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Abstract Networks of spiking neurons can have persistently firing stable bump at-
tractors to represent continuous spaces (like temperature). This can be done with
a topology with local excitatory synapses and local surround inhibitory synapses.
Activating large ranges in the attractor can lead to multiple bumps, that show
repeller and attractor dynamics; however, these bumps can be merged by over-
coming the repeller dynamics. A simple associative memory can include these
bump attractors, allowing the use of continuous variables in these memories, and
these associations can be learned by Hebbian rules. These simulations are related
to biological networks, showing that this is a step toward a more complete neural
cognitive associative memory.

Keywords: Spiking Neurons, Associative Memory, Cell Assemblies, Bump At-
tractor, Hebbian Learning.

1 Introduction

How does the brain represent concepts that are continuously valued, like height,
weight, and temperature? How can these be included in the brain’s associative
memory. For example, what is the neural basis of the representation of hot coffee?
Moreover, how can coffee be considered cold at one temperature, and another
drink, say a coke, be considered warm at the same temperature?

This paper proposes a neural topology for a particular associative memory in-
volving hot coffee, but the general association between a continuous value and two
binary semantic values is readily replicable. A problem of multiple bumps arises
when the semantic input causes a large associated range of the continuous value to
be activated, but extra topology has been added that merges bumps into one (see
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Fig. 1 Cell Assemblies from this Paper. 1A is a representation of categories of CAs used in
this paper. All are simple models, with a novel form of bump attractor representing continously
valued CAs. Compound CAs can be formed of simpler CAs. 1B shows binary CAs, such as
Coffee, a series of CAs representing the continous value of temperature, and two compound
CAs.

section 4). The associations can also be learned using Hebbian learning (see sec-
tion 5). The resulting topology has the added benefit of merging in psychologically
realistic times.

The authors firmly believe that concepts, like hot, coffee and particular tem-
peratures, are represented in the brain by Cell Assemblies (CAs) (see section 2.3),
and associations are represented either by synaptic connections or by CAs in the
brain. In the simulations described in this paper, basic semantic concepts, like
coffee, are represented by a simple version of CAs called binary CAs. Other con-
cepts, like temperature, are represented by continuously valued networks that fall
into a category called Winner Take All (WTA) networks, or more precisely, bump
attractors (see section 2.1). These bump attractors support another simple ver-
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sion of CAs that differs from binary CAs. Finally, the associations are themselves
CAs that are more than just their primitive components. All fire persistently, and
thus can operate as short term memories. These can be seen in figure 1. Figure
1A shows the types of CA models used in this paper. The compound CAs, shown
more fully in figure 1B, are formed by excitatory synapses from the neurons in the
consituent CAs. While bump attractors are a common and long standing model,
their use as components in associative memory has shown a problem that, as far
as the authors are aware, is novel: large valued inputs lead to multiple bumps.

2 Literature Review

A great deal of literature relates to this paper, but this review concentrates on four
bodies. The first is Winner Take All Networks and bump attractors in particular
(section 2.1). The main cognitive component of the paper is the associative memory
(section 2.2), and the bridge between the two is the Cell Assembly (section 2.3),
which is the neural basis of concepts. The final literature review section (2.4) is
on Hebbian learning, which is used in the simulations for learning associations.

2.1 Winner Take All Networks

The brain is a part of the central nervous system, which processes multi-modal
information. Although there are several sources of stimuli (coming from inside
and outside of the body), the brain selectively analyses this huge amount of in-
formation. The information is often ambiguous, so the brain must select one of
the possible options. In simulated neural and connectionist systems, one model
to select between options is a winner take all (WTA) system. One connectionist
system that uses this model is the self organizing map (Kohonen, 1982). The map
is made up of several nodes, and when an item is presented, the nearest node wins.

The stationary bump, which is another mechanism proposed for feature selec-
tivity in the brain (Somers et al., 1995; Laing et al., 2001), has been used in spiking
neural networks. The bump activity is an example of WTA neural behaviour be-
cause a group of co-firing neurons can be considered as winners of competition via
inhibitory synapses. Adopting a general point of view, WTA networks in general
and bump attractors in particular are a pattern formation process in a population
with excitatory and inhibitory synapses; they work on the patterns of a stable
grid (Wilson and Cowan, 1973), leading to an activity dependent neural group
selection (Edelman, 1987).

In the typical stationary bump model, distance is considered either in one or
two dimensions. There are local excitatory synapses, and more broad inhibitory
synapses. The recurrent neural network is able to select particular neurons using
inhibitory synapses that sustain the competition between neurons (e.g. Chen’s
surround inhibition (Chen, 2017)).

There is evidence that excitatory cells (i.e., principal neurons) are associated
with specialized inhibitory cells (i.e., interneurons or secondary cells) that synapse
to principal cells as well as other interneurons. The proper dynamics in the neu-
ral network can only be sustained if the excitatory behaviour of principal cells
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is modulated by the stopping function of secondary cells. If there were only ex-
citatory neurons, their positive spikes could lead to an excitation that produces
more excitation (an avalanche effect potentially leading to simulated epilepsy),
and therefore, it would be difficult to observe transiently active groups of co-firing
neurons such as, for example, CAs (see section 2.3).

This type of stationary bump is widely used in neural simulations. For example,
it is used to manage a robot’s direction in a path integration task (Kreiser et al.,
2018).

2.2 Associative Memory

It is widely agreed that in the brain (and mind) concepts do not exist in isolation,
but instead are associated with each other. These associations are part of the
semantics of the underlying concepts, making an associative memory. This is a
long standing psychological theory (Quillian, 1967).

This associative memory is the basis of priming effects (Collins and Loftus,
1975). If a concept is activated, it spreads its activation to associated concepts.
The associative memory can be thought of as a symbolic Semantic Network, and
Semantic Nets are widely used in AI for knowledge representation (Brachman and
Schmolze, 1989).

Early versions of associative memories in simulated biological neural nets typ-
ically refer to associating vectors of firing neurons (Willshaw et al., 1969). An
input vector of neurons, when fired once, causes an associated output vector to
fire once. This work however is not particularly well suited for bridging the gap
between biological neural behaviour and the emerging psychological behaviour of,
in this case, associative memory, because individual concepts are not represented
by a vector of neurons firing once, but by persistently firing Cell Assemblies.

There are more modern versions of associative memories. For example Chrysan-
thidis et al. (2019), like the simulations described below, use NEST, spiking neu-
rons, and Hebbian learning to associate memories; this impressive system is aligned
to biological spiking neurons and topology, but performs a rather weak cognitive
associative task.

2.3 Cell Assemblies and Concept Representation in the Brain

Continuous concepts are mental representations of continuous phenomena like
time, space, temperature, and force. These concepts share a common mathematical
structure that is processed by specific anatomical regions. There is strong evidence
that biological bump attractors are used to represent continuous phenomena, such
as head direction in Drosophilia (Kim et al., 2017), and in rodents (Laurens and
Angelaki, 2018; Gerstner et al., 2014).

It is less clear how associative memory is represented in the human brain, but
the standard theory is that concepts are typically distributed over neurons from
many different cortical (and perhaps subcortical) areas (Pulvermuller, 1999). For
example, Martin (2007) collected evidence from functional neuroimaging studies
about the storage in the cortex of salient properties of an object, like movement,
shape and function; he found that those features are stored in separate sensory
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and motor systems, suggesting that concepts emerge from a weighted activity
of property-based brain regions. Handjaras et al. (2016) investigated modality
independent and category based organization of semantic knowledge in the human
brain; they concluded that patterns of neural activity spread over a large semantic
cortical network represent concepts independent from the modality of stimulus
presentation.

In componential theories of lexical semantics, particular concepts are repre-
sented by features. One study shows key features that are particularly salient
(Binder et al., 2016), with temperature being one of the 65 features represented.
There is evidence that temperature is represented in the insular cortex (Craig
et al., 2000), but the authors are unaware of any neural level study that shows the
form of that circuit. It does seem reasonable to propose that temperature, being
continuously valued, is represented by a bump attractor like head direction.

In his book, Hebb (1949) developed his famous synaptic learning rule, and used
that rule to propose the CA as the neural basis of concepts. That is, semantic
concepts, such as coffee are represented by CAs. A CA is a relatively small group
of neurons that have high mutual synaptic strength that is formed by Hebbian
learning. When some of the neurons fire, that mutual synaptic weight supports
firing in the other neurons in the CA, and this allows a cascade of firing so that
the neurons in the CA can fire persistently for a considerable amount of time
(seconds). This firing is the neural basis of short term psychological memory.

In the intervening 70 years, there has been significant and growing evidence of
the existence of CAs in brains (Singer et al., 1997; Harris, 2005; Buzsaki, 2010),
and there is evidence of CAs in all major cortical areas (Huyck and Passmore,
2013). Neurons in a CA fire persistently, once activated, and fire synchronously.

While the neurobiological evidence is accumulating, there are not very good
neural simulations of CAs. The authors have spent considerable time simulating
CAs, used them in many tasks, and recent work has made extensive use of binary
CAs (Huyck and Mitchell, 2018). In these simulated CAs, the neurons are either
mostly firing, or none are firing, so it is binary, either on or off. This can be
implemented with a well connected topology of neurons. Once the neurons start
firing, they fire persistently until some external source shuts them off. This is
obviously a poor model of CAs because, among many reasons, in a normal case,
CAs would stop firing on their own, just like normal short term memories stop on
their own.

None the less, binary CAs have been used in simulations of associative memory
(Huyck and Ji, 2018). In this case, three concepts are associated, and when two
become active, the associated third comes on. That is a 2/3 associative memory.
This is an example of work in attractor networks to form associative memory
(Lansner, 2009). Using spiking point neural models starts to bring together more
biologically accurate simulations to manage more complex, and psychologically
accurate neuropsychological simulations.

The elevated firing of a CA is the neural correlate of a short term or working
memory item. In the case of the 2/3 associative memory items, two CAs, instanti-
ating two concepts, are firing at an elevated rate, and they cause the third to fire
at an elevated rate, retrieving the concept associated with both of the first two.
There is evidence that bump attractors instantiate CAs for continuously valued
phenomena. For instance, recordings of pre-frontal cortical neurons of monkeys
in oculomotor delay response tasks is consistent with bump attractors (Wimmer
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et al., 2014) representing position. Similarly, single cell recordings of grid cells, are
consistent with 2-D continuous attractors (Yoon et al., 2013). Bump attractors
have been used to model hippocampal place cells (Stringer et al., 2002), and head
direction cells (Redish et al., 1996). While these models, and indeed the models
used in this paper have no short term plasticity, it seems that there is a sound
basis for supporting the use of this type of plasticity in continuous attractor neural
models for short term memory (Seeholzer et al., 2019). This paper uses a relatively
simple topology that represents continuously valued concepts, and uses them as
components of an associative memory.

2.4 Learning

While spiking neural networks possess many benefits, such as parallelism, perhaps
their main benefit is their ability to learn. Learning in biological neural nets can be
divided into three categories: structural plasticity, long term plasticity, and short
term plasticity.

Most synaptic modification is thought to be Hebbian. That is, when a neuron
tends to cause another to fire, the synaptic weight tends to increase. A simple
computational Hebbian learning rule (Oja, 1982) forces the synaptic weight toward
a weighted value of the likelihood that the post-synaptic neuron fires when the
pre-synaptic neuron fires. If the modifier reflects the total weight of the synapses
leaving a neuron, the rule is a pre-compensatory rule (Huyck and Mitchell, 2014),
and if it reflects the total weight entering the post-synaptic neuron it is a post-
compensatory rule. These rules normalise the weights keeping total synaptic weight
stable, so they support homeostasis. Learning in section 5 uses pre and post-
compensatory Hebbian rules.

3 Bump Attractors

Simulations in this paper use bump attractors consisting of neurons with excitatory
synapses to adjacent neurons and inhibitory synapses to neurons beyond those
that are excited. For representing continuous linear values, such as temperature,
distance in this topology is linear, so that a neuron has excitatory synapses to two
neurons on either side, and inhibitory synapses to four beyond those.

The neuron model is a leaky integrate and fire model. It follows Fourcaud-
Trocmé et al. (2003) and is described more fully in Appendix A. An exploration of
parameter values shows the behaviour of these bump attractors (see Appenix B).
When there is an appropriate balance between excitation and inhibition, a small
number of neurons fire persistently indefinitely. When there is too much excitatory
strength, the activation spreads throughout the attractor and all neurons fire per-
sistently. Insufficient excitatory or too much inhibitory strength does not support
persistent firing.

This is standard bump attractor behaviour, but these attractors can also sup-
port multiple bumps firing simultaneously. Appendices B.1 and B.2 show the emer-
gence of multiple bumps. In particular, these occur when a large number of inputs
are sent to the bump attractor.
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Fig. 2 A rastergram of a single bump (A), voltage signature of that bump (B), rastergram
of two adjacent bumps (C), and the voltage signature of adjacent bumps(D). (A) shows that
a small number of inputs leads to a single bump, while (C) shows that with a larger number
of adjacent inputs two bumps emerge. The voltage signature in (B) shows the spiking neurons
are osciallating between high and low voltage, while those on the edge are stimulated, but do
not fire, and those further out have low voltage. (D) shows a similar effect to (B), but the
neurons in between the bumps have a particularly low voltage.

An example of multiple emerging bumps is shown in figure 2. Figure 2A and 2B
represent three neurons being sent initial spikes from outside the system to ignite
the stable bump. The number of neurons that fire persistently remains largely the
same as more neurons are initially spiked until 14 neurons are sent initial spikes.
When 14 neurons are initially spiked, two bumps are generated. This behaviour
is represented by figure 2C and 2D. Note how the initial neurons are not the only
ones in the bump. The bumps have repelled each other and moved to include new
neurons not initially stimulated.
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4 Bump Attractor Repeller Dynamics

When bumps are at a distance, they do not influence each other, but when nearby
they repel each other. From a cognitive standpoint, multiple bumps should be
replaced with one so that only one value of the concept is active. Multiple bumps
can be replaced by merging, and merging two bumps that arise from presenting
a broad input to the stable bump can be broken into two subproblems: the first
is overcoming the repeller effect around the two bumps (see Appendix C). This
has been solved using a rather extreme topology with quite heavy excitatory and
inhibitory weights. The second and easier problem, at least for these simulations,
is moving distant bumps toward each other (Appendix C.1). Finally, once these
two problems are addressed, they need to be combined into a single subnetwork.

A complete topology to move two bumps into one combines the initial bump
attractor, the Merge subnet, to bring distant bumps close to each other, and the
Overcome subnet, to replace the two adjacent bumps with one. The initial range
of neurons fire, based on the input. If the range is long enough, two bumps of
neurons on either end of the range fire persistently. The Merge subnet is activated,
and causes the two bumps to move together. Once together, the merge subnet
cannot overcome the inhibition from the bumps that are repelling each other, but
the Overcome subnet fires, causing the two bumps to move into one stable state.
As both the Overcome and Merge subnets require two bumps in the bump attractor
to fire, none of their neurons fire, and the attractor is stable.

This is shown in figure 3. There is no spiking in either the Merge or Overcome

subnet once the bumps are merged. Figure 3D shows the voltage of the Bump

subnet. Initially, it follows the change of firing from the merge mechanism; once
the bumps are adjacent, the repelling force of the two bumps is overcome by the
Overcome subnet, and the resulting bump is stable. As in all simulations described
in this paper, this happens in parallel, with all neurons updating each cycle.

5 Associative Memory

The bump attractor, and attendant Merge and Overcome subnets can be used to
represent continuous values, and these can be used in an associative memory. An
example is an associative memory for the temperatures of beverages, and the gross
topology of the spiking network that implements this memory is shown in figure
4. There are two beverages, Coffee and Coke, and three temperature values Hot,
Warm and Cold. These are all represented by binary CAs.

The Input Temperature subnet is a bump attractor, and the Inhibition subnet
is used to reduce the possibility of both beverage temperature subnets becoming
active.

The basic temperature associations are described in table 1. The temperatures
and associated labels seem about right to the authors, and include a variety of
ranges, which is good for expository purposes.

The idea is a two of three (2/3) associative memory. If two of the concepts are
firing, they should ignite the third. Appendix D.1 describes a simple version of this
system. The beverage temperature subnets have no internal connectivity, and the
network shows largely the expected results for the 18 basic inputs. For instance,
an input temperature of 36◦-38◦ and Coffee causes the Warm CA to ignite and fire
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Fig. 3 Results from the full merging network, initially spiking neurons 70 through 99. All
neurons below 60 behave identically. A rastergram of spiking behaviour for the Merge subnet-
work (A), rastergram of spiking behaviour for the Overcome subnetwork (B), rastergram of
spiking behaviour for the Bump Attractor subnetwork (C), and the voltage signature of the
Bump Attractor (B). The merge and bump subnets’ rastergrams show the initial two bumps,
and them moving towards each other. Once close enough, (B) shows the Overcome subnet
spiking, causing the two bumps in to merge. There is no subsequent firing in either Merge or
Overcome subnets.

persistently. In this case, the Input Temperature and Coffee CA cause the associated
Coffee Temperature neurons to fire, which in turn leads to the ignition of Warm.

However, this shows the problem of multiple bumps. When two semantic inputs
are presented, for example, Hot and Coffee, the full temperature range is activated.
As there is no internal connectivity in the Coffee Temperature subnet, they all fire
persistently, but at a low rate. Making the beverage temperature subnets bump
attractors leads to two bumps forming and persisting.
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Fig. 4 Hot Coffee Gross Topology. Ovals represent binary CAs of 10 neurons that represent
simple versions of semantic concepts. Boxes represent a large group of neurons. The Input
Temperature is a bump attractor. The Coffee Temperature and Coke Temperature have no
internal connectivity in the simulations of appendix D.1, but are bump attractors in appendices
D.2 and D.3. Arrows represent synapses between the neurons in different boxes and ovals.

Semantic Pair Temperature Final Value Time to Learned
Range Converge Result

Cold Coffee 0-24 10-14 1080 ms 10-14
Warm Coffee 25-69 45-49 7040 ms 47-51
Hot Coffee 70-99 82-87 463 ms 81-86
Cold Coke 0-9 2-7 90 ms (one bump) 2-6
Warm Coke 10-24 14-19 100 ms 10-14
Hot Coke 25-99 60-64 13920 ms 61-65

Table 1 Semantic Pair Input and Temperature Output. Time to converge refers to the time for
the system with static synapses to converge. Note how larger ranges take significantly longer.
The learned results column refers to plastic synapses learned from randomly distributed input.

Appendix D.2 describes the full associative memory with static synapses. The
beverage temperatures each have a bump attractor and the attendant Merge and
Overcome subnets. All results are correct, and the time to converge to a correct
answer is shown in table 1. Note how wider temperature ranges take longer to
converge, in the case of Hot Coke a cognitively implausible time of almost 14
seconds.

Fortunately learning the associations can lead to a solution that answers in
a psychologically plausible time. Appendix D.3 describes the Hebbian learning
mechanism used and several presentation regimes. When random temperatures
for each associative pair are presented during training, the system learns all pairs,
as shown in the final column of table 1. All answers converge in under 300 ms,
which is a cognitively plausible time.
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6 Discussion and Conclusion

This paper has focused on a particular stable bump attractor, and extending an
associative memory topology around it to account for associating two binary con-
cepts and one continuous concept. If two of three associated concepts are presented
to the network, the third is retrieved. When a large range is presented to a bump
attractor, as in the case when the temperature range associated with two semantic
values is large, extra neural topology causes the two bumps to merge into one, with
those neurons firing in a self-sustaining persistent manner. As the retrieval time
is relatively brief, this could easily be used in a neural cognitive model.

This basic attractor network should be readily extendible to different local
connectivity, different neural models and different time steps. Moreover, the over-
all associative memory will be generalisable. For instance, during development of
the system while trying to resolve the merge problem, a 1-10 attractor was devel-
oped; unlike the seven neuron bump that emerged from the 2-4 topology, the 1-10
topology had an 11 neuron bump. In general, larger basins have larger bumps.

The particular associative network could be readily extended to more bever-
ages. One could add, for instance, tea, hot chocolate, and orange juice by simply
adding three sets of temperature attractors, the three semantic concepts, and the
relationships. Perhaps more interesting and neuropsychologically plausible is the
use of hierarchy in the concept structure. The authors earlier work on associa-
tive memory (Huyck and Ji, 2018) made use of hierarchical relations. In this case,
there could be higher level categories, like fruit drinks, that had default values,
that could later be refined. It should also be noted that association in these simu-
lations have been done by synaptic connectivity; an independent concept is linked
to two others by excitatory synapses; in the brain, particularly salient associations
might also be CAs.

Similarly, other continuously valued concepts like time, weight and height could
be used. Another reasonable extension would to combine two continuous attrac-
tors with binary semantic categories. For instance, one might combine weight and
height to determine when someone is skinny or chubby. Interestingly, this might
also apply in vowel recognition in the auditory cortex (Peterson and Barney, 1952)
with the primary and secondary formants producing the vowel.

The authors’ prior work with stable bump attractors (Nadh and Huyck, 2010)
shows that they can readily be extended from the one dimensional attractors
discussed above to two dimensions, and they can be further extended to higher
dimensions. The bump attractors here represent a large number of simple CAs.
These CAs can act as short term memories when firing, but CAs should do some
sort of calculation, and once stable these do no calculation (Tetzlaff et al., 2015).
However, the composite associations are also CAs, so Hot Coffee and 82◦ is a CA
composed of three other CAs. When the full hot coffee network is presented with
the semantic terms Hot and Coffee, the merge topology does the initial calculation
of completing the association, but then does a calculation to convert the broad
temperature range to a single coffee temperature CA. That is a relatively complex
calculation, though once in that state the CA does no further calculation.

The literature about bump attractors and WTA functionality also investigates
the thermodynamics of the network (see for example (Tkačik et al., 2015; Hahn
et al., 2017; Pena et al., 2018)). Using the framework of dynamical system the-
ory and related concepts (Meiss, 2007), this work could be extended by focusing
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on properties of attractors and repellers, stability and instability of the bumps,
dynamics of pattern formation, and forking behaviour as bifurcation phenomena.

Attention should be drawn to weaknesses in the simulations. The first is that
the underlying CAs (the binary CA, the bump CA, and the associative CAs) do
not make good models of short term memory because they persist indefinitely.
The authors are currently working on improving the basic CA model including
neural models with adaptation and synaptic models using short term plasticity.
A second weakness is learning. As bump attractors are found in the brain, they
must be learnable, but it is not clear how the merge and overcome topologies
could be learned; they could be thought of as a proof of concept. A third weakness
is the lack of calculation after stability in the associative memory; a reasonable
associative memory should spread activation, dynamically priming and moving to
new concepts over time.

A note should be made about the terms winner take all networks and bump
attractors. It seems the literature often equates the two, but as commonly used,
winner take all refers to a single winner amongst multiple competitors. Take for
instance the winner in a British Parliamentary election; there may be many com-
petitors, but the one with the most votes wins. This is not what is being modelled
in our bump attractor. If several neurons in different areas were given different
stimulation, the one with the largest would not typically win.

The simulations in this paper have centred on stable bumps to represent large
valued properties, beverage temperatures in particular. These have been included
as components in associative memories, leading to an, as far as the authors are
aware, novel problem of large valued inputs to the bump. While bump attractors
are a common and long standing model, these large valued inputs force a reduction
in the number of inhibitory connections so that the bump can have a small number
of persistently firing neurons. These models are not good neuron for neuron models
of the biological hot coffee representation. However, the point neural models are
commonly used, albeit simple, models of biological neurons. Similarly, the topolo-
gies are relatively sparse, so that they could reasonably be subsets of the actual
biological topology. However, by using the combination of simple bump attractors
for the linear phenomenon with binary cell assemblies for semantic primitives, the
new issue of broad input to the bump has been raised. It is hoped that this will in-
form future work that moves beyond these relatively simple neural network models
and topologies to more biologically and psychologically informative models.

Developing simulations of simple neural circuits furthers understanding of their
behaviour, as is the case with persistent bump attractors. These can be combined
with other simple circuits to further understanding of more complex behaviour,
such as associative memory. Hopefully, this will lead to a deeper understanding of
more complex circuits, such as CAs, and eventually to the full brain.

Finally, the paper (and associated code1) should provide topologies, and an
underlying theory for new topologies for improved associative memories in, for
example, neural agents.

1 Code can be found at http://www.cwa.mdx.ac.uk/NEAL/wta.html and at
http://modeldb.yale.edu/266507.
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Appendix A Neural and Synaptic Models

The biophysical neuron model used in the simulations described in this paper is
a leaky integrate and fire model with a fixed threshold. Synaptic conductance is
transmitted at a decaying-exponential rate from the pre to post-synaptic neurons
(Gerstner et al., 2014). The simulations are coded in PyNN (Davison et al., 2007)
to specify the topology, flow of inputs, and recording. The neurons themselves are
simulated using NEST (Gewaltig and Diesmann, 2007).

The model used in this paper follows Fourcaud-Trocmé et al. (2003) (but also
see (Richardson and Gerstner, 2003)). The activation is the current voltage VM .
Equation 1 describes the change in voltage; VM is the membrane potential and
CM is the membrane capacity. The four currents are the leak current, the currents
from excitatory and inhibitory synapses, and the input current (from some external
source). The variable currents are governed by equations 2, 3 and 4. In equations
2 and 3 ErevEx and ErevIn are the reversal potentials; excitation (and inhibition)
changes slow as the voltage approaches these reversal potentials. In equation 4,
Vrest is the resting potential of the neuron, and τM is the leak constant.

dVM
dt

=
(−ILeak − IsynEx − IsynIn + IExt)

CM
(1)

IsynExc = GEx × (VM − ErevEx ) (2)

IsynInh = GIn × (VM − ErevIn ) (3)

ILeak =
CM (VM − Vrest)

τM
(4)

GEx(t) = kEx × t× e
− t

τ
syn
Ex (5)

GIn(t) = kIn × t× e
− t

τ
syn
In (6)

In equations 5 and 6, GEx and GIn are the conductance in mS/cm2 to scale the
post-synaptic potential amplitudes used in equation 2, and 3. t is the time step.
The constant kEx and kIn are chosen so that GEx(τsynEx ) = 1 and GIn(τsynIn ) = 1.
The τsynEx and the τsynIn are the decay rate of excitatory and inhibitory synaptic
current.

When the voltage reaches the threshold, there is a spike and the voltage is reset.
No current is transferred during the refractory period τrefract. In these simulations
vthresh = −48.0mV, τrefract = 2.0 ms. The time step t is 1ms. CM = 1.0nF,
vreset = −70.0mV, vrest = −65.0mV, ErevEx = 0.0mV, ErevIn = −70mV, τsynEx =
5.0ms, τsynIn = 5.0ms and τM = 20.0ms. The particular parameters vthresh,τrefract,
and t, were selected as the authors have used them for prior simulations; they are
the parameters used in the binary CAs for the semantic portion of the associative
memory2. The remaining parameters are default values.

2 Note that the model expressed in equation 1 about the exponential integrate-and-fire neu-
ron is a particular case of the AdEx model by removing the adaptation current (w) (Gerstner
and Brette, 2009).
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Appendix B The Winner Take All (WTA) Model: Stationary Bumps

This paper describes work on a linear WTA model, instead of a planar model or
hyper-planar model. A line of neurons is connected with local excitatory synapses,
and a surround of inhibitory synapses. (If the first and last neurons are also adja-
cent, it is a ring attractor.) There are many synaptic matrices that lead to persis-
tent behaviour once the initial neurons are stimulated (see section B.2). What is
needed is sufficient local synaptic excitatory strength to allow the neurons within
the winning group to fire persistently. This needs to be balanced with sufficient
inhibitory synaptic strength to prevent spread beyond the initial group.

One example is a network with each neuron having excitatory synapses to the
nearest two neurons on both sides (distance(d)d <= 2) and inhibitory synapses to
the next nearest 4 neurons on both sides (3 <= d <= 6). This is called a 2-4 bump
attractor in this paper. The model is implemented in a neural network with 100
spiking neurons. This is also called a stationary bump (Laing et al., 2001), or a
bump attractor. In the associative memory, the bump attractor approximates the
continuous value activation of a temperature scale in which every neuron represents
a single degree from 0◦ to 99◦ C.

This paper explores a range of parameters instead of developing a mathemat-
ical model. Mathematical models of bump attractors usually take advantage of
simplifications, such as firing rates (e.g. (Carroll et al., 2014)), or they take advan-
tage of statistical mechanics (e.g. (Tkačik et al., 2015)). Unfortunately, statistical
mechanical analysis of bump attractors usually makes use of a large number of
probabilistic neurons. Here we are using a relatively small number of deterministic
neurons.

B.1 Persistent Bumps, Divergent Bumps, and Multiple Bumps

The behaviour of the 2-4 bump attractor varies based on the weight of the exci-
tatory and inhibitory synapses. Table 2 describes the behaviour of this network
as the inhibitory and excitatory synaptic weights vary in steps of .01 µS (mi-
crosiemens). In the Table, D means firing spreads, diverging so all of the neurons
fire persistently, and a number reflects how many bumps are firing persistently
after 1000ms. One means that all of the neurons that are firing persistently are
adjacent to each other; they are one bump.

In the top part of the table, three adjacent neurons are forced to spike, rep-
resenting input from the environment. Three neurons are chosen as it is typically
thought that several neurons are needed to cause another to spike (Churchland
and Sejnowski, 1999), so this is the minimum input needed to (ignite) start a CA
persistently firing. After the initial stimulation, each simulation is run for 1000ms.
The value in the cells of the Table is the number of neurons that are firing at the
end of the simulation.

In the first row of Table 2, there is insufficient excitatory synaptic strength
to enable the neurons to continue to fire each other. In the excitatory 0.06 row,
there is enough spread of activation to enable the neurons to fire persistently. In
the first columns (e.g. cell .06 -.02) there is insufficient inhibition to prevent the
neural activation spreading, and all of the neurons fire. On the right however (e.g.
cell .08 -.09), a small reverberating population fires throughout the simulation.
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This shows that persistent stable firing occurs after three adjacent neurons
are spiked. This persistent spiking is similar to the behaviour of a binary CA.
However, when a larger range of neurons are initially spiked (as may be the case
in an associative memory), there is further interesting behaviour.

The bottom part of the Table 2 refers to 75 neurons being initially spiked. As
in the top portion, some excitatory inhibitory weight pairs lead to no persistence,
and some lead to all of the neurons firing.

In the bottom half of the Table, those with one in the cell have more than
75 neurons persistently firing, but not all 100. Most of the table cells show two
bumps firing. These two bumps are always on the edge. The edge neurons inhibit
the interior neurons, as do the interior neurons themselves so that they do not
fire a second time. The edge neurons have fewer incoming inhibitory connections,
so they can persistently fire. After the initial burst, the interior neurons do not
fire, the two bumps do not influence each other, and they fire persistently as if
they were ignited by two individual sets of inputs. It is also interesting to note
that several of these cells have more than two bumps; this Table shows four, six
and seven bumps. Again these bumps are all quite thin, with approximately seven
persistently firing neurons, and they have a relatively small number of non-firing
neurons in between them.

3 Input
-0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10

0.05 0 0 0 0 0 0 0 0
0.06 D 1 1 1 1 1 1 1
0.07 D D 1 1 1 1 1 1
0.08 D D D D 1 1 1 1
0.09 D D D D D 1 1 1
0.10 D D D D D 1 1 1

75 Input
0.05 1 2 2 2 2 0 0 0
0.06 D 1 4 2 2 2 2 2
0.07 D D 1 7 2 2 2 2
0.08 D D D D 7 2 2 2
0.09 D D D D D 6 2 2
0.10 D D D D D D D 4

Table 2 Table of persistently firing bumps of neurons for a 2-4 stable bump topology. The
top refers to input of three adjacent neurons, and the bottom to an input of 75 contiguous
neurons. The value in the cell represents the number of persistent bumps; D (divergent) refers
to all of the neurons persistently firing.

Note that it is possible to have local excitation with inhibition to all other
neurons. When there are a small number of inputs, this performs largely the same
as, for instance, a 2-4 stationary bump. However, with a larger number of inputs,
say 75, the inhibition from the initial firing prevents all the neurons from firing. In
Table 2, the 75 input cells would all be 0. Let us call this topology with inhibition
to all other neurons a 2-n topology. It is possible to set the synaptic weights so
that a 2-n topology leads to persistent firing from 75 inputs, but the width of the
bump would be very large. For instance, a 2-n topology with 0.08 excitation and
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0.005 inhibition has a persistent bump 68 neurons wide when 75 neurons initially
spiked, and 56 neurons wide when 3 neurons are initially spiked.

B.2 Exploring Input Variation

The stationary bump attractor’s spiking behaviour differs as the excitatory and
inhibitory weights vary. They also vary as the number of initial neurons spiked
changes.

The number of input sources were varied from 1 to 40, while the synaptic
weights were also varied, from 0.05 to 0.10 (step 0.01). All the simulations run in
NEST (Gewaltig and Diesmann, 2007)3.

-0.05 -0.06 -0.07 -0.08 -0.09 -0.1
0.05 4 4 4 4* 4* /
0.06 2 2 2 2 2 2
0.07 2 2 2 2 2 2
0.08 2(D) 2(D) 2 2 2 2
0.09 2(D) 2(D) 2(D) 2 2 2
0.1 1(D) 1(D) 1(D) 1 1 1

Table 3 Minimal number of spikes sources to ignite the 2-4 bump-attractor network. The “/”
means absence of any spikes, the ∗ means firing without persistence and (D) means diverging
behaviour.

Table 3 shows the number of inputs needed to support ignition of the bump
attractor network. The ignition of the bump attractor network depends on both
the number of inputs and the specific weight combination. In most cases, only
two spike sources are needed to ignite the network, but there are cases where
four sources are needed or only one. It is important to note that there are some
cases where there is ignition, without continued persistence (represented by a *
in the Table); for example 0.05 - 0.08 only fires until 88 ms. There are also cases
in which the bump ignites but with divergence, those in the lower left triangle of
Table 3 indicated with (D). Like Table 2, Table 3 confirms that there needs to
be sufficient excitatory strength to support persistence, and sufficient excitatory
strength to overcome inhibitory strength. Similarly, too much excitatory strength
in relation to inhibition leads to divergence. When there is less excitatory strength,
more input sources can support ignition, as shown when excitation is 0.05, and
fewer sources are needed for more excitation, as shown when excitation is 0.1.

The splitting behaviours are presented in Tables 4 and 5. Table 4 shows the
smallest number of sources needed for two bumps to emerge. It also shows when
there is diverging behaviour indicated with the letter D. Again, Table 4 shows
that even as the number of sources increases, the stable, non divergent bumps are
focused around a balance between excitation and inhibition. When there is less
inhibition (toward the left of the Table), more sources are required for splitting to
emerge.

3 The same exploration procedure has been done with SpiNNaker (Furber et al., 2013)
neuromorphic hardware (see (Vergani and Huyck, 2020))
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-0.05 -0.06 -0.07 -0.08 -0.09 -0.1
0.05 13 12 11 / / /
0.06 14 13 13 12 11 11
0.07 17 14 13 13 12 12
0.08 D D 17 14 13 12
0.09 D D D 15 14 13
0.1 D D D D D 14

Table 4 Number of inputs that determine the splitting behaviour into 2 bumps of the 2-4
bump attractor network. D means divergent behaviour, the “/” means no persistent firing.

Table 5 shows a special subset of weight combinations in which three and four
bumps emerge. They are the subset belonging to the central diagonal in Table 5
where excitatory weights are one step (0.01) greater than inhibitory, except the
case with 0.1-0.1 has equal weights.

E-I Weights 3S 4S
0.06-0.05 24 36
0.07-0.06 24 37
0.08-0.07 26 40
0.09-0.08 23 37
0.10-0.10 25 38

Table 5 Combination of excitatory E and inhibitory I weights that determine the splitting
behaviour with 3 bumps or 4 bumps of the 2-4 bump attractor network.

This section has shown parameter sweeps over a 2-4 bump attractor, with
a particular leaky integrate and fire model, a particular synaptic transmission
model, and particular neural parameters. The same parameters are unlikely to
work with different models or even different neural parameters. While the same
weight and number of input parameters are unlikely to work on different variants,
the general idea of balancing excitatory and inhibitory weight will. Moreover, it
will generalise to different sized bump attractors, for instance a bump attractor
with excitatory synapses at a distance of three, and inhibitory synapses eight
beyond, a 3-8 attractor.

The emergence of multiple bumps is caused by similar, and, in the case of this
section, equal inputs to a large contiguous range of the bump attractor. Bumps
may influence each other.

Appendix C Replacing Two Bumps with One

The bump attractor is both an attractor and a repeller. Adjacent neurons support
each making a local attractor, but adjacent bumps repel each other. A rastergram
is insufficient to show this, but figure 2 (in section ??) includes the voltage and
rastergram of a single bump, and of two bumps that are near to each other.

With a single bump, note that the neurons in the centre of the bump spike
more frequently than those on the outside (figure 2A). However, the rastergram
does not show the effect on non-spiking neurons. The voltage diagrams (figures
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2B and 2D) show the voltage of the neurons at each step. The neurons adjacent
to the bump are excited but not to the firing threshold, and those beyond are
inhibited. Those in the bump are, of course, excited; their voltage changes from
the reset voltage −70mV toward the firing threshold −48mV . Those further away
are unaffected and remain at the base level of activation, −65mV as are all neurons
before the initial input.

The inhibition in the neurons between the bumps is quite high even when
compared with the inhibition on the neurons on the outside of the bump. So,
what is needed is a burst of excitation into those central neurons with inhibition
to the outside, but only in the case where the two bumps are quite close together.

The inhibition can be overcome and the two bumps replaced by one using an
extra set of neurons that only fires when two nearby bumps are firing. There are the
same number of neurons in the new Overcome population as in the original stable
bump population, and they are aligned. The neurons in the Overcome population
get excitatory input from the corresponding neurons below in a small window (10
neurons on either side with a weight of 0.0013). Where the two windows overlap,
the neurons fire. If only one bump is firing in the subnet, or if the bumps are quite
distant, no neurons in the Overcome subnet fire.

When the Overcome neurons fire they send excitation to the Bump neurons
directly below, and inhibition more distantly. In this case, the Overcome neurons
excite in a window of three about themselves (with a weight of 0.0013), and inhibit
the next eight (with a weight of -0.4). This is quite similar to a bump topology
with three excitatory and eight inhibitory synapses, a 3-8 bump attractor.

The result of this is that the interior neurons fire, and then remain persistently
firing. Figure 5 shows this. The bottom figures (C and D) are the raster and voltage
plots of the bump attractor. Note that the initial firing behaviour leads to a split
into two bumps in figure 5C. Voltage slowly builds in the appropriate neurons in
the Overcome subnetwork 5B, causing a single set of neural firing that shifts the
behaviour in the stable bump attractor.

C.1 Merging Bumps

When the temperature range is quite large, the two initial bumps do not influence
each other. For example, in Table 2 when there are 75 inputs (from neurons 25 to
99), the bumps are from neurons 25 to 31 and 92 to 98.

As there is no theoretical limit to the range of a continuous value for a specific
semantic category, the 3-8 bump attractor approach, or indeed any X-Y bump
attractor including all to all inhibition, will not work; larger bump attractors can
account for larger ranges of inputs, but the bumps themselves also get larger.
This can however be solved by an additional inhibitory topology increasing with
distance, activated by the two firing bumps.

As in the overcome case, there is an extra population of neurons of the same
size, which is called the Merge subnet. It is important that these neurons do not
fire unless there are two bumps firing, so each of the Bump neurons has a small
excitatory connection to each of the merge neurons (weight 0.0006). There are also
direct one to one excitatory synapses (weight 0.01) from the Bump subnet to the
Merge subnet so that the neurons associated with the bumps fire; so, these subnets
are also aligned.
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Fig. 5 Results from the Overcome topology initially spiking neurons 10 through 23. A raster-
gram of the inhibitory subnetwork for the Overcome simulation(A), voltage signature of the
inhibitory subnetwork for Overcome (B), rastergram of the bump subnetwork for Overcome
(C), and voltage signature of the bump subnetwork for Overcome(D). This shows an initial
input that splits into two bumps. Neurons in the inhibtory subnetwork fire, causing the bumps
to merge.
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Inhibitory synapses from the Merge neurons to the Bump neurons are distance
biased with more distant neurons being more inhibited (weight = (1.02δ) ∗ 0.04
where δ is distance). Thus the outside neuron of the neurons in the opposing
bump is more inhibited than the inside neuron, and this, metaphorically, pushes
the bumps together. There are no synapses to nearby neurons (range of 15).

There is a difficulty that as the distance increases, the inhibitory strength
becomes too large and the bumps stop each other. The inhibition described in this
paper, increases exponentially with distance (with a base of 1.02). It is sufficient
to cope with 75 neuron input, but will not work with much larger differences.

Figure 6 shows the behaviour of this system. Figure 6A shows the spiking
behaviour of the inhibitory Merge subnet. Its firing is sparser than the bump
attractor 6C, but follows it. Note that once the inside edge of the bump stops
being inhibited, because it is near enough to have no more inhibitory synapses, it
quickly moves because the inside is not inhibited, but the outside is. Also note that
the voltage in the Merge subnet is high throughout the run after initial stimulation
in figure 6B. This is below firing threshold, but is due to the all to all synapses.

This then moves the two bumps toward each other. It does not however push
them together due to them repelling each other. Fortunately, this extra merge
topology is compatible with the overcome topology. An example of the full bump
merging topology, combining a bump, a Merge subnet, and an Overcome subnet, is
shown in section 4 in figure 3.

Note that this topology has some stability across varying bumps. Changing the
bump weights from .08 excitatory and -.08 inhibitory, to .09 -.09 does require a
change, but it is only the inhibitory weight in the Merge subnet from -0.4 to -0.32.
Similarly, changing the bump weights to .07 -.07 requires the inhibitory Merge

weight to -0.29. With lower weights (e.g. -0.4) , pairs of bumps from the larger
ranges are extinguished, and with higher weights, the larger ranges do not merge
sufficiently close. It is not a linear relation (both greater and smaller bump weights
require less inhibition) as the excitatory inhibitory balance is not an entirely linear
relation.

Appendix D Associative Memory

Appendix D.1 introduces an associative memory with an input bump attractor.
The goal of the system is to produce the correct associated output from two inputs.
A refined system using bump attractors for each beverage, with the additional
merge and overcome subnets (appendix D.2) shows the problem of broad input in
context, and shows a solution to this problem. Finally, Hebbian learning is used
to learn the associations (appendix D.3), which leads to more efficient runtime
retrieval with psychologically plausible retrieval times.

D.1 The Hot Coffee Network: An Associative Memory Example

The basic simulation that has driven the development of this paper is an associative
memory of beverages with a semantic value for temperature, and an underlying
temperature in celsius.
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Fig. 6 Results from the Merging topology initially spiking neurons 70 through 99. A raster-
gram of spiking behaviour for the inhibitory subnetwork (A), voltage signature of the inhibitory
subnetwork (B), rastergram of spiking behaviour for the bump attractor subnetwork (C), and
voltage signature of the bump attractor (D). This shows how the networks collectively move
the bumps towards each other.

The gross topology of the network is shown in figure 4 in section 5. The input
temperature from the environment is represented by a stable bump subnetwork of
100 neurons. The topology used in the remainder of the paper is a 2-4 topology
with excitatory connections from a given neuron to the two adjacent neurons on
either side, then four inhibitory neurons beyond. The weights are .08 excitatory
and -.08 inhibitory. This represents the temperature values between 0 and 99.

There are also neurons that represent the temperature of the individual bev-
erages. These subnetworks are used in the associations. The 10 neurons in the
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Inhibition subnetwork take input from the beverage temperature neurons, and in
return inhibit them; each beverage neuron synapses to each inhibitory neuron
with a weight of 0.04, and in return receives an inhibitory synapse with a weight
of 0.016. The neurons in the Inhibition subnet synapse to two adjoining neurons
with a weight of .03 providing extra inhibition via increased firing. The inhibition
prevents the spread of activation from one beverage to another. For instance, if
the input temperature is 75-77◦, and Coke is queried, the associated neurons in the
Coke Temperature subnet will spike, igniting Hot; now that the Input Temperature

and Hot are firing, they ignite Coffee Temperature, which would then ignite Coffee

without the Inhibition subnet.
The arrows represent several synapses from a given set of neurons to another set

to support associations. Each Input Temperature neuron excites its associated Coffee

Temperature neuron weight of 0.01. As these neurons are meant to associate CAs,
in themselves, they are insufficient to cause neurons in another CA to fire; each
beverage temperature stimulates the eight excitatory beverage semantic neurons
and the appropriate temperature semantic neurons with a weight of 0.025.

Each of the eight semantic excitatory beverage neurons excites each associated
temperature beverage neuron with a weight of 0.0015, and the semantic tempera-
ture neurons excite their beverage temperature neurons with a weight of 0.001.

Synapses inside simple CAs are not represented in the figure. Being binary
CAs, the neurons in the semantic CAs have internal synapses as does the bump
attractor Input Temperature subnet.

The individual CAs can be ignited by external stimulation. When this happens
they all persist, and do not cause any other CAs to fire. There are the five semantic
binary CAs and the Input Temperature bump CAs.

There are two types of atypical case to mention. The first case is the activation
of a low input temperature (< 10◦) along with Cold or a high input temperature
(≥ 70◦) with Hot. In this case, both beverages are activated, which is of course the
correct result.

The second is the activation of two semantic CAs, for example, Hot and Coffee.
Here the full range of beverage temperature neurons fire, but they fire at a low
rate. In this case, the Coffee Temperature neurons from 70-99 fire. While this topol-
ogy, using weakly connected beverage temperature neurons, in a sense solves the
problem, a better result might be the prototypical beverage temperature neurons
firing persistently. For instance, for Hot and Coffee, the neurons around 85◦ might
fire. This would lead to actual retrieval when the semantic neurons are turned off,
as the bump attractor neurons would continue to fire.

An obvious modification is to replace the beverage temperature subnets, which
have no internal connections, with bump attractors. However, a straight forward
switch elicits a flaw. If for example Hot Coffee is stimulated, all 30 neurons (70-99◦)
fire, but the stable state that the Coffee Temperature subnetwork settles into is two
bumps of neurons, one from 70◦ and one to 99◦, firing persistently with those in
between silent. This is similar to the two bumps of Tables 2 and 4.

D.2 Full Hot Coffee Network

While it seems reasonable for the full range of temperature neurons to fire due to
direct semantic information, it is somewhat inconsistent with the firing behaviour
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from direct temperature input. Moreover, the firing in the beverage temperature
subnet is not persistent on its own. A better result would be to have prototypical
or average temperatures fire persistently. So, in the case of Hot Coffee semantic
input, the neurons that represent coffee at 81◦ to 88◦ might fire persistently.

Making the beverage temperature subnets bump attractors enables persistent
activity. However, with large input ranges, there are two bumps of activity at the
ends of the range. For example, in the Hot Coffee case, neurons 70◦ to 74◦ and 95◦

to 99◦ fire persistently. This is the problem that was solved in section 4.
The associative memory topology is modified to include the extra Merge and

Overcome subnets. The full hot coffee network is still described by figure 4, but the
Coffee Temperature and Coke Temperature boxes are now three populations each, a
stable bump attractor, a parallel Merge subnet, and a parallel Overcome subnet; so
the beverage temperatures are now each represented by 300 neurons. Note that the
dynamics of these three subnets in isolation differ from those in the full topology
because of the Inhibition subnetwork in the full topology; the neurons in the bump
attractors fire at a lower rate. Extra excitatory (weight 0.002 from 0.0013) and
inhibitory strength (weight -0.5 from -0.4) are needed in the Overcome subnetwork
as the stable bump is firing at a lower rate due to the effect of the Inhibition

subnetwork.
Now, as in section D.1, the basic one semantic feature and one temperature

input work properly, and quickly. For instance, temperature input of 85◦ to 87◦

and the semantic value Coffee, turns on the semantic value Hot within 300 ms.
The ambiguous inputs (the semantic value Cold with a temperature below 10◦,
and the semantic value Hot with a temperature above 70◦) turn on both semantic
beverages.

The additional merging topology now causes the double semantic input queries
to generate the appropriate temperature outputs. Each of the six pairs (e.g. Cold

Coke, or Warm Coffee) produce a persistently firing output. Unlike the simple
topology it is self sustaining when the two semantic CAs stop firing. Table 1
shows the association temperature range and the output results. It also shows the
time to converge, noting how wider ranges take significantly longer to converge.
However, small ranges (like Cold Coke) converge almost immediately even when
they would break into two bumps (Warm Coke).

D.3 Associative Memory with Learning

The mammalian brain constantly learns, and one of the real benefits of spiking
neural systems is that they can be reasonable models of at least parts of mam-
malian brains, so it is important that these systems learn. Using Hebbian learning,
the subnetwork is presented triplets of inputs (semantic beverage, semantic tem-
perature, actual temperature), and the firing behaviour is stored. Compensatory
learning rules are Hebbian, and based on a Oja’s rule (Oja, 1982), where the synap-
tic weight WXY from neuron X to neuron Y is represented by equation 7; it is
the likelihood that the two neurons cofire when the presynaptic neuron X fires,
modified by a constant.

WXY = C ∗ coF ire(X,Y )

fire(X)
(7)
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So, if Y fires 80% of the time along with X and C = 1, the weight is 0.8. If C = 0.5,
WXY = 0.4. Cofiring requires a time window and for this work a 10ms window has
been used so that Y can fire in the same step as X or 10ms later to cofire. In a
compensatory rule, C is calculated based on the total synaptic weight entering a
neuron(a pre-compensatory rule), or leaving a neuron (post-compensatory). Thus
weights are distributed based on the cofiring behaviour of all attached neurons.

From this behaviour, new synaptic weights are calculated using a compensatory
Hebbian learning rule. Results are shown from learning based on presentation of
a single triple for each of the semantic pairings with one temperature (section
D.3.1). The full range of semantic pairings with all of their temperatures (section
D.3.2) is presented in one test and random inputs distributed about a centroid in
another.

D.3.1 One of Each Category

The first training mechanism presents the system with one of each category triplet.
The triplets were: Hot Coffee 80◦ to 82◦; Warm Coffee 40◦ to 42◦; Cold Coffee 15◦

to 17◦; Hot Coke 40◦ to 42◦; Warm Coke 15◦ to 17◦; and Cold Coke 4◦ to 6 ◦.
These were each presented for 300 ms., and firing was stopped via inhibition

between epochs. Firing behaviour is recorded and a compensatory Hebbian learn-
ing rule is applied. Weights from the semantic temperatures to the beverage bump
attractors are calculated using a post-compensatory rule, and weights from the
beverage bump attractors to the semantic temperatures are calculated using a
pre-compensatory rule (see section 2.4). The total target synaptic weight was 0.03
and 0.1 respectively.

After training, all 18 pairs (e.g. Cold and Coke, Coke and 4◦ to 6◦, and Cold and
4◦ to 6◦) are presented to the system as a test. In each case, the correct remaining
third member was retrieved, and no spurious elements were retrieved. Unlike the
tests from appendices D.1 and D.2, a low temperature and Cold only retrieves one
beverage, because the beverages are associated with different temperature inputs.
Indeed, many temperatures not presented during training are not associated at
all.

D.3.2 The Full Range of Inputs

Next, the full range of temperatures is presented with their appropriate semantic
temperatures and for both beverages. This included roughly 200 runs of the system,
with intervening inhibition to stop firing between epochs.

The Hebbian learning rule is applied leading to a system with correct results.
As in the simulations in section D.3.1, all the base double inputs lead to correct
results. The cold and hot temperatures with semantic Cold and Hot lead to both
beverages being retrieved.

Presenting Coke or Coffee with each temperature ignites the correct association,
though Warm is incorrectly activated along with Cold for 10◦ and 25◦ respectively.
Presentation of the semantic temperatures with each input temperature turns
on the correct association. When the temperature is low (e.g. 3◦) or high (e.g.
93◦), both Coke and Coffee come on when Cold or Hot is presented respectively.
Warm splits perfectly at 25◦. When input temperatures are presented where no
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Fig. 7 Rastergram of the Coffee Temperature Bump Attractor subnetwork (A) and the Coffee
Temperature Overcome subnetwork (B) from weights learned from presentation of tempera-
tures with gaussian distribution about a mean. Initial activation of a broad range of neurons
from the semantic pair leads to two streams that collapse into one when Overcome neurons
spike.

beverage is associated with a semantic temperature, generally no beverage comes
on. However, in the edge cases (e.g. Cold with 28◦) the beverage temperature range
expands (e.g. Coffee).

As a final test, random temperatures are presented during training. The same
number of input epochs is generated as the full range of temperatures, with the
same number for each semantic pair. The temperature presented is a Gaussian
distribution about a particular temperature. After learning, when the semantic
pair is presented, a bump attractor near the Gaussian centroid is retrieved. This
is a prototypicality effect.

A particularly interesting case is the presentation of the semantic temperature
and beverage (see the last column of table 1 for learned results). The interesting
part is that all of these results converge by 300 ms. This is within psychologically
realistic times. Decisions are made in this order of time, so this associative task
could be used in a cognitive model.

There is sufficient activation to cause the full range of neurons to fire, and
bumps form at both ends. However, there is sufficient firing in the bumps to cause
the associated Overcome subnetwork to fire. This is shown in figure 7. In this
presentation of Warm and Coffee, the full temperature range can be seen to fire,
7A. This causes the coffee Overcome subnetwork to fire, 7B.

The final figure (8) shows a run of the system for 1900 ms. without the 300
neurons for the coke temperature, which do not fire. The system is initially pre-
sented with Cold Coffee at 25 ms.; firing begins rapidly in the appropriate range of
the Coffee Temperature subnet, causing firing in the Coffee Merge and Coffee Over-

come subnets, which quickly leads to a single stream. The Inhibit subnet fires in
response. At 300 ms. the neurons are inhibited. Each subsequent input starts after
300 ms., so the next is at 325 ms. The second presentation is Coffee and 45-48◦,
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Fig. 8 Rastergram of the network run on five inputs. The 300 coke neurons are missing, though
don’t fire in this simulation. The first hundred neurons are Input Temperature; the next 50 are
the semantics with Coffee as 100-109, Coke 110-119, Cold 120-129, Warm 130-139, and Hot
140-149; Coffee Temperature is 150-249, Coffee Overcome is 250-349, Coffee Merge is 350-449,
and Inhibit is 450-459. There are five sets of input each followed by inhibition that shuts down
the system. The inputs start every 300 ms. starting at 25 ms. The first presentations are: Cold
Coffee; Coffee 45-48◦; Warm 45-48◦; Coffee 85-88◦; and finally Hot Coffee.

which answers Warm; the third presentation is Coffee and 45-48◦, which answers
Warm. Coffee and 85-88◦ is the fourth presentation, which answers Hot. Finally
Hot and Coffee are presented at 1425 ms. This is resolved by 1500 ms. at 84◦, but
it runs on here until 1800 ms. because it does not particularly look resolved as
there is ongoing firing in the inhibitory coffee subnets. It does however resolve,
exhibiting a fully functional hot coffee network. Thus the topology produces the
correct associated output from any two inputs.
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