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Abstract: Background/Objectives: Metabolic syndrome (MetS) is a complex condition
linking obesity, diabetes, and hypertension, representing a major challenge in clinical
care. Its rising global prevalence, driven by urbanization, sedentary lifestyles, and dietary
changes, underscores the need for effective management. This study aims to explore the
genetic mechanisms behind MetS, including adiposity, inflammation, neurotransmitters,
and β-cell function, to develop a prognostic tool for MetS risk. Methods: We genotyped
40 genetic variants across these pathways in 279 MetS patients and 397 healthy individuals.
Using logistic regression, we evaluated the prognostic capability of a polygenic score model
for MetS risk, both independently and with other factors like sex and age. Results: Logistic
regression analysis identified 18 genetic variants significantly associated with MetS. The
optimal predictive model used polygenic scores calculated with weights assigned to the
18 loci (AUC 82.5%, 95% CI 79.4–85.6%), with age and sex providing a minimal, non-
significant improvement (AUC 83.3%, 95% CI 80.2–86.3%). The addition of the polygenic
score significantly improved net reclassification (NRI = 1.03%, p = 3.42 × 10−50). Including
all 40 variants did not enhance prediction (NRI = −0.11, p = 0.507). Conclusions: Polygenic
scores could aid in predicting MetS risk and health outcomes, emphasizing the need
for diagnostic tools tailored to specific populations. Additional research is warranted to
corroborate these conclusions and explore the molecular mechanisms of MetS.

Keywords: metabolic syndrome; polygenic score; predictive medicine

1. Introduction
Metabolic syndrome (MetS) encompasses a spectrum of interdependent pathophysio-

logical conditions, which share common underlying mechanisms and mutually reinforce
one another. These include visceral obesity, dyslipidemia, elevated blood pressure (BP),
and altered glucose tolerance [1]. The global prevalence of MetS is rapidly increasing,
driven not only by genetic predisposition but also by significant lifestyle changes associated
with urbanization. The transition to urban environments often brings dietary shifts toward
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high-calorie, processed foods, reduced physical activity due to sedentary work and leisure
habits, and greater life expectancies, all of which contribute to the rising burden of MetS [2].
The importance of MetS lies in its high prevalence and its association with elevated risks for
type 2 diabetes (T2D) and its complications and coronary artery disease (CAD), along with
its adverse effects on both longevity and health-related quality of life. Given the complexity
of MetS, research often focuses on genes linked to adiposity, lipid metabolism, diabetes, and
glycemic traits [3–5]. Previously, we identified several genes encoding neurotransmitters
and inflammatory mediators associated with MetS and related conditions [6–9].

Subclinical inflammation is a critical hallmark of MetS, frequently indicated by
increased concentrations of biomarkers including high-sensitivity C-reactive protein
(hsCRP) [10], tumor necrosis factor receptor 1 (TNFR1), soluble tumor necrosis factor
receptor 2 (sTNFR2), and leptin (LEP) [11]. Our recent research has highlighted associa-
tions between TNFSF1B rs1061624 and MetS [12]. Additionally, TNF rs1800629 has been
linked to elevated TNF-α levels and albuminuria, an indicator of diabetic nephropathy [10].
Similarly, CRP rs2794521 has shown associations with hsCRP and a range of anthropo-
metric and metabolic traits, including height, body mass index (BMI), waist-to-hip ratio
(WHR), postprandial glucose, fasting insulin, and homeostatic model assessment of insulin
resistance (HOMA-IR) [13]. Associations with MetS have also been observed for TMEM18
rs2860323 [14].

Recent genome-wide association studies (GWASs) have pinpointed loci linked to
various metabolic phenotypes, further supporting the potential of polygenic risk scoring in
predicting susceptibility to MetS [3]. Polygenic scores, which assess an individual’s genetic
predisposition, have effectively demonstrated genetic susceptibility to MetS in children
and adolescents, and even examined the interaction between adherence to a Mediterranean
diet, adiposity, and MetS risk [15–17].

This study aims to leverage data on genetic associations within 40 key genes related
to adiposity, inflammation, β-cell function, and neurotransmitter activity to construct a
polygenic risk score that can predict susceptibility to MetS and its endophenotypes.

2. Materials and Methods
2.1. Study Group

This study was carried out following the principles outlined in the Declaration of
Helsinki and received approval from the Local Ethical Committee of the Institute of Bio-
chemistry and Genetics UFRC RAS (Protocol No 8, 14 March 2012). All participants
provided their written informed consent.

This study involved 279 individuals with metabolic syndrome (MetS) and 397 healthy
controls. The recruitment process and enrollment criteria are detailed elsewhere [8,12].
Briefly, the MetS criteria included a waist circumference exceeding 102 cm for men and
88 cm for women, blood pressure (BP) above 130/85 mmHg, fasting triglycerides (TGs) ex-
ceeding 1.7 mmol/L, fasting high-density lipoprotein (HDL) cholesterol below 1.03 mmol/L
for men or 1.3 mmol/L for women, and fasting glucose (FG) above 5.6 mmol/L [7,18,19].
The control group participants exhibited no clinical or laboratory signs of metabolic condi-
tions, no family history of diabetes, and were unrelated to the other study participants.

2.2. Clinical Measurements

The anthropometric measurements followed the WHO guidelines [20]. Body weight
was recorded to the nearest kilogram with participants in light clothing, and height was
measured to the nearest centimeter using a stadiometer. Waist circumference was assessed
at the midpoint between the lower rib and iliac crest, and hip circumference was measured
at the widest part of the hips. Body mass index (BMI) was calculated as weight in kilograms
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divided by height in squared meters (kg/m2), and the waist-to-hip ratio (WHR) was
calculated as waist divided by hip circumference.

BP was taken three times on both arms after a five-minute rest, using a standard
sphygmomanometer. Systolic (SBP) and diastolic blood pressure (DBP) were determined
from Korotkoff sounds (phases I and V) [21]. Mean arterial pressure was calculated as
two-thirds DBP plus one-third SBP, and pulse pressure was calculated as SBP minus DBP.

Fasting and postprandial blood samples were collected. Plasma glucose was measured
via the glucose oxidase method, and insulin was measured by an electrochemilumines-
cence immunoassay. Insulin resistance was estimated using the homeostasis model assess-
ment (HOMA-IR) [22]. HbA1c was assessed by high-performance liquid chromatography
(ADAMS A1c HA-8182, Arkray, Inc., Kyoto, Japan), while lipid profiles (total cholesterol
(TC), TGs, HDL, and low-density lipoprotein (LDL)), C-reactive protein (CRP), and tumor
necrosis factor alpha (TNF-α) were measured using the standard photometric (Olympus,
Hamburg, Germany), chemiluminescent (IMMULITE 2000, Siemens Medical Solutions
Diagnostics, Deerfield, IL, USA), and ELISA (Vector-Best, Novosibirsk, Russia) methods.
Additional biomarkers (albumin, alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), gamma-glutamyl transferase (GGT), creatinine, uric acid) were analyzed on a
Cobas Integra 400 plus system (Roche Diagnostics, Basel, Switzerland).

2.3. Genotyping

Peripheral blood samples were collected from all participants and processed for DNA
extraction. DNA isolation procedures and genotyping were carried out using the estab-
lished protocols referenced in previous studies [9,13,23–29]. The genetic variants included
in this study were chosen based on the findings from phenome-wide association studies
(PheWASs), which identified associations with metabolic traits, such as impaired glucose
tolerance, atherosclerosis, adiposity, as well as related diseases, including inflammatory
disorders. Genotyping was performed using real-time PCR (CFX96, Bio-Rad Laboratories,
Hercules, CA, USA) with TaqMan assays (Thermo Fisher Scientific Inc., Waltham, MA,
USA). To ensure data reliability, 5% of the genotyped samples were chosen at random for
re-genotyping, with the results fully consistent with the original data.

2.4. Statistical Analysis

Associations between genetic variants and MetS traits, as well as clinical parameters,
were evaluated using logistic or linear regression analyses under the additive genetic
model with age and sex as covariates, implemented in PLINK 1.9 [30]. The additive
model posits that the effect of carrying two risk alleles is double that of carrying one.
To account for multiple testing, the false discovery rate (FDR) was managed using the
Benjamini–Hochberg method [31], with statistical significance defined as a PFDR value less
than 0.05.

Polygenic scores (both weighted and unweighted) were constructed for the genetic
variants that showed significant associations with MetS in the study cohort based on the
logistic regression results. Weighted scores used odds ratios (ORs), adjusted for age and
sex, to assign weight to risk alleles. If the initial ORs were less than 1.0, the analysis was
re-conducted with the alternative allele as the reference allele. Linkage equilibrium of
variants on the same chromosome was assessed, and single nucleotide variants (SNVs) in
linkage disequilibrium were not included in the calculation of polygenic scores.

To investigate the biological mechanisms underlying metabolic syndrome (MetS)
endophenotypes and identify gene clusters associated with MetS and its traits, we utilized
publicly available data from the UK Biobank, accessed via the Edinburgh Gene Atlas
and PheWAS (phenome-wide association study) databases [32]. These datasets provided
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association results for genetic variants and phenotypic traits. We used the pheatmap R
package to visualize clusters of associations among the studied genetic loci [33]. In the
generated heatmap, columns represent gene clusters, rows correspond to distinct metabolic
endophenotypes, and cell intensities reflect Z-scores aligned to the effect allele. This
approach captures both the strength and direction of the associations between genetic
variants within each cluster and the metabolic endophenotypes.

The prognostic value of the derived polygenic scores for MetS was evaluated through
Receiver Operator Characteristic (ROC) analysis. Model performance was quantified using
the area under the ROC curve (AUC). Predictive models for MetS were developed using
the Epi: Statistical Analysis in Epidemiology [34] and pROC [35] R packages.

To assess the enhancement in risk prediction provided by incorporating additional
parameters, the net reclassification index (NRI) was calculated [36]. Continuous NRI values
were obtained using the nribins function from the nricens: NRI for Risk Prediction Models
with Time to Event and Binary Response Data R package [37]. Bootstrapping was employed
to calculate 95% confidence intervals for NRI.

3. Results
3.1. Association Analysis

The association analysis revealed 18 SNVs significantly linked to metabolic syndrome
(MetS) (Table 1; full results available in Supplementary Table S1). Notably, the strongest
associations were observed for CDKAL1 rs9295474*C (OR = 2.63 PFDR = 1.79 × 10−9),
NPY2R rs1047214*C (OR = 2.12, PFDR = 1.50 × 10−7), ADRA2A rs1800544*G (OR = 2.18,
PFDR = 3.98 × 10−6), and CHRM1 rs2067477*A (OR = 3.08 PFDR = 3.0110−5).

Further analysis of the phenotypic traits in MetS patients highlighted significant associ-
ations with ADCY3 rs17799872 across various characteristics. These include anthropometric
traits like height (β = −3.86, PFDR = 8.65 × 10−6), BMI (β = 2.16, PFDR = 4.38 × 10−13), waist
circumference (β = 6.19, PFDR = 1.52 × 10−6), hip circumference (β = 3.99, PFDR = 0.002),
and waist–hip ratio (β = 0.02, PFDR = 2.67 × 10−4). ADCY3 rs17799872 was also strongly
associated with glycemic traits, including fasting glucose (β = 0.59, PFDR = 0.035), fasting
insulin (β = 4.13, PFDR = 2.14 × 10−4), postprandial insulin (β = 5.75, PFDR = 0.001), and
HOMA-IR (β = 1.48, PFDR = 2.69 × 10−4). Additionally, ADCY3 rs17799872 was associated
with inflammatory markers such as erythrocyte sedimentation rate (β = 4.11, PFDR = 0.049),
CRP (β = 1.06, PFDR = 1.10 × 10−4), TNF-α (β = 7.50, PFDR = 0.001), fibrinogen (β = 0.76,
PFDR = 0.002), and albumin (β = −2.56, PFDR = 0.002). Other loci remaining significant after
multiple testing corrections include ADRA2A rs1800544, which was linked to glycemic traits
like HOMA-IR (β = 0.79, PFDR = 0.049) and postprandial insulin (β = 3.55, PFDR = 0.008),
as well as HTR2C rs6318, associated with anthropometric traits including BMI (β = 1.29,
PFDR = 4.00 × 10−4), height (β = −2.82, PFDR = 0.008), and waist circumference (β = 3.75,
PFDR = 0.048) (Supplementary Table S2).

To deepen our insight into the biological mechanisms driving metabolic syndrome
(MetS) endophenotypes and to identify gene clusters associated with MetS and its traits,
we analyzed publicly available data from the UK Biobank, accessed through the Edinburgh
Gene Atlas and PheWAS (phenome-wide association study) databases [32]. These resources
provided association results between the studied genetic variants and phenotypic traits,
with the top associations highlighted in Supplementary Figure S1. Using these data, we
visualized the clusters of associations for the studied genetic loci in a heatmap (Figure 1).
In this representation, columns correspond to gene clusters, and rows represent distinct
metabolic endophenotypes. The intensity of each cell reflects the Z-score, aligned to the
effect allele, indicating both the strength and direction of the association between genetic
variants within each cluster and the endophenotypes.
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Figure 1. Heatmap illustrating the associations between 33 metabolic endophenotypes and five gene
clusters linked to metabolic syndrome. Columns represent the gene clusters, and rows correspond
to distinct metabolic endophenotypes. Each cell’s intensity reflects the Z-score, calculated based on
linear regression analyses with adjustments for covariates, aligned to the effect allele. The Z-score
indicates both the magnitude and direction of the association between the genetic variants in each
cluster and the corresponding endophenotype.

Table 1. Loci significantly associated with metabolic syndrome.

Gene SNV EA 1 MA 2
MAF 3

PHWE
4 OR 5

(95%CIOR) 6 P 7 PFDR
8

Control MetS

TNFRSF1B rs1061624 A G 0.51 0.47 0.088 1.32 (1.04–1.69) 0.022 0.049

LEPR rs1137100 G G 0.21 0.29 0.294 1.53 (1.17–2.01) 0.002 0.007

CRP rs2794521 C C 0.21 0.29 0.546 1.51 (1.16–1.97) 0.002 0.007

SEC16B rs10913469 T C 0.23 0.17 0.197 1.76 (1.3–2.38) 2.29 × 10−4 1.14 × 10−3

ADCY3 rs17799872 A A 0.08 0.13 0.498 1.57 (1.08–2.29) 0.018 0.041

GHRL rs696217 A A 0.08 0.14 0.479 1.89 (1.33–2.68) 3.67 × 10−4 1.63 × 10−3

NPY2R rs1047214 C T 0.52 0.38 0.067 2.12 (1.64–2.74) 7.47 × 10−9 1.50 × 10−7

CDKAL1 rs9295474 C G 0.36 0.16 0.827 2.63 (1.97–3.5) 4.47 × 10−11 1.79 × 10−9
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Table 1. Cont.

Gene SNV EA 1 MA 2
MAF 3

PHWE
4 OR 5

(95%CIOR) 6 P 7 PFDR
8

Control MetS

LPL rs295 C C 0.25 0.35 0.789 1.46 (1.16–1.85) 0.002 0.006

SIRT1 rs3818292 G G 0.21 0.28 0.364 1.39 (1.07–1.81) 0.014 0.034

ADRA2A rs1800544 G G 0.14 0.25 0.145 2.18 (1.62–2.95) 2.98 × 10−7 3.98 × 10−6

BDNF rs11030107 G G 0.13 0.23 0.515 1.9 (1.38–2.61) 7.49 × 10−5 4.99 × 10−4

CHRM4 rs2067482 C T 0.08 0.04 1 2.29 (1.34–3.9) 0.002 0.007

CHRM1 rs2067477 A A 0.04 0.12 1 3.08 (1.91–4.97) 3.77 × 10−6 3.01 × 10−5

HTR3A rs1062613 T T 0.19 0.3 0.068 2.01 (1.5–2.69) 2.30 × 10−6 2.30 × 10−5

ZBTB42 rs3803300 A A 0.03 0.07 1 2.34 (1.32–4.16) 0.004 0.010

FTO rs9939609 A A 0.18 0.27 0.607 1.72 (1.3–2.27) 1.52 × 10−4 8.66 × 10−4

GIPR rs2302382 C A 0.23 0.16 0.391 1.55 (1.16–2.08) 0.003 0.010
1 EA—effect allele; 2 MA—minor allele; 3 MAF—minor allele frequency; 4 PHWE—significance level for the
Hardy–Weinberg test; 5 OR—odds ratio; 6 95%CIOR—95% confidence interval for the odds ratio; 7 P—significance
level; 8 PFDR—significance level after Benjamani–Hochberg adjustment.

3.2. Polygenic Score Analysis

Figure 2 illustrates the distribution of polygenic scores with and without the locus-
specific weights across groups of patients with MetS and healthy controls. The mean
values for the weighted and unweighted scores were significantly elevated in MetS patients
compared to controls: for the weighted score, 49.73 ± 0.31 vs. 42.87 ± 0.26 (p = 8.78 × 10−53),
and for the unweighted score, 34.13 ± 0.21 vs. 30.26 ± 0.18 (p = 3.02 × 10−39). The analysis
of weighted polygenic scores in relation to MetS revealed that the combined influence of all
examined SNVs was linked to a heightened risk of MetS (OR [95%CIOR] = 1.28 [1.24–1.34],
p = 5.73 × 10−34). Similarly, the unweighted polygenic score analysis also demonstrated
that the collective effect of these polymorphisms was linked to an increased risk of MetS
(OR [95%CIOR] = 1.37 [1.30–1.45], p = 3.51 × 10−28).
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Figure 2. Density plots of polygenic score distributions. (A) The plot shows the distribution of
weighted risk scores, calculated using odds ratios adjusted for age and sex as weights for the risk
alleles of variants significantly linked to metabolic syndrome, with controls represented in red, while
individuals with metabolic syndrome are shown in blue. (B) This plot depicts the distribution of
unweighted polygenic scores, with control participants in red and those with metabolic syndrome in
blue. The dotted lines represent mean values for each group.
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We conducted ROC analysis to evaluate the prognostic accuracy of models built using
unweighted and weighted polygenic scores, incorporating additional factors like sex and
age (Figure 3). The results showed that the model with the weighted polygenic score
outperformed the unweighted polygenic score model (AUC 82.5%, 95%CI 79.4–85.6% vs.
AUC 78.0%, 95%CI 74.5–81.5%). Including age and sex as predictors in both the weighted
and unweighted polygenic score models slightly improved prediction accuracy (AUC
83.3%, 95%CI 80.2–86.3% for the weighted model, and AUC 79.4%, 95%CI 76.0–82.8% for
the unweighted model) (Figure 3).
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Figure 3. Receiver Operating Characteristic (ROC) curves visualizing the prognostic capabilities
of various models in predicting metabolic syndrome. (A) The model is based on the unweighted
polygenic score derived from the genetic variants that showed significant associations with metabolic
syndrome in our study. (B) The model is based on the weighted polygenic score, constructed using
the odds ratios adjusted for age and sex as weights for the risk alleles of the variants significantly
associated with metabolic syndrome in our study. (C) The model incorporates the unweighted
polygenic score along with age and sex. (D) The model incorporates the weighted polygenic score
along with age and sex. Sensitivity measures the proportion of true positive results, while specificity
measures the proportion of true negative results. The Area Under the Curve (AUC) is used to assess
model performance, with AUC values classified as excellent (90% or higher), very good (80–90%),
good (70–80%), satisfactory (60–70%), and unsatisfactory (50–60%).
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3.3. Net Reclassification Improvement Analysis

Reclassification analysis was performed using net reclassification improvement (NRI)
with a reference model that included only non-genetic factors (age and sex) and compared
it to models incorporating polygenic scores for the 18 SNVs associated with MetS (listed in
Table 1), as well as a model that included all genetic variants studied. We then performed a
second NRI analysis, using the model with polygenic scores for the 18 metabolic syndrome-
associated variants, age, and sex as the reference. This was compared to the model that
included the polygenic risk score for all tested loci, along with age and sex. The results
of the NRI analysis are summarized in Table 2. Compared to the model based solely on
non-genetic factors, the inclusion of the polygenic score for the MetS-associated variants
significantly improved reclassification (NRI = 1.03%, p = 3.42 × 10−50). However, adding
all 40 tested genetic variants did not lead to a significant improvement in predictive power
over the model that included the 18 key loci (NRI = −0.11, p = 0.507).

Table 2. Comparison of net reclassification improvement between models with added parameters
and the reference.

Reference (Age + Sex) Reference (18SNV Polygenic Score +Age + Sex)

18SNV 1 Polygenic Score + Sex + Age 40SNV Polygenic Score + Sex + Age

NRI 2 SE 3 95%CI 4 p-Value 5 NRI SE 95%CI p-Value

Total 1.03 0.07 (0.89, 1.16) 3.42 × 10−50 −0.11 0.16 (−0.42, 0.23) 0.507
Cases 0.55 0.04 (0.45, 0.61) 1.45 × 10−40 −0.08 0.08 (−0.25, 0.07) 0.363

Controls 0.48 0.04 (0.41, 0.57) 7.52 × 10−34 −0.03 0.09 (−0.19, 0.18) 0.718
1 SNV—single nucleotide variant; 2 NRI—net reclassification improvement; 3 SE—standard error; 4 95%CI—95%
confidence interval; 5 p-value—significance level; NRI values are expressed as percentages.

4. Discussion
We performed an association analysis of polymorphic variants and MetS, as well as

phenotypic characteristics of patients with MetS. We evaluated the prognostic ability of a
model containing the polygenic risk score for the genetic variants associated with MetS,
as identified in our study. Our findings indicate that the most effective prognostic model
integrated a weighted polygenic score with non-genetic variables such as age and sex.

The most robust associations with MetS and its endophenotypes in our study were
identified for genes involved in β-cell function. Among these, the CDKAL1 rs9295474
variant exhibited the strongest link to MetS predisposition. This variant has been linked to
the development of T2D and hypertension in numerous genome-wide association studies
(GWASs) [38,39]. Located on chromosome 6p22.3, the CDKAL1 gene is closely connected to
a heightened risk of T2D and obesity [40]. Expressed predominantly in human pancreatic
β-cells, CDKAL1 regulates insulin secretion, sustains β-cell function under glucotoxic
conditions, and facilitates the conversion of proinsulin to insulin in response to glucose
stimulation [41]. Moreover, it plays a critical role in maintaining mitochondrial morphology
and adipose tissue function [40,42]. The progressive dysfunction of pancreatic β-cells exac-
erbates MetS and its complications, establishing a pathogenic feedback loop. Supporting
this, recent studies have shown that CDKAL1 variants are associated with a greater waist
circumference and WHR in Chinese populations [43] and serve as independent predictors
of metabolically healthy obesity in Chinese children [44].

Similarly, ADCY3 rs17799872 demonstrated associations in our study with a broad
spectrum of traits, encompassing anthropometric (BMI, height, waist circumference, hip
circumference, WHR), glycemic (IFG, HOMA-IR, fasting and postprandial insulin), and
inflammatory markers (ESR, CRP, fibrinogen, TNF-α). Prior research has linked SNPs in the
ADCY3 gene to several of these traits, including waist circumference [45], WHR [46], whole
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body fat mass [47], BMI (adjusted for smoking behavior) [48], MetS [3], FG, and SBP [49].
The ADCY3 gene encodes adenylyl cyclase 3, a key enzyme located in the hypothalamus
that governs multiple critical pathways. Mutations in ADCY3 have been identified in
children with severe monogenic obesity [50], while polygenic variants increase the risk of
obesity and T2D, with the effect being more pronounced in homozygous carriers [51]. Rare
ADCY3 mutations have been associated with impaired appetite control, contributing to
early-onset severe obesity and insulin resistance [52].

Neurotransmitters emerged as another gene cluster strongly associated with MetS
in our analysis. Notably, ADRA2A rs1800544 was linked to HOMA-IR and postprandial
insulin levels, consistent with earlier findings that associated this variant with MetS and
obesity [8,53]. The ADRA2A gene regulates catecholamine function, which plays a pivotal
role in energy consumption and lipolysis—the hydrolysis of stored triglycerides into free
fatty acids and glycerol. In adipocytes, β-adrenergic receptors (ADRB) stimulate lipolysis,
while α2-adrenergic receptors (ADRA2) suppress it. Additionally, insulin acts as a key
suppressor of catecholamine-driven lipolysis, underscoring the complex interplay of these
pathways in metabolic regulation [53].

Another significant finding was the strong association between NPY2R rs1047214
and MetS. The NPY2R gene encodes a receptor for neuropeptide Y, an orexigenic agent
whose production is modulated by blood glucose levels. NPY2R polymorphisms have been
associated with BMI and show gender-specific effects; for instance, certain SNVs in this
gene appear to influence obesity risk exclusively in men [54]. Interestingly, related genetic
variants in PYY (encoding the ligand for NPY2R) have been associated with obesity-related
traits solely in women [55]. These findings suggest that appetite regulation pathways
exhibit gender-specific effects on body composition, although the underlying mechanisms
remain insufficiently understood.

SNVs in muscarinic acetylcholine receptor genes CHRM1 and CHRM4 were also
associated with MetS in our study. Muscarinic acetylcholine receptors, part of the G-
protein-coupled receptor family, mediate the diverse cellular effects of acetylcholine in
both the central and peripheral nervous systems. These effects include the inhibition of
adenylate cyclase, degradation of phosphoinositides, and mediation of potassium chan-
nel activity [56,57]. CHRM1 rs2067477 has previously been linked to WHR adjusted for
BMI [58] and the waist-to-hip index [59], while CHRM4 rs2067482, although not previously
associated with metabolic conditions, has been implicated in headache or migraine [60],
postoperative delirium, and postoperative cognitive dysfunction [56], as well as schizophre-
nia [61].

SNVs in genes related to adiposity were among those associated with MetS in our
study. SEC16B rs10913469, previously linked to MetS [62], BMI [63], and waist circumfer-
ence [64], has also been implicated in childhood obesity, with associations influenced by
gender, age, and nutritional status [65]. Similarly, GHRL rs696217 has been tied to obesity
and HDL cholesterol levels [66,67]. The GHRL gene encodes preproghrelin, a precursor
hormone processed into ghrelin and obestatin, predominantly secreted by stomach cells.
Ghrelin, a key player in the orexigenic signaling system, is also associated with addictive
behaviors, including alcohol use disorder, compulsive overeating [68–70], and drug addic-
tion [71]. In rodents, ghrelin activates cholinergic–dopaminergic reward pathways [72].
Another notable variant, FTO rs9939609, has consistently demonstrated associations with
MetS across studies [73–75]. This SNV exhibits pleiotropic effects, influencing various
glycemic, cardiovascular, lipid, and anthropometric traits while also affecting the age of
onset for conditions like diabetes, cancer, cardiovascular disease, and neurodegenerative
disorders [76].
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SIRT1, a member of the sirtuin family of NAD+-dependent enzymes responsible for
histone deacetylation, is a key regulator of apoptosis and is essential for glucose and lipid
metabolism. The genetic variant SIRT1 rs3818292 has been linked to obesity [77] and
MetS [78]. Extensive research has highlighted the significance of SIRT1 in maintaining
glucose homeostasis and supporting cardiovascular health [79]. In diabetic animal models,
SIRT1 expression in islet β-cells was shown to stimulate insulin release triggered by glucose
intake [80]. Furthermore, studies in prediabetic individuals revealed an association be-
tween insulin resistance and reduced SIRT1 expression in subcutaneous fat, accompanied
by elevated serum levels of inflammatory cytokines. These findings suggest that SIRT1
activity in adipose tissue may confer cardioprotective benefits, particularly in prediabetic
conditions [81].

As evidenced by our findings, overlapping pathways in MetS involve key genes
that influence various aspects of the condition. Insulin resistance, a core feature of MetS,
is linked to genes such as CDKAL1, ADCY3, and ADRA2A. Obesity and adiposity are
influenced by genes like ADCY3, NPY2R, and SEC16B, which play central roles in MetS
pathophysiology. Chronic inflammation, a critical factor in MetS progression, is associated
with inflammatory markers tied to genes such as ADCY3 and SIRT1. Additionally, variants
in genes like NPY2R, ADRA2A, and GHRL emphasize the role of energy homeostasis and
appetite regulation in MetS risk. These overlapping pathways highlight the complexity of
MetS, with interactions between insulin resistance, obesity, inflammation, and hormonal
regulation, where genetic variants contribute to individual risk profiles.

We developed a polygenic score using genetic variants associated with MetS and
evaluated the prognostic performance of models incorporating both unweighted and
weighted polygenic scores, along with age and sex, for predicting MetS risk. Our find-
ings revealed that the most predictive model combined a weighted polygenic score with
non-genetic factors such as sex and age. Previously, Park et al. constructed a three-factor
model, which groups MetS components into latent factors labeled as obesity, insulin resis-
tance/hypertension, and dyslipidemia, which demonstrated an excellent model fit based
on metrics like the comparative fit index (CFI, 0.981–0.996) and standardized root mean
square residual (SRMR, 0.036–0.043) [3]. The model effectively captured the clustering of
MetS components, and the further constructed hierarchical factor model integrated shared
genetic effects among these latent factors, highlighting the interrelated nature of MetS [3].
However, this approach primarily provides structural insights into the relationships among
MetS components rather than directly evaluating predictive power in new individuals. Van
Walree et al. employed the MetS factor GWAS summary statistics to calculate the poly-
genic score that explained 5.9% of the variance in MetS, which is higher than the variance
explained by the individual MetS component polygenic score [82]. When combined with
covariates, the polygenic risk model explained 21% of the variance (Nagelkerke R2) [82].
While statistically significant (p = 0.0058) and demonstrating better predictive abilities
than the sum of its parts, the polygenic risk-based model captured a relatively modest
proportion of the variance [82].

Prior studies have demonstrated that combining polygenic scores with other risk fac-
tors such as demographic information, lifestyle choices, medication use, and comorbidities
can enhance risk stratification [83]. Population-specific genetic structures, including pat-
terns of linkage disequilibrium, may affect the influence of the studied variants on MetS and
the varying prognostic values of weighted and unweighted polygenic scores. Multiethnic
polygenic scores have shown superior performance compared to those developed primarily
in European populations for predicting health risks [84]. Moreover, incorporating key SNVs
along with demographic factors including sex and ethnicity has been found to enhance the
accuracy of polygenic scores [85]. Although increasing the number of genetic variants used
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to calculate polygenic scores can potentially improve prognostic power [86], our findings
suggest that including all tested SNVs did not substantially enhance the model’s prognostic
ability (Table 2). Validation in an independent cohort will be necessary to confirm the
constructed model’s predictive capacity.

Study Strengths and Limitations

Our study provides valuable insights into the genetic basis of MetS by focusing on
key genes related to adiposity, β-cell function, inflammation, and neurotransmitter activity.
The inclusion of a polygenic score combining genetic and non-genetic factors, such as age
and sex, enhances our understanding of MetS risk prediction. These insights into genetic
associations and polygenic scores hold potential for clinical applications, including the
development of diagnostic tools and the identification of targets for drug development.

However, several limitations must be acknowledged. The sample size, while adequate
for detecting significant associations, may have limited our ability to identify smaller-effect
variants. Additionally, while we focused on 40 key genes, it is possible that other variants
outside these genes may also contribute to MetS susceptibility. These factors underscore
the need for replication in larger, independent cohorts to validate our findings and extend
their applicability across different populations.

5. Conclusions
Our analysis identified several key genetic variants associated with MetS and its

endophenotypes, particularly those involved in β-cell function and metabolic regulation.
Notably, variants in the CDKAL1, ADCY3, ADRA2A, and NPY2R genes showed strong
associations with metabolic traits such as waist circumference, insulin resistance, and
obesity. These findings contribute to our understanding of the genetic underpinnings
of MetS, emphasizing the role of genes regulating insulin secretion, appetite, and fat
metabolism. Our study highlights the potential of polygenic scores in predicting MetS
risk, with the most predictive model incorporating weighted polygenic scores along with
age and sex as non-genetic factors. Although expanding the polygenic scores to include
additional variants did not significantly improve model performance, our results suggest
that integrating genetic and demographic data could enhance the accuracy of MetS risk
prediction. Further validation in diverse populations is essential to confirm the robustness
of these models and their applicability in clinical settings.
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