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Abstract—This study explores the applicability of the state of 

the art of deep learning convolutional neural network (CNN) to 

the classification of CT brain images, aiming at bring images into 

clinical applications. Towards this end, three categories are 

clustered, which contains subjects’ data with either Alzheimer’s 

disease (AD) or lesion (e.g. tumour) or normal ageing. 

Specifically, due to the characteristics of CT brain images with 

larger thickness along depth (z) direction  (~5mm), both 2D and 

3D CNN are employed in this research. The fusion is therefore 

conducted based on both 2D CT images along axial direction and 

3D segmented blocks with the accuracy rates are 88.8%, 76.7% 

and 95% for classes of AD, lesion and normal respectively, 

leading to an average of  86.8%.  

 

Keywords — convolutional neural network. Classification, CT 

brain images, 3D CNN 

I. INTRODUCTION  

A. CT Brain Images 

Due to its readiness, simple and inexpensive nature, 

Computerised Tomography (CT) is prevalent in nearly every 

hospital while presenting good quality of visual information. 

In addition, CT is probably the first imaging tool that was 

introduced into the study of human brain and has since been 

widely applied as the first choice to eliminate other 

possibilities when it comes to the diagnosis of Alzheimers' 

disease (AD). However, while most patients have undergone 

this scanning as a prelude to imaging inspection, mainly for 

the purpose of ruling out the other possibilities (e.g., tumour, 

stroke, etc.), CT data have not been implemented into the 

clinical diagnosis of AD due to their relatively low resolution 

and variations among manual measurement of certain features, 

such as medial temporal lobe that is associated with AD.  

 

Today, in the UK, 800,000 people have been formally 

diagnosed with the condition of dementia [1]. In reality, it is 

estimated that 60% of people who are living with the 

condition go undiagnosed [2].  This is because the 

determination of dementia remains a convoluted process as 

symptoms come and go. In addition, with regard to CT brain 

images, specified brain atrophy is associated with not only AD 

but also normal ageing and cerebral vascular diseases. For 

example, the medial temporal lobe atrophy (MTA) together 

with CSF biomarkers has been demonstrated as the most 

important diagnostic markers for AD, which may not be 

specific. In addition, atrophy of hippocampus (in particular, 

left hippocampus), has been found in AD, which also emerges 

in healthy ageing adults [3].  However, by accurate 

measurement of atrophy factors of temporal horn ratio and 

suprasellar cistern ratio, it has been found that CT data can 

contribute significantly to the diagnosis of AD with 90.2% 

accuracy [3]. Therefore, CT linear measurements can be of 

great value in the work-up processes of AD patients. 

 

To alleviate the considerable variations [4] may incur 

during manual measurements, this study is to investigate the 

non-supervised automatic process employing the state of the 

art of convolutional neural network (CNN) on the 

classification, segmentation and measurement of Alzheimer’s 

data. In the first phase of this research, the classification of 

AD, healthy (normal) ageing and lesions data takes place, 

remains the focus of this paper. 
 

B. Convolutional Neural Network (CNN) 

Deep learning models refers to a class of computing 

machines that can learn a hierarchy of features by building 

high-level features from low-level ones [5, 6] , thereby 

automating the process of feature construction. One of these 

models is the well-known convolutional neural network (CNN) 

[6]. Consisted of a set of algorithms in machine learning, CNN 

comprises several (deep) layers of processing involving 

learnable operators (both linear and non-linear), and hence has 

the ability to learn a hierarchy of information by building 

high-level information from low-level data, thereby 

automating the process of information/feature construction [7]. 

It has been demonstrated that, when trained with appropriate 

regularization, CNNs can achieve superior performance on 

visual object recognition tasks without relying on hand-crafted 

features, e.g. SIFT, SURF. In addition, CNNs have been 

shown to be relatively insensitive to certain variations on the 

inputs [7]. 

 

Inspired by biological vision processes, CNNs applies a 

feed-forward artificial neural network to simulates variations 

of multilayer perceptrons where the individual neurons are 

tiled in such a way that they respond to overlapping regions in 
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the visual field [8]. As a direct result, they are widely used for 

image and video recognition. Specifically, CNNs have 

demonstrated as an effective class of models for understanding 

image content, giving state of the art results on image 

recognition, segmentation, detection and retrieval.  

 

In addition, recent advances of computer hardware 

technology (e.g., GPU) have propitiated the implementation of 

CNNs in representing images. While CNNs have lent 

themselves well to the computer vision field and achieved 

state-of-the-art results, they are built mainly for 2D images. 

Although several papers report the work on 2D videos [8], 

working on 3D images is quite a different task to a certain 

extent. In this study, both 2D and 3D form of CNN are 

elaborated to CT brain images. 

 

This paper is structured in the followings. Section 2 entails 

the methodologies that are employed in this study and Section 

3 presents and results. Subsequently, the conclusion is 

summarised in Section 4. 

 

II. METHODOLOGY 

A. Data pre-processing and averaging 3D CT images 

In total, 3D datasets from 282 subjects are collected and 

studied in this investigation, including 51 with Alzheimer’s 

(AD), 118 with lesions and 117 being from normal healthy 

subjects. In our collection, CT data vary in both depth 

numbers of being between 16 to 33 slices and dimensions with 

either 512 x 512 or 912 x 912 pixels. Figure 1 depicts the 

montage of CT data for Alzhermer’s (top), Lesion (middle) 

and Normal (bottom) subjects respectively. 

 

In the 2D form, all the slices are segmented and 

normalised into 360 x 360 pixels. For normal and AD data, the 

middle 20 slices are employed from each dataset, whereas for 

lesion data, only slices that contain visual lesion features (e.g. 

tumour) are employed. As a result, although lesion datasets 

remain the largest among the three classes, the overall number 

of slices are similar to the others. 

 

In parallel, in 3D form, each dataset is firstly registered, 

segmented and normalised into 200 x 200 x 20 pixels. Due to 

the relatively thickness between CT slices (~5 mm) in 

comparison with the counterpart of MR (~0.5 mm), geometric 

normalisation is performed to align all 3D CT images into the 

same space. Because CT has good structural (e.g. bone) 

information of the brain, rigid body geometric transformation 

is opted for as illustrated in Eq. (1).  

 

 

𝐼𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑇 × 𝐼𝑓𝑖𝑥𝑒𝑑  (1) 

 

 
Alzheimer’s 

 
Lesion 

 
Normal 

Fig. 1. The montage view of the middle 20 slices of CT images for 
Alzheimer’s disease (top), Lesion (middle), and Normal (bottom) subjects 

respectively.  

 

 

Where 𝑇 is the transformation matrix inclusive of translation, 

rotation and scaling which is to be determined, 𝐼𝑚𝑜𝑣𝑖𝑛𝑔  refers 

to the image to be registered and 𝐼𝑓𝑖𝑥𝑒𝑑  the template image. 

Therefore to implement the determination of the parameters of 

𝑇, Eq. (2) is to be minimised. 

 

∑(𝐼𝑓𝑖𝑥𝑒𝑑(𝑇𝑥𝑖) − 𝑠𝛼𝐼𝑚𝑜𝑣𝑖𝑛𝑔(𝑥𝑖))2 

𝑖

 

 

(2) 

 

Where 𝑥𝑖  refers to a number of points selected from either 

fixed image (reference) or moving (source) images. To 

compensate the fact that each image might be scaled 
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differently with reference of intensity, an additional intensity 

scaling factor (𝑠𝛼) is added.  

 

To implement Eq. (2), a template CT date set with relatively 

better aligned with 30 slices is chosen to be the fixed dataset, 

whereas the others are aligned to it.  

 

After the normalisation, each 3D dataset is divided into 40 × 

40 × 10 boxes. Similar to 2D form, for both AD and normal 

data, all the boxes are applied to train the data whereas for 

lesion data, only boxes containing lesion contents are used.  

 

B. The implementation of 2D and 3D CNNs 

Figure 2 illustrates both 2D and 3D CNNs implemented in this 

study. 

 

 
Fig. 2. The fusion of both 2D and 3D CNNs for CT images. 
 

In this study, 2D convolutional deep learning neural 

network (CNN) has been applied based on MatConvNet [9] 

written in Matlab software, along the direction of axial of the 

brain.  

 

Specifically, for training data (𝒙(𝑖), 𝒚(𝑖)), where image 𝒙(𝑖) is 

in three-dimension and 𝒚(𝑖)  
the indicator vector of class of 

𝒙(𝑖),  the feature maps of an image, namely, 𝑤1, … , 𝑤𝐿 , will be 

learnt based on CNN by solving Eq. (3). 

𝑎𝑟𝑔𝑚𝑖𝑛
𝒘1,…,𝒘𝐿

1

𝑛
∑ ℓ(𝑓(𝐱𝑖; 𝒘1, … , 𝒘𝐿), 𝒚𝑖)

𝑛

𝑖=1

 
(3) 

 

Where ℓ refers to a suitable loss function (e.g. the hinge or log 

loss). 

 

To obtain these feature maps computationally, in 2D 

CNNs, 2D convolution is performed at the convolutional 

layers to extract features from local neighbourhood on feature 

maps in the previous layer. Then an additive bias is applied 

and the result is passed through a sigmoid function as 

illustrated in Eq. (4) mathematically. 

 

𝒗𝑖𝑗
𝑥𝑦

= 𝑡𝑎𝑛ℎ (𝒃𝑖𝑗 + ∑ ∑ ∑ 𝒘𝑖𝑗𝑚
𝑝𝑞

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

𝒗(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)

) 

(4) 

 

 

 

Where the notations of those parameters in Eq. (4) are 

explained in Table 1. 

 
 TABLE 1. NOTATIONS OF PARAMETERS IN EQ. (4). 
 

Parameter Notation 

𝑡𝑎𝑛ℎ(. ) hyperbolic tangent function 

𝑚 index over the set of feature maps in the (𝑖 − 1)𝑡ℎ layer 

𝒃𝑖𝑗 bias for the feature map 𝑓 in Eq. (1). 

𝒘𝑖𝑗𝑘
𝑝𝑞

 value at the position (p, q) of the kernel connected to the 
kth feature map 

 

(𝑝, 𝑞) 2D position of a kernel 
 

𝑃𝑖, 𝑄𝑖 height and width of the kernel 

 

 

In the subsampling layers, the resolution of the feature 

maps is reduced by pooling over local neighborhood on the 

feature maps in the previous layer, thereby increasing 

invariance to distortions on the inputs. A CNN architecture 

can be constructed by stacking multiple layers of convolution 

and subsampling in an alternating fashion. The parameters of 

CNN, such as the bias  𝑏𝑖𝑗  and the kernel weight 𝒘𝑖𝑗𝑘
𝑝𝑞

 are 

usually trained using either supervised or unsupervised 

aproaches [5, 10]. 

 

Furthermore, in order to retain CT information along z 

direction, 3D version of CNN is explored. In 3D CNN, the 3D 

convolution is achieved by convolving a 3D kernel to a box 

along both x-y (2D) and z directions where Eq. (4) will be 

extended into Eq. (5) to calculate the value at position 

(𝑥, 𝑦, 𝑧) on the 𝑗𝑡ℎ feature map in the 𝑖𝑡ℎ layer. 

 

𝒗𝑖𝑗
𝑥𝑦𝑧

= 𝑡𝑎𝑛ℎ (𝒃𝑖𝑗

+ ∑ ∑ ∑ ∑  

𝑅𝑖

𝑟=0

𝒘𝑖𝑗𝑚
𝑝𝑞𝑟

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

𝒗(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)

) 

(4) 

 

 

where 𝑅𝑖 is the size of the 3D kernel along the 𝑧 dimension, 

𝒘𝑖𝑗𝑚
𝑝𝑞𝑟

 is the (𝑝, 𝑞, 𝑟)𝑡ℎvalue of the kernel connected to the 𝑚𝑡ℎ 

feature map in the previous layer. In addition, 3D pooling is 

also developed to increase the degree of invariance  to 

distortion and noise occurred in the input images.   
 

C. Fusion of the results 

 

In 2D form, 2D slices are applied to training the model 

individually, whereas in 3D form, small cubes (40 x 40 x 10) 
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are utilised. The classification therefore takes place at the level 

of whole dataset for each subject combine the two. In this way, 

for the Normal category, more than 95% of the slices (i.e., 

except one slice) of each dataset and all cubes (or boxes) have 

to be labelled as normal class since both AD and Lesion 

signature information usually shows on more than 1 slice. On 

the other hand, for the classification of either AD or Lesion, 

the majority vote determines the classification decision. 

III. RESULTS 

Table 2 gives the data numbers applied in the study. One 

dataset usually contains 26 to 35 slices. In total, there are 282 

datasets in 3D form, whereas in 2D form, 4076 slices are 

applied. These data are divided into 3 groups while applying 

CNN, which are training, validation (to avoid over fitting) and 

testing datasets. 

 
TABLE 2. THE NUMBER OF DATA SETS (IN SUBJECT NUMBER) 
APPLIED IN EACH PROCESS. THE NUMBERS IN BRACKETS ARE 

THE TOTAL NUMBER OF 2D SLICES IN THAT CATEGORY. 

 Alzheimer’s Lesion Normal Total 

Training 

(2D frame) 

{3D boxes} 

30 
(700 

{775}) 

80 
(700) 

{1160} 

70 
(1300) 

{1860} 

180 
(2700) 

{3795} 

Validation 

(2D frames) 

{3D boxes} 

12 
(150) 

{297} 

19 
(120) 

{357} 

20 
(400) 

{540} 

51 
(670) 

{1194} 

Test 

(2D frames) 

{3D boxes} 

15 

(150) 
{378} 

19 

(127) 
{483} 

23 

(429) 
{621} 

57 

(709) 
{1482} 

Total 

(2D frames) 

{3D boxes) 

51 

(1000) 

118 

(947) 

113 

(2129) 

282 

(4076) 
{6471} 

 

In total, 180 datasets are applied to test the developed CNN 

classification system containing 2700 2D images and 3795 

boxes. The division of the data between each group is 

randomly selected. The confusion matrix for the testing is 

given in Table 3. 

 
TABLE 3. THE CONFUSION MATRIX OF TESTING RESULTS OF 

THREE CLUSTERS. 

 Alzheimer Lesion Normal Accurate 

(%) 

Alzheimer 13 2 0 86.7 

Lesion 2 15 2 78.9 

Normal 1 0 22 95.6 

Average    87.7 

 

In summary, the accuracy of classification of three classes are 

86.7%, 78.9%, and 95.6% for Alzheimer’s, Lesion, and 

Normal classes respectively, with the average of 87.7%. 
 

IV. CONCLUSION 

In this study, only 3 classes are considered, which are 

Alzheimer’s, Lesion, and Normal clusters.  Although the 

category of Lesion consists the largest dataset (N=118), not 

every 2D slice or 3D box contains the signature information. 

As a result, the lesion group has the smallest number of 

images with 947 slices, whilst AD and Normal groups having 

1000 and 2129 images respectively in 2D form.  Whilst the 

differences are not significant, in particular between AD and 

Lesion groups, the classification results appear to be in line 

with the number of data that each group has. For example, the 

normal subject group has the largest number of datasets with a 

total of 2129 image slices and has the highest accuracy rate of 

95.6%. Therefore the direct conclusion remains being that 

more data will achieve better classification results. 

 

In addition, while CT brain data are in three dimensional, the 

large thickness (~5mm) between slices has led to the 

classification of 3D CT images alone being not as accurate as 

that in 2D form. The fusion therefore takes place to take 

advantages of both 2D and 3D information, which gives better 

result. Also, further comparison with hand-crafted approaches, 

e.g., SIFT, will be conducted in the future. 
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