed to represent vehicle operation before and after 

calming for schemes A-E. For schemes F, G and H, external speed measurements could only be 

obtained after the traffic calming measures had been installed. Consequently, substitute cycles 

representing vehicle operation before the introduction of these measures were developed from the 

cycles constructed for some of the other schemes. 

12.7 Laboratory emission tests 

Exhaust emission measurements were conducted by AEA Technology, based on the driving cycles 

supplied by TRL. At the start of the study, twelve in-service petrol cars and three in-service diesel 

cars were selected from a variety of sources by AEA for the emission test work. The petrol cars 

were categorised according to the level of emission control (i. e. whether or not the car was 

equipped with a catalyst) and engine size. No differentiation was applied to the diesel cars. Some 

vehicles were withdrawn by their owners during the test programme. Although replacement 

vehicles were introduced, the changes in the vehicle samples for the different schemes inevitably 

introduced an additional element of variability into the results. 
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A total of 542 individual emission tests were conducted by AEA, with fuel consumption and 

exhaust emissions of four pollutants (CO, HC, NO,,, and C02) being recorded in each test. Total 

particulate matter was also recorded during the tests involving diesel vehicles. For each pair of tests 

associated with a given pollutant, vehicle, and driving cycle, the emission values were averaged. 

Overall effects of traffic calming by vehicle type 

For the petrol non-catalyst, petrol catalyst, and diesel vehicle samples, the overall effects of all the 

traffic calming measures on the mean emissions of each pollutant per vehicle-kni were determined. 

For each vehicle category emissions were higher over the driving cycles designed to reflect vehicle 

operation after calming than over the cycles representing operation before calming. For petrol non- 

catalyst, petrol catalyst, and diesel cars, the increases in the mean emissions of CO were 34%, 

59%, and 39% respectively. In each case, the increase in enuissions was significant at a high level 

of confidence. For each vehicle category the increase in mean HC emissions was close to 50%, and 

again the increases were statistically significant. The mean emission of NO. from petrol vehicles 

increased slightly, but the change was not significant at the 95% confidence level. In contrast, NO, 

en-dssions from diesel vehicles increased by around 30%. Emissions Of C02 increased by 20-26%, 

with the increase being significant for each type of vehicle. For diesel vehicles, emissions of 

particulate matter increased by 30%. 

These were some of the most important results of the study, since they appeared to indicate that, 

for the vehicle fleet in the LJK, the larger impacts of traffic calming on emissions recorded in some 

previous studies are not likely to be typical. For example, Zilger and Blessing (1995) found that 

the CO and NO,, emissions from a single catalyst-equipped petrol car increased by 160% and 900% 

respectively after the introduction of road humps. Here, a more extensive test programme revealed 

that although catalyst cars tended to have the lowest absolute emission rates, they also had the 

most variable emission rates and generally showed the greatest sensitivity to traffic cahning. For 

example, there was a difference of two orders of magnitude between the HC output of the highest 

and lowest emitters. Emissions of CO from catalyst-equipped vehicles changed by between -30% 

and +63 9% as a result of calming, and HC emissions changed by between -91 % and +285%. For 

NO, emissions in particular, where a large increase had occurred, the emission rate before calming 

tended to be very low. There was less variation in the mean emission levels and percentage impacts 

of the petrol non-catalyst and diesel vehicles tested. However, whilst it was found that large 

increases in emissions can occur for catalyst cars as a result of calming (i. e. over 600% in the case 
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of CO, and around 160% in the case of NO., ), such effects do not appear to be dominant. 

Given the inevitable variation between the findings from different studies of this kind (due to the 

different assessment methods and scenarios employed, as weU as the general variability of exhaust 

emissions), the overall results for CO show quite a good agreement with those from previous TRL 

studies using the MODEM model (Cloke et al., 1999), and fall within the range of results reported 

by GFWTE (1992) for a petrol non-catalyst car. The mean HC results fall within the overall range 

of those reported previously, though they do not concur with those quoted in any single study. As 

implied above, the NO,, results tended to show more similarity to the predictions of the MODEM 

model (Webster, 1993a; Cloke et al., 1999) than to the results of the on-board measurements 

conducted by ZOger and Blessing (1995). For C02, there was a better level of agreement between 

the studies. In the study by Cloke et al. (1999), where MODEM was used to estimate impacts, 

a range of vehicle operating conditions (Le. different roads) were assessed. The results of the 

current study appear to agree quite weH with the largest increases in CO, HC, and C02 reported 

by Cloke el al., and the smallest decrease in NO.. Clearly, some catalyst-equipped cars exhibit 

substantially higher emissions over traffic caffi-iing cycles than the other catalyst cars. 

Emissions by scheme - 

The mean en-dssion rates of all the vehicles tested over the cycles for each scheme were also 

determined. For each combination of pollutant, vehicle category, and scheme, paired sample Mests 

were conducted in order to determine whether the mean emission of the vehicle sample after 

caftning was significantly different from the mean emission before calming. For petrol non-catalyst 

cars the changes in eniissions of CO, HC, and C02 were statistically significant for all schemes, 

whflst the changes in NO., were only significant for selected schemes. The results were rather 

different for petrol catalyst cars. Although the changes in C02 emissions were significant for all 

schemes, the changes in CO and HC were generally not significant. The change in NO,, emissions 

from petrol catalyst cars was not statistically significant for any scheme. For diesel cars, the 

significant changes tended to occur for NO,, and C02. The changes in CO and HC emissions were 

generally not significant, and emissions of particulate matter did not change significantly for any 

scheme. 

one objective of the study was to develop a system of comparative emission performance 

indicators for the different traffic calming measures. However, the impacts of the different 

measures had to be compared statistically in order to assess the relevance of the scheme order for 
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each vehicle category and pollutant. All the statistical tests were conducted on the percentage 

changes in emissions. In other words, for the purpose of the statistical tests the percentage change 

in the ernission level of each vehicle (for a given vehicle category and pollutant) was calculated, 

and then the resulting values were averaged. A multiple pairwise comparison method (the Student- 

Newman-Keuls (SNK) test) was used to examine the differences between the scheme means. The 

SNK test enabled schemes to be grouped according to whether significant differences existed 

between the means. In general, there was a great deal of overlap between the impacts of the 

grouped traffic calming measures. The extreme examples of this were the cases where there were 

no significant differences between the impacts of any of the different measures (i. e. petrol catalyst 

HC/ NO.,, and diesel HQ. The most distinct differences between schemes tended to occur with the 

petrol non-catalyst cars. 

12.8 Remote sensing of vehicle emissions 

In the first reported study of its kind, vehicle speed, vehicle acceleration, and carbon monoxide and 

hydrocarbon emissions were recorded using a remote sensing system near and between two types 

of traffic calming measure (flat-top road humps and speed cushions). 

The observed speeds, speed reductions, accelerations and decelerations were normal for traffic 

calming schemes. The mean percentages of carbon monoxide in the exhaust gas recorded near the 

hump and between humps were found to be higher than the level recorded before calming by 30% 

and 38% respectively, and theý corresponding median %CO values- increased by 56% and 38%. The 

increases in the mean %CO near and between speed cushions were 32% and"20%, with 

corresponding increases in the median CO levels of 47% and 2%. Based on the disaggregated data 

for a single lane of traffic near a road hump, the largest proportional increase in the mean %CO 

(73%) was observed for vehicles other than passenger cars. The mean CO level for non-catalyst 

cars increased by 44%, and that for catalyst-equipped cars by 60%. These values for passenger cars 

are close to the changes in CO mass emissions measured in the laboratory tests. The level of 

instrument noise on the hydrocarbon emission measurements was considered too great for firm 

conclusions to be drawn for this pollutant, and TRL wul be reassessing the hydrocarbon channel 

in further experiments. 

In order to provide a reasonable estimate of the change in the total mass of CO emitted per vehicle- 
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krn by on each of the roads investigated, the 25% change in fuel consumption (and hence exhaust 

gas volume) measured in the laboratory emission tests was applied systematically to the remote 

sensing results for all vehicles. It was found that traffic calming would cause the average mass of 

CO emitted per vehicle-krn to increase by 50-73%. This estimate did not account for effects on 

traffic flows which, on the two roads investigated, were reduced by 8% after calming. This would 

have slightly reduced the impact of the changes in operation on these roads, though the diverted 

traffic would have contributed to the emission levels on other roads unless it had been suppressed 

completely. As the before and after surveys were conducted at different ambient temperatures, it 

was also possible that the contribution of cold start emissions to total emissions would have been 

different in each survey. It was calculated that changes in cold start emissions of CO probably 

accounted for no more than around one third of the ý0-73% change in -mass emissions per vehicle- 

km. 

Given the uncertainties in the remote sensing estimate, the 50-73% increase in mass emissions of 

CO per kilometre (for all vehicles) determined by remote sensing agrees reasonably well with the 

range of impacts measured in the laboratory emission tests. However, the relatively high CO 

emission rate of petrol non-catalyst cars means that the effect on these vehicles would probably 

dominate the change in emissions of a stream of traffic at the present time. Also, the percentage 

increase in the mass of CO emitted, as determined from the FEAT results, also show a reasonable 

level of agreement with the results from the previous studies, even though the methods of 

assessment, the traffic cahning scenarios, and the vehicle types were different. These findings 

provide encouragement for further investigation using the remote sensing approach. However, 

although remote sensing is a useful tool there are still areas of doubt concerning the wider use of 

the technique in this type of application. The experimental technique is stiU being developed and 

the level of understanding and interpretation of the data will benefit from future refinement. 

It is reasonable to assume that because the mass emission rate of CO is dependent upon vehicle 

speed and acceleration, then these variables might be used to explain differences between the FEAT 

results and those of the modelling and on-road measurement studies. However, whereas the large 

increase in CO emissions recorded by ZOger and Blessing (1995) - albeit for one vehicle -coincided 

with low mean speeds and rapid accelerations and decelerations, Webster observed increases in CO 

emissions that were larger than those in the FEAT study even though he used a similar speed and 

less severe accelerations and decelerations. This suggests that the situation is more complex than 
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a simple speed/acceleration-based approach would suggest, and it appears that other factors - such 

as the spacing of humps, cushions, and other measures - are also important in determining any 

overaU effects on ernissions. 

12.9 Performance indicators and guidance 

The main findings of the research, as well as any relevant information drawn from other sources, 

were used to generate develop a system of performance indicators for the different traffic calming 

measures. The indicators were speed reduction, accident reduction, vehicle emissions, and traffic 

emissions. 

The resulting information was distilled into a simple set of guidelines, in the fo. rm of a general set 

of performance indicators, which can be used by local authorities during the process of selecting 

appropriate traffic calming measures to implement. The guidance is based on the assumption that 

a local authority will hope to improve safety be achieving a specific reduction in vehicle speeds 

through the introduction of traffic calming, and identifies the type of traffic calming measure likely 

to achieve a specific reduction in speed, as well as the* likely effects of each measure on accidents, 

delays to emergency service vehicles, and emissions. The relative importance of the individual 

effects may be defined by each local authority according to prevailing circumstances. 

The performance indicators demonstrated that the more severe 'hump-type' traffic calming 

measures tend to result in the largest speed reductions and hence the greatest reduction in accidents 

and the longest delays to emergency service vehicles. These measures also tend to result in the 

largest increases in emissions. The measures incorporating speed cushions and/or horizontal 

deflections tend to result in smaller speed reductions and smaller increases in emissions than the 

hump-type measures. 

12.10 Emission model assessment and development 

In order to examine whether the modal (or instantaneous) emission modelling approach was able 

to offer any improvements over the average-speed approach in the assessment of traffic calming, 

the results from the experimental work presented in the Thesis were used to compare the 

performance of the MEET (average speed) and MODEM (modal) models. Also, an attempt was 
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made to improve the accuracy of MODEM model in such applications by developing a variant 

model (MODEM-TC) for use in traffic calming applications, and a re-appraisal of the variant 

model was undertaken. 

The choice of driving cycles used to develop emission matrices is an important determinant of a 

model's accuracy, but neither the parameters used to describe operation, the grid size, nor the use 

of an interpolation scheme have previously been shown to result in any improvements in accuracy. 

Consequently, in the development of the MODEM-TC model, a decision was taken to concentrate 

on the driving cycle element. This was considered to be particularly appropriate for traffic calming, 

as it tends to impose a particular regime of low-speed operation for which a specific emissions 

database might be more appropriate. 

It was found that there was generally only a fair level of agreement between the overall absolute 

emission rates in the traffic calming study (both before and after cahning) and those predicted by 

the MEET model. However, there tended to be a fairly good agreement between the overall 

percentage impacts recorded in the traffic calming study and those calculated using the MEET 

equations, though the ability of MEET to predict these changes in emissions depended very much 

on the vehicle type and pollutant being considered. These comparisons suggest that the average- 

speed modelling approach used in MEET does, to a first approximation, give a good overall 

indication of the percentage impacts of traffic calming in general on emissions per vehicle, though 

the assessment of the reliability of the comparison between the different vehicle samples was 

somewhat hindered by the differences in absolute emission rates. MODEM exhibited a mixture of 

underestirnation and overestimation con4x-tred with the laboratory measurements, though in some cases 

there was a good level of agreement between the measured and modelled values. MODEM-TC, on the 

other hand, overestiniated bag emissions in ahnost all cases. The percentage changes predicted by the 

MEET and MODEM models showed an unexpected pattern. For almost a combinations of vehicle 

type and pollutant, the MEET model provided a more reliable indication of the likely impact of 

traffic calming than the MODEM model, in spite of the fact that the latter employs a more detailed 

mechanism for representing vehicle operation. Although for CO, HC and C02 the MODEM model 

correctly predicted that emissions would increase overall, the sizes of the increases were 

underestimated for all three vehicle categories by a factor of between 3 and 9. For petrol cars the 

direction of the change in NO, emissions resulting from the introduction of traffic calming was not 

correctly predicted by MODEM, though both the measured and modelled changes were relatively 
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small. For diesel cars MODEM correctly predicted an increase in NO., but again the predicted was 

around one third of the measured increase. The most consistent changes, with the exception of 
MODEM, were observed for C02 emissions. The measurements, the MEET model, and the 

MODEM-TC model indicated that C02 emissions from all vehicle categories increased by between 

19% and 29%. MODEM predicted increases of between 5 and 8%. 

For most vehicle category-poflutant combinations the MODEM-TC model improved on. the 

percentage impact predictions of the MODEM model. The most marked improvements occurred 
in the prediction of changes in C02 for aU three vehicle categories, though greatly improved results 

were also obtained for emissions of CO, HC, and NO,, from diesel vehicles, and HC emissions from 

petrol non-catalyst and catalyst vehicles. However, the MEET model stiH tended to predict 

percentage changes in emissions which were closer to those measured on the dynamometer. 

For petrol non-catalyst, petrol catalyst and diesel cars, and for all the individual driving cycles, the 

(weighted) absolute emission rates and percentage changes predicted by MEET, MODEM, and 

MODEM-TC were plotted against the corresponding emission rates measured on the dynamometer. 

None of the models consistently produced very good results at this level of disaggegation. 

There are clearly deficiencies in the modal modelling approach which cannot be entirely resolved by 

changing the emission factors or the way in which the models operate. A number of further 

suggestions for improving instantaneous models have been advanced. These include concentrating 

on the engine operating conditions which account for a large proportion of the emissions from 

catalyst-equipped vehicles, and introduction into models of a parameter relating to gear activity 

could help to reduce the variability of the emission values in matrix cells. Unfortunately, the work 

conducted so far indicates that an instantaneous model which treats extreme events separately 

provides no improvement in accuracy over existing instantaneous models, or even over average 

speed models. 

However, existing approaches described here do not address the most fundamental problem 

relating to instantaneous emission modelling: it is extremely difficult to measure emissions on a 

continuous basis with a high degree of precision, and the emissions and fuel consumption values 

recorded in the one-second steps might not be successfully allocated to the associated operating 

conditions. For example, because of the time required to transport the exhaust gas to the analysers, 
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and the actual response time of the analysers themselves, the emission signals are delayed relative 

to the driving cycle. Furthermore, the exhaust gas is mixed in the exhaust system. This results in 

a general flattening of instantaneous emission peaks over a period of more than one second. The 

dynamics of mixing also depend on the gas flow rate, and the situation is even worse when dilute 

exhaust gas is being sampled. 

These phenomena have obvious implications for the development of emission models based on 

instantaneous vehicle operation Firstly, emission events can be temporally misaligned with the 

speed data. Secondly, the damping of the raw exhaust signal means that, in general, the 'rear 

emission peaks will be underestimated, and the emission troughs overestimated. Even if no original 

emission has occurred in a given instant, a model can produce a value becausd of the temporal 

spreading of the emission peaks. MODEM is based upon measurements on dilute exhaust gas. 

Because the cells in each MODEM emission matrix contain average values for a particular mode 

of operation, the net result is that the second-by-second prediction by MODEM during a given 

driving cycle is damped even further, and the model will tend not to pick up the peaks and troughs 

of the (already highly damped) emission trace. This would still probably occur, though hopefully 

to a much lesser extent, even if a 'true' emission profile could be obtained. 

Clearly, advances in the field of modal emission modelling will not be forthcoming until realistic 

continuous emission data are available. Efforts are now underway to reduce the dynamic distortion 

of the emission data, and researchers have developed a mathematical model of the measurement 

system which can then be 'inverted' or solved in order to reconstruct the original emission signal 

in the exhaust pipe from the one measured at the analyser. However, it was not possible to attempt 

any modification of this type to the existing MODEM model here; the reconstruction of the Irue' 

emission signal at the analysers could also not be achieved because the relevant sampling 

parameters were not available. 
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13 CONCLUSIONS AND RECOMMENDATIONS 

13.1 Conclusions 

This Thesis has described a study of the impacts of traffic calming on exhaust emissions, the most 

detailed and extensive of its kind to date. Nine different types of measure were investigated, and 

the results have been used to develop guidance on scheme implementation for local authorities. The 

main conclusions of the research are presented below. 

(1) The results of the study clearly indicate that traffic calming measures increase the emissions 

of some pollutants from passenger cars. For the petrol non-catalyst, petrol catalyst, and 

diesel cars tested, the mean emissions of CO, HC, and C02 increased by between 20 and 

60 percent. For NO., emissions, only the diesel cars showed a substantial increase (about 

30 percent). The increases in NO., emissions for petrol non-catalyst and petrol catalyst cars 

were much smaller, and not statistically significant. Emissions of total particulate mater 

from the diesel cars increased by 30 percent. 

(ii) Although the catalyst-equipped petrol cars tended to have the lowest absolute emission 

rates, they also had the most variable emissions and some vehicles exhibited a particular 

sensitivity to traffic calming. Whilst it was found that large increases in emissions can occur 

for some catalyst cars, such effects do not appear to be dominant, and it is unlikely that the 

very large impacts of traffic calming on emissions recorded in some previous studies are 

typical of the UK vehicle fleet. 

(fli) The more 'severe' traffic calming measures (e. g. road humps) tend to result in the greatest 

speed reductions, the greatest accident savings, and some of the largest increases in 

emissions. In areas where air pollution is a particular concern, it will therefore be necessary 

for local authorities to adopt a balanced approach to the implementation of traffic: calming, 

whereby the potential benefits of reduced speeds and fewer accidents are weighed against 

the possible adverse impacts of increased emissions. However, it is also important to note 

that a range of other factors will influence the acceptability of a given traffic calming 

scheme to drivers, residents, pedestrians and the emergency services. Such factors include 
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physical levels of noise and vibration, perceptions relating to the visual appearance of the 

road environment, perceptions of safety, perceptions of 'smoke', 'dirt', 'fumes, 'noise', 

'odour', etc., perceived damage to vehicles, and ride comfort. 

(iv) In spite of the variability in the results for petrol catalyst cars, the understanding of the 

general effects of traffic calming on passenger car emissions is now improving. The overall 

percentage changes in CO vehicle emissions found in this study show quite a good 

agreement with those calculated using an average speed model (NIEET), with those found 

in previous TRL traffic calming studies using MODEM. The changes in HC emissions fall 

within the overall range of those reported previously, though they do not concur with those 

quoted in any single study. The NO., results tend to show more similarity to the predictions 

of MODEM in other studies than to the results of on-board measurements. For C02, there 

is a good level of agreement between different studies. 

(V) The 50-73% increase in mass emissions of CO per kilometre (for all vehicles) determined 

by remote sensing agrees reasonably well with the range of impacts measured in the 

laboratory emission tests. In the laboratory tests, the mean CO emission of petrol non- 

catalyst, petrol catalyst, and diesel cars increased by 34%, 59%, and 39% respectively. 

However, the relatively high CO emission rate of petrol non-catalyst cars means that the 

effect on these vehicles would probably currently dominate the change in emissions of a 

stream of traffic. Although remote sensing is a useful tool there are still areas of doubt 

concerning the wider use of the technique in this type of application. The experimental 

technique is still being developed and the level of understanding and interpretation of the 

data will benefit from future refinement. 

(VI) The average-speed modelling approach used in MEET does, to a first approximation, give 

a good overall indication of the percentage impacts of traffic calming in general on 

emissions per vehicle. For almost all combinations of vehicle type and pollutant, the MEET 

model provided. a more reliable indication of the likely impact of traffic calming than the 

MODEM model, in spite of the fact that the latter employs a more detailed mechanism for 

representing vehicle operation. When the emission matrices used in MODEM were replaced 

with ones derived using the laboratory emission data from the traflic calming tests, the resulting 
MODEM-TC model improved on the percentage impact predictions of the MODEM 
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model. However, the MEET model still tended to predict percentage changes in emissions 

which were closer to those measured on the dynamometer. 

(vii) The impacts of individual types of measure are more difficult to predict. Comparisons at 

this level between the percentage impacts measured in this study and those calculated using 

MEET, MODEM, and MODEM-TC have suggested that the model cannot be used with 

confidence to rank different types of traffic cahvýing; measures according to their impact on 

emissions. 

(viii) The time lag and damping associated with a continuous raw exhaust signal means that, in 

general, the 'real' emission peaks will be underestimated, and the emission troughs 

overestimated. This has serious implications for modal emission modefling. MODEM is 

based upon measurements on dilute exhaust gas, which makes the situation even worse. 

In effect, MODEM cannot be considered to be more effective in micro-scale modelling 

than a conventional average-speed model. 

13.2 Recommendations for future work 

The most modem petrol cars tested in the study conformed to the Euro I legislation, but these are 

now several years old. It has been shown that newer-technology vehicles can be (relatively 

speaking) particularly susceptible to traffic calming. It would be of interest to examine how more 

modem vehicles behave under the real-world driving conditions simulated in the traffic calming 

cycles, and whether the emission levels of such vehicles are elevated. 

The general level of agreement between the remote sensing study and the results of previous traffic 

cakning studies provides encouragement for further investigation using the remote sensing 

approach. However, at present there are still areas of doubt concerning the wider use of the 

technique in this type of application. For example, a more consistent approach would have to be 

agreed on how to treat negative emission values, and remote sensing cannot be simply used as an 

independent means of determining changes in mass emissions per kilometre resulting from changes 

in operation since this requires information on fuel consumption. In addition, a method for remotely 

measuring exhaust gas temperature would help to identify vehicles in cold start mode, and this 

should remove some of the uncertainty in the results. Research into the technical feasibility of 
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measuring temperature remotely is currently underway in the United States. The remote sensing 

experimental technique is still being developed and the level of understanding and interpretation 

of the data will benefit from future refinement. It would be particularly useful if the problems with 

the HC channel observed in this experiment could be resolved, and more information on NO levels 

could be obtained. The latter is particularly important as existing results show that the effects of 

traffic calming on NO,, emissions are unclear. 

Urban traffic calming measures have been mainly introduced on residential roads with low traffic 

flows. Consequently, even though traffic calming generally results in increased emissions per 

vehicle it is unlikely that that it would result in breaches of air quality standards. Furthermore, the 

improving performance of emission control technology -with time means that, in the future, 

breaches of the standards would be even less likely to occur as a result of traffic calming. However, 

in Air Quality Management Areas, where air pollution standards are frequently breached, particular 

attention would need to be given to the balance between reductions in injury accidents and 

increases in vehicle emissions, and further empirical air quality information would be valuable. The 

guidance provided here would be enhanced if information relating to the other factors which are 

thought to influence the acceptabifity of traffic cahning (noise, vibration, perceived impacts, etc. ) 

were to be included. 

It is extremely difficult to measure emissions on a continuous basis with a high degree of precision, 

and time lags and damping effects are particular problems. Advances in the field of modal emission 

modelling will not be forthcoming until realistic continuous emission data are available, and efforts 

are now underway to reduce the dynamic distortion of the emission data. Researchers are 

developing mathematical models of the measurement system which can then be solved in order to 

reconstruct the original emission signal in the exhaust pipe from the one measured at the analyser. 

Unfortunately, it was not possible to attempt any modification of this type to the existing MODEM 

model; the reconstruction of the 'true' emission signal at the analysers could also not be achieved 

because the relevant sampling parameters were not available. 
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APPENDIX A 

A BRIEF CHRONOLOGY OF RECENT 
TRAFFIC CALMING LEGISLATION 
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Although UK traffic calming legislation has tended to be more rigid that in some other European 

countries, it has evolved during the 1990s and now allows highway authorities to implement a 

wider range of measures. The various changes in legislation are outlined below. 

Highways (Road Humps) Regulations 1990 

Compared with earlier legislation, the 1990 Regulations provide increased flexibility in the siting 

and shaping of road humps. Certain requirements of the regulations can be relaxed when humps 

are introduced in 20 mph zones. The Regulations defme the dimensions, siting, signing and fighting 

of road humps for use on the Highway. Both flat-top (including raised junctions) and round-top 

humps are permitted, and humps may be of any height between 50 mm and 100 mm. 

Road Traffic Act 1991 

The Act amended Sections 90A(I) and 9013(l) of the Mghways Act (1980), clarifying the powers 

of the Secretary of State to authorise the use of road humps which do not conform to the 1990 

Regulations, and on roads having speed limits of 30 mph or less. 

Traffic Calming Act 1992 

This amends the Highways Act 1980, and makes the first specific references in legislation to traffic 

calming. The 1992 Act removes doubts which existed over the legality of some traffic calming 
devices. This allows the Secretary of State to make regulations giving clear legal authority to 

construct a wide range of horizontal deflection features (Department of Transport, 1994e). 

Highways (Traffic Calming) Regulations 1993 

The 1993 Regulations provide local authorities with the necessary powers to construct particular 

measures for traffic calming purposes which are not otherwise clearly authorised. Traffic calming 

measures permitted by this legislation cannot be used to prevent access where this is not lawffilly 

prohibited (Department of Transport, 1994a). 
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Highways (Road Humps) Regulations 1996 

The very prescriptive 1990 Regulations have been replaced by the very much simplified Highways 

(Road Humps) Regulations 1996, leaving the actual design and location of road humps as a matter 
for local highway authorities to determine (Department of Transport, 1996). The only dimensions 

now constrained by the Regulations are: maximum and minimum heights of 100 mm. and 25 mm 

respectively, a minimum length of 900 nun, and no vertical face to exceed 6mm in height. 

Authorities have considerable flexibility concerning the implementation of humps, but need to 

ensure that an adequate duty of care has been exercised. 

Highways (Road Humps) Regulations 1999 

These provide local highway authorities outside London with considerable flexibility in the design 

and placement of road htunps. However, the regulations make local highway authorities responsible 
for the design and placement, so authorities will need to ensure that an adequate duty of care is 

exercised. The Greater London Authority Act 1999 allows local authorities in London to construct 
humps of any dimension on roads subject to any speed limit (without the need for special 

authorisation but with a requirement for consultation with the Secretary of State). This greater 
freedom of action places greater responsibility on the London Boroughs to ensure that an adequate 
duty of care is exercised. Humps where the height could be varied mechanically need particular 

consideration regarding the safety of road users. Local authorities wishing to install such devices 

on the public highway are advised to consult with Road Safety Division, DETR on the need for 

special authorisation even if the humps conform to 1999 regulations. 

Highways (Traffic calming) Regulations 1999 

The I-Eghways (Traffic Calming) Regulations further clarified the powers available to local highway 

authorities to construct particular measures for traffic calming purposes. The measures include 

gateways, pinch points, islands, overrun areas, rumble devices, bufld-outs, and chicanes. In 20 mph 

zones, warning signs for traffic calming features may be omitted, but this does not apply to non- 
traffic calming features. For these features, warning signs, as appropriate, should be provided. Give 

way markings to assign priority at a cb&ane would also stiU be required in a 20 mph zone. 
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APPENDIX B 

EMISSION TEST RESULTS 

NB: In this Appendix, for consistent formatting all 
emission rates are quoted to three decimal places. 

The emission rates should not be considered accurate to more than 
three significant figures. 
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Table BI Carbon monoxide (Wkm): Petrol non-catalyst cars. 
Vehicle size and reference number 

Traffic calming Scheme Stage Small Me dium Le 
-- measure 6 

Before 4.944 6.968 7.179 16.154 6.751 10.967 
calming 

Test results 4.728 5.820 6.025 21.475 6.348 14.351 

Mean 4.836 6.394 6.602 18.815 6.550 12.659 
A 

Flat-top road - 6.727 10.213 9.751 25.044 9.208 19.461 
humps Afler Test results 6.721 9.050 7.774 26.950 8.358 11317 

calming ý ; 
6.724 9.632 8.763 25.997 8.783 O 3 4 

% chan e in mean +39 +51 +33 +38 +34 
8 615 15.301 9.562 25.729 9.914 16.302 

Before Test results . 9.140 9.582 9.083 26.656 9.326 15.678 
calming Mean 8.878 - 12.442 9.323 26.193 9.620 15.990 

B 
Round-top 13.038 23.531 13.431 35.789 12.981 27.547 

humps After Test results 13.884 - 14.798 9.895 31.319 13.144 26.009 
calming 

1 Mean 13.461 19.165 11.663 33.554 1 13.063 26,778 ý-Y. 
chan ge in mean +52 +54 +25 +28 1 +36 +67 

10.755 11.710 20.351 9.885 29.803 9.127 16.256 
Before Test results 9.733 7.402 15.270 9.327 27.851 8.545 24.273 
calming - -- Meall 10.244 9.556 17.811 9.606 28.827 8.836 20.265 

C 
1.7m-wide 13.361 11.543 23.123 11.341 27.056 11.938 25.755 

speed cushions Afler Test results 13.600 11.618 21.625 10.261 35.550 12.723 30.620 
calming 1 Mean 13.481 11.580 1 22.3741 10.801 1 31.303 1 12.331 

- 
28.188 

% chan e in mean +32 +21 1 +26 +12 1 +9 1 +40 +39 
6.450 10.345 9.618 21.360 11.683 18.440 

Before Test results 7.190 13.071 - 8.499 22.201 12.648 21.390 
Pinch calming Mean 6.820 11.708 9.059 21.781 12.166 19.915 

D point/speed 11.455 13.082 14.220 29.288 13.309 25.559 

cushion 
Afler Test results 11.969 15.988 - 13.673 29.330 14.021 25.905 

calming 1 Mean 11.712 14.535 - 13.947 1 29.309 13.665 25.732 
chan ge i. n mean +72 +24 - +54 +35 +12 +29 

17.380 13.879 6.784 23.794 11.707 21.430 
Before Test results - 1 17.318 10.020 4.756 22.257 11.580 18.185 
calming -M can - 17.349 11.950 - 5.770 23.026 11.644 19.808 

E 
Raised 24.369 18.162 8.507 29.866 15.264 33.945 

Junction After Test results - 11.176 16.879 - 8.678 28.964 14.476 28.083 
calming 1 Mean 23.323 17.521 - 8.593 29.415 14.870 31.014 
% chan ei. n mean +34 +47 - +49 +28 +28 1 +57 

17.885 10.370 5.267 17.105 12.097 11.024 
Before Test results 16.866 9.793 - 4.164 16.546 10.944 11.854 
calming Mean 17.375 10.081 - 4.176 16.826 11.520 11,439 

F Chicane 21.866 17.847 14.740 30.039 15.212 19.795 
After Test results 24.078 17.475 - 13854 30.621 14.477 23.570 

calming 22.972 18.161 14ý297 30.330 14.844 21.683 
chan i. n mean 1 +32 +80 1 +203 +80 +29 +90 

18.285 13.304 7.340 26.953 13.122 19.901 
Before Test results 17.580 11.929 8.113 24.104 14.785 - calming Mean 17.932 12.616 7.727 25.529 13.954 19.901 

G Build-out 17.143 16.578 12.809 29.166 12.321 26.787 
After Test results 22.875 15.258 14.376 27.546 15.586 - calming ý Mean 20.009 15-918 13.593 28.356 13.954 26.787 
% chan e in mean +12 +26 +76 +11 0 +35 

18 285 12.570 10 * 780 26.953 13.122 21.500 
Before Test results . 17.580 12.890 8.010 24.104 14.785 17.400 
calming Mean 17.932 12.730 

--- 
9.395 

--- 
[ 25.529 13.954 19.450 

H 
Mini- - 21.565 16.420 9.110 32.233 14.711 23.690 

roundabout After Test results 22.144 16.820 11.610 28.823 14.855 29.330 
calming 

I Mean 21.584 1 16.620 10.360 30.528 1 
- 

14.783 
--- 

26.510 
chan ei. n mean 

t 
+22 1 +31 - +10 ; 20 +6 F +36 1 

534 15 9 361 6.590 21.407 13.710 16.210 
Before Test results - . 16.406 . 9.857 - 5.192 19.678 10.028 16.619 

- - calming Mean - 15.970 9.609 - 5.891 20.543 11.869 1 6.414 

1 
1.9m-wide - 20.098 14.269 5.899 21.366 14.647 22.041 

speed cushions After Test results - 18 371 14 328 - 496 1 5 20.880 14.342 20.099 
calnung 177 ýean :: ý- . - -235 . 

14-299 - 
. 

56 8 21.123 
-U-424 , 21.070-1 

Yo chan 
- 

ge in mean - 
1 +20 +49 - -3 

1 +3 +22 
ý 
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Table B2 Carbon monoxide (g/km): Petrol catalyst cars. 
Traffic Vehicle size and reference number 

Scheme calming Stage Small Medium Lar ze 
measure 9 10 11 12 13 14 15 16 17 18 : 19 

Before 2268 0.363 0.563 1.368 2.075 0.152 
calming 

Test results 
. 100 0.424 0.554 1.784 3.467 0.282 

_ Mean 2.184 - - 0.394 - 0.559 - - 1.576 2.771 0.217 
A 

Flat-top road - 2.014 1.483 1.202 2.147 15.996 0.881 
humps After Test results 1.965 - - 0.893 2.254 - - 2.774 1 24.969 0.473 

calming Mean 1.990 - - 1.188 w 1.728 - 1461 L20.483 0.07 
% cha ge in mean -9 - +202 - +209 +56 1 +639 +212 

21.706 2.478 3.399 1.629 17.212 0.851 
Before Test results - 19.668 4.794 - 7.270 - 1.514 22.632 1.442 
calming Mean - 20,687 - 3.636 - 5.335 - 1.572 19.922 1.147 

B 
Round-top - 28,816 9.039 7.413 3.312 25.282 1.461 

humps After Test results '25.439 - 5.700 - 7.583 - 
1 5.144 27.171 2.092 

calming 1 Mean 27.128 1 - 7.370 1 - 17.798 - 14.228 26.227 1.777 
% chanee in mean +31 1 - 1 +103 +41 - 1 +169 +32 +55 

0.909 3.535 0.353 2.448 0.701 
Before Test results - - 0.754 3.896 0.491 3.070 0.764 

1.7m-wide calming Mean 0.832 - 13.715 0.422 2.759 0.733 
C speed 0.810 5.957 1.519 7.424 1.126 

cushions 
After Test results 0.828 - 7.265 1.798 11.633 1.471 

calming I Mean - 0.819 - 6.611 1.658 9.529 1.298 
mean %chaneeln - -2 - +78 +293 +245 +77 

_ 1.490 1.043 3.972 0.783 3.937 0.276 
Before Test resu Its 4.184 1.256 10.568 0.831 13.264 0.562 

Pinch cahning MLqn 2.837 1.150 7.270 0.807 8.600 0.419 
D point/sPeed 

--- 3.423 1.411 8.374 1.076 8.425 0.507 

cushion 
After Test results 3.899 1.427 11.866 1.025 16.374 0.802 

calming 1 Mean 3.661 1.419 10110 ii v 1.051 12.400 0.655 
% chanee in mean +29 +23 

t V 
+ý +30 +44 +56 

4.708 0.825 3.737 1.202 4.205 0.554 
Before Test results 18.173 6.190 4.568 2.516 9.680 0.539 
calming Mcan 11.441 3.508 4.153 1.859 6.943 0.547 

E 
Raised 13.829 3.886 5.056 1.709 8.467 0.445 

Junction After Test results 23.794 13.163 12.595 2.623 18.430 0.910 
calming 1 Mean 18.812 8.525 8.826 2.166 13.453 0.678 

- -% chanee in mean +64 +143 +113 +17 +94 +24 
1.362 0.974 1.973 0.469 3.693 0.428 

Before Test results 5.180 0.750 7.008 0.792 2.230 0.899 
calining Mean 3.271 0.862 4.490 0.631 2.962 0.664 

F Chicane 3.859 2.902 9.953 0.981 6.358 0.923 
After Test results 

1 7.218 2.651 17.501, 0.335 9.891 1.158 
calming 

I Mean 5.539 2.776 13.727 - 1 0.658 8.125 1.041 
% chakee in mean I - +69 +222 +206 - +4 +174 +57 

3.767 0.763 7.277 1.798 1.565 0.568 
Before Test results - 

1 
16.074 2.208 8.776 - 4.512 8.726 1 2.080 

calming - Mean - 1 9.921 1.486 8.027 - 3.155 5.146 1.324 
G Build-out 6.587 1.763 12.71 3.197 6.951 2.372 

After Test results - 15.082 

1 

4.301 12.374 - . 3.400 11.349 
- 

2.433 
calming I Mean I- 10.8 5 3.032 12.542 - - 1 2.999 9.150 2.403 

% chan ze in mean +9 +104 +56 - . +5 +78 +81 
3.767 0.763 7.277 1.798 1.565 0.568 

Before Test results 16.074 2.208 8.776 - 4.512 8.726 2.080 
calming Mean 9.921 1.486 8.027 3.155 5.146 1.324 

H 
Mini- 4.410 2.093 8.422 2.733 3,663 3.258 

roundabout After Test results 9.518 1 1.375 3.427 2.305 6.301 3.113 
calming I Mean 1 1 6.964 1.734 1 5.925 2.519 1 4.982 3.186 

% chanze in mean -30 +17 1 -26 -20 1 -3 +41 
625 2 0 407 4.510 1.355 3.521 0.442 

Before Test results . 2.165 . 1.186 13.223 7.957 1.921 1.142 
1 9m-wide 

calming Mean 2.395 0.797 8.867 - - 4.656 2.721 0.792 
. 
speed 

- 
After Test results 

-_ 2.773 1.676 6.030 
- - 

2.679 6.946 0.636 

cushions 2.806 3.083 13.969 4.952 11.573 1.734 
calming- 1 Me 2.790 '2_380 9.999 - 3.816 9.260 1.185 

% chan ea_n_ý ze in m +16 +198 +13 -18 +240 +50 
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Table B3 Carbon monoxide (2/km): Diesel cars. 
Vehicle size and reference number Traffic calmin Scheme g 

measure Stage No size discrimination 
20 21 22 

Before 1.062 0.433 0 492 
calming 

Test results 0.965 0.433 . 0.512 
Mean 1.014 0.433 0.502 Flat-top road A humps After Test results 

1.126 0.676 1.001 

calmin 
1.058 1 0.709 1 0.965 

g I Mega 
___ 

j 1.092 0.693 1 0.983 
% cha ,eJ. n mean +8 +60 +96 
Before Test results 

1.264 0.342 0.507 

l i 1.227 0.375 0.462 
ca m ng 

d Mean 1.246 0.359 0.485 Roun -top B humps After Test results 
1.479 0.691 1.051 

calmin 
1.435 0.824 1.031 

g 
I Mean 1.457 0.758 1.041 

% chan ize in mean +17 +111 _ +115 

Before Test results 
1.156 0.392 0.548 

l i 1.063 0.377 0.557 
ca m ng 

i Mean 1.110 0.385 0.553 
C 1.7m-w de 

speed cushions After - Test results 
1.245 0.568 0.811 

l i 1.162 0.571 0.803 
ca m ng 

. 
Mean 1.203 0.570 0.807 

% cha e in mean +8 +48 +46 

Before Test results 
I, 246 0.369 0.391 

l i - 
1.177 0.407 0.436 

ca m ng 
Pinch Mean 1.212 0.388 0.414 

D point/speed After Test results 
1.245 0.531 0.593 

cushion l i 1.274 0.543 0.586 
ca m ng 

I Mean 1.260 0.537 0.590 
% chan ge in mean +4 +38 +43 

Before Test results 
0.706 0.365 0.629 

l i 0.947 0.337 0.697 
ca m ng Mean 0.826 0.351 1 0.516 

E Raised 
Junction After Test results 

I* 147 0.504 0.850 

l i 1.067 0.527 0.855 
ca m ng 1 Mean 1.107 0.663 0.852 
% cha ee in mean +34 +89 +65 

Before Test results 
0.889 0.296 0.437 

l i 0.913 0.254 0.427 
ca m ng Mean 0.901 0.275 0.287 

F Chicane After Test results 
1.156 0.372 0.598 

l i 1.148 0.304 0.617 
ca m ng 

I Mean 1.152 0432 ' 0.510 
% chan, e in mean +28 757 +77 

Before Test results 
1.062 0.372 0.399 

l i 1.037 0.304 0.405 
ca m ng Mean 1.050 0.338 0.402 

G Build-out 1.118 0.598 0.726 After Test results 
l i 1.074 0.617 0.677 

ca m ng 
I Mean 1.096 0.608 0.702 

% chan ei .n mean +4 +80 +75 

Before Test results 
1.062 0.372 0.399 

l i 1.037 0.304 0.405 
ca m ng 

Mi i Mean 1.050 0.338 0.402 
H n - 

roundabout After Test results 
1.026 0.515 0.828 

l i 1.017 0.539 0.777 
ca m ng 

I Mean 1.021 0.527 0.802 
% cha ee in mean -3 +56 +100 

Before Test results 
0.945 0.260 0.341 

l i 0.919 0.269 0.314 
ca m ng Mean 0.932 0.264 0.328 1.9m-wide 1 

speed cushions After Test results 
0.956 0.559 0.689 
0.950 0.574 0666 

calming 
. Mean M53 0.567 0: 678 

L-1 
r 

% chani ze in mean +2 +115 +jn6 

250 



T, qhle'R4 Total hvdrocarbons (LY/km): Petrol non-catalvst cars. 
Vehicle size and reference number 

Traffic calming Scheme Stage Small Me 
- - 

dium e measure 11 2 3 4 5 T6 7 8 
Before 0.863 1.417 0.862 1.730 0.914 1.192 
calming 

Test results 0.915 - 1.352 - 0.780 1.738 0.845 1.186 
Mean 0.889 - 1.385 - 0.821 1.734 0.880 1.189 

A 
Flat-top road - 1.567 2.283 1.360 3110 1.128 2.224 

humps After Test results 1.714 - 2.277 1.351 2.890 1.091 2.261 
calming I Mean 1.641 1 - 2.280 1.356 1 3.000 1.110 2.243 
%chan einmean +85 +65 + 65 1 +73 +26 +89 

I* 244 1.926 1.221 1.932 0.861 1.701 
Before Test results 1.270 1.649 1.307 1.851 0.898 1.548 
calming __ Mean 1.257 1.788 1.246 1.892 0.880 1.625 

B 
Round-top -- 2.134 3.564 1.941 3.392 1.087 3.025 

humps After Test results 2.453 1911 1.966 3.300 1.152 2.853 
calming 1 Mean 2.294 3.238 1 - 1.954 1 3.346 1.120 1 2.939 
% chan einmean +82 +81 1 - +55 +77 +27 +81 

I* 174 1.878 2.423 1.345 1.859 0.906 1.606 
Before Test results 1.144 1.606 2.144 1.340 1.785 0.769 1.868 
calming Mcan 1.159 1.742 2.284 1.342 1.822 0.838 1.737 

C 
1.7m-wide 1.748 '2.271 3.262 1.964 2.391 1.021 2.449 

speed cushions After Test results 1.651 1.345 3.052 1.762 2.646 1.250 2.938 
calming r _Mcgn 1.700 2.308 1 3.157 1.863 2.519 1.136 2.693 
% chan ee in mean +47 +32 +38 +39 +38 +36 +55 

1.091 1.566 1.331 1.693 1.177 1.559 
Before Test results 1.164 1.848 1.026 1.774 1.016 1.681 

Pinch calming Mean 1.128 1.708 1.179 1.784 1.097 1.620 

D point/sp-ved 
- - 1.737 2.124 1.954 2.606 1.291 2.585 

cushion 
After Test results 1.784 2.578 1.783 2.711 1.344 2.156 

calming 1 Mean 1.761 2.351 1.869 1 2.659 1.317 2.371 
% chan e in mean +56 +38 +59 +49 +20 +46 

2.660 2.159 1.043 2.108 0.937 1.978 
Before Test results - 2.640 1.883 0.995 2.023 0.858 1.787 
calming 

- 2.650 2.021 1.019 2.066 0.898 1.883 

E 
Raised 3.703 3.510 1.672 3.097 1.202 2.947 

Junction Afler Test results 3.420 3.428 1.838 3.045 1.129 2.873 
ca Iming 

I - Mean 1 3.562 3.469 1.755 3.071 1 1.166 2.910 
Ya chan ge in mean +34 +72 +72 1 +49 +30 +55 

2.070 1.520 0.765 1.518 0.993 1.636 
Before Test results 2.130 1.423 0.745 1.505 0.830 1.664 
calming - Mean 2.086 1.472 0.755 1.1'52 0.911 1.650 

F Chicane ____ _ 3.361 2.586 3.057 2.683 1.130 2.351 
After Test results 3.660 2.596 1.925 2: 721 1.024 2.573 

calming 
I- Mean 3.510 2.591 2.491 2.072 7 2.462 

% chan Lye in mean +68 +76 +230 +79 +18 +49 
2.308 2.093 1.190 2.187 1.008 2.025 

Before Test results 2.683 2.067 1.730 2.031 1.097 1.880 
calming Mean 2.496 2.080 - 1.460 2.109 1.053, 1.953 

G Build-out 2.786 2.395 1.787 2.452 1.332 2.108 
After Test results 2.949 2.433 - 2.587 2.481 1.163 2.157 

calming 1 Mean 2.868 1 2.414 - 2.187 1 2.467 1.248 2.133 
% chan e in mean +15 +16 - +50 +17 1 +19 +9 

* 2.308 1.960 1.410 2.187 1.008 2.090 
Befor e Test results 2.683 1.730_ 1.090 2.031 1.097 1.960 
calming -Mean 2.496 _ 1.8451 . 1.250 2.109 1.053 2.025 

H 
Mini- 3.473 2.810 1.970 3.364 1.251 2.570 

roundabout After Test results 3.83 - 1.960 2.967 1.269 3.110 
calming 

. Mean - 3.651 2.885 - 1.965 3.166 1.260 2.840 
% chan ze i. n mean - +46 +56 - +57 +50 +19 1 +40 

1 952 1.262 0.897 1.542 1.046 1.165 
Before Test results - . 1.810 1.194 0.875 1.365 0.893 1.105 
calming Mean 1.881 1.228 - 0.886 1.454_ 0.970 1.135 

1 1.9m-wide - 2.682 2.110 1.251 2.549 1.185 1.974 
speed cushions After Test results 2.550 2.115 - 1 1.121 2.383 J 

__L. _09_6__ 
L 

_1.620 c ing alm ' 
i 

2.616 2.113 - IA86 2.46 Q-1 P 

% c han ge in mean +39 +72 - +34 +70 +18 +58 
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Table B5 Total hydrocarbons (g/km): Petrol catalyst cars. 
Traffic Vehicle size and reference number 

Scheme calming Stage Small Medium Large 
measure 9 10 11 12 13 14 15 16 17 18 19 

Before Test 0.291 0.019 0.027 0.028 0.143 0.015 
calming results 0.359 0.007 0.038 0.041 0.133 0.023 

Mean 0.325 - 0.013 0.033 0.035 
10.138 0.019 

A Flat-top 
road humps Test 0.454 0.032 0.062 0.032 1 0.350 0.046 

After 
calmin 

results 0.367 - 0.028 0.085 0.043 0,483 0.024 
g Mean 0.411 0.030 :: rO. 074 0.038 LO. 417 0.035 

% change in mean +26 +131 1 +126 1- 
- +9 1 +250 +84 

Test 2.091 0.043 0.062 0.023 0.145 0.027 
Before 

l i results - 2.033 - 0.078 - 0.273 - 0.016 0.403 0.042 
ca m ng Mcan - 2.062 - 0.061 - 0.168 - 0.020 0.274 0.035 

B Round-top Test 2.955 0.135 0.169 0.043 0.465 0.041 
humps After 

al in results 2.609 - 0.088 - 0.280 - 0.068 0.470 0.056 
c m g 

I Mean 2.782 - 0.112 0.225 - 10.056 0468 0049 
% change mean +35 - +84 +34 - +185 

Test 0.054 0.100 0,013 0.094 0.013 
Before 

l i results - - 1 0.023 - 0.102 0.018 0.118 
1 

0.021 

7m-wide 1 
ca m ng Mean 

- 
0.038 - 0.101 0.016 0.106 0.017 

C . 
speed Test - 0.021 0.175 0.025 0.227 0.017 

cushions 
After 
almin 

results 0.013 0.243 0.031 0.262 0.022 
c g 

I Mean 0.017 0.209 0.028 0.245 . 0.020 
% chang e in mean -55 +107 +79 +130 +13 

Test 0.064 0.019 0.361 0.031 0.132 0.022 
Before 

l i results - 0.143 0.020 0.589 - - - 
ý 

0.014 0.292 0.016 

Pinch 
ca m ng Mean - 0.103 0.020 0.475 - - - 

10.023 0.212 0.019 
D point/speed Test 0.226 0.026 0.643 0.010 0.230 - 0.05 

cushion 
Aft! r 
lmin results 0.251 0.019 0.910 0.017 0.381 0.011 

ca g 
1 Mean 0.239 0.023 0.777 0.014 0.305 0.011 

I % chang e in mean I 1 +131 +15 +63 -40 
. +44 -42 

Test 0.213 0.040 0.078 0.034 0.158 0.043 
Before 

l i results 0.449 0.141 0.098 0.044 
. 
0.312 0.003 

ca m ng Mcan 0.331 0.091 0.088 0.039 0.235 0.023 
E Raised T 0.323 0.141 0.109 0.021 0.283 0.000 

Junction After 
lmin results 0. . 

313 0.364 0.053 0.476 0004 
ca g Mean 0. 0.237 0.037 

. 
0.380 Oý002 

% chan in mean +29 +151 +169 -5 +61 -91 
Test 0.099 0.050 0.090 0.038 0.154 0.003 

Before 
l i results 0.146 0.026 0.209 0.022 0.105 0.007 

ca m ng Mean 0.123 0.038 0.150 0.030 0.130 0.005 
F Chicane T 0.301 0.070 0.464 0.041 0.223 0.003 

After 
l i rcsu 1 

0.468 0.066 0.690 0.038 0.350 0.007 
ca m ng 

1 Mean 0.385 0.068 0.577 0.040 0.287 0.005 
% chang e in mean +214 +79 +286 +32 +121 

-0 Test 0.203 0.028 0.422 0.029 0.077 0.044 
Before 

l i results 0.557 0.058 0.404 0.101 0.231 0.110 
ca m ng Mean 0.380 0.043 0.413 0.065 0.154 0.077 

G Build-out Tcs 0.183 0.040 0.977 0.056 0.188 0.218 
After 
lmin results 0.481 0.102 0.673 0.049 0.285 0.100 

ca g 
I Mean 0.332 0,071 0.825 0.053 0.236 0.159 

% change in mean -13 +64 +100 -19 +54 +106 

est 0.203 0.028 0.422 0.029 0.077 0.044 
Befi 

h 
ýrc u ults 0.557 0.058 0.404 0.101 0.231 0.110 F ca - . __.. Mean - 0.380 0.043 0.413 0.065 0.154 0.077 

H 
Mini- T 0.143 0.048 0.513 0.088 0.133 0.163 

roundabout After 
calmin 

results - 0.343 0.040 0.578 0.030 0.188 0.153 
g Mean 0.243 0,044 0.546 0.059 0.160 0.158 

% chang e in mean -36 +1 +32 -9 +4 +105 
Test 0.163 0.018 0.336 0.015 0.107 0.053 

Before 
l in results 0.232 1 0.033 0.567 - - - 0.130 0.055 0.068 F 

1.9m-wide 
m g ca Mean 0.197 0.025 0.451 - - - 0.072 0.081 0.061 

speed Test 0.223 0.050 0.243 0.026 0.183 0.033 
cushions 

After 
l i results 0.219 0.088 0.410 - - - 0.068 0.220 0.123 

ca m ng 
I Mean 1 0.221 0.069 0.327 I. _O. 2D2_ .. _O. OM_ 

% chanze in mean I 
_- 1 +12 +172 -28 -35 + 2=9 
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Tnhle R6 Total hvdrocarbons (a/km): Diesel cars. 
l i 

Vehicle size and reference number 
m ng Traffic ca Scheme 

easure 
Stage No s ize discrimination 

m 
20 21 22 

Before 0.120 0.077 0.047 
calming 

Test results 0.038 0.061 0.049 
Mean 0.079 0.069 0.048 

A 
flat-top road - 0.221 0.090 0.100 

humps Afler 
i 

Test results 0.212 0.104 0.092 
calm ng 1 Mean 0.217 0.097 0.096 
% change in mean +175 +41 +99 

0.493 0.027 0.080 
Before 0.489 0.048 0.073 
calming 0.491 0.038 0.077 

B 
Round-top 0.693 0.046 0.147 

humps After 
i 

Test results 0.763 0.098 0.155 
calm ng - Mean 0.728 0.072 0.151 
% cha e in mean +24 +53 +46 

0,239 0.015 0.043 
Before Test results 0.255 0.016 0.044 
calming Mean 0.247 0.016 0.043 

C 
1.7m-wide 0.330 0.023 0.064 

speed cushions Aller Test results 0.342 0.020 0.064 
calming 

, 
- Mean 0.336 0.021 0.064 

% chan Qe in mean +36 +34 +49 

Before Test results 
0.315 0.521 - 
0.358 0.514 0.377 

Pi ch 
calming Mean 0.337 0.518 0.377 

D 
n 

point/speed Afler Test results 
0.435 0.653 0-455 

cushion 0.446 0.650 0.504 
calming 0 479 

. Mean 0.441 0.652 . 
% change in mean +31 +26 +27 

0 504 0.280 0.061 
Before Test results . 0.521 0.270 0.059 
calming Mean 0.513 0.275 0.060 

E Raised 0.785 0.151 0.111 
Junction After - Test results 0.771 0.122 0.117 

calminjg 
ýC 

Mean 0.778 0.136 0.114 
-%o c haa ge in mean +52 -50 +90 

0 283 0.022 0.235 
Before Test results . 0.282 0.020 0.216 
calming Mean 0.283 0.021 0.225 

F Chicane After Test results 
0.411 0.034 0.422 
0.427 0.035 1 0.464 

calming 
. Mean 0,419 0.035 0.443 

% chan ize in mean +48 +64 +96 
0.427 0.315 0.030 

Before Test results 0.462 0.252 0.036 
calming Mean 0.444 0.284 0.033 

G Build-out After Test results 
0.590 0.419 0.046 
0.609 0.397 0.049 

calming 
I Mean 0.599 0.408 0.047 

% chan )-e in mean +35 +44 +41 
0 427 0.315 0.030 

Before Test results 0.462 , 0.252 0.036 
calming Mean 0.444 0.284 0.033 

H 
Mini- 0.665 0.479 0.057 

roundabout After Test results 0.681 0.490 0.054 
calming - 

. Mean 0,673 0.484 0.055 
% chan ee in mean +51 +71 +65 

0.415 0.149 0.056 
Before Test results 0.414 0.174 

_0.046 calming Mean 0.414 0.162 0.051 
1.9m-wide - 0 668 0.349 0.103 

speed cushions After Test results . 0.659 0.382 0.092 
calming 

, Mean 1 0.664 0.366 0.098 
% chan ze in mean 1 +60 

i 
+126 +92 
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Table B7 Total NO. (a/km): Petrol non-catalvst cars. 
Vehicle size and reference number 

Traffic calming Scheme Stage Small Me dium Large 
measure 1 2 3 4 5 6 7 8 

Before 1.191 0.878 1.182 0.641 1.939 1.161 
calming 

Test results 
1 

1.170 - 0.843 - 1.033 0.642 1.924 1.068 
Mean 1 1.181 0.861 - 1.108 0.642 1.932 1.115 

A 
Mat-top road 1.557 0.911 1.368 0.879 2.205 1.287 

humps After 
i 

Test results 1.448 0.931 - 1.329 0.958 2.163 1.242 
ng calm __iýean ' 1.503 0.921 1.349 0.919 2.184 1.265 

% chap e in mean +27 +7 1 +22 +43 +13 +13 
1.186 0.623 0.901 0.602 1.950 0.795 

Before Test results 1.123 0.621 0.865 0.635 1.729 0.781 
calming Mean - 1.155 0.622 0.883 0.619 1.840 0.788 

Round-top 1.270 0.615 1.031 0.722 1.936 0.670 
humps After Test results 1.277 0.653 1.024 0.792 1.978 0.678 

calming Mcan 1 1.274 0.634 1.028 0.757 1 1.957 0.674 
% chap e in mean 1 +10 +2 1 +16 1 +22 1 +6 -14 

1.276 1.134 0.622 1.237 0.745 1.911 1.072 
Before Test results 1.259 0.970 0.768 1.136 0.771 1.851 0.853 
calming 1.267 - 1.052 0.695 1.187 0.758 1.881 0.962 

C 
1.7m-wide 1.553 1.207 0.814 1.480 1.011 2.154 1.175 

speed cushions After Test results 1.475 - 
1 1.288 0.858 1.416 0.861 

1 
2165 1.102 

calming r7Tfý_a; 1.514 1 1.247 0.836 1.448 0.936 1 2.160 1.139 
% chan eI. n mean +19 1 +19 1 +20 +22 1 +23 1 +15 +18 

1.008 0.706 0.906 0.578 2.137 0.807 
Before Test results 1.072 0.655 0.898 0.543 2.034 0.685 

Pinch calming Mean 1.040 0.681 0.902 0.561 2.086 0.746 
D point/speed 1.093 0.709 0.903 0.607 2.348 0.828 

cushion 
After Test results 1.046 0.668 0.923 0.585 2.300 0.776 

calming 1 Mcan 1.070 0.689 0,913 1 0.596 2.324 0.802 
% chan e in mean +3 +I +11 +6 +11 +8 

0.579 0.820 1.281 0.676 2.149 1.036 
Before Test results 0.588 0.911 1.338 0.725 2.028 1.020 
calming can can 0,584 0.866 1.310 0.701 2.089 1.028 

E 
Raised 0.639 0.789 1.383 0.698 2.053 0.880 

Junction Afler Test results - 0.708 0.875 1.410 0.733 2.089 0.874 
calming 1 Mean - 0.674 0.832 1397 0.716 2.076 0.877 
% chan e in mean +15 -4 

T7 
+2 -1 -15 

0.491 0.966 1.449 0.778 2.299 1.261 
Before Test results 0.508 0.980 1.526 0.754 1 2.188 1.181 
calming 0.500 0.973 1.488 0.766 2.243 1.221 

F Chicane 0.435 0.696 1.148 0,613 2.153 1.080 
After Test results 0.408_ 0.666 1.192 0.574 2,068 0.971 

calming 
I Mean 0.422 0.681 1.170 0.594 2.110 1.026 

% cha e in mean . 16 -30 -21 -22 -6 -16 
0.603 0.788 1.160 0.568 1.992 0.943 

Before Test results 0.489 0.776 1.257 0.575 2.056 0.852 
calming --Ki-can 0.546 0.782 1.209 0.572 2.024 0.898 

G Build-out 0.660 0.641 0.992 0.558 1.835 0.782 
After Test results 0.546 0.658 0.938 0.570 1.893 0.733 

calming 
, Mean 0.603 0.649 0.965 0.564 1.864 0.758 

_91. cha ge i. n mean +/0 47 -20 -1 -8 -16 
0 603 0.780 1.130 0.568 1.992 0.910 

Before Test results . 0.489 0.690 1.220 0.575 2.056 0.990 
calming -Ve-an 0.546 0.735 1.175 0.572 2.024 0.950 

H 
Mini- 0.657 0.680 1.360 0.668 1.929 1.020 

roundabout After Test results 0.546 0.740 1.300 0.662 1.938 
_ 

0.820 
calming Mean 0.602 0.710 1.330 0.665 1 1.934 0.920 

I 
ý% 

chan ge in mean I- 1 +10 1 -3 1 - +13 +16 1 -4 -3 
0 636 1.023 1.328 0.662 2.296 0.985 

Before Test results - . 0.617 0.950 - 1.275 0.667 2.229 0.963 
calming ---Ki- ean ean - 0.626 0.986 - 1.301 0.644 2.262 0.974 

1 
1.9m-wide 
eedcushions s After Testresults 0.491 0.674 1.041 0.592 1.807 0.771 

p 0.489 0.678 1.023 1 . 652 1.721 0778 
calnung Mean 0-490 Oý676 0 6T) - 1-764 
% chan ize in mean -22 -31 -7 -22 
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Table B8 Total NO, (g/km): Petrol catalyst cars. 
Traffic ý Vehicle size and reference number 17Scheme 

calm 
mg 

Stage Sma ll Medium L 
M4 1 measure 9 10 11 1 12 13 14 15 16 17 18 19 

Before Test 0.377 0.014 0.206 0.112 0.158 0.029 
calming results 0.551 0.021 0.260 0.104 0.158 0.044 

Mean 0.464 0.018 0.233 0.108 1 0.158 0.037 
A Flat top ý Test 0.476 0.035 0.425 0.149 0.152 0.088 

I ps d um roa After 
C calm at calmin 

it results 0.450 0.034 0.413 0.214 0.192 0.104 g Mean 0.463 0.035 - 0.419 - - 0.182 0.172 0.096 
0 C) i, YV 0 change in mean 0 +94 - +80 - - +69 +9 +159 

Test 0.209 0.039 0.263 0.125 0.003 0.034 Before 
l i results - 0.191 - 0.046 - - 0.371 - 0.134 0.171 0.087 ca m ng Mean - 0.200 

- - 0.043 - - 0.317 - 1 0.130 0.087 0.061 
B Round-top Test 0.248 0.041 OAIS 0.189 0.107 0.055 humps After 

calmin results 0.186 - 0.032 - - 0.454 0.194 0.097 0.067 g Mean 0.217 - 0.037 - - 0.435 - 0.192 0.102 0.061 
% chang In mean +8 - -14 - - +37 - +48 +17 0 

Test 0.028 0.370 0.233 0.131 0.026 Before 
l i results 1 - 0.005 - 1 - 1 0.351 0.209 0.128 0.042 ca m ng 

1 7m-widc Mean . 0.016 - - - 0.361 0.221 0.130 0.034 
C . speed Test 0.041 0.454 0.218 0.143 0.058 

cushions After 
cal in results - 0.011 - - - 0.468 0.237 0.180 0.104 m g 

1 Mean 0.026 - - - 0.460 0.228 0.162 0.081 
% change in mean - +63 - - - +27 +3 +25 +138 

Test 0.246 0.028 0.173 0.079 '0.099 0.035 Before 
l i results 0.220 0.032 0.144 - - 0.128 0.168 0.069 ca m ng 

Pinch Mean 0.233 0.030 0.159 0.104 0.133 0.052 
D point/spccd Test 0.263 0.010 0.153 0.145 0.160 0.116 

cushion After 
al in results 0.307 0.024 0.225 0.204 0.128 0.048 c m g 

I Mean 0.285 0.017 0.189 0.175 0.144 0.082 
% change in mean +22 -43 +19 +68 +8 +58 

Test 0.208 0.049 0.158 0.116 0.092 0.029 Before 
l i results 0.160 0.047 0.151 0.144 0.137 0.093 ca m ng Mcan 

- 
0.184 0.048 0.155 0.130 0.115 0.061 

E Raised Test 0.160 0.029 0.126 0.195 0.063 0.043- Junction After 
lmin results 0.121 0.031 0.069 

- 
0.156 

-- - 
0.036 0.052 

ca g Mean I - 1 0.141 0.030 1 0.098 - 1 6. 176 0.050 0.048 
% change in mean I - -23 -38 -37 - Y; 3_5 -57 -21 

Test 0.251 0.033 0.246 0.138 0.092 0.116 Before 
l i results 0.208 0.047 0.171 0.129 0.072 0.159 

ca m ng 
_Mcan 

0.230 0.040 0.208 0.134 0.082 0.138 
F Chicane Test 0.256 0.028 0.093 0.152 -0.071 0.133 

After 
l in results 0.223 0.033 0.031 0.267 0.077 0.069 

ca m g 
, Mean 1 0.240 0.030 0.062 . 0-210, 0.074 0.101 

% change in mean +4 -25 -70 +57 1 -10 -27 
Test 0.224 0.055 0.085 0.096 0.071 0.259 

Before 
l i results 0.157 0.073 0.113 0.185 0.117 0.223 

ca m ng Mean 0.191 0.064 0.099 - - 0.141 0.094 0.241 
G Build-out Test 0.173 0.035 0.083 0.125 0.107 0.200 

After 
l in results 0.181 0.050 0.125 - - 0.132 0.119 0.247 

ca m g Mean 0.177 1 0.042 0.104 1 - - 0.129 0.113 0.224 
% change in mean -7 -34 +5 - -9 +20 -7 

Test 0.224 0.055 0.085 0.096 0.071 0.259 
Before 
l i results 0.157 0.073 0.113 - 0.185 0.117 0.223 

ca m ng Mean 0.191 0.064 0.099 - 0.141 0.094 0.241 
H Mini- Test 0.197 0.042 0.144 0.137 0.063 0.254 

roundabout After 
lmin results 0.208 0.067 f 0.221 1 0.100 0.102 0.430 

ca g1 
1 0.203 0.054 0.183 1 0.119 0.083 0.342 

% change in mean +6 -16 +84 -16 -12 +42 
Test 0.236 0.046 0.244 0.132 0.164 0.069 

Before 
l i results 0.255 0.038 0.146 0.122 0.124 0.186 

1.91n-wide 
ca m ng Mean 0.245 1 0.042 0.195 0.127 0.144 0.128 

1 speed Test 0.151 0.039 0.119 0.149 0.093 0.115 
cushions After 

i results 0.155 0.043 0.066 0.219 0.090 0157 
calm ng Mean 0.153 0.041 0.093 0-184 0.092 

1 % change in mean -38 -2 
-- 

-52 +44 -36 +7 
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Table B9 Total NO. (a/km): Diesel cars. 
l i ffi 

Vehicle size and reference number 
c ca m ng Tra 

Scheme 
measure Stage No size discrimination 

20 21 22 
Before 0.738 0.327 0.453 
calming 

Test results 0.692 0.318 0.401 
Mean 0.715 0.322 0.427 

A 
Flat-top road 0* 967 0.459 0.630 

humps After 
l i 

Test results 0.911 0.447 0.600 
ca m ng Mean 0.939 0.453 0.615 
% chan ei. n mean +31 +41 +44 

Before Test results 
0.630 0.379 0.397 
0.612 0.377 0.396 

calming Mean 0.621 0.378 0.397 
B Round-top - 0.770 0.604 0.573 

humps After 
l i 

Test results 0.773 0.555 0.581 
ca m ng 

1 Mean 0.772 0.580 0.577 
% cha e in mean +24 +53 +45 

Before Test results 
0.625 0.413 0.383 
0.613 0.401 0.366 

calming Mean 0.619 0.407 0.374 
C 

1.7m-wide - 0.771 0.508 0.485 
speed cushions After 

i 
Test results 0.745 0.531 0.486 

calm ng 
, Mean 0.758 0.519 0.485 

%chan veinmean +22 +28 +30 
0* 743 0.264 0.520 

Before Test results 0.761 0.234 0,487 
Pinch 

calming Mean 0.752 0.249 0.504 

D point/speed 
- 

After Test results 
0.869 0.331 0.636 

cushion i 0.869 0.291 0.621 
calm ng 0.869 0.311 0.629 
% chan ge in mean +16 +25 +25 

0.610 0.577 0.560 
Before Test results 0.776 0.574 0.561 
calming Mean 0.693 0.576 0.561 

E Raised - 0.985 0.800 0.778 
Junction After Test results 0.945 0.822 0.754 

calming 1 Mean 1 0.965 0.811 1 0.766 
% chan ei. n mean 1 +39 +41 1 +37 

Before Test results 
0.637 0.433 0.402 
0.677 0.434 0.414 

calming Mean 0.657 0.434 0.408 
F Chicane 0.764 0.552 0.472 

Afler Test results 0.773 0.554 0.484 
calming Mean 0.769 0.553 0.478 
% chan Lye in mean +17 +27 +17 

0* 757 0.482 0.509 
Before Test results 0.743 0.476 0.498 
calming - Mean 0.75 0.479 0.504 

G Build-out After Test results 
0.848 0.603 0.614 
0.850 0.600 0.609 

calming 1 Mean 0.849 0.602 0.612 
% chan ei. n mean +13 +26 +21 

0* 757 0.482 0.509 
Before Test results 0.743 0.476 0.498 
calming Mean 0.750 0.479 0.504 

H Mini- 0.943 0.649 0.770 
roundabout After Test results 0.942 0.669 0.762 

calming 1 Mean 0.943 0.659 1 0.766 
% chan ge i. n mean +26 +38 1 +52 

Before Test results 
0.807 0.474 0.497 
0.799 0.462 0.509 

calming Mean 0.803 0.468 0.503 
1.9m-wide 0.812 0.604 0.648 

speed cushions After Test results 0.804 0.617 0.656 
calming 

I Mean O. ROR 0.611 
% chan . Qe in ean +1 +30 +30 

256 



Table B 10 TotaIC02 (g/km): Petrol non-catalvst cars. 
- Vehicle size and reference number ffic calmin T 
C 

fSchem 
ru 

measure 
Stage Small I Medium Large 

I 1 234 56 -7 )8 

Before 75.900 70.500 108.000 91.600 188.000 126.800 
calming 

Test results 73.400 67.200 105.100 89.700 
( 
174.700 

( 
121.300 

Me: ui 74.650 68.850 106.550 90.650 1181.350 1 124.050 
A 

Flat-top road 99.900 93. 000 135 300 121.000 221.300 165.100 humps After Test results - . 
1 1 1 

l i 98.800 92.300 138.700 124.200 209.600 157.400 
ca m ng Mean 99.350 92.650 - 1 137.000 1122.600 1215.450 1 161.250 
Ya chan e in mean +33 +35 - +29 1 +35 1 +19 1 +30 

Before cst results 
92.270 

- 
81.720 

- 
118.870 110.290 209.470 130.360 ý; 

90.370 78.950 113.950 112.920 197.780 134.580 
ca. me, can 91.320 - 80.335 - 116.410 111.605 203.625 132.470 

B 
Roundtop 

ý 120.890 107.330 153.660 144.520 249.340 160.510 
humps After 

l i 
Test results 121.520 - 

1 107.480 153.070 146.610 251.010 165.330 
ca m ng - Me an 121.205 - 1107.405 153.365 1145.565 1250.175 1 162.920 
Y. chan qe in mean +33 +34 +32 1 +30 1 +23 1 +23 

88.782 88.308 89.317 123.543 108.156 212.420 140.342 Before Test results 87.826 83.045 90.908 120.755 107.563 201.930 131.325 
calming Mean 88.304 85.676 90.113 122.149 107.859 207.175 135.834 

C 
1.7m-widc 109.705 105.487 107.992 151.849 133.914 245.660 163.091 

speed cushions After 
l i 

Test results 
. 
106.565 

_108.226 
108.713 

1 
150.175 133.801 

. 
250.770 161.676 

ca m ng _! ýi ean can 108.135 106.857 108.352 1 151.012 1133.858 248.215 162.383 
Yo chat ei. n mean +22 +25 +20 1 +24 1 

-+24 
+20 +20 

90.510 84.22 113.150 100.640 195.991 127.190 
Before Test results 87.130 80.13 - 1 113.400 99.690 187.982 121.800 

Pinch calmh.,, Mean 88.82 82.175 - 113.275 100.165 191.986 124.495 
D point/speed 103A50 99.000 129.830 118.050 217.877 144.720 

cushion 
After 
l i 

Test results 102.030 94.620 - 134.030 118.890 213.945 , 146.180 
ca m ng 6 118 470 930 102.74 9 . 810 - 1 . 131 215.9111 145.450 
916 cha ce in mean +16 718 

- +ý 1 +18 +12 +17 
90.560 90.12 125.880 101.490 203.380 134.200 Before 

i 
Test results 92.020 89.69 127.700 103.860 193.410 134-230 

calm ng Mean 91.290 89-905 - 126.790 102.675 198.395 134.215 
E 

Raised 115.060 113.380 160.890 127.830 239.220 164.990 
Junction AfIcr 

l i 
Test results 118.000 113.340 - 161.550 127.910 235.930 171.100 

ca m ng Mean - 116.530 113360 - 161 IN 127.870 237.575 168,045 
916 chan e in mean - +28 

1 Z6 1 
- +T7 

1 
+25 +20 +25 

78.703 72.429 113.750 83.770 188.964 117.230 
Before Test results 78.404 71.677 i 114.5001 84.740 182.671 112.460 
calming Mean 78.554 72.053 - 114.1251 84.255 185.818 114.845 

F Chicane 86.583 77.565 121.020 93.310 189.688 132.920 
After 
l i 

Test results 84.814 77.275 - 120.010 93.280 188.228 129.570 
ca m ng Mean 85.698 77A20 - 120.515 93.295 188.958 131.245 
% cha ee in mean +9 +7 - +6 +11 +2 +14 

84.851 79.893 115.650 90.080 195.020 126.630 Before Test results 81.562 78.658 - 120.660,85.090 188.710 125.820 
calming ---Kic-an 83.207 79.276 - 118.155 87.585 191.865 126.225 

G Build-out 101.420 92.973 136.520 108.220 199.270 148.340 
After 

i l 
Test results 100.800 97.946 132.010 106.540 1 204.780 153.420 

ng ca m ý- 
M q can an . 101.110. 95.459 - 134.265 107.380 1 202.025 150.880 

91ochan ei .n mean +22 +20 - +14 +23 +5 +20 
84 851 79.250 110.160 90.080 195.020 124.890 Before Test results . - 

i 81.562 76.950 113.740 85.090 188.710 131.090 
ng calm Mean 83.207 78.100 - 111.950 87.585 191.865 127.990 

H 
Mini- 109.420 103.8801 114.350 117.240 210.950 161.550 

roundabout After 
i l 

Test results 
' 109.009 102.960 - 144.310 115.660 216.600 160.180 

ng ca m - Mean 1 109.214 103.420 -1 1". 330 1116.450 213.775 160.865 
% cha ei. n mean +31 +32 - +29 +33 +11 +26 

Before Test results 
82.270 81.287 

. 
119.067 90.193 206.791 123.060 

83.236 78.281 119.034 91.263 193.850 120.088 
calming 82.753 79.784 - 119.050 90.728 200.321 121.574 

I 
1.9m-wide 

speed cushions After Test results 
91.735 94.253 129.753 106.300 199.868 142.173 
92.128 91.773 134.354 110.070 194.367 

_I 
40.466 

calming I Mean ()1-()12 93.013 132.054 108.185 197.118 141.320 
% chane 

-- 
e in mean +/1 +17 +11 +19 -2 1 +16 
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Table BII Total C02 (g/km): Petrol catalyst cars. 
Traffic Veh icle size and reference number 

scheme calming Stage Small Medium L ýEge 
measure 9 10 11 12 13 14 15 16 17 18 1 19 

Before Test 93.000 89.300 134.6 112.600 147.400 148.300 
calming results 101.800 86.900 133.0 108.500 147.300 144.900 

can 97.400 - 88.100 133.8 110.550 147.350 146.605- 
A 

Flat-top road Test 120.700 116.400 197.9 141.600 . 177.600 196.500 bumps After 
results 1121 400 - 112 500 191 0 140 900 196 100 202 500 

calmin . . . . . . g Mean r121.050 
- 114.450 ý- I 94.4 5 1-4 -1.2 5-0 1-8 6 8-5 0 199.500 

% change In mean +24 +30 - +45 +28 +27 +36 
Test 103.650 102.000 153.99 135.000 152.060 14R 260 

Before 
l i results 88.530 98.640 - - 149.69 132.720 149.690 172.270 

ca m ng Ivican - 96.090 - 100.320 - - 151.84 133.860 150.875 160.265 
B Round-top Test 137.810 128.680 217.34 172.400 209.090 244 460 humps Aflcr 

calmin 
results - 123.250 - 128.370 - - 215.83 1169.190 204.150 . 242.780 

g 
1 Mean - 130.530 ,- 128.525 - 216.58 170.795 1206.620 243.620 

% change in mean - +36 1- +28 - +43 +28 1 +37 +52 
Test 108.582 169.042 136.034 181.814 177.923 

Before 
l i results 

- 
105.894 - - - 166.662 134.337 174.314 175.786 

7m-wide 1 
ca m ng -Kie an - 107.238 - - 167.832 135.185 178.064 176.854 

C 
. 
speed Test 124.966 208.529 165.135 224.017 234.083 

cushions 
After 

results - 126 339 - - 208.505 163 389 210 693 235 885 
calmin . . . . g 

1 Mean - 1 125.653 - 
120 

. 517 164.262 217.355 234.984 
% change mean - 1 +17 +24 1 +22 +22 +33 

Test 114.310 99.790 129.910 132.030 166.6 8 165.790 
Before 

l i results 108.480 100.820 127.420 - 130.850 150.736 163.300 

F 

Pinch 
ca m ng Mean 111.395 100.305 128.665 - 131.440 158.702 164.545 

D point/specd Test 134.570 117.450 152.040 154.210 195.356 205.720 
cushion 

After 
l in results 132.20 117.580 152.050 - 153.950 188.053 200.680 

ca m g 
I Mean 133.595 117.515 1 152.045 - 1154.080 191.705 203.205- 

% change in mean 1 +20 +17 1 +18 +1 _7 +21 +23 
Test s 119.590 104.960 141.870 140.673 178.900 179.900 

Before 
l in results 

i 
105.050 110.380 145.590 135.930 170.600 174.670 

ca m g M an 112.320 107.670 143.730 138.300 174.750 177.28T 
E 

Raised Tt Test 143.870 146.060 177.230 178.990 232.420 247.620 Junction After 
r results 134 380 139.970 169.410 

1 
175 960 227 830 243 980 

calmin . . . . g Mean 139.125 1 143.015 173.320 177.475 230.1251 245.800 
% change i7n meanI +24 1 +33 +21 +28 +32 1 +39 

Test 95.910 87.390 124.811 115.110 140.016 125.620 
Before 

i l results 
- 

92.400 91.203 118.445 117.700 139.992 153.740 
ng ca m -Kf can 94.155 89.297 121.628 116.405 140.004 139.68 

F Chicane Test 112.670 103.389 137.219 134.620 167.998 168.980 
Aflcr 

calmin 
results 110.200 102.672 130.530 134.320 162A33 182.840 

g Mean - 111.435 103.030 133.875 134.470 165.216, 175.910 
% change in mean - +18 +Ij +10 +16 +18 1 +26 

Test 110.800 106.920 133.200 133.790 163.623 173.110 
Before 

l i results - 94.720 99.624 128.963 1 

1 
131.170 151.041 183.250 

m ng ca Kica n - 102.760 103.272 131,082 - - - 132.4801 157.332 178.180 
G Build-out Test 127.230 112.189 149.698 152.510 191.665 197.840 

Afler 
calmin 

results 121.570 118.401 157.783 - - - 153.740 188.403 223.980 
g Mean 124.400 115.295 153.741 - 153.125 190.034 210.910 

% change in mean +21 +12 +17 - +16 +21 +1 
Test 110.800 106.920 133.200 133.7901 163.623 173.110 

Before 
l i results 94.720 99.624 128.963 131.1701 151.041 183.250 

ca m ng Mcan 102.760 103.272 131.082 - 132.4801 157.332 178.180 
H 

Mini- 
roundabout Aller 

Test 142.670 133.207 166.894 
- 

169.790 217.916 223.780 

calmin 
results 137.430 128.871 168.403 169.280 221.283 264.540 

g Mean - 140.050 1 131.039 167.649, - - - 169.535 219.6001 244.160 
% change in mean - +36 +27 +28 - - - +28 +40 1 +37 

Test 110.737 99.663 132.216 122.798 158.677 166.598 
Before 

l in results 105.581 98.822 122.628 - - 119.504 161.842 145.868 

1 9m-wide 
ca m g Mean 108.159 99.243 127.422 - - 121.151 160.260 156.233 

1 
. 
speed Tea 129.855 112.859 150.901 141.604 188.651 193.355 

cushions 
After -U's 126.325 110.322 145.353 - - 142.862 185.808 211.6921 

calming Mean 128.090 111.590 1 148.127 142.233 187.230 202.524 

change in mean +18 +12 1 +16 +17L +17 
ý 

+30 
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Table B 12 TotaIC02 (g/km): Diesel cars. 
Vehicle size and reference number T ffi l i ra c ca m ng Scheme 

measure Stage No s ize discrimination 
20 21 22 

Before Test results 
95.176 107.387 118.925 

calming 91.567 104.049 113.244 
Mean 93.371 105.718 116.085 Flat-top road A humps After Test results 

129.869 152.000 164.708 

l i 124.615 153.304 160.579 
ca m ng I Mean 127.242 152.652 162.644 
% cha ge i. n mean +36 +44 +40 

Before Test results 
104.400 136.600 134.800 

l i 103.100 138.200 135.700 
ca m ng Mean 103.750 137.400 135.250 Round-top B humps After Test results 

133.000 187.300 179.800 

l i 129.300 181.500 169.070 
ca m ng 

1 Mean 131.150 184.4 0 174.435 
% chan, e in mean +26 +34 +29 

Before Test results 
108 * 975 134.368 135.422 

l i 107.472 135.167 133.794 
ca m ng Mean 108.223 134.767 134.608 1.7m-wide C 

speed cushions After Test results 
131.262 170.422 169.283 

l i 129.840 173.257 165.563 
ca m ng Mean 130.551 171,840 167.423 
% cha Qe in mean +21 +28 +24 

Before Test results 
105 * 740 128.334 130.100 

i 105.690 130.094 130.407 
calm ng 

Pinch Mean 105.715 129.214 130.254 
D point/speed After Test results 

123.240 158.986 159.390 

cushion l i 123.640 168.441 161.740 
ca m ng 

I Mean 123.440 163.713 160.567 
%chan ge in mean +17 _ +27 +23 

Before Test results 
77.990 144.065 143.785 
107.077 147.351 148.280 

cahning Mean 92.534 
_ 

145.708 146.033 
E Raised 130.436 191.700 184.984 

Junction After 
l i 

Test results 128.125 190.049 187.285 
ca m ng 

I Mean 129.281_ 190.875 186.134 
% cha e in mean +40 +31 +27 

Before Test results 
86 , 110 114.020 116.416 
91.940 117.120 114.874 

calming Mean 89.025 115.570 115.645 
F Chicane 105.320 140.650 136.915 

After 
l i I 

Test results 107.500 145.220 133.758 
- ca m ng -- 7i' 1 Mean 106.410 142.935 135 46 

% cha ei. n mean +20 +24 +17 

Before Test results 
102.387 127.106 132.100 
101.107 123.035 131.492 

calming Mean. 101.747 125.070 131.796 
G Build-out 119.473 153.416 159.727 After 

l i 
Test results 118.365 148.893 154.505 

ca m ng I Mean 118.919 151.154 157.116 
% cha j ze in mean +17 +21 +19 

Before Test results 
102.387 127.106 132.100 
101.107 123.035 131.492 

calming Mean 101.747 125.070 131.796 
H 

Mini- 
roundabout After Test results 

128.063 158.885 180.455 

l i 127.185 162.213 175.742 
ca m ng 

1 Mean 127.624 160.549 178.098 
%cha ei .n mean +25 +28 +35 

Before Test results 
103.437 124.748 131.971 

l i 101.597 123.858 131.576 
ca m ng Mean 102.517 124.303 131.774 

1.9m-wide 
speed cushions After Test results 

113.390 146.582 150.750 
111.217 149.138 155.691 

calming I Mean 112303 147.860 153.2201 
% chan ke in mean +10 +19 +16 
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Table B 13 Total varticulate matter (2/krn): Diesel cars. 
T ffi l i 

Vehicle size and reference number 
ra c ca m ng Scheme 

measure Stage No size discrimination 
20 21 22 

Before 0* 203 0.047 0.038 
calming 

Test results 0.176 0.049 0.036 
Mean 0.190 0.048 0.037 Flat-top road A humps Afler Test results 

0.354 0.075 0.073 

l i 0.350 0.081 0.069 
ca m ng 1 Mean 0.352 0.078 0.071 
% cha ge i. n mean +85 +63 +92 

Before Test results 
0.246 0.069 0.053 

l i 0.323 0.060 0.056 
ca m ng Mean 0.285 0.065 0.055 Round-top B humps After Test results 

0.354 0.083 0.066 

l i 0.351 0.056 0.072 
ca m ng 

. Mean 0.353 0.070 0.069 
% cha ee in mean +24 +8 +25 

Before Test results 
0.240, 0.058 0.048 

l i 0.255 0.049 0.044 
ca m ng Mean 0.248 0.053 0.046 

1.7m-wide C 
speed cushions Afler Test results 

0.370 0.062 0.068 

l i 0,389 0.065 0.062 
ca m ng 

I Mean 0.380 0.063 0.065 
% cha ee in mean +53 +19 +41 

Before Test results 
0.228 0.047 0.033 
0.292 0.040 0.387 

calming 
Pinch Mcan 0.260 0.044 0.210 

D point/speed After Test results 
0.418 0.059 0.045 

cushion l i 0.391 0.058 0.044 
ca m ng I Mean 0.405 0.059 0.045 
% chan ge in mean +56 +34 -79 

Before Test results 
0* 179 0.036 0.039 
0.186 0.032 0.035 

calming Mean 0.182 0.034 0.037 
E Raised 0.275 0.040 0.043 

Junction After 
l i 

Test results 0.226 0.038 0.040 
ca m ng 

. Mean 0.250 0.039 0.042 
% chan e in mean +37 +15 +14 

Before Test results 
0* 220 0.030 0.021 

i 0.215 0.031 0.023 
calm ng Mean 0.217 0.030 0.022 

F Chicane After Test results 
0,334 0.044 0.033 

l i 0.314 0.047 0.031 
ca m ng 

1 Mean 0.324 0.046 0.032 
% chan ze in mean +49 +53 1 +45 

Before Test results 
0.170 0.036 0.033 
0.183 0.027 0.034 

calming Mean 0.177 0.032 0.033 
G Build-out 0.040 0.049 

After 
l i 

Test results 0.160 0.040 0.045 
ca m ng Mean 0.160 0.040 0: 047 
% chan ge i. n mean -10 +25 +42 

Before Test results 
0,170 0.036 0.033 
0.183 0.027 0.034 

calming Mean 0.177 0.032 0.033 
H Mini- 0 240 0.047 0.048 

roundabout After 
l i 

Test results . 0.233 0.039 0.047 
ca m ng 

I Mea )48 
% cha ge i. n mean +34 +34 +44 

Before Test results 
0.158 0.027 0.047 

l i 0.158 0.029 0.037 
ca m ng Mean 0.158 0.028 0.042 

1 1.9m-wide 
235 0 0 029 0.044 

speed cushions After Test results . . 0.207 0.026 .0. calming I Mean 0.221 0.028 0.040 
1 

%chan izeinmean +40 
t 

-1 -4 
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Table B14 Total FC (1/100km): Petrol non-catalvst cars. 

i 
Vehicle size and reference number 

tc: calming Traft Scheme Stage Sma ll Med ium Le 
measure 16 

Before 3.729 3.708 5.266 5.284 8.694 6.378 
calming 

Test results 3.615 - 3.481 5.051 
1 

5.563 8.063 6.369 
Mean 3.672 - 3.595 5.159 5.424 8.389 6.374 

A Flat-top road 4.980 5.018 6.686 7.347 10.328 8.748 
humps After Test results 4 . 955 4.909 6.696 7.581 9.762 8.546 

calming Mean _ - ý _4.968 - 4.964 6.691 7.464 10.045 8.647 
%chan eeinmean 1 _ +35 - +38 +30 +38 +20 +36 

4.740 4.830 5.940 6.770 9.830 6.960 
Before Test results 4.690 1 - 4.280 5.710 6.930 9.290 7.080 
calming Mean 4.715 - 4.555 5.825 6.850 9.560 7.020 

B Round-top 6.390 6.720 7.810 9.130 11.790 9.210 
humps After Test results 6.520 - 6.040 7.550 8.900 1 11.880 9.290 

calming 1 - Mean 1 6.455 - 6.380 7.680 9.015 11.835 9.250 
% chan ee in mean 1 +37 - +40 +32 +32 +24 +32 

4.721 4.862 5.566 6.185 6.942 9.910 7.378 
Before Test results 4.606 - 4.305 5.252 6.026 6.774 9.400 7.568 
calming Mean 4.664 4.584 5.409 6.106 6.858 9.655 7.473 

C 1.7m-widc 5.879 5.646 6.675 7,590 7.940 11.550 9.119 
s cd cushions PC After Test resu Its 5.747 - 5.779 6.575 7.417 8.546 11.850 9.455 

calming 
, Mean 5.813 - 5.712 6.625 7.504 8.243 11.700 9.287 

% chan e in mean +25 - +25 +22 +23 +20 +21 +24 
4.490 4.550 5.720 6.040 9.410 6.950 

Before Test results 4.410 - 4.600 - 5.610 6.050 9.108 6.940 
Pinch calming - Mean 4.450 4.575 - 5.665 6.045 9.259 

- 
6.945 

D point/speed 5.480 5.450 6.830 7.440 10.480 8.330 
cushion 

After Test results 5.460 5.520 - 6.950 7.490 10.366 8.360 
calming 

1 Mean 5.470 - 5.485 . 6.890 7.465 10.423 8.345 
% chan e in mean +23 - +20 +22 +23 +13 

. +20 
5.450 5.130 6.030 6.280 9.700 7.500 

Before Test results 5.510 4.810 - 5.970 6.270 9.250 7.270 
calming Mean 5.480 4.970 - 6.000 6.275 9.475 7.385 

E Raised - - 7.210 6.610 7.220 7.970 11520 9.820 
Junction After Test results 7.070 6.510 - 7.810 7.900 11.320 9.680 

calming 
. Mean 7.095 6.560 - 7.515 9.935 11.420 9.750 

r-V-. 
chan e in mean +29 +32 +25 +58 +21 +32 

4.892 4.037 5.370 4.980 9.110 6.030 
Before Test results 4.815 3.952 5.320 4.980 8.738 5.880 
calming Mean 4.854 3.994 - 5.345 4.980 8.924 5.955 

F Chicane 5.679 4.911 6.640 6.430 9.371 7.400 
After Test results 5.794 4.943 - 6.380 6.470 9.244 7.540 

calming 5.737 4.927 - 6.510 6.450 9.307 7.470 
% chan e in mean +29 +22 - +25 +58 +21 +32 

5.219 4.636 5.650 6.101 9.440 7.090 
Before Test results 5.079 4.486 - 5.990 5.580 9.300 5.690 
calming -M ean 5.149 4.561 - 5.820 5.795 9.370 6.390 

G Build-out 5.941 5.464 7.000 6.980 9.620 8.510 
After Test results 6.305 5.594 - 7.030 6.800 10.050 6.910 

calming 1 Mean 6.123 5.529 7.015 6.890 1 9.83T 7.710 
I % chan e in mean +19 +21 1 1 +21 +19 1 +5 +21 

5.219 4.540 5.010 6.010 9.440 7.130 
Before Test results - 5.079 4.430 5.600 5.580 9.300 7.100 
calming Mean - 5.149 4.485 5.305 5.795 9.370 7.115 

H 
Mini- - 6.660 5.980 7.120 7.710 10.270 8.930 

roundabout After Test results - 6.730 5.990 7.280 7.350 10.530 9.330 
calming 

, Mean - 6.695 5.985 1.200 7.530 10.400 9.130 
% chan ze in mean - +30 +33 +36 +30 +11 +28 

3.815 4.315 5.707 5.554 9.995 6.568 
Before Test results - 4.952 4.210 5.608 5.459 9.166 6.460 
calming Mean 4.384 4.262 5.658 5.507 9.581 6.514 

1.9m-wide - 5.689 5.324 6.170 6.385 9.779 7.899 
speed cushions After Test results 5570 5.221 6.323 6.492 9.509 7646 

calming 1 5.630 5.727 6.247 Eýý ý 
I %chan izeinmean +28 +24 +IQ +17 1 +1 - 
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Table B 15 Total FC (1/ 1 OOkm): Petro I catalvst cars. 
Veh icle size and reference number Traffic 

Scheme calming Stage Smal l Medium L! ýEge 
measure 9 10 11 12 13 14 15 16 17 18 19 

Before Test 4.207 3.882 5.848 4.953 6.518 6.409 

calming results 4.584 3.779 5.783 4.809. 6.61 6.274 

Mean 4.396 3.831 5.816 4.881 6.556 6.342 

A Flat-top Test 5A08 5.127 8.631 6.259 8.796 8.546 
road humps Alter results 5.421 4.920 8.405 6.273 10.219 8.773 

calming 5.415 1 5.024 1 
. 
8.518 6.266 9.508 8.660 

% change in mean +23 +31 +46 +28 +45 +37 
Test 6.230 4.570 6.880 5.940 77.500 6.460 

Before results - 5.430 4.590 - 6.990 5.830 8.050 7.540 
calming Mean 5.830 4.580 - 6.935 - 5.885 7.900 7.000 

B Round-top Test 8.310 6.180 9.900 
- 

7.670 10.800 10.650 
humps After results 7.400 5.940 1 9.860 7,660 10.720 10.620 

calming 1 Mcan - 7.855 -1 6.060 1 9.880 7.665 10.760 10.635 
% change in mean - +35 - +32 +42 +30 +36 +52 

Test 4.754 7.547 5.895 8.024 7.726 
Before results - - 4.623 - 7.467 5.832 7.746 7.639 F 

idc 1 7 
calming IvIcan 4.689 - 7.507 5.864 7.885 7.683 

C 
m-w . 
speed 

- 
cst 5.450 9.425 7.231 10.200 10.179 

cushions 
1 

Aflcr results 1 - 5.509 9.522 7.176 
. 
9.916 -10.280 

calming 1 - 5.479 9.474 7.204 10.058 1 10.230 
% change in mean I - +17 +26 +23 +28 +33 

Test 5.040 4.380 5.920 5.750 7.476 7.180 
Before results 5.350 4.440 6.300 5.700 7.443 7.090 

Pi h 
calming Mean 5.195 4.410 6.110 5.725 ý7 460 7.135 

D 
nc 

point/spced Test 6.070 5.170 7.220 6.730 9.032 8.910 

cushion Alter results 6.020 5.170 7.490 6.710 9.276 8.710 
calming 

, Mean - 6.045 5.170 7.355 6.720 9,154 8.810 
% change in mean - +16 +17 +20 +17 +23 +23 

Test 5.510 4.590 6.390 6.160 8.030 7.810 
Before results 5.830 5.200 6.610 6.040 8.060 7.570 
calming Mean 5.670 4.895 6.500 6.100. 8.045 7.690 

E Raised -- Test 7.190 6.580 8.003 7.840 10.640 10.710 
Junction After results 6.280 6.970 8.210 7.780 11.150 10.590 

calming Mean 6.735 6.775 8.107 7.810 10.895 10.650 
% chang in mein +19 +38 +25 +28 +35 +38 

Test 4.240 3.844 5.531 5.000 6.313 5.450 
Before results 4.360 3.990 5.614 5.140 6.206 6.700 
calming Mean _ 4.300 3.917 5.5573 5.070 6.259 6.075 

F Chicane Test 5.160 4.667 6.659 5.880 7.710 7.350 
AII!, results 5.310 4.619 9 )I 6.913 5.820 7.727 7.970 

calming Mean 5.235j 4.643 6.786 5.850 7.719 7.660 
% change in mean 1 +22 +19 +22 - +15 +23 +26 

Test 5.060 4.669 6.300 5.900 1 7.177 7.510 
Before results 5.250 4.456 6.215 - 5.980 7.140 8.060 
calming Mean 5.155 14.563 6.258 - 5.940 7.158 7.785 

G Build-out Test 5960 4.966 7.455 
- 

6.800 8.767 8.730 
After results 6.330 5.414 7.739 6.870 8.938 9.840 

calming 1 Mean 6.145 5.190 7.597 1 - 6.835 1 8.852 9.285 
% chang in mean I- +19 +14 +21 - +15 1 +24 +19 

Test 5.060 4.669 6.300 5.900 7.177 7.510 
Before results - 5.250 4.456 6.215 - 5.980 7.140 

_8.060 calming Mean - 5.155 4.563 6.258 - 5.940 7.158 7.785 

H 
Mini- Test 6.470 5.896 7.842 7.520 9.669 9.900 

roundabout After results 6.620 5.659 7.578 7.460 10.001 11.650 
calming Mean 6.54±5 5.778 7.710 - 7.490 1 9.835 1 10.775 
% change in mean 2) 7 +27 +23 - +26 1 +37 1 +38 

Test 4.978 4.330 6.057 5.392 7.100 7.226 
Before results 4.734 4.349 6.265 - 5.714 7.121 6.381 

id 
calming Mean 4.856 4.340 6.161 - 5.553 7.110 6.803 

1 
e 1.9m-w 

speed Test 5.821 4.990 6.953 6.295 8.636 8.390 

cushions 
After results 5.671 4.981 7.275 6.509 8.832 9.268 

calming 1 1 Mean 1 5.246. 1 4-986 7.114 &234- 
-8329- 

% change in -Pan +18 1 +15 +15 +15- +23 1 +30 
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Table B 16 Total FC (1/100km): Diesel cars. 
Vehicle size and reference number T ff c l in ra ic a m g Scheme 

measure Stage No s ize discrimination 
20 21 22 

Before 3.690 4 090 4 530 
calming 

Test results 3.550 . 3.970 . 4.320 
Mean 3.620 4.030 4.420 Flat-top road A humps After Test results 

5.020 5.800 6.300 

l i 4.820 5.850 6.140 
ca m ng I Mean 4.920 L5.820 6.220 
% cha ei. n mean +36 1 +44 +41 

Before Test results 
4.080 5.190 5.140 

l i 4.030 5.250 5.170 
ca m ng Mean 4.055 5.220 5.155 Round-top B humps After Test results 

5,20 7.130 6.796 

l i 5.060 6.920 6.396 
ca m ng 

1 Mean 5.130 7.025 6.596 
% cha e in mean +27 +35 +28 

Before Test results 
4.217 5.105 5.157 

l i 4.157 5.134 5.096 
ca m ng Mean 4.187 5.120 5.127 1.7m-wide 

-C speed cusfiions After Test results 
5.076 6.479 6.456 

l i 5.019 6.586 315 
ca m ng , Me 5.047 6.533 6.385 
% chan ze in mean +21 +28 +25 

Before Test results 
4.110 4.821 4.943 

l i 4.110 4.888 5.001 
ca m ng 

Pinch - 
Mean 4.110 4.855 4.972 

D point/speed After Test results 
4.790 5.977 6.116 

cushion l i 4.800 6.331 6.210 
ca m ng 

I Mean 4.795 6.154 6.163 
%chan ge in mean 1 +17 +27 +24 

Before Test results 
3.015 5.468 5.474 

l i 4.118 5.600 5.645 
ca m ng Mean 3.566 5.534 5.559 Raised E Junction After Test results 

5.034 5.468 7.062 

l i 4.941 7.310 7.151 
ca m ng 

I Mean 4.987 6.389 7.107 
% cha e in mean +40 +15 +28 

Before Test results 
3,340 4.330 4.447 
3.560 4.450 4.386 

calming Mean 3.450 4.390 4.417 
F Chicane 4.100 5.350 5.264 

After 
l i 

Test results 4.180 5.520 5.150 
ca m ng I Mean 4.140 5.435 5.207 
% chan ee in mean +20 +24 +18 

Before Test results 
3,983 4.863 5.066 

i 3.937 1 4.698 4.995 
calm ng Mean 3.960 4.781 5.030 

G Build-out 697 4 5.917 6.093 
After 
l i 

Test results 
1 4.656 * 5.742 5.881 

ca m ng Mean 4.677 5.829 5.87 
% cha ge in mean +18 +22 +19 

Before Test results 
3* 983 4.863 5.066 

l i 3.937 4.698 4.995 
ca m ng 

i i - 
Mean 7.490 9.835 10.775 

H 
M n - 

roundabout After Test results 
4.962 6.080 6.878 

l i 4.930 6.209 6.702 
ca m ng 1 Mean 3.960 4.781 5.030 
% cha ge i. n mean +25 +29 +35 

Before Test results 
3* 969 4.694 4.957 

l i 3.899 4.664 4.940 
ca m ng 

- 
Mean 3.934 4.679 4.948 

1.9m-wide 
speed cushions After Test results 

4.372 5.551 5.685 
4,289 - 5.867 

calming 1 777Tean 4.331 5.551 5.776 
% chait ze in mean +10 +19 +/7 
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Figure CI Emissions and fuel consumption after calming plotted against emissions before 
calming for petrol non-catalyst cars (results for all nine schemes). 
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Figure C2 Emissions and fuel consumption afier cakning plotted against emissions and fuel 
consumption before calming for petrol catalyst cars (results for all nine schemes). 
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Figure C3 Emissions and fuel consumption after calming plotted against emissions and fuel 
consumption before calming for diesel cars (results for all nine schemes). 
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FigureDl Emissions before calming and after calming for individual petrol non-catalyst cars. The 
emission levels have been averaged over all the schemes for which a vehicle was tested. The I-beams 
represent the 95% confidence intervals on the means. Where there are no confidence intervals, the 
vehicle was only tested on one scheme. 
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Figure D2 Emissions before calming and after calming for individual petrol catalyst cars. The 
emission levels have been averaged over all the schemes for which a vehicle was tested. The I-beams 
represent the 95% confidence intervals on the means. Where there are no confidence intervals, the 
vehicle was only tested on one scheme. 
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Figure D3 Emissions before calming and after calming for individual diesel cars. The emission levels 
have been averaged over all the schemes for which a vehicle was tested. The I-beams represent the 
95% confidence intervals on the means. Where there are no confidence intervals, the vehicle was only 
tested on one scheme. 
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Figure EI Emissions from petrol non-catalyst cars before calming and after calming for individual 
schemes. The emission levels have been averaged over all the vehicle tested for a particular scheme. 
The I-beams represent the 95% confidence intervals on the means. 
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Figure E2 Emissions from petrol catalyst cars before calming and after calming for individual 

schemes. The emission levels have been averaged over all the vehicle tested for a particular scheme. 

The [-beams represent the 95% confidence intervals on the means. 
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Figure E3 Emissions from diesel cars before calming and after calming for individual 
schemes. The emission levels have been averaged over aH the vehicle tested for a particular 
scheme. The I-beams represent the 95% confidence intervals on the means. 
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The Mann VA-iitney test is a non-parametric test for comparing the median values of two 

samples (A and B) that are not normally distributed. The null hypothesis in assumes that the 

medians of two samples are equal. The alternative hypotheses tested here were: 

1. Median of variable A ... median of variable B 

Median of variable A> median of variable B 

Median of variable A< median of variable B 

If the probability value (P) for any of the hypotheses is less than 0.05 (for a 95% confidence 

level), the null hypothesis should be rejected. 

These hypothesis were tested for the distributions that were recorded at each site. Three 

comparisons were undertaken: 

A Before calming vs. after calming at the measure 

Before calming vs. 'after calming between measures 

C After calming near the measure vs. after calming between measures 

The results for each traffic caln-Lg measure and each pollutant are presented on the following 

pages. The cases for which the nuH hypothesis has been rejected are highlighted. 

F1 Flat-top humps 

The results in Table F1 show that the median CO level after calming both near the hump and 

between humps was significantly greater than that before calming. After calming the median 

CO level near the hump was significantly greater than that between humps. 

The results in Table F2 show that the median HC level after calming was significantly greater 

near and between humps than that before calming, and after calming the median level near the 

hump was significantly greater than the median level between humps. 
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Table F1 Results of Mann-Whitney tests for CO (road humps). 

P value for alternative hypotheses 
Variable A Variable B Median A <> Median A> Median A< Median 

Median B Median B B 
Before calming After calming near 0.00 1.00 0 00 hump . 
Before calming After calming 0.00 1.00 01 00 between humps . 
fier calming near After calming 0.01 0. , 00 0 99 hump between humps . 

Table F2 Results of Mam-Whitney tests for HC (road humps). 

P value for alternative hypotheses 
Variable A Variable B Median A <> Median A> Median A< Median 

Median B Median B B 
After calming near Before calming hump 0.00 1.00 6. 

After calming ' Before calming between humps 0.00 1.00 0 . 00 

After calming near After calming 0.00 
I 

I, '. - 0.00 0.99 
hump between humps 

F2 Speed cushions 

The median CO level (Table F3) was found to be significantly Mgher near and between the 

cushions than before calming The median CO level at the 'near cushion! site was significantly 

higher than that at the 'between cushion' site. For hydrocarbons (Table F4) it was found that 

the median level near the cushion after calming was significantly greater than that before 

calming, but the median between cushions was not significantly greater than the median level 

before cahning. 

Table F3 Results of Mann-VUtney tests for CO (speed cushions). 

P value for alternative hypotheses 
Variable A Variable B Median A <> Median A> Median A< Median 

Median B Median B B 

Before calming 
After calming near 0.00 1.00 OA cushions 

Before calming 
After calming 0.05 0.98 0.02 between cushions 

After calming near Aftercalming ", .ý0 00 tlý - ý, 0,00 ýI --!, 
1 

1.00 
I cushions I between cushions , . 1 1 
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Table F4 Results of Mann-Whitney tests for HC (speed cushions). 
P value for alternative h otheses 

Variable A Variable B Median A <> Median A> Median A< Median 
Median B Median B B 

Before calming 
After calming near 0.00 1.00 0, . 00 

cushions 

Before calmin 9' 
After calming 0.31 0.15 0.85 

between cushions 
After calming near 1 Aftercalming 0.0 ,0 6.60' 1.00 

cushions I between cushions 
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