
Feature Link Propagation Across Variability
Representations with Isabelle/HOL

Florian Kammüller, Alexander Rein, Mark-Oliver Reiser
Technische Universität Berlin

Fakultät IV - Softwaretechnik - TEL 12-3
Ernst-Reuter-Platz 7, D-10587 Berlin, Germany

ABSTRACT
When dealing with highly complex product lines it is usually
indispensable to somehow subdivide the overall product line
into several smaller, subordinate product lines and to define
orthogonal views on the line’s variability tailored to partic-
ular purposes, such as end-customer configuration. In this
article we report on an ongoing research effort for dealing
with feature links, i.e. logical constraints between features,
in such a setting, by propagating such logical constraints
defined in lower-level product lines to a higher level or from
one view to another.

1. INTRODUCTION
Product line engineering [CN02, PBvdL05] is still faced

with several significant challenges when it comes to dealing
with highly complex product ranges, as typically encoun-
tered in industrial domains. The product range of an au-
tomotive manufacturer, for example, incorporates a multi-
tude of subsystems provided by external suppliers, each with
its own variability organized in the suppliers’ product lines
with diverse scopes and target groups, turning the manu-
facturer’s product line into an aggregate of a multitude of
lower-level, subordinate product lines [RTW09]. But even
within a single company—manufacturer or supplier—often
several different views on variability are required, due to
distinct viewpoints of stakeholders and diverse life-cycles of
subcomponents or individual development projects.

The concept of configuration links [Rei09], resulting from
our earlier research on these issues, provides means to parti-
tion a complex product line into several smaller, subordinate
product lines and allows to introduce orthogonal, i.e. differ-
ently structured views on a product line’s variability. It is
centered around ordinary cardinality-based feature modeling
[CHE05]: subordinate product lines and orthogonal views
are each represented by a feature model; then, configuration
links are used to relate them.

A configuration link in this sense is a directed association
from n so-called source feature models to m other feature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLEASE ’10, May 2, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-968-8/10/05 ...$10.00.

FM src
//____________ FM trgt

CLFM src→FM trgt

CFM src
// CFM trgt

Figure 1: Relations defined by a configuration link.

models called target feature models, with n,m ∈ N0 ; m ≥ 1.
It defines how to configure the m target feature models, de-
pending on the configuration of the n source feature models
(for n = 0, it defines an invariant configuration of the tar-
get feature models). With the information captured in such
a configuration link, it is then possible to deduce configura-
tions of the target feature models whenever configurations of
the source feature models are provided. In the remainder of
this article we focus on the standard case of a single source
and target feature model each, illustrated in Figure 1. The
two feature models FM src and FM trgt are supplied with a
configuration link CLFM src→FM trgt (dashed arrow). Thus, it
is possible to derive a configuration CFM trgt of FM trgt from
any given configuration CFM src of FM src (solid arrow).

While the core concept of configuration links is thoroughly
consolidated and stable already, we are currently investigat-
ing several advanced topics associated with this approach.
In this article we report on our present research on deal-
ing with feature links in this context (i.e. logical dependen-
cies/constraints such as an “excludes” link between two in-
compatible features). We aim for providing techniques to
understand and manage how the addition of a novel feature
link to the target feature model affects the configuration of
the source feature model by automatically transforming the
target-side feature link, i.e. a feature link in FM trgt , into a
corresponding source-side feature link with the same effect,
a process we call feature link propagation. The work is based
on set theoretical formalizations and implementations in the
theorem prover Isabelle/HOL [NPW02].

For illustration purposes and to show its practical use,
we first introduce feature link propagation informally with
an example (Section 2) before providing a detailed, more
formal definition (Section 3). Then, Section 4 elaborates
on our current solution before Section 5 concludes with an
account of the current status and prospective challenges.

2. MOTIVATION & BASIC IDEA
As an example, consider a car product line’s core feature

model with a strong technical focus and a customer-oriented
feature model providing an orthogonal view on the technical
feature model tailored for immediate configuration by the
end-customer, as shown in Figure 2. A configuration link
from the customer-oriented to the technical feature model,
represented by the dashed arrow in the center, then allows
to derive a technical configuration from any given customer
configuration. For the purpose of this illustrative example
we assume a very simple configuration link definition: if the
Comfort package is selected in the customer feature model,
then the rain sensor will be selected in the technical feature
model; similarly, if source-side feature USA is selected, then
feature Radar will be selected on the target side, i.e. cars for
the U.S. market will always obtain a radar.

Now, let us see what happens if a new technical incom-
patibility arises, for example between features Radar and
RainSensor, represented in Figure 2 by the “excludes” link
between the two features in model TechnicalFM . When tak-
ing into account the definition of the configuration link, it
becomes obvious that this also affects the configuration of
the customer feature model: the comfort package—as rep-
resented by feature Comfort—must no longer be selected
together with feature USA, because this would result in the
selection of the incompatible features Radar and RainSensor

on the target side. Our new technical incompatibility makes
the entire comfort package unavailable to the U.S. market!

To make this implicit effect show up explicitly in the
customer-oriented feature model we would have to add a
feature link of type “excludes” between features USA and
Comfort. This activity of adding feature links to a source
feature model in order to explicitly highlight the impact of
a particular feature link on the target side is what we call
feature link propagation. In the example, the “excludes” link
between Radar and RainSensor would be propagated into a
source-side “excludes” link between USA and Comfort.

A theory and tool for automatically conducting such fea-
ture link propagations would be of high value to clearly un-
derstand how low-level, technical incompatibilities and de-
pendencies affect higher-level representations of a product
line’s variability. Then, in case the effect is undesired, the
product line infrastructure or the mapping of high-level to
low-level variability representations, as defined within the
configuration link(s), can be adapted accordingly.

3. DEFINITION
Having described the notion of feature link propagation

informally from an application perspective in the preceding
section, we now provide a detailed definition of such a prop-
agation. This will serve as a terminological framework and
will precisely establish what we want to achieve.

Figure 1 above introduced the usual situation when deal-
ing with configuration links: a source feature model FM src

is linked to a target feature model FM trgt and, by applying
the configuration link to a source configuration CFM src we
obtain a corresponding target configuration CFM trgt .

However, this slightly simplifies the actual situation by
looking only exemplarily at a single source configuration
CFM src and its corresponding target configuration. In order
to comprehend feature link propagation, we have to think
of a configuration link as a function. Let CFM be the set of

all valid configurations of feature model FM . Then, we can
define a configuration link from source feature model FM src

to target feature model FM trgt as

CLFM src→FM trgt : CFM src −→ CFM trgt

i.e. a function from the set of all valid source configurations
CFM src to the set of all valid target configurations CFM trgt .

This way, we can now apply standard terminology to ob-
tain an important set of configurations: given a configura-
tion link CL, this function’s image denotes the set of all
target configurations that can be obtained by first starting
with a valid source configuration and then deriving a target
configuration by applying the configuration link. We define

CL→FM src→FM trgt
:= CLFM src→FM trgt (CFM src)

:= {CLFM src→FM trgt (c) | c ∈ CFM src}

Let us now turn to feature links and their impact on a
feature model’s valid configurations. As stated in Section
1 above, a feature link imposes a constraint on a feature
model’s configuration. For example, it might define that
one feature may never be selected together with a partic-
ular other feature within the same configuration. Hence,
by introducing feature links, we reduce the number of valid
configurations. More formally: given feature model FM we
introduce one or more (additional) feature links and obtain
FM ′; we then know that

CFM ′ ⊆ CFM

For convenience, we define abbreviations: for a set L of one
or more feature links for feature model FM we define FM |L|

as the feature model identical to FM but with these feature
links added and C|L|FM as the set of all valid configurations
of FM that comply to the constraints in L. The above
proposition can now be rephrased as

C|L|FM ⊆ CFM

We cannot be sure that C|L|FM is a true subset because a fea-
ture link might define some redundant constraint on the fea-
ture model’s configuration. For example, adding a “needs”
link from a child to its parent feature does not introduce any
further constraint on the model beyond what is already de-
fined by way of the parent/child relation (i.e. a child feature
can only be selected if its parent is selected).

This provides all that is required to explain feature link
propagation. When thinking of a set L of one or more feature
links for the target(!) feature model of a given configuration
link, we would like to see a derived set of feature links L′ for
its source(!) feature model with

CLFM src→FM trgt (C
|L′|
FM src

) ⊆ CL→FM src→FM trgt
∩ C|L|FM trgt

Definition 1. Given a configuration link CLFM src→FM trgt

and a set L of one or more feature links for FM trgt , we
define the backward propagation of the feature links in L as
the activity of finding a set L′ of feature links for feature
model FM src such that the above proposition holds. �

Ideally we would like to see an equivalence instead of ⊆ in
the proposition above. Then, the propagated feature links in
L′ were required to only preclude such configurations from
CFM trgt that are actually eliminated by the links in L. At the
end of our project, we hope to be able to prove that there is
always a set L′ even if equivalence were required above, but
presently we are using the weaker definition.

Comfort 7→ RainSensor

USA 7→ Radar

CLCustomerFM→TechnicalFM
//___________________

Figure 2: A configuration link from a customer-oriented (left) to a technical feature model (right).

FM src

CLFMsrc→FMtrgt //____________oo
rmapCLFMsrc→FMtrgt

FM trgt

φFM src φFM trgt

traformapCLFMsrc→FMtrgtks

Figure 3: Transformation of a propositional logical
formula w.r.t. reverse mapping

4. SOLUTION
In this section, we present a solution for the backward

propagation of feature links on a conceptual level. We focus
on “needs” and “excludes” feature links. The first step of our
approach is that we express feature links by propositional
logical formulae over the features of a model. Then, we will
introduce a normal form for the definition of a configuration
link from which a reverse mapping of the features on source
and target side can be obtained. Finally, we will introduce
a transformation of logical formulae with respect to such a
reverse mapping. This allows transforming a logical formula
of the target feature model to a deviated logical formula
of the source feature model. This deviated formula then
constitutes the propagated feature link.

We also implemented this approach in Isabelle/HOL. Our
implementation automatically applies our transformation to
formalized feature links of the target model and delivers
propagated feature links of the source model.

Figure 3 provides an illustrative overview of our approach.
In the first step, we express one or more feature links of
FM trgt by a propositional logical formula φFM trgt and then
compute the reverse mapping rmapCLFMsrc→FMtrgt

with re-

spect to the configuration link. Then, by applying the above
transformation trafo on φFM trgt , we obtain φFM src , which rep-
resents the propagated feature link in the source model.

4.1 Formalizing Feature Links
First we require a formalization of feature links. An “ex-

cludes” feature link between two features f1 and f2 means
that two features are optional alternative w.r.t. configura-
tion. We can express this by the formula ¬f1 ∨ ¬f2, which
is equivalent to ¬(f1 ∧ f2). A “needs” feature link (feature
f1 requires feature f2) can be denoted as f1 ⇒ f2, which is
equivalent to ¬f1∨f2. Obviously, more complex constraints

and feature links can be constructed by composing several
formulae. Note that the set of logical connectives {¬,∧,∨} is
functional complete. So we can express every propositional
logic formulae with these three operators.

4.2 Normalized Configuration Links
As mentioned above, we require a normalized form of a

configuration link’s definition. We consider a configuration
link as a set of configuration decisions, i.e. individual rules
stating how to configure the target feature model depending
on a given configuration of the source feature model.

Definition 2. Given feature models FM src and FM trgt with
sets of features Fsrc and Ftrgt then a (normalized) configu-
ration link is defined as follows: CLFM src→FM trgt ⊆ {fs 7→
ft | fs ∈ Fsrc , ft ∈ Ftrgt ∪ {¬f | f ∈ Ftrgt}}. Each element
in the configuration link is called (normalized) configuration
decision. �

Note that we only allow atomic formulae (of the source
model) on the left-hand sides of configuration decisions, but
we allow negated features (of the target model) on the right-
hand sides.

4.3 Reverse Mapping
Here, we formalize a reverse mapping with respect to a

configuration link. This reverse mapping turns around the
configuration decisions of a configuration link and is the base
for our transformation.

Definition 3. Let CLFM src→FM trgt (short CL) be a config-
uration link as defined in Def. 2. Then a reverse mapping
w.r.t. CL is a partial function rmapCL : Ftrgt ⇀ Φsrc as de-
fined in the following, where Φsrc is the set of propositional
logic formulae over Fsrc with the reduced set {¬,∧,∨} of
logical connectives.

(1) For all features ft ∈ Ftrgt with @f ∈ Fsrc : (f 7→ ¬ft) ∈
CL we define

rmapCL(ft) = fs1 ∨ fs2 ∨ ...

for all fs1 , fs2 , ... ∈ {f ∈ Fsrc |(f 7→ ft) ∈ CL}.
(2) For all features ft ∈ Ftrgt with ∃f, f ′ ∈ Fsrc : (f 7→

ft) ∈ CL ∧ (f ′ 7→ ¬ft) ∈ CL we define

rmapCL(ft) = (fs1 ∨ fs2 ∨ ...) ∧ (¬f ′s1 ∧ ¬f
′
s2 ∧ ...)

for all fs1 , fs2 , ... ∈ {f ∈ Fsrc |(f 7→ ft) ∈ CL and f ′s1 , f
′
s2 , ... ∈

{f ∈ Fsrc |(f 7→ ¬ft) ∈ CL}.
(3) For all features ft ∈ Ftrgt with @f ∈ Fsrc : (f 7→

ft) ∈ CL the reverse mapping rmapCL(ft) is not defined
— roughly spoken, all features without a preimage in Fsrc

cannot be mapped. �

According to [Rei09] an exclude has priority over an include
within a configuration link definition, i.e. if the two con-
figuration decisions (f1 7→ f) and (f2 7→ ¬f) were defined
and f1 and f2 were both selected in the source configura-
tion, then (... 7→ ¬f) has priority and target-side feature f
will be excluded in the resulting target configuration. To
account for this prioritization we split our reverse mapping
into two cases. If, for a feature ft ∈ Ftrgt , there is both
a configuration decision (fs1 7→ ft) (include) and another
(fs2 7→ ¬ft) (exclude), we can combine both decisions and
obtain ((fs1 ∧¬fs2) 7→ ft) and (fs2 7→ ¬ft). So, if feature ft

is selected, we can conclude that (fs1 ∧¬fs2)∨¬fs2 holds in
the source feature model. This formula can be simplified to
¬fs2 , corresponding to our reverse mapping. If more source
features fs1 , fs2 , ... ∈ Fsrc exclude a feature ft ∈ Ftrgt and ft

is selected on the target side, we can conclude that the fea-
tures fs1 , fs2 , ... were deselected in the source configuration.
Therefore, we defined our reverse mapping as conjunction
¬fs1 ∧¬fs2 ∧ ... (in this case). For the target features which
are not excluded by a source feature (all ft ∈ Ftrgt with
@f ∈ Fsrc : (f,¬ft) ∈ CL), we defined the reverse mapping
as disjunction of all source features fs1 , fs2 , ... ∈ Fsrc which
are mapped to ft ((fs1 7→ ft), (fs2 7→ ft), ...) since we can
only conclude that at least one of the source features was
selected if the target feature ft is selected.

4.4 Transformation of Logical Formulae
Now we focus on the transformation of logical formulae

with respect to configuration links.

Definition 4. Given a transformation link CL and a re-
verse mapping rmapCL as defined in Def. 2 and 3. Then
a transformation w.r.t. a reverse mapping rmapCL is recur-
sively defined as traformapCL

: Φtrgt → Φ⊥src with

traformapCL
(φt)=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

rmapCL(ft) if φt=ft∈Ftrgt
and
rmapCL(ft)
is defined

⊥ if φt=ft∈Ftrgt
and
rmapCL(ft)
is not defined

¬traformapCL
(φ′t) if φt=¬φ′t

and φ′t ∈ Φtrgt

traformapCL
(φ′t)

∧ traformapCL
(φ′′t) if φt=φ

′
t∧φ

′′
t

and φ′t, φ
′′
t ∈ Φtrgt

traformapCL
(φ′t)

∨ traformapCL
(φ′′t) if φt=φ

′
t∨φ

′′
t

and φ′t, φ
′′
t ∈ Φtrgt

where Φ⊥src and Φtrgt are the sets of propositional logic for-
mulae over Fsrc resp. Ftrgt with the reduced set {¬,∧,∨}
of logical connectives. Note that Φ⊥src additionally contains
formulae with undefined features (⊥). Undefined features
are required since the transformation is total, although the
reverse mapping is partial. �

With this definition, we obtain a formula φs ∈ Φ⊥src over
the features Fsrc of the source model FM src . This formula
represents the propagated feature link for the source model.

5. CONCLUSION
Based on the concept of configuration links, we have pre-

sented in this paper a logic-based approach to derive feature
links on source feature models implicitly induced by corre-
sponding feature links on target feature models. We have

introduced the theoretical foundation for such a derivation
by defining backward propagation that consistently trans-
forms feature links across orthogonal variability represen-
tations. Beyond a theoretical characterization, we propose
a constructive solution to derive feature links: a reverse map
presently enables the backward propagation of “needs” and
“excludes” feature links.

In addition to the related work cited above, several other
approaches and publications are dealing with a hierarchical
decomposition of large-scale product lines and their variabil-
ity representations [vO04, BN09, Kru06]. To the best of our
knowledge, none of these provide support for automatically
transforming logic constraints from one variability represen-
tation to another.

As a prototypical support engine for managing feature link
propagation, we are using Isabelle/HOL. We have argued
in Section 4 that the logical transformation trafo correctly
realizes backward propagation. In our experiments, we al-
ready validated our solution concept on several examples.
In the future, we plan to enrich our Isabelle/HOL model
to be able to reliably prove such soundness properties. An-
other important future project is the completion of reverse
maps to general feature constraints other than “needs” and
“excludes” links.

Finally, as the name suggests, the notion of backward
propagation might be complemented with a propagation in
the opposite direction from source to target feature model,
a forward propagation.

6. REFERENCES
[BN09] Felix Bachmann and Linda Northrop. Structured

variation management in software product lines. In
Proceedings of the 42nd Hawaii International
Conference on System Sciences (HICSS-42). IEEE
Computer Society Press, 2009.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich
Eisenecker. Formalizing cardinality-based feature
models and their specialization. Software Process:
Improvement and Practices, 10(1):7–29, 2005.

[CN02] Paul Clements and Linda Northrop. Software
Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[Kru06] Charles W. Krueger. New methods in software
product line development. In Proceedings of the 10th
International Software Product Line Conference
(SPLC 2006), pages 95–102, 2006.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der
Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer,
Heidelberg, 2005.

[Rei09] Mark-Oliver Reiser. Core concepts of the
Compositional Variability Management framework
(CVM). Technical Report, no. 2009-16, Technische
Universität Berlin, 2009.

[RTW09] Mark-Oliver Reiser, Ramin Tavakoli, and Matthias
Weber. Compositional variability. In Proceedings of
the 42nd Hawaii International Conference on
System Sciences (HICSS-42). IEEE Computer
Society Press, 2009.

[vO04] Rob van Ommering. Building Product Populations
with Software Components. PhD thesis, University
of Groningen, 2004.

APPENDIX
Implementation in Isabelle
This appendix presents the implementation of our approach
in Isabelle/HOL. For our formalization, we used Isabelle
2009 with the X-Symbol package for a prettier rendering
of mathematical symbols.

In our approach, we decide between application depen-
dent and application independent parts. In this context,
application (in)dependency means that this part has (not)
to be redefined for different applications, e.g. different fea-
ture models, configuration links or logical formulae to be
transformed. Application dependent parts are the definition
of concrete features of a model, the (reverse) mapping of the
features and the logical formula to be transformed. Many
fragments of these parts could be generated fully automated
by a corresponding feature modeling tool, for example CVM
(see [Rei09]) – although this functionality is not yet imple-
mented. Application independent parts are the definition of
a datatype for logical formulae, axioms for simplification and
the definition of the transformation of logical formulae. We
decided to use Isabelle’s simplifier for the execution of the
transformation and for simplifying the result. We specified
our own logic to be able to define explicit operation for the
transformation of formulae. Although we first considered
using directly the higher order logic of Isabelle/HOL. This
turned out to be not practical, because automatic simplifi-
cation routines obstruct the control of formula transforma-
tions necessary for modelling configuration links. Therefore,
we defined datatypes for features and for logical formulae.
Note that we did not formalize feature models in Isabelle.
We only implemented our transformation of logical formulae
similar to the description in Section 4.

First of all, we defined the set of features (of the source and
the target model together) as datatype Feature = A|B|...,
where A,B,... are the concrete features. This datatype has
to be redefined for every pair of feature models. Then we
added the application independent datatype named Formula

as base for all propositional logical formulae over the reduced
set {¬,∧,∨} of logical connectives.

datatype Formula =
Cons Feature ("%")
| Neg Formula ("¬ _" [500] 500)
| And Formula Formula (infixr "∧" 200)
| Or Formula Formula (infixr "∨" 100)
| TRUE | FALSE

This definition is quite intuitive: A formula can be a feature,
the constant TRUE, the constant FALSE or several features
connected by the defined logical connectives.

After defining these datatypes, we teached Isabelle’s sim-
plifier through the definition of axioms, e.g. we formalized
idempotence, absorption, commutativity, associativity, dis-
tributivity, De Morgan’s law, complements and some other
known axioms and laws of propositional logic. With this im-
plementation, we can now express every propositional logi-
cal formulae in our own logic and Isabelle is able to simplify
these formulae automatically by the command apply simp.
This is very important because our transformation some-
times produces very long and confusing formulae, which
should be simplified for a better readability.

Now we focus on our transformation, which we imple-
mented as recursive function. The input of this function are
the application dependent reverse mapping rmap (cf. Def. 3),

which is (here) a partial function from Formula to Formula,
and the formula to be transformed. Roughly spoken, the
transformation applies the given reverse mapping to all fea-
tures of the input formula. It delivers the transformed for-
mula as output.

primrec trafo:: "[Formula ⇀ Formula,Formula] ⇒ Formula"
where
trafo rmap (Cons x) =
(if ((rmap (Cons x)) = None) then
(Cons x)

else
(the (rmap (Cons x))))

| (trafo rmap (¬ x)) = (¬ (trafo rmap x))
| (trafo rmap (x ∧ y)) =

((trafo rmap x) ∧ (trafo rmap y))
| (trafo rmap (x ∨ y)) =

((trafo rmap x) ∨ (trafo rmap y))

If the transformation is applied to a feature, then the result
is the reverse mapping of the feature (if it exists) or the fea-
ture itself (if there is no reverse mapping for this feature).
Note this is a small difference to our formal definition in
Section 4. The application of the transformation to com-
plex formulae is defined recursively – roughly spoken, the
mapping is pulled into the formula (cf. Def. 4).

The application dependent reverse mapping (cf. Def. 3)
between the concrete features is defined as partial func-
tion from Formula to Formula. Even though, we only allow
atomic features (and not complex formulae) in its domain,
according to Definition 3. This definition has technical rea-
sons.

In order to accomplish a transformation to a given logical
formula <FORM> (over the features of a feature model) w.r.t.
a reverse mapping <RMAP>, we only have to apply our trans-
formation to the formula. Therefore, we define a lemma
in Isabelle with the formula to be translated and apply Is-
abelle’s simplifier.

lemma "trafo <RMAP> <FORM> = ?Y";
apply (unfold <RMAP>_def);
apply simp

done

The result of this simplification is the derived propositional
logical formula for the source feature model, which formal-
izes propagated feature links.

Implementation of Example 1
In this Section, we revisit our example shown in Figure 2. Of
course we only have to implement the application dependent
parts of this example.

First of all, we define the features of the example in Is-
abelle.

datatype Feature =
Market | USA | Europe | Japan | Model | Classic |
Comfort | Sport | BodyElectronics | Wiper |
RainSensor | CruiseControl | AdaptiveCC | Radar

Then we define the reverse mapping. Therefore, we ap-
ply our algorithm defined in Def. 3 to the given mapping
(Comfort 7→ RainSensor, USA 7→ Radar) and obtain the
following reverse mapping.

constdefs rmap_1 :: "Formula ⇀ Formula"
"rmap_1 ==
[% RainSensor 7→ % Comfort,
% Radar 7→ % USA]"

Comfort 7→ RainSensor

USA 7→ AdaptiveCC

CLCustomerFM→TechnicalFM
//___________________

Figure 4: Second example of feature link propagation, modified from Figure 2.

The target feature model of the example excludes all con-
figurations with a rain sensor and a radar. Expressing this
feature link in propositional logic leads to ¬(RainSensor ∧
Radar). Now we define a lemma in Isabelle and use the
simplifier for applying our transformation.

lemma "trafo rmap_1
(Neg (And (% RainSensor) (% Radar)))
= ?Y";

apply (unfold rmap_1_def);
apply simp
done

The result of this transformation delivers the estimated re-
sult ¬Comfort∨¬USA. For a better understandability, this
can be rearranged to ¬(Comfort∧USA). This step can be
done manuelly or it can also be implemented in Isabelle in
the following way:

lemma "trafo rmap_1
(Neg (And (% RainSensor) (% Radar)))
= ?Y";

apply (unfold rmap_1_def);
apply (rule trans)
apply simp
apply (rule sym)
apply (rule de_Morgan_conj)
done

Finally, we can construct a propagated exclude feature link
in the source model: The comfort package is not suitable in
the USA.

In practice, the application independent parts should be
automatically generated by a feature modeling tool. Thereby
we see no problem since the reverse mapping can be eas-
ily generated by configuration links. Note that the feature
modeling tool only has to derive a naive formula as reverse
mapping since the interpretation (resp. simplification) of
the logical formula is alredy covered by our Isabelle imple-
mentation. Analogously, formalized feature links (i.e. the
logical formula to be transformed) can be easily generated
by a feature modeling tool. The third and last applica-
tion dependent part that should be automatically generated
are the concrete features, which is obviously trivial. Up
to now, our implementation is only a prototypical imple-
mentation and the simplification of logical formulae is not
perfect. Therefore, importing the propagated feature links
in a feature modeling tool (without manual influence) could
sometimes be problematic. Up to now, we did not define an
interface between out implementation and common feature
modeling tools.

Implementation of Example 2
This mechanism can also be applied to more intricate situa-
tions in which the structure—i.e. the parent/child relations—
of the target feature model have to be taken into account. To
illustrate this, let us consider another small example, given
in Figure 4.

In this example, the selection of feature USA includes fea-
tureAdaptiveCC in the target feature model. IfAdaptiveCC
is selected, then the mandatory feature Radar has to be se-
lected also. Up to now, we do not include the formalization
of mandatory features in our approach since we did not im-
plement the whole feature models in Isabelle, but only the
transformation of logical formulae. Therefore, we have to
add additional mappings for such constraints. In this ex-
ample, we add (AdaptiveCC 7→ Radar) (in reverse) to our
mapping function.

constdefs rmap_2 :: "Formula ⇀ Formula"
"rmap_2
[% RainSensor 7→ % Comfort,
% AdaptiveCC 7→ % USA,
% Radar 7→ % AdaptiveCC]"

Applying our transformation in the same way as described in
the first example now leads to the constraint ¬AdaptiveCC∧
Comfort. This is, of course, correct but we could apply
our mapping again and would obtain ¬USA ∧ Comfort.
For automating this, we formulated another transformation,
that applies the mapping recursively as often as possible.
As termination condition, we inserted a numeric value as
additional parameter.

primrec trafoX::
"[nat, Formula ⇀ Formula,Formula] ⇒ Formula"

where
"trafoX 0 rmap form = form"

| "trafoX (Suc n) rmap form =
trafo rmap (trafoX n rmap form)"

Now we obtain the desired result ¬USA∧Comfort by run-
ning the following code.

lemma "trafoX (Suc 1) rmap_2
(Neg (And (% RainSensor) (% Radar)))
= ?Y";

apply (unfold rmap_2_def);
apply (rule trans)
apply simp
apply (rule sym)
apply (rule de_Morgan_conj)
done

