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ABSTRACT

THE LOCATION OF ROOTS OF EQUATIONS WITH PARTICULAR
REFERENCE TO THE GENERALIZED EISENVALUE PROBLEM.

G.F.Colkin

A survey is orasented of algorithms which are in
current use for the solution of a single algebraic or
transcendental =2quation in one unknown, together with an
appraisal of their oractical performance.

The first oart of the thesis consists of an account
of the theoretical basis of a number of iterative methods
"and an examination of the problems to be ovarcome in order
to achieve a successful computzar imolem=zntation.

In the selection of specific orograms for t=2sting,
the emphasis has bezsn olaced on methods which ar=2 suitable
for use, in conjunction with 4determinant 2valuation, for
the solution of standard 2igenvalus probl=ams and
generalized problems of the form A())x= 0, wher=s the
el2ments of A are linear or non-linear functions of ).
The principal ra2quirements for such purpos=2s ares that:

1. the algorithm should not be restricted to ovolynomial
2quations

2. Aerivative esvaluation should not be required.

Examples of 2igenvalue oroblams. arising from
engineering aoplications illustrate the potential
difficulties of determining roots. Particular attention
is given to the problem of calculating 3 number of roots
in cases where a priori estimates for e2ach root are not
available,. The discussion 1is extended to give a brief
account of possible aoproaches to the oroblz2m of 1locating
complex roots.

Interoolation methods are found to be wparticularly
versatile and can be r=2commended for their accuracy and
efficiency. It is also suggestad that such algorithms may
often be omployed as s=2arch stratz2gies in the abs=nce of
good initial =2stimates of the roots. Mention is also made
of those features of oractical imolsmentation which were
found to be particularly useful, together with a3 1list of
some outstanding difficulties, associated principally with
the automatic computation of several roots of an =2quation.
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CYAPTER 1

INTRODUCTION

Obtaining num=2rical solutions  of a non-linear
algebraic or transcendsntal =2quation in one unknown is a
frequently occurring problem, for examplg in connection
with differantial aquations arising in mathematical
ohysics, and a numb2r of iterativz methods are discussa4
in standard numerical analysis textbooks. The aim of this
investigation is to examinz2 the  ovpractical imolementation
of such algorithms and to report on the currasnt "stats of

the art" in the develooment of softwarz in this area.

Th

(]

problem of determining numerical solutions to an

equation may be considered in two stages:

1. Estimating the number and aporoximatz location of the
raquired roots. This 1is oftan the most formidable
part of the task and the guestion arises as to whether

tha computzar can be of assistance.



2. Refinement of these first estimatas by means of one or
more iterative ta2chnigquas. The aiﬁ will be to achieve
a degree of accuracy svecified by the user or, failing
that, the maximum accuracy which can be attained by

the machine for the particular oroblem vos=243.

34 considerable amount of work has been done on the
automatic solution of a polynomial =quation, but =2ven in
such cas2s it is not possible to guarantes a compleate
solution. Furthermore, ill-conditioning of the roots may
oravent the achievement of an acceotable d2grae of
accuracy. The oproblesms with a general egquation are
usually muéh grz2atar since the number of roots is 1likely
to be unknown and there may be discontinuities of the
function and/or its Aderivatives. It will also be
nacessary in such cases to consider the accuracy and
afficiency of the method chosz2n to evaluate the function.
3s such evaluation will involve approximation of infinite
orocaessas, the r=levant theory is much mor=z complicated

than for a finite polynomial.

A short account will be given of the oroperti=s to be
consider2d when choosing an algorithm and incorporating it
into a computer routine. This will be . followed by
descriptions of some  commonly-us2d methods and an
appraisal of their performance‘ in oarticular
implementations: Many of the opublished programs are
designed for the computation of r=al roots but
consideration will also b= given to ‘the2 oroblem of

-8 -



dataction ani 2stimation of complax roots. The
two-dimensional natur=z2 of the complex variable makas it
considerably more difficult to set up a systematic search
orocedur= when good estimates of the roots are
unavailable. In addition, the increaseqd number of
calculations to be performed makes the "quastion of
afficiency even mors imoortant than in the c¢asz2 of real

roots.

Particular refarence will be mads to the standard and
generalized eigenvalue problams of linear algebra which
can give rise to algebraic or transc2ndental =2gquations
with r=2al and/or complex roots. Particular featuress of
such equations will be used to test asvects of various

2quation-solving routinas.




CHAPTER 2

FEATURES OF ALGORITHMS

The topics consider2d heres will be relevant to 3 wide
variety of numerical probléms but particular =mpohasis will
be wvplaced on the way 1in which general reguirements
influence the choice of an- iterative method for
equation-solving and th2 way in which it is implament=1.
Some of the criteria established ha&e been adopt=2d by most
published computar routines; others ar=2 only occasionally
incorporated' or are still in courss of investigation;
most will be aoplicable to both real and complex

root-finding orocedures.

2.1 FIRST ESTIMATES

If a continuous function is known to have a3 simole
root 1isolated within a certain interval (or ra2gion in the
case of a complex root), the evaluation of such a root
should or=2ssnt little difficulty. In such casas we might
re2asonably expect guarant=ed convergence to any . d=2sireqd

accuracy within the capacity of the machine. TIf such a

- 10 -



priori information is not available we might try
instructing the comouter to test 3 series of values of the
variable, verhaps proceeding by fixed stesp lengths, until
the function values changes sign. This will not of <zourse
ba a satisfactory procedurz for compblex roots or for real
zeros of even multiplicity. Ther=2 is also a d4anger that
an interval thus found may contain sevefal closely-spaced

roots.

An alternative stratsgy is to apply an iterative
method with an experimental starting value and to examine
the first few iterates for an indication of convergence.
To facilitate such preliminary trials provision is besing
made increasingly fof "revers2 communication”, an aporoach
recommanded by Gonnet [18]. Herz2 control is in the hands
of the usesr via his calling program; he examines =2ach
successive itarate 2and decides whether to acceot this
value and use it as the starting ooint for thes next
iteration, acceot it as 2 solution or Adiscard it in favour
of a2 Jiffarent initial estimatz. EBven with such orovision
it will still be the responsibility of the user to seék a
r=2asonable starting value before using"the comouter at
.all.

"For automatic comoutation the problzam of the
initial wvalue looms large and forbidding. It is

at once the chiasf characteristic of iterative
algorithms and their principal curs2" Acton [1]

- 11 -



Suidance may be obtained from one or more of the

following considerations:

1. Theor=tical bounds on the magnitudes of the roots and

knowladge of their distribution.

2. Anticipation of 1likz2ly roots from the nature of the

practical probl=am which gaée rise to th=2 equation.

3. Experience of the behaviour of egquations of a similar

form.

Acton [1] points. out that =squations seldbm arisz2 as a
"on2-off" but are 1liable to be pressnted as a family of
relatad oroblems. Carz2ful analysis of the nature of such
equations <can often 2allow exploitation of their common

fe2atures with valuable vay-off in increased effici=ncy.

2.2 CONVERGENCE

Any orocedure bas=2d uvon the use of an iterative
formula will need to set criteria for t=rmination of the
orogram. When the orocess 1is convergent, an accuracy
requir=ament (stopping criterion) will det=z2rmine whether a
sufficient numbar of iterations has been overformed. Y
condition to detesct faiiure to converge will also be
raquired. Published routines differ in the freedom they

off=2r to the user in setting limits.

- 12 -



Stooping Criteria

If the s2quence of successive estimatas to a root a
is denoted {x;} (i=1,2,...) we have thes theoretical limit

lim |x%x; - a| =0
i->w

In practice, attainable accuracy 1is 1limited by the
capacity of the machine. An absolute 2rror criterion of
the form
lxr-xr-li < g
wher=2 &€ is a fixed small guantity, is clearly unacceptable
if the routine is to cooe with roots of widely diffaring
magnitudes. 1Tt is usual to use the2 relative condition
| x, - X0 1< ez y
with the proviso that the root sought 1is not actually
zZ2aro, In'the cas2 of a éimple root at zero, for examole,
w2 may hav2 that

lim Xe = Xeo

T->® X,
( Wilkinson [47] ), so thaf an origin shift would be
ra2quired before considering ra2lative 2rror. Many
procadures offer the alternative criterion

<N

for users whose main priority is a small function wvalue

| £0x.)

rather than very accurates root location. Where the
tolaerance lesvels & and 7 are chosan by the us=2r, it is
vossible to suooress =2ither of the critzria by setting the
appropriate tolerance to zero. This is a useful €eature
when, €for examolz2, the us=2r suspects that the function

- 13 -



valus changes only slowly in the —region of the root
(Fig ‘2.1) so tHat there 1is a 4danger that the function
value criterion will indicate a root while |[x, - a]| is
unacceptably 1arge.. Such a situation will arise, for
examplz, when a3 polynomial of high degr=e 1is avaluated

with small x.

The inexperienced user may €ind difficulty in fixing
appropriatea tolerance levels, woarticularly whan very
accurate results are required. It is desirable that the
orogram Jesigners give guidance when possible although
such advice will ne2cessarily be influenced to a 1large
extant by the particular machine used for testing. 1A good
axample 1is orovided by Barrodale and Wilson 1in the

documentation of a Fortran program using Muller's method

3 +|

[6]. Here they recomm2nd s2tting & = 10 and 1= 10
for a simple root, wh=2re q reoresents the numbar of

decimal 4digits of accuracy available.

- 14 -



Tha jidea of an automatic stooping critarion has been
included in texts for soma time (2.g9. Dahljuist and
Bjorck [13], Wilkinson [47]) but has not vy=2t <come into
gen=aral use in published routines. With standard
conditions for t=2rmination, if the user regquests a high
degree of accuracy the procedure may reach a stage at
-.which rounding errors in the function evaluation outweigh
the gain in accuracy which would th=2oretically be obtained

by performing further itesrations. Thus although

lxr - xr_“ > & ]xrl
we have that
|Xr+\ ‘xrl }lx,— xr—l‘
and convargence has 2ffactively ceas=a4. The range of

values of x for which this ohenomenon is obs=rved is
clearly dependent uoon machine cavacity and is referred to
by Wilkinson as the "domain of indeterminacy". Tt is
Iikely that subsequent 1iterates will show no obvious
pattern of behaviour with the eventual result that failure
will be indicated whén the maximum number of iterations is
reached. 1Inst2ad we should orzfer the orogram to indicate
that convergences has taken place and to outout the mdst
accurate estimate obtained by the machina2. This will also
prevent time being wastzed on further iterations which
producs= no imérovemeht in the solution. For most
algorithms it will not be satisfactory to aoply the test
| %eap = Xc| > | % = %,
at the start of the itsrative procedure, 3s it 1is common

for the process to reguire several iterations in which to
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"sattle down"™. Fig 2.2 shows possiblza behaviour - patterns

for two well-known methods.

‘H%.l.l

x, Xq
Nehed, Nohnod.

In both cases one poorer estimats 1is obtained before
convargance 1is apparent. Hence to implemént an automatic
stooping criterion of the form
' | Xewy ~ X¢ l ? I Xe = Xegy

we also raguire a condition to ensurz that convergencs has
commencad. This can be of the form

lxr = xr-ll < %
or the r=2lative condition

lxr - xr-ll < %lxr‘
whers § 1is a tolerance 1level «considerably 1larger than
attainable accuracy (say 0.901 for felative arror). A
procedures currently being Adeveloped at the National
Ph?sical Laboratory‘ {20] us=2s the latter condition which
again has the advantage of vearsatility and should suffice
to ensure that sufficient iterations have b=22n carried out

to 2stablish a3 steady convargence pattsrn. Such devices,
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if successful, will <enablz the user to get the maximum
nossible accdracy from th=2 imolementation of the algorithm
for his particular comouter installation -without the need

for guesswork in det=armining the tolerance lavels.

Failure Criteria

Most of the orocedures to be discussazd herein either
set, or require the user to suoply, 32 maximum number of
itarations (or function evalgatioﬁs) which should not be
exc2eded. This <can refer to esach individual root or to
the total for all the requirad roots. This 1is essential
in order to terminate ex2cution or to switch to an
alternative algorithm should the method fail to converge
or should .the rate of.convergence'be unacceotably slow.
Nriters of softwar=2 are ofte2n able to suggest orobable
numbers of iterations for "well-bzhava2d" functions. Such
information will be based partly on eoxp=ariz2nce with a
variety of test cases and partly on th=ir knﬁwledge of the
theoretical rat=2 of convargence of the chosan algorithm.
For a convergent‘iterative process there 2oxists a3 positive
real number D, : known 2as the érier of convergenc2, such

that

where e;, =24, are the absolute 2rrors in the successive

iterates x,, ¥X4,, 2nd c is 3 non-z2ro constant.



The simplast 2xampla of the use of this concept 1is
orovided by the bisaction method fﬁr which o = 1 and
¢ = 0.5 as the interval of uncertainty is halved in length
after each application. The number of iterations required
Qill thus be equal to thes number of binary digits required
in the answer; that is, about 3.3 itarations per decimal

digit (Xronsjo [25]).

Generally soeaking, the causes of failure become mor2
numerous the mor=2 complicat=sd the algorithm, so a change
to 3 simple method -such as biszction of the interval may
Jive satisféctory results when other methods fail. For a
simplza isolat=zd real roo; of a continuous function, the
Bolzano-W=2ierstrass theorem ensures convergence for this

algorithm.

If a3 oarticular method oproduces diverg=snce, the
values generated may cause Qverflow before the maximum
number of iterations is reached. This situation can be
allowed for by s=2tting a bound on absolute values of x.
If this bound 1is exceeded the program can then be
terminated with a more heloful message which may =2nable
the user to | locata the r2gion of difficulty.
Aiternatively the value of x can be s=2t to its up§er bouni

and another attempt made to obtain convargence.

- 18 -



Failure to converge will not necessarily result in
large 2stimat=2s, howaver. Some algorithms can 4isolay
oscillatory behaviour or may £ollow no obvious fixed
pattarn. Provision for the detaction of oscillations
would probably result in an unnecessarily complicat=4
oprogram for such occurrences will be realatively rare.
‘Fig 2.3 illustratess a possible oscillatory wovattern for

Newton's method.

Fiq. 2.3
. X, = xh*l

2.3 EFFICIENCY

There ares two aspects to ovsrational <efficiency -
time takan and storage cavacity required. The latter will
be le2ss important in most examples of the type considered
har2, 3as large storage requirementé commonly ariss from-
aither large amounts of data or the‘need to s2t uo arrays
of 1large Adimensions. Routines for the solution of a3
single egquation ar2 only likely to require array space
sufficient to accommodatz the aestablished roots and

corresponding function values. The worksvac=2 reguirements

for the =2xecution of iterative procedur=2s are very modast.
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It follows that storage will not be a major consideration

axcept, perhaps, for microcomputers.

The quastion of execution time will depz2nd partly
upon machine characteristics and the standards of
programming style adooted, but the amount of arithmetic
required 1is by far the most 1imoortant consideration.
Kronsjo [25] refers to the 1latter as "computational
complexity" which may be interoretz2d as the number of
operations requir=24 to solve a problam of given size n,
but warns that the fastest methods ares not necessarily
stable. Eguation-solving algorithms are mostly simole 1in
structure so that for all but the simplest functions (2.9.
polynomials of low d2gr=2e) the time takan is almost wholly
dependent upon the speed of function evaluations; In the
case of 3 polynomial the oproblzam size may b2 soecified by
the degr=2e of the polynomial but other forms of function
must be evaluated by truncation of infinite series and the
number of computations involved will be machine dzpendent.
The onus must b2 on the wussr to ensure that function
2valuations ar2 carried out as =2fficiently as vossible; 2
number of methods have been develooed for polynomials
(2.9. XKronsjo [25]). TIf the algorithm regquires values of
the derivatives, such evaluations must of course be
included in the operation count and are likely to reduce
considerably the efficiency of such algorithms,, desvpite

their superior spe2d of convargence.
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Agssessm2nt of the 2fficiency 2f an algorithm is based

on the two factors:

1. The order of convergence, v, which Adetermines the
number of 1iterations required to achisve a given

accuracy with a certain initial aporoximation.

2. The number of calculations required to perform one
!

iteration. When derivatives ar2 not involved this can

often be measured by the number of function

ayaluations.

The ideal algorithm would oerform w211 - in both thes=2
raspects, but the relative importance of 1 and 2 may in
practice deoend upon the comparative costs of =avaluation
of the function ani its derivatives and the cumulative

2ffects of rounding =rrors.

Measures of Efficiency

Two simple indices hava b=2en provosz2d, bas2d on the
order © and the number n of function 2valuations o=ar
iteration viz:
the Traub index p/n and the Ostrowski index Q'M .

For a mor=2 precis2 m=2asur2 it is necessary to introduce as
parameters the numbers of arithmetic overations ra2gquired
to evaluate the function(s) 2and the it=zsrative formula.

i
Traub suggests the formula E = 0/9, whera ® represents the

i

total cost of computation for function evaluation. TIf the

function and its derivatives =2ach involve the same number
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of computations to evaluatz, the formula r=2duces to the

Ostrowski index quotad above.

Improving Efficieancy

Attempts to speed up convergence by using an
algorithm of higher order t2nd to vyi=2ld diminishing
returns as the greater comolaxity of the formulation not
only 1increases the amount of computation but the program
may 21so be more prone to failure and be mor=2 difficult to

maintain.

When sevaral roots of a single egquation are ragquired,
afficiency can be imoroved by adopting a systemﬁtic s2arch
procedur=, TIf approximatz locations of the roots are
known the order of their calculation may bz pradetarmined.
In the. absance of such information it 1is desirable to
ensure that the same root is not found ra2peatadly. This
may b2 accomplished in the case2 of polynomials by a
process of deflation, that is, supposing the root x = a
\haS'been found, the polynomial is divided by (x - a). By
this means we not only re2movz known roots but w2 have now
a lower degre2 polynomial to solve with corresoondingly
l2ss computation. With a general function such 23 quotient'
cannot be found explicitly; inst=2ad an attamot can be
made to suppress 3 previous root by péoceeding with the
function

£(x)

(x - a)
and perturbing the root slightly beforz2 ovproce=ding to
avoid a division by z2ro. This will not orevent multiole

- 22 -



roots from being found in accordance with their
multiplicity. Wilkinson [46] has demonstrated éhat it is’
desirable when solving a volynomial 2quation with
deflation to €find the roots in increasing order of
magnitude in order to avoid sa2rious deterioration in the
condition of the function. Less 1is known of the
significance of order of root determination for other

functions.

After suporessing the previous root it 1is often
convenient to use this value as 3 "steoping-off" point in
the s=zarch for the next root. This 1is not always
sufficient, howaver, to ensurz that the roots ars found in
numerical order. An example is the fregquently used Muller
method, whose Behaviour in this r2soect is not as yot
pradictable. Obsearvation of'results for this method would
seem to indicate sequential "runs" of roots broken by
occasional "jumps"”. Predictably, roots obtained after
such "jumps" require rather mor=s iterations than roots

which are near neighbours [Chapter 4].

In addition to providing initial 2stimatas, careful
Qbservation of the ,nature of the equations can 1l2ad to
improvements in efficiency. Anticipation of r=lationships
between the roots, such as complex conjugat=s or the
existence of g=2ometrical or algebraic symmetry can soeed

up root-finding and also aid in the chz2cking of rasults.



2.4 ACCURACY

Errors in numerical vrocesses may be classified as
truncation errors or rounding errors. The former arisa
when an infinite pfocess is rzplac=2d by a finite number of
calculations, €£or eoxample the use of thz2 first fow torms
of an infinite Taylor series. In the context of
agquation-solving w2 encountar such avoroximations both in
the estimation of irrational function values 2and in the
iterative formula itself since this usually involves the
replacement of our given function by some polynomial or’
rational function of low d=2gree. Theoretical pr=dictions
can oftzan be mada of truncatiqn arvrors; éuch 2stimatas
2nable us to calculate an order of converg3ence and hence
predict the likz2ly number of iterations . requirzsd for a
certain degree of accuracy, given the multiolicity of the

root.
Rounding errors arise frbm several sources,
orincipally:
1. TInaccuracies in experimental data
2, Conversions to and from binary répresentation
3. Limited machine cavacity

Such errors ar=2 mora difficult to predict than truncation
errors and conseguently ar2 not 2asy to allow for in
program design. Most of the current knowlzdg=2 1in this
area 1s derived from practical observation, and 2xperiznce
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is the best guide when fixing realistic tolarance ‘1evels.
Optimistically small limits may takz us inside the region
of indeterminacy where we risk not only wasting time on
super fluous iterations which give no improvement in
accuracy but also possible instability. Wilkinson [47]
has noted that the danger of instability is particularly
appar2nt in the c¢case  of Muller's method when further
iterations may <result 1in a move outside the resgion of
indeterminacy and even subsegquent convergence to 3
different root from that sought. In settling for
comparatively 1large tolerances for safesty we 4o not

achieve the accuracy of which our machine is capbable.

Fixing tolerance lzvels before commencing caLculation
is further complicated by the oftan unoredictable
occurrzance of ill-conditioned roots. Hare a2 small change
in one or more coefficients rasults in a large changé in
the computed solution so the <effact o€ rounding errors
becomes drastic ani the ra2g9ion of indeta2rminacy

corraspondingly large. The 2xample

20
f(x) = ﬂ— (x-r) ,
r=1

quot=2d by Wilkinson [46], has become a classic
illustration of this ohenomenon, as the comout2d4 values of
the larger roots ars complex with imaginary oarts of
considerable magnituds. 1In cases such as this the problem
is inhefent in the function itself and little improvement
can be effected by switching to an alternative algorithm;
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it becomes varticularly important to aim for maximum
attainable accuracy in such circumstances and, whera
possiblza, to test the results for accuracy. Multiple
roots are particularly orone to 1ll-conditioning.
Dahlguist [13] derives formulae for method-independent
arror astimates but since these are dependent .uoon .
derivative values they are liksly to present difficulties
in practice. It is to be hoped that an "automatic
stooping™ <criterion will tak=2 us some way towards

ovarcoming thesz2 problems.

It has been noted earlier that attempts to increase

~tha rate of convergence of an algorithm will generally
result in a more complicat=sd formulation. 1Tt follows that
the gain in taking higher ordsr proéesses bacomes
orogressivaly less as the raduction in truncation error is
countarbalanced by increased rounding =2rrors. Thes major
build-up of rounding errors will, however, be 1in the
calculation of function  values unless the function is
oarticularly simple, and at least the same accuracy will
be re2quired in this comoutation as 1in the use of the
iterativa formula. Attainablzs accuracy in the root will
usually be lass than machine precision. In the particular
case of the eigenvalue problam Wilkinson [47] has found
that the requir=ed accuracy rarely exceeds te2n significant
figur=as but this will be insufficient for working
accuracy. Thus a double orecision facility will be

requir=d for such oroblems on many installations.



To summarise, we can predict a orobable number of
iterations from the asymptotic behaviour

lim 2o
g - €C
A

k=>m

W

but such a pattern is 1ik2ly to be masked by rounding

errors before it becomes apparant.

Testing Programs and Rasults

Tast data should consist of a wide variety of
functions to illustrat= simole, multiole and
closely-spacad roots. TIf the magnituds of the function
values 1is 1likely ¢to be raoidly changing in practical
apolications such examples should, of courss, be includ=4.
The 1inclusion of comolicat=2d functions may enablé us to
examine the 2ffact of error accumulation in the function
evaluations. For similar rteasons we should not caonfine
tasting to exact 4data involving fa2w Zigits. Whan a root a
of 044 multiplicity 1is obtained, the function wvalues
£(a - h) and £(a + h) on either side of the root should be
examined for a sign change. Care must be taken in the
salaction of h so as to be outside the rzgion of
indeterminacy whilst not being influenced by othar roots

in the vicinity.
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The effect of the order of calculation of the roots
on their accuracy has been mentioned in connaction with
efficiancy. For ‘a polynomial =2quation Wilkinson [46]
states that:’

"There is a danger that the =zeros of Jquotiant

polynomials may gradually diverge from thosz2 of

the original polynomial”

He does not, however, regard this pfoblem as sufficiently
sarious to ©prohibit use of tha deflation technigue.
Pre~d=termination of the order of calculation of the roots
can prove 4ifficult for a general equation when w2 may not
avan know the number of roots 1in the interval under
consideration. When suppression of orevious roots has been
émployed and the accuracy of the results 1is in Adoubt,
further itesrations can be performed using the original
2quation in order to "purify" the solutions. The
sensitivity of a root to rounding errors may be estimated
by means of exverimental perturbations of ;he inout daté
[13] but further work may be n2c2ssary to sep%rate the
effacts of the algorithm from the condition of the oroblem

itself.

2.5 ROBUSTNESS AND SECURITY

These are factors of importance to any ovurchaser of
software and particularly so 1in the case2 of "basiz"
routines, that is, those which will be us2d4 frequently for
a3 variety of applications. Eguation-solving is just such

a situation and failure to oroduce roots of reasonable
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accuracy for "Qéll—behaved" functions would render a
program unaccaptable. The robustn2ss of a proceddre is
its ability to solve satisfactorily a wide rang=2 of
problams; this will include, 1in equation-solving, such
phenom=2na as multiple and cloéely-spaced roots, ovolynomial
and transcendental =gquations, very large, small or raoidly

changing function wvalues and, perhaps, discontinuities.

It should, however, be r=2membered that striving for
versatility may reduce the =2fficiency of the algorithm for
certain tyves of oroblem. Acton [1] strasses the
importance of "suiting the tool to the task" and
exploiting any special featurz2s of a set of =gquations to
be solved. It 1is thus highiy desirable that the
orogrammer should be awarz of the tyoe of 2gquation which
the wuser 1is 1lika2ly to5 encount2r and to include, if
possible, in his testing some functions which hava arisen
from similar applications or which ovossass comparable

faatures.

The possibility of acceoting 2 wvalue which 1is not
actually an approximation to a root has potantially more
sarious consaguences. Such an eventuality will ba
r2ferred to as insscurity. In the results obtainedq
[Chaptar 4] it will be seen that routines freqﬁently
accept 2 discontinuity as 3 valid root. It is advisable
for the us=2r always to regquest a orint-out of function
values and estimates of Adeorivatives, if available, to

guard against such occurrsnces. Many oublished orograms
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also provide a count of the number of iterations pearformed
for =ach root; such information can be halpful as a staep
rise in the number of it=2rations may indicatz a move away
from the r=2gion of interest or an unr=liable astimat=2 of a
root. Problems can also arise with 1indeterminatz
quantities of the form 0/9 such as
sin x
X ( wher=2 x is small )

Although theoretically stabls, not all machines will give
reliable‘ results near the limit; for example th=
Commodorz hand calculator SR4148R gave the valus of the
ratio as approximateiy 13 when x = 10-u. If possible
formulae should be rearranged to avoid this 'situation;
alternaéively, a‘ powar series approximation to a
transcendental function may de of use in the detection of
limits (and might, incidentally, be guickz2r to evaluate
than the library function). Other safaguards against the
acceptance of incorrect answars include function
avaluation at neighbouring voints, consideration of the
practical problem from which the =23uation arose and
r2peating the calculation with different initial 2stimates

and/or an alternative algorithm.
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2.6 MAINTENANCE AND CONVENIENCE FOR USER

Suitable oresa2ntation of softwar= is another f=2ature
generally applicable to vrocedures which it is anticiopated
will have frequent and widespr=2ad use. It 1is not
appropriate here to discuss in iet;il those asovects of
programming which make a3 routine easy to correct and
updata but the needs of the user should be consider=d when
choosing an algorithm and deciding upon the manner of 1its
implementation. Generally, the mor2 complax the method,
the less rzadable the program and th=2 more provisions will
need to ba made for possible tyoes of failur=. Similarly,
the more sophisticated ws wish to mak=2 the oprogram in
order to imorove efficiency, the more information will be
raquir=24 from the user and the number of inout ovarametars
may become unwieldy. If the M"revers2 communication”
system is adooted in order to allow flexibility to the
experianced user it may be n=2cessary to proviie subsidiary
orograms to enable the routine to be used by the non-
spaecialist in a straightforward way for the solution of
"simple"'problems. Cl23ar Adocumentation, sample calling
programs and guidance on the choice of convergence.

criteria can be of great assistance to users.

Possible sources of failure cannot all be or=dicted,
hut the designer of the orogram should endeavour to forsee
as many difficulties as ©possible and arrange for
explanatory messag2s to be outout. Failure to 4o this can

result in the orogram terminating oramaturely for reasons
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which are not at all obvious to the user, run—-time errors
being notoriousWdifficult to trace on many systems. Such
failure oftan manifests itself as overflow or underflow
messages which can arise from numerous points in the
proceadure. At the .very l=ast, orovision should be made
for checking the validity of the input (which may arise
from. another subroutine and not be s=2en by the user) and
for limiting the number of iterations to a fixed or

user-suppli=d maximum.

Time and car=2 at the testing and documentation stag=s
can contribute2 greatly to the reliability and length of

life of the program.




CHAPTER 3

ITERATIVE METHODS

3.1 CLASSTFICATION

Although metbods of obtaining numerical solutions to
equations have b2en of interest to both pﬁre and applied
mathematicians from ancient times, the development of a
classification syst2m for algorithms has come about
concurrently with the increasad usa of ~ computing
machinery. a racent comprehengive the&ry of such
algorithms was put forward in 1964 by J. F. Traub [43].

Iterative formulae ar=s classified according as

1. they are single-point or multi-point

2. they requir=2 or 4o not rejuire the use of a memory

facility.

Singlzs ovoint methods introduces only one new value of the
independent wvariable at =2ach iteration, all r=2quired
function and deorivative values b=2ing calculated at this

point or being re-usa2d from opravious iterations.
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Multi-voint methods requirzs two or mor=2 previously unused

values of the independent wvariable at =2ach stage.

A memory facility will be n2eded when the 1itesrative
formula 1involves oreviously c¢alculated wvaluzs of the

function or its derivatives.

Within each of the four r=2sulting categories, Traub
examines the order and efficiency of various algorithms.
Some general observations can be made concerniﬁg
algorithms of particular types which may influence thé

choice of method for a given egquation.

3.2 ONE-POINT METHODS

The procedure without memory will be of the form

"

Kew = PU R B0 €] )
”for som2 function ¢. Traub oroves that the informational
efficiency as measgred by the index o/n, wher=2 p is the
order of convargenc2 and n is the total number of function
and derivative evaluations at the new point,cahnot exceed
unity €for methods of this tyoe. ' Hence an optimal
one-point method without memory has =2fficiency equal to
unity, and such a method can be constructed for roots of
any multiplicity and any chosan order o. It is also shown
that such a method must depend exvlicitly on thza first

P

(p -~ 1) derivatives of f.
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If the us2 of memory is pérmitted, the general one

point method may be r=2oresentad:

' / T / Z

Xep, = ¢( Xe o8 bE0 b€ seeesXeny €t p€eay sEeoy 4l )
Traub cohjectured that the order of a3 one-ooint method,
with or without memory, cannot exceed (n + 1), n being
defined as above. This result has since been proved, €for
examole by Brent, Winograd and Wolfe in 1973 [9].

The order of the method approaches (n + 1) as we
increase the extent of ra-us2 of §re§iously calculated\
~values and the limit is approached sufficiently rapidly
fﬁr the introduqtion of large amounts of previoﬁs 4ata to
be 6f little practical use. Hence methods of this tyoe
will wusually mak=2 use of either one or two previous iatar
points only. It further follows that the Traub efficiency
index will be less than (1 + 1/n) so that it will also be.

desirable to limit the number of avaluations to be.carried

‘out at =ach it=aration.

Derivative Methods

It can be coﬁcluded from the above that, =even with
the use of unlimited mamory capacit?, 3 one point method
will require the evaluation of at l=sast one Jerivative  of
the function if th2 convergence rat=2 is to be of order two
or more. For many functions this will orove to be a
sarious irawback to the orocedure. Xronsjo [25] =2xpressas

the 4ifficulties thus:
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"In the case of numerical Adifferentiation the
problam 1is inherently unstable and so no good
computational methods can be expect=2d to exist
at all" '
The oroblem is lik=ely to be exacerbat2d in the cass of
2igenvalue ©oroblems by the formulation of the function as

a determinant. This adds a formidabl-e amount of

comoutation to the probable numerical inaccuracy.

XKronsjo's remarks may be considered an overstatament,
however, as there ars a number of particular equations for

which it is f=2asible to 2valuatza 42rivatives, €for example:

1. Differesntial equations where the given equation may be
used to gen=2rate wvalues of the derivatives from the

function values.

2. Functions for which analytical diffsrentiation 1is
straightforward; oolynomials 2are the most obvioué
such case. The methods of Newton and ULaguerrzs have
bean wused with considerablz success in this context
[46]. When closely-related functions 2.9, sine,
cosine, exponential) =3pvear in the function and its
darivatives, the computation of the 1latter can be

quite economical.
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3. PFunctions defined in the form of integrals.

Wilkinson has ooint=2d out [46] that in the region of
3 simola root the relative arror in thé comput=24
derivative wili be smallzar than . in the function wvalu=.
Hence 3 derivative method (such as Newton's).will have the
advantage over interpolation methods (such as Muller's) of
stability within the zone of indetesrminacy. It may then
be advisable to choos=2 a derivative method in cas=s where

this is feasiblza and a high degr2e of accuracy is desired.

Attention 1is being given to the dzvelooment of
methods which replace the derivative by som2 suitable
approximation. This will involve interoolation and h=ance,
for a single ooint method, requirzs use2 of memory. This
approach may yi=1l4d formulae which are already 1in common
use; for examplz, Newton's method wiﬁh tha gradient
approximated by the straight 1line throuéh the ooints
(x;-, +£i=y) 2and  (x,,f;) must clearly vyield the szacant
method. Some new formulas have, howaver, been produced
from such —considerations. In addition, Dahlguist anAd
Bjorck - [13] remind us that methods which ar=
mathematicall? equivalent ars not necessarily numerically
aguivalent in that the beshaviours of rounding arrors may
ba qJuite different. The introduction of the a2mory
requirement also increases the risk of instability a§ with
certain opredictor-corractor methods for solving ordinary

differential =2gquations.
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Direct Intervolation Methods ‘ .

Many of the non-derivative methods curr=2ntly in us=2
consist of fitting a simpl=ar function of svecified form
g(x) through the point (x;,£;) and one or more oreviously
calculatad data points. Solution of the equation g(x) = 0
then provides, in most cas=2s, an improved =2stimat= of the
requir=sd root. With these objectives we can define 2a
large class of single opoint methods with memory. Ihe
following descriptions <cover intervolation methods which

are widely used:

The Secant Mathod

Let x and x; be two successive distinct estimatss of

=1
‘the root. The straight 1line through (x,., ,€;,,) 2and

(x;,€;) has =sgquation

g(x) = X = X, £, + (x - X; £
X. = X Xy - X;

‘ =i

and solution of the equation g(x) = 0 vyields the next

agtimatz

Xoor TR T (xi - Xi—i) £:
: N

(s, May be inside or outside ‘ths interval (x;, ,x;);

X
thas2 will be referred to as 1interoolation and
axtrapolation steps resvectivaly. Houszholder [22] shows

that the asymptotic behaviour of the algorithm 1is
dep2ndent uoon thz signs of £ and f” in the Eoilowing

mann=2r:

If €,.,  and £, both hav=2 the same sign as £ , the
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subsequant it=2rations will 311 be axtravolations
(Fig 3.1), otherwisz the pattern consists of cyclas of one

axtrapolation followed by two interoolations (Fig 3.2).

‘f-'\% 3.1
/] \
3; >0 )
e = o) l’ 14 .t
§. >0
/ Xy X, =y >x.
'F% 3.2
“”
‘: < QJ L= o) ‘/ l/ s




Ostrowski [35] proves, using interovolation theory and
the mean wvalue thzorem, that the order of convergence of
the secant method is (1 + /E)/z = 1.618. Since the methoAd
r=2quires only one n=2w function evaluation at =ach
iteration subsz2gquent to the first, the Traub and Ostrowski
2fficiency 1indices are each aporoximat2ly 1.618 which is
superior to the Newton method. A hon—rigorous derivation
of the order of convergence, based on the methods of Acton

[1] and Xronsjo [25], is given in Aooendix A.

The Regula Falsi M=2thod

This method has a similar formulation to the secant method
but consists entirely of interoolation steos. At each
stage we use the ©ovoint (xi,f;) and th=2 most recent
previous itesrata whiéh oroduced a function wvalue of
opposite sign to f£.. Ultimatzly we are regquired to retain
ona end point throughout and this r=2duces the order of
convergence to linear. The advantage over the bisection
method 1is not then subétantial so the regula falsi method

is rarely used without modification:

Muller's Method

This direct interpolation method consists of fitting the
unique parabola g(x) through the points

(x Eioa)r (x0 o0, and (x.,£;)

-2’
In his original formulation of the method, Muller =2moloyed

Lagrangian interpolation to give



g(x) = £;(x = x;_,)(x = x;_,) + £,_, (x - x{) (X = X({-3)

(X=X ) (%= x4,) (Xioy = X)) (X =%Xi-y)

+ £, (X = X)) (X = X<y )

(Rioa = X)) (%4 =%X:oy)
but Traub [43] suggzssted that use of the Newéonian
interpolation formula
fi+ f[x;,x;_‘](x - X)) + £% % X, 1 (X = X)) (X - Xy )
where £[x;,x,_, 1 and £[x;,x;_, ,x;_,] denote the first ang
second divided differences respactively, will simplify the
solution of the gquadratic and will also r=duce the amount
of comoutation. neéessary to evaluatz the next estimat=.
Thus we obtain

X. = X, - 2¢€,

(+1 . '

W + {wl - 4f;f[xi,‘{‘_| ,xi‘-’.]}‘/j—

where w = £[x, ,x._, 1 + (x;=- 2. VEIx; rX;o) 7%;., ]
Iteration hence ©vproceeds using the threse most rtecent
values of x at each stage. Comoutzr routines which use
the Muller method generally adoot the Traub formula (i).
This formulation also ensures that thé selact=2d root of

the quadratic is always the one closer to x;.

It can be shown that the order of convergence of the
Muller method 1is approximately 1.84. Thre2 starting
values ar=2 needed but =2ach successive itaration raqguires
one function 2valuation only so that the efficiency index

is again 2qual to the order of convergence.
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A frequently cited oroverty of the Muller method is
its ability to vroduce complzax itarates from ourely r=al
starting valu=s. This can be wus2ful in a breliminary
search for comvlex roots but, conversely, may involve th=
use of complex arifhmetic when only real roots are sought.
Small imaginary parts may be suoprassed in these
circumstances by setting the sguare root term 1in (i) - to
zero (for example in a progfam by Barrodale and Wilson
[6]1). It should be noted, however, that computation of
complex roots is not confined to Muller's method.
Provided we allow a complex starting value, ﬁethods such

as s2cant or Newton can also converge to a complex root.

Higher Order Polynomial Interpdlation

Theorztically it would be vossible to fit polynomials of
higher d=grae, butAthé oot2ntial difficulties of solving
the resulting 2gquation and s2l2cting the aopropriatz root
are prohibitiva. 1In addition, the order of convergence:of
such methods could not exceed two, 2and the consaguent
r2duction in the number of function evaluations would be
slight [46]. Since th=2 occurrence of instability 1is
frequently associated with the use of the memory facility,
this would constitute a further disadvantage of

higher~-order m=2thods of this type.



"Interpolation by Rational Functions

The idea of approximation using rational functions is
mentioned by Ostrowski [35] and is developo=2d in greater

jetail by Jarratt and Nudds [24].

Three point rational interovolation uses a function of

the form
g(x) = _x - A
8x + C
so that the equation .g(x) = 0 has ths unigue solution
X. = A
(23]
= x, - (%; =%;.,)) (% =%, )€ (£, =€)
(= %, V(B =€) Ey = (xi= x ) (Bi- €y DBy

The point x._ is then reject2d 2and the next iteration

2.

uses the points x; , , X, X, .

It is convenient for practical implemeéntation to us=2

Thiele's interpolation formula which gives

X:,, = x; = fo0(x;=x;,,) + (g -f:)hi]/qg;
wher2 g, = x; - x., + £ and h; = x; - x;
h, - h; £ - £y
are the second and €irst . resciprocal differances

rasoectivaly [31].

For simple roots the rate of convergence of threé‘
point rational int=rpolation 1is the same as that of the
Muller method but the formulation is simoler 2and comolex
arithmetic is not involvad in th2 daotzrmination of real
roots. Th2 mathod also has the advantage over ovolynomial

interoolation of morz successful oerformance in the region
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of a simpl2 vole of the Eunction. On the othar hand, the
convergence rate for multipl2 roots is only lin=ar which

compares unfavourably with Muller.

The method may be g=nerialized by using 2 ovolynomial
of higher degree as the denominator. Again, the
improvemant in soeed of convergence is not sufficient to
warrant the use of such formulaz unlass the function is
excaptionally expensive to evaluate. TIf a higher Adegr=e
polynomial 1is incorporated in the numerator, the solution
of the 2quation g(x) = 0 will no longer be unigque and such
methods are unlik2ly to be convenient for oractical

purposes.

Inverses Intarpolation M=2thods

For a continuous function f£(x) having a simole root
or a root of o044 multiplicity therz exists an interwval
[a,b] containing the root such that an inverse function
£7' can be defined as follows:

Let y = £(x) whera xe[3,b]

then £ (y) = x with ye[f(a),£(b)]
At the root y = £(x) = 0 so that x = £ (9).
Hence, if an approximation g(y) to the inverse function
£ can be found, an 2stimatz of the root can be obtained
by evaluating the interpolating function at =zero. It 1is

not then necessary to solve a polynomial =2quation.

Inverse Linear Interpolation -

The straight 1lin2 through the ©points (fl
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(f£; yx;) may be written:

3(y) =<Y -f;_,) X, +(Y-fi)xi-—l

Putting y = 0 gives

3(0) = x, = x - [x =%, £
£ - £

which is the s2cant method as before.

Inverse Quadratic Intervolation .

Interpolation wusing the three points (£, ., rX520)
(£,., rx;2,) and (f;,x;) Igives:

J(y) = x,(y = £, )(y = £,.0) + %, (y - E)(y = £:29)

(£;= £ ) (£:- £.20) (fifl - B (fa - £l

+ X2y = £0)(y - £i2)

(fi-:. - fi)(fé-x' £i-1)

=0 900 = ¥ = Fio fia % o i fa xie
(fi" £:-4 Y(£: - f,:_,_) (fl—a— fi)(fi-.l— f;_,_)
which is usually used in the form: St §i-r xia
Y ) (Si-x ~§)(§e-a~5§:0)
Xiw = % - + Eifi ( ! - 1
Elx;rxioy ] (€, - €£i-2)

f[x".,xi_| ] E[Xc-, Ix;—).]

The order of convergence for simple roots is of the
sam2 order 3s for the correspondiing diract method i.s.
1.84 aporoximately. The oprincipal advantage over the
direct method is the simoler formulation and the
unijueness of 2ach estimate. Tt 1is also convenient to
avoid complex arithmetic in the Adetermination of real

roots.
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Wilkinson [47] finds, howaver, that inverse‘ methods
ars not generally satisfactory for the =2igenvalue problam,
varticularly in cases of multiole roots (clearly roots of
aven multiplicity cannot be d2termined by such means as
the inverse function is not uniguely defined in any region

containing the root)

3.3 MULTI-POINT METHODS

Methods of this tyoe involve the usz2 of two or more
previously wunus2d data points at each iteration and are
being investigated with a3 view to reducing Adependence on
derivative wvalues in addition to increasing efficiency.
In particular, such methods will not be sﬁbject to the
rastriction that the order cannot eiceed (n + 1) where n
is the number of function evaluations r=2quired for <2ach
astimate. The multi-point methods which have been
formulated are dependent upon approximations to
derivatives by function values and/or derivatives of lower
order and are based on one or more single voint methods.
When one method only is used, 3 recursive formula may be
set up which is simple to program. For example, Newton's
method may be employzad as follows:

Let  )Z,= X; and  x.,, = )f(x;)

¢ ot

(X;) - £ )&-.(X;)]
f/(xc)

where ks(x;) = %S“

When p = 1, this reduces to the standard Newton method.

Each successive value of p defines 3 line oarallel to the
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tanéent at the ooint (x;,f;). Fig 3.3 illustrates the

case p = 2.

F\% 3.3

X
b
»
T~
X
—
K

The method is of order 3 for a simple root and r2gquires
two evaluations of: the function and one of its first
derivative at each iteration. The computation can be
arranged as a series 'of itarations with a fixed small
value of p or as one looo with »p increasing until the

raquired degree of accuracy is obtained.

The composition of two different iterative mathods is

illustrated by the Newton-secant mathod viz:

z, =%, - f£(x;) and X, =2z; - €(z;)( z; - x;)
£ (x;) | £(z,) - £(x;).

dare z; is found by Nawton's method and is then combined

with %, by the secant method as shown in Fig 3.4,



l
I
I
l
|
|
I
I
!
|
I
L

]

Xi+y i

The order and number of function evaluations per iteration

are the same as for the previous =xamole.

For =2ach of the above examplas the Traub 2£fficiency
index p/n =1 but this can be imoroved considerably. It
has been conjecturad by Rung and Traub [27] that a
multi-point it=rative method without memory based on n
function evaluations p=2r iteration has optimal order fdand
such methods have indeed been constructad. The
introduction of 2a memory facility can giva further
improvement. A simple e2xample of this tyoe 1is the

composition of szcants method{: illustrated in Fig 3.5.



Each 1iteration wuses the two vpoints (x: ,E(x:)) and

f(z;,f(z;S) thus:

Let O, = f(z;) - £(x;)
z;, - X
then define z,,, = x, - f(x)
B
and X = z

- £z, )
A;

The order of the method is (1 + ./2) and two function
avaluations are required at =2ach itzsration, so the Traub
afficiency 1index 1is approximately 1.21. Multi-ooint
methods 40 not feature prominantly in published programs
to d4ate, but their favourablz rate of convergence would
indicate that they ar=2 worthy of Adevalooment. Some
.experimental obsarvation of accumulated rounding ercrors
woﬁld also b2 helpful as the number of comoutations over
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iteration will necessarily bz somewhat greater than for
2ach of the individual algorithms on which the formulation

is baseqd.

3.4 MULTIPLE ROOTS

The lik2lihood of ill-conditioning in the‘ cas2 of
multiple roots is apparant from the flatness of the curve
in the vicinity of such a root; it would hence be
optimistic to expect the same order of accuracy as might
be 3attained for a simpl2 root. 1In such circumstancas we
must be prepar=d, ther=2fore, to acceot a larger rzagion of
indaterminacy or resort to double precision arithmetic.
The order of convergence of an itsrative method is also
genarally reduced when the' root is not simole; for
axample, 1in the case of a double root Newton's method has
linear convergence whilst the order of convergence of the
Muller method is about 1.23, so that Newton's methqd is a
particularly ooor choic2. The cas2 of 3 multiple root of
aven multiplicity is further coﬁplicateﬂ by the fact that
thers is no change in sign of the function on either side

of the root.

If a is an m-fold zero of the function f(x) we Thave
that €(x) = (x -3)"g(x) wher= g(3) ¥ 0. Th= function

£(x)

a(x) =
£/(x)

then has a simplz root at x a and can be us2d in plac2

of f£(x) oprovidad that the derivative f'(x) can be founi.
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(n=1 , Vi
The functions fm )(x) and f/ (x) will 2also have simple

z2ros at this point.

For all these adapted funqtions w2 hav=2 the oroblem
of dstermination of derivatives and/or the multiplicity of
the root. Furthermore, the function evaluations will
generally involve mor2 computation than for the original

function.

In thes absence of a priori knowledge of the
multiplicity m, Traub [43] shows that
lim 1n|f(x)]
x=->o% 1n{u(x)|
u(x) being defined as above. Thus, if a derivative method
is being used to determine the root, wvalues of th= ratio
In|f(x)|
1n|u(x)]
may be output after each itsration until convergsnce 1is
apoarzant and a switch madse to an itarative formula
aporopriate to m. When it is not oracticable to detz2rmine
m, Selaction of the best algorithm is Aifficult; inde=d
Traub conjectures that:
"It 1is 1impossiblz to construct an ootimal
iterative formula which does not Adep=2nd

2xplicitly on m and whos2 order is- multiplicity
independent."

- 51 -



The above ramarks also apply to some eoxtent to
closaly ovacked roots which should be regard=d with similar
caution and may constitute a3 more important oractical

problem.

3.5 SELECTION OF METHODS FOR TESTING

The specific programs to be discuss2d in the next
cha§ter have been select2d on the basis of their
suitability for wuse with a wide range of functions
(including transcendental) and their ovotentiality for
dev2looment to cover cases of complex roots. As some of
the eoxamplas to be considered arise from eigenvalue
problams, attention will be given to the capacity of the
chosen routines to cope with the special features of such
functions. For these r=2asons, derivative methods will not
be considered further; the computational difficulties and
amount of work involved, varticularly in association with
jeterminants, offactively restricting their usafulness to

polynomial eguations.

Published orograms for the solution of 2quations are

of two distinct types:

1. Thos=2 which guarantee convergence for roots of
continuous functions. In return for such guarantee,
of course, tha user must be able to supply a valid
interval for each of the required roots (i.=2. 2an

interval (a,b) such that f(a) and £(b) ar= of opposite
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signs and which is known to contain no other roots)

2. Methods which require only one starting wvalue and
which will search for a number of roots with or
without further intervention from the user. The
raquirement for initial estimates 1is c¢learly l=ss
string=ent, the responsibility for this search being
transferred to th2 machine. It 1is evident that
failure will be a far more fregquent occurrence with
such routines, but since many functions arising in
practiée cannot be fully analysed theoretically, the

inclusion of such programs must be r=garded as vital.

The bisection method will satisfy the criteria for tyoe 1
but its conv=2rgence vrate is too slow for it to be
practicable as the sole method. It is, how=avear,
fragquently used in conjunction with other methods in orier
to retain the necessary interval for the root. The other
algorithms to be consider2d may 2all be classifi=d as

interpolation m=2thods of tyves described her=zin.




CHAPTER 4 ' ‘

SOME TEST RESULTS FOR REAL ROOJTS

The selaction of algorithms for t=2sting has been

confined to those which ar2 available as fully documentzd
\

user orograms in order that comment may e made on
faatures of communication with the user. Six programs are
considerzd, thr=2e of which ar= "intzrval methods" as
defined in the previous chaotzsr, the r2mainder being
"search methods" which  may require only on2 initial
estimate for all the rsjquired roots. Particular attention
will be given to the state of develooment of the 1latter
type2 Dbacause of its potential use in the detarmination of
com§1ex roots. Direct comparison of thesa two tyoas of
method is Adifficult as the search routines must in many
casaes incorporate suppressioﬁ of %Xnown roots; this 1is
unnecessary where a s=2parate interval is suoolied for each
root. The tol=rance criteria offered are also markedly
diffarent. Choice of a2 suitable routine €for a given
problem will be govarned by the availability of initial
astimat2s and the r=2lative importance of r=liability and

afficiency.



The results quoted 1in this chapter were obtained
using the DEC-10 machine at Middles=x Polytechnic, except
where otherwisz stateqd.

4.1 THE SELECTED PROGRAMS

Interval Mesthods

34) NAG Fortran Library Routine COS5AZF [33]

This program imolements a modified wvearsion of the
procedure "z2roin" due to Bué and Dékker [10]. This
algorithm is based on ths secant method but s=2eks to
retain a wvalid interval for the root at =2ach stage in
order to éuarantee convargence, If the asymptotic
behaviour 1is of the Eype illustrated 1in Fig 3.1 this
fbrces the adoption of a tegula falsi procedure with
consagquant detzarioration in the rate of convargence. To
remedy this shortcoming a scheme is devised which retains
at 13ll stages two points, » and ¢, having function wvalues
of ooposite signs. The s=2cant method is applied using tha
best curr=ently availablzs a2stimates a and b (in the sensa
of smallest function values) wherz2 |£(a)|>IE(b)]. This
estimate 1is accepted if it lies in the curreﬁt interval
[b,c] and is closer to b than the mid-point of [b,c].
Otherwise bisection 1is applied to the interval [b,c]. A
further modification introducss a rational' interoolation
stap in the <case of two successiva estimatzs being very

close tog=ther whilst the interwval [b,c] remains
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unacceptably larga. This accelerates the orocess in soma
cas2s of slow convergenc2 and the authors claim oarticular

success with zeros of od4 multiplicity.

NAG routine COSAZF employs raverse communication and
the documentation provides a sample calling orogram (a
direct communication routine is also available). Aall the
convergence criteria arz bas2d on interval length, but
provision is made for ta2rmination if the computad function
value is zero. Another =2rror indicator allows for
possible detection of a pole of £(x) in the given

interval.

B) Subroutine ZERDJOIN - Forsythe, Malcolm and Moler [17]

This is 2 FORTRAN version of an ALGOL ©orocedurs by
Brent [3]. The basic algorithm 1is similar to that of
Dekkar but inverse quadratic interoolation 1is employeqd
whenaver the points 3a,b and c‘ (as defined above) are
distinct (i.=2. extraoolation staps); " rational
interpolation 1is not used. e should expect the more
frequent use of a higher order 1interoolation formula to
ra2duce the number of function 2valuations raquired for
"well-behavead" functions but Bus and Dekkar [10] have
found that Brent's method is less successful in the ragion

of a high ord=r inflexion ovoint.



The implamentation of Brent's algorithm used here
incorvoratas som2 safzaguards against underflow and sets a
mix2d absolute and r=2lative tolerance condition of the
form 4.0 EPS|x| + TOL where EPS is the ralative machine
.orecision and TOL is the usar-supplied tolerance €for final
interval length. The routine does not wuse raverse
communication so it was nec2ssary for these tasts to
incorporate a further output varametzar to count the number
of function =2valuations. ~The point b is automatically
accept2d as a root if the computed value of f(b) is zero.
The final function wvalue is not 1included in the output
paramaters; the us=2r may consequentiy nead to ex=rcise

caution in the interpretation of results.

C) N.P.L. Algorithms Library, Real Procedure ZERD -

Cox and L2hrian [11]

Let the most recent valid interval for a root be
[a,b] where |£f(b)]<|f(3)] 2and l2t m be the mid-voint of
[a,b]. The algorithm imolemented in this ALGOLSD
procedure uses rational intervolation/extravolation where
this produces an estimate within the 1interval ([m,b],

otherwis=2 bisection is us=4.

An absolute tolarance for the root is sa2t by the usar
who is also r2quired to suoply a3 maximum number of
iterations for =2ach root, a value of 25 being rescommend=1.
If this 1limit is reached the best currently available
estimate is output; such provision 1is important when
raverse communication is not used as it prevents the total
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loss of useful information. Again, an estimat=2 x will be
acceptad as 13 root if the comput=2d value of £(x) is zero
but oth=zrwise it is 1left to the user to examine the

magnitude of f£(x).

The us2 of rational int=rvolation in ovlace of the
secant method may ba expected to woroduce faster
convergence than the Bus and Deskk=2r method. The orogram
was found, however, to be not complately oortablza and som2
r2arrangement was found to be necessary for \use on the

DEC10 which incorbbrates a one-paés ALGOL compiler, this

necessitating a r=2-ordering of the vrocedures.

Search M=thods

D) Function ROOT1 - Gaston H. Gonnet .[18]

The purpvose of Gonnet's paver "On the Structurs. of
Z2ro FPinders" is to Ademonstrat2 the 2advantages of a
raeverse communication procedure and to present a FORTRAN
function subprogram ROOTL which implaments this approach
to zero finding. A return to the <¢3alling orogram after
each it2ration allows the user considerable flaxibility;
for example, h2 is able to set a maximum number of
function evaluations and control the stovping criteria.
Such input parameters can be adjustzd between 1itarations
if they apvear to be unsatisfactory. It may also be
possible for the usesr to detesct difficulties and Aarrang=
for termination of 2xecution thus avoiding waste of time
in o2rforming unhelpful iterations.
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Sonnet 4qo2s not provide 3 sample calling orogram for
his routine, although he gives an outline of the orocesdure
to be followed; raverse communicatién will 1inevitably
impos2 greatar demands upon ths us2r than the direct
method. Appendix B is a copy of the orogram used for the
tests herein and 1is designed for interative use at a
t2rminal. A root suoprassion procedurs has been
incorovorated to facilitate the calculation of saveral

roots from one initial estimat2 and each root accepted 1is

used as a "stepping-off" point for the next s=arch.

The aléorithm usas Muller's method where ©vossible;
failing that, the s=2cant method and then bisection are
attempt=2d. ROOT1 returns the next eostimat=2d wvalu=z of «x
ahd the usar must then compute the next function value and
test for acceotability before returning for further
itsrations if desired. The user is required to orovide
one initial sstimate x,; at the second entry ROOT1
returns the estimate x, + £(x.), the next iteration uses
the secant method and thereafter the géneral scheme
oulined abovz 1is follow2d. A default value of 80 is set
for the maximum number of iterations per root, but this
can clearly be r2duced if desired. After 30 iterations
havae been performed the bisection mathod is us=24
exclusively whenaver a sign change interval has been
detected as the function 1is then consider=2d4 1likely to

possass f=2atures of difficulty.



>

Other us=2ful f=2atures of ROOT1 include instructions
for conversion to double orecision, the calculation of an
estimated derivative in certain circumstances and the
orovision of s2veral =2rror indicators. It also provides
the length of the interval of uncertainty whenever such an
interval is available. TIn addition to the freedom of
re&erse communication, the author <c¢laims a favourable
comparison with othar algorithms in respect of the number

of function evaluations over a variety »f functions.

B) A FORTRAN Program for solving a non-linear =2gquation

by Muller's method - I.Barrodal=z and X.B.Wilson [5]

Subroutine ROOTS together with the function deflation
subroutine TEST 1is design2d to calculat=z the reﬁuired
number of r=2al anﬂ/ér comolex roots with or without
user-supplied initial =2stimat=s and uses the Traub version
of Muller's method throughout. The three starting values
for the algorithm ar=2 taken as x,- 0.5, x_, and x,+ 9.5
wher=2 x_ is the user's estiﬁate of the root sought; if x,
is not suppli=2d, it is set to z2ro. The "stepping-off"
points for second or subsequant roots arz supplied by the
user or, by default, ares set to zero. Sovecial features
include 3 halving of the st20 1length in cases where
divergence 1is indicated by a large function wvalue and a
modification to the currant estimats in "flat" regions of
the curve in order to improve the gfficiency for multiople

roots.



Two convargenc2 criteria are offered viz. telative
change in x wvalues and absolute function valu=. ROITS
provides default wvalues of 0.5 x 10-5 and 1.0 x,lo-‘
respactivaly for these, wvalues which may necassitate an
amendment to the d4ata statement, ovarticularly when the
porogram 1is to be implement=2d in double orecision (2
subprogram is oprovided for this opurpose). A further
chang2 to the root-finding routine is reguired if thzs user
wishes to extract the numbers of function =2valuations
takan for =ach roof since this 1is calculated but not

included in thz parametar list.

Failure is indicated in some cases of invalid input
and also when the wuser- supplied maximum number of
iterations is =xceeded. The diract communication aporoach
adooted is straightforward to us=2 but could result in loss
of valuablz information in casas of failure (other than
maximum itsrations in which «case the best available
estimate can be output). In oarticular, if the number of
roots ra2gquestad exceeds the number which can be foﬁnd by

the algorithm, an overflow failure may be anticioatadq.



F) N.P.L. 1Algorithms Library FORTRAN Subroutines RTFS1C/Z

- S.J.q93ammarling, P.D.Xenward and.H.J.Symm [20]

These r=averse communication routines are ths most
flexible and ambitious of those considered herzin. They
are Adesigned for the calculation of complex roots,
although all the computation is operformed using r=al
vectors so that the double precision version RTFS1Z may be
used when Adouble oprecision comolex arithmetic 1is not
implamentad. The original version of the oprogram used
Traub's version of Muller's method only; an ootion of
three-point rational interpolation has now been included
as a rasult of favourable 2xperiznce with the orocedure
ZERD of Cox and Lehrian (described in C abov2), In both
cas2s linear interoolation is attempoted if the three ovoint
method would cause irrecoverable overflow. A parameter
list for RTFS1IC/Z has been included in Aovendix C as an
indication of the scope2 of the orogram and the conseqﬁent
demands upon' the user. Thesz2 subroutines arz part of an
extensive 1library and ¢all wuoon a number of other
subroutines; in particular routines are availablz which
allow a close check to be ka2pt on vossible sources of
overflow. Storage and timing ra2quirements may be somewhat
gr2at=2r than for s21f- contained routines, but this should

only be significant for very simolz functions.



RTFS1C/Z seek to improve the r=2liability and accuracy
of the search method by off2ring a versatile selection of
options which enable the user to exploit to the full his
knowladge of the function under consideration.
Suppr2ssion of known roots is incorporatza2d at =ach stage
of the routine. The inclusion of the parametar BOUND is a
guard against unexpectadly lafge estimates of the root and
also provides an automatic te;mination when no mor2 roots
can be found. 4 perturbation is made to accalarate
convergenc2 when this appears to be slow. Other fezatures
of varticular note are the voprovision €for scaling of
function wvalues, the inclusion of an automatic stoooping
criterion in addition to the standard tests, a choice of
ma2thods for obtaining initial =stimat=2s for sacond and
subsegquent roots and a compr2h2nsive sa2t of values of the
parameter INFORM to monitor progress and to indicat=2 the
acceptance criteria used for each root. The docum=ntation
includes a sample main program and further advice for
users. A version RTFS1R which usas rational interoolation
to <calculat=2 real roots only is in cours2 of preparation.
This will, in addition to the facilities offz2red by the
complex —vroutines, enable the user to detact and ra2tain
intervals for the roots whenever ovossible. (This was

found to be a useaful f2ature of orogram D above.)



4.2 EFFICIENCY

Simple Roots

The numbers of function evaluations r=quired to
obtain simple roots of some straightforward functions are
compar2d in table 4.1. 1In the case of program E, real
roots only are requestz2d and for orogram F the rational
interpolation method has been used exclusively to ensure
that 2all iterates ares r=2al. Single pracision computation
has been us=2d throughout and the accuracy regquirements
have been chosen well within machine pfecision. The
"interval" methods all offer termination criteria based on
interval 1length; the tol2rance 1level set here is an

absolutz value of 10~% for the final interval length TOL

()

XC

(]

pt whers oth=2rwise2 stated. (Program 3 combin2s the
r2lative and absolute criteria but the relative tolerance
is comparatively small.) For the "search" methods, the
critaria adoptad have bean 2 (< 16%' or 7 < 10-‘ Qﬁere s
is the ralative  tolerance | (%, - %x,.,)/x.| 2and
M = ;f(x,)[, although it should b2 not=2d that oprogram D
will only invoke tha former tast if the routine has
detect=ad a v%lid interval for the root (in oractice, for
simpla roots, this will wusually b2 the2 c¢cas=2.) Thes=2
tolerance levels will corresoond roughly t» an accuracy of
four significant figures for the ovarticular functions

under consideration.

- 64 -



Where it has proved possiblz, the s=2arch routines
hava been instruct=2d to find all the required roots from a
single user-suppli=ed estimat2, suppression being employed
after =2ach root 1is found. Whean this has baen found
unsatisfactory a separate estimatzs has been used for each
root; in such c¢ases root supprassion has not been

necessary.

Functions which would be fitted esxactly by any of the

interpolation formulae used have been omitted.

On pages 66-68 are 1listed the functions tested,
together with the numbers of roots regquestad, the initial
intervals for programs A,B and C and the initial estimates

for programs D,E ani F,.



Functions

Tast2d in Table 4.1

1.

2.

7.

FUNCTION

No.

ROOTS

(x-1) (x-2) (x=3) (x-14)

(x*+x-1) (x*-x~-1)

X" - (1-x)" with

a) n=3
b) n=5

c) n=10

[1+(1-n)* ] x-(1-nx)*

with a) n=1
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INITIAL INITIAL
INTERVAL(S) VALJE (S)
(0.1,1.1) 9.0

(1.1,2.1)

(2.1,3.1)

(3.1,4.1)

(-2.0,-1.0) 0.9

(=1.0,0.0)

(0.0,1.0)

(1.0,2.0)

(2.9,3.0) 2.0

(-0.5,1.0) 1.0

(0.9,1.0) 0.0

(0.0,1.0) 2.0

(0.0,1.0) 0.0

(0.0,1.0) 0.0

(0.0,1.05 0.0

(0.0,1.0) 2.0

(-1.0,0.0) 0.0

(-3.9,0.0) 0.0
(cont.)



Functions Tasted in Table 4.1 (cont.i

10.

11.

12.
13.

14.

15.

16.

17.
18.
19.

2-0 L]

FUNCTION

xt-x-1

x> -x+1

x>=2

(x=2)*

x-4 /x-1

2Xp (-%) -X

2x exo(=1)+1-2exp(~-x)

(x—l)éxp(-ﬁx)+xK

with a) n=1
b) n=5
¢) n=10

x In(x)-1

sin(x)-0.5

/X =2sin(x)
tan(x)-1
In(x)-cos(x)
x-cos&?.?BS—x/T:;;)

1+2x™

NO. INITIAL INITIAL
ROOTS INTERVAL (S) VALUE (5)
2 (-1.0,0.0) -1.0
(1.0,2.0) 2.0
2 (=2.0,-1.0) -1.0
(1.0,2.0) 1.0
2 (1.0,2.0) 1.0
(10.0,15.0) 15.9
1 (0.0,1.0) 0.0
1 (0.0,1.0) 0.0
1 (0.0,1.0) 0.0
1 (0.0,1.0) 0.0
1 (0.9,1.0) 0.0
1 (1.0,2.0) 2.0
4 (0.0,1.0) 0.0
(2.0,3.0)
(6.0,7.0)
(8.0,9.0)
1 (0.1,1.0) 1.0
1 (0.0,1.0)" 0.0
1 (1.0,2.0) 1.0
1 (0.0,1.0) 0.0
(conﬁ.)



Functions T=2sted in Table 4.1 (cont.)

Notes:

1.

4 number of the functions listed here ar2 taksn from
the paper "3 Comparison of Non-Linear Ejuation

Solvars" by D.N2rinckx and A.Hasgemans [34]. Function

20 is due to Xronsjo [25].

Functions 5a),b) and c¢) each have an infiexion ooint
in [0,1]. Functions 6b) and c) =2ach have one turning
point and one inflexion ooint in [0,1]. Functions
14a) ,b) and c¢) are incréasingly close to the x 1axis

for increasing n.

For functions 6b), 6¢) and 7 the absolute tolerances

for the intesrval methods are 10“,10—8 ani 10-5

respectively.



Table 4.1 Numbers of Function Evaluations for Simolz2 Roots

(The figures given 1indicate the total number of

avaluations for all the r=2quired roots in each casa.)

PROGRAY' 3 B c D g F
FUNCTION
1 32 30 31 29 27 27
2 33 29 30 26 23 32
3 7 5 7 6 6 5
4 7 7 8 10% 3 3
5 a) 7 6 7 3 7 5
b) 3 "7 3 9 3 5
c) 8 8 9 11 11 5
6 2) 9 8 7 3 7 5
b) 7 7 9 6 6 6
c) 6 6 3 5 5 5
7 16 16 13 19 11 3
8 9 8 8 7 3 3
9 16 14 13 11 12 12
10 17 15 12 11 14 13
11 14 14 14 13 14 9
12 7 s 6 6 6 5
13 7 6 6 7 6 5
14 2) 7 7 6 7 5 5
b) 7 . 6 7 12 14 7
Q) 8 7 3 15% 12 9
(zont.Y
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Table 4.1 (cont.)

PROGRAY LY B c D E F

FUNCTION
15 6 6 5 5 6 5
16 26 25 26 28 33 # 32
17 7 .7 8 5 3 9
18 8 7 7 3 ) 7
19 6 5 6 5 6 5
20 5 5 6 7 8 3
TOTAL 290 268 276 285 280 251

* Underflow occurr=2d but th=2 corract solution was obtained.

( the DEC10 machine gives underflow warnings.)

# The smallest negative root was obtained in olace of the root

in the interval (8,9). :
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Multiovle and Closely-Spac=d4 Roots

Results for a small selection of such functions
(list=2d on pag=2 72) ar=2 shown in table 4.2. The tolz2rance
criteria adootad are indicated for each individual
function. {Most of these .necessitated a change to the
default values set in program E as function values > 10_‘
did not yield satisfactory wvalues for the roots.) The
Muller version of ovrogram F has been included since,
although comolax ariﬁhmetic was gsed, for these functions

only real roots wer=2 found.
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Functions tested in Table 4.2

2.

FUNCTION

(x-1)" "with
a) n=3
b) n=5

c) n=9

(x-1)

- +1
(3x-2)3

sin(x)-1+10 "

(x*+1)x

(x*=2x+1-10"¢)

- 72 -

NO. INITIAL TOL INITTIAL
ROOTS INTERVAL(S) VALUE
1 (-0.5,1.0) 107* 1.0
1 (-0.5,1.0) 107* 1.0
1 (-0.5,1.0) 107¢% 1.0
1 (0.0,4.0) 107% 9.0
1 (0.0,4.0) 107% 0.0
1 (0.0,4.0) 107* 9.0
1  (0.0,4.0) 10°“ 2.0
1 (0.0,1.0) 10 9.0
2 (1.56,1.57) 10°¢ 1.5
(1.57,1.58)
2 (1.0,1.1) 10°¢ 1.0
(0.9,1.0)

2

etk N

10

-0

10

10*36

19

-0

10

-3¢
10

=3

10

-8
19



Table 4.2 Numbers of Function EBvaluations for Multiple and

Closely-Spac=2d Roots

In the case of program F, (1) indicatass the rational

interpolation method and (2) the Muller method.

PROGRAM L 3 c D B F
FUNCTION ' (LY (2)
1 a) 44 42 26 3% 18 29 37

b) 45* 34 47 53 22% 48 75

c) 47%  37* 48 >80 10 >80 >80

2 1) 48 46 28 36 9 25 36

b) 47+ 42 47 53 19 # 34 44

c) " 51% 44% 58 >80 14 # 64 >80

3 45 49 29 32 11# 25 16

4 41 39 25 . 39 17 27 34

5 26 29 23 9 13 22 12

6 25 32 31 11 17 *% 15
TOTAL 419 385 362 >449 180  >354 >430

* Underflow occurred but the corract solution was obtained.
4 The accuracy of thesa results was comparatively ooor -
see following comments.
** Failed to find the s=2cond root; the first root being

repeatead.
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Comments on Results

Interval Methods

For the modest accuracy 1levels set, higher order
methods converge only slightly faster than the Bus and
Dekker method; this superiority is somewhat mor=2 apvarent
in the 2xamoles of Table 4.2. 1In addition, th2 rational
interpolation method of Cox and Lzahrian managss to avoid
the problam of underflow. The comparative inefficiency of
Bus and D2kker for multiple roots is demonstrated by the

successive iteratss for the function «x?*

[Apoendix D,
0.2A11]. This =2xample shows every fourth iterat2 moving
away from th2 root, this vattern of bshaviour persisting

throughout.

Search Mathods

In so far as comparison is ©ovossible, thesz2 methods
requira 3 similar number of function evaluations £o the
interval methods for simple roots, eoxceot 1in casas of .
polynomials Qhere suporassion of roots rasults in greatar
efficiency for the last two roots. The total number of
function evaluations 1in Table 4.1 1is rather less for
rational intervpolation than for the Muller m=athods; this
advantage occurs principally for curves which are "flat"
in the region of the root (functions 5,7 and 14). The
superiority of rational intervolation becomes mark=a24 in
cases of multiple roots, unless special orovision is mada
in the Muller routine (as in program E). This would seem
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to indicate that the asymptotic behaviour has not been
r=ached; the situation would perhaons be differant at
higher accuracy 1l=avels. The prograss of the Muller
version (method 2) of orogram F is hamoered by complex
iterates and, in addition, the r=2al wvarts may oscillate
about® the root. This behaviour is illustrated for the
function x * in Appendix'D (op.Al3-3Al16); by contrast
rational interpolation (method 1) shows monotonic
convergence to the root, 2all iterates being real.
Observations at the NationaL Physical Laboratory confirm
that the convergence of rational int=2roolation is more
rapid than that of Muller in the =2arly stages. It also
follows that failure to converge can manifest itself after
a comparatively small number of itarations with the former
method. The Muller method appears, however, to be more
satisfactory for closely-spac2d roots. 1In such cas=s root
suppression frequently fails  for the rational

interpolation method, for example function 5 of table 4.2,

In casz2s of multiole or <closaly-spac2d roots we
expect ill-conditioning and cons2gquently a lower degrze of
attaihable accuracy than in the examples of Table 4.1,
For the functions 1,2,3 of Table 4.2 this 1is
counterbalanced to some extent by Wilkinson's comments
regarding functions "in which the oarameate2rs are exact
numbers requiring few dAigits €for their reobresentation”.
ﬁe goes on to stat=2 that "Even if rounding =2rrors 4o occur
at some stages of the computation, the fact that oart of
it is oerformed without =2rror may 122d to answers of
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axceptional accura;y" [45]. This is the obs=2rved outcome
for 211 routines except that of Barrodale and Wilson which
achieves‘ rasults consistent with the theoretically
attainable accuracy éor such functions. This would seem
to ba a donsequence of the accelarating device <employed
for flat regions of the curve. Tt was noted, however,
that setting the parameter REALRT to .FALSE. 1in orogram E
produces numbers of iterations comparable with those
achieved by the other routines. (The strategy when REALRT
= ,TRUE. is simply to set any sgquare roots of negative

numbers to zearo.)

4.3 DOIFFICULTIES ASSOCIATED WITH SEARCH ROUTINES

In addition to the functions listed in the oravious
section, a number of further tests were carried out. The
"interval methods" werz found to be vary reliable
thrpughout and the occurrence of underflow for some
functions was not found to 1inhibit the achievement of
corract solutions. Particular caution would seem to be
requir=d only in cases where the sign change interval
contains a discontinuity of the function rather than a
root; €for instance; none of the routines tasteqd warnéd of
this situation for the function tan(x)- x and a root was
claimed at x = T/2. Output of the function v%lue is

usually sufficient orotection in such situations.
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As might b2 anticipat=d, search routines ara less
reliable and performanc=z is often very sensitive to choice
of input parametars. The following discussion covers

those aspects which apoear to be crucial:

Choice of Convargence Criteria

Ralative Error Test

Unlike absolute interval length, the r=zlative error
criterion 1is not always a good indicator of the accuracy
of the result. The value to be set for &€ will depend, in
part, upon ths condition of thes roots sought. This is
partiéularly apoarant for roots of high multiplicity such
"as function 2c) of Table 4.2 2and th2 extrame examole
(x-1)exp(-1/(x-1)*) 1illustrated in Aovendix D (p.Al7).
Such c¢as2s ar=2 eharacterised by a slow conv2rgence rate
raquiring an alternative method or some m=22ans of
accelerating convergence <even when € 1is not small. A
ootantially more sarious problem 1is the vovossibility of
accepting an invalid root on the basis of the relative

criterion. As a3 tast case th2 routines wer2 instruct=a2d to

find two r=2al roots of the function exp(-x) - x. 1In =2ach
cas2 the wvalid root was found successfully in six
iterations. Program D terminated with an =2rror indicator

after a further elaven \iterations, but the other two
orograms 2ach produced a Eurther root. The arron=2ous
results here wer=2 cl=zar from th2 1large function wvalu=s.
dpp2ndix D (p.2l17) shows th=2 results for orogram F ani‘

illustrat=es how €false roots may be eliminatzd by a
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suitable r=24quction in the bound on wvalues of x. 1In the
tests conducted, failures of this tyoe with the r=2lative
criterion have been few and always dist%nguished by large
function values or arithmetic =2rror warnings. Further
indicators of false roots are an unexvectad increase or
jecrease in the number of itesrations ver root or a move
away from the r=2g9ion of interest. An example of such

phenomena is orovided by the function:

i ( 2r - 5 )"
(x - r2)?

-

(herzinafter v=2f=2rred to as 3rent's function). This 1is
used as a tast function by Cox and Lzhrian [11] and has
ninateen real roots, lying in the . intervals
r*< x < (r + 1), (c = 1,2,...,19]. Such a function
pdses pérticular oroblems for s=2arch routines as the roots
are separatad by poleé of the function and, in aidition,
the curve is flat in the r=2g9ion of =2ach root. The best
results were obtained by orogram F using 23 relative
criterion [Appendix D,0.3l18]. Two 1invalid roots are
claimed, the first near the vole at x = 289 3and the sezond
beyond the valid range; 1in =2ach cas2 ths change in the
number of iterations is marked. The 2xamople also serves
as a reminder that results obtained following an undesrflow
massage should not be acceptad without further
verification. The provision of an absolute 1intarval of
uncertainty by program D is a further safzaguard when using
the r=lative criterion; on the oth2r hand, failure to

detect such an int2rval orevents the use of this criterion
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and the result is fresquently an unnec2ssarily large number

of iterations.

~ Punction Value Tasts

If the function value tast for converg=nce is to be
invoked it is essential to have some 3 priori knowledge of
the magnitude of such values in the region of the root.
When function values are small throughout allarge interval
we 3are in danger of acceoting a poor approximation to the
root. Conversely, if function values are largé compar 24
with relative changes in x we may d2mand an unattainable
accuracy if 1 is set too small. To illustrate the above

remarks, let

£ (x) (x - 0.1)(x-0.2)(x-0.3)(x-0.4

TT (x-e

ce=1

and contrast the magnitudes of £(x) and g(x) when x is a

and g (x)

root to within one unit in the fourth significant digit:

13

£(0.09999) 2.524 x 10

3(0.9999) 1.217 x 10"

There are also many instances in which small function
values do not 1indicats the oresence of 13 root; for
example, with certain éhoices of initial astimate,
orograms D and E both claimed 3 negative root for Brent's
function with q = 10-6 . Program ¥ offa2rs two function
value critsria based on wvialues of the original and
suporessed functions respectively. The former tast was
us2d exclusively for this study to snable comparison with
other routines. EBxamination of the supprassed function
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values also has the potsntial disadvantage that the
behaviour of this function is notylikely to be as well
known 2as that of the original Euhction. It must be
concluded that function wvalue tasts arsa frequently
unreliable when usa4 as the sole criterion for

convergence.

3utomatic Stooping =

b
An automatic stopping criterion of the type described

in Chapter 2 is implemented in program F only. 1Additional
safagquards ar=2 also included which seek to ensur= that a
convargence vattern has been established. The convergence
test will not be brought into ov=2ration until
X, = X, | < tol,lx,! and the -authors suggest that
tol, = 0.05 is "normally adejuate". The object of the
test is to ensur=2 that results are of the maximum accuracy
consistent with the condition of the function and the.
number of digits emoloy2d in the computation. This was
well reflacted in th2 outout for the functions of tables
4.1 and 4.2; siﬁple toots being obtained to near machine
accuracy (approximatzly eight digits) and multiple roots
to a precision in accordance with the theory as indicated

in Apoendix E.
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It was observed, however, that the automatic stoooing
criterion quite fregquently oroduces totally incorract
roots which cannot be accounted for by 1ill-conditioning.
Such extran=ous roots occur pvarticularly in casa2s where 23
number of roots are reguest2d4. Th2 following maylbe cited

s examples:

1. The function f(x) = sin(x) - 0.5. Four roots were
sought starting from th2 origin. Three roots were
obtained correctly but the result 7.2941 was oproduced

in place of the root 6.8068.

A0

2. The function f£(x) = TW-(x-r). The explicit form of
[N

this polynomial has 3 number of axtremely

ill-conditioned roots [46], but this difficulty is not
ancountared with the factoreq form [Appendix E] which,
nevertheless gave ris=s to a number of incorrect roots
with tol, = 0.05 [Appendix D,v.Al9]. The staﬁdarﬂ
relative arvror criterion, however, poroduced all twenty

roots correctly.

3. Automatic stopving may b2 wus2d1 in conjunction. with
othar tests and 3opendix D (0.A20) shows the results
for Brent's function with the option of automatic
stooping or thes standard relative error critasrion.
Ninet=2en roots are claimed but of thosa accepted on
the basis of automatic stopping, only two ars near to
actual roots, whereas those obtained by the standard

test ares all of acceptablz accuracy.
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It is apparent that at presant further evidence needs to
be obtained before acceoting roots‘ on the basis of
automatic stoooing. The best orocedure may prove to be
use of automatic stooving to. r2fine an estimat=, having
astablishz2d by other means that a root is indeed opresaent.
Further investigation may also ba r2quired 1into
aporopriate values for tol,. The user will not usually be
able to anticipat2 the condition of the roots and if he
wishes to know the accuracy of the results obtained it
will be necessary to examine the convérgence pattarn

displayed by the last f=2w iterates.

Initial Estimates

Good approxiﬁations to the roots ar2 not 2always
necessary for success when the function is 3 polynomial
and the s=arch can oftz2n be commenced from somz2 distance
away pfovided_ that . the function wvalues r=2main within
machin2 capacity. The situation 1is 1less satisfactory,
however, for other functions and many obs=2rved instances
of failure can be attributed to poor starting wvalues.
When the first eostimate 1is not sufficiently near to a
root, the first iteration will oroduce a large increment;
this may result in convergence to 3 root which is not the
nearest to the starting voint, For example, orogram D
applied to Brent's function with x,= 2.5 produced the root
near x = 11 rather tﬁan that near x = 3. Nhan sev=aral
solutions of an =2gquation ares requir=a4 this tandency to
"skio" roots may result in an incomplete victur= as it can
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orove difficult for the algorithm to "backtrack” in search
of missing roots; 1in Apo2ndix D (p.Al8) program F misses

a number of the smaller roots of Brant's function.

If there ars no roots in the vicinity, voor starting
values will often cause a move to a region of large wvalues
of x or f(x) or to a r=2gion in which the funcﬁion is
undefined, thus causing complz2tes failure. Th=s following

are examples:

1. f£(x) = (4x-7)/(x-2). = The output in Aopendix D
(pp:A21—22) shows that very good first sstimatass are
1ikel§ to be required when th2 root is close to 2 pble
of the function. Cases of failure caused iterates of
large magnitude, so that the imposition of a bound on
x‘ prevants an =2xcessive nuﬁber of iterations in

orogram F.

2. £(x) = x 1n(50%x) + 0.005. This function has two close
roots of small magnitude so that good =2stimat=as are
likely to be reguired to pfevent a move to negative
valuss of  x. A1l the programs obtained the larger
root without difficulty starting from x = 1.0.
Programs E and F also obtained the small=zr root,
despite an overflow in the cas2 of orogram E, but

orogram D fail=d with a large na2gative value of x.
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NDccasionally, 2 poor first estimatz may give rise to
the situation illustrated in Aovoendix D (pp.A23-25). Her=
the rationai interpolation method 1is appli=zd to the
function f(x) = x> - 2x - 5 starting from x = 0.0 and a
large number of iterations is performed before convergenceA
to the re2al root 1is established. This may oesrhaps be
attributed to the pfesence of complex roots in a

neighbourhood of the starting point. The Muller version

of the orogram pverformed much better for this example.

Mull=sr and three point tational interpolation
formulae 23ch require three ovoints for the first
iteration. It follows that; if the user is to supply. one
astinate x, only, the routine will need to construct x,
and x_ from X,. The procedura adopntad in orogram D is to
set x,= x,+ £(x,) and then to use on2 iteration of the
secant method. This has proved a s2rious shortcoming of
the orogram since it ©oresuovoses that f(x_,) 1is of a
similar order of magnitude to x,. If <either of the
quantities X, » £(x,) is n=2gligible in comparison with
the othesr, failure will result with either repeated
argument or function values., This difficulty 1is
oarticularly noticeable on s2cond and subsequent roots as
the function value will be small when the initial =stimate
is taken close to thas root just found, for example, if N
£(x) = (x=0.1)" (x=-0.2)> (x-0.3)" (x-0.4)
than £(0.101) = 1.1489 x 107"
=> 0.101 + £(0.101) = 0.101 to machine oracision and

program D fails with a r=2p=2ata2d argument m=ssage.
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Program F calculates x, = x,(1.0 + 2.0 step) whers
step. may be chosen by the us2r, and x, = (x,+ x,)/72.0.
This method was found to be much more satisfactory.

Problems Associatzd with the R2gquirement for Several Roots

When separate 2stimates ar2 not available for each
root subsequent to . the first, a 4ecision must be mada
concerning self-starting points for =2ach search. Program

F offers two alternatives to the user viz.

1. 1A point close to the root just found.

2. The complex conjugate of the root just found.
Program E sets x,= 0.0 by default.

A1l the routines tested gave good rasults for simple
functions such as numbers 1,2 and 16 of Table 4.1. For
functions 9,10 and 11 of this tablzs it was found nec=2ssary

to provide sevarate estimates for 2ach root.

Particular oproblems nust b2 anticioatad with
functions possessing singularities or wundefined over a
éegment of the real line. 1It was found that the routiﬁes
tésteﬂ frequently failed or ragquired a very large number
of iterations after the first root in such circumstances.
Nidely svaced roots can create a further complication..
Appendix D (po.A26-329) contaiﬁs tast results for the
function f(x) = x - 4 Jq—:—i which has two real roots at

x = 1.07180 and x = 14.9282 (=2ach corract to 6 significant
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figures). An attempt to take the squar=s root of 2
négative argument causes failure or an incorrect solution
with program D; the. oth2r two routines rtr=2gquire an
axcessive number of iterations to obtain a s=2cond root.

The results for orogram E with REALRT= .FALSE. and

X

o

1.0 show that it can sometimes be helpful to conduct
the search in the complex plane evan though the regjuired
roots are both real. This tactic 1is 1less successful,

however, when x_= 15.0.

Global convergence vropertiss of iterative processes
have ﬁot yet been fully examined theorastically. In
practice, regions of convergence wwill dep2nd also uoon
machine characteristics. Continuity of the function over
the r=2al 1line: is not sufficient to guarantee the
successful computation of all roots from a single starting
point. Appendix D (pp.A30-A32) shows th=2 rasults obtained

20

with the functions f(x) = x - 1 and

£(x) = (x* - x - 1)/(x*- x + 1) respactively.

Table 4.3 illustrates some of the oroblems which may
be encountered when a large numbzsr of roots is required.
For =2ach function, orogram F was instruct2d to s=2ek twenty
roots, the tolerance for relative error being 1.0 x 10-‘
in each case. 1In the cas2 of—function 3, function wvalues
were calculated in the form a x 2 (A sevarate routine
for such scaling being ineluded in the 1library.) The

results obtained for. function D reflected the moderate

ill-conditioning at the 2nds of the range [46]. From the
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limited data, no clear oref2rence may be given to 2ither
mathod; the only appar=2nt conclusion being the greater
variability in the numbers of iterations with the Muller
method. The order of root determination was in =2ach case
roughly monotonic but for function C a number of the later
roots werz2 skipped, ovarticularly with method 1. For
function D the behaviour of method 2 was more erratic in

this respect.

In vopractical examples where several roots are.
raquired the exact number of roots in existence may be
unknown. Iﬁ such circumstances we would wish the program
to 1indicate that as many roots havz2 been found as is
possible. Programs D and E can oniy t2rminata by m=2ans of
an error condition; this way occur only after many
superfluous iterations. The varametar BOUND in program F
provides . a2 natural termination in most cases as the
suporession of all known roots usuially causes iteratses to

become large in magnituds quite ranidly.



Table 4.3 Results for Functions with a Large Number of

Roots

The Functions:

A = l! (x - )
=1
3 = 'TT ( x - 1/27 )
=\ '
C = sin (x)
D = cos (20 cos 'x) [The Chebyshev polynomial of order 20]

FUNCTION METHOD STARTING NO.RJOTS MEAN NO, STANDARD

VALUE FOUND ITERATIONS DEVIATION

A 1 0.0 20 8.85 1.98

2 0.0 20 8.65 ‘ 5.18
3 1 1.0 20 17.4 5.51

2 1.0 1 96
o 1 3.0 9 8.11 2.09

2 3.0 20%* 7.85 2.66
D 1 1.0 19 26.6 20.48

2 1.0 10%* >41.6 >30.89

* underflow occurr=4 but the roots obtainad wer= corract.

. (cont.)
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Table 4.3 (cont.)

The causes of failure were as follows:

|

33
fo g
(0]

Function B8, mathod 2 first root was r=2peatad.

x axcesded the imoosad bound

Function C, method 1
of 100.0.

one of the roots was found twice.

Function D, method 1

method 2

4

the maximum number of iterations

(1600) was =2xceeded.
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4.4 CONCLUSIONS

Program F is notic=ably superior to the oth2r s=2arch
routines tast2d in terms of raliability and scooe. It
also shows at l=2ast comparable efficiency exc2pt in cases
of multiole Troots wherz2 program & Dprovides effective
accelzsration. The major factors governing ﬁhis success
would appear to b2 the inclusion of a ovarametzsr to imoose
a bound on argument values and the wuse of relative
increments in setting "stepping-off" points.. In 1its
praesent statzs2 of development automatic stooping will
probably be "~ of use orincipally in refining =2stimat=2s of
roots obtained on the basis of other" tests. Its
reliability as the sole critesrion for acceptance of roots

remains in doubt.

Search 'routines generally 4o not aliminate the
raquirement for a.good knowlzadgzs of thz function. If this
cannot 5e obtained analytically, a3 certain number of
exverimental function 2valuations is likely to be r=2gquired
in order to fix appropbriatz initial estimates, bounds 2and
convergence criteria. If a suitable interval is available
for a root, a method which retains such an interval |is

likely to be the best choica.



Whilst rational intervolation workad morz =2fficiently
in many cases, there 1is some evidence that th= Muller
method will cooe better with the situation of
closely-spvac2d roots and may bs capable of obtaining more
roots whan a large number are required. Both these points

may be relevant to eigenvalue tracking oroblams.

Root searching from a single starting voint 1is
generally more successful for continuous functions so if
possible any voles should be removed when formulating the
function. | Also any obvious scaling €factors should be

amployead.,

Despite the substantial advances outlined above, the
complets solution of 3 general =2gquation is still far from
being an automatic orocedure. In comparison with methods
designed specifically for polynomial 2gJuations (e.3.
Laguerre's method) a much greatear amount of
a2xperimentation will be demanded of th=2 wuser 1in his

selection of input oarameters.




CHAPTER 5

EIGENVALUE PROBLEMS

The standard eigenvaluz ovproblem is of the form
Ax = Mx where A is a2 given n x n matrix with constant
coefficiants, x is an n x 1 vect5r and® )\ a2 scalar. The
requirement may be for all or selectad eigenvalues ‘ with
or without the corresoonding 2igenvectors X. This

situation has been studied extensively and a number of

affactive algorithms are available. - Genesralized
aigenvalue problems involving several matrices
A A ... A, Or a3 matrix A()) whose  2laments  are

non-linear functions of A have raceived comparatively
little theoretical treatment and, in th2 latter case, most
2xisting algorithms hava been develoo=d to solve soacific

practical oroblems only.

The aim of this chapter is to indicate how =sigenvalue
probiems can arise and to discuss the rolzs2 of
eaquation-solving tachniques in obtaining num=arical
solutions to such ©oroblems. Consid=2ration will also be

given to special features of the =quations thus obtained
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and the coanseaquent difficulties which may be encountered
in the application of currantly available algorithms.
Compl=ex roots will be sought in many eigenvalue problems;
and this ‘requirement may restrict thé choice  of
apprépriate methods and, in most cases, will substantially

increase both the work-1load and the risk of failure.

5.1 DIFFERENTIAL EQUATIONS AND EIGENVALUE PROBLEMS

The standard eigenvalue problem is =2ncountered in a
wide wvariety of oractical situations including econonmic
modelling, Markov processes and geometry in addition to
mathematical ohysics. The generialized oroblems have, to
dats, arisen mainly from .angineering applications.
Wilkinson [48] states that:

" the primary reason for the oractical

importance of the 3lgebraic eigenvalue oroblem

is its close relationship with the oproblam of

determining the explicit solution . of a

homogen=0ous system of linear differential

aquations with constant coefficients.”
Also of frequent occurrence are ordinary 2and partial
differential aquation problams involving a wvariable
parameter A. For given boundary conditions, solutions
will exist  for nvarticular wvalues of X only. The
determination of such numerical solutions again gives rise
to an aiganvalue oroblem. In this s=2ction the
relationshio between 2igenvalus oroblems and Adifferential
aquations will be outlined and mention will be made of

rel=vant oractical aoplications.



The Porm of Solution of 1Initial Valua Problzsms for

Jdrdinary Differential B3uations

1) Explicit First Order Systaems

The simplest type of initial value. problam may be
exprass2d in the form
dx = Ax given that x = x* when t =0 (i)
dt ‘
where A is an nxn matrix with constant coefficients (real
or complax). |
Guidance on the form of solution is gained by

dx = ax which is

———

k
at

®ea where « is an

consideration of the one-dim=2nsional zas

(1Y

known to have the gen=2ral solution x

arbitrary constant. If x = x, when t = 0, we then have

o

¢
the particular solution x = x 2%,

This leads to a trial solution for (i) of the form

N\E .
X = «3e’  where 3 is 2 non-z2ro vector.

This will be 2 valid solution if and only if A3 = A3.
If LY has n linearly independeﬁt eigenvectors
(3;, i=1,2,...,n) this 1e2ads 1immediately to th2 general

solution

n

N &

) cai
In this case}if the matrix A has heen dqiagonalized by a

similarity transformation, 2ach 3. r=2duces to the

alementary unit vector 2; and the equations are comoletely

[3

dacoupled.

- 94 -



When A is defactive, i.e. there exist fawer ' than n
linearly indepsndent eigenvectors, additional terms will

need to be introduced to give the gesneral solution.

34 simple 2xamplz is

3 1 0
3 = 0 3 1
0 0 a

which has the 2igenvalue X\ = a3 with multiolicity 3 and

all the eigenvectors are parallel to e

i

The solution of (i) is in this case

i 2 ) (o> (©)
X, t /2 x, +  tx, + X,
€

— ) o) o

X, = tx, + X, e
®)
XB x)
In o~eneral,the solution of (i) may he written

(o)
X = 2Xp (At)x.

Example

Let u, ,u,,...,u, b2 th2 concentrations at time t of a
given molecule in the finite segments S|,§L,...,Sn of an
infinite tube, the segments being s2parat2d by oorous

partitions.

Se s, SL 53 'Sr\ Sn+l

The diffusion rate between adjacent sagments is directly
oroportional to the Aifference in concantrations, so that
with aporopriate choice of units we have
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duy, = -4, + (ug -u )
dt. :
du; = (Ui = u; ) + (uyy - ug )
it

[i=2,3’ooo’n"1]
du, = (u,, - u,) - u,
it

the concentrations in the infinite s=ctions S Sy Db2ing

Q

takan as zaero.

Hence du = Ak wher= A is the nxn matrix

dt

0 0 0 0 -2
— -
The solution is given by u = 0(;1(') a M€
(=1
whera ki = =2 + 2 cos( iT )
n+1l
(2) '/L
and g. = ( 2 )sin ijw [ i=1,2,...,n+1 ]
) —— —_— .
n+l n+1l

1S Juoted by Gregory and Karney [19]. As t => o r U, =-> 0
as =2ach )u is negative [ i = 1,2,...,n+1l]. This is in
accordance with the ultimate physical state of thé system.
The above th2ory 1is a finite approximation to the heat
equation Ju = 2;5 governing conduction along a continuous

d¢€ dx*
rod.
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b) Implicit First Order Systems

The system of dAiffer=ntial =gquations 3ax =8 dx may

de
again bes analysed by assuming a solution of the form
xge)e . This. 1=2ads to an eig=nvalus problem of the €form

Ax = ABx with ‘corrasoonding characteristic =2quation
det (A - AB) = 0. The theoretical treatment of this
ajquation presents greater difficulties than the standard
case; in partiéular, if A4 and B8 arz both singular we can
have det(A - AB) = 0. Such a system 1is said to be
incomplete and any wvalue of X is a wvalid solution.
Wilkinson [48] gives -examples of this situation but
considers that incomplete systems are 1likely to be the
rasult of incorrect formulation of 2 oractical oroblem.
If det(3) ¥ 0 the system can, in theory, be r2duc24 to the
standard form B Ax = hWx but if det(3) = 0 and det(a) ¥ O
there may exist less than n finite solutions for )\ .
Wilkinson [48] observes further that:

... when A 3and B are general HJermitian

matrices there may be nothing distinctive about

the ©oproblem Ax = ABX. No general Durpose

algorithm has been derived which gives an

effective. reduction while retaining the

Harmitian property."
The situation is, however, more favourable whan 2at 1least

one of A and B is vpositive 4dafinit2 as a solution in

exponentials may th=n be formulated.
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Systems of the form 3x = -Ax with A 1and B both

positive definite arise commonly in connection with

vibration problems (both mechanical and electrical). For
. X . A

a solution of the form x = «ue w2 require ngg_= Au.

Ther=2 are n positive eigenvalues i

; and n indeoendent

eigen?ectors d, each of whicﬁ gives rise to the two
solutions N333eir§e and %5139-U33e . When A and B are
both real, it follows that the general solution may be
axpressed in the form

n

Z u, ( et.scos(ffjt) + %sin(j’;.‘t))

',‘.I

Example

The 4diagram represents two particles oﬁ mass2s m, and m,
connected to each other and to fixed points A and B by
three springs =2ach of stiffness s, other resistances being
negligible. ©Let x , x, denote the disolacements of m, and
m, from their respective equilibrium ovositions.

kS

The Lagrang2 egquations then give QLBK = Ax where

A = 2 -1 and B = m, /s~ O

|
'._l
(¢
o
3
~
0

Transforming to the standard oproblem WwW"x = 3  Aax gives .

the characteristic (pulsatance) =3uation

1}
(]

ot - 25°L(l.+ l_) + 3s’

™, m, m, M,



The . eigenvectors corrasponding to the two roots uf;{
represent the normal modes of the vibration. 3all other
possible wvattsrns of motion may ba axpressed as

combinations of these two extromes.

c) General Systems of Linear Differential ®quations with

Constant Coefficients

Generalized oroblems of the form

!
( ){A, + c.. + )A, +3A)x =0 may be darived from
homogeneous systa2ms of linear differential equations with

constant coefficients of the form

3,4°x + ... + adx + ax = 0
at° 4t
by again assuming a solution of the fordvg = ocge)é.

Problems of this type commonly ariss in the quadratic form
()\lAL + Na, + AQ;= [\
3gain, 3 comprehensive theory is not available but special
‘cases have been consiiered,‘ notably the overdampeq
physical system which is referred to by Lancastar [28] and
Ruhe [40]. Here [a,(_>g)]1 > 4a_(x)a,(x) for all vectors x
where a; (x) is the inner product <A;x,x> and A,, A,, A,
are 3ll self-adjoint. For such systzms the eigenvalues
are all real and therz exist n 1linearly independent

2ig=2nvectors. Quadratic oroblems of this tyoe may be

converted to the linear symmetric form.
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is

Existence of solutions in the genaral quadratic case

not, however, guaranteed. For =2xample, the following

equation, Juoted by Lancast=r [28]:

Examples -

1

Damped oscillations can arise from the introduction of
a dissipation function dependent on x 1into the
Lagrange =2quations.’ Such a function typically tak=s
the form of a mechanical or 2lactrical resistance.

The resulting differential =2gquation can hence be

written
4% + A dx o+ Ax = 0
t* it
Terray and Lancaster [42] discuss a quadratic

2igenvalue problem arising from a study of heat
transf=2r to fluids flowing b=atween parallel olat=es.
In this case they orove that:

"The spectrum of A(N) consists of at most a

countable set "of eigenvalues with infinity

as the only pvossible limit point."
Limited obs=2rvations are also obtained concerning the
2igenvectors. Such obsz2rvations are 1likz2ly to be
rather too general to assist 1in the numerical

calculation of specific roots for which referanc=2 must

usually be made to ths practical oroblem conczacned.
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Numesrical Solution of Differential %Bguation Problems

involving a Variablzs Param=ster

Ordinary and partial differential 2quations
representing physical situations often have coefficients
dependent uvon a paramet=ar, A say, which arises from the
variation of the constraints with \time or vosition.
Feasible solutions will exist for particular valuas of )
only. The wusual mn=2thod adopt2d 1is to wusa2 a finite
difference aproximation to thz derivatives over a mesh of
suitable siz=2. This r=2sults in an 2ig=2nvalue formulation
from which the aporopriate values of )y may be found.
Examoles are:

1. The ordinary differential equation

gl_k(;’l_z) * (rg =2y = 0
dx% dx

where k,g9 and ! are continuous functions of x and
boundary conditions are given. This governs, for
instance, the temperature distribution in a

heterogensous bar [23].

2. The equation

du + Ju = Hu
Ayt

v/
E
L4

(quoted by Petars and Wilkinson) [36] which c¢ould

arise, for example, in potantial problems.
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3. The Eluttér oroblam in aesrodynamics which leads to a
quadratic eigenproblam having v=2locity as the variable
parameter \. Solutions with the r=2al wopart of )
positive are of iﬁﬁerest as they represent "flutter

‘velocity" [47].

Non~-Polynomial Eigenvalue Problems

Attempts to describ= and comvare algorithms for the
general oroblam hav2 been made by Ruhe [40] and Lancaster
[28], although Lancastzar statas that "... bzacauss mauch Qf
vthe activity is wvery recent or still under desvelooment
there is no comprehensive survey of rasults.” Ruhe
formulates a Adefinition of ovardamoing in terms of a
gan2ralized Rayleigﬁ Juotient which may be extended\ to
‘cover the general =2ig2nproblem. Such a systsm is known to
poséess n real eigenvalues and again the lin=2ar symmetric
theory is of assistance. There remain, howevar, oractical
axanples which do not com2 into this category and for
which 1little 1is known about the 2xistence of solutions.
The following are examples which have arisan in oractical

applications:



Nittrvick and Williams [49] discuss .the problem of
determining the natural undamped frequencies of
vibration of a linearly =lastic structurs for which
they Aderive an =quation of the form X(W)D = 0 wher= D
is the matrix of disvlacements and w is the frequen;y
to be determin=zd. TIf D is not of full rank, solutions
ar=2 sought which satisfy either det X(W) = 0 or D = 0.
The el2ments of the dynamic stiffness matrix X arz, in
géneral, non-1linear funétions of O. 1In the case of a
finite number of degrees of freedom these functions
are guotients of two volynomials; for ad infinite
number of degrses of freedom they ar=s generally

transcandental.

The potential difficulties of such problems ar=2
well-illustrated by Fig 5.1 which is reproduced from
Wittrick and Williams paper. The 1large naumber of
poles and the wide range of function values would mak=
considerable demands on the most sophisticateqd

equation-solving routines.
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4 oproblam encount2red recently at | the National
Physical Laboratory [15] éoncerned wave prooagation
along diel=ctric tubes. Analysis bassd on Maxwell's
aquations produced an =sigenvalue =23quation of the form
A(e)g = 0 wher= Q is the ophases cocsfficient to be
determined andg the eigenvector x <contains the
componants of the alactric and magnetic field vectors.
A is an <eight by =2ight non-symmetric matrix whose
2lements are Bessel functions involving the
parameter Q. Th2 regquirement was for as many roots as
possible within a given interval together with the

associated eigenvectors. The method of formulation
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ensured that all the required roots wer=2 real but

their distribution pattern was not known a3 oriori.

3. The characteristic equation for the earth-ionosphere
wave—guije (3s encountered, for instance, 1in tha2
propragation of radio waves) motivat=2d the develooment
of a procedure by Bahar and Fitzwater [5] for tracing
the loci of complex roots as the electromagnetic
paramet2rs are varizd along tha provagation path. Aas
'in the .previous example,‘ the coz2fficients involve
Bagsel functions and the root-finding ex2rcise is
again complicat=d by the presence of poles and the
wide wvariation in magnitude of the function values.
It is considered that initial estimates of the number
of roots 2and ' their locations may be unavailable for

such oroblams.

&

5.2 METHODS. DF NUMERICAL SOLUTION

Formulation

The solution of the eigenproblem A(A)x= 0, where A is
any squar2 matrix whosz cel2ments are functions of a scalar
parametar X, by means of the scalar equation det[A()\)] = 0O
may be applied generally regardless of the properties
possibly vossessed by A. Such methods hence have the
strangth of versatility, but may fail to takz2 into account
any special features of the problam. Evaluation of the

dJetarminant may be carried out wusing =either Gaussian
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2limination with row and/or_column int2rchanges or By a
sequence of orthogonal transformations such as in the
method of Houszholder. 1In the opinion of Wilkinson [47]
"The weakness of such methods lies in the volum= of work

required and not in their stability".

The Problem AX = AxX

For the standard problem Ax = \x the deciding factor
in the choice' of method 1is likzsly to be thz2 number of
roots required. The QR algorithm is a3 widely accepted
mathod for obtaining thes full set of =2igenvalues.
Wilkinson observes, however, that "in opractice it 1is
uncommon for all the eigenvalues of a larges matrix to be
regquired4." For example, the behaviour of solutions

containing t=2rms of the form exﬂ: whera X\, is r=al will be

largely governad by the largest (dominant) eigznvalue. 1In
such cases many of the difficulties associated with the
search for a large number of roots of an aquation will be

irrelevant.

Detarminant ovaluation routines, such as those
contained in the NAG library, have been designed to takz
advantage of particular forms of matrix such as
tridiagonal 'and positive Adzfinite which are of common
sccurrance. L.\ potential disadvantage of the
2quation-solving aoproach 1is the wide range of values
assumed by determinants; orovision of a -"scaling factor

will usually b= necessary for success.
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The Problam Ax = ABx

If A and B ar=2 symmetric and B3 is positive Adefinite,
the Cholesky £factorization B = LL may be used., Then
ax = ML'x => L 'ax = AL"x => L'ALT (L7x) = ML x)

which is of standard form.

when A and B are of band form L' may still be a full
matrix, so it is likely to be uneconomic ton calculate L
explicitly. 1Inst=ad Petars and Wilkinson [36] suggest
working with the successive minors det(a. -.28,) which
form a Sturm s2quance. Alterqati&ely Crawford [12] gives
an adaptation of the Cholesky factor method which produces
a reduction to standard form whilst retaining the-
symmetric band form. R2duction of such systems to
standard form is only justified if the system is small ang
3ll the eig=nvalues are reguired; ayen in such cases
there is a3 risk of ill-conditioning with resvect to
inversion unless one of A 2and B is positive definite.
Eigenvectors when required may then be found wusing the
inverse iteration schems (A - AB)X, = k Bx,., where k is a

normalizing factor.

Other m=2thods discussed by Pz2t2rs and Wilkinson [36]
and [37] are iterative techniques which ar2 useful for
obtaining complete sets of =2igenvalues 1and vectors but
which are generally more demanding on storage than the
2quation-solving approach and ar=s hence less w=2ll suited

to the isolation of specific e2igenvalues.
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With general matrices A and é, it 1is ©ovossible to
axpress the problem in standard form as either B“Ag = Ax
or (1/»)x = A ' Bx, orovided that at least one of &4 and B8
is noq-singular. It 1is, however, usually orefsrable to

apply the QZ algorithm directly to reduce 3 and B to upper

triangular form. This 1is =effected by apolying an
eéuivalence transformation of the form
XAY (Y ' x) = ZMXBY(Y 'x) [37] and miay also be employed when
both 4 and B ar=2 singular. Peters and Wilkinson use

33aussian 2limination with comolete wpivoting for the
factorization but suggest that other methods such as the
singular value d=2composition, might also prove approoriata

in this context.

The oroblam (XA, + ... + \A, + 13, )x = 0

/
4 reduction to the form Ax = )\3x may be made, which

will in this case be of 4imension rn with

0 1 o ... 0] I 0 0 ... 0 o
0. 0 I ... 0 0 I 0 ... 0 -0
A= *® & » @ 6 & 9 & O 5 0 P B e e e and B= ® & & & & 85 O & o 5 o O 0 & " O 0t
0 0 0 ... T 0 0 0 ... I 0
L-_Ao —Al —Al s 0 -Aﬂ L—O 0 0 e o » 0 AL

The alternative method is to work directly with the
equation det( XA, + ... ¥ %A, + A, ) = 0. This obviously
has the advantage of r=ducing storage requirements but
does not 2nable use to be made of the considerable

experience which has been gaineqd in the develooment of
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algorithms for thz standard oroblem. Wilkinson [47] also
mentions that caution may neeqd to be exercised in the
avaluation of the =21l2ments of the determinant as, being
axplicit polynomials, these may prove to be
ill-conditioned. He considers, howevar, that this is
unlikzaly to be serious in practical problems for which ¢

is usually small.

The General Problem A(N)Xx = 0 -

When the 2l2ments of A ar2 non-polynomial functions
of A transformation to standard form will not usually be
possible and the choice will normally be betw2en a matrix
iterative method and determinant evaluation. Ruhe [40]

describes three methods of the former type, namaly:

1. An algorithm based on inverse 1itaration: and 3

generalization of the Rayleigh quotient.

2. Generalizations of the QR algorithm based on work by

Rublanovskaya [26].

3. Formulation as a sagquence of linear problems obtained
from the Taylor seriss

A(MN+ b ) =a(\) + ha' () + 1" /2 RO\, N

Since all these methods 1involve computation of the
. . / . , . .

derivative 1A (\), Juestions ar=2 inevitably raised as to

the accuracy and efficiency of such El orocedure,

Wilkinson [47] states that:
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" .. the evaluation of a derivative involves
far morz2 work than that of a function wvalue.

The contrast 1is even more marked for the
generalized eigenvalue problam for which the
relevant function is of the form
det (A XN + A_ N7 + ... + A, )"

We might expect this oroblem to be further exacerbatad in
the general c¢ase when formulae for the Jderivatives ara
known. "For non-polynomial vroblans, ' howeaver, aﬁ
analytical expression for the derivative may not be
available. Ruhz [40] suggests that in some <c¢as=2s the
difference approximation

A" () = AN = A(0)
As - >‘s—l

mav be used and comments favourably on the results whilst
conceding that the limiting accuracy-is poorar.
5.3 SOLUTION B8Y EQUATION-SOLVING TECHNIQUES

Choice of Algorithm

5

The reliability of "interval"™ methods 1is a strong
argument in favour of their us= whenever possible. . This
will apply in particular to oroblems which can be solveqd
by the Sturm segquence method with bissction as this m=thod
is e2xtremely stable.” It also has the virtuz of
flexibility as . it enables the user to dirsct the search
towards -specific roots or to gain an overall ovicture of
the root distribution.  Once aporopriate intervals have
been isolated a3 switch can be made to an interoolation
method 1in order to accelarate convergence, although the
gain may not be worthwhile if the =igenvalues Iare
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clustared. For the band symmetric oroblam Ax = ABx,
Peters and Wilkinson [36] use a combined linear
interpolation and bisection method for which they revort
results of "almost the ootimum accuracy for the oprecision -

of the computation”.

When the oroblam is non-symmetric or when bisection
fails due to roats of even multiplicity, a "search"
strategy must bes emoloyed. The vovossibility of compleax
roots must also be considered. Laguerra's method has
gained wide acceptance for the standard oproblem because of
its global <convergence ovroverties and raoid rate of
convargence; it is not howaver aporopriate for
non-polynomial oroblems ‘fdr which first and s=cond
derivatives 3are not readily available. The algorithm most
frequently used for the generalized’prbblem is Muller's
method which has produced results of high accuracy [37].
Wilkinson [47] finds 1inverse intervolation méthods less
satisfactory but there s22ms to havz been 1l2ss experience
with rational interpolation in connection with eigenvalue
problams. Patars and Wilkinson [37] prefzr an inverse
iteration method to equation-solving, however, for
2igenvalue tracking problems as 1in such casas the
2igenvalues will be required 1in chronological order

together with the corresoonding eigesnvectors.
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The order of root Adetermination 1is wvarticularly
important if the charactaristic equation is expressed as
an 2xplicit oolynomial in order to minimize
ill-conditioning £following eflation. As the order of
comoputation cannot 2asily be predet=2rmin=d, the explicit
form 1is generally avoided and suopression of roots is
amployed rather than explicit deflation. The role of
suppression- is simply to or2vent repeated convergence ﬁo
the same root; it should not, therefore, 2adverszly affact

the attainable accuracy of subsequent roots.

Initial Estimates

In the case of the standard problem Ax = Ax we have
that |);]« ﬁAl (i=1,2,...,n) for any matrix norm. The
usual choicz is ]A“' or “ A“u,both of which are " quick to
compute. This provides a starting interval for the
bisection process or a bound for the search routine if
this can be s2t 1in the calling program. Gerschgorin's
theorems also orovidz a method of fixing bounds but these
are not so straightforward, ovarticularly when n is large.
These theorems can be of use if they reveal isolat=sd discs
since each of these will contain one 2igenvalus only.
Such an outcome is not 1likely to occur freagquently but
would givze wvaluable information in the compnlex case when
the bisaction method 1is not applicable. WFhen mn
aigenvalues have .been found (m > 2), Wilkinson [47]
suggasts the "sta2pping-off" points %( Nmet + 224) ani
%(kaﬂ + N for the next search when using an
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interpolation method, although an increasz2 in the shift
might be necessary 1if thes first iterate is not near a
root. He goes on to say, however, that "... iterative
methods appear to best advantage when approximations to
the eigenvalues 1are available from an independent source."
At presént practical considerations ar= probably the only
way of.obtaining estimates for generalized problems which
Ruhe [40] considers to require bétter aestimates than the

linear case.

Checking of Results

The rasults of the investigation described 1in the
previous chaptar indicate that it is highly desirable to
have some means of checking the wvalidity of roots‘obtained
by it2ration, oarticularly where the function wvalue varies
widely (as will often be the c¢cas=2 with eigénvalue
problems). The test usually recommend=d for the standard
problam is to uszs the relation S: ); = tr(4). This 1is
not fooloroof as the selectzd aléorithm might 12ad to th=2
introduction .of errors which cancel on addition.
Wilkinson [47] considers the test to be effactive,
however, wh2n a suovoression tzchnique is =smoloyed as the

zeros are then located indeozsndently of =ach other.
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In real =2xamples any complex roots will occur in
conjugate wvpairs but it is a sensible oreacaution not to
accept a conjugate automatically. TIf the second root is
also obtained 1itearatively 1little extra work will be
involved but the agreement between the conjugatza troots
will be a guide to their accuracy. It may also be the
cas2 that a computed eigenvalue with a3 small imaginary

vart actually r=2presents a r=2al root.

A possible approach to checking results ﬁor the
generalized oroblem A(N)x= 0 is illustrated by example 2
of section 5.1. The problem was solved at the National
Physical Laboratory using the routine RTFS1IR (described in
section 4.1) with an option of =2ither Muller or rational
interpolation and a relative or automatic stoooing
criterion. Appropriat2 scaling was 2emoloyed in the
calculation of the 2lements of A and in the.evaluation of
the d=terminant from th2 upper triangular form [15]}. The
typical Dbehaviour of the function ne2ar 2a root is as
illustrated in Fig 5.2 and indicates that function value

convergence tests would be inaporooriata.

‘{-ig S

~

N
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Another method of solution attempted was the minimization
of the singular wvalues of 1A which oroved to be highly
unsuitable for numerical estimation being of the form
shown in Fig 5.3 (It may be noted iﬁ this connzction that
Ruhe [40] finds the minimization of‘[IA(X)“ to be 13

somewhat unsatisfactory method.)

'f-i% 5.3

The singular valus decomposition

with QTQ = PP =1, wias, however, very use ful for
calculating the 2igenvectors andi for checking ‘the
eigenvalues by examining the magnitude of the ratio /0.
This was found to be very much smaller for valid roots
than for the false roots which appeared occasionally as 1
result of automatic stopping. Identification of valid
roots by this method was assisted by row and column
scaling of the matrix A before deacomposition. The
calculation of the 2igenvectors is dascribed in
Appendix G.
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5.4 NUVMERICAL EXAMPLES

The Nationai Physical Laboratory's egquation-solving
routine [20] was us=2d 1in conjunction with NAG routines
FO3AFF and FO3AHF [33] for r=2al and complzx d=t2rminant
svaluation respectivaly, to solve a varieﬁy of e2igenvalue
problems. These routines enabled all function wvalues to

be scaled in the form a x 2° .

For the standard oroblem, thé main orogram used, 3
list of the matrices test2d and the results using Muller's
method are given in Appendix F. The data chosen was from
a selection by Gregory and Xarney [19]. Isolat=d
eigenvalues w=2r2 found to machine opracision, whilst
multiple ’roots ware of opoorer 1limiting accuracy ang,
oredictably, regquir2d a much larger number of iterations.
The difficulties =2ncountsred in oroblems 3 and.1ll wara
successfully overcome by resvectively increasing the bound
and éﬁppressing the z=2ro root. The rational interoclation
method appli=d to the same examples g;ve similar results
excepting‘ number 7 for which the smallest root was found
twice. In the majority of examples the Muller method

requiréd slightly fewer iterations.

Four generalized esigenvalue problems w2r2 examined,
the d2tails being givan in Appendix F. The first exampye
is of the form Ax = AB3x, with A and B band symmetric. All
20 =eigenvalues wer2 calculated successfully but the total
number of it=srations was similar to that obtained by
Paters and Wilkinson with a 1linear 1interpolation anid
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bisaction method, desspite the higher order iterative

method amployed.

The r=2maining three =2xamples are all taken from the
pap2r by Ruhe [40], the first involving an =2xponential
term in A and the others being of <quadratic form with
complex roots. Example 1 has 16 distinct esigenvalues
which were obtained successfully by both the rational
interpolation and | Muller methods} the former being

slightly morz 2fficient in this case.

The secqnd example was solved by Muller's method with
only a’ slightly greatzar number of iter;tions than the
methods tasted by Ruha. Taking into account the fact that
these ra2gquir2 derivative values, Muller may be considered
superior from the efficiency ovoint of viaw. The latter
also has the- virtue of requiring only one 1initial

2stimat2, subsesquent roots being located automatically.

The final examplz involves a variablé varamater X and
is 1ill-conditioned for small wvaluss of X. A standard
arror test was sufficient to solve th2 problem in the case
% = 0.5, but an excessive number of iterations was
raquired when = 0.0. In this cass there are triole
roots at AN =2%*i and a double root at fﬁe origin. The
automatic stooping criterion was applied <effactively in
this case, the rasults reflecting the ooor 1limiting

accuracy attainable.
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CHAPTER 6

SEARCH STRATEGIES IN THE COMPLEX PLANE

Until fecently little attzantion has been vaid to the
computation of complex roots in comparison with the real
case. Henrici [21] Jjustifies the need for further
invastigation in thelpolynomial casa, stating that:

"Bven 1if the given polynomial has r=al

coefficiants, it can be proved that in a3 certain

statistical sense, if the degr=2e is high enough,

most of its zeros will be complex. 1In most

applications of polynomials (2.g9. 1in the theory

of control systems or in differential =gquations)

real and complex z=2ros are ejqually relevant."”

Such comments may well 2xtend to the gen=2ral function.
Henrici's work is a development of complex analysis which
gives particular attention to numerical aspects of the
subject. A considerable amount of theory is available to
assist in the solution of opolynomial =2gquations; in
particular the establishment of bounds and ma2thods for
dat=2rmining the numbers of z=2ros in svecific regions [22].
It 1is thus Adesirablza 1in such cases to employ a program

specifically designed for volynomials. To dats few

algorithms have been pvublished for the solution of
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non-polynomial equations and thos2 available show 3
diversity of methods. Brieé ‘descriotions of some
approaches to the problem are given below, together with
comments on the practical oerformance of algorithms wharsz
available. Few comparative studies would apoear to have

been carried out, however.

6.1 SEARCH METHODS

Graphical Methods

A preliminary sketzh of 2a polynomial function may
give clqes to the 1location of complex roots. For the
gen=2ral function Larkin [29]/ describes how automatic
plotting of the real and imaginary parts can give useful
information on the location of roots and ovol2as and their
orders. Such a diagram may be expensive to oroduce if the
region of interest is_uncertain or when the function is
comolicated. In the 1latter case, not only will each
function evaluation be l2ngthy, but a3 fine mesh may bhe
required to give a cl=2ar victure of the behaviour of the
function. For a transcendental function f£(z), th2 graphs
are lik2ly to Dbe ‘complicated and Larkin suggests that
plots of lnlf(zH = constant and arg(f(z)) = constant are
lik=2ly to be more ﬁelpful. This representation also
provides an analogy with électric fie2ld theory. The fi=1l4
lines thus g2snerated also indicate convergence regions for
the iterative ©process 2z =2z - ) f(zo)/f/(ze) with "~ )

] o

small, although a warning is given that starting within

2
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such a region does not guarantee that a subsegquent iterate
)

will not, in practice, jump outsidz the r=gion.

Comparison with a Polynomial

Ahlfors [2] suggests that oractical use may be mads
of Rouche's thzorem in th=2 following manner:
Suppose that the function £(z) Dossesses a Taylor
axpansion of the form £(2) =P __ (z) + z"fn(z) wheare
P._, (2) is 3 polynomial = of degree (n=-1) and
R"[fn(z)l < ]Pn_\(z)[‘ on the circle |z|= R, then £(2) has
the same number of zesros in the region |zi R as P, ., (z).
’ﬁoutines to de2termine the number 2f z2ros of 3 opolynomial
in a given circle area available, for =xample Lehmer [30].

The solutions of the polynomial =quation P _, (2) = 0 might

-1
also orovide suitable first estimates for the zeros of

£(z).

If the conditions for the aoplication of Rouche's
fheorem ar2 not fulfilled, the use of a truncated s=aries
approximation is consiiérably mor=2 risky. ‘This is
illustratead by Delves and Lyness [14] with the exampl=
f(z) = ez whos2 nth. degree Taylor 2xpansion must have n
zeros 1in the _complex plane whilst the original function
has none. They also warn that obtaining thz2 coefficients
of the approximating polynomial is likely to involve heavy
computation and the rasulting 2aquation may ba

ill-conditioned irrespective of the condition of f(2z2).



Numerical Use of the Principle of the Argumant

Henrici [21] considers the principle of the argument
to be "a power ful instrgment for finding first
approximations, however crude, to the 2zeros of analytic
functions". For such a function the number of roots

within a simple closed curve C is given by

/

1 £ (z) dz = 1 Aearg f(z) = n(f(z),0)
2mi JC  £(2) 2%

whera n(£(z),0) is the winding number of £(2z) about the
origin, orovided that no root of f£(z) lies on C. 1In the
case of a meromorphic functioﬂ, we ha&e the more general
formula N - P = n(ffz),O) where ¥ is the number of roots

and P is the number of ovoles within C.

The curve usually chosen for the numerical
calculation of the integral is either a cicrcle or a
rectangle. Henrici points out that although the winding
number is an integer, it is gquite possible to select the
wrong value unl=2ss car2ful attention is given to the
éffect of rounding errors. Thes algorithm given by Hanrici
depends .upon a subdivision of the contour C which is such
that each subarc subtends an angle not greatzr than 7/2 at
the origin; numerical guadraturs is avoided. Both this
method and the dirsct evaluation of the intzgral can

present the following oroblams:
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£

1. It is difficult to ensure that no 2zero 1lies on the

boundary C.

2. A very small subdivision of the curve is required if a

root is near to the boundary.

For these reasons it may be more practicéble to usa an
algorithm such as that of We2hl [45] for oolynomials which

systematically eliminates r=gions which contain no root.

3 frequently discussed implementation of the
principle of the argument is Lehmer's method for
polynomials [30]. The first step is to find, by starting
with the unit circle and successively 4doubling or halving
the radius, an annulus R < (z[< 2R, containing at least one
réot of the =guation. This annulus is covered by eight
smallar circlas, at least one of which must contain a
root. When such a circle has been found, an annulus is
again obtained and the process may ba reoeated as

illustrated in Fig 6.1.

- 122 -



This method of gen=arating successive ra2gions may be used
for non-polynomial equations; alternatively the
efficiency can be imorovad by varying the radii of the
covaring circles [16]. Lehmer's method for detzrmining
whether a region contains 3 root is, however, restrictéi
to polynomials. The principal criticism of Lehmer as ths
sole method has been that of inefficiency [1], [141,
without compensating improvement 1in 1limiting accuracy.
Susceptibility to machine underflow or overflow has 1also
been mentioned. A more vractical proposition is to use
Lehmer's method for the initial sesarch, switching to an
alternative method, such as Newton, 23s soon as it will
giva convergence [22].
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The method of Delvas and Lyness [14] adoots a similar
tachnique but evaluates the actual numbers of roots in
e2ach ragion and can be used to solve f£(z) = 0 where £(2)
is any analytic function of z. The algorithm consists of

the following steps:

1. The number of roots in the initial region is =2valuateq
by contour inteagration; the r=2gion is subdivided andg
the evaluation is repeated until the number of roots,
N, 1in eéch subregion 1is acceptably s%all (N =5 is

suggested).

2. Numerical estimation of

1 f 2" £/ (2) Az
2T c

gives, by Cauchy's theorem, the sum of the nath.
DOWRLS of the roots. Thes2 sums Adetermine 123

polynomial equation whose 2z2ros are the same as those

of the given function.

3. The polynomial 23uation is solved using a subroutine

specifically designed for such functioas.

4, If necessary the solutions may be rz2fined by the use

of an iterative method with the original function.

Details are given‘of alternative methods of subdivision
basad on rectangles or c¢ircles and suitable methods of
numberical Juadrature ar=2 described in each case; The
algorithm 1is claimed to be more 2fficient than that of
Lehmer for solving high order polynomials and also reduces
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the build-up of rounding errors associated with exolicit

deflation.

A major problzam associated with the dir=ct use of the
principle of the argument isv the regquirement for
derivative values., Delves and Lyness [14] have dzveloped
two methods for use in cases wherz an analytic exoression

for £'(z) is unavailable. These algorithms ar=2 bas=2d on:

1. evaluation of 1In(f(z)).

2. obtaining coefficients of the truncated Taylor series

for f(z) using numerical integration.

Spira [41] opresents an alternative m2thod of
" calculating Acarg f(z) based on function evaluations at
discrete points but the selection of covering discs is
based on a knowledge of the leaét upper bound of Lf/(z)l

in the r=gion.

Descant Methods

These methods are based on tha idea of minimization
of the magnitude of the function value. One such example
is the method of stespest dJdescent which has the
disadvantage of requiring derivative values; _ in addition,

the rate of convergence can be slow [21].
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A direct search method for equation-solving was
proposed by Ward [44]. This seeks to minimize the
function'lRe(f(z))\+|Im(f(z))‘ by examining a set of fiva
points (%X, ,¥. ), (X, 2% ,Y,) and (x,,Y.tA), choosing that
which gives 3 minimum function walue and taking this as
the centre point for the next iteration. When tha chosen
point is the centre of the five, the step 1length N is
reduced before ra2suming the search. More generaliy, any
number of points placed =2quidistantly on the circumference
of 2a circle may be used. The most serious shortcoming of
the algorithm is the ovossibility of 1locating a 1local

minimum which is not a root of the =2quation.

B8ach [4] presents a mqre‘sophisticated "walk pattern”
comméncing with the vertices of an equilateral triangle
and subs=2quent s=2arches in forward branching directions as
shown in Fig 6.2. TIf the oprocess convergés, the algorithm
is repeated with a smaller stz2p length; otherwise the
original configuration may be rotated. 1In addition to
improving the success rate2, Bach claims that his algorithm
will also give improved efficiency as compar=2d with Ward's

selection of noints.
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When several roots of an =2quation are reguired,
descent methods will generally require s2parate estimates
for each. Hence this approach is likely to be

inaoprovnriate for root-tracking oprobl=ams.

Intaroolation methods

The itzsrative methods described in Chaoter 3 may also
be usad for the computation of complex roots orovided that
their formulation is not dependent upon the :eténtion of
an interval containing a root. In oractice a method is
usually choszn which allows iterates to move automatically
into the complex plane. Thus Laguerre's m=2thod has found
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favour for polynomial =2gquations whilst that of Muller |is
the usual <choice in the gensral case. The former method
has been found to have good global convergence properties.
Less is known in the cas2 of Muller, but the results of
Chapter 5 would sesm to indicate that, given suitable
bounds, it may be possible to disoense with othét
preliminary se2arch strategies. If a complex initial
astimate 1is orovided, rational intervolation may be us=4

although there has be=en less experience with this method.

Bahar and Fitzwatzar [5] have developned a method. of
solution for an equation exvressz2d in the form F(V) =1,
which is designed to enable the loci of the roots to be
traced as the parametars of F ara vari=d.. An outline of

the orocedure is as follows:

The first two estimates are obtained by fixing R2(V)
and  varying Im(VY ) by bisection until [F(v)|= 1.
Subsequant iterations use the starting point (Zan -Or)
and 2 search dirsction i(Vewm - Vf) for the bisection i.e.
approximately pervendicular to the locus IF(V y|= 1. This
process is repeated until Im(F(Y )) chang=ss sign. The
astimated root is then refined by 1linear 1inta2roolation
oarallal to [F(V )= 1 and bisection perpendiculaq to this

direction.
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The authors state that, for the functions consider=i,
"F/(V ) cannot be written in a clos24 analytical form and
numerical differentiation is subject to significant errors
in critical regions.™ The method described’ does not
require estimates of the Aderivative andi can give

satisfactory results even when F(V ) has isolated pol=s in

the region of interest.

6.2 NUMERICAL EXAMPLES

The descent and interpolat{on methods w=2r2 tested on
a small selection of functions using FIORTRAN routines by
Bach [3] and the National Physical: ULaboratory [20]
raspectively. Table 6.1 shows the functions chosen,
together with the roots sought. Sevarats estimatzs of
-2ach root w2r2 supplied in the case of the downhill
algoritﬁm; for the interovolation orogram an attemot was
made to obtain all the fequired roots from 2 single
user-supplied starting value. Muller's method was chosen
in preference to rational intervolation as it gave more

satisfactory results in most cases.

The ra2sults obtained ar=2 given in Tables 6.2 and 6.3.
Both routines operformed sﬁccessfully with oolynomial
functions (numbers 1 to 3) although the superiort
afficiency of routine RTFSIC in terms of the numbers of
function evaluations is appar=znt. The inclusion of a poor
starting wvalue £for function number 1 demonstrates that

success can be achieved even when the initial estimate is
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some distance from a root. Better starting values are
raquired for transcendsntal functions in both casas; for
roots successfully computed, the observations regarding

afficiency ar=2 similar to th2 polynomial examoles.

The tables for this section are given on pages

131-135.
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TABLE 6.1

FUNCTIONS TESTED (COMPLEX ROOTS)

FUNCTION

z3 - (3+4i)z* +

(-1+11li)z + (56-61)

. (z+D)T (z+1)?

-2
zZ - 2

4i(z~1i) - exv (-2 Ra(2))
z5 + 1n 2 + Ré(zﬂ

Z - ¢c0s(2)

The “dcoustic waveguide
function as given by

Rodman [39].
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ROOTS SOUGHT

1, -0.5 # 0.86601i"

2, 31, 1l+i

-1,-1,‘]..'-]..

R2al root 0.5671

+ 5 compl=x roots

0.2699+0.73011
-0.7440+1.74401

-1.3089+2,.30891

-1.980, -2.017

¥0.83261

Real root 0.7391

+ 5 complax roots

3 complax root

near 0.1 + 0.11



TABLE 6.2 RESULTS OBTAINED USING ROUTINE RTFS1C

TOLERANCES

(Relative error in root < € or magnitud=s of

valuz < 7)
Functions 7 and 8 £ =10°¢ 7 =
Remaining Functions £ = 10°% 7 =
FUNCTION ROOT STARTING
POINT

1 ALL (0,0)

1 ALL (100,100)

2 ALL ' ‘ (0,0)

3 - ALL (0,0)

4 (0.5671,0.0) (0.0,0.0)

(-2.4016,-10.776)
(-2.4016,10.776)
(-1.5339,4.3752)

(=1.5339,-4.3752)
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final function

10
-
10
TOTAL NO.
FUNCTION
EVALUATINONS
16
32
19
31
49
(cont.)



TABLE 6.2

(cont.)

FUNCTION

ROJTS STARTING

POINT

(0.2699,0,7301) (9,0)
(-0.7440,1.7440)
fails to find

third root.

(0.0,0.8326) (0,0)
(0.0,-0.8326)
(-2.0171,0.0) © (-2.01,0)

(-1.9802,0.0) (-1.98,0)

(0.7391,0.0) (0,0)
(-2.4869,1.8094)
(-2.4869,-1.8094)
(-9.1100,2.9502)
(-9.1100,-2.9502)
(-15.488,3.4565)

(-15.488,-3.4565)

(0.07200,0.005304) (0.1,0.1)
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TOTAL NO.

FUNCTION

EVALUATIONS

140

13

53

12



TABLE 6.3 RESULTS OSTAINED USING ROUTINE CRF (BACH)

INITTAL STEP LENGTHS

Function 1 (starting point (100,100)) 10.0

Function 5 (real roots) 0.01
Function 7 « 0.01
Function 8 0.1

Remaining Functions 1.0

TOLERANCES |

(Final step length < z or magnitude of final function

value < 1)
Function 1 (starting point (100,100)) z = 107 ¢ = 10
Functions 7 and 8 ‘ z = 10°°¢ n = 1077
Remaining Functions z = 10°% = 10°¢
FUNCTION ROOT STARTING NO. FUNCTION
POINT EVALUATIONS
1 (1.0,0.0) (0.0,0.0) 12 |
(-0.5,0.86560) (-1.0,-1.0) 69
(-0.5,-0.8660) (-1.0,1.0) 59
(=0.5,-0.8660) (100,100) 37
2 (1.0,1.0) (0.9,0.0) 96
(0.0,3.9) (0.0,1.0) 75
(2.0,0.0) (4.0,0.0) 5
3 (-1.0,0.9) (0.0,0.0) 3
(-1.0,0.0) (2.0,0.0) 63
(0.0,-1.0) (1.0,1.0) 83
(cont.)
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TABLE 6.3 (cont.)

FUNCTION

ROOT

(0.5671,0.0)
(-2.4016,10.775)
(~2.4016,-10.776)
(-1.5339,4.3752)

(0.2699,0.7301)
(-0.7440,1.7440)

(-1.3089,2.3089)

(0.0,0.8326)
(0.0,-0.8326)
(-1.980,0.0)

(-2.017,0.0)

(0.7391,0.0)
(-2.4869,1.8094)
(-2.4859,-1.8094)
(-9.1100,-2.9501)
(=9.1100,2.9501)
(-15.488,-3.45565)

(-15.48%8,3.4565)

(0.07200,0.5304)
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STARTING

POINT

(0.0,0.0)
(0.0,10.0)
(-2.0,-10.0)
(0.0,5.0)

(-1.5,-4.0)

(0.0,0.0)
(-1.0,1.0)

(-1.5,2.5)

(0.0,1.0)
(0.0,-1.0)
(-1.98,0.0)

(—2.01’0-0)

(0.0,0.0)
(-2.0,2.0)
(-2.5,-1.8)
(-19.0,0.0)
(=9.1,3.0)
(-15.9,0.0)

(=15.5,3.5)

(2.1,9.1)

NO. FUNCTION

EVALUATIONS

237

153
81

114
72

138
300

324

102
102
258

36

216
53
144
90
147
117

99

198



6.3 CONCLUDING REMARKS |

It is not always possible to make a clsar distinction
between global and local methods for root evaluation since
the region of convergence of an iterative procedure is
heavily dependent upon the nature:of the function under
consideration. Delvas and Lyness [14] consider that "a
feature of almost any global method for locating zeros is
that it is uncommon to find the z2ros to high accuracy”".
According to this criterion, the method of Lehmer anAd
dir=ect search déscent methods are best suited to finding
crude estimates of the roots only, since each of these
methods requires 31 1large number of iterations in
comparison with, say, interpolation methods. The results
obtained above indicate, howzaver, that it may e ovossible
to dispense with a preliminary global search and to use an
interpolation algorithm with root suopression to conduct

the search and to carry out the iterative improvements.

In practice it is 1likely that further information
will b2 available to the user from consideration of the
source of the egquation and the nature of the ragquired
roots. Many theoretical results for the =2igenvalue
problem, in particular the calculation of bounds using 2
matrix norm and the singular value decomposition arz wvalid
in th2 complex casa. Wilkinson [47] has observed that:

"favourable distributions ar= not uncommon for

matrices which arise in connexion with damoped

mechanical and electrical oscillations, for

which the eigenvalues are, in general, comolax
conjugate oairs."



If the oroblem can be r=2formulat=2d as a r2al root-finding
exarcise, for e2xamolz2 the wavaguidz oroblam €for dielectric
tubes referred to in Chapter 5, considerable economizs can

be made and the chances of success imoroved.

On the gquestion of attainable accuracy Wilkinson
points out that "in our experisnce opolynomials with
complex z=2ros which havz2 arisen in practice have had guite
well-conditionad z2ros.” [46] There - aopears to be
insufficient evidance to extend this comment to ths non-
polynomial case. The two-dimensional nature of the
problem, in addition to comolicating the initial search,
will make accuracy checks on the comput2d results,
difficult. It may, however, be the c¢ase that high
accuracy 1is not required, 2s in a3 oroblam of automatic
control mentioned by Henrici [21] in which only the number

of zeros in a given region is required.

The development of orograms for comolex root-finding
tends to reflect the 2xtent to which comolex roots have

been sought in practical situations.
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CHAPTER 7

IMPLICATIONS FOR SOFTNARE DEVELOPMENT

Interpoiation methods are well-established for the
comoutation of r=al roots and it is lik=2ly that they will
continue to form the basis of-algorithms for some time.
For this r=2ason, the inclusion of mores sophisticated
features of implementation, such 3s those described in
Chapter 2, 1is desirable, both to extand the scooe and to

imorove the reliability of the program.

The algorithms d=scribed, when convérgent, can
generally be r=2lied upon to oroduce rasults of the maximum
attainaﬁle accuracy consistent with machine orecision and
the condition of the oroblem, orovided that termination
criterié are selectad with care. Most published numerical
tests have been carried out using very good initial
astimates of the roots. Although this is probably
necessary for som2 functions, th=r2 is potential for the
use of such methods as search wvrocedures over a wider
. region, varticularly in the polynomial casa. <When complex

roots are raquired, itarative methods using an
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interpolating function can 2also be strongly recommended

from the voint of view of efficiency.

Déterminant evaluation combined with equation-solving
“has given very satisfactory results for generalized
2igenvalue problems and is preferable to matrix iterative
methods for the selection of specific roots and for
tracking oroblams. The use of an adjustable bound has

proved a particularly useful feature in this contaxt.

Muller's méthod has been widely used when Aderivative
values are not r=2adily available; ther=2 is now, however,
increasing interest in the use of ratiénal functions for
interpolation. In a recent ovaper [7] Barzilai and Ben-Tal
show that the asymptotic rate of convergence‘ of an
algorithm to a3 simole root is indepzndent of the nature of
the interoolating function and Adeoends only upon the
number of interpolating voints used and the orders of
derivatives matched at thesa points. Thus the choicea
between rational interpolatioﬁ and Muller's methéd will b=
determined principally by the nature of the function whose
Zeros are ,required. Very -satisfactory results ar=
obtained for oolynomials, both real and complex by the
Muller method, but Barzilai and 3en-Tal favour rational
interpolation when the function wvalues changs rapidly.
The 2xamoles of Chaoters 4 and 6 t2nd to confirm this
view. It was also observed that although the rational
interpolation method can be <economical in terms of the

number of function evaluations regquired, it is mor2 oDrone
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to failure wh=2n a large number of roots is sought and a
suppression tachnigue is smoloyed. Robinson [38] warns
that success with quadratic interovolation for minimization
problams c;nnot be guaranteed because of the possibility
of repeated function wvalues. Practical =xperience with
the routine by Gonnet [18] shows that this can 3also be 1a
cause of failure when such an intervolating function is

used for equation-solving.

Whilst published routines have tended to Eavouf three
point intervolation, the réte of convergence in oractice
is not perhaps as good as might be expect=d in compar{son
with 1lower order methods. Barzilai and B82n-Tal suggest
that maximum =2£fficisncy 1is obtained wusing two voint
interpolation. They also wpoint out, however, that
attempts to imorove reliability by retaining an interval
for the oot are likely to incur the venalty of a slower
convergence rate; 2a fact which 1is well-known for the

secant and regula falsi methods.

The major outstanding Adifficulties concarn the
automatic s=2arch for several roots. 1In particular, the

following oroblems wer=2 noted:
1. The difficulty of Adistinguishing between genuine

multiple roots 2and the failure of a routine to

suppress a previous root.
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2. Locating a second root which is som=2 distance from the
{
first without <causing a compleste brezakdown of the

orocedure by, for example, the occurrence of overflow.

3. The acceotance of points which are not roots of the
given equation. This is particularly associated with

the use of the automatic stopping criterion.

4, PFailure to detact som2 of the roots when several ars

required.

The above points suggest that the grezatest current need is
for furtﬁer study of the global convergence provoerties of
iterative methods. Another area for further investigation
is the detection of multiple foots and the deveiopment of
an =2ffactive technique for the accele;ation of convergence
in such cases. It 1is 2also worthwhile to incoroorate
facilitiss for handling function wvalues in a scaledi form.
Thé development of routines for the computation of
standard functions in this form will be a necessary
ﬁdjunct to the equation-solving program. Raversa
communication is another valuable f2ature, allowing
flexibility to the wuser, particularly when solving
non-polynomial eguations which still require some

experimentation with input parameters in many cases.

- 141 -



APPENDIX A

ORDER OF CONVERGENCE OF THE SECANT METHOD

The iterative process may be written

Xiei = X

£, - £,

t [3

£, - x. £,

=> oA +E, = (t+&;_, Jf(x+zg;) - (x+g; )E(x+ €., )

f(Ok'i'i") - f(<x + EZ—I)

whera & is the exact root and &: is the error in x;.

Using Taylor's series to second order terms o« + £, =

[+ s (Ee0 v 0+ glE"(0)

S (Rt s ) (E(w) + 5o, £l (x) + E;Lf"(d))]
) 2

[f(a.) FEEN () + gf”(o«)] - [f(x) e @)+ g;_,f"(x)]
2 2

Putting f() = 0 gives o+ &, =

(2,-5, 00 £ (=) + (si-2 058, £7(x) + (2= 2 )« £"(«)

2 2

(2; -2, VE () + (27~ 2% )£ (w)
2
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=> & + &;,, = o(fl(og) + i;ii_‘f”(:&) + (& + €, It f”(ﬂ)

Py 2
£ () + (2, + 2., )£ (%)
2
1" 1
whence g, = 2.2, £ (x) = & & (w)
2
1 n /
E() + (g + g, ) (%) 2f ()
EY
=> 2., * kEg._ g, where k is constant.
Assume a solution of the form g; = c (i =1,2,.
i'l-c",
where c is constant, then [g;|= “|Ezq|F
=> |z = = Te
= lea | = [xle|]=] = & (12;]) & |
<

= ol |P= kT |s |0

If this is to be valid for all positive integers i, we

require

For convergence we must have |z [< |g;_,|
so we select the root grsater than unity to give

p= (1 +/5)/2
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\APPENDIX B

CALLING PROGRAM FOR A REVERSE COMMUNICATION ROUTINE

c PROGRAM GONNET.FOR
¢ :
C MAIN PROGRAM CALLING FUNCTION ROOT1 OF GONNET AND
C INCORPORATING FUNCTION DEFLATION.
C MAXIMUM NUMBER OF ROOTS TO BE FOUND IS TWENTY.
C "STEPPING-OFF" POINT FOR SECOND AND SUBSEQUENT ROOTS
C IS PREVIOUS ROOT FOUND.
C
EXTERNAL F
C
DIMENSION W(9),ROOTS(20)
DATA IN,NOUT/5,5/
C

WRITE (NOUT,1)
1 FORMAT(//1X,34d RESULTS FOR GONNET WITH DEFLATION/
* 1X,2049FUNCTION EXP(-X) - X/)

WRITE (NOUT, 2)
2 FORMAT(1X,284 NUMBER OF ROOTS REQUIRED = )

READ (IN, 3)NROOTS
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3 FORMAT(I2)
WRITE (NOUT, 4)

4 FORMAT(1X,7H EPS

L}
S

READ(IN,6)EPS
" WRITE (NOUT,5)

5 FORMAT(1X,74 ETA

]
g

READ (IN, 6)ETA
6 FORMAT (E)
WRITE (NOUT, 7)
7 FORMAT(1X,20d INITIAL ESTIMATE = )
READ (IN, 8)X
8 FORMAT (F)
FX=F (X)
c
C NEXT ROOT
DO 17 I=1,NROOTS
WRITE (NOUT, 9)
9 FORMAT (/12X, 14X, 20X, 2HFX)
ITS=0
IF(I.EQ.1)ITS=1
W(1)=0
XERR=1.0E32
c
C NEXT ITERATION
10 IERR=0
WRITE (NOUT, 11) X, FX
11 FORMAT (2 (5X,1P,E15.8))

IF(I.EQ.1)GO TO 14
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(@}

C FUNCTION DEFLATION PROCESS
DO 13 J=1,I-1
D=X-ROOTS (J)
IF (D.NE.0.0)GO TO 12
C PERTURS IF COMPUTATIONALLY EQUAL TO A PREVIOUS ROOT
X=1.01*X
| FX=F (X)
ITS=ITS+1
G0 TO 10
12 FX=FX/D

13 CONTINUE

C CALL TO ROOT-FINDER
14 X=ROOT1 (X,FX, XERR, ESTD, IERR, W)
30 TO (18,20,22)IERR
- FX=F (X)
ITS=ITS+1
C CONVERGENCE TEST (

IF (XERR.GT.EPS*ABS (X) .AND.ABS (FX) .GT.ETA)GO TO 10

(@]

C ROOT FOUND
15 WRITE (NOUT,16)X,FX,ITS
16 FORMAT(/1X,831 ROOT = ,1P,El5.8/

* 1X,18d4 FUNCTION VALUE = ,1P,E15.8/

* 1X,344 NUMBER OF FUNCTION EVALUATIONS = I2/)
ROOTS (I)=X

(@]
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17 CONTINUE

STOP
c
C FAILURE TERMINATION
18 WRITE (NOUT,19)
19 FORMAT(/1X,24d MORE THAN 80 ITERATIONS/)
STOP
20 WRITE (NOUT,21) )
21 FORMAT(/1X,25d REPEATED ARGUMENT VALUES/)
STOP
22 WRITE (NOUT, 23)
23 FORMAT (/1X,274 UNABLE TO APPLY ANY METHOD/)
STOP
END
C

C FUNCTION EVALUATION ROUTINE
FUNCTION F (X)
F=EXP (-X)-X
RETURN

END
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APPENDIX C

INPUT PARAMETERS FOR ROUTINE RTFSI1C

A list of the parameters to be supplied by the user is

given, together with a summary of the purpos=2 of =ach.

METHOD Offers choice . of  three-point rational

IBASE

IC

interpolation or guadratic interpolation.

Vactor containing up to three approximations to-

the next root sought.

Function values are supplied in the form ab“.
Vector A contains the values of a corresponding to

the estimates in X.
The base, b, used for function evaluation.

Vector containing the values of ¢ in the function

values corresponding to the estimates in X.



NMAX

ROOTS

LROOTS

STEP

TOL

BOUND

NEXTX

MAXNFV

NFV

The maximum number of roots raguired.
The number of roots found so far.

Vactor containing the known roots and, if

raquired, approximations to later roots.
The length of the wvector ROOTS.

When one a2stimate only is provided, this parameter
may be used to construct the two further estimates

raquired for three point interpolation.

Vactor giving tolerances for each of the four
convergences tests: automatic stopping, relative
error in the root, magnitudes of function wvalue

and supprassed function value.

Maximum magnitude for each iterate.

Determines how an approximation to the next root
is to be found following the acceptance of a root.
The choice is between a user-supplied estimate,
the 1last iterate, the réot just found or its

conjugate. ,
The maximum total number of function evaluations.

Indicates the number of approximations to the n=2xt

root which are being supplied.
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INFORM

IFAIL

Is set to zero before the first call and
subsequantly takes the wvalue returned by the
routine. This parametar indicates the prograss of

iterations.

Failure parameter giving options of hard failure
(with message) or soft failure (with or without

message) .
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APPENDIX D

OUTPUT DATA FOR REAL ROOT TESTS

RESUOLTS FOR BUS AND DEKKER METHOD USING NAG ROUTINE COSAZF

FUNCTION x 3

NUMBER OF ROOTS REQUIRED = 1
MAXIMOM NUMBER OF ITERATIONS PER ROOT = 99
ABSOLUTE TOLERANCE = 0.5E-04

INITIAL INTERVAL = (-0.5, 1.0)

b d f(x)
~5.00000000E-01 © =1.25000000E-01
1.-00000000E+00 1.00000000E+00
3.33333340£-01 -3.70370380E-02
-2.63157900E-01 -1.82242310E-02
-1.67810830€E-01 -4.72563290E-03
4.16094580€-01 7.20404120E-02
-1.31866250E-01 ~2.29298430€-03
-9.798535508-02 -9.407701108-04
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-6.24008580E-02

1.76845860E-01
-5.23325790E-02
-3.78528050E-02

-2.40977780E-02

7.63745420E-02

-2.10379310E-02
~1.49531850E-02
~9.51793390E-03

3.34283040E-02
-8.54898830E-03
-5.99923370E-03
~3.81826460E-03

1.48050200E~02
~3.50418440E-03
-2.43483250E-03
-1.54958700E-03

6.62771650E-03
~1.44639390E-03
-9.97081200E-04
-6.34545300E-04

2.99658560E-03
~6.00390990E-04

-4.11225720E-04

- All -

f(x)

-2.42980650E-04

5.53085250E8-03
-1.43323170E-04
-5.42368180E-05
-1.39936500E-05

4.45498100E-04
-9.31127350E-06
~3.34349820E-06
-8.62239790E-07

3.73545100E-05
-6.24804520E~07
~2.15917250E-07
-5.56670290E-08

3.24509180E-06
-4.30289600E-08
-1.443468408-08
-3.72089900E-09

2.91133220E-07
~3.02593580E-09
-9.91269110E-10
-2.55498230E-10

2.69079160E-08
-2.16422550E-10

-6.95409800E-11



-2.61699490E-04
1.36744310E-03
-2.36699490E-04
-1.65576120E~-04
-1.05380390E-04
6.31031330E-04
-8.03803920E-05
-5.53803920E-05
-3.03803920E-05
3.00325460E-04
-5.38039240E-06

1.96196080E-05

ROOT =

FUNCTION VALUE

-5.38039240E-06

-1.55754950E-16

NUMBER OF ITERATIONS = 44

£f(x)

-1.79229150E-11

2.55698250E-09
-1.32614800E-11
-4.53934440E-12
-1.17025210E-12

2.51277010E-10
-5.19338320E~-13
-1.69850990E~-13
-2.80401370E~-14

2.70879710E-11
-1.55754950E-16

7.55215600E-15
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RESULTS USING ROUTINE RTFSI1C

FUNCTION x?3

TOLERANCE FOR FUNCTION VALUE = 1.0E-12

FIRST ESTIMATE = 1.0

METHOD 1 - RATIONAL INTERPOLATION

1.20000000E+00
1.10000000E+00
5.46202690E-01
‘4.051095203—01
2.78531050E-01
1.86557710E-01
1.28224540E-01
8.74674260E-02
5.96148870E-02
4.06999000E-02
2.77686220E-02
1.89461350E-02
1.29280080E-02
8.82106230E-03
8.73910860E-03
4.88067840E-03
3.39173420E-03
2.36583750E-03

- Al3 -

£(x)

1.72800000E+00
1.33100000E+00
1.62952680E+00
6.648403403-02
2.16083130E-02
6.49291340E-03
2.108208008-03
6.69173950E-04
2.11867420E-04
6.74186450E-05
2.14122830E-05
6.80082990E-06
2.16070170E-06.
6.86376910E-07
6.67423360E~07
1.16262740E-07
3.901803808-08
1.32420350E-08



2.34385730E-03
1.30260760E-03
9.07216760E-04
6.32605250E~04
6.26727920E-04
3.483320208-04
2.42592040E-04
1.69161060E-04
1.67589440E-04

9.31451930E-05

SOLUTION =

NUMSER OF ITERATIONS = 29

9.31451930E-05

) f(x)

1.28763710E-03
2.21024710E-09
7.46677720E-10
2.53161920E~-10
2.46171130E-10
4.22649350E-11
1.42767600E-11
4.84062250E-12
4.70695410E-12

3.08130210E-13
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METHOD 2 - QUADRATIC INTERPOLATION

1.2000000E+0
1.1000000E+0
5.4848492E-1
3.7284821E-1
2.0861734E-1
7.6628333E-2
3.9331354E-3
-3.7881312E-2
-5.6644735E8-2
-5.9718549E-2
~5.4138352E~2
-4.4445008E-2
-3.3674451E-2
-2.3635800E-2
-1.5228538E-2
-8.7476367E-3
-4.1179948E-3
-4.0797358E-3
1.3856479E-4
1.3144002E-3
1.8066090E-3
1.8233937E-3
1.8667228E-3

1.5972343€-3

X
0.0000000E+0
0.0000000E+0
3.1490379E-1
3.3624260E-1
3.1309670E-1
2.6262930E-1
2.0397476E-1
1.4637415E-1
9.6487597E-2
5.7548959E-2
2.90605108-2
9.8436694E-3

~1.8952223E-3

-8.1107657E-3

-1.0529142E-2

-1.0565733E-2

-9.2911888E-3

-9.2048673E-3

-6.36566818-3

-4.5882456E-3

-3.1324375E-3

-3.1033351E-3

-1.2694307E-3

~5.7186099E-4

- Al5 -

1.7280000E+00
1.3310000E+00
1.8333270E-03
-7.4629842E-02
-5.2272713E-02
-1.5406168E-02
~4.9086143E-04
2.3805064E-03
1.4003112E-03
3.8036791E-04
-2.1515734E-05
~7.4874962E-05
~3.7822909E-05
-8.53955638-06
1.5332115E-06
2.26024048-06
9.9663995E-07
9.6911882E-07
-1.6841937E-08
-8.0741430E-08
~4.7283762E-08
-4.6619255E-08
~2.5195322E-09

2.5077898E-09

£(x)
0.0000000E+00
0.0000000E+00
2.5297567E-01
1.0221381E-01
1.0186300E-02
-1.3488232E-02
-8.4770473E-03
~2.50598598-03
3.04920858-05
4.2511608E-04
2.3098369E-04
5.73805098-05
-6.4405597E-06
-1.3059700E-05
-6.1580985E-06
-1.2460036E-06
3.29396378-07
3.2030044E-07
2.5758122E-07
7.2811122E-08
6.47054428-11
-1.0663201E-09
-1.12249518-08

-4.18970968-09



1.2796307E-3 -1.2663151E-4

1.2677420E-3 -1.2545502E-4

7.5315850E-4
4.9634485E-4

3.0233297E-4

2.9952409E-4

7.7845092E-5

2.7366420E-4
3.4070899E-4
3.4143468E-4
3.3826252E-4

2.7338248E-4

2.0337785E-09
1.9776180E-09
2.5801061E-10
-5.0572389E-11
-7.8100975E-11

-7.5944304E-11

-1.6982224E~-11

£(x)

-6.2002945E-10
~6.0290804E-10
4.4521090E-10 .
2.1225899E-10
5.3823091E-11
5,2336826E-11

-1.5462077E-11

5.2177811E-6 2.1346972E-4 -7.1316992£-13 -9.7102350E-12

-3.5310603E-5 1.5785640E-4 2.5956500E-12 -3.34310288-12

-3.5638663E-5 1.5638980E-4 2.5696614E-12 -3.2290472E-12

-6.2536358E-5 7.9118136E-5 9.2980573E-13 4.3299056%-13

-6.0376278E-5 4.5775595E-5 1.5944891E-13 4.0467822E-13

SOLUTION = (~-6.03762780E-05, 4.57755950E-05)

NUMBER OF ITERATIONS = 37
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RESULT USING ROUTINE RTFSI1C

FUNCTION (X - 1)EXP[-1/(X - 1)* ]

METHOD 1 - RATIONAL INTERPOLATION
RELATIVE TOLERANCE FOR ROOT = 1.0E-4

FIRST ESTIMATE = 1.5

SOLUTION = 1.1441417

NUMBER OF ITERATIONS = 34

RESULTS USING ROUTINE RTFSI1C

FUNCTION EXP(-X) - X

RELATIVE TOLERANCE FOR ROOT = 1.0E-4
FIRST ESTIMATE = 0.0

NUMBER OF ROOTS REQUESTED = 2

BOUND = 100.0

SOLUTION = 5.67143290E-01
NUMBER OF ITERATIONS = 5
SOLUTION = -1.77339410E+01

NUMBER OF ITERATIONS = 22

BOUND = 25.0

SOLUTION = 5.67143290E-01
NUMBER OF ITERATIONS = 5

TERMINATES BY EXCEEDING BOUND
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RESULTS FOR ROUTINE RTFS1C

BRENT'S FUNCTION

RELATIVE TOLERANCE FOR ROOT = 1.0E-6
FIRST ESTIMATE = 3.0

NUMBER OF ROOTS REQUESTED = 19

SOLUTION NUMBER OF ITERATIONS
3.02291530E+00 6
4.19061160E+01 15
5.59535960E+01 | 14.
9.00088680E+01 ' 8
1.10026530E+02 | 7
1.32040550E+02 7
1.56052110£+02 8
1.82062060E+02 9
2.16071100E+02 10
2.40080050E+02 8
2.72090270E+02 10
3.06105120E+02 9
2.89013770E+02 4
3.42136940E+02 8

Floating underflow occurs

5.45443620E+02 exceeds 100

HARD FAILURE OCCURS WITH IRRECOVERABLE OVERFLOW
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RESULTS USING ROUTINE RTFSIC WITH RATIONAL INTERPOLATION

FUNCTION: PRODUCT R=1] TO R=20 OF (X - R)

AUTOMATIC STOPPING WITH TOLERANCE = 0.05
FIRST ESTIMATE = 0.0

NUMBER OF ROOTS REQUE@TED = 20

SOLUTION NUMBER OF ITERATIONS
1.00000000E+00 11
2.00000000E+00 11
3.00000000E+00 10
4.00000000E+00 10
5.00000000E+00 9
6.00000010E+00 5
7.00000000E+00 - 9
8.00000000E+00 12
1.20000000E+01 9
1.41833500E+01 6
1.70082570E+01 6
1.90000000E+01 9
1.95331750E+01 9
2.00000000E+01 9
1.80000000E+01 14
1.78666890E+01 5
1.60000000E+01 15
1.59242180E+01 5
1.71162410E+01 11
1.40000000E+01 - 17
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RESULTS USING ROUTINE RTFS1C WITH RATIONAL INTERPOLATION

BRENT'S FUNCTION

AUTOMATIC STOPPING WITH TOLERANCE = 0.05 (a)
OR RELATIVE TOLERANCE FOR ROOT = 1.0E—06‘ (B)
FIRST ESTIMATE = 3.0

NUMBER OF ROOTS REQUESTED = 19

SOLUTION ' NUMBER OF STOPPING

| ITERATIONS CRITERION
3.02291530E+00 6 B
3.25241210E+00 7 A
5.67085050E+00 6 A
6.68375360E+00 6 3
1.28949690E+01 10 A
1.87007450E+01 7 A
1.96760000E+01 8 ;)
2.80314690E+01 25 A
.2.98282270E+01 9 A
3.92464580E+01 6 A
4.19061160E+01 10 A
5.84661070E+01 6 A
7.19856650E+01 9 B
8.85848240E+01 6 A
1.08563500E+02 6 A
1.32040550E+02 8 A
1.56052110E+02 7 3

Floating underflow occurs
1.86999610E+02 6 A
2.07160740E+02 43 L
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RESULTS FOR THE FUNCTION (4x - 7)/(x - 2)

RELATIVE TOLERANCE FOR ROOT = 1.0E-4

TOLERANCE FOR FUNCTION VALUE = 1,.,0E-6

ROUTINE BY GONNET

INITIAL ESTIMATE = 1.6

FAILS - UNABLE TO APPLY ANY METHOD -

INITIAL ESTIMATE = 1.7
ROOT = 1.75000000E+00

NUMBER OF FUNCTION EVALUATIONS = 10

ROUTINE BY BARRODALE AND WILSON

INITIAL ESTIMATE = 1.0

FAILS - MAXIMUM NUMBER OF ITERATIONS EXCEEDED

INITIAL ESTIMATE = 1.5
FLOATING DIVIDE CHECK INDICATED

FALSE ROOT CLAIMED AT x = 1.5

INITIAL ESTIMATE = 1.6
ROOT = 1.75000000E+00

NUMBER OF FUNCTION EVALUATIONS = 9
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ROUTINE RTFS1C

FIRST ESTIMATE = 1.0

TERMINATES BY EXCEEDING BOUND

FIRST ESTIMATE = 1.5
ROOT = 1.75000000E+00

NUMBER OF FUNCTION EVALUATIONS = 6
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RESULTS USING ROUTINE RTFS1C WITH RATIONAL INTERPOLATION

FUNCTION x> - 2x - 5

RELATIVE TOLERANCE FOR ROOT = 1,.0E-4
TOLERANCE FOR FUNCTION VALUE = 1.0E-6

FIRST ESTIMATE = 0.0

X f(x)
2.00000000E-01 -5.39200000E+00
-1.00000000E-01 © =5.19900000E+00
-1.78690590E+00 -7.13183720E+00
-3.68973140E-01 -4,31228610E+00
-7.18846600E-01 ~3.93376390E+00
-1.25653490E+00 -4,47084800E+00
-7.87057390E-01 -3.91343530E+00
-1.13718940E+00 -4.19623430E+00
—1.57054700E+00 " =5.73446580E+00
-1.96332090E+00 -8.64123150E+00
-6.12624560E+01 -2.29805900E+05
-7.81385420E-01 -3.91431430E+00
2.33308670E-01 -5.45391770E+00
-3.21638720E+00 -3.18412240E+01
-1.71305430E+00 ~6.60094370E+00
-4.,10551350E+00 -6.59883910E+00
-1.00318460E+00 -4,00321510E+00
1.16612770E+00 -5.74649210E+00
-2.43999470E+00 ~1.46467000E+01
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-1.65887770E+00

© =-2.59816010E+00

-4.08890130E-01
~5.29274090E+00
1.06417480E+00
-2.17093550E+00
-5.01862390E+01
5.54213240E+00
-1.72784480E+00
-1.46265040E+00
-6.45013390E-01
-2.60233960E+00
-5.693494408+00
3.82437830E-01
4.86842140E+00
6.07223150E-01
3.85838420E+01
8.74495030E-01
-3.37979140E+01
8.79259590E-01
4.77454920E8+01
8.83516310E-01
1.38158090E+01
9.24066540E-01
7.49925010E+00
1.09051690E+00

- A24 -

f(x)

-6.24726940E+00
-1.73423920E+01
-4.25058260E+00
-1.42680630E+02
-5.92320570E+00
-1.08896640E+01
-1.26306630E+05

1.54143610E+02

-6.70270050E+00

© ~5,20381470E+400

-3.97832610E+00
-1.74188110E+01
-1.78172640E+02
-5.70894080E+00
1.00652180E+02
-5.99055100E+00
5.735809303#04
-6.08022740E+00
-3.85447280E+04
-6.07876590E+00
1.08741660E+05
-6.07735880E+00
2.60448290E+03
-6.05907360E+00
4.01749960E+02

-5.88416160E+00



4.06190380E+00
1.53028370E+00
2.39886460E+00_
2.04488530E+00
2.09675470E+00

2.09454450E+00

SOLUTION = 2.09455150E+00

NUMBER OF ITERATIONS = 52

f(x):

5.38937960E+01
~4.47699730E+00
4.00665990E+00
-5.38968090E-01
2.46212480E-02

-7.760524808-05
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RESULTS FOR THE FUNCTION x - 4 /(x - 1)

REALATIVE TOLERANCE FOR ROOT = 1.0E-4

1.0E-6

TOLERANCE FOR FUNCTION VALUE

NUMBER OF ROOTS REQUESTED = 2

ROUTINE GONNET

INITIAL ESTIMATE = 1.0

ROOT = 1.07179680E+00
FUNCTION VALUE = -2.98023220E-08

NUMBER OF FUNCTION EVALUATIONS = 9

ATTEMPT TO TAKE SQUARE ROOT OF NEGATIVE ARGUMENT.

FALSE ROOT GIVEN AT x = 9.44271910E-01
. INITIAL ESTIMATE = 15.0 ' ‘

ROOT = 1.49282030E+01
FUNCTION VALUE = 0.00000000E+00

NUMBER OF FUNCTION EVALUATIONS = 4

ATTEAPT TO TAKE SQUARE ROOT OF NEGATIVE ARGUMENT.

FAILS - UNABLE TO APPLY ANY METHOD.
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ROUTINE BY BARRODALE AND WILSON WITH REALRT = .TRUE.

INITIAL ESTIMATE = 1.0

ROOT = 1.07179680E+00
FUNCTION VALUE = -2.23517420E-07

NUMBER OF FUNCTION EVALUATIONS = 9

FLOATING UNDERFLOW OCCURS

TERMINATES BY EXCEEDING MAXIMUM NUMBER OF ITERATIONS.
FIRST ESTIMATE = 15.0

ROOT = 1.49282030E+01
FUNCTION VALUE = 0.00000000E+00

NUMBER OF FUNCTION EVALUATIONS = 5

FLOATING UNDERFLOW OCCURS.

TERMINATES BY EXCEEDING MAXIMUM NUMBER OF ITERATIONS.
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ROUTINE BY BARRODALE AND WILSON WITH REALRT = .FALSE.

FIRST ESTIMATE = 1.0

ROOT = (1.07189010E+00, 6.31861800E-06)
FUNCTION VALUE = (-6.03094700E-04, -4.08135640E-05)

NUMBER OF FUNCTION EVALUATIONS = 40

ROOT = (1.49272000E+01, 2.85409660E-04)
FUNCTION VALUE = (-4.65393070E-04, 1.32453580E-04)

NUMBER OF FUNCTION EVALUATIONS '= 65
FIRST ESTIMATE = 15.0

ROOT = (1.49282030E+01, 0.000000008+00)
FUNCTION VALUE = (0.00000000E+00, 0.00000000E+00)

NUMBER OF FUNCTION EVALUATIONS = 5

~FALSE ROOT GIVEN AT x = (1.15009130, 1.20104330E-05)
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ROUTINE RTFS1C WITH RATIONAL INTERPOLATION

FIRST ESTIMATE = 1.0

ROOT = (1.07179690E+00, 0.00000000E+00)
FUNCTION VALUE = (8.04662700E-07, 0.00000000E+00)

NUMBER OF FUNCTION EVALUATIONS = 5 .

ROOT =" (1.49282030E+01, 4.58385330E-10)
FUNCTION VALUE = (0.00000000E+00, 2.12737370E-10)

NUMBER OF FUNCTION EVALUATIONS = 56
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RESULTS FOR THE FUNCTION x>° -1

RELATIVE TOLERANCE FOR ROOT = 1.0E-4

NUMBER OF ROOTS REQUESTED = 2

ROUTINE BY GONNET
INITIAL ESTIMATE = 0.5
FAILS - UNABLE TO APPLY ANY METHOD
INITIAL ESTIMATE = 0.6

OVERFLOW OCCURS
ROOT = 9.99975090E-01
.FUNCTION VALUE = -4.,98056410E-04

NUMBER OF FUNCTION EVALUATIONS = 51

7

FAILS WITH REPEATED ARGUMENT VALUES

" ROUTINE BY BARRODALE AND WILSON

INITIAL ESTIMATE = 0.5

ROOT = 1.00000000E+00
FUNCTION VALUE = 0.00000000E+00

NUMBER OF FUNCTION EVALUATIONS = 5

FLOATING DIVIDE CHECK.

FAILS BY EXCEEDING MAXIMUM NUMBER OF ITERATIONS.
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ROUTINE RTFS1C WITH RATIONAL INTERPOLATION

FIRST ESTIMATE = 0.5

ROOT = 9.99999890E-01
FUNCTION VALUE = 2.23517420E-06

NUMBER OF FUNCTION EVALUATIONS = 15

FALSE ROOT GIVEN AT x = -3.89568380E+00
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RESULTS FOR THE FUNCTION (x> - x - 1)/(x2% - x +1)

RELATIVE TOLERANCE FOR ROOT = 1.0E-4
TOLERANCE FOR FUNCTION VALUE = 1.0E-6

INITIAL ESTIMATE = 0.0

ROUTINE BY GONNET

ROOT = -6.18034000E-01
FUNCTION VALUE = 7.45058050E-09

NUMBER OF FUNCTION EVALUATIONS = 6

FLOATING OVERFLOW OCCURS.

TERMINATES BY EXCEEDING MAXIMUM NUMBER OF ITERATIONS.

ROUTINE BY BARRODALE AND WILSON

ROOT -6.18033980E-01

FUNCTION VALUE = -7,45058070E-09

NUMBER OF FUNCTION EVALUATIONS = 7

ROOT = 1.61803400E+00
FUNCTION VALUE = 7.45058050E-09

NUMBER OF FUNCTION EVALUATIONS = 10

ROUTINE RTFS1C WITH RATIONAL INTERPOLATION

ROOT = -6.18033990E-01

FUNCTION VALUE = 1.86264510E-09

NUMBER OF FUNCTION EVALUATIONS = 7

' TERMINATES BY EXCEEDING BOUND
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APPENDIX E

ATTAINABLE ACCURACY FOR THE ROOTS OF AN EQUATION

Suppose that the eguation f£(x) = 0 has a root of

multiplicity m at x =,
)

Then f ()

0 (].‘ = 0, l, e o m-l)
Let E(x) and < denote the computad values of the

function and root respectively.

Thus we may write £(Xx) f(x) + q(x)

and ‘®x = X + £

where Q(x) and € ars perturbations due to rounding errors.

Hence 0 = f(x) = f(xk - €)

£(®R) —££7(2) + ven + (-1 £ @R 4 ...

5
£ (=) - & et () F e+ D ETE @) 4L

!

No further improvement in accuracy can be achieved

when the computed function value f(x) is zero.

«) -

Then 0 = - 7 () —gf/@) 4o+ (D) ETE )+ L

!
Retaining the first non-zero derivative term, w2 have

0= - N + -1 =" T2

o
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= €= (-1)" ! (&)
ERCY)

=t - ‘/N\
=> le| = | {1 mt (%)
5,("‘)(0-()

Attainable accuracy is hence depsndent upon the accuracy

to which w2 can esvaluate the function in the region of the
root and also upon the multiplicity of the root. The
occurrence of m! and the exponent 1/m will usually mean
that multiple roots cannot be <computad to an accuracy
approaching machine precision. Multiple precision
arithmetic becomes necessary in such circumstances unless

a low degree of accuracy is sufficient.

EXAMPLES
1. The function x - exp(~x) has a simple zero in the
interval [0,1].
We can expect standard functions to be computed to
approximataly machine precision.
Hence r=lative error in computed £(x) = u
where u is the unit rounding error (maximum e such
that 1.0 + e is represented as 1.0)
The maximum valué of exp(-x) on the interval [0,1]
is 1.0 so that the absolute error in £(x) < u.
also £/(x) > 1.0, xe [0,1]
Hence thé absolute error in the root sat}sfies
1&
£/()

< u

le] =
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The actual root is 0.567 to three significant figures
so that its relative error will not exceed about 1.8u.
It should therefore be possible to calculate the root

to near machine precision.

The function f£(x) = x®> - 3x* + 3x - 1 which has a
triple zero at x = 1.

If the nested multiplication method is used for the
evaluation of the function, we have

£(x) = ((x - 3.0)x + 3.0)x - 1.0

Let x = 1.0 + €, then

£(x)

]

((g - 2.0)(g + 1.0) + 3.0)(1.0 +=) - 1.0

(g*-£ +1.0)(1.0 +£) - 1.0

(£ +1.0) - 1.0

This will be computed as ze2ro if Eé < u,

For 2xample, if u = 0.75E-8 (The approximate value'for
single precision‘on the DEC10) this gives

€ < 0,002 approximatesly, so x will be accepted

as a root if it lies in thes approximate interval

0.998 < x < 1.002

Dahlguist [13] points out that a root may not remain
ill-conditioned if the function can be given "... 1in
su;h a form that its value can be computed with 1less
absolute error as x épproaches <", This remark is
applicable to the following two examples in which

polynomial functions are presented in factored form:
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f(x) = (x - 1.0)3

In this case the r=lative error in £(x) will be
approximately 3u.

If x = 1.0 + 2 then f£(x) = e>.

On thz2 DEC1l0 the smallest respresentable number is
of order 1.0E-39 so that the computed value of
f(x) will r=2main non-zero whilst e > u.

Hence the absolute =rror in £(x) = 3ue .

also £ (x) = 31 for all values of x.

‘:(-1)‘ 31 3ue
31

which decreases in magnitude as x approaches the root.

'

Yy
It follows that |&| = = (3u) le|

Convergence will thus continue until the root is

comouta2d to machine precision.

£(x) = ﬂ (x - r)
=
The r=2lative error in f£(x) will be aoproximat=ly 20u.
Let x = k + 2 whare kK is a3 root.
Then »rl(x) = 20ue-[—[(x -r)
r=1\
ryk
B e
When 2 is small we also have that E’(x)== T—T (x - r)
r=i

%
so that [g] =

Ul (%) \ = 20ule|

which again d=2creasss as =2 -> u.

Hence the root may e calculated to machine orecision.
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APPENDIX F

NUMERICAL RESULTS FOR EIGENVALUE PROBLEMS

THE STANDARD PROBLEM Ax = \X

MAIN PROGRAM USED:

PROGRAM EIGEN1.FOR

O Q OO O

SOLUTION OF THE STANDARD COMPLEX EIGENVALUE PROBLEM

C USING DETERMINANT EVALUATION BY NAG ROUTINE FO3AHF

C AND EQUATION-SOLVING BY LASLIB ROUTINE RTFSI1C.

C
REAL X(8),A(8),RO0OTS (40),STEP(2) ,NORK(15),TOL (4)
COMPLEX ARéAY(ZO,ZO)
INTEGER IC(4),IWORK(6)

C,
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C SET PARAMETERS FOR RTFSI1C:

METHOD=2

IBASE=2

NEXTX=-3

TOL(1)=0.0
TOL(2)=1.0E-6
TOL(3)=0.0

TOL(4)=0.0

STEP(1)=0.1

STEP(2)=0.0

(@)

WRITE (21, 1)METHOD, IBASE, NEXTX,X (1),
* X(1),TOL(1l),TOL(2),STEP (1),
* STEP(2)

1 FORMAT(1d3,7X,26HRESULTS OF PROGRAM EIGEN1.//

* 8X,8HMETHOD =,12,14X,7dIBASE =,12//

* 8X, 7THNEXTX =,13//

* 8X,18HINITIAL . .ESTIMATE =,F5.l,lH,ES.l//
* 8X,8éTOL(1) =,E8.1,8X,84TOL(2) =,E8.1//
* 8X,6HSTEP =,F5.1,1H,F5.1//)

READ (20, 2) NMATS

(@]

C NEXT MATRIX:
DO 20 ITIMES=1,NMATS
X(1)=0.0
X(2)=1.0
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IWORK (1) =0
IWORK (2)=0
N=0

NFV=0

IFAIL=1

(@]

READ (20, 2) NMAX
2 FORMAT(//8X,13//)
DO 4 I=1,NMAX
READ(20,3) (ARRAY(I,J),J=1,NMAX)
3 FORMAT (8X,8F5.1)
4 CONTINUE
C
C COMPUTE BOUND USING COLUMN NORM:
BOUND=0.0
DO 6 J=1,NMAX
COLSUM=0.0

DO 5 I=1,NMAX

COLSUM=COLSUM+CABS(ARRAY(I,J))
5 CONTINUE
IF (COLSUM.GT.BOUND) BOUND=COLSUM

6 CONTINUE

‘LROOTS=2*NMAX

MAXNFV=100*NMAX
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(@}

WRITE (21,8)
8 FORMAT(1H1l,8X, 6HMATRIX, /)

DO 9 I=1,NMAX

WRITE (21, 3) (ARRAY(I,J),J=1,NMAX)
9 CONTINUE

WRITE (21,10)NMAX,BOUND, MAXNFV

10 FORMAT(/8X,27HNUMBER OF ROOTS REQUESTED =,I3//

* 8X, 74BOUND =,F5.1//
* 8%, BHMAXNFV =,14//)
c
C FUNCTION EVALUATION AND CALL TO ROOT-FINDER:
11 CALL DETERM (NMAX,ARRAY,X(l),A(l),IC(1))
CALL RTFSI1C (METHOD,X,A,IBASE,IC,NMAX,N,ROOTS,
* LROOTS, STEP, TOL, BOUND, NEXTX, MAXNFYV,
* NFV,WORK, INORK, INFORM, IFAIL)
c

C TESTS FOR CONVERGENCE OR FAILURE:

12 IF(INFORM.ED.1.OR.INFORM.EQ.2)GO TO 11
IF (INFORM.GT.6)G0 TO 14
WRITE (21,13)ROOTS (2*N-1) ,ROOTS (2*N) ,
* "~ IWORK(1)

13 FORMAT (8X,12HEIGENVALUE =,F10.6,14,F10.6,
* 2X19HNUMBER ITERATIONS =,I3/)
IF (INFORM.LT.0)GO TO 20

GO TO 11
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FAILURE DETECTED:

14 IF (INFORM.EQ.8)GO TO 16
IF (INFORM.GT.8)GO TO 18
WRITE (21,15)

15 FORMAT(/8X,29HCURRENT ITERATE EXCEEDS BOUND/)
30 TO 20

16 WRITE(21,17)

17 FORMAT (/8X,28HMAXIMUM FUNCTION EVALUATIONS/)
GO TO 20

18 WRITE(21,19)INFORM

19 FORMAT (/3X,31HFAILURE OF RTFS1C WITH INFORM =,I3/)
20 CONTINUE

STOP

END
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C SUBROUTINE FOR DETERMINANT EVALUATION.

C
SUBROUTINE DETERM(NMAX,ARRAY,X,DET,ID)
REAL RINT(20),DET(2)
COMPLEX X,ARRAY(Zb,ZO),XARRAY(ZO,ZO)
IA=20

IFAIL=1

DO 2 I=1,NMAX
DO 1 J=1,NMAX
XARRAY (I, J)=ARRAY(I,J)
1 CONTINUE
XARRAY (I, I)=ARRAY(I,I)-X

2 CONTINUE

CALL FO3AHF (NMAX, XARRAY,IA,DET(l),DET(2),ID,RINT,
* IFAIL)

IF(IFAIL.EQ.O)RETURN

DET(1)=0.0

DET(2)=0.0

ID=0

RETURN

END
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DATA FOR PROGRAM EIGEN1:

0 0}

0

MATRIX
1. (8 x 8)
r_z l 0 o e @
1—2 l e e o
L 0O 0 o0 ...
2. s 4 1 1
4 5 1 1
1 1 4 2
L 1 1 2 4__

3. 6 4 4 17
4 6 1 4
4 1 6 4
1 4 4 6

_ B
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EIGENVALUES
l
-0.120615, -0.467911
-1.000000, =-1.652704
-2.347296, -3.000000
-3.532089, =-3.879385
1, 2, 5, 10
-1' 5, 5’ 15

-1.696322849
-1.696322851
0.2849864395
0.28498643565
12.41133642
12.41133643



MATRIX

5. (n = 6)
2
Ia-
n-1
12 eee. n=1lin B
6. | 6 -3 4 1|
4 2 4 0
4 -2 3 1
4 2 3 1
7.7 5 7 6 5]
710 8 7
6 8 10 9
[_5 7 910
3. 8 -1 -5
-4 4 -2
18 -5 -7
9. [ -1 -1 -1 -1 |
1 0 0 0
01 0 o0
0 0 1 0
o .
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EIGENVALUES

1,1, 1, 1
-4.326238

11.326238

5.236068 twice

0.763932 twice

0.01015
0.84311
3.85806

30.28868

I+

1, 2 4i

0.309017 ¥ 0.9510571i
-0.809017 * 0.5877851i



MATRIX EIGENVALUES

1+2i 3441 21+22i ~7.47753 + 6.88032i
43+44i 13+14i 15+l6i | 6.70088 ~°7.875991
| S+61 7481 25+26i 39.7767 + 42.99567i
7 3 1420 -142i | 0, 8, 8, 12

3 7 1-2i -1-2i

1-2i  1+2i 7 -3
-1-21 -1+2i -3 7
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RESULTS USING MULLER'S METHOD:

EIGENVALUE ) NO. ITERATIONS
1. -6.120615 14
-1.000000 14
-1.652704 3
-2.347296 7
-3.000000 7
-3.532089 ~ 6
-3.879385 5
-0.467911 6
2. 1.000000 9
2.000000 7
5.000000 5
10.000000 5
3. -1.000000 7
5.000000 16
5.000000 4

CURRENT ITERATE EXCEEDS BOUND

4.  0.284986 | 17

) 0.284986 » 5
-1.696323 - 0.000001i 15
~1.696323 + 0.000001i 5
12.411336 + 0.000001% 8
12.411337 - 0.0000014 4

1
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EIGENVALUE

0.999983
1.000038
1.000003
0.999997
-4.326238

11.326238

0.763979
0.763863
5.235777

5.236055

0.0001161i
0.0000181
0.0000091
0.0000001
0.0000001

0.0000001

0.0000041
0.0000011i
0.0000001

0.0000021i

0.010150

0.843107

3.858057

30.288685

1.000000
2.000000

2.000000

0.309017
-0.809017
-0.809017

0.309017

+

+

+

0.0000001
4.0000001
4.0000001

0.9510571
0.5877851
0.5877851
0.9510571
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NO. ITERATIONS

191
89
30
17

109
36
11
20



" EIGENVALUE NO. ITERATIONS

10. =7.477530 + 6.8803214 7
6.700876 - 7.8759891 6
39.776655 + 42.9956671 6

11. MAXIMUM FUNCTION EVALUATIONS REACHED
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GENERALIZED PROBLEMS

THE EQUATIONS CONSIDERED:

1. An 23uation of:the form Ax = ABx given by
Peters and Wilkinson [36].
A and B aras of order 20 and band symmetric of width 7.

1, 0<Ji-ijl¢3

a;; = 51 - i,‘ agg

b,, =41 - i, b..

(X3 (.)

1, o0<li-dlg3

Eigenvalues in the range -10 < )\ < 10 are sought.

2. The problem [(e* - 1), + )tB - B}z= 0 guoted by

2

Ruhe [40], where

B, = b_I,
O) ) . .
B, = (blﬂ )e bjp = [n+ 1 - max(j,k)].j.k
@) .
B, = (00 ), by = ns, +1/(3 + k)
in the case n = 8 and b, = 100.

3. Quadratic =quation(B, + XB, + ):Bba= 0 as qudted by
Ruhe [40], having

[121.0 18.9 15.9 |

B, = 0.0 2.7 0.145
| 119 3.4 155
 7.66 2.45 2.1 |
B, = 0.23 1.04 0.223

L* 0.6 0.756 0.658
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17.6 1.28 2.89
B, = 1.28 0.824  0.413
2.89 0.413 o.725_l

Problem of the form (B, + %8. + )fBQa= 0, again
discussed by Ruhe [40].

Here we define

—~

where « is a non-negative parameter and % = 1 +«.

——

’ Y 2 a 2 ' 2, a 2
-1+ 20 (L - - 28) 2B - wp o+ )
B, = 2 -(o+ 28 axpt - B o<*+§L)
1 0 0 0
0 1 ' 0 - 0
L ' pa—
EM -1 + o+ 2{‘) Al + 2{) - ?‘(u% §‘T
B, = 2 0 0 0
0 2 0 0
0 0 L2 0
- —
8. =1

The case K = 0 gives triple eigenvalues at ti and a double

eigenvaluz at 0.
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RESULTS USING ROUTINE RTFS1C AND NAG DETERMINANT ROUTINES:

1. METHOD - RATIONAL INTERPOLATION
BASE FOR FUNCTION EVALUATION = 2
INITIAL ESTIMATE = 1.0
TOLERANCE FOR RELATIVE ERROR IN ROOT = 1.0E-6
EACH SEARCH COMMENCED FROM PREVIOUS ROOT WITH STEP
LENGTH = 0.01
NUMBER OF ROOTS REQUESTED = 20
MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 400

BOUND = 10.0

EIGENVALUE’ NO. ITERATIONS
1.236230 27
1.261924 7
1.285635 11
1.312505 11
1.345003 22
1.357572 9
1.371315 6
1.386684 8
1.403472 . 8
1.422235 6
1.447517 6
1.470427 6
1.495213 7
1.333394 17
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EIGENVALU

E

1.322600
1.277398
1.303011
1.294097
1.269440

1.254381

-

NO. ITERATIONS

10
15
6
7
10
5

The results obtained agree, to the six decimal places

quotead,

with those given by Paters and Wilkinson, but

were computed in the order given above.
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2. METHOD - RATIONAL INTERPOLATION

BASE FOR FUNCTION EVALUATION = 2
INITIAL ESTIMATE = 0.0

TOLERANCE FOR RELATIVE ERROR IN ROOT = 1.0E-6

EACH SEARCH COMMENCED FROM ROOT JUST FOUND WITH STEP
LENGTH = 0.1

NUMBER OF ROOTS REQUESTED = 16

MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 320

BOUND = 100

EIGENVALUE NO. ITERATIONS
0.217461 - 6
0.8849562 10
1.394724 9
1.726304 12
2.007944 7
2.335425 7
2;731077 6
3.182596 8

-3.491853 © 40

-3.801275 8

~3.968169 9

-4.521556 9

-3.702762 14

- A53 -



EIGENVALUE NO. ITERATIONS

-3.627468 9
-3.571756 6
-7.642558 7

The roots agree, to six decimal ©places, with the
values given by Ruhe and were obtained in the order

given above.
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METHOD - QUADRATIC INTERPOLATION

BASE FOR FUNCTION EVALUATION = 2

INITIAL ESTIMATE

= -1+ i

TOLERANCE FOR RELATIVE ERROR IN ROOT = 1.0E-6

EACH SEARCH COMMENCED FROM COMPLEX CONJUGATE OF ROOT

JUST FOUND USING STEP = 0.1 + 0.1li

NUMBER OF ROOTS REQUESTED = 6

MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 120

BOUND = 10.0

EIGENVALUE ~ NO. ITERATIONS
-0.917998 + 1.7605841i ) 7
-0.917998 - 1.7605841 4

0.094722 + 2,522877i | 8
0.094722 - 2.522877i | 4
~0.884830 + 8.441512i 6
-0.884830 - 8.441512i ' 4

These rasults

agree, to six decimal places, with those

given by Ruhe

above.

and weres obtained in the order shown
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The actual roots ares as follows:

0, -x, i, (1 +x)i and -x=x (1 +%x)i.

For each value of X the following input paramaters
ware set:

METHOD - QUADRATIC INTERPOLATION

BASE FOR FUNCTION EVALUATION = 2

EACH SEARCH WAS COMMENCED FROM THE COMPLEX CONJUGATE
OF THE ROOT JUST FOUND USING STEP 0.1 + 0.1li

.NUMBER OF ROOTS REQUESTED = 8

B30UND = 10.0

INITIAL ESTIMATE = -1 - 2i
RELATIVE TOLERANCE FOR ROOT = 1.0E-6

MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 320
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EIGENVALUE NO. ITERATIONS

0.000000 1.5000001 15
-0.000000 1.5000001 4
-0.000000 1.0000001 11
-0.000000 1.0000001 4
- 0.000000 0.0000001i 13
-0.500000 0.0000001 260
-0.500000 1.5000001 6
-0.500000 1.5000001 4



<= 0.1

INITIAL ESTIMATE = -1 - i
RELATIVE TOLERANCE FOR ROOT = 1,0E-6

MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 800

EIGENVALUE < NO. ITERATIONS
-0.000000 - 1.100000i 20
-0.100000 + 1.100000i 11
-0.100000 - 1.100000i 4
-0.000000 + 1.1000001 9

0.000000 - 1.0000001 8
0.000000 + 1.000000i 9
~0.100000 - 0.0000001i 8

MAXIMUM FUNCTION EVALUATIONS REACHED
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0.0

INITIAL ESTIMATE

= -0.01 - 1.011i .

RELATIVE TOLERANCE FOR ROOT

1.0E-6 OR

AUTOMATIC STQPPING»WITH TOLERANCE 0.01
MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 800
EIGENVALUE ITERATIONS
0.004300 - 1.001796i 15
~0.000251 + 0.9986301i 24
0.000241 - 0.999292i 14
-0.000288 + 1.000035i 14
-0.000279 - 1.000037i 5
-0.000016 + 1.000204i 10
0.Q00000 - 0.000001i 21
0.000000 + 0.000000i 5

The results reflect the ~increasingly ill-conditioned

nature of the problem as «-> 0.
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APPENDIX G

APPLICATION OF THE SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition

The singular values of an m x n matrix A are defined as
0:(A) » 0 such that «;%A) = Z\.(A"3) [i = 1,2,u.,n] (1)
It can be shown that A may be factorized in the form
A = UZLVH where U and V are m x mand n X n unitary
matrices respectively and El‘is‘an m X n matrix with

2

zi;j =0 otherwise. " °

G, | (i=1,2,...,k and k = min(m,n)]

If A is of rank r we hava, fufther, that

Cryy v oo 104 = 0.

Also A"a = vS'v"™ in accordance with (1) above.

In the real case the factorizaéion may be carried out
using equivalence transformations so as to produce the
singular values in the order o, ) Gy > eee Cg»

An example of such a procedufe is provided by NAG routine

FO2WAF [33] which performs tha following steps:
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1. Reduction to wupper triangular form by means of

- Housz2holder transformations

2. Further reduction to bidiagonal form by a sequence of,

Given's plane rotations

3. Iterative use of the QR algorithm to obtain an
approximation, to the desired accuracy, to diagonal

form

Acceptance of Roots

In generalized eigenvalue problems we seek wvalues of a
variéble parameter % such tha; A(Q) is singular. Ther=
will then exist at least one z2ro singular valuef

Thus, in practical computation, o} will be accepted as a
root if the ratio oy /¢, is ;ufficiently small.
For{the'diélectric tube problem considered at the National
Physical Laboratory [15] it was found that, for valid
roots, o, /9, < macheps, where macheps, the unit rounding
arror, was of order 1.0E-156.

The false roots claimed occasionally as a ra2sult of the

automatic stopping criterion wer2s detected by much larger

values of this ratio (typically of order 1.0E-3).
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- Calculation of the Eigenvectors

In the r=2al case, if i is an 2igenvalue of A and x is the
corresponding eigenvector, then A(%)g = 0 and A = Qs P’
whera P, Q are orthogonal.

Thus QSPx=0 => S P x=20

Putting P x = we have that 2y =0
X =Y P4

But > may be partitioned as D 0 |
0 0

whera D is r x r diagonal.

Similarly, y may be written -‘Z.

Y

2.

where y, is of dimension r.
Hence 2.5.’- =0 = y"- = 0 and an arbitrary choice

may be made for Y,-

In particular, if we set Y, equal to the =lsmentary unit
vector g;, we have that X = Py

=> x = p,; (the ith. column of P) [i=+l, ..., k]
A set of eigenvéctors may thus be read diresctly from tﬁe

details of the singular value decomposition.

- A%l -



[1]

[2]

(31

[4]

(5]

(6]

(7]

(8]

REFERENCES

Acton, F,S. 1970 Numerical Methods that Work, New

York (Harper & Row)

Ahlfors, L.V. 1953 Complex Analysis, New York

(McGraw-4ill)

Bach,Hd. 1969 "Complex Root Finding", Collected

Algorithms from CACM, 365

——

Bach,d. 1969 "On the Downhill Method", Comm.ACM 12,

12, 675-6384

Bahar,E. & Fitzwatsr,M. 1981 "Numerical Technigque to
Trace the Loci of the Complex Roots of Characteristic

BEjguations", SIAM J.Sci.Stat.Comput., 2, 4, 389-403

Barrodale,I & Wilson,K.B. 1978 "A Fortran Program for
solving a WNonlinear Eguation by Muller's Ma2thod", J.

of Comp. & App.Math., 4, 2, 159-166

‘Barzilai,J. & Ben-Tal,A. 1982 "Nonpolynomial and

Inverse 1Interpolation for Line Search: 3ynthesis and

Convergence Rates", SIAM J. Numer.Anal., 19, 6,

1263-1277

Brent,R.P. 1971 "An Algorithm with Guaranteed
Convergence for finding a Z2ro of a function®,

Computer J., 14, 4, 422-425

- A62 -



(9]

(10]

[11]

[12]

(13]

[14]

[15]

Brent,R., Winograd,s. & Wolfe,P. 1973  "Optimal

Iterative Processes for Root-Finding", Numer.Math.,20,

327-341

Bus,J.C.P. & Dekk=r,T.J. 1975 "Two Efficient

Algorithms with Guaranteed Convergence for finding a

Zero of a Function"”, ACM Trans.Math.Softwarz 1, 4,

330-345

Cox,M.G. & Lehrian,D.E. 1973 "Real Proc=dure Zero",

NPL Algorithms Library, National Physical Laboratory

 C5/01/0/3190160/1/73

Crawford,C.R. 1973 "Reduction of a Band-Symmetric

Generalized Eigenvalus Problem", Comm.ACM 16, 41-44

Dahlquist,G. & Bjorck,A. 1974 Numerical Methods,

Englewood Cliffs N.J. (Prentice-Hall)

Delvess,L.M. & Lyness,J.N. 1967 "A Numerical Method

for Locating the 3Z2ros of an Analytic Function",

Math.Comp. 21, 561-577

-Ferriss,D.H., Hammarling,S.J., Martin,D.W. &

Wareham,A.G.P. 1983 "Numerical Solution of Eguations

describing Electromagnetic Propagation - in Dieslectric

Tube Waveguides", NPL Report, National Physical

Laboratory DITC 16/83

- A63 -



[16]

[17]

[18]

[19]

[20]

[21]

[22]

. [23]

[24]

Friedli,A. 1973 "Optimal Covering Algorithms in
Methods of Search for Solving Polynomial Eguations",

J.ACM 20, 290-300

Forsythe,G.E., Malcolm,M.A. & Moler,C.B. 1977

Computear Methods for Mathematical Computations,

Englewood-Cliffs N.J. (Prentice-~Hall)

Gonnet,G.H. 1977 "On the Stucture of 2Z=2ro Finders",

BIT 17, 170-183

Gregory,R.T. & Karney,D.L. 1969 A Collection of

Matrices for Tasting Computational Algorithms, New

York (Wiley)

Hammarling,S.J., Kenward,P.D. % Symm,Hd.J. 1981

"Subroutine RTFS1C/Z", Linear Algebra 3Subroutine

Library, National Physical Laboratory .

Henrici,P. 1974 Applied and Computational Complex‘

Analysis Vol.l, New York (Wiley)

Householder,A.S. 1970 The Numerical Treatment of a

Single Non-Linear Ejuation, New York (McGraw-"dill)

Ince,B.L. 1956 Ordinary Differential Eguations, New

York (Dovear)

Jarratt,P. & Nudds,D. 1965 "Tha wuse of Rational
Functions 'in the Iterative Solution of Eguations on a

Digital Computer", Computar J. 8, 62-65

- A64 -



Xronsjo,L.I. 1979 Algorithms: Their Complexity and

2fficiency, Chichestar (Wiley)

Xublanovskaya,V.N. 1970 "On an Approéch to the
Soiution of the Generaliz=d Latent Value Problem for

A-matrices", SIAM J.Numer.Anal. 7, 4, 532-537

Xung,Hd.T. & Traub,J.F. 1974 "Optimal Order of

Jdne-Point and Multi-Point Iteration", J.ACM 21, 4

Lancastar,P. 1977 "A Review of Numerical Methods €£or
3igenvalue Problems Nonlinear in the Parameter", ISNM

38, Basa2l und Stuttgart (Birkhauser Verlag) 43-67

Larkin,F.M. 1964 "A Combined Graphical and Iterative
Approach to the Problem of finding Zeros of Functions

in the Complex Plane", Computer J. 7, 212-219

Lehmer,D.H. 1961 "A - Machine Method for Solving

Polynomial Eguations™, J.ACM 8, 151-162

“lilne-Thompson,L.M. 1933 The Calculus of Finita

Diffarences, London (Macmillan)

#luller,D.E. 1956 "A Method of Solving Algebraic.

Egquations using an Automatic Computer“, Math.Tables

Aids Comput. 10, 208-215

NAG Fortran Library Mark 9 Vols.l & 4, Oxford

(Numerical Algorithms Group)

- A65 -



[34]

[35]

[36]

[37]

[381]

(39]

(40]

[41]

Nerinckx,D. & Haegemans,A. 1976 "A Comparison of

Non-Linear Eguation Solvers", J.Comp.& App.Math. 2,

2, 145-1438

Ostrowski,A.M. 1960 Solution of Ejuations and Systeas

of Equations, New York (Academic Press)

Paters,G. & Wilkinson,J.H. 1969 "Eigenvalues of

Ax = XBx with Band Symmetric A and B", Computer J.

12, 4, 398-404

Paters,G. & Wilkinson,J.H. 1970 Ax = ABx and the

Generalizead Eigenproblem”, SIAM J.Numer.Anal. 7, 4,

479-492

Robinson,S.M. 1979 "Quadratic Interpolation is

Risky", SIAM J.Numer.Anal. 6, 3, 377-379

Rodman,R.D. "Muller's Method for finding Roots of an

Arbitrary Function", Collected Algorithms from CACM

196

Ruhe,A, 1973 "Algorithms for the Nonlinear Eigenvalue

Problem", SIAM J.Numer. Anal. 10, 4, 674-689

Spira,R. 1967 "Zesros of Approximate Functional

Approximations”, Math.Comp. 21, 41-48

- A66 -



[42]

[43]

(44]

[45]

(46]

(47]

[48]

[49]

Terray,J. & Lancaster,P. 1975 "A Boundary Value
Problem from the Study of Heat Transfer", ISNM 27

Basel und Stuttgart (Birkhauser Verlag) 303-308

Traub,J.F. 1964 Iterative Methods for the Solution of

Eguations, Englewood Cliffs N.J. (Prentice-Hall)

Ward,J.A. 1957 "The Downhill Method of Solving:

£(z) = 0", J.ACM 4, 2, 148-150

Wehl,Hd. 1924 "Randbamerkungen zu Hauptproblemen der

Mathematik,II. Fundamentalsatz der Algebra und

Grundlagen der Mathematik." Math.Z. 20, 131-150

Wilkinson,J.H. 1963 Rounding Errors in Algebraic

Processes, London (H.M.S5.0.)

Wilkinson,J.H. 1965 The Algebraic Eigenvalue Problenm,

Oxford (Clarendon Press)

Wilkinson,J.H. Notes on Differential Eguations and

Eigenvalue Problems (unpublished)

Wittrick,W.H. & Wwilliams,F.W. 1971 "a Genaral -

Algorithm for Computing Natural Frequencies of Elastic

Structures", Quart.J.Mech.& App.Math. 24, 3, 264-2384

- 467 -



