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A B S T R A C T
The ability to accurately locate all indicators of disease within medical images is vital for comprehend-
ing the effects of the disease, as well as for weakly-supervised segmentation and localization of the
diagnostic correlators of disease. Existing methods either use classifiers to make predictions based on
class-salient regions or else use adversarial learning based image-to-image translation to capture such
disease effects. However, the former does not capture all relevant features for visual attribution (VA)
and are prone to data biases; the latter can generate adversarial (misleading) and inefficient solutions
when dealing in pixel values. To address this issue, we propose a novel approach Visual Attribution
using Adversarial Latent Transformations (VA2LT). Our method uses adversarial learning to generate
counterfactual (CF) normal images from abnormal images by finding and modifying discrepancies in
the latent space. We use cycle consistency between the query and CF latent representations to guide
our training. We evaluate our method on three datasets including a synthetic dataset, the Alzheimer’s
Disease Neuroimaging Initiative dataset, and the BraTS dataset. Our method outperforms baseline
and related methods on all datasets.

1. Introduction
The capability to identify disease effects at an individual

level, referred to as Visual Attribution (VA) [1], is essential
for various medical applications. These include utilizing
VA for weakly supervised localization or segmentation of
diseases [2, 3, 4, 5, 6, 7, 8], gaining a deeper understanding
of disease effects [9, 10], monitoring the progression and
severity of diseases [11], and identifying different subtypes
of complex diseases like Alzheimer’s and schizophrenia [1].

Currently, the most common approaches for VA of med-
ical images use deep neural network (DNN) classifiers for
either applying forward propagation (or activation) to iden-
tify the regions of the input image responsible for the predic-
tions, or using backpropagation to analyze the gradient of the
prediction with respect to the input image [6, 8, 12, 13, 14,
15, 16]. However, these approaches have two limitations that
can lead to uninformative and undesirable results in certain
situations: 1) DNN classifiers are trained to minimize mutual
information between inputs and outputs, which means they
tend to rely on the fewest possible input features to make
predictions. As a result, DNN classifiers may make decisions
based on only a few salient regions of the input image, rather
than considering the entire object of interest. This can be
problematic in the context of medical image diagnosis where
it is important to capture all of the disease effects present
in an image [1, 17, 18]. 2) According to user studies, these
methods are not as informative to humans as the simple near-
est neighbors from the training set. Humans may prefer to see
examples that are similar to the natural images rather than
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mere heatmaps or other visualizations. Counterfactual (CF)
explanations, which produce an example that is similar to
the explanation subject but predicted as a different category
by the model, have been shown to be more useful to humans
in understanding the diagnosis [19, 20, 21, 22, 23, 24]. CF
explanations have also been advocated by social scientists as
a preferred mode of explanation [25].

To address the limitations, adversarial learning-based
visual attribution (VA) methods have been proposed [1, 17,
18]. These methods use techniques from domain translation
to translate abnormal images into their normal counterparts,
and then identify the discrepancies (as VA maps) between
the two. However, it is often impractical to obtain contem-
poraneous normal and abnormal image pairs, so these VA
methods perform the abnormal-to-normal mapping in an
unsupervised way using cyclic-consistency GANs. These
approaches learn a discrepancy map that, when added to
the abnormal image, makes it indistinguishable from the
normal image. However, there are several limitations to
these approaches as well. Since they directly optimize for
perturbations in the input space, they may lead to adversarial
solutions (i.e., discrepancy maps could be adversarial pertur-
bations) that manipulate the predictions of the discriminator
with imperceptible changes leading to the generation of a
noisy VA map [26]. Adversarial examples are typically off
the data manifold, where DNN-based discriminators can
be fooled because they do not generalize to data that has
never been seen in training. We also show in the results
that these methods optimize for minimal changes in the
abnormal images in order to generate the normal CF and
do not fully attribute disease-affected regions. Consequently,
there is a need for research that addresses these limitations
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and develops more effective and efficient VA methods for
medical image diagnosis.

In this paper, we propose a novel approach for visual
attribution (VA) of medical images using generative ad-
versarial networks (GANs) that optimizes for a nonlinear
transformation in the latent space rather than directly in the
image space. This potentially enables the model to learn
a more general function, as it is not tied to specific pixel
values but rather deals with features such as C3LT (Cycle-
consistent counterfactuals by latent transformations) [27].
Our proposed transformation morphs the latent code of an
abnormal image into a residual latent vector that, when
added to the latent code of the abnormal image, can decode
a counterpart normal image that looks similar to the ab-
normal image but has semantically meaningful, perceptible
differences that allow the discriminator to classify it as a
normal image. We adopt a cycle-consistency principle [28],
in which an inverse mapping and a cycle consistency (i.e.,
forwards-backwards) loss is introduced to the GAN to tackle
tasks for which paired training data does not exist. We
demonstrate that it is possible to generate VA maps using
abnormal-to-normal translation in the latent space. Although
our approach is based on the formulation for generating
VA maps as proposed in [1, 17] (i.e., discrepancy maps
that, when subtracted from the abnormal image, make it
indistinguishable from the counterpart normal image), we
learn the abnormal-to-normal translation in the latent space
rather than the image space. This differs from [27], in which
an input image is explicitly transformed into a counterpart
(i.e., counterfactual) image. Instead, we learn an implicit
transformation through the VA map. Our approach offers a
promising solution for addressing the limitations of current
VA methods for medical image diagnosis and has the po-
tential to improve the accuracy and efficiency of diagnostic
tools utilizing AI.

The contribution of the paper is to propose a novel
approach, called VA2LT, for the visual attribution of medical
images using generative adversarial networks (GANs). Un-
like previous methods such as VA-GAN, VANT-GAN and
C3LT, which performs abnormal-to-normal transformations
in pixel space, VA2LT optimizes this transformation in latent
space. By adding the latent code of an abnormal image into
a latent map code, VA2LT generates a counterpart normal
image that exhibits semantically meaningful and perceptible
differences. This approach restricts the generator from mak-
ing adversarial changes at the pixel level and instead focuses
on capturing semantic changes based on feature vectors. The
use of the latent space allows for computationally efficient
generation of counterfactual images with reduced overfitting
compared to the pixel space.

2. Related Work
2.1. Visual Attribution in Medical Images

Class Activation Maps (CAM) are commonly used for
visual attribution (VA) in medical images. Originally, CAM
used global pooling to identify important image parts for

CNN’s decision [14]. Grad-CAM improved this by using
gradient-based feature attribution [15], and guided grad-
CAM further enhanced the maps using guided backprop-
agation [29]. Despite their widespread adoption, CAM-
based methods [30, 31, 32, 33, 34, 35, 36] have limi-
tations. They often produce low-resolution visualizations,
necessitating post-processing [17]. The classifiers in these
methods prioritize highly discriminative features, neglecting
low-discrimination ones, resulting in imperfect VA [1].
Misalignment issues can arise due to VA upsampling [37].

Overcoming these issues, a GAN-based method with
Wasserstein loss was proposed [1] but produced artifacts
due to the lack of alignment between normal and abnor-
mal images [17, 18]. VANT-GAN improved alignment us-
ing cyclic-consistency loss, but direct optimization of input
perturbations could lead to adversarial solutions [27]. The
adversarial examples might deceive CNN-based discrimina-
tors unaccustomed to off-manifold examples. Additionally, it
focuses on minimal changes for abnormal-to-normal trans-
lation, not fully attributing disease-affected areas.

In contrast, VA2LT optimizes transformations in the
latent space, yielding semantically meaningful differences
and avoiding pixel-level manipulation. VA2LT generates
maps from feature vectors, enabling better semantic un-
derstanding. Latent space’s lower dimensionality enhances
computational efficiency and reduces overfitting compared
to pixel space.
2.2. Visual Attribution for Segmentation of

Medical Images
Recent research in medical image segmentation has

utilized transformer-based networks [38, 39, 40, 41, 42].
Some studies have focused on brain tumor segmentation
using datasets like BraTS [38, 39], while [40] evaluated
approaches on various medical datasets such as DSB18,
TNBC, and Kvasir-SEG. TransUnet integrates CNNs with
transformers [41], achieving state-of-the-art performance.
HCT-Net [42] combines U-shaped CNNs with transform-
ers, optimizing via neural architecture search. However,
these methods rely on ground truth labels for segmentation,
which can be unavailable for certain datasets like ADNI.
In segmentation evaluation, methods have been proposed to
assess quality without ground truths. REC-Net [43] recon-
structs images from masked versions for quality assessment.
Another study [44] uses an ensemble of segmentations to
estimate probabilistic ground truth for nuclei segmentation
in MTI. However, these methods often rely on pre-trained
models and subjective evaluation.

The proposed method employs visual attribution for
generating disease maps, crucial in medical images with
limited pixel-level labeling. Visual attribution can enhance
segmentation accuracy with reduced expert input compared
to traditional methods relying on ground truths.
2.3. Counterfactual Visual Explanation

Most prior work on counterfactual visual explanation
has focused on natural images. One early approach, [20],
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generates counterfactual explanations (CFs) by exhaustively
searching for feature replacements between the latent fea-
tures of the query image and the CF image. However, this
method is slow and the generated CF images may not be
representative of the data manifold. Another approach, [24],
uses attribution maps to identify informative regions for
the query or CF classes, but this method does not generate
CF images, and the explanations are limited to highlighting
regions on images. It also requires the use of CF images
to render the explanations. In contrast, our work does not
rely on pre-selected CF images and produces explanations
in the form of counterfactual images that exist on the data
manifold. [19] introduces a contrastive explanation frame-
work that finds minimal and sufficient input features or
perturbations to justify a prediction or change the classifier’s
prediction from the query class to a CF one. However,
this approach does not provide explanations in terms of
counterfactual instances and the generated explanations may
be adversarial and off the data manifold. [45] generates CF
images by filling a masked area on the input with a generator,
but this method requires masks of diseases, which may not
be available in all cases. [46] builds a graph of candidates
from the training set and selects CFs from it that respect
the underlying data distribution, but this assumes that a
counterfactual example for the query image can be found in
the training set, which may not be true for medical images.
[47], on the other hand, uses cycle-consistent adversarial
training to learn an unpaired abnormal-to-normal transla-
tion, but this method requires post-processing to generate
visual explanations (VAs) using CF normal images. [17],
similar to [47], uses cycle-consistent adversarial learning to
generate VA maps.

These approaches, which directly optimize for perturba-
tions in the input space, may produce adversarial solutions
that are off the data manifold and may fail to render semanti-
cally meaningful CFs or VAs. [48] uses a cycle-consistency
GAN to generate CFs for explaining the decisions of a
medical image classifier, but this method has a different goal
than ours and does not produce VAs of the query image
in terms of its CF. [27], on the other hand, learns a latent
transformation that generates visual CFs by steering in the
latent space of generative models, but it translates the query
image directly into a CF (rather than translating using the
generated VA map) and cannot produce VAs of the query
image with respect to the CF. Our work is distinct in that we
aim to generate VAs of the query (abnormal) image in terms
of its CF (normal) image, rather than directly explaining the
decision of a classifier.
2.4. Impact of Proposed Work on Related

Domains
The existing research on counterfactual visual expla-

nation presents various contributions and limitations. Our
method, Visual Attribution using Adversarial Latent Trans-
formations (VA2LT), introduces a novel approach focusing
on medical imaging data. VA2LT enhances disease detection
and understanding by identifying and transforming salient

regions of abnormal medical images. Unlike segmentation
methods such as Multilevel Thresholding Image Segmen-
tation (MTIS) or Improved Ant Colony Optimization Al-
gorithm (XMACO) [49], VA2LT goes beyond delineation,
actively converting abnormal regions into counterfactual
normal states. This transformation process can provide clin-
icians with a deeper comprehension of disease attributes,
potentially improving accuracy in diagnosing conditions like
COVID-19 [49, 50].

Moreover, VA2LT’s benefits extend to other healthcare
domains, such as colonoscopy for colorectal cancer detec-
tion. VA2LT’s ability to discern and modify salient regions
could aid in distinguishing between polyps and healthy tis-
sues, in contrast to methods like NeutSS-PLP [51] that focus
on specific polyp region extraction. VA2LT’s adversarial
learning in a latent space offers a holistic perspective on ab-
normality transformations, potentially enhancing accuracy
for earlier intervention and better patient outcomes.

Our proposed VA2LT method, with its unique adver-
sarial learning approach, differentiates itself from exist-
ing methods primarily centered around image segmentation
optimization or specific region extraction. While VA2LT
demonstrates promising results in detecting disease indica-
tors in neuroimaging data, its potential extends to improving
the quality and efficacy of various medical imaging modal-
ities and disease domains when integrated with current
techniques.

3. Methodology
3.1. Generating VA via Transformation in the

Latent Space
In this study, we use a generative model to create a VA

map to transform an abnormal image into normal counter-
part examples that are close to the data manifold. To do this,
we utilize the concept of steerability in the latent space of
generative models and propose learning a transformation in
the latent space to generate the counterparts. We adopted an
autoencoder framework as a fundamental component of our
study. The encoder network utilized a CNN architecture with
two convolutional layers, followed by batch normalization
and ReLU activation. The final output was flattened and
connected to two fully connected layers to compute the latent
space representation. The decoder network, also based on
a CNN architecture, consisted of a fully connected layer,
reshaping, batch normalization, and ReLU activation. It
further employed two transposed convolutional layers with
ReLU activation, culminating in the final layer using hy-
perbolic tangent activation. The model was optimized using
stochastic gradient descent (SGD) with mean squared error
(MSE) as the loss function for both the encoder and decoder.

Given an abnormal image (𝑥) belonging to class c in the
training set, a target counterfactual normal image (�́�) from
class 𝑐, a VA generator G, a discriminator D for normal
images, we aim to learn a non-linear transformation (VA)
map in the generator’s latent space that maps the latent code
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of the abnormal (𝑧𝑥) to a latent code of normal (𝑧�́�):
𝑔∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑔𝔼𝑥

[

𝑐𝑙𝑠(𝐷(�́�)) + 𝑝𝑟𝑥(�́�, 𝑥)
] (1)

s.t. �́� = 𝐷𝑒(𝑧�́�), 𝑧�́� = 𝐺(𝑧𝑥) + 𝑧𝑥 𝑧𝑥 = 𝐸𝑛(𝑥)

where 𝑐𝑙𝑠 is the classification loss favoring that the
generated normal �́� belongs to class 𝑐 and 𝑝𝑟𝑥 is the
proximity loss encouraging �́� to be proximal to the input x.
To obtain the latent code 𝑧𝑥 from abnormal image x, we train
an encoder 𝐸𝑛(.) ∶ ℝ𝐶×𝐻×𝑊 → ℝ𝑚. We also decode latent
code 𝑧�́� and𝐺(𝑧𝑥) into, respectively, a normal counterfactual
and VA map by training a decoder 𝐷𝑒 ∶ ℝ𝑚 → ℝ𝐶×𝐻×𝑊 .
(Note that the encoder and decoder models used in this study
are trained with combined abnormal and normal images).

One major difference between our approach and previous
work on visual attribution (VA) is the way in which VA maps
are generated and used. Previous VA methods generated VA
maps directly from abnormal images and added these to
the images to create a normal counterfactual. In contrast,
our method encodes both abnormal and normal images
into latent vectors and then applies the VA formulation as
described [1, 17]. By approaching the VA problem in latent
space rather than image space, our method captures the full
range of disease-affected regions. This differs from [27] in
that it reformulates the process of generating counterfactual
explanations as an indirect VA-based translation rather than
generating a counterfactual class directly from the input im-
age. Specifically, our method generates a VA map using the
G function (unlike [27], where G generates counterfactuals
directly), which translates the abnormal latent code into a
normal one.
3.2. Generating the Normal Counterfactual using

Cycle-Consistency
We aim to find a transformation G that translates ab-

normal images into counterpart normals. However, finding
such a transformation is highly under-constrained, and there
may be multiple solutions to the optimization problem that
are equally valid. To address this issue, we introduce reg-
ularization into the optimization process by incorporating
cycle consistency between the latent codes of abnormal and
counterpart normal images. This is achieved by introducing
an additional transformation ℎ ∶ ℝ𝑚 → ℝ𝑚 to estimate
the inverse of 𝑔 to transform generated normal latent vector
back to the input abnormal latent vector, i.e. 𝑧𝑥 ≈ 𝑧𝑐𝑦𝑐𝑥where 𝑧𝑐𝑦𝑐𝑥 = ℎ(𝑔(𝑧𝑥)). We define the cycled query image as
𝑥𝑐𝑦𝑐 = �́�(𝑧𝑥) and add the cycle loss to the objective function
1 (note, here, that 𝑥𝑐𝑦𝑐 is cycled abnormal whereas �́� is the
generated normal counterfactual). �́�(.) is thus distinct from
G(.) and optimizes the following objective:

ℎ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑔𝔼�́�
[

𝑐𝑙𝑠(�́�(�́�)) + 𝑝𝑟𝑥(�́�, 𝑥)
] (2)

s.t. 𝑥 = 𝐷𝑒(𝑧𝑥), 𝑧𝑥 = �́�(𝑧�́�)

Note that this objective differs from objective 1 in that
the latent vectors of normals are directly transformed into
the latent vectors of the corresponding abnormal image.

The direct transformation from normal-to-abnormal is per-
formed because the VA map has already been generated. By
incorporating this cycle loss term, we are able to constrain
the optimization process and improve the robustness and
accuracy of our results.

Finally, we formalize the main objective of our method,
Visual Attribution using Adversarial Latent Transformations
(VA2LT). For cycle consistency loss, VA2LT requires ac-
cess to samples from both the abnormal and normal classes.
Given an image 𝑥 ∈ 𝑋𝑐 from a training set of abnormal
images, an image �́� ∈ 𝑋𝑐 from training set of normal
images, VA2LT learns transformations 𝑔∗ and ℎ∗,
𝑔∗, ℎ∗ = argmin𝑔,ℎ 𝔼𝑥[𝑣𝑎2𝑙𝑡(𝑥, 𝑔, ℎ)]+𝔼�́�[𝑣𝑎2𝑙𝑡(�́�, ℎ, 𝑔)]

(3)
Where
𝑣𝑎2𝑙𝑡(𝑥, 𝑔, ℎ) = 𝑐𝑙𝑠(𝐷(�́�)) + 𝑝𝑟𝑥(�́�, 𝑥) + 𝑐𝑦𝑐(𝑥𝑐𝑦𝑐 , 𝑥)

+ 𝑎𝑑𝑣(�́�, 𝑥𝑐𝑦𝑐)
𝑠.𝑡. �́� = 𝐷(𝑧�́�), 𝑧�́� = 𝐺(𝑧𝑥) + 𝑧𝑥 𝑧𝑥 = 𝐸𝑛(𝑥),

𝑥𝑐𝑦𝑐 = 𝐷𝑒(𝑧𝑐𝑦𝑐𝑥 ), 𝑧𝑐𝑦𝑐𝑥 = ℎ(𝑧�́�)

VA2LT learns to transform between the abnormal and
normal classes simultaneously; hence, the abnormal and
normal notations are interchangeable. For the sake of con-
ciseness, we omit the formal definition of𝑣𝑎2𝑙𝑡(�́�, 𝑔, ℎ). The
architecture of our proposed VA2LT is shown in Figure 1.
Details of the loss function in Equation 3 are given below.

• Classification loss (𝑐𝑙𝑠) promotes the classification
of the generated normal examples as belonging to the
normal class. We utilize the Negative Log-Likelihood
loss for this purpose,

𝑐𝑙𝑠 = −𝑙𝑜𝑔(𝐷(�́�))

where 𝐷(�́�) is output of the discriminator for the
normal image �́�.

• Proximity loss (𝑝𝑟𝑥) encourages the generated nor-
mal example to be similar to the input abnormal image
according to some distance metric, specifically by
promoting normal images that are proximal to the
query abnormal image. To achieve sparsity in the
changes between the abnormal image and the normal,
we utilize an L1 loss term for the proximity loss.
Additionally, we use entropy and smoothness losses
(𝑒𝑛𝑡𝑟 and 𝑠𝑚𝑡ℎ) on the absolute difference between
the abnormal and generated normal images to encour-
age more localized and sparse changes.

𝑝𝑟𝑥 = ‖𝑥 − �́�‖1 + 𝑒𝑛𝑡𝑟(𝑥, �́�) + 𝑠𝑚𝑡ℎ(𝑥, �́�)

• Cycle-Consistency Loss (𝑐𝑦𝑐) ensures that the latent
codes for the abnormal and normal classes are consis-
tent with each other,

𝑐𝑦𝑐 = ‖

‖

𝑧𝑥 − 𝑧�́�‖‖1
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• Adversarial loss (𝑎𝑑𝑣) helps the generated normal
images and cycled images to be similar to the original
data by using the discriminator to guide them towards
the manifold of the original data,

𝑎𝑑𝑣 = 𝑙𝑜𝑔(1 −𝐷(𝑧𝑐𝑦𝑐𝑥 )) + 𝑙𝑜𝑔(1 −𝐷(𝑧�́�))

3.3. Inference using VA2LT
To use the model at inference time, the following steps

are taken:
1. An abnormal image 𝑥 is input into the pre-trained

encoder to obtain its latent vector 𝑧𝑥 = 𝐸𝑛(𝑥). We em-
ployed distinct autoencoder models for each specific
application, such as one for BraTS and another for
ADNI, whereby the comprehensive details regarding
the model architecture and training process can be
found in Section 3.1. Ablation studies concerning
the autoencoder model are presented in Section 5.
In this particular task, we solely utilized the encoder
component of the autoencoder model. Specifically, we
input an image of dimensions 256×256 (for BraTS and
ADNI) and 128 × 128 (for Synthetic dataset) into the
model, which subsequently generates a vector of size
256.

2. The latent vector is input into the generator G to obtain
latent vectors for the VA map 𝐺(𝑧𝑥) and latent vector
for normal image 𝐺(𝑧𝑥)+𝑧𝑥. The details of this model
(VA2LT) are given in Section 3.2. This is essentially
a Cycle-GAN model optimized to generate latent of
normal images, given the latent vectors of abnormal
images. More specifically, the model takes a vector of
length 256 and generates a vector of the same length.

3. The latent vectors for the VA map and normal image
are decoded using a decoder to obtain the VA map
𝐷𝑒(𝐺(𝑧𝑥)) and normal image 𝐷𝑒(𝐺(𝑧𝑥) + 𝑧𝑥). In
this case, the decoder component of the autoencoder
model is responsible for reconstructing the generated
latent normal images from the latent space represen-
tation.

4. Experiments
We compare the performance of the proposed VA2LT

method with several other visual explanation methods (CAM,
gradCAM, VA-GAN, VANT-GAN, iGOS++ and C3LT) on
three datasets: a synthetic dataset and two medical imaging
datasets (ADNI and BraTS). Most of the tested methods
are based on GAN-based VA map generation, except for
CAM, gradCAM and iGOS++ which utilize classification
networks. The performance of the methods is evaluated
using various evaluation metrics, including the Dice Co-
efficient, Intersection over Union (IoU), normalized cross
correlation (NCC), and FID scores. For the synthetic and
BraTS datasets, these metrics are calculated using available
ground truths, while for the ADNI dataset, the NCC score is
used to evaluate the models as ground truths are not avail-
able. The discriminator architecture used in all of the tested

methods is similar, with the exception of CAM, gradCAM
and iGOS++, where the last two layers are replaced with a
global average pooling layer and dense prediction layer to
create class-specific activation maps for visual explanation.
4.1. Evaluation on Synthetic Dataset
4.1.1. Dataset and Evaluation Protocol

In this study, we evaluated the proposed and bench-
mark approaches on a synthetic dataset consisting of 10,000
128x128 images, which were divided into two label classes.
The first class represents the healthy control group and the
second class represents the patient group. The images in the
healthy control group were generated by convolving random
IID Gaussian noise with a Gaussian blurring filter, while
the images in the patient group were produced using the
same noise generation process but also included effects due
to one of two distinct disease processes. These effects were
visualized through the insertion of a circle on either the top
left or bottom right side of the image, with a maximum 5-
pixel offset in each direction. The resulting images are shown
in Fig. 2.

We divided the data into a training set and a testing
set using an 80-20 split, following the protocol of [8]. To
evaluate the performance of our approach quantitatively, we
calculated the Intersection over Union (IoU), Dice and FID
scores between the disease maps and the visual explanation
maps. We used the maximum pixel value as a threshold
to convert the visual explanation maps into binary masks.
In addition, we employed the normalized cross correlation
(NCC) measure between the ground-truth maps and the
predicted visual explanation maps, as described in [8].
4.1.2. Results

The results of the experiments on the synthetic data are
reported in Table 1 for all of the tested methods. These
results indicate that the proposed method outperforms all of
the benchmark methods. Examples of the visual explanation
maps produced by all of the methods are shown in Fig. 3.

It is notably apparent that our method pays attention
to both the foreground and background of the image. For
instance, the visualization of synthetic disease is smoother
and more precise compared to the other methods. Moreover,
our proposed method generates high-quality explanations
in an optimal way by using a meaningful nonlinear trans-
formation in the latent space. Visual results show that the
CAM-based methods tend to focus on areas where the cir-
cles are distributed uniformly and are not able to provide
detailed visual explanation maps. The VA-GAN method
produces noisy visual explanation maps due to the under-
constrained mapping from unaligned noisy images, which
leads to many false positives and degraded performance.
In contrast, the proposed method produces more accurate
visual explanation maps due to the constrained CycleGAN-
based mapping. Compared to VANT-GAN, which deals with
image-to-image translation, latent space mapping enables
the model to learn a more general function as it is not tied to
specific pixel values. This results in better generalization per-
formance and the ability to translate images (both synthetic
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Figure 1: VA2LT model diagram with an example image from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
The encoder is used to encode the input image into latent vector 𝑧𝑥, which is then transformed into the CF latent vector 𝑧�́� using
visual attribution (VA) vector 𝐺(𝑧𝑥) as 𝐺(𝑧𝑥) + 𝑧𝑥. The map and CF latent vectors are then decoded into the VA map and CF
image using the decoder.
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Figure 2: Synthetic data examples: left of the dotted line are
samples of Class 0 (i.e., the normal class) and right of the
dotted line are samples of Class 1 (i.e., the disease class). The
upper row shows the input and the bottom row shows the
ground truth.

and actual medical images) realistically. Another advantage
of working in latent space is that it typically uses a smaller
and lower-dimensional representation of the data compared
to image space. This makes it easier to learn a function that
maps between the image space and the latent space. VA2LT
produces far more reasonable explanations, primarily due
to the meaningful latent vector and, secondarily, due to
constrained CycleGAN-based mapping in the latent space.
4.2. Evaluation on BraTS Dataset
4.2.1. Dataset and Evaluation Protocol

The brain tumor dataset was collected as part of the Mul-
timodal Brain Tumor Segmentation (BRATS) 2017 chal-
lenge [F, G]. This data consists of both abnormal (tumorous)

Table 1
IoU, Dice and FID Scores of evaluated methods on synthetic
data

Method IoU (%) Dice (%) FID

CAM 10.4 18.8 225.76
Grad-CAM 30.7 47.0 138.57
VA-GAN 87.2 92.8 103.78
iGOS++ 52.0 59.3 59.47
C3LT 67.2 73.7 56.38
VANT-GAN 89.4 93.5 52.32
VA2LT 91.7 96.0 27.85

and normal (non-tumorous) images as well as ground truth.
The dataset comprises 463 normal and 3174 abnormal im-
ages. To increase performance, run-time data augmentation
is performed by resizing images to 286 × 286, which are then
randomly cropped to 256 × 256 size. Following the 80/20
rule, images are divided into train (2538) and test (636)
sets. Further run-time augmentation is carried out through
random jittering and mirroring.

In both the ADNI and BraTS datasets, there is a sig-
nificant amount of black space around the brain. While
cropping, we made sure that no part of the brain was cut
off. Since our region of interest is always located within
the brain, it is impossible to lose any lesion part. It is also
important to note that the Alzheimer’s images obtained from
the ADNI dataset include the skull. We used the ROBEX
algorithm to precisely remove the skull from the brain. This
resulted in more black space around the brain, after which we
cropped the images to the desired size of 256 x 256 pixels.
4.2.2. Results

Table 2 represents the quantitative results of the ex-
periments conducted on the BraTS dataset, and the visual
explanation of these quantitative results can be seen in Fig
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Figure 3: Example visualization maps of the compared methods with the synthetic dataset.

Table 2
IoU, Dice and FID Scores of evaluated methods on BraTS data

Method IoU (%) Dice (%) FID

CAM 30.8 45.1 217.29
Grad-CAM 54.7 60.3 132.86
VA-GAN 89.5 93.2 74.13
VANT-GAN 89.2 92.6 78.26
iGOS++ 90.3 94.6 57.04
C3LT 91.7 94.9 46.82
VA2LT 92.0 96.2 28.61

4. It can be seen that the visual explanation generated on the
BraTS dataset is consistent with the findings of the synthetic
dataset. Again, we generated the latent vector from the actual
brain MRI and fed the translation network in the latent space
with those vectors. It can be seen from Fig. 4, that the
tumour region is precisely denoted in the final column, which
indicates the explicative consistency of VA2LT.

CAM-based methods produce somewhat poor results
as they focus only on a subset of the most discriminative
features while ignoring the rest, which in turn leads to the
generation of low resolution, noisy visual explanations. The
explanation generated by GradCam is better than that of
CAM; however, it covers a smaller area of the infected region
as compared to the actual ground truth.

In terms of covering the whole region, VA-GAN gener-
ates a good explanation around the region but includes noise.
VANT-GAN, by contrast, outperforms other methods in its
exclusive coverage of the affected region; however, the edges
are somewhat noisy as compared to our proposed method
and have less coverage of the infected regions as compared
to the proposed VA2LT model.

While VA-GAN performs well in generating explana-
tions that cover the entire region, it tends to include noise. On
the other hand, VANT-GAN excels in providing coverage of
the affected region compared to other methods. However, its
edges may contain some noise, and it offers less coverage
of the infected regions compared to our proposed VA2LT
model.

4.3. Evaluation on ADNI Dataset
4.3.1. Dataset and Evaluation Protocol

The ADNI dataset used in this study comprises 5778
3D T-1 weighted MR images of 1288 subjects, labeled as
either MCI (label 0) or AD (label 1). The images were
obtained using a 1.5T magnet for 2839 of the images and
a 3T magnet for the remaining images. The subjects were
scanned at regular intervals, with some subjects converting
from MCI to AD over time. These correspondences were not
utilized for training but were exploited for their advantages.
Standard pre-processing techniques, including reorientation,
registration to MNI space, cropping, and correction of inho-
mogeneous fields, were applied to the images using the FSL
toolbox. The ROBEX algorithm was then used to skull strip
the images, which were subsequently resampled to 1.3 mm3
and normalized to a range between -1 and 1. The final voxel
size for the images is 128x256x256. Examples of normal and
abnormal images from the ADNI dataset are shown in Fig.
5.

For the BraTS and synthetic datasets, we used different
evaluation protocols and used IoU, dice metrices and FID
scores for evaluation. However, for the ADNI dataset, the
ground truths are not available, and IoU and dice scores
couldn’t be calculated. Instead, we used the NCC score.
We followed the same evaluation protocol for the ADNI
dataset and computed the NCC score, as described in [1].
By maximizing the NCC score between the generated image
and the input image, we ensured that the generated image
was similar to the input image.
4.3.2. Results

Table 3 represents the quantitative results of the exper-
iments conducted on the ADNI dataset, and the visual ex-
planation of these quantitative results can be seen in Figure
6. As discussed above, since ground truth is not available
for ADNI, we follow the method outlined in [8], normal-
ized cross correlation (NCC), to quantitatively measure the
effectiveness of visual attribution. The results of these ex-
periments, presented in Table 3, indicate that the VA2LT
method has a significantly higher NCC score compared to
the other evaluated methods. Additionally, the generated
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Figure 4: Example visualization maps of the compared methods with the BraTS dataset.

Figure 5: Example abnormal and generated counterfactual
normal images from the ADNI dataset.

Table 3
NCC scores of evaluated methods on ADNI data

Method Mean Std

CAM 0.09 0.07
Grad-CAM 0.14 0.11
VA-GAN 0.27 0.16
C3LT 0.31 0.24
VANT-GAN 0.36 0.35
VA2LT 0.39 0.38

visual explanations on ADNI were consistent with those
generated using both the synthetic and BraTS datasets.

Figure 6: The figure presents a comparative analysis using
ADNI dataset visualizations. First column: factual input;
columns 2, 4, and 6: method outcomes (VANT-GAN, C3LT,
VA2LT), with accompanying heatmaps in adjacent columns.

Furthermore, the visual explanations of these quanti-
tative results as seen in Figure 6 indicate that the images
generated by the VA2LT method exhibit a high level of
detail, smooth edges, and clear structuring, all of which are
essential for identifying subtle changes. The NCC score of
VA2LT also supports this observation, indicating that the

Tehseen Zia et al: Preprint submitted to Elsevier Page 8 of 11



Visual Attribution using Adversarial Latent Transformations

latent space in the proposed GAN model is able to effec-
tively embed components corresponding to key VA-relevant
features in the image space. Consequently, we believe that
VA2LT represents a promising method for generating high-
resolution counterfactual explanations. To run the experi-
ments, we used a system that contains an Intel(R) Xeon
(R)320 E5-2630 v4 CPU running at 2.2-3.1 GHz, 128 GB
of RAM, and an Nvidia Titan X (Pascal) GPU with 12 GB
of memory.

5. Ablation Studies
Our research utilized an autoencoder framework. The

encoder network employed a Convolutional Neural Network
(CNN) with two convolutional layers, followed by batch
normalization and ReLU activation. The resulting output
was flattened and connected to two fully connected layers
to compute the latent space representation. On the other
hand, the decoder network also adopted a CNN architecture,
starting with a fully connected layer, followed by reshaping,
batch normalization, and ReLU activation. It further utilized
two transposed convolutional layers with ReLU activation,
ultimately concluding with the final layer using hyperbolic
tangent activation. To optimize the model, we employed
stochastic gradient descent (SGD) with mean squared error
(MSE) as the loss function for both the encoder and decoder.

Figure 7: Graph of the structural similarity index measure
(SSIM) against the size of the latent vectors on a synthetic
dataset.

We explored the influence of different latent vector sizes
on the performance of the autoencoder architecture. The
results presented in Figure 7 indicate that a latent size of
256 achieved the highest structural similarity index measure
(SSIM) score. Visual results in Figure 8 show reconstructed
images from the autoencoder model against different sizes
of latent vectors. Consequently, this latent vector size was
selected for adoption in our study, ensuring optimal perfor-
mance of the autoencoder model.
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Figure 8: Example visualizations show the relative magnitudes
of latent vectors on the synthetic dataset. The initial row
corresponds to the actual input data, whereas the succeeding
rows exhibit images that have been reconstructed from latent
vectors of different sizes, specifically: row (a) corresponds to a
dimensionality of 64, (b) to 128, (c) to 256, (d) to 512, and
(e) to 1024.

Figure 9: Visual comparison of CF examples generated by
VA2LT and WGAN on the BraTS dataset. CF examples from
WGAN exhibit blur and scattered perturbations, while VA2LT
produces more realistic CF images closely resembling the
original query image.

We performed a comparative evaluation of two promi-
nent GAN-Based approaches (Wasserstein GAN and Cyclic-
Consistency GAN) for generating counterfactuals on the
BraTS dataset. The experimental analysis involves visual
comparisons of counterfactual (CF) instances generated by
both methods, as illustrated in Figure 9. To validate the
usefulness of the approach, we used statistical tests like the
Shapiro test, which indicated a non-normal distribution with
a significance level of p < 0.05. Further, we utilized FID
scores to provide additional validation for the effectiveness
of our approach; the results are depicted in Table 4.
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Table 4
FID scores of evaluated methods on generated CF examples

Method FID Scores Shapiro Test

WGAN 86.0 0.07
VA2LT(ours) 31.4 0.18

6. Conclusion
In this study, we proposed a novel visual attribution

technique for medical images, VA2LT which uses cycle-
consistency GANs to learn a transformation map in the
latent space to generate a "healthy" counterpart image for an
"unhealthy" input image, thus enabling medical practitioners
to identify abnormalities more easily. Our experiments on
synthetic, BraTS, and ADNI datasets demonstrate that the
proposed method outperforms prior work in all metrics.
Overall, we conclude that the VA2LT model presents a
promising solution for visual attribution in medical imaging.
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