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ABSTRACT
Knowledge bases (KBs) inherently lack reasoning ability, limiting their effectiveness for tasks such as
question-answering and query expansion. Machine-learning is hence commonly employed for repre-
sentation learning in order to learn semantic features useful for generalization. Most existing methods
utilize discriminativemodels that require both positive and negative samples to learn a decision bound-
ary. KBs, by contrast, contain only positive samples, necessitating that negative samples are generated
by replacing the head/tail of predicates with randomly-chosen entities. They are thus frequently easily
discriminable from positive samples, which can prevent learning of sufficiently robust classifiers.

Generative models, however, do not require negative samples to learn the distribution of positive
samples; stimulated by recent developments in Generative Adversarial Networks (GANs), we propose
a novel framework, Knowledge Completion GANs (KCGANs), for competitively training generative
link prediction models against discriminative belief prediction models. KCGAN thus invokes a game
between generator-networkG and discriminator-networkD in whichG aims to understand underlying
KB structure by learning to perform link prediction whileD tries to gain knowledge about the KB by
learning predicate/triplet classification. Two key challenges are addressed: 1) Classical GAN archi-
tectures’ inability to easily generate samples over discrete entities; 2) the inefficiency of softmax for
learning distributions over large sets of entities. As a step toward full first-order logical reasoning we
further extend KCGAN to learn multi-hop logical entailment relations between entities by enablingG
to compose a multi-hop relational path between entities and D to discriminate between real and fake
paths.

KCGAN is tested on benchmarksWordNet and FreeBase datasets and evaluated on link prediction
and belief prediction tasks using MRR and HIT@ 10, achieving best-in-class performance.

1. Introduction
Knowledge bases (KBs) such as WordNet [1], Freebase

[2], Yago [3] andGoogle Knowledge Graph [4] have become
reference resources for various logic-oriented tasks such as
query expansion [5], coreference resolution [6], question an-
swering and information retrieval, etc. Such KBs are typi-
cally incomplete (in the classical sense of the term ‘knowl-
edge base’) in that they lack a reasoning capability, which
thus restricts their applicability. This has stimulated research
on KB completion methods [7]. Within this context, a num-
ber of studies have focused on using representation learning
for its ability to model semantic features useful for gener-
alization [8, 9, 10, 11, 12, 13, 14]. The goal in these ap-
proaches is to represent KB entities and relations using vec-
tors such that similarities between them (proximities, inner-
product relations) can be used to make logical inferences.

Two modeling paradigms are commonly used to model
representation learning tasks [15]: generative and discrimi-
native. In generative modeling (GM), an underlying ground
truth data distribution is assumed [16, 17], such that e.g.
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given that a KB consists of predicates in the form of triplets,
(ℎ, r, t), where ℎ and t are entities and r is a relation, it is
assumed that there exists a true distribution of relations be-
tween entity pairs ptrue(ℎ, t|r) such that GM can be used to
learn a model of this distribution, pmodel(ℎ, t|r). The infer-ence task can then be performed by sampling from the in-
ferred distribution, e.g. the missing entity of a triplet can
be predicted by sampling an entity from the model given a
tuple of entity and relation. A crucial advantage of GM is
that it requires no negative samples (i.e. invalid relations)
to learn the distribution of positive samples. As negative
samples are not available in KBs, GMs are well-suited to the
KB completion task. Despite its relevancy, however, GM
based representation learning approaches are rarely consid-
ered for the task. More commonly, discriminative modeling
(DM) is utilized, which does not assume an underlying dis-
tribution; rather it deals with learning a classifier in which
model predictions are directly used for inference. Specifi-
cally, DM learns to represent entities and relations as feature
vectors that are used to train the classifier to perform accu-
rate predictions (to within some degree of approximation)
[8, 12]. However, as DM requires both positive and nega-
tive samples to learn a decision boundary, negative samples
must be synthetically generated by replacing the head or tail
of a predicate with a randomly-chosen entity. Consequently,
generated negative samples tend to be easily discriminable
from positive samples and may thus not enable learning of
sufficiently robust classifiers. In this paper, we hypothesize
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that the generation of nontrivial negative samples will im-
prove the robustness of the discriminative model.

As GM and DM approach representation learning from
very different perspectives, it is possible to take a broader
perspective on representation learning by reciprocally allow-
ing one modeling paradigm to be guided by the other [18].
Embodying this principle, Generative adversarial networks
(GANs) have emerged as powerful framework within which
GM and DM play a game-theoretic, 2-player minmax game.
Such networks have displayed notable capability in image
generation, sequence generation, domain adaptation and in-
formation retrieval. Relevant here, GANs have been shown
to be useful for generating negative samples from positive
samples [19]. While the approach of [19] uses GANs to gen-
erate negative samples in order to train DMmodels, the cur-
rent study will exclusively focus on the use of GANs to train
GMs for KB completion tasks. Thus, while [19] is a frame-
work for modeling distributions over negative samples, we
are here concerned with modeling distributions over positive
samples in order to achieve a model for extensible logical
reasoning and the querying of hypotheticals.

Stimulated by theGAN concept, we thus proposeKnowl-
edge Completion GAN (KCGAN), a novel framework lever-
aging both GM and DM-based approaches. Specifically, the
KCGAN architecture seeks to learn two models: 1) A Gen-
erator, G(ℎ, t|r), that attempts to learn the underlying rela-
tional distribution between entities ℎ and t, generating the
most likely entity t given an entity ℎ and predicate r; 2)
A Discriminator, D(ℎ, r, t), which aims to discriminate be-
tween plausible/implausible relations by producing a model
of the likely truth of given relations. In the proposed KC-
GAN model, G and D contest each other as follows: G at-
tempts to fool D by generating an indistinguishable invalid
relation through completion of the missing entity of a re-
lation, while D attempts to discriminate between valid and
invalid relations. This contention results in both models im-
proving as the game progresses, until a convergence point
is reached in which the generator is (to the discriminator)
indistinguishable from the true relational distribution and
the discriminator is maximally effective at distinguishing be-
tween valid and invalid relations. (By contrast, the model-
ing approach of [19] deploys a generator to compose com-
plete negative samples [i.e. predicates] and a discriminator
to reinforce the distribution over negative samples, with the
discriminator achieving the objective though designation of
negative samples as real samples. In KCGAN, the genera-
tor directly learns either link prediction or else a distribu-
tion over links, with the discriminator then used to reinforce
this distribution by designating positive samples as real sam-
ples).

To employGANs in this setting, two key challengesmust
be addressed: 1) Typical GANs cannot be trained to generate
discrete samples such as relational entities; 2) Standard soft-
max implementations are inefficient at learning distributions
over large sets of entities. We hence adopt a policy-gradient-
based learning procedure to train the GAN to produce enti-
ties and further propose a softmaxmethod for learning entire

distributions over entities via separation into segments. De-
tails of these methods are given in Section III.

The KCGAN framework thus outlined performs knowl-
edge base representation learning by considering direct or
single-hop relations between entities and ignores indirect or
multi-hop (mh) relation paths (RPs). To tackle this issue,
and take a tangible step toward full first-order logical rea-
soning within the framework, KCGAN is further extended
to learn representations of mh RPs. This is achieved by en-
abling G to compose a mh path while employing D to dis-
criminate between real and fake paths. Details of the mh
RP modeling approach are presented in Section IIIB. The
proposed GAN framework is empirically evaluated on two
knowledge bases: Freebase andWordNet; the empirical study
validates the utility of the KCGANmodel, and demonstrates
best-in-class performance relative to comparable results re-
ported in the literature.

Our contributions are thus five-fold:
• The proposal of a novel GAN-based framework for

knowledge based completion.
• The use of a policy gradient based learningmethod for

training GANs for KB completion.
• The proposal of an independent softmax basedmethod

for learning probability distributions over extensive
sets of entities.

• Proposal of a GAN-based framework for learning and
reasoning over multi-hop relation paths.

• Demonstration of substantial performance gains over
the state-of-the-art on two benchmark datasets.

The remainder of the paper is organized as follows: related
work on knowledge base completion methods and genera-
tive adversarial networks is described in Section II, the pro-
posed methodology is presented in Section III&IV, results
are reported in Section V and finally the paper is concluded
in Section VI.

2. Related Work
2.1. Representation Learning for Knowledge Base

Completion
Anumber of representation learningmodels have recently

been proposed for representing relational data within KBs.
One particular research direction focuses on learning opti-
mized embedding representations for entities/relations that
treat relations as spatial translations between entities (such
that, for example, ℎ+ r ≈ t for a given predicate (ℎ, r, t)) [9,
20]; entity and relation representations are thus constrained
via minimization of a score function f (ℎ, r, t) = ||ℎ+r−t||22.Such models thus seeks to project both entities and relations
into a common space that implicitly distingishes between the
vectorial nature of relations and entities; a projection matrix
is hence introduced for mapping entities and relations into
the common space [21].
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Another approach to KB representation learning focuses
on representing KBs via tensors, with factorization methods
used to decompose entities and relations as latent represen-
tations [22]. This approach has recently been extended via a
Bayesian-based neural decomposition method in [23]. Here,
the KB is represented as a binary tensor in which each entry
corresponds to a predicate; a Bernoulli likelihood function is
postulated in order to enable inferences about the existence
of facts not in the knowedge base.

All of these approaches can thus be classed as unsuper-
vised representation learning; this study will, by contrast, fo-
cus purely on a supervised representation learning approach.
Themost relevant line of research to ourwork is consequently
the direct learning of neural representations of entities and
relations, using a supervising network to perform common-
sense reasoning tasks. Ji et al. [24] recently conducted a
comprehensive review of knowledge graph embedding ap-
proaches, taxonomizing them in terms of representation space,
scoring function, encodingmodels and embedding with aux-
iliary information. In terms of this taxonomy, and in com-
monwith themajority of recent approaches, ourmethod uses
a real-valued point-wise representation space to represent
entities and relations. However, while existing approaches
mostly rely on a distance-based scoring function to train the
model, we shall use a discriminator network to evaluate the
plausibility of predicates.

Ji et al. [24] further categorize deep learning based KB
encoding models into four sub-categories: NN-based, CNN-
based, RNN-based, Transformer-based and GNN-based. A
seminal approach in NN-based encoding models is the neu-
ral tensor network (NTN), in which interaction between en-
tities is modeled with a linear layer, with the connection be-
tween relation and entity captured by a bilinear tensor layer
[8]. The model is discriminative and requires negative sam-
ples alongside positive samples in order to learn a decision
boundary. More recently, it has been proposed that generat-
ing negative samples by replacing the head or tail of a pred-
icate with a randomly chosen entity may lead to the gener-
ation of easily-discriminable negative samples that thus do
not help to learn robust classifiers [19]. In this context, it
has been suggested that performance gains can be achieved
by providing the model with competitive negative samples
generated by GANs [19]; this is the guiding principle of the
current work. Our method thus has an advantage over NTN
and its variants in that it does not require manual genera-
tion of negative samples; instead, it leverages built-in neg-
ative sample generation to learn better performing models.
(There is hence a significant difference between the KBGAN
model of [19] and KCGAN as proposed here; while the ob-
jective of KBGAN is to generate negative samples for train-
ing discriminative models such as a NTN, KCGAN consti-
tutes an embeddingmodel that learns representations of enti-
ties and relations. Furthermore, KBGANutilizes a generator
to compose negative samples (i.e. facts) and discriminator
to reinforce the distribution over negative samples, with the
discriminator achieving the learning objective through des-
ignation of negative samples as real samples. In contrast,

the generator in our model directly learns either link predic-
tion or else a distribution over links, with the discriminator
then used to reinforce this distribution by designating posi-
tive samples as real samples).

CNN-based models use multiple convolutional layers to
encode the interactions between entities and relations. ConvE
[25] adopts a 2D-CNN to integrate entities and relations into
2D matrix. Unlike ConvE, which models relationships lo-
cally, ConvKB [12] adopts a transitional modeling paradigm
and reports better overall results. HypER [26] uses a 1D-
relation-specific convolution to simplify 2D ConvE. In gen-
eral, CNN-based models use only facts or one-hop relational
paths to learn their models, and, as such, they ignore mh RP,
which can be vital to capturing long-term relational depen-
dency such as, for instance, the relation of a person’s nation-
ality with her city of birth (the city belongs to a state, and
the state belongs to a country etc).

The NN-based and CNN-based models indicated above
use only predicates to learn representations. In contrast, re-
current networks can model long-term relational dependen-
cies conatained in KGs; Neelakantan et al. [27] use RNNs
to model relational paths by learning vector representation
respectively with and without entity information. Yin et al.
[28] equip RNNs with the capability of predicting the out-
put entities and use this prediction to update the path, rather
than using a fixed set of entities. Although we follow a sim-
ilar modeling approach to that of [28], rather than training
RNN on single-hop paths, we will train the RNN on mh RPs
by using GANs. This development restricts the likelihood
of the RNN generating candidate entities that are optimal
at a given instant but sub-optimal with respect to the path
as a whole. It also enables the RNN to produce natural or
human-like reasoning paths. To this end, our study is also
relevant to the research area concerned with learning rules
from KBs. However, contrary to the modeling of reasoning
pathways, rule-learning seeks to emulate an inference pro-
cedure [29, 30]. Commonly, these methods represent facts
using vectors or tensors and employ RNNs, such as memory
networks, to model transitivity relations between facts in or-
der to perform inferences [31]; other studies approach the
learning of representations of entities and relations via tran-
sitivity structure [32]. Neuro-symbolic computing is another
relevant domain, dealing with integrating and reasoning over
symbolic knowledge utilizing neural networks; some notable
recent efforts include [33, 34].

Contemporary transformer-based encoding models such
as KG-BERT [35] are inspired by transformer-based lan-
guage models [36] and learn representations by predicting
masked entities and relations from sequences of predicates.
While they produce good results, they usually involve large
amounts of compute time to be effective. Our model can
be seen as a variant of a recently developed language model
called ELECTRA [37], which is a compute-efficient GAN-
based model that achivies similar performance to transform-
ers. However, while ELECTRA uses a generator to replace
tokens (i.e. entities and relations) and a discriminator to de-
tect real and fake tokens, we here use the generator to predict
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masked tokens and the discriminator to predict the plausi-
bility of predicates. Because our method does not rely on
a heavy-weight multi-head self-attention mechanism, it is
significantly more compute-efficient than transformer-based
models.

Schlichtkrull et al. [38] use GNNs to model KGs for link
prediction and node classification tasks. Their model con-
sists of a Convolutional Graph Network (GCN) [39] based
encoder for learning representations over entities and rela-
tions, and a DistMult based decoder for factorization. The
GCNs use a separate matrix for each relation in the KG,
which leads to a rapid growth in the number of parame-
ters with the number of relations in the graph. Recently,
Nathani et al. [40] proposed graph attention networks with
multi-head attention as an encoder to model multi-hop re-
lations based on concatenation of entity and relation repre-
sentations. A disadvantage of the model, however, is the
extensive parametrization of multi-head attention, requiring
a large compute-time for training.

An important challenge that is precluding GNNs to be-
come prevalent KG representation learning approach is their
difficulty to scale to larger real-world graphs such as Twit-
ter and Citation network [41]. This scalability challenge
mainly occurs due to the interdependence amongst nodes
which makes it difficult to decompose the loss function into
the contribution of individual samples (i.e. nodes). The first
study to address the challenge employs neighborhood sam-
pling with mini-batch training to train GCN on large KGs
[42]. The key idea is that training a node with an L-layer
GCN requires only samples fromL-hop neighbours as neigh-
bours further away in the KGs cannot be involved in compu-
tation. However, a prominent disadvantage is that sampled
nodes might appear several times which introduce numerous
redundant computations. Multiple works are recently con-
ducted to improve sampling of mini-batches in order to min-
imize redundant computations [43, 44]. These approaches
mainly rely on graph sampling where a sub-graph is sam-
pled to train a GNN model. Although, sub-graph sampling
is essentially an edge-wise dropout which regularizes the
model and can lead to performance improvement [45]. How-
ever, a key challenge is to effectively represent a graph using
sub-graphs while preserving most of the graph edges and
topological structure. Another line of research questions the
requirement of deep GNNs [46], and focuses on develop-
ing swallow GNNs which can be trained using sampling-
free strategies [47]. The key idea of these approaches is
that all the graph-related operations are performed in the
first layer, and hence can be pre-computed and used as in-
put to the model. Besides the algorithmic works, an alterna-
tive research direction focuses on addressing the limitations
of existing GPU based programming models to process the
graphs. A detailed survey of these approaches is provided in
[48]. The authors have identified that contemporary graph
processing algorithms assume that input graphs and inter-
mediary computations can be kept into the memory of single
GPU. However, the growing size of graphs is making it diffi-
cult to maintain all the data into the single device for parallel

processing. The authors also highlighted some underutilized
aspects of GPU based graph processing model.

Finally, our work belongs to the family of node (or en-
tity) level KG representation methods where each node is
represented with a low-dimensional vector such that "relate"
nodes have similar vectors. These methods are trained with
triplet and path sampling techniques and used for applica-
tions such as node classification and link predictions. An al-
ternative research objective is to learn community level KG
representations where each community is represented with a
low-dimensional vector [49, 50]. These methods are used in
applications such as community detection [51] and recom-
mendations [52]. However, an important challenge of these
methods is to sample communities for training because they
are unknown beforehand [49]. To overcome the challenge,
these methods typically use clustering algorithms (such as
Spectral Clustering [53]) to assign communities to the nodes
[54]. However, it has been shown that node level representa-
tion also improves performance of community detection ap-
plications as it can effectively preserve the structure of the
KGs [55].
2.2. Generative Adversarial Networks (GANs)

GANs were originally conceived as a means of produc-
ing data samples from a continuous space, such as images
[18]. In the original setting, the generator is used to gen-
erate an image from random noise and the discriminator is
employed to classify real and generated (i.e. fake) images.
Latterly, it has been demonstrated that GANs can also pro-
duce images conditioned on specific inputs [56]. However,
an undesirable drawback of the GAN approach, in its orig-
inal form, is that it cannot generate discrete samples such
as the entity of a relation, since discrete-sampling restricts
gradients from being transmitting back to the generator [57,
58]. To address this problem, one solution is to use rein-
forcement learning in order to learn a generator with pol-
icy gradient [57]. Such a reinforcement-learning based ap-
proach, using a single step of policy gradient, is employed
in [19] for generating negative samples to train KB comple-
tion models. As an alternative to reinforcement learning, it
is possible to generate discrete samples using a boundary-
seeking GAN objective [58]. In [59], the continuous output
of the generator is directly fed into discriminator via repur-
posed standard autoregressive sampling. A relevant study to
our work was conducted in the context of graph represen-
tation learning [17]. Here, the generator is used to predict
edges between vertices and the discriminator is employed to
distinguish well-connected vertex pairs from ill-connected
pairs.

3. Methodology
We set out our approach to learning a KB completion

& inference model as follows. The general task can be for-
mulated in terms of a discriminative model and a generative
model. The discriminative model learns a scoring function
f (ℎ, r, t) to predict the plausibility of the predicate (ℎ, r, t)
where ℎ and t are head and tail entities from an entity set
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E, and r is a relation from a relation set R. The generative
model learns a distribution function for predicting the con-
ditional distribution over the set of entities p(y = t|(ℎ, r)).
The key notion underlying this work is to organize a KB
understanding competition between the discriminative and
generative models. The competition is implicitly adversar-
ial, and so each model seeks to defeat the other by improving
its understanding of the KB. The general framework of the
KCGAN model is described in Section A. An extended ver-
sion of KCGAN for mh RP learning is described in Section
B.
3.1. Knowledge Completion Generative

Adversarial Networks (KCGANs)
KCGAN consists of two networks, a discriminator D

and a generator G, as shown in Fig.1. D aims to model the
plausibility score of a predicate by learning a score function
f (ℎ, r, t). The network takes a triplet (ℎ, r, t) as input and
outputs a scalar value using a sigmoid function:

f (ℎ, r, t) = � (d(ℎ, r, t))

where d(.) is a representation learning (RL) model of D.
Different modeling paradigms can be used to model d(.).However, we have adopted CNN based RL model as pro-
posed in [12]. Hence,

d (ℎ, r, t) = CNN () ;  = [vℎ, vr, vt] ∈ ℝk×3

The G aims to model link prediction by learning an underly-
ing conditional distribution ptrue(t| (ℎ, r)); probability of tailentity given head entity and relation. We feed the network an
incomplete predicate (ℎ, r) where tail entity is masked out,
and outputs a probability for generating the masked entity t
with a softmax layer:

p (y = t|(ℎ, r)) = sof tmax
(

g(ℎ, r)
)

Where g(.) is an RL model of generator. We pose tail en-
tity generation as sequence modeling task and use recurrent
neural network (RNN) for modeling, similar to [8]. Hence,

g (.) = ℎ = RNN([vℎ, vr])

where ℎ is the final hidden state of the RNN. The softmax
probabilistic model is used to build the generator given its
demonstrated effectiveness in generating samples from a prob-
ability distribution [19].

During training, G and D contest each other adversari-
ally: G attempts to foolD by composing an indistinguishable-
but-invalid predicate via predicting tail entity, while D at-
tempts to discriminate between valid and invalid triplets until
the point of convergence is reached. To serve these compet-
ing objectives, G and D optimize the following function:
min�G max�DV (D, G) = E(ℎ, r, t)∈KB(

[

log f (ℎ, r, t)
]

+ E(ℎ, r, t̂)[log(1 − f (ℎ, r, t̂))])

Where (ℎ, r, t) ∈ KB denotes a valid predicate belongs
to the KB, and (ℎ, r, t̂) denotes an invalid predicate gener-
ated after G predicts an entity t̂ to complete an incomplete

predicate (ℎ, r). By maximizing and minimizing the value
function alternatively, we learn optimal parameters �G and
�D respectively for the G and D networks. However, in a
typical GAN settings, we cannot train a generator to predict
discrete samples due to the non-differentiability of the dis-
crete function. To cater for this, we reinterpret knowledge
representation learning in terms of a reinforcement learning
problem in the following way: Given an incomplete triplet
(ℎ, r) as an initial state and complete triplet (ℎ, r, t̂) as a ter-
minal state, we want generator to learn a policy to predict tail
entity t̂ as an action in order to complete the triplet. Hence,
the policy model p(t̂| (ℎ, r)) is stochastic and state transition
is deterministic after an action has been selected �ass′ = 1
for which the next state is s′ = (ℎ, r, t̂) with the current state
s = (ℎ, r) and the action a = t̂, with other subsequent states
s′′ being �ass′′ = 0. In order to train the model, a policy gra-
dient based mechanism is adopted, as proposed in [17]. We
hence optimize V (D, G) with respect to �G as follows:

∇�GV (D, G)

= ∇�G

K
∑

k=1
E(ℎ, r, t̂)

[

log
(

1 − f
(

ℎ, r, t̂
))]

=
K
∑

k=1

N
∑

i=1
∇�Gp(t̂|ℎ, r) log(1 − f (ℎ, r, t̂))

=
K
∑

k=1

N
∑

i=1
p(t̂|ℎ, r)∇�G log p(t̂|ℎ, r) log(1 − f (ℎ, r, t̂))

=
K
∑

k=1
E(ℎ, r, t̂)

[

∇�G log p(t̂|ℎ, r)log
(

1 − f
(

ℎ, r, t̂
))

]

The above formula can best be understood by noting that
the gradient ∇�GV (D, G) is the expected sum of gradients
∇�Gp(t̂|ℎ, r)weighted via the log probability log(1−f (ℎ, r, t̂)).Intuitively, this means that entities with a high probability of
irrelevance for the incomplete triplets will tend to strongly
repel the generator’s inference.

Softmax: KBs typically contain very large numbers of
entities, (e.g. freebase has 40k+ entities and wordnet has
14k+ entities) and modeling probability distributions over
such a large space of entities is challenging due to softmax
inefficiencies at this size. Although various solutions have
recently been proposed to tackle the bottleneck of softmax
[60, 61], we here adopt a simple and effective approach known
as independent softmax in order to model the generator [60].
In essence, the model requires partitioning of the knowledge
base and learning of a set of independent models for captur-
ing different components of the full distribution over entities.
Because, in this approach, each KCGAN model is trained to
encompass only a subset of entities, an additional class (e.g.
‘notclass’) is included within each KCGAN model in order
to to handle entities unknown to the KCGAN. For the pur-
poses of ranking, the output distribution of each model is
concentrated into a single distribution.

Page 5 of 12



A Generative Adversarial Network for Single and Multi-Hop Distributional Knowledge Base Completion

Figure 1: Block diagram of the Knowledge Completion GAN (KCGAN). G, the generator,
produces a distribution over entities; we sample output entities via an argmax function (i.e.
the most probable entity is selected at the output of G to pass to D, the discriminator).

Figure 2: Adaptation of seqgan to the path-kcgan model. LEFT: D is trained over the
real and generated relation paths. RIGHT: G is trained via policy gradient for which the
�nal reward signal is provided by D and is passed back to the intermediate action value
via Monte Carlo search.

3.2. Multi-hop Relation Learning with KCGAN
The basic KCGAN model varient proposed above ex-

ploits direct relations between entities for KB representa-
tion learning; in this section, we extend KCGAN to em-
ploy mh RPs for KB representation learning as a step toward
full first-order logical resolution theorem proving. Relation
paths have previously been used for improving knowledge
base completion models [27, 62]; however, we propose here
the first use of adversarial networks to learn the structure of
mh RPs. We refer to this model as path-KCGAN.

In order to useGANs for this purpose, relation path learn-
ing is posed as a sequence generation problem. Thus, given
a dataset of N relation paths  = { (1),… , (N)}, where
a relation path  (ℎ, t) = (ℎ, r1, … rL, t) connects pairsof entities ℎ and t through L relations. We aim to train a
GAN generator G to compose  and use the corresponding
discriminator D to process the generated paths and provide
supervision to the generator as illustrated in Fig. 2.

To model G, we require a method that can sequentially
compose a RP. Given the demonstrable efficacy of RNNs in
this domain previously alluded to, we shall employ an RNN
to map the input sequence of relations (r1, r2… rL) alongwith a head entity ℎ to an output RP (ℎ, t). Specifically,
the RNN greedily selects an entity and relation at each time
step and produces an output entity; relations are kept within
the input space and entities are embedded in the hidden latent

space. The broad modeling approach is depicted in Fig. 3.
This model is realized by modifying the RNN’s recursive
function as follows:

v̂el = f (W [v̂el−1 ; vrl ])

vel = sof tmax(v̂el )

where vel and v̂el respectively denote the predefined andmod-
eled representation of entity e at position l, and vrl is thegiven vector representation of relation r. To initialize the
model, we set v̂e0 = vℎ.

Figure 3: Recursive architecture of the Path-KCGAN genera-
tor.

To model D, we choose CNNs to align with the basic
KCGAN discriminator. The choice of CNNs is also inspired
by its efficacy for text classification, text being essentially a
sequence of tokens [63]. We thus represent a relation path
p1∶L = (ℎ, r1, … , t) as:

1∶T = (vℎ ⊕ vr1 ⊕ …⊕ vt)
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where ⊕ is a concatenation operator applied in building a
matrix 1∶T . The convolution is performed by applying a
filter ! ∈ ℝl×k to a window of l tokens in order to produce
a feature map vi as:

vi = g(! ∗ i∶i+l−1 + b)

The convolution is then followed by max-over-time pooling
over feature maps as:

v̂ = max{v1, v2,… , vT−l+1}

The pooling layer is connected to a fully connected (FC)
layer and finally to a sigmoid unit to produce the inferred
probability of the relation path being real.

4. Experimental Evaluation
4.1. Datasets and Evaluation Protocol

We employ two benchmark KBs to evaluate KCGAN in
common with the baseline studies [8, 9, 10, 11, 12, 13, 14].
Wordnet (WN18) is a collection of pairs of English dictio-
nary and thesaurus words that are related in terms of rela-
tions such as: subclass_of, type_of, part_of and has_part,
etc. Freebase (FB15k) consists of predicates from the per-
sonal ID domain and which includes relations such as: gen-
der, nationality, profession, place of birth, location, religion,
parents, children, ethnicity and spouse, etc. Both datasets
are separated into training, validation and test sets. The statis-
tics of the datasets are summarized in Table 1. The datasets
Table 1
Statistics of WN18 and FB15K

Dataset #Relation #Entity #Train #Validate #Test

WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071

are already pre-processed to remove the trivial triplets, in-
cluding ones which are invariant under switching of entities,
e.g. (e1, similar_to, e2) and (e2, similar_to, e1), and ones
which are different in terms of a different relation, e.g. (e1,
similar_to, e2) and (e1, equals_to, e2). Aswe use a generator
to predict the missing link of a predicate and discriminator
to produce the likely truth of a predicate, the performance
of generator and discriminator are respectively gauged via
benchmark link prediction and predicate/triplet classifica-
tion tasks. To train the generator, we randomly sample predi-
cates from the training set and remove the tail entity from the
samples. The incomplete predicate is then given to the gen-
erator as input such that it returns a distribution over entities
as output. The performance of link prediction is measured
using the standard HIT@10 metric. For predicate classifi-
cation, we first obtain a threshold TR — computed from the
validation set — that can determine the validity of a pred-
icate as (ℎ, p, t) ≥ TR. Classification accuracy is used to
evaluate the performance of predicate classification task.

Table 2
Link prediction empirical results on WN18 and FB15k test sets.
MRR and HIT@10 represents mean reciprocal rank and hit@10
(%). Results of [*] are obtained from [19], and results of
CONVKB are taken from [12]. Best scores are highlighted in
bold.

WN18 FB15k

Method MRR HIT@10 MRR HIT@10

KBGAN [19]* 0.213 48.1 0.278 45.8
ConvE [19]* 0.46 48.0 0.316 49.1
ConvKB [20] 0.248 52.5 0.396 51.7

Proposed KCGANs (G) 0.327 55.4 0.472 59.3

G: Generator

4.2. Link Prediction Results
In this section, we present results of our empirical study

on link prediction. The key objective of the study is to ana-
lyze efficacy of KCGAN generator compared with baseline
and related methods. Table 2 compares link prediction re-
sults of the proposed KCGAN framework with an existing
GANbased baselinemethod, namely KBGAN [19], and also
recently published relatedmethods includingConvE andCon-
vKB [20].

The results show that KCGANoutperformed thesemeth-
ods achieving best MRR and HIT@10 scores on bothWN18
and FB15k datasets. In comparison with baseline methods,
an advancement of 5.7% inMRR score and 3.7% in HIT@10
score is achieved on WN18 dataset, and an improvement of
9.7% in MRR and 6.7% in HIT@10 is observed on FB15k
dataset. While comparing with the top-performing related
model ConvKB [20], KCGAN shows improvement of 3.9%
inMRR and 1.45% in HIT@10 onWN18, and 3.8% inMRR
and 3.8% in HIT@10 on FB15k.

These improvements are partly due to the non-reliance
of KCGAN on artificially generated trivial negative samples
that are essential for discriminative models (such as ConVE
and ConvKB), and partly due to the adversarial loss func-
tion which has better potential to generalize the model than
an explicit loss function. Some link prediction examples of
KCGAN are demonstrated in Table 3. The KCGAN gener-
ator takes an entity relation pair as input; the generator then
returns a probability distribution over entities. We sample
the top five entities and arrange them in order based on their
probabilities. As indicated by Table 3 most of the inferred
entities are plausible.

Table 4 shows link prediction performances of the base-
line, existing and proposed multi-hop relation learning mod-
els. The RNNs — trained for generating relation paths —
are used as baseline models and referred as PathG-RNNs.
We also compare with PTransE which is a variant of TransE
for integrating relation paths for knowledge representation
learning. Results reveal that: (1) path-KCGAN performs
significantly better than baseline and existing models. (2)
Relation paths provide very useful supplementation for rep-
resentation learning of KBs, and that these are effectively
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Table 3
Examples of ranking produced by the KCGAN generator on the WN18 dataset. First and
second columns show entity and relation pairs given to the generator. The third column
shows the top �ve ranked entities arranged from left to right.

Entity Relation Generated entites

military member_of_domain_topic 'operation', 'war', 'military_vehicle', 'serviceman', 'terrorist_organization'
cell _synset_domain_topic_of 'biology', 'military', 'animal', 'sapindales', 'north_america'

magnoliid_dicot_family _hyponym '�licales', 'island', 'compositae', 'labiatae', 'solanaceae', 'ranales'
change_of_state _hypernym 'change', 'whole', 'action', 'object', 'group'
social_group _hypernym 'group', 'change', 'communication', 'whole', 'object'
serviceman _hypernym 'skilled_worker', 'humanistic_discipline', 'plant_order', 'genus', 'taxonomic_group'
sapindales _hypernym 'dicot_family', 'family', 'person', 'phylum', 'organism'
follower _hyponym 'disciple', 'cranium', 'sculptor', 'tract', 'journey', 'driving'
genus _hyponym 'orchid', 'crucifer', 'arthropod_genus', 'arum', 'mollusk_genus'

attribute _hyponym 'quality', 'trait', 'sound', 'point', 'ship'

modeled by path-KCGAN.

Table 4
Link prediction empirical results on WN18 and FB15k test sets
with respect to the relation path representation method vari-
ants.

WN18 FB15k

Method MRR HIT@10 MRR HIT@10

PathG-RNN [2 hop] 0.41 73.7 0.47 76.3
PathG-RNN [3 hop] 0.43 75. 0 0.48 78.5
PTransE [2 hop] 0.49 78.2 0.50 82.2
PTransE [3 hop] 0.54 80.5 0.58 84.6

Path-KCGAN[2 hop] 0.58 85.4 0.63 87.1
Path-KCGAN[3 hop] 0.60 87.7 0.67 91.3

For example, since David Cameron and Tony Blair are
both prime ministers of United Kingdom, they are assigned
a similar representation by single-hop representation learn-
ing methods like KCGAN. This, however, may lead to con-
fusion in single-hop methods when predicting extended no-
tions such as ‘the spouse of Cherie Blair’. Contrarily, since
path-KCGAN learns relation paths between entities such as
Tony Blair and Cherie Blair this helps it to perform more ac-
curately overall. We also analyze the effect of path length by
experimenting with a path-length of 2 (i.e. consisting of 2
triplets) and a path-length of 3 (i.e. consisting of 3 triplets).
Results demonstrate that the performance of the model im-
proves with path length.

Since path-KCGAN is a generative model it can also
generate multi-hop relation paths. Examples of various gen-
erated relation paths are presented in Table 5. We initialize
path-KCGANwith the entity given in the first column of the
table. The following columns show the result of model pre-
diction at each hop. We show a ranked list of predicted enti-
ties in the last column. In the first example, the model com-
poses a hierarchical relation between entities. In the second,
third and fourth examples, the model produces correlations
such as hyponym and hypernym, andmeronym and holonym
between entities. In the fifth and sixth example, the model

generates an elaboration of terms. It can be seen that each
of the generated relation paths are plausible.
4.3. Triplet Classification Results

In this section, we present results of our empirical study
on triplet classification. The key objective of the study is
to analyze efficacy of KCGAN discriminator compared with
baseline and related methods. Table 6 compares triplet clas-
sification accuracy of the proposedKCGANmodel with base-
line models including TransE [9] and NTN [8], and recently
developed related methods including TransG [16] and Con-
vKB [12]. KCGAN results depict the discrimination accu-
racy of the model on the test dataset. Table 4 shows that KC-
GAN outperforms other models on both WN18 and FB15k
datasets. We achieve an average accuracy improvement of
9.4% on WN18 and 5.5% on FB15k in comparison to base-
line models. When comparing to the top performing related
method, ConvKB, we observe an improvement of 0.95% and
2.8% on WN18 and FB15k respectively. A key advantage
of KCGAN over alternative discriminative models is that
the KCGAN generator provides nontrivial negative samples
to the discriminator, enabling the KCGAN discriminator to
learn the decision boundary in an effective manner. Fig. 5
shows the distribution of predicted probabilities of the KC-
GAN discriminator on the WN18 and FB15k test datasets.
It can be seen from the distributions that the discriminator
predicts most of the positive samples with high probability.

5. Conclusion and Future Work
We have proposed a novel generative adversarial net-

work based framework, KCGAN, for knowledge completion
tasks. The components of the framework consist in two net-
works: a generator for link prediction and a discriminator
for predicate/triplet classification. The generator takes an
incomplete predicate comprising an entity-relation pair and
attempts to complete the predicate. The discriminator takes
real as well as generated complete predicates and classifies
these as real or fake. The generator tries to maximize its re-
ward by completing a predicate such that it is indistinguish-
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Table 5
Examples of relation paths generated by the PATH-KCGAN generator on the WN18
dataset. The �rst column shows an entity given to the generator to initiate the gen-
eration process. At each time step a relation is fed to the model as input and an entity is
genrated as output. The last column shows top ranked entities produced after hop 2.

S.No Generated relational path Top �ve entities at time step t=2

1
asia, _has_part, Syria, _part_of,

middle_east, _has_part
'lebanon', 'syria', 'turkey',

'iran', 'iraq'

2
dicot_family, _hyponym, magnoliid_dicot_family,

_hypernym, dicot_family, _hyponym
'sapotaceae', 'rosid_dicot_family', 'asterid_dicot_family',

'anacardiaceae', 'magnoliid_dicot_family'

3
diptera, _member_meronym, dipterous_insect,
_member_holonym, diptera, member_holonym

'insecta', 'animal_order', 'liliales',
'vertebrata', 'property'

4
amphibian_family, _member_holonym,

vertebrata, _member_meronym, vertebrate_hyponym
'bird', 'organization_of_american_states',

'feminist', 'coleoptera', 'blow'

5
humanistic_discipline, _hyponym, philosophy,

_derivationally_related_form, philosopher, _hypernym
'scholar', 'philosophy', 'labor',

'workman', 'disease'

Table 6
Triplet classi�cation accuracy of models on the WN18 and
FB15k test sets. Results of [*] are obtained from [20], and
results of CONVKB are taken from [20]. Best scores are high-
lighted in bold.

Method WN18 FB15k Avg.

TransE [9]* 70.9 79.6 75.2
NTN [8]* 70.6 87.2 78.9

TransG [16]* 87.4 87.3 87.3
ConvKB [12]* 87.6 88.8 88.2

Proposed KCGANs (discriminator) 89.5 94.5 92

able from a real predicate. The discriminator tries to maxi-
mize its score by making correct predictions about real and
fake predicates. The generator is trained to generate a dis-
crete output by using the policy gradient method; the gen-
erator is further able to produce a distribution over a large
set of entities by leveraging an independent softmax based
procedure.

In our testing on standard data sets, the method achieves
best-in-class performance. The KCGAN framework is then
extended, as path-KCGAN, for learning multi-hop relation
paths for KB completion tasks. The generator of path-KCGAN
composes relation paths while the discriminator classifies
the paths as real or fake. Experiments on standard data sets
show that path-KCGAN improves the efficacy of KCGAN,
outperforming both the baseline and themost relevantmethod
in the literature.

We note that the role of softmax is crucial in learning
distributions over large sets of entities (i.e. with more than
a thousand entities). To this end, it will be instructive to
evaluate newly emerging softmax variants to evaluate their
efficacy in the KCGAN context. Finally, since the exist-
ing policy gradient based framework requires pretraining of

Figure 4: Distribution of predicted probabilities on WN18 and
FB15k test sets.

generator and discriminator models, emerging GAN-based
methods for generating discrete samples will be explored and
evaluated for the proposed framework.
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