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Abstract. Associative memory is a central cognitive task. However, the actual
biological  architecture that  supports this memory is not  currently known, so
simulating with biologically plausible neurons and topologies is an ideal mech-
anism to improve understanding of associative memory. Simulations of spiking
networks that perform associative memory tasks lay the groundwork for utiliz-
ing biological neurons in cognitive tasks. Specifically, this paper explores simu-
lations of spiking networks that perform associative memory tasks using Heb-
bian cell assemblies of neurons to represent nodes and synapses to represent as-
sociations. The first tasks use binary cell assemblies to perform two well-known
cognitive tasks. Then the paper examines different topologies of excitatory neu-
rons for basic assemblies and their performance as short-term memory. Lastly,
larger assemblies are associated in 2/3 sets, where two active elements can re-
trieve the third. Future research is proposed to explore the potential use of these
assemblies  and associations in  cognitive tasks.  By investigating  biologically
and  cognitively plausible  topologies,  learning,  and  neurons,  simulations will
lead to an improved understanding of neuro-cognition, and potentially to sys-
tems that surpass the brittleness and domain specificity of current AI systems.
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1 Introduction

Large deep neural networks, such as GPT, can accurately mimic natural language in
diverse fields. However, these models depend on statistical patterns in the training
data and can only produce shallow models that are detached from reality. They fail to
properly comprehend semantic relationships between words and cannot achieve a hu -
man-like understanding of the world because the concepts they manipulate have no
foundation. They are unable to learn novel ideas or dynamically remember associa-
tions between them in the way that humans do. The work presented in this paper
seeks to go beyond these limitations by developing a biologically-inspired associative
memory system that captures semantic relationships between words, answers ques -
tions about their relationships in a psychologically plausible way and learns associa -
tions.
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When neurons display similar spiking patterns in response to a stimulus, the con-
nections between the neurons may become strengthened through a process first pro -
posed by Hebb  [1]. These connections can form a cell assembly (CA), comprising
groups of interconnected neurons that facilitate efficient storage and retrieval of re-
lated information. Experimental and theoretical evidence support the existence of cell
assemblies [2, 3] and theoretical models of neural networks have been developed to
simulate the formation and function of CAs [4].

This paper gives an overview of the authors’ work constructing biologically-in -
spired associative memory systems using CAs. The first part describes initial work in
which a hard-wired network of cell assemblies was used to model the hierarchical
structure of semantic words in a Stroop task and an associative memory task. The next
stage (Section 3) investigates good topological structures of CAs particularly those in -
volved in associative memory tasks. These topologies are then used to learn 2-3 cell
assembly associations (see Section 4). The final part of this paper describes plans for
scaling up this associative memory model for larger associative memory tasks.

2 Cell Assembly Models of Semantic Retrieval

It is reasonably simple to implement logic in simulated spiking neurons.  Using sim -
ple persistent assemblies, the authors developed a model of the Stroop task  [5]. In
word recognition and colour naming tasks, the subjects are presented with a colour
word, such as 'red' or blue' that is written in coloured ink. In the congruent situation,
the colour of the ink matches the meaning of the word (for example, 'red' written in
red ink).  In the incongruent situation the colour  of the word is  different  from the
colour of the ink (for example, the word 'red' written in blue ink). The subjects must
recognize and repeat the word (WR) or name the colour of the ink (CN). When hu -
mans perform these tasks, they have a faster reaction time in WR tasks compared with
CN tasks. Subjects also have slower reaction times on CN tasks in the incongruent sit -
uation where the word and ink colour disagree, but the difference in reaction time is
not significant in incongruent WR tasks. This difference in response times is known
as the Stroop effect [6]. The authors’ simulation of the Stroop effect was constructed
using eight cell assemblies.  The simulation was able to re-produce similar timings to
human subjects with congruent and incongruent colour word combinations.

Further simulation of a classic semantic net task, [7] has also been completed [8].
Here a small hierarchy has been attributed to people, and psychological experiments
have been performed on subjects.

The semantic net examined revolves around animal concepts with for example a
canary that is a bird, and a bird that is an animal. Features are associated with these
animal classes, so canaries are yellow, birds can fly, and animals eat.  Subjects were
then queried with a true or false question, for example, “Do canaries fly?” Subjects
were observed to take longer to respond to canaries flying than to them being yellow.
The explanation of this phenomenon was that features higher in the hierarchy require
longer processing time. An overview of the structure of the network is shown in Fig -
ure 1.
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Fig. 1. Gross Topology of the Question Answering Associative Memory. Boxes represent sets
of neurons. Thick boxes and arrows are the core of the semantic memory. The oval represents
the question with spike sources instead of neurons.

The use of spiking neuron models for timing of response is particularly good due to
the ability to directly derive performance timings from the collective firing of individ -
ual neurons. Additionally, the size and hierarchical structure of the network can di-
rectly determine its effectiveness and potentially explain some of the cognitive con -
nections between individual concepts. However, as these models use simple parame-
ters to account for neural activity, they do not guarantee biologically accurate repro -
duction of neural processes, although they may provide a reasonable approximation.
The present  associative  memory model,  for  instance,  employs  only 1130 neurons,
whereas the brain uses millions, if not billions, of neurons for similar tasks.

3 Finding Good Topologies for Cell Assemblies

The empirical details of cell assembly structure in the brain are challenging to analyze
and observe. Even if a CA can be statistically identified, the participating neurons in
the cell assembly may vary across different sessions with the same stimulus [9]. Be-
cause neurons in the brain fire constantly at a low rate, it can be difficult to differenti -
ate between neurons participating in an active cell assembly from the noise signals.
The number of neurons in a CA is not even clear and one neuron may participate in
multiple assemblies. Although the biological specifics of cell assemblies remain elu -
sive, various synaptic interaction mechanics have been discovered during their forma -
tion. Populations of neurons, whether in computational simulations or neuron recon-
struction projects [10], are considered as a combination of statistical connectivity de-
rived from neuron anatomical data and connection rules governed by probabilistic and
deterministic principles. Recent research has sought to evaluate the relationship be -
tween network topology and the dynamics of biological neuronal networks [11, 12].
Previous evaluation either has not fully captured the working cycle of spiking behav-
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iors in neuron groups nor provided in-depth exploration on the performance of  indi-
vidual  topologies.  Moreover,  the  analysis  and  development  of  proper  evaluation
methods for neuronal network generation topologies are currently lacking. This sec -
tion addresses this gap and proposes the development of standard test-sets for topol -
ogy evaluations.

The topologies are built with pyNN package in python [13]. Networks with differ-
ent topologies were simulated. All the topologies are coded in a general purpose lan-
guage to prevent mismatch from the package default connection rules. This study ex -
amined several  topologies including  random networks [14],  small  world  networks
[15], and scale free networks  [16]. All of the network used probabilistic rules with
random generation. Each network is evaluated based on the average performance of
10 samples. Self-connections are prohibited and there are no duplicate co nnections for
all topologies. Networks of 1000 integrate and fire spiking neurons were created with
each of these topologies and initialized with different random seeds to explore the
range of their behaviors. An illustrative result is shown in Figure 2. Once the CA ig -
nites, neurons fire persistently for over a second.

Fig. 1. Cell assembly based on small world topology. It was stimulated with external activation
from 100 ms. to 280 ms. and exhibited self terminating persistence until 1200 ms.

A CA ignites when its neurons can persistently fire without external input.  While
the neurons are firing, theory implies, that the item associated with the CA is in short-
term memory.  Since short-term memories do not persist indefinitely, it is desirable
for a CA to self-terminate.  Firing patterns were investigated by varying connecting
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weights and comparing their tunability, self-terminating persistence, ignitability, and
robustness. These experiments revealed that the small world topology with a rich get
richer rewiring approach worked best for associative memory among our simulation.
This topology exhibited the largest range of synaptic weights for self-terminating per -
sistence for all tested random seeds. Information is sent to other CAs in the forms of
population spikes. Longer controlled firing in a CA further enables its participation in
more tasks in the following network computation, which maximize its information ca -
pacity.

4 An Associative Memory Model with Cell Assemblies

More  recently,  small  world  CAs,  from section  3,  were combined into  associative
memories. The aim is to use the improved control over the behavior of CAs to de -
velop scalable hierarchical networks that can be expanded and dynamically learn new
associations.

Five cell assemblies of 1000 neurons are simulated based on small world topolo -
gies. There are random synapses between associated cell assemblies. Inhibitory neu-
rons prevent each assembly from continuously firing and global inhibition, stimulated
by all assemblies, prevents unassociated assemblies igniting. When two of the associ -
ated CAs ignite, they ignite the third, which is a model for retrieval of that memory.
Experiments have both hard-wired and plastic intra-assembly synapses.

Fig. 1. Rastergram of two assemblies (a and b) retrieving a third.
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The results, shown in Figure 3, show that a stimulated assembly normally persists
for a short amount of time (~500 milliseconds) though inhibitory neurons are not in -
volved in the task. In a network of five assemblies, there are three sets of associations,
a-b-c (neurons 0-2999), and c-d-e (neurons 2000-4999). That is there are two sets of
overlapping groups, or two 2-3 assemblies. When two assemblies in the same group
are stimulated, they persist longer and eventually ignite the third assembly. When two
assemblies from different assembly groups are stimulated, they do not ignite any other
assemblies.  The same results are achieved for both hard-wired and plastic intra-as-
sembly synapses.

5 Discussion and Conclusion

This paper has outlined the research that the authors have been doing on the use of
cognitive models  constructed  with  biologically-inspired  cell  assemblies  of  spiking
neurons. In the initial stages of this work, hard-coded cell assemblies modelled the
Stroop task and implemented an associative memory semantic network in biologically
plausible ways. Further research on cell assembly behavior demonstrated that small
world topologies are likely to lead to better behavior for associative memory. This in-
sight  was used to develop the networks of  2-3 associated assemblies that was de -
scribed in Section 4.

The 2-3 assembly system may be extended as an associative memory system, al -
lowing for the incorporation of new memories that do not conflict with previously
learned cell assembly groups. This framework may be the basis for internal memory
manipulation for other cognitive tasks.

During the above simulations, inhibition played a peripheral role in shaping net -
work dynamics, owing to the efficiency of information transfer via excitatory spikes.
Due to the inherently noisy nature of neuron spikes, encoding and decoding of infor -
mation poses significant challenges without multiple layers of spike controls. While
inhibitory neurons are more likely to contribute to network regulation, they may not
be involved in information encoding and decoding. Consequently, the system could
operate without inhibition, but recalibration would be necessary with the introduction
of inhibitory mechanisms.

It would be better for cell assemblies to emerge from a pool of neurons through ex-
posure to external stimuli, rather than being pre-wired. Incorporating Hebbian learn -
ing would enhance biological plausibility,  but controlling the learning outcomes to
prevent  catastrophic  failures  presents  a  challenge.  The compensatory  learning  ap-
proach used in the 2-3 assembly model represents a preliminary step towards on-line
modification of synaptic connections, although further evidence is required to estab-
lish its effectiveness.

Cell assemblies are internal representations of observations; however, it is still un -
known how the brain  encodes  this  information.  Some studies  suggest  that  certain
forms of synaptic plasticity may result in the strengthening or enhancement of internal
information  within  cell  assemblies,  while  others  suggest  that  activity-dependent
synaptic pruning may lead to the selective erasure of certain internal representations.
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Ultimately, further research is needed to fully understand the complex dynamics un-
derlying the processing and representation of internal representation within CAs and
their role in information processing.

The next stage of this research will be to use small-world cell assemblies to learn
new associations between words. Initial exploration will be with small networks like
the Quillian network above, then new associations and concepts will be added. The
networks will be progressively expanded to networks that are loaded from existing se -
mantic networks, such as WordNet. There are also plans to connect the words in our
hierarchical semantic networks to the real world. An image classification library, such
as OpenCV could be used to label objects in a live camera stream. These labels could
activate the appropriate cell assemblies and then the system could answer questions
about the objects that it is perceiving and potentially learn new associations between
words based on what it is perceiving.

The work described in this paper has shown that biologically-inspired models of
cell assemblies can effectively model human behavior on semantic tasks. The experi -
ments have shown that cell assemblies with small-world topologies have appropriate
behavioral characteristics for associative memory models and can learn simple associ-
ations between concepts. Future cell assembly-based models will be scaled to model
larger semantic networks and grounded in live data from the real world.
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