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Abstract: The Advanced Message Queuing Protocol (AMQP) is a widely used communica-
tion standard in IoT systems due to its robust and reliable message delivery capabilities.
However, its increasing adoption has made it a target for various cyber threats, including
Distributed Denial of Service (DDoS), Man-in-the-Middle (MitM), and brute force attacks.
This study presents a comprehensive analysis of AMQP-specific vulnerabilities and in-
troduces a statistical model for the detection and classification of malicious activities in
IoT networks. Leveraging a custom-designed IoT testbed, realistic attack scenarios were
simulated, and a dataset encompassing normal, malicious, and mixed traffic was generated.
Unique attack signatures were identified and validated through repeated experiments,
forming the foundation of a signature-based detection mechanism tailored for AMQP
networks. The proposed model demonstrated high accuracy in detecting and classifying
attack-specific traffic while maintaining a low false positive rate for benign traffic. Notable
results include effective detection of RST packets in DDoS scenarios, precise classification
of MitM attack patterns, and identification of brute force attempts on AMQP systems. This
research highlights the efficacy of signature-based approaches in enhancing IoT security
and offers a benchmark for future machine learning-driven detection systems. By address-
ing AMQP-specific challenges, the study contributes to the development of resilient and
secure IoT ecosystems.

Keywords: AMQP; IoT; traffic; signature; cyberattacks

1. Introduction
The Internet of Things (IoT) has transformed modern industries, enhancing efficiency

in smart homes, healthcare, transportation, and critical infrastructure. At the core of IoT
communication are application-layer protocols that enable seamless interactions between
devices. Among these, the Advanced Message Queuing Protocol (AMQP) has emerged
as a key messaging standard due to its reliable message queuing, routing, and delivery
capabilities [1]. AMQP is widely used in smart environments, industrial automation, and
healthcare applications to support real-time exchange of sensor data, control commands,
and event notifications. Its ability to ensure structured message queuing and guaranteed
delivery makes it a preferred choice for IoT ecosystems. However, this central role in IoT
communication also makes AMQP an attractive target for cyber threats. Attackers exploit-
ing AMQP vulnerabilities can intercept, manipulate, or disrupt IoT messages, leading to
data breaches, operational failures, and security risks. For example, a compromised indus-
trial automation system could receive altered control signals, causing unsafe operations,
while a breach in a healthcare network could lead to delayed or falsified medical alerts,
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endangering patient safety. Additionally, unsecured AMQP deployments are susceptible
to Denial-of-Service (DoS) attacks, which can overload IoT devices and disrupt network
functionality. As IoT adoption grows, ensuring AMQP security is critical to maintaining
data integrity, availability, and confidentiality across connected systems.

Despite its advantages, AMQP introduces significant security challenges. Io T devices
utilizing AMQP are increasingly targeted by cyberattacks due to inherent vulnerabilities
in the protocol. These vulnerabilities have led to various documented attacks, including
the following:

• Distributed Denial of Service (DDoS): Overwhelming a system with traffic from
compromised devices, causing service disruptions (e.g., CVE-2021-22116) [2].

• Man-in-the-Middle (MitM): Intercepting communications between devices to eaves-
drop or manipulate data (e.g., CVE-2019-3845, CVE-2018-11087) [3].

• Brute Force: Systematic attempts to guess login credentials, leading to unauthorized
access (e.g., CVE-2023-24448) [4].

These attacks pose serious threats to the reliability and security of IoT systems, un-
dermining their functionality and trustworthiness. However, research into AMQP-specific
vulnerabilities remains limited. Current studies often generalize IoT security issues or
focus on other protocols, such as MQTT or CoAP, leaving AMQP underexplored. This has
resulted in several gaps in the literature:

• Limited Focus on AMQP-Specific Threats: Existing research predominantly addresses
broader IoT security challenges, with insufficient emphasis on the unique vulnerabili-
ties of AMQP [5].

• Outdated and Narrow Datasets: Most datasets do not reflect recent attack method-
ologies or encompass the full range of AMQP-specific vulnerabilities. Some datasets
focus on older attack types, such as IP sweeping and smurfing [6,7].

• Theoretical Models Over Practical Scenarios: Many studies rely on analytical ap-
proaches, failing to account for the complexity of real-world IoT environments [5].

• Inadequate Cross-Protocol Considerations: Research often isolates protocols, ignor-
ing interactions between AMQP and other IoT protocols that could introduce new
vulnerabilities [8].

To bridge these gaps, this study focuses on securing the AMQP protocol within IoT
environments by adopting a practical, protocol-specific approach. The contributions of this
research include the following:

• Developing a Controlled Testbed: A simulated IoT environment is created to reproduce
AMQP-specific attacks, including DDoS, MitM, and brute force scenarios.

• Generating Comprehensive Datasets: New datasets are created to capture network
traffic patterns and log data for various attack types [6,7].

• Designing a Statistical Model: A robust model is developed to identify and validate
unique attack signatures within the AMQP protocol [5].

• Evaluating Real-World Impact: The variations and impacts of attacks on IoT systems
are analyzed, providing actionable insights for improving AMQP security [9].

This research aims to enhance the security of IoT systems by addressing the unique
vulnerabilities of AMQP, ultimately contributing to the development of more resilient and
trustworthy IoT ecosystems.

2. Research Gaps and Challenges
The study by [10] primarily focuses on the security vulnerabilities associated with the

Advanced Message Queuing Protocol (AMQP), identifying a range of attacks, including
replay and Masquerade attacks, Modification attacks, and Denial-of-Service (DoS) attacks.
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However, this research lacks a practical component, as no datasets or lab-based experi-
ments were developed to simulate or analyze these attacks. Instead, the analysis relies
on a comprehensive review of existing literature and prior research. While the study pro-
vides valuable insights into the security challenges of AMQP, the absence of experimental
validation and novel dataset generation limits its practical applicability.

In [11], the research explores various types of attacks across multiple IoT communica-
tion protocols, such as Cross-Site Scripting, Malicious Code Injection, Cinderella Attacks,
and Big Data Handling vulnerabilities. Despite the broad scope, the work does not offer
protocol-specific analysis or experimental validation. Additionally, no datasets or lab tests
were developed to simulate these attacks. The study’s focus on application-layer protocols
is insightful but lacks specificity, as attacks like Denial of Service, Phishing, and Sniffing are
not analyzed within the context of individual protocols. This omission hinders the ability
to monitor network traffic or identify unique attack signatures.

The work by [12] examines various attacks on IoT application protocols, highlighting
issues such as Malicious Code Injection, Denial-of-Service (DoS), Phishing, and Sniffing
attacks. However, similar to the aforementioned studies, no datasets or lab-based experi-
ments were developed to conduct these attacks. While the study addresses critical security
concerns, including Man-in-the-Middle (MitM) and DoS attacks that exploit privileged
access, it does not provide an in-depth exploration of attacks specific to AMQP. This gap
reduces the study’s relevance to AMQP-focused security challenges.

The research by [13] addresses the security of IoT devices across different layers of the
IoT architecture. The study identifies attacks such as Access Control Attacks, Backdoor
Attacks, and Keylogger Attacks. However, the work relies on a comparative analysis
of existing literature and does not involve the development of datasets or lab tests to
validate findings. Although the research highlights significant security challenges faced
by IoT devices, the lack of experimental validation and novel dataset creation limits its
contribution to practical security solutions.

Finally, the study by [14] investigates privacy and security in data exchange within
IoT networks, identifying attacks such as Malicious Code Injection, Node Tampering,
Remote Configuration Exploits, and Web Application Scanning. While the research is
comprehensive, it lacks practical experimentation, as no datasets or lab tests were developed
to simulate these attacks. Without analyzing network traffic traces or identifying unique
attack features, the findings remain largely theoretical, limiting their applicability to real-
world IoT security scenarios.

Common limitations across the reviewed works include the following:

• Lack of Experimental Validation: None of the studies developed lab-based experiments
or datasets to validate their findings.

• Absence of Protocol-Specific Focus: Few studies specifically address AMQP vulnera-
bilities or analyze attacks within the context of individual protocols.

• Theoretical Approaches: Much of the research is based on literature reviews and lacks
practical implementation or novel dataset creation to enhance its applicability.

This study seeks to address these limitations by developing a practical, AMQP-specific
approach that includes lab-based experimentation, dataset generation, and the identifica-
tion of unique attack signatures to enhance the security of IoT systems.

3. Literature Review
Application-layer protocols such as AMQP, MQTT, and CoAP form the backbone of

IoT communication, each tailored to specific operational needs. While MQTT and CoAP
have been extensively studied, AMQP’s vulnerabilities and unique implications in IoT
environments demand focused analysis.
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3.1. Protocol Overview

• AMQP (Advanced Message Queuing Protocol): A robust message-oriented middle-
ware designed for high-throughput, reliable communication. AMQP’s transactional
guarantees and brokered architecture make it ideal for enterprise-grade IoT applica-
tions but introduce specific security concerns [10,15].

• MQTT (Message Queuing Telemetry Transport): A lightweight publish–subscribe
protocol optimized for constrained environments with low bandwidth, high latency,
and limited resources [16].

• CoAP (Constrained Application Protocol): A REST-based protocol designed for resource-
constrained devices and networks, enabling efficient web-like interactions [17,18].

3.2. Vulnerabilities

AMQP-Specific Vulnerabilities:

1. Broker Overload: AMQP’s reliance on brokers introduces risks such as exhaustion of
resources during Distributed Denial-of-Service (DDoS) attacks [5].

2. Replay Attacks: AMQP’s session-oriented nature is susceptible to packet replay, where
attackers resend captured packets to disrupt communication [10].

3. Queue Manipulation: Attackers may exploit unsecured queues to reroute, drop, or
duplicate messages, compromising data integrity [11].

4. Man-in-the-Middle (MitM) Attacks: Without robust encryption, AMQP is vulnerable
to MitM attacks, allowing adversaries to intercept and alter messages [14].

MQTT Vulnerabilities:

1. Limited authentication mechanisms make it prone to brute force attacks and unautho-
rized access [16].

2. Susceptibility to low-rate DoS attacks like SlowITe, exploiting MQTT’s lightweight
nature [19].

CoAP Vulnerabilities:

1. Susceptibility to amplification attacks due to large responses to small requests, exploit-
ing the lack of mandatory encryption [20].

2. High eavesdropping risks, as it typically uses UDP and lacks transport-layer encryp-
tion by default [21].

3.3. Security Measures for AMQP

Given its critical role in enterprise-grade IoT systems, AMQP requires robust security
measures tailored to its architecture:

• Replay Protection: Implementing message sequencing or unique identifiers to detect
and discard replayed packets [10].

• Broker Hardening: Rate-limiting, load balancing, and resource allocation to prevent
broker exhaustion during DDoS attacks [5].

• Encrypted Queues: Using TLS for secure message queuing and routing, ensuring
end-to-end confidentiality [7].

• Access Controls: Role-based access control (RBAC) for restricting unauthorized
queue access.

• Enhanced Authentication: Adopting mutual TLS or token-based mechanisms to
prevent impersonation [9].

• Activity Monitoring: Real-time monitoring of message queues to detect anomalies
indicative of manipulation [8].

As shown in Table 1, while MQTT and CoAP are optimized for constrained envi-
ronments, AMQP’s focus on high-throughput, transactional reliability introduces distinct
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vulnerabilities. Addressing these challenges through robust countermeasures ensures
AMQP can serve as a secure and resilient foundation for IoT applications in critical enter-
prise settings.

Table 1. Comparison of AMQP, MQTT, and CoAP protocols.

Feature AMQP MQTT CoAP

Primary Use Case Enterprise-grade messaging Lightweight communication RESTful IoT interactions

Transport TCP TCP UDP

Authentication Strong (e.g., TLS, RBAC) Limited Limited

Encryption Mandatory (TLS recommended) Optional (TLS/SSL) Optional (DTLS)

Key Vulnerabilities Broker exhaustion, replay, MitM Brute force, low-rate DoS Amplification, eavesdropping

4. Overview of AMQP in IoT Systems
The Advanced Message Queuing Protocol (AMQP) was first developed in 2003 by

John O’Hara at JPMorgan Chase to facilitate efficient and reliable message exchange across
diverse applications and systems. Operating at the application layer of the communication
stack, AMQP is designed for interoperability, enabling seamless communication between
platforms developed in different programming languages.

AMQP uses message brokers (e.g., the RabbitMQ server) to act as intermediaries,
receiving messages from producers and distributing them to designated consumers. Its
architecture features two primary components:

• Producers: Entities that generate and send messages.
• Consumers: Entities that receive and process messages.

The broker plays a central role, facilitating communication through two key mechanisms:

• Message Queues: Temporarily store messages until they are retrieved by consumers.
• Exchanges: Route messages to appropriate queues based on predefined rules.

AMQP supports flexible communication patterns, including publish/subscribe and
point-to-point, making it adaptable for a wide range of applications. Its ability to prioritize
and ensure the durability of messages enhances reliability in distributed systems.

The IoT has transformed interactions with technology by connecting devices and
applications seamlessly, enabling innovations in smart homes, healthcare, and industrial
automation. However, this interconnectedness introduces significant security challenges,
as data transmitted across networks become vulnerable to attacks. Protocols like AMQP
are particularly susceptible to threats, given their critical role in managing communication
in IoT environments.

To address these challenges, secure communication is a priority. AMQP supports
Transport Layer Security (TLS) and Secure Socket Layer (SSL) to encrypt communications
between devices and servers, ensuring data confidentiality and integrity. Despite these
measures, the growing complexity of IoT networks necessitates more advanced and efficient
intrusion detection systems (IDSs) tailored for application-layer protocols like AMQP [22].

By providing robust messaging features and supporting secure communication,
AMQP remains a vital protocol in IoT systems. However, ongoing research and inno-
vation are needed to address its vulnerabilities and ensure its reliability in increasingly
complex network environments.

Analysis of AMQP Normal Traffic

Figure 1 illustrates the communication process between an AMQP server and an IoT
device, as captured using the Wireshark tool. The process begins with a TCP three-way
handshake (SYN, SYN/ACK, and ACK), establishing the initial connection. Following this,
the AMQP protocol is employed to connect to the RabbitMQ server using commands such
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as connection.start, connection.tune, and channel.open. These actions are confirmed by
acknowledgment (ACK) flags to ensure reliable communication. IoT devices then declare a
queue and use the basic.consume command to subscribe and publish messages, with ACK
flags verifying the successful exchange.

Figure 1. Normal network traffic packets for AMQP.

Figure 2 provides an in-depth view of normal network traffic data exchanged between
an AMQP server and an IoT device. The data exchange begins at line 6 in the capture. Key
elements of the TCP connection are displayed, including the following:

TCP Length: The column shows a value of 508. Sequence Number: The initial sequence
number is 1, and the next sequence number increments to 509, reflecting the addition of
the TCP length. ACK Number: The ACK value is 9, corresponding to prior traces in the
network traffic. The window size for the IoT device consistently starts at 64,240, while the
AMQP server’s window size begins at 65,160. These window sizes adjust dynamically
based on the data traces as the systems continue the data exchange process. The figures
demonstrate how reliable communication is maintained during normal traffic between the
AMQP server and the IoT device.

Figure 2. Normal network data exchange traffic for AMQP.

5. Attack Description and Explanation
This section provides a detailed description and explanation of the attacks conducted

against the AMQP IoT application protocol. These attacks, simulated in our testbed, address
scenarios not yet covered in the current research literature [23]. Below is an overview of
the attacks investigated.

5.1. Experiment Setup

The Internet of Things (IoT) testbed used in this study simulates a real-world deploy-
ment of IoT networks. The testbed consists of various IoT devices, an AMQP server, an
attacker’s computer, network hardware, and the AMQP communication protocol.
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• Hardware Configuration:

– The primary lab machine is a Dell XPS Windows 11 laptop with 1 TB SSD, an
Intel Core i5-11270U processor, 16 GB of RAM, and a 4 GB NVIDIA RTX GPU.

– Virtual machines (VMs) are managed using VirtualBox. An Ubuntu-based VM
serves as the AMQP server, with 4 GB of RAM, 20 GB of storage, and 2 CPU cores.

– Each IoT device is simulated using a VM allocated 2 GB of RAM, 15 GB of storage,
and 1 CPU core.

– Two attacker computers are configured with 4 CPU cores, 8 GB of RAM, and
80 GB of storage for launching attacks.

• Network Configuration

– The virtual machines reside in a private network configured within VirtualBox’s
internal networking mode to ensure isolated, controlled traffic flow.

– The AMQP broker (RabbitMQ server) is assigned a fixed private IP (e.g.,
192.168.180.230), with all IoT devices and attacker nodes connected through
a virtual LAN (vLAN).

– Packet capture and analysis were performed using Wireshark and tcpdump
within the virtualized network.

• Platform for Simulating Attacks
The attack modeling and execution were performed within a controlled VirtualBox-
based network, ensuring traffic flows accurately reflect AMQP-specific attack scenarios.
The Ettercap tool was employed for MiTM attacks, while Hping3 and BruteMQ were
used for DoS and brute force attacks, respectively.

This setup allows the simulation of real-world attacks against AMQP-based systems
while monitoring and analyzing the network traffic.

5.2. Explanation of DoS Attack

A Denial-of-Service (DoS) attack aims to make a network or system inaccessible to its
intended users. This is achieved by overwhelming the target with an excessive volume
of data or sending malformed packets that disrupt normal operations, ultimately causing
system failure.

In the context of AMQP, DoS attacks exploit the protocol’s reliance on messaging
brokers, such as RabbitMQ, by overwhelming them with connection requests or data
packets. This prevents legitimate messages from being processed, leading to system crashes
or unresponsiveness.

For our experiments, we used the hping3 tool to execute SYN flood attacks on the
AMQP server. The attacker sends a high volume of SYN packets to port 5672, which is
designated for AMQP communication. These packets initiate a TCP handshake but do not
complete it, exhausting the server’s resources and rendering it inaccessible.

Command for Hping3 Attack:

hping3 -d 90 -p 5672 -S –flood 192.168.180.230

Options:

• -d: Data size (in bytes).
• -p: Target port number.
• -S: SYN flag.
• –flood: Continuous packet sending.
• 192.168.180.230: Target IP address.
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5.2.1. Experiment Results and Analysis
Experiment 1: SYN Flood Attack

Figure 3 demonstrates the impact of an SYN flood attack during the TCP three-way
handshake process. The attacker manipulates the SYN segment to overwhelm the target
server. Despite variations in attack parameters, the SYN flag remains constant as the
attacker repeatedly sends SYN packets, causing the server to respond with SYN/ACK
packets. The connection is then terminated by an RST packet, allowing the attack to restart
and flood the server.

Figure 3. DoS attack TCP handshake flags.

Figure 4 shows the malicious packets sent during the AMQP DoS attack. Key
features include the following:

• TCP Length: Typically zero during malicious SYN packets.
• Sequence and Acknowledgment Numbers: Randomized and manipulated to bypass

detection.
• Window Size: The attacker uses a fixed size of 512, while the server defaults to 64240

due to its inability to detect the attack.

Figure 4. DoS attack data exchange packets (Experiment 1).

Experiment 2: Malicious Data in SYN Packets

In this experiment, the attacker sends 120 bytes of data within SYN packets, violating
the TCP protocol. The target responds to these packets without detecting the anomaly.
Figure 5 illustrates the attack, where manipulated SYN packets contain payload data while
the server continues responding with SYN/ACK packets.

Figure 5. DoS attack data exchange packets (Experiment 2).
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Experiment 3: Larger Malicious Data Payloads

The attacker increases the payload size to 300 bytes in the SYN packets. Despite the
abnormal data, the target system fails to identify the malicious nature of these packets and
continues processing them, as shown in Figure 6.

Figure 6. DoS attack data exchange packets (Experiment 3).

5.2.2. Traits and Signature of DoS Attacks

The analysis revealed key characteristics of AMQP DoS attacks, summarized in Table 2.
The methods and features used are as follows:

• TCP Flag Analysis: The model evaluates TCP flags such as SYN, ACK, and RST,
which are critical in identifying connection-based anomalies. For instance, a high
frequency of SYN packets without corresponding ACK responses is indicative of SYN
flood attacks.

• Packet Frequency Monitoring: By observing the rate of incoming packets over a
specific time window, the model detects sudden spikes in traffic volume, characteristic
of volumetric DoS attacks.

• Sequence Number Irregularities: The statistical model monitors the continuity of
sequence numbers in packet flows. Disruptions or repeated numbers often indicate
replay attacks or DoS activities attempting to disrupt normal communication.

• Payload Size Analysis: The model detects anomalous traffic patterns by examining
payload sizes. Abrupt changes in payload size, especially a large number of packets
with empty payloads, are often linked to malicious traffic.

These anomalies form the basis for identifying DoS attack signatures.

Table 2. Abnormal traffic features of AMQP DoS attacks.

Features Abnormal Traffic

TCP Handshake RST | SYN | SYN/ACK
TCP Segment Features (Length | Seq |

NxtSeq | Ack) 0 | Randomized | 1 | Randomized

Window Size 512 (Attacker) | 64,240 (Target)
Syslog Logs TCP SYN flood detected on port 5672

5.3. Explanation of Man-in-the-Middle (MiTM)

Man-in-the-Middle (MiTM) attacks are a type of cyberattack where an adversary inter-
cepts and manipulates communication between two parties, deceiving them into believing
they are directly connected. This attack can also be considered a form of eavesdropping,
as the attacker gains unauthorized access to and control over the communication. In the
context of the Advanced Message Queuing Protocol (AMQP), MiTM attacks can be particu-
larly disruptive. For instance, an attacker could fabricate temperature data and transmit
them to a remote server or disable unsecured HVAC systems during extreme heat, creating
critical challenges for service providers reliant on vulnerable models [7].

In this study, the Ettercap tool was used to perform an MiTM attack, enabling the
interception of communication between the client and the AMQP server.
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Command for Ettercap Attack:

ettercap -T -M arp /192.168.180.1/ /192.168.180.10/

Explanation of the Command:

• -T: Enables text mode.
• -M arp: Specifies ARP poisoning as the attack method.
• /192.168.180.1/ /192.168.180.10/: Defines the IP addresses of the target and

victim machines.

Figure 7 presents the malicious traffic captured during the MiTM attack. The attack
begins with ICMP packets, used to test the connection between the attacker and the target.
Analysis of the captured data highlights key indicators of the attack:

• Severity Warnings: Two instances of warnings related to potential IP address duplica-
tion were detected.

• Packet Length: The tcp.len parameter consistently measured 60 bytes across
all traces.

• MAC Address Size: Both the attacker and victim systems maintained a hardware size
of 6 bytes.

• Protocol Size: Remained uniformly at 4 bytes throughout all tests.

Figure 7. Analysis of AMQP MiTM packets.

5.3.1. Analysis

Under normal traffic conditions, the communication between an IoT device and an
AMQP server begins with a TCP three-way handshake: the IoT device sends an SYN
request, the server responds with an SYN/ACK, and the device acknowledges with an
ACK. Once this connection is established, data exchange proceeds with correct flags and
window sizes.

In the case of an AMQP MiTM attack, the attacker uses ICMP echo requests containing
big-endian (BE) and little-endian (LE) sequence numbers (e.g., 32,487 and 59,262). The
AMQP server responds with ICMP echo replies, often containing similar endianness
indicators to ensure proper data interpretation. Following this, the attacker spoofs the IP
and MAC addresses of the target, allowing interception of the communication.

Key observations during the attack include the following:

• The binding IP and MAC addresses are identified as spoofed once a response
is received.

• If no response is obtained, the packet is considered dropped.
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• The syslog indicates warnings from the network manager regarding IP conflicts during
the attack, further confirming malicious activity.

5.3.2. Traits and Signature

Several features were identified as indicators of an AMQP MiTM attack. These include
the following:

• Severity Warnings: Triggered by ARP protocol warnings due to duplicate IP and
MAC addresses.

• Echo Requests and Replies: Used by the attacker to establish communication and
monitor responses.

• Frame Length: Consistently measured at 60 bytes.
• Syslog Messages: Alerts about changes to AMQP IP address states.

These features are often used in attack signatures to detect potential MiTM attacks,
as they reflect suspicious or malicious network behavior. Additional indicators, such as
anomalies in routing tables or unexpected changes in MAC address tables, further support
the identification of MiTM activity.

Table 3 summarizes the abnormal traffic features observed during the AMQP MiTM
attack, forming the basis for its signature.

Table 3. Abnormal traffic features of AMQP MiTM attack.

Features Abnormal Traffic

TCP Three-Way Handshake Echo Ping Request | Echo Ping Reply
Severity Level Warning
Frame Length 60 bytes

Syslog Messages AMQP IP Address State Changed

5.4. Explanation of AMQP Brute Force Attack

Brute force attacks are a type of cyberattack where unauthorized users attempt to
infiltrate a system by repeatedly guessing username and password combinations or uncov-
ering protected information through exhaustive attempts. Attackers often employ various
techniques to improve the accuracy of their guesses. Within the AMQP protocol, queue
message handling is a vulnerable process that attackers can exploit to gain unauthorized
access. By leveraging brute force methods, attackers can obtain the credentials needed to
access the system [5].

Brutemq is a tool designed to brute force RabbitMQ server (AMQP) queue messaging
services. The tool works by connecting to a given host on the AMQP port (5672/TCP) and
attempting to guess passwords from a predefined list [24].

Command for Brutemq Attack:

brutemq amqp -d passwords.txt -u admin -e 192.168.180.10:5672 -t 500

Explanation of the Command:

• -d: Specifies the password list file.
• -u: Indicates the username (e.g., admin).
• -e: Specifies the target host and port.
• -t: Sets the timeout for the attack.

5.4.1. Brute Force Attack Signature

In Figure 8, the analysis reveals that the first three lines of malicious traffic illustrate
the TCP three-way handshake connection. The process begins with the IoT device sending
an SYN packet to the AMQP server. The server responds with an SYN/ACK packet, and



Network 2025, 5, 5 12 of 24

the IoT device validates the connection with an ACK packet. The IoT device then sends an
AMQP protocol version 0-9-1 packet with the “PSH, ACK” flag to the server. The server
confirms the request with an ACK and establishes the connection with a connection.Start
packet. The IoT device responds with connection.Start-Ok, including the username
and password for verification. The server immediately verifies the connection with an
ACK packet.

Figure 8. Analysis of AMQP brute force attack packets.

5.4.2. Analysis

This section examines the features identified in the brute force attack signature against
the AMQP server. Key features of the attack include the following:

• tcp.dstport=5672.
• tcp.len=0.
• seq.number=509.
• nxtseq.number=509.
• window.size=508.
• tcp.flag=0x014 in RST/ACK packets.

Repeated experiments confirmed that these values remained unchanged. These pat-
terns occur when an attacker or IoT device attempts to establish a connection with the
target machine, following default packet-specific settings for connection and authorization.
Each incorrect login attempt results in the target system discarding the previous message,
generating an RST/ACK packet with random sequence numbers to disrupt transmission.

The value of window.size consistently reflects the RST/ACK packet from the previous
ACK packet when login details are incorrect. The syslog logs multiple attempts to connect
on port 5672, indicating failed and successful login attempts. Additionally, the syslog
detects and logs the correct credentials when successfully brute-forced.

5.4.3. Traits and Signature

Key features, such as tcp.dstport=5672, tcp.len=0, seq.num=509, nxtseq.num=509,
window.size=508, and tcp.flag=0x014, are essential for identifying potential security
threats, including brute force attacks. These features serve as a foundation for detecting
anomalies associated with repeated login attempts. Below is a summary of the traits and
their significance:

• TCP Destination Port (tcp.dstport=5672): Critical for AMQP protocol connections.
• TCP Length (tcp.len=0): Indicates no data in the packet payload.
• Sequence and Next Sequence Numbers (seq.num=509, nxtseq.num=509): Tracks

packet order.
• Window Size (window.size=508): Reflects the data transmission capacity for the

RST/ACK packet.
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• TCP Flags (tcp.flag=0x014): Used to reset connections during repeated failed attempts.

Consistent values in RST/ACK packets throughout repeated experiments indicate
that the targeted machine terminates the connection using identical values. The attacker
manipulates these packets to disrupt the system and prolong the attack, aiming to obtain
valid login credentials.

5.4.4. Abnormal Traffic Features of AMQP Brute Force Attack

Table 4 summarizes the abnormal traffic features observed during the brute force
attack, highlighting key indicators for detecting such attacks.

Table 4. Abnormal traffic features of AMQP brute force attack.

Features Abnormal Traffic

TCP Three-Way Handshake RST/ACK

RST/ACK Packet tcp.len=0 | seq=509 | nxtseq=509 |
tcp.srcport=5672 | window.size=508

Syslog Invalid credentials on port 5672

6. Analysis and Validation of Statistical Model for AMQP IoT
Attack Detection

This section presents the analysis and validation of the statistical model used to detect
attacks within the AMQP IoT protocol. The methodology involves leveraging a dataset
generated from network traffic captured during the experiments described earlier. This
dataset provides the foundation for identifying the unique features and signatures of
various attack types.

The dataset [25] was generated by capturing network traffic from IoT devices com-
municating via the AMQP protocol. Using our testbed setup, the data collection process
included a wide range of scenarios, encompassing normal operations, malicious activities,
and attack traffic. Packets were categorized into three classes:

• Normal Traffic: Data packets representing typical, unaltered communication between
IoT devices and the AMQP server.

• Malicious Traffic: Packets exhibiting abnormal behavior or unauthorized activities
indicative of potential security threats.

• Attack Traffic: Packets directly associated with known attack patterns, such as DoS,
MiTM, or brute force attacks.

This classification enabled a comprehensive analysis of network behavior, facilitating
the identification of the distinct features that define each attack signature.

To analyze the dataset and validate attack detection mechanisms, a Python-based
statistical model script was developed. The script identifies key features from the captured
traffic and classifies packets based on the signatures defined in earlier sections. The
statistical model was tested against three types of datasets:

• Benign Dataset: Contains only normal traffic to evaluate false positive rates.
• Malicious Dataset: Comprises known malicious and attack traffic for accuracy testing.
• Mixed Dataset: Includes both normal and malicious traffic to simulate real-world

scenarios and measure overall detection performance.

The statistical model also incorporates a visualization component to facilitate analysis
and enhance understanding of network traffic patterns. A color-coded scheme is used to
represent different traffic categories:

• Blue: Represents normal traffic.
• Gray: Indicates malicious traffic.
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• Red: Denotes attack traffic.

This visual approach simplifies the evaluation process by enabling clear identification
of anomalies and patterns within the traffic data. By combining automated classification
with visual representation, the statistical model provides a robust framework for AMQP
IoT attack detection.

6.1. Feature Selection and Weighting

The statistical model leverages a carefully selected set of features to ensure robust
performance in detecting known attack types. Features such as TCP flags, sequence num-
bers, payload lengths, and packet sizes were chosen based on their relevance in identifying
anomalous traffic patterns. These features were selected for the following reasons:

• TCP Flags: They indicate communication behaviors, such as connection initiation or
termination, which are critical in identifying patterns related to DoS or MiTM attacks.

• Sequence Numbers: These help track packet flow, enabling the detection of anomalies
like replay attacks or out-of-sequence packets.

• Payload Lengths: Variations in payload size can signal unusual traffic behaviors, often
associated with brute force or protocol abuse.

• Packet Sizes: They serve as indicators of traffic irregularities, especially in cases of
data exfiltration or malicious payload delivery.

The weighting of these features in the model was determined through iterative testing
to optimize detection accuracy while minimizing false positives. Features contributing
most significantly to attack identification, such as TCP flags and sequence numbers, were
assigned higher weights.

Justification for this feature selection and weighting lies in their proven effectiveness
in previous studies and their ability to generalize across a wide range of attack scenarios.
Additionally, future work will explore integrating time-series data into the feature set
to uncover evolving attack patterns over time, such as gradual resource exhaustion or
incremental brute force attempts. Dynamic weighting schemes incorporating temporal
trends could further improve model adaptability and precision.

Signature Definition and Extraction

Signatures are quantitatively defined and extracted from traffic data based on distinct
patterns and statistical anomalies indicative of specific attack types. This process involves
the following:

• Feature-Based Quantification: Each signature is represented by a combination of
features such as TCP flags, sequence numbers, payload lengths, and packet sizes.
For instance, an SYN flood attack is characterized by a high frequency of SYN pack-
ets without corresponding ACK responses, while irregular sequence numbers may
indicate replay attacks.

• Threshold Establishment: Statistical thresholds are set for each feature by analyzing
normal traffic baselines. Any deviation beyond these thresholds is flagged as anoma-
lous. For example, a spike in packet frequency or an unusual payload size may trigger
an alert.

• Traffic Profiling: Traffic flows are monitored over time to identify repetitive patterns
or behaviors indicative of malicious activity. These profiles form the foundation of the
signature database.

• Empirical Validation: Known attack datasets and testbed simulations (e.g., using
tools like hping3) are analyzed to identify consistent patterns that reliably distinguish
malicious traffic from normal behavior. These findings are used to refine and validate
the signature extraction process.
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6.2. Detecting the DoS Attack

In order to test the effectiveness of our signature-based detection, we prepared a script
that looks for the signatures in network traffic and identifies malicious packets as shown
in Figure 9.

Figure 9. DoS attack signature.

6.2.1. Detection Results for Normal and Malicious Datasets in DoS Attacks

Figure 10 illustrates the classification results of network traces into three categories:
normal, malicious, and RST packets associated with a DoS attack. A custom script was
developed to identify the specific attributes unique to malicious and RST packets, while all
other traces were categorized as normal. The results show the model’s ability to accurately
distinguish between these categories, with the following distribution:

• A total of 27.28% of the traces were identified as normal traffic.
• A total of 71.50% of the traces were classified as malicious traffic.
• A total of 1.22% of the traces were recognized as RST DoS packets.

These results demonstrate the effectiveness of the script in identifying and classifying
attack-specific traffic in the dataset.

Figure 10. Classification results of network traces for DoS attacks (normal, malicious, and RST).

6.2.2. Detection Results for Normal Dataset in AMQP Traffic Packets

Figure 11 demonstrates the script’s performance when applied to a dataset containing
only normal traces of AMQP network traffic. The results reveal the script’s ability to
accurately classify benign packets, with the following:
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• A 100% detection rate for normal traces.
• A 0% detection rate for malicious and RST traces.

This highlights the model’s precision in processing normal datasets without generating
false positives.

Figure 11. Detection of normal packets in AMQP traffic dataset.

6.2.3. Detection Results for Malicious Dataset in DoS Packets

Figure 12 presents the classification of a malicious dataset containing both normal and
harmful traces. The script was applied to categorize RST, malicious, and normal traces
sequentially. The results show the following:

• A total of 98.76% of the packets were classified as malicious traffic.
• A total of 1.13% of the packets were identified as RST DoS packets.
• A total of 0.10% of the packets were classified as normal traffic.

These results emphasize the robustness of the model in accurately identifying mali-
cious traffic while minimizing false positives for normal packets.

Figure 12. Detection results for malicious packets in DoS dataset.
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6.3. Detecting the MiTM Attack

We prepared a script that looks for the signatures in network traffic and identifies
malicious packets as shown in Figure 13.

Figure 13. MiTM attack signature.

6.3.1. Detection Results for Normal and Malicious Datasets in MiTM Attacks

Figure 14 presents the detection results of the statistical model applied to differentiate
between normal, malicious, and duplicate IP packets associated with AMQP Man-in-the-
Middle (MiTM) attacks. The script aggregates packets based on their IP addresses and
categorizes them as malicious if duplicate IP addresses are detected. All other packets are
classified as normal.

The results indicate the script’s ability to accurately identify and classify MiTM
attack signatures:

• A total of 99.95% of packets were classified as normal.
• A total of 0.02% of packets were identified as malicious.
• A total of 0.04% of packets were recognized as duplicate IP address MiTM packets.

These findings demonstrate the effectiveness of the script in identifying MiTM attack
characteristics while maintaining a high accuracy rate.

Figure 14. Detection results for MiTM attack packets in normal and malicious datasets.

6.3.2. Detection Results for Normal Dataset in AMQP Traffic Packets

Figure 15 illustrates the performance of the AMQP MiTM detection script when
applied to a dataset containing only normal AMQP network traffic. The objective was to
evaluate the script’s ability to classify benign traffic accurately.

The detection results are as follows:

• Overall, 100% of normal packets were correctly identified.
• No MiTM attack or malicious packets were detected.

These results highlight the model’s reliability in handling normal traffic scenarios
without generating false positives.
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Figure 15. Detection results for normal packets in AMQP traffic.

6.3.3. Detection Results for Malicious Dataset in MiTM Packets

Figure 16 presents the analysis of a malicious dataset using the AMQP MiTM detection
script. The results were analyzed to evaluate the model’s precision and false positive ratio.

Key findings include the following:

• A total of 63.54% of packets were identified as malicious.
• A total of 30.21% of these malicious packets were associated with MiTM attacks.
• A total of 6.25% of packets were classified as normal traffic.

These results emphasize the model’s robustness in detecting MiTM attacks within a
malicious dataset while maintaining a low false positive rate for normal traffic.

Figure 16. Detection results for malicious packets in MiTM dataset.

6.4. Detecting the Brute Force Attack

The script belwo looks for the signatures in network traffic and identifies malicious
packets as shown in Figure 17.
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Figure 17. Brute force attack signature.

6.4.1. Detection Results for Normal and Malicious Datasets in Brute Force Attacks

Figure 18 illustrates the classification results of network packets into normal, malicious,
and AMQP RST/ACK packets associated with brute force attacks. A custom algorithm
was developed to identify the unique characteristics of brute force attack signatures, with
all other packets categorized as normal.

The statistical model produced the following results:

• A total of 95.77% of the packets were classified as normal traffic.
• A total of 3.83% of the packets were identified as malicious traffic.
• A total of 0.40% of the packets were classified as AMQP RST/ACK brute force at-

tack packets.

These results demonstrate the script’s accuracy in detecting and distinguishing brute
force attack packets within the dataset.

Figure 18. Detection results for normal and malicious packets in brute force attacks.

6.4.2. Detection Results for Normal Dataset in AMQP Traffic Packets

Figure 19 presents the performance of the AMQP brute force detection script when ap-
plied to a dataset containing only normal AMQP traffic. The results indicate the following:

• A 100% detection rate for normal packets.
• A 0% detection rate for malicious and brute force attack packets.

These findings highlight the script’s ability to accurately classify normal traffic without
generating false positives.
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Figure 19. Detection results for normal packets in AMQP brute force dataset.

6.4.3. Detection Results for Malicious Dataset in Brute Force Packets

Figure 20 depicts the detection results when the AMQP brute force detection script
was applied to a malicious dataset. The evaluation revealed the following:

• A total of 90.42% of the packets were classified as malicious traffic.
• A total of 9.56% of the packets were identified as brute force attack packets.
• A total of 0.02% of the packets were classified as normal traffic.

These results demonstrate the model’s high precision in detecting malicious events
and brute force attacks within the dataset, while maintaining a low false positive rate for
normal traffic.

Figure 20. Detection results for malicious packets in AMQP brute force dataset.

6.5. Summary of the Statistical Model Performance

The statistical model was rigorously evaluated across three attack scenarios—DoS,
MiTM, and brute force attacks—using datasets containing normal, malicious, and mixed
traffic. The model’s performance metrics, including detection rates, false positives, and
classification accuracy, are summarized and analyzed below.
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6.5.1. Detection Accuracy Across Attack Scenarios

The model demonstrated high detection accuracy for attack-specific traffic while
maintaining robust performance for normal traffic. Key performance indicators are detailed
as follows:

• DoS Attacks:

– Detection Rate:

* A total of 71.50% of packets were classified as malicious.

* A total of 1.22% of packets were correctly identified as RST DoS-specific
packets.

– False Negatives: 27.28% of malicious traffic misclassified as normal packets,
highlighting areas for refinement in recognizing subtle attack traces.

• MiTM Attacks:

– Detection Rate:

* A total of 0.04% of packets were accurately classified as duplicate IP MiTM
traffic.

* A total of 0.02% were categorized as general malicious traffic.

– False Positives: Minimal, with 99.95% of normal traffic correctly classified, indi-
cating strong reliability in non-attack scenarios.

• Brute Force Attacks:

– Detection Rate:

* A total of 3.83% of packets were identified as malicious.

* A total of 0.40% were recognized as RST/ACK brute force packets.

– False Positives: Negligible, with 95.77% of normal traffic classified correctly,
although attack detection rates suggest opportunities to enhance granularity.

6.5.2. Performance on Normal Traffic Datasets

The statistical model consistently achieved a 100% detection rate for normal traffic
across all scenarios, with no false positives for malicious or attack-specific packets. This
highlights its precision in handling benign datasets, making it a reliable tool for minimizing
disruptions in normal operations.

6.5.3. Performance on Malicious Traffic Datasets

For malicious datasets, the model exhibited strong attack detection capabilities, al-
though variation in classification rates was observed:

• MiTM attacks: 63.54% of malicious packets were detected, with 30.21% accurately
linked to MiTM signatures.

• Brute force attacks: 90.42% of malicious packets were detected, with 9.56% specifically
associated with brute force signatures.

• False negatives: A small portion of malicious packets in each scenario was misclassified
as normal traffic, suggesting scope for refinement in edge cases.

6.5.4. Insights and Areas for Improvement

This study serves as the starting point for a broader research effort. While the current
statistical model effectively detects attack-specific traffic and maintains high precision for
normal datasets, certain enhancements recommended by the reviewers were not included
in this phase due to scope constraints, dataset limitations, and computational feasibility.
The primary objective of this study was to validate a foundational AMQP security model,
ensuring an efficient, interpretable, and scalable approach. However, our ongoing research
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is actively working on integrating machine learning (ML) and deep learning (DL) tech-
niques, which will address several of these recommendations. The following explains why
certain aspects were not included and how future work will improve upon them:

• Advanced Metrics (Precision, Recall, AUC, Confusion Matrices): While incorporating
advanced evaluation metrics would provide a more detailed assessment of model per-
formance, this study prioritized practical detection measures—specifically detection
accuracy and false positive/negative rates—to validate the feasibility of AMQP-based
intrusion detection. Including additional metrics would have required expanded
dataset validation and computational adjustments. However, our ongoing ML/DL
research will inherently incorporate these advanced evaluation methods to ensure
more robust performance assessment.

• Time-Series Analysis for Attack Evolution Detection: This study focused on static and
event-based attack patterns, which are the most common in AMQP environments.
While time-series analysis would provide deeper insights into evolving attack behav-
iors, it requires specialized modeling techniques, significantly larger datasets, and
increased computational resources. Implementing time-series-based detection would
have expanded the project’s scope beyond its primary objectives. However, our next
research phase will employ Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) models to analyze long-term AMQP attack patterns, addressing
this gap.

• Detection of Subtle Attack Patterns (e.g., Misclassified DoS Traces): The current
model is designed to detect major attack categories in AMQP-based IoT networks.
Identifying subtle attack patterns, such as low-rate DoS attacks misclassified as normal
traffic, requires adaptive thresholding and more sophisticated anomaly detection
methods. These refinements were excluded to maintain the study’s focus on validating
AMQP security at a fundamental level. However, our ongoing research explores deep
learning-based anomaly detection techniques, such as autoencoders and Generative
Adversarial Networks (GANs), to improve detection of stealthy, low-profile attacks.

• Granular Malicious Packet Classification for Brute Force and MitM Attacks: Improv-
ing the granularity of malicious packet classification requires more refined feature
extraction and deep multi-label classification approaches. While the current study
prioritizes broader attack categorization, our ongoing research is incorporating Con-
volutional Neural Networks (CNNs) and Transformer-based models to automatically
extract deeper network features, enabling more precise attack classification. These
enhancements were not included in this study due to dataset limitations and the need
for additional training data, which are currently being curated.

While these enhancements were beyond the scope of this study, they form the core
direction of our ongoing research. By leveraging ML/DL-driven methodologies, future
iterations of this work will provide a more adaptive and intelligent framework for securing
AMQP-based IoT environments.

6.5.5. Practical Implications

The model’s ability to maintain high accuracy while minimizing false positives en-
sures its applicability in real-world IoT network environments. Key strengths include
the following:

• Reliable differentiation between normal and malicious traffic.
• Effective detection of distinct attack signatures, supporting targeted threat mitigation.
• Robust performance across varied traffic scenarios, providing flexibility for deploy-

ment in dynamic IoT environments.
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This analytical summary highlights the statistical model’s strengths, identifies areas
for further refinement, and reinforces its value as a tool for securing AMQP IoT protocols.

7. Conclusions
This study explored the security challenges of the AMQP protocol in IoT networks and

introduced a statistical model for detecting and classifying malicious activities. By utilizing
a purpose-built testbed, realistic scenarios of Denial-of-Service (DoS), Man-in-the-Middle
(MiTM), and brute force attacks were simulated to generate extensive datasets of normal,
malicious, and mixed traffic. Unique attack signatures were identified and rigorously
validated, forming the basis for a practical and accurate detection mechanism tailored to
the AMQP protocol.

The statistical model demonstrated robust performance in distinguishing normal
and malicious traffic patterns with minimal false positives. For DoS attacks, the model
reliably identified RST-specific packets, while for MiTM and brute force attacks, it achieved
precise classification of attack-related traffic. These findings emphasize the effectiveness
of signature-based approaches in bolstering the security and reliability of AMQP-driven
IoT systems.

However, this research also highlights areas requiring further attention. While the
model excelled in detecting known attack patterns, addressing more complex or subtle
variations remains a challenge. To overcome these limitations, future work will focus on
integrating advanced machine learning (ML) techniques capable of adapting to evolving
threats. The statistical model developed in this study will serve as a benchmark for
evaluating the performance of these ML-driven approaches, paving the way for a dynamic
and comprehensive intrusion detection system (IDS).

By combining the precision of signature-based detection with the adaptability of ML
techniques, future efforts aim to create a resilient security framework for AMQP protocols.
This approach will enhance the protection of IoT ecosystems, ensuring their reliability and
robustness against an increasingly sophisticated cyber threat landscape.

Author Contributions: Conceptualization, M.A. and A.K.; methodology, M.E.H., M.A., A.K. and
G.N.; software, M.E.H.; validation, M.A., A.K. and G.N.; formal analysis, M.A.; investigation,
M.E.H.; resources, M.E.H.; data curation, M.E.H. and M.A.; writing—original draft preparation, M.A.;
writing—review and editing, M.A.; visualization, M.E.H.; supervision, M.A., A.K. and G.N.; project
administration, M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Advanced Message Queuing Protocol (AMQP)—Complex Security. Available online: https://knowledge.complexsecurity.io/

protocols/amqp/ (accessed on 1 January 2025).
2. National Vulnerability Database. CVE-2021-22116: RabbitMQ AMQP Server Denial-of-Service Vulnerability. Available online:

https://nvd.nist.gov/vuln/detail/CVE-2021-22116 (accessed on 1 January 2025).
3. National Vulnerability Database. CVE-2018-11087: RabbitMQ AMQP Client Man-in-the-Middle (MitM) Vulnerability. Available

online: https://nvd.nist.gov/vuln/detail/CVE-2018-11087 (accessed on 1 January 2025).
4. BruteMQ: An Exotic Service Bruteforce Tool. Available online: https://github.com/codexlynx/brutemq (accessed on

1 January 2025).
5. Alaiz-Moreton, H.; Aveleira-Mata, J.; Ondicol-Garcia, J.; Munoz-Castaneda, A.; Garcia, I.; Benavides, C. Multiclass classification

procedure for detecting attacks on MQTT-IoT protocol. arXiv 2019, arXiv:2402.03270. [CrossRef]

https://knowledge.complexsecurity.io/protocols/amqp/
https://knowledge.complexsecurity.io/protocols/amqp/
https://nvd.nist.gov/vuln/detail/CVE-2021-22116
https://nvd.nist.gov/vuln/detail/CVE-2018-11087
https://github.com/codexlynx/brutemq
http://doi.org/10.1155/2019/6516253


Network 2025, 5, 5 24 of 24

6. Amouri, A.; Alaparthy, V.; Morgera, S. A machine learning based intrusion detection system for mobile Internet of Things. Sensors
2020, 20, 461. [CrossRef] [PubMed]

7. Haripriya, A.; Kulothungan, K. Secure-MQTT: An efficient fuzzy logic-based approach to detect DoS attacks in MQTT protocols
for the Internet of Things. EURASIP J. Wirel. Commun. Netw. 2019, 2019 , 90. [CrossRef]

8. Liu, J.; Kantarci, B.; Adams, C. Machine learning-driven intrusion detection for Contiki-NG-based IoT networks exposed to the
NSL-KDD dataset. In Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning, Linz, Austria, 3 July
2020; pp. 25–30.

9. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network intrusion detection for IoT security based on learning
techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]

10. McAteer, I.; Malik, M.; Baig, Z.; Hannay, P. Security vulnerabilities and cyber threat analysis of the AMQP protocol for the
internet of things. In Proceedings of the 15th Australian Information Security Management Conference, Perth, Australia
5–6 December 2017.

11. Gerodimos, A.; Maglaras, L.; Ferrag, M.; Ayres, N.; Kantzavelou, I. IoT: Communication protocols and security threats.
Internet Things Cyber-Phys. Syst. 2023, 3, 1–13. [CrossRef]

12. Swamy, S.; Jadhav, D.; Kulkarni, N. Security threats in the application layer in IOT applications. In Proceedings of the 2017
International Conference On I-SMAC (IoT in Social, Mobile, Analytics And Cloud) (i-SMAC), Palladam, Tamil Nadu, India,
10–11 February 2017; pp. 477–480.
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