1 ORIGINAL INVESTIGATION

2	-
	^

3 1RM MEASURES OR MAXIMUM BAR-POWER OUTPUT: WHICH IS MORE

RELATED TO SPORT PERFORMANCE?

- *Running head: 1RM and bar-power output in elite athletes*
- ,

27 Purpose: This study compared the associations between optimum power loads and 1repetition maximum (1RM) values (assessed in half-squat [HS] and jump squat [JS] 28 29 exercises) and multiple performance measures in elite athletes. Methods: Sixty-one elite athletes (fifteen Olympians) from four different sports (track and field [sprinters and 30 jumpers], rugby sevens, bobsled, and soccer) performed squat and countermovement 31 32 jumps, HS exercise (for assessing 1RM), HS and JS exercises (for assessing bar-power output), and sprint tests (60-m for sprinters and jumpers and 40-m for the other athletes). 33 Pearson's product moment correlation test was used to determine relationships between 34 35 1RM and bar-power outputs with vertical jumps and sprint times in both exercises. **Results:** Overall, both measurements were moderately to near perfectly related to speed 36 performance (r values varying from -0.35 to -0.69 for correlations between 1RM and 37 38 sprint times, and from -0.36 to -0.91 for correlations between bar-power outputs and sprint times; P < 0.05). However, on average, the magnitude of these correlations was 39 40 stronger for power-related variables, and only the bar-power outputs were significantly related to vertical jump height. Conclusions: The bar-power outputs were more strongly 41 associated with sprint-speed and power performance than the 1RM measures. Therefore, 42 43 coaches and researchers can use the bar-power approach for athlete testing and monitoring. Due to the strong correlations presented, it is possible to infer that meaningful 44 variations in bar-power production may also represent substantial changes in actual sport 45 46 performance.

47

48	Keywords: maximum	strength, optima	al load, elite athletes,	muscle power,	bar-velocity.
----	-------------------	------------------	--------------------------	---------------	---------------

- 49
- 50

51 Introduction

3

52 Maximum dynamic strength assessments, also called one-repetition maximum (1RM) tests, are widely used by coaches and researchers to both evaluate neuromuscular 53 performance and determine training loads.¹ The prescription of strength-power training 54 is usually based on different percentages of 1RM, according to the objectives and needs 55 of a given athlete or sport discipline.^{1, 2} For example, programs designed to develop 56 maximum strength capacity tend to adopt loading ranges varying between 80 and 100% 57 1RM; whereas programs focused on developing muscle power normally prioritize the use 58 of exercises performed with light to moderate loads (e.g., 30 to 45% 1RM).³⁻⁵ Thus, 59 60 independent of their resistance training goals, athletes are often required to perform 1RM 61 tests.

Due to the inherent difficulties in applying 1RM tests⁶⁻⁸ (and thus monitoring the 62 resistance-training load), velocity-based training (VBT)^{9, 10} has emerged as a practical 63 and advantageous alternative to control resistance training intensity.^{11, 12} Indeed, the 64 65 strong relationship between force and velocity enable practitioners to rapidly estimate relative load (i.e., % 1RM), by simply monitoring movement velocity.¹¹ Several 66 investigations have provided useful information on VBT, reporting reference data which 67 can be precisely used to monitor loading intensity in different exercises.^{10, 11} Nevertheless, 68 this approach normally correlates movement velocities with standard 1RM measures.^{13,} 69 ¹⁴ compromising its applicability as a novel training strategy. Furthermore, recent studies 70 have brought into question the theoretical concepts behind "maximum dynamic strength" 71 72 assessments, which (in essence) represent only the higher mass that an athlete can move during a maximum-effort resistance exercise.^{15, 16} For these authors, the fact that this 73 scalar measure (i.e., mass) does not simultaneously reflect the force and velocity applied 74 by the athlete against an external resistance could hamper its use in high-performance 75

sport, where time and velocity play a critical role in determining the effectiveness of force
 application.¹⁵

With this in mind, more recently, the use of the "optimum power load" (i.e., load 78 able to maximize power production) has been proposed in athletes' training programs.¹⁶, 79 ¹⁷ Briefly, instead of using reference loads based solely on scalar measures, coaches can 80 adopt a training strategy which considers at the same time the force and velocity applied 81 to the barbell, thus optimizing the power production in this external implement. This load 82 is usually determined in a progressive load test, performed until a decrease in subject's 83 power output is observed.^{16, 17} Nonetheless, it appears that these optimized loads always 84 occur at a narrow range of bar-velocities,^{17, 18} which strongly facilitates resistance training 85 monitoring and prescription. Based on these ranges, for example, coaches can increase or 86 decrease the load magnitude as soon as the subject leaves the target (velocity) zone.^{17, 18} 87 88 Importantly, it has been shown that training within optimum power zones may be an effective way to improve strength and power abilities at both ends of the force-velocity 89 curve (i.e., low-force, high-velocity portion; and high-force, low-velocity portion).^{5, 8} 90 From these findings, it may be inferred that numerous sport disciplines could benefit from 91 using this alternative resistance training scheme rather than more traditional 1RM-based 92 methods. 93

To examine the relationships between this specific range of loads and multiple performance measures in elite athletes from different sports is an important first step in exploring the usefulness and effectiveness of this novel approach. Accordingly, comparing the magnitude of these respective correlations with the magnitude of more established relationships (e.g., correlations between 1RM and performance measures)^{19,} ²⁰ could enable practitioners and researchers to better select appropriate training strategies for their athletes. Thus, the aims of the present study were to: (1) analyze the correlations

between bar-power outputs (under optimum loading conditions) and 1RM values 101 102 (assessed in half-squat [HS] and jump squat [JS] exercises), and multiple performance 103 measures in elite athletes from a range of sport disciplines; and (2) assess the sensitivity and specificity of the bar-power approach for athlete testing and monitoring. 104 105 106 **Methods** 107 *Subjects* 108 Sixty-one elite athletes from four different sports (14 track & field sprinters and jumpers: 23.9 ± 5.7 years, 66.1 ± 8.7 kg, 176.6 ± 7.8 cm; 18 rugby sevens players: 25.2109 110 \pm 3.1 years, 87.9 \pm 7.8 kg, 181.5 \pm 7.2 cm; 8 bobsled athletes: 28.7 \pm 6.5 years, 89.0 \pm 9.6 kg, 181.9 ± 9.7 cm; and 21 professional soccer players: 24.8 ± 4.5 years, 66.9 ± 7.6 kg, 111 176.0 ± 8.5 cm) participated in this study. All participants had at least five years of 112 113 resistance training experience and, due to their professional training routine, performed a minimum of three and a maximum of five strength-power training sessions per week. The 114 115 sample comprised 15 athletes who participated in the previous Summer and Winter 116 Olympic Games (10 in Rio de Janeiro 2016 and 5 in PyeongChang 2018). The other athletes were part of the Brazilian National Teams, competing at national and 117 international levels. The professional soccer players participated in the first division of 118 the *"Paulista Championship"*, the most important Brazilian State Championship, Before 119 participating in the study, athletes signed an informed consent form. The study was 120 approved by the Anhanguera-Bandeirante University Ethics Committee (registration 121 122 number 926.260).

123

124 Study Design

The athletes involved in this study were assessed during the competitive phase of 125 the season and were well familiarized with testing procedures. Physical tests were 126 performed on two consecutive days in the following order: Day 1) squat jumps (SJ) and 127 countermovement jumps (CMJ) and 1RM in the HS exercise; Day 2) assessment of the 128 maximum power outputs in the HS and JS exercises and a sprint test. After the first day, 129 athletes rested until the next day of assessments. During this period, they were instructed 130 to maintain their nutritional and sleep habits and to arrive at the sports laboratory in a 131 132 fasted state for at least 2-h, avoiding alcohol and caffeine consumption for at least 48-h before the tests. A standardized warm-up was performed before the tests comprising light 133 to moderate self-selected runs for 5-min, and prior to maximal tests sub-maximal attempts 134 at each test were also performed. Between each test, a 15-min rest interval was 135 implemented to explain the next procedures and adjust the testing devices. 136

137

138 *Testing procedures*

139 The SJ and CMJ were performed on a validated contact-mat (Elite Jump, S2 sports, Brazil)²¹ with the hands on the hips. Five attempts for each jump were allowed 140 and the highest jump of each mode was retained. A 1RM test in the HS exercise was 141 performed on a Smith-machine device (Hammer Strength Equipment, Rosemont, USA) 142 following the standard procedures described elsewhere (Figure 1).⁶ Barbell-mean, mean 143 propulsive, and peak power outputs (MP, MPP, and PP, respectively) were assessed in 144 the HS and JS exercises on the Smith-machine using a linear encoder (T-Force, Dynamic 145 146 Measurement System; Ergotech Consulting, Murcia, Spain), as previously described (Figure 2).¹⁷ Briefly, to determine the optimal power load, the test started at a load 147 corresponding to 40% of the athlete's body mass. Then, a load of 10% of body mass was 148 gradually added in each set, until a clear decrement in the bar power was observed.¹⁷ The 149

150	loads corresponding to the highest power outputs in both exercises were retained for
151	analysis. ^{17, 18} Both 1RM and power outputs were normalized to the athletes' body-mass
152	(BM). For the sprint test, sprinters and jumpers performed a 60-m sprint test, whereas the
153	other athletes sprinted over a total distance of 40-m. Five pairs of photocells (Smart-
154	Speed, Fusion Equipment, Brisbane, AUS) were positioned at distances of zero, 10-, 20-
155	, 30-, and 40-m along the sprinting course, and an additional pair was placed at 60-m to
156	assess sprinters and jumpers. Athletes performed two sprints and the best attempt was
157	retained. All tests used herein presented high levels of reliability and consistency (ICC >
158	0.92 and CV $<4\%$, for all performance measures). ²²
159	
160	***INSERT FIGURE 1 HERE***
161	
162	***INSERT FIGURE 2 HERE***
163	
164	Statistical analysis
165	Data normality was confirmed via the Kolmogorov-Smirnov test. The Pearson's
166	product moment correlation test was used to determine the relationships between 1RM
167	and power outputs in both exercises with vertical jumps and sprinting velocities.
168	Correlation values were qualitatively assessed using the criteria established by Hopkins
169	et al. ²² , as follows: <0.1, trivial; 0.1-0.3, small; 0.3-0.5, moderate; 0.5-0.7, large; 0.7-0.9,
170	very large; >0.9 nearly perfect. The level of significance was set at $P < 0.05$.
171	
172	Results
173	Descriptive data of the physical tests performed are presented in table 1. Table 2
174	shows the correlations between 1RM and power outputs in the HS and JS exercises with

175	the vertical jumps and 60-m sprinting times. For all power outputs significant correlations
176	were observed between the SJ and CMJ heights (varying between 0.58 and 0.82; $P < 0.05$),
177	while no significant correlations were found between 1RM and the vertical jumps. The
178	highest correlation values were observed between the different power outputs and 60-m
179	sprint time (varying between -0.80 and -0.91; $P < 0.05$), while the correlation between the
180	1RM with the same sprint distance was -0.63 ($P < 0.05$).
181	
182	***INSERT TABLE 1 HERE***
183	
184	***INSERT TABLE 2 HERE***
185	
186	Discussion
187	This study examined the relationships between 1RM values and maximum power
188	outputs with multiple performance measures in elite athletes from different sports.
189	Overall, both measurements were significantly related to speed-power variables (with the
190	exception of SJ, CMJ and time 5-m, and 1RM). However, on average, the magnitude of
191	these correlations was stronger for power-related variables, indicating that these outputs
192	may be more strongly associated with sport-performance than 1RM loads.
193	The association between 1RM measures and performance has been extensively
194	described in many studies and within a recent review. ²⁰ Wisloff et al. ²³ reported
195	significant correlations between half-squat 1RM and sprint and jump performance (from
196	0.71 to 0.94) in professional soccer players. Similarly, McBride et al. (2009) found

significant relationships among a series of speed-tests (5, 10, and 40-yard) and back-squat
1RM, emphasizing the importance of normalizing 1RM values by the athletes' BM (as
relative values) to strengthen the associations between strength and performance

200 measures.¹⁹ In the present study, both 1RM and power outputs were expressed in relative 201 values, which likely contributed to increase the magnitude of the correlations observed 202 (Table 2). Nonetheless, as previously mentioned, these values were higher for power-203 related variables and, notably, only these outputs were significantly associated with 204 vertical jump performance.

Requena et al.²⁴ reported similar results with well-trained sprinters, not finding 205 significant relationships between relative measures of squat 1RM and CMJ height. In 206 207 contrast, relative power production (in both squat and JS exercises) were found to be moderately related to jump ability and maximal speed over different distances (from 20-208 to 80-m). Accordingly, Loturco et al.²⁵ showed that both the MPP and the magnitude of 209 210 the load lifted at the optimum zone are highly correlated to sprint and jump capacities (r ~ 0.80) in professional sprinters. These data are very similar to those described herein, 211 212 confirming the usefulness of the bar-power approach in assessing athletic performance, 213 especially in elite athletes. The opportunity to use ranges of loads which optimize the force and velocity applied to the barbell at the same time^{15, 26} (instead of only considering 214 215 the maximum mass moved during a maximum effort [i.e., 1RM]) may better reflect the abilities required in sport-tasks, where athletes are frequently required to move substantial 216 217 amounts of loads at high speeds (e.g., the BM during a vertical jump or maximal sprints).^{25, 27, 28} Although this mechanical parameter does not represent "total power of 218 the system" (i.e., system-power)^{15, 16}, the bar-power output can be used not only to 219 monitor strength and power capacities, but also to discriminate athletes with different 220 performance levels and training backgrounds.²⁹ 221

We recognize that the 1RM measurement is widely used to prescribe and control training intensity, and there are several studies confirming its efficacy for such purposes.^{1,} 224 ^{2, 13} Nevertheless, it is worth noting that, in terms of assessing athletes' performance, the

relationship with specific physical capabilities (e.g., jumping and sprinting) is a relevant 225 criterion for test selection.^{19, 23, 25} Furthermore, there are potential risks involved in 1RM 226 testing,⁶⁻⁸ which compromises its frequent use in competitive sports, where the constant 227 evaluation of physical performance is of fundamental importance. More importantly, 228 there is a significant limitation in considering a given scalar variable (i.e., mass) as a 229 "strength measurement".^{15, 26} In this context, it is critical to emphasize that the ability to 230 efficiently accelerate relative loads (and thus reach higher movement velocities) is a 231 selective factor in different sport disciplines.^{12, 25, 30, 31}The finding that the bar-power 232 output is more strongly associated with sport-performance than 1RM measures indicates 233 that this novel and alternative method might be an effective way to assess elite athletes. 234 Due to the high levels of precision and consistency presented by all power variables, 235 based on their preferences and possibilities (i.e., device features), practitioners can use 236 MP, MPP, or PP to estimate and define the optimum power zones, in both JS and HS 237 exercises. 238

239

240 Practical Applications

Frequent monitoring of athletes' performance is essential in professional sports, 241 serving as a basis for adjusting training loads and methods, and evaluating individual 242 progress. Therefore, the use of applied, safe, and timesaving assessment tools becomes 243 crucial for the development of better and more effective training programs. The bar-power 244 approach is a practical training and testing strategy, which has been shown to be closely 245 related to actual performance^{25, 30, 31} and produce significant improvements in physical 246 abilities at both ends of the force-velocity curve.^{5, 8}In this study, we demonstrated that the 247 bar-power outputs are more strongly associated with speed and power performances in 248 elite athletes than 1RM measurements. With this in mind, coaches and researchers are 249

encouraged to assess the power production directly on the barbell to evaluate the strengthpower performance of their athletes. Despite the cross-sectional nature of our data, due to
the large correlations presented here, it is possible to infer that meaningful variations in
bar-power production may also represent substantial changes in athletic performance.
Further studies should be conducted to test the relationships between bar-power output
and alternative performance measures (e.g., repeated-sprint ability) and sport-tasks (e.g.,
change of direction tasks).

257

258 Conclusions

The bar-power approach is an effective testing strategy, which can be quickly and easily implemented to evaluate athletes from different sports. The bar-power output collected at the optimum power zone is closely related to athletic performance.

262

263 **References**

Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck
 SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH,
 Ratamess NA, Triplett-McBride T, American College of Sports M. American
 College of Sports Medicine position stand. Progression models in resistance
 training for healthy adults. *Med Sci Sports Exerc.* 2002;34:364-80.

269 2. Kraemer WJ, Fleck SF. *Optimizing strength training: designing nonlinear*270 *periodization workouts*. Champaign (IL): Human Kinetics, 2007.

3. Harris NK, Cronin JB, Hopkins WG, Hansen KT. Squat jump training at maximal
power loads vs. heavy loads: effect on sprint ability. *J Strength Cond Res.*2008;22:1742-9.

- McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs.
 light-load jump squats on the development of strength, power, and speed. J
 Strength Cond Res. 2002;16:75-82.
- Loturco I, Ugrinowitsch C, Roschel H, Tricoli V, Gonzalez-Badillo JJ. Training
 at the optimum power zone produces similar performance improvements to
 traditional strength training. *J Sports Sci Med.* 2013;12:109-15.
- Brown LE, Weir JP. ASEP Procedures Recommendation I: Accurate Assessment
 of Muscular Strength and Power. *J Exerc Physiol*. 2001;4:1-21.
- Chapman PP, Whitehead JR, Binkert RH. The 225-1b Reps-to-Fatigue Test as a
 Submaximal Estimate of 1-RM Bench Press Performance in College Football
 Players. *J Strength Cond Res.* 1998;12:258-61.
- Loturco I, Nakamura FY, Kobal R, Gil S, Pivetti B, Pereira LA, Roschel H.
 Traditional periodization versus optimum training load applied to soccer players:
 effects on neuromuscular abilities. *Int J Sports Med.* 2016;37:1051-9.
- Banyard HG, Nosaka K, Sato K, Haff GG. Validity of Various Methods for
 Determining Velocity, Force, and Power in the Back Squat. *Int J Sports Physiol Perform.* 2017;12:1170-6.
- 10. Gonzalez-Badillo JJ, Pareja-Blanco F, Rodriguez-Rosell D, Abad-Herencia JL,
 Del Ojo-Lopez JJ, Sanchez-Medina L. Effects of velocity-based resistance
 training on young soccer players of different ages. *J Strength Cond Res.*2015;29:1329-38.
- 295 11. Gonzalez-Badillo JJ, Marques MC, Sanchez-Medina L. The importance of
 296 movement velocity as a measure to control resistance training intensity. *J Hum*297 *Kinet*. 2011;29A:15-9.

- Marques MC, van den Tilaar R, Vescovi JD, Gonzalez-Badillo JJ. Relationship
 between throwing velocity, muscle power, and bar velocity during bench press in
 elite handball players. *Int J Sports Physiol Perform.* 2007;2:414-22.
- Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load-velocity
 relationship for 1RM prediction. *J Strength Cond Res.* 2011;25:267-70.
- Ruf L, Chery C, Taylor KL. Validity and Reliability of the Load-Velocity
 Relationship to Predict the One-Repetition Maximum in Deadlift. *J Strength Cond Res.* 2018;32:681-9.
- Loturco I. Authors' response to letter to the editor: "Bar velocities capable of
 optimising the muscle power in strength-power exercises" by Loturco, Pereira,
 Abad, Tabares, Moraes, Kobal, Kitamura & Nakamura (2017). *J Sports Sci.*2017:1-5.
- 16. Loturco I, Kobal R, Kitamura K, Fernandes V, Moura N, Siqueira F, Cal Abad
 CC, Pereira LA. Predictive factors of elite sprint performance: influences of
 muscle mechanical properties and functional parameters. *J Strength Cond Res.*2017;In Press.
- I. Loturco I, Nakamura FY, Tricoli V, Kobal R, Abad CC, Kitamura K,
 Ugrinowitsch C, Gil S, Pereira LA, Gonzales-Badillo JJ. Determining the
 optimum power load in jump squats using the mean propulsive velocity. *PLoS One*. 2015;10:e0140102.
- 18. Loturco I, Pereira LA, Abad CC, Tabares F, Moraes JE, Kobal R, Kitamura K,
 Nakamura FY. Bar velocities capable of optimising the muscle power in strengthpower exercises. *J Sports Sci.* 2017;35:734-41.

- McBride JM, Blow D, Kirby TJ, Haines TL, Dayne AM, Triplett NT. Relationship
 between maximal squat strength and five, ten, and forty yard sprint times. *Journal of Strength and Conditioning Research*. 2009;23:1633-6.
- 324 20. Suchomel TJ, Nimphius S, Stone MH. The Importance of Muscular Strength in
 325 Athletic Performance. *Sports Med.* 2016;46:1419-49.
- Loturco I, Pereira LA, Kobal R, Kitamura K, Cal Abad CC, Marques G, Guerriero
 A, Moraes JE, Nakamura FY. Validity and Usability of a New System for
 Measuring and Monitoring Variations in Vertical Jump Performance. *J Strength Cond Res.* 2017;31:2579-85.
- Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for
 studies in sports medicine and exercise science. *Med Sci Sports Exerc*. 2009;41:313.
- Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal
 squat strength with sprint performance and vertical jump height in elite soccer
 players. *Br J Sports Med.* 2004;38:285-8.
- Requena B, Garcia I, Requena F, de Villarreal ES, Cronin JB. Relationship
 between traditional and ballistic squat exercise with vertical jumping and maximal
 sprinting. *J Strength Cond Res.* 2011;25:2193-204.
- 339 25. Loturco I, D'Angelo RA, Fernandes V, Gil S, Kobal R, Cal Abad CC, Kitamura
- K, Nakamura FY. Relationship between sprint ability and loaded/unloaded jump
 tests in elite sprinters. *J Strength Cond Res.* 2015;29:758-64.
- 26. Loturco I, Pereira LA, Zanetti V, Kitamura K, Abad CC, Kobal R, Nakamura FY.
 Mechanical Differences between Barbell and Body Optimum Power Loads in the
- Jump Squat Exercise. *J Hum Kinet*. 2016;54:153-62.

- 27. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular
 power: part 2 training considerations for improving maximal power production. *Sports Med.* 2011;41:125-46.
- 28. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular
 power: Part 1-biological basis of maximal power production. *Sports Med.*2011;41:17-38.
- 29. Loturco I, Pereira LA, Moraes JE, Kitamura K, Cal Abad CC, Kobal R, Nakamura
 FY. Jump-Squat and Half-Squat Exercises: Selective Influences on Speed-Power
 Performance of Elite Rugby Sevens Players. *PLoS One*. 2017;12:e0170627.
- 30. Loturco I, Artioli GG, Kobal R, Gil S, Franchini E. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis. *J Strength Cond Res*. 2014;28:1826-32.
- 357 31. Loturco I, Nakamura FY, Artioli GG, Kobal R, Kitamura K, Cal Abad CC, Cruz
 358 IF, Romano F, Pereira LA, Franchini E. Strength and power qualities are highly
- associated with punching impact in elite amateur boxers. *J Strength Cond Res.*
- 360

2016;30:109-16.

- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368

15

369

370	FIGURE	CAPTIONS	5					
371	Figure 1.	A National	rugby sever	ns player	[•] performir	ig a 1RM t	est in the	half squat
372	exercise.							
373								
374	Figure 2.	An Olympic	e sprinter per	forming	a loaded ji	<mark>ımp squat a</mark>	t the optir	num power
375	zone.							
376								
377								
378								
379								
380								
381								
382								
383								
384								
385								
386								
387								
388								
389								
390								
391								
392								
393								
394								

Table 1. Descriptive data of the vertical jumps, 1 repetition maximum (RM) in the half-

396	squat exercise	(HS),	bar-power	outputs	in	the	HS	and	jump	squat	(JS)	exercises,	and
-----	----------------	-------	-----------	---------	----	-----	----	-----	------	-------	------	------------	-----

³⁹⁷ sprinting times in elite athletes from different sports disciplines.

	Maam CD	90% confi	dence limits
	Mean ± SD	Lower	Upper
SJ (cm)	41.89 ± 4.40	40.65	43.13
CMJ (cm)	43.89 ± 4.62	42.59	45.19
1RM (kg.kg ⁻¹)	2.54 ± 0.54	2.43	2.65
MP HS (W.kg ⁻¹)	7.90 ± 1.33	7.62	8.18
MPP HS (W.kg ⁻¹)	10.11 ± 1.59	9.78	10.45
PP HS (W.kg ⁻¹)	22.76 ± 5.14	21.68	23.84
MP JS (W.kg ⁻¹)	8.17 ± 1.77	7.80	8.55
MPP JS (W.kg ⁻¹)	11.76 ± 2.51	11.24	12.29
PP JS (W.kg ⁻¹)	25.85 ± 5.86	24.62	27.09
Time 5-m (s)	1.01 ± 0.05	1.00	1.02
Time 10-m (s)	1.70 ± 0.09	1.68	1.72
Time 20-m (s)	2.92 ± 0.12	2.90	2.95
Time 30-m (s)	4.03 ± 0.16	3.98	4.07
Time 40-m (s)	5.07 ± 0.20	5.02	5.12
Time 60-m (s)	7.18 ± 0.36	7.02	7.34

³⁹⁸ *Note:* SD: standard deviation; SJ: squat jump; CMJ: countermovement jump; MP: mean

power; MPP; mean propulsive power; PP: peak power; *both 1RM load and power

⁴⁰⁰ outputs were normalized by the athletes' body mass.

Table 2. Correlations (± 90% confidence intervals) between vertical jump performances and sprinting time with maximum dynamic strength in

402	the half-squat (HS) ex	ercise and bar-power out	puts in the HS and ju	mp squat (JS) exercises	s in elite athletes from	different sports disciplines.
-----	------------------------	--------------------------	-----------------------	-------------------------	--------------------------	-------------------------------

	1RM	MPP HS	MP HS	PP HS	MPP JS	MP JS	PP JS
SJ	0.26 (0.20)	0.63 (0.13)*	0.61 (0.14)*	0.58 (0.14)*	0.78 (0.09)*	0.69 (0.11)*	0.76 (0.09)*
CMJ	0.24 (0.20)	0.66 (0.12)*	0.66 (0.12)*	0.62 (0.13)*	0.82 (0.07)*	0.79 (0.08)*	0.82 (0.07)*
Time 5-m	0.16 (0.21)	-0.36 (0.19)*	-0.50 (0.16)*	-0.56 (0.15)*	-0.58 (0.14)*	-0.60 (0.14)*	-0.56 (0.15)*
Time 10-m	-0.35 (0.19)*	-0.52 (0.16)*	-0.44 (0.17)*	-0.51 (0.16)*	-0.46 (0.17)*	-0.37 (0.18)*	-0.40 (0.18)*
Time 20-m	-0.46 (0.17)*	-0.71 (0.11)*	-0.65 (0.12)*	-0.65 (0.12)*	-0.65 (0.12)*	-0.59 (0.14)*	-0.59 (0.14)*
Time 30-m	-0.51 (0.16)*	-0.81 (0.08)*	-0.72 (0.10)*	-0.77 (0.09)*	-0.82 (0.07)*	-0.77 (0.09)*	-0.77 (0.09)*
Time 40-m	-0.69 (0.11)*	-0.81 (0.08)*	0.71 (0.11)*	-0.69 (0.11)*	-0.78 (0.09)*	-0.70 (0.11)*	-0.70 (0.11)*
Time 60-m	-0.63 (0.13)*	-0.88 (0.05)*	-0.91 (0.04)*	-0.80 (0.08)*	-0.91 (0.04)*	-0.90 (0.04)*	-0.80 (0.08)*

Note: SJ: squat jump; CMJ: countermovement jump; 1RM: one repetition maximum; MP: mean power; MPP; mean propulsive power; PP: peak

404 power; **both 1-RM load and power outputs were normalized by the athletes' body mass; *P < 0.05.