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Abstract

We analyse a standard pivotal-voter model under majority rule, with two rival

groups of players, each preferring one of two public policies and simultaneously

deciding whether to cast a costly vote, as in Palfrey and Rosenthal (1983). We

allow the benefit of the favorite public policy to differ across groups and impose an

intuitive refinement, namely that voting probabilities are continuous in the cost of

voting to pin down a unique equilibrium. The unique cost-continuous equilibrium

depends on a key threshold that compares the sizes of the two groups.

1 Introduction

Consider a stylized economy with two rival groups of players; group “m”, with m players,

and group “n”, with n players. Each player may cast a costly vote in a majoritarian

election between two public policies; policy M and policy N . Players of group m receive

a higher payoff if policy M is implemented, while players of group n receive a higher payoff

if policy N is implemented. In a standard pivotal-voter model, we study the equilibria of
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such a voting game, focusing on the case relevant for applications where both the group

size and the payoffs could be different across groups.

A number of applications can be analyzed under this setup. For example, an economy

made of some resource-poor and some resource-rich players is called to vote between no

redistribution and full redistribution of resources, under the assumption that the poor

players outnumber the rich. Each single rich player has more at stake in the election

than a single poor player, as the amount of resources each individual would obtain under

full redistribution is closer to the level of resources of the poor than to that of the

rich. Another application is a university faculty consisting of several economists and

a few lawyers, all called to vote over who to hire between two job market candidates:

an economist and a lawyer.1 Both economists and lawyers are better-off if the newly

hired candidate is of their same type. Furthermore, the benefit for a lawyer from hiring

another lawyer is greater than the one for an economist from hiring another economist

because of the asymmetric size of the two groups; that is, since lawyers are fewer, having

another lawyer in the department sharply increases each lawyer’s coauthoring possibilities,

whereas the benefit for an economist from having a new economist in the faculty is lower

because they are already plenty. In other words, the benefit is asymmetric across players

of different groups. A third application is that of residents of two neighborhoods are called

to vote over the location of a new school in one of the two neighborhoods. In neighborhood

N there is already a school, in neighborhood M there is none: thus, despite the fact that

each resident strictly prefers the school to be located in her neighborhood, residents in

neighborhood N “care less” than residents in neighborhood M about the location of the

school since there is already a school in neighborhood N .

In all these applications, we may have an asymmetry in both size of each group

and benefits, it is therefore an asymmetric-asymmetric setup which, to the best of our

knowledge, has not been studied before. To study it, we adopt a complete-information

1The cost of voting in this case is the opportunity cost of showing up to vote that day instead of, for
example, being on vacation or doing research.
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pivotal-voter model with costly voting.2 This class of models is far from novel. The

seminal contribution dates back to Palfrey and Rosenthal (1983), where two groups of

players each preferring one of two alternatives simultaneously decide between abstaining

or voting for their preferred alternative. The winner is decided by majority rule.3 Tech-

nical difficulties and multiplicity issues allowed Palfrey and Rosenthal to analyze only

special cases.4 The analysis of this model has been pushed forward by two other works.

First, Nöldeke and Peña (2016) focus on the two groups having symmetric number of

members and symmetric benefit from the favored alternative winning the election. Sec-

ond, Mavridis and Serena (2018) focus on the two groups having asymmetric number of

members and symmetric benefit from the favored alternative winning the election.

After analysing the asymmetric-asymmetric case, we deploy a continuity refinement,

“cost-continuity”, pinning down a unique equilibrium which we discuss. We illustrate our

results focusing on the application of redistribution of resources as a running example

throughout the paper, as this application has a clear and convenient parametrization of

the levels of payoffs between the two groups. In particular, after describing the model in

Section 2, in Section 3 we fully characterize the simple (m;n) = (3; 2) model in which

there are multiple equilibria.5 We characterize analytically the equilibria where members

of at least one group play a pure strategy in participation (Section 4.1, Section 4.2),

and we characterize in part analytically and in part numerically the equilibria where

members of both groups play a mixed strategy (Section 4.3). Our numerical analysis,

which complements our analytical results, characterizes the redistribution trade-off. De-

spite the multiplicity of equilibria, only one equilibrium survives a novel and intuitive

2Our focus is different compared to other models in which there is voting over redistribution without
cost of voting, as in for example Meltzer and Richard (1981). In their model, under voting, the level
of redistribution is endogenously determined by the median voter and all citizens vote. We are more
interested in what happens when the cost of voting is an issue, and how its magnitude affects the result
of the redistribution election, in a model where voters vote only based on the possibility of being pivotal;
for empirical evidence on how voters’ voting decision depends on the probability of affecting the election
outcome see Lyytikäinen and Tukiainen (2019).

3I.e., the alternative that gets more than 50% of the votes wins.
4To see these special cases, we refer to footnote 1 in Mavridis and Serena (2018).
5Palfrey and Rosenthal (1983) already noticed that the asymmetric-symmetric model suffers from a

multiplicity issue.

3



cost-continuity refinement; that is, the equilibrium probability of voting is continuous in

the cost of voting. In fact, our numerical analysis shows that the cost-continuity refine-

ment turns out to single out a unique equilibrium in the general model with an arbitrary

number of poor and rich players (see Section 5). We study the properties of the unique

cost-continuous equilibrium; if the size of the poor group is sufficiently small (namely,

the number of poor players is lower than the square of the number of the rich players),

then the poor players may vote and redistribution has a chance of winning, while if the

size of the poor group is large (namely, the number of poor players is greater than the

square of the number of the rich players), the unique cost-continuous equilibrium dictates

that poor players abstain with certainty, and thus poor players are doomed to lose the

election and redistribution is not implemented.

The above threshold suggests an answer to the redistribution trade-off. Consider

an increase in the number of poor players. On the one hand, it makes the individual

resources under redistribution closer to the resources of a poor and further apart from

those of a rich. This makes the stakes of the rich in the election increase, and that of

the poor decrease.6 On the other hand, an increase in the number of poor players makes

the poor group bigger and thus stronger in the election; that is, if all players were to

vote with the same exogenous probability full redistribution would be the most likely

outcome of the election as there are more poor players than rich. All in all, the former

effect of an increase in the number of poor players (making rich players vote “more”) is

stronger than the latter effect (making rich players relatively less numerous) the greater

is the number of poor players; in fact, when the number of poor players is greater than

the square of the number of the rich players, the former dominates the latter and in the

unique cost-continuous equilibrium poor players have no chance of winning the election.

The opposite happens when the number of poor players is low, and hence poor players

have a chance of democratically redistributing resources.

6Acemoglu and Robinson (2000, 2012) examine a similar idea, in which if there are many poor players
in a society the threat of revolution decreases since the spoils would be divided over a larger mass of
players.
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After their 1983 paper, Palfrey and Rosenthal (1985) analyzed a version of the model

under private information on the cost of voting and from then onwards, much of the

literature has developed under private information, as the model is often more tractable

and allows more elegant and neat results (e.g., Borgers, 2004; Taylor and Yildirim, 2010).

Nevertheless, the general idea that voters compare the benefits of voting with its costs is

older and has been long the interest of economists, dating back at least to Downs’ (1957)

seminal work. We consider only benefits that accrue from changing the policy to the

voters’ preferred outcome, despite a number of other benefits playing an important role

in real-life; for instance, Wiese and Jong-A-Pin (2017) empirically examine the benefits

arising from “expressive” motives of voting. In our model, we follow the main strand of

the literature on complete-information pivotal-voter model with costly voting, started by

Palfrey and Rosenthal (1983), and further developed by Nöldeke and Peña (2016) and

Mavridis and Serena (2018). And as we generalize this strand of the literature to the

asymmetric-asymmetric setup described above, we abstract away from other interesting

forces that typically play an important role in real life voting. An example is communica-

tion. In the laboratory, Palfrey and Pogorelskiy (2019) find that communication increases

turnout when messages are public within one’s own party, and decreases turnout with a

low voting cost when subjects exchange public messages through computers. In the anal-

ysis of correlated equilibria, Pogorelskiy (2020) finds that communication helps sustain

equilibria with high levels of turnout. Kalandrakis (2007, 2009), under heterogeneous

voting costs, finds that almost all Nash equilibria are robust to small amounts of in-

complete information. Social pressure is also a key aspect of voters’ turnout which we

abstract away from (see e.g. Gerber et al., 2008; Gerber et al., 2016; and DellaVigna et

al., 2017). Finally, polls are known to have a significant effect on voters’ turnout (e.g.,

Großer et al., 2010; Morton et al., 2015).
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2 Model

There are two types i ∈ {m,n} of players; m > 1 poor players and n > 1 rich players.

Assume poor players are more numerous; m > n.7 Players are simultaneously called to

cast a vote between two alternatives, M and N . When we specialize the model to redistri-

bution of resources, M is full redistribution and N is no redistribution of resources. Poor

players prefer alternative M , in that if M wins (rather than loses) the individual payoff

of a poor player increases by ∆πm > 0. Symmetrically, rich players prefer alternative N ,

in that if N wins (rather than loses) the individual payoff of a rich player increases by

∆πn > 0. Players choose whether to vote for their preferred alternative or to abstain,

since voting for the non-preferred alternative is strictly dominated. If a player of type

i ∈ {m,n} casts a vote, she faces a cost of voting ci > 0. Thus, the increase in payoff

–net of cost of voting– for a player i when her preferred alternative wins is ∆πi − ci if

she voted, and ∆πi if she did not vote. Players vote simultaneously and the winning

alternative is decided by majority rule. Ties are broken by a fair coin toss.

(Redistribution-Parametrized Example) Throughout the paper, our running example

is that of resource redistribution, where each poor player has an initial amount of resources

equal to 1 and each rich player has an initial amount of resources equal to 2.8 Under full

redistribution each player ends up with the average resources in the economy, which is:

2n+m

n+m

and under no redistribution everyone keeps her original amount of resources. Thus,

∆πm =
2n+m

n+m
− 1 =

n

n+m
(1)

∆πn = 2− 2n+m

n+m
=

m

n+m
(2)

7By assuming m > n > 1 we avoid having to deal with trivial case distinctions of m = n or n = 1
throughout the paper.

8It will be clear that these resource level assumptions are qualitatively without loss of generality.
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Since the resources of the poor is less than the average resources, a poorm player would

always prefer full redistribution (alternative M) and a rich n player would always prefer

no redistribution (alternative N). Furthermore, notice from (1) and (2) that ∆πn > ∆πm;

that is, a single rich player has more at stake in the election than a single poor player.9

We denote by pi the probability of voting of player i.10 This probability maximizes

her individual expected payoff, taking as given the choices of the other players. As in

Palfrey and Rosenthal (1983), we consider Quasi-Symmetric Nash Equilibria (QSNE),

that is, players of group i follow the same equilibrium strategy p∗i . Hence, a QSNE is a

pair (p∗i , p
∗
j) such that a player of group i ∈ {m,n} would not want to deviate from p∗i if

she expects every other player of group i to also play p∗i and all players of group j with

j 6= i to play p∗j . A QSNE can be of one of the following three types:

1. “Pure”: (p∗m, p
∗
n) ∈ {0, 1}2

2. “Partially Mixed”: p∗m ∈ {0, 1}, p∗n ∈ (0, 1) or p∗m ∈ (0, 1), p∗n ∈ {0, 1}

3. “Totally Mixed”: (p∗m, p
∗
n) ∈ (0, 1)2.

Our asymmetric-asymmetric setting (see Introduction) will allow us to fully charac-

terize the first two types of QSNE, and for sufficiently low (m,n) also the third. However,

for arbitrary (m,n) we will tackle the characterization of the “Totally Mixed” equilibria

partly analytically and partly numerically.

Define Ai to be the probability that the vote of a player of group i is pivotal. A player

of group i may cast a vote if:

Ai
∆πi

2
≥ ci. (3)

9Considering the extrema of no- and full-redistribution is, to some extent, without loss of general-
ity. Since the resources of the poor are less than the average resources, the poor would like as much
redistribution as possible and, at the same time, the rich would like as little redistribution as possible.
Therefore, given a choice between any two proportional tax rates schemes, the poor would want to vote
for the higher one and the rich for the lower one. In the end, there is no loss of generality to assume that
the two tax rates that are competing are 0 (no redistribution) and 1 (full redistribution).

10Note that pi is a function of c, m, and n. However, for brevity, we omit its dependence on m and n.
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Conditional on being pivotal, the extra utility of creating a tie (from 0 to ∆πi
2

) or

breaking a tie (from ∆πi
2

to ∆πi) is identical since the tie breaking rule is fair. This

property explains the division by 2 in (3) and holds in general throughout the paper.

The above inequality is identical to

Ai ≥
2ci
∆πi

≡ Bi (4)

for i ∈ {m,n}.

(Redistribution-Parametrized Example) In our redistribution parametrized example,

we set for simplicity the costs of voting identical across types, cm = cn = c. Then, given

the specifications (1) and (2), we can write

Bm =
2c(n+m)

n
, (5)

Bn =
2c(n+m)

m
, (6)

so that a poor player may cast a vote if Am ≥ 2c(n+m)
n

and a rich player if An ≥ 2c(n+m)
m

.

Notice that Bm > Bn; as discussed in the Introduction, a rich individual rich has more

at stake in the election than a poor individual.

In what follows we start the analysis focusing first on an easy non trivial case: (m,n) =

(3, 2). Then, we characterize the general (m,n) case.

3 (m,n) = (3, 2) in the (Redistribution-Parametrized

Example)

We start with a simple example where we assume that m = 3 and n = 2 in our

(Redistribution-Parametrized Example).11 A single player will analyze all the possible

11The case of n = 1 is interesting, but it has very unique properties. The equilibrium is unique without
needing for a refinement. Nevertheless, we deem the illustration of the case of a single poor individual not
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scenarios of what the other four players will do.

Focus on a poor player first. A single poor player knows that there are nine possible

cases depending on whether the other four players (two rich and the other two poor

players) vote or abstain. We consider the nine cases in the following table where (m̄, n̄)

represent the number of players from each group that turn out to vote; that is, if (m̄, n̄) =

(0, 1), the other poor players do not vote, while one rich does and the other rich does not.

Poor player: pivotal if voting? (m̄, n̄) Probability ∆πi
2

Yes (2,2) p2
mp

2
n

1
5

Yes (1,1) 4pm(1− pm)pn(1− pn) 1
5

Yes (0,0) (1− pm)2(1− pn)2 1
5

Yes (0,1) 2(1− pm)2pn(1− pn) 1
5

Yes (1,2) 2pm(1− pm)p2
n

1
5

No (2,0) p2
m(1− pn)2 0

No (2,1) 2p2
mpn(1− pn) 0

No (1,0) 2pm(1− pm)(1− pn)2 0
No (0,2) (1− pm)2p2

n 0

In this table, every row corresponds to each possible case: the first three rows cor-

respond to the cases where the vote of the poor player would break a tie. The fourth

and fifth rows correspond to the case where her vote would create a tie. The last four

rows correspond to the case where her vote would make no difference to the outcome of

the election. The column Probability gives the probability that each case realizes. For

example the (2, 1) case realizes if the other two poor vote, one rich votes and the other

rich does not. The single poor player examining this table knows that she is pivotal in

fives cases out of nine. If she is not pivotal she would rather not vote, so as to save on the

cost c. If she is pivotal she may want to vote, provided that the net utility from voting

is positive.

relevant for three reasons. First, it helps the reader neither to understand what the equilibrium analysis
for n > 1 yields nor to observe the multiplicity of equilibria which is key in our setup. Second, the case of
a single rich individual is, in our opinion, not relevant for the applications we want to encompass. Third,
all the forces due to the need of within-group coordination among individuals of the same type (rich) are
absent when there is only one member of the rich type. In other words, rich perfectly coordinate and
never free-ride on each others because there is only one rich individual.
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Following the table above and the voting condition (3), the necessary condition for a

poor player to be willing to pay the cost of voting is:

[p2
mp

2
n + 4pm(1− pm)pn(1− pn) + (1− pm)2(1− pn)2+

2(1− pm)2pn(1− pn) + 2pm(1− pm)p2
n]

1

5
≥ c, (7)

where the ∆πi
2

= 1
5

because;

1. if the poor votes and breaks a tie, she obtains the full redistribution outcome 7/5

while not voting would give her the tie outcome (1/2) (7/5) + (1/2) 1,

2. if the poor votes and creates a tie, she obtains the tie outcome (1/2) (7/5) + (1/2) 1

while not voting would give her the no redistribution outcome 1,

and in both cases the difference in payoff is 1/5.

A rich player solves a similar problem, considering the six corresponding cases. The

resulting condition for the rich to want to vote is:

[3p2
m(1− pm)pn + 3pm(1− pm)2pn + 3pm(1− pm)2(1− pn) + (1− pm)3(1− pn)]

3

10
≥ c. (8)

When looking for an equilibrium, note that its nature could be any between Pure,

Partially Mixed and Totally Mixed. For instance, in order to sustain a Pure equilibrium

with p∗m = p∗n = 0, it needs to be the case that Ai ≤ Bi for both groups (in other

words, the direction of (7) and (8) is inverted) and recall that Ai depends on pm and pn

themselves. When instead we investigate the existence of Partially Mixed equilibria of

the form p∗m ∈ (0, 1) and p∗n = 1, then the n-individuals must be better-off voting than

abstaining, and hence we need An ≥ Bn, whereas the m-individuals must be indifferent

between voting and abstaining, and hence we need Am = Bm. Once again, p∗n = 1 is then

plugged into Am = Bm, where the latter equation gives a (possibly unique) p∗m, which
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then needs to satisfy both p∗m ∈ (0, 1) as well as An ≥ Bn. More completely, if a pair

(p∗m, p
∗
n) leads to Inequality 7 (8) to hold strictly then it must be that p∗m = 1 (p∗n = 1). If

a pair (p∗m, p
∗
n) leads to Inequality 7 (8) to not hold then it must be that p∗m = 0 (p∗n = 0).

These two cases form the four possible “Pure” QSNE; (0, 0), (0, 1), (1, 0), (1, 1). If a pair

(p∗m, p
∗
n) leads to the two inequalities to hold with equality, then the pair (p∗m, p

∗
n) forms

a “Totally Mixed” QSNE. If a pair (p∗m, p
∗
n) leads Inequality 7 to hold with equality, and

Inequality 8 to hold with < (>) then the pair is an equilibrium if p∗n = 0 (p∗n = 1). If a

pair (p∗m, p
∗
n) leads Inequality 8 to hold with equality, and Inequality 7 to hold with < (>)

then the pair is an equilibrium if p∗m = 0 (p∗m = 1). These last two cases form “Partially

Mixed” QSNE. We proceed in the above described way for all possible equilibria. In the

simple example of this section, the sustainability and full characterization of all equilibria

can be performed algebraically. In the more complex case of Section 5, we use numerical

methods, but proceed in the same manner.

Such reasoning leads to the general solution depicted in Figure 1, where we adopted

the notation consistent with our (Redistribution-Parametrized Example); namely, Bn = B

and Bm = m
n
B, so as to have only one parameter B simplifying the graphical exposition

(see (5) and (6)).12

For any B, we examine all the types of equilibria: “Pure”, “Partially Mixed” and

“Totally Mixed”. We find that for low B there are three different types of equilibria,

which are depicted in the first row of Figure 1, while for larger B we only have the

equilibrium depicted in the second row. The unique equilibrium for B sufficiently large

corresponds to the characterization in Propositions 1 to 5 (Subsections 4.1 and 4.2).

Note that, importantly, it is challenging to provide a thorough intuition behind the

equilibria. This issue is common in the costly voting pivotal-model literature—see Palfrey

and Rosenthal (1983) and Nöldeke and Peña (2016); most features of the equilibria are

driven by indifference condition of mixed-strategy equilibria.

The maximum values of B for existence of each equilibrium in the first row are B′ =

12In this (m,n) = (3, 2) case, this notation implies B = 10
3 c.
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Figure 1: The four panels present all the equilibria for the (3, 2) example. In the first
row, first panel, the “Totally Mixed 1”. In the first row, second panel, the “Totally Mixed
2”. In the first row, third panel, the “Partially Mixed”. In the bottom panel, “Partially
Mixed” continuously connected to the “Pure”.
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1/2, B′′ = 30/49, B′′ = 30/49 respectively. The minimum value of B for existence of

the equilibrium in the second row is B′ = 1/2. Now, take for example B = 1/3. There

are three equilibria: respectively, one in which both types of players are playing a mixed

strategy , with the rich voting with a much higher probability than the poor; one that

both are playing a mixed strategy but now the poor are voting with higher probability

than the rich; and one that the rich vote for sure and the poor play a mixed strategy. On

the other hand for larger B (but not too large), say B = 2/3, there is only one type of

equilibrium, the one where the rich are playing a mixed strategy, and the poor abstain

for sure. And, naturally, if B is very high (i.e., greater than 1), the cost of voting is much

greater than the benefit, thus no-one votes.13

Cost-continuity. Beginning from a high B we will have to be on the ”Pure” equilib-

rium in the bottom panel of the Figure. As B decreases and gets lower than 1, a unique

equilibrium exists which is the “Partially Mixed” equilibrium which is drawn in the same

panel. As we keep decreasing B, we move along the two curves of the “Partially Mixed”

equilibrium until we reach B′′ = 30/49, where the “Totally Mixed 2” equilibrium (second

panel) and the Partially Mixed equilibrium in which the rich are voting with certainty

(third panel) start being defined; however moving to any of these equilibria would involve

an upwards jump in both probabilities of voting. However, exactly where the “Partially

Mixed” equilibrium of the fourth panel stops being defined, is where the “Totally Mixed

1” equilibrium starts being defined, and on top of that the probabilities change contin-

uously from one equilibrium to the other with a value of 0.5 We would expect a small

decrease in costs or benefits to incur a reasonably small effect on the probabilities of

voting. For this reason, we consider the smooth transition of the unique cost-continuous

equilibrium more plausible than the discontinuous behavior of the other two equilibria,

and thus our cost-continuity refinement selects the “Totally Mixed 1” together with the

equilibria in the fourth panel.

We can use a voting station analogy to explain the reasoning of the above. If the voting

13The probability of being pivotal is at most 1, and thus the voting condition (4) is never satisfied.

13



station is in another continent the unique equilibrium is that no citizen finds it worthy to

vote. As the voting center is moved closer to the citizens, the cost of voting decreases. At

some point the voting center will be close enough that the unique equilibrium is that the

rich find it reasonable to vote with positive probability. The point of the cost-continuity

refinement is that if the voting center station moves slightly closer to a citizen, we should

expect her equilibrium probability of voting to also increase slightly. While the poor may

still find it too expensive to vote, the equilibrium voting probability of the rich continues

to increase as the voting station comes closer. At some point, when the voting center is

close enough and given the rich probability of voting, the poor voters find it profitable to

vote as well. As the voting center comes even closer, both the rich and poor equilibrium

probabilities of voting change continuously.

Formally, we use a standard definition of continuity for all c > 0, or B > 0 (see for

example page 943 of Mas-Colell et al. 1995). This definition means that, for all i, j ∈

{m,n}, i 6= j, there is a single continuous selection of the equilibrium correspondences pi

mapping (Bi, Bj) to equilibrium probabilities of voting.

Numerical simulations in Section 4.3, building on the analytical results of sections 4.1-

4.3, will show that the uniqueness of a cost-continuous equilibrium is a property holding,

not only for (m,n) = (3, 2), but for general (m,n). We will focus on the unique cost-

continuous equilibrium and run comparative statics to shed light on the redistribution

trade-off spelled out in the Introduction and on how it depends on the number of poor

and rich players in the economy. We will also provide the intuition for our results, and

derive a group-size threshold describing when full redistribution has or does not have a

chance of winning the election.

4 General (m,n)

The probability of being pivotal is crucial for the voting/abstention choice in (4). While

we discussed it in the previous section for the special case of (m,n) = (3, 2), it is useful to
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Figure 2: Unique continuous equilibrium for m = 3 and n = 2.

provide the expression for a general pair (m,n). The following table shows the calculations

that a single poor player must make when she knows that she faces m − 1 poor players

and n rich with (m̄, n̄) signifying how many of the rest actually vote in each instance.

Poor player: pivotal if voting? (m̄, n̄) Probability ∆πi

Yes (n, n) (m−1)!
n!(m−1−n)!p

n
m(1− pm)m−n−1pnn

n
n+m

Yes (n− 1, n) (m−1)!
(n−1)!(m−n)!p

n−1
m (1− pm)m−npnn

n
n+m

Yes (n− 1, n− 1) (m−1)!
(n−1)!(m−n)!np

n−1
m (1− pm)m−npn−1

n (1− pn) n
n+m

Yes (n− 2, n− 1) (m−1)!
(n−2)!(m−n+1)!np

n−2
m (1− pm)m−n+1pn−1

n (1− pn) n
n+m

...
...

...
...

Yes (0, 1) n(1− pm)m−1pn(1− pn)n−1 n
n+m

Yes (0, 0) (1− pm)m−1(1− pn)n n
n+m

No All other cases 0

For economy of space we have omitted the cases that the poor player is not pivotal.

The resulting expression for the pivotal probability is as follows:

Ai =
n∑
s=0

(
i− 1

s

)(
j

s

)
psi (1− pi)i−s−1psj(1− pj)j−s (9)

+
n−1∑
s=0

(
i− 1

s

)(
j

s+ 1

)
psi (1− pi)i−s−1ps+1

j (1− pj)j−s−1

for i, j ∈ {m,n}, i 6= j.
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With the general expression for Ai in our hands, we can analyse the QSNE of the

general voting game, given the relative costs of voting Bi and Bj, and classify them

according to their type: “Pure”, “Partially Mixed” or “Totally Mixed”. As we will see,

the first two types (i.e., equilibria in which some players play pure strategies) can be fully

characterized, as we do in Subsections 4.1 and 4.2, while the last type of equilibria will

be tackled in Subsection 4.3.

4.1 “Pure” equilibria and “Partially Mixed” equilibria with ab-

stention

If Ai < Bi, player i’s dominant strategy is to abstain. On the other hand if Ai > Bi

player i’s dominant strategy is to vote. When Ai = Bi player i is indifferent between

voting and abstaining; therefore this is a necessary condition for player i to employ a

mixed strategy. From this condition we see that Bi can be interpreted as the minimum

Ai for player i to be willing to vote. Clearly if Bi > 1, player i abstains.

Proposition 1. If Bi ≥ 1 then p∗i (Bi) = 0.

Proof. Trivial generalization of Proposition 1 in Mavridis and Serena (2018).

The previous proposition shows that if relative costs of voting Bi are high enough

for players of both groups, the only equilibrium that exists is the “Pure” one in which

nobody votes.

Obviously, the situation described in Proposition 1 is not very interesting. Therefore,

next we allow one of the two relative costs of voting to be low enough such that players

from one of the two groups might consider voting; in other words, Bi ≥ 1 only for players

i. Then Proposition 2 yields a simple and unique characterization of j’s equilibrium

strategy:
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Proposition 2. For Bi ≥ 1 and Bj ∈ (0, 1) the unique QSNE is that p∗i (Bi) = 0 and

p∗j(Bj) = 1−B
1

j−1

j , for all i, j ∈ {m,n}, i 6= j.14

Proof. By Proposition 1, p∗i = 0. Suppose p∗j = 0. Then any single j player would have

an incentive to deviate and vote for sure in order to single-handedly decide the election

in favor of the j-group. Thus pj = 0 is not an equilibrium. On the other hand, suppose

p∗j = 1. This means that j group wins for sure with a margin of j votes. Then any single

j-player would have an incentive not to pay the cost without affecting the outcome. Thus

pj = 1 is not an equilibrium. Therefore p∗j ∈ (0, 1). Plugging p∗i = 0 in Aj (see Equation 9)

we have Aj = (1− pj)j−1, and since (4) must hold with equality for players j to mix, we

have:

(1− pj)j−1 = Bj

or equivalently:

pj = 1−B
1

j−1

j .

Note that this proposition is not paralleled by any result in Mavridis and Serena

(2018), which assume that Bi = Bj.

The two previous propositions examine cases in which players from at least one group

find it too costly to vote, no matter what players from the other group do. These cases

gave rise to two types of equilibria; a “Pure” equilibrium in which everybody’s strictly

dominant strategy is not to vote (Proposition 1), and a “Partially Mixed” equilibrium in

which players from one group have a strictly dominant strategy not to vote and players

from the other group play a mixed strategy (Proposition 2).

Comparative Statics. For x ∈ (0, 1) the expression 1−x
1

j−1 is strictly decreasing in

x. Therefore p∗j(Bj) = 1−B
1

j−1

j is strictly decreasing in cj and strictly increasing in ∆πj.

Higher individual cost-payoff ratio results in j-players voting with lower probability. 15

14As a reminder, in the beginning of this section we have assumed m > n > 1. It is easy to see that
for j = 1 the unique equilibrium is: p∗i = 0 and p∗j = 1. We write p∗i rather than p∗i (Bi) in all proofs, for
brevity.
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In the remainder of this subsection we examine what happens when players from

neither group have a strictly dominant strategy to abstain, ie. what happens when

Bm < 1 and Bn < 1. Under these conditions players of both groups may vote with positive

probability. This causes strategic interactions that may generate multiple equilibria.

It is easy to see that when Bm < 1 and Bn < 1 no “Pure” equilibria exist.

Proposition 3. For Bi < 1 and Bj < 1, no “Pure” QSNE exist, for all i, j ∈ {m,n}

and i 6= j.

Proof. Trivial generalization of Proposition 2 in Mavridis and Serena (2018).

After proving that for Bm < 1 and Bn < 1 no “Pure” equilibria exist, the next

proposition establishes that for Bm < 1 and Bn < 1 a “Partially Mixed” equilibrium does

exist.

Proposition 4. For Bi < 1 and Bj < 1, there exists a “Partially Mixed” QSNE with

p∗i (Bi) = 0 and p∗j(Bj) = 1 − B
1

j−1

j , for all i, j ∈ {m,n} and i 6= j if and only if

Bi ≥ Bi ≡ jBj − (j − 1)B
j

j−1

j .

Proof. An equilibrium where p∗i = 0 implies: Aj = (1−pj)j−1 and Ai = (1−pj)j+jpj(1−

pj)
j−1. The former means that a player j is pivotal only if none of her groupmates vote

(her vote breaks the tie in which nobody votes). The latter means that a player i is

pivotal if none of j players vote or if only one of them votes. In order for the i-players to

not want to vote we must have:

Ai ≤ Bi,

or equivalently

(1− pj)j + jpj(1− pj)j−1 ≤ Bi,

and similarly, for the j-group player to play a mixed strategy we must have:

(1− pj)j−1 = Bj, (10)

15See also Kalandrakis (2007) who focusing on monotone equilibria, finds a similar comparative statics.
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dividing the two conditions and rearranging we get:

1− pj + jpj ≤
Bi

Bj

(j − 1)pj ≤
Bi

Bj

− 1 (11)

Isolate pj in (10) and plug it in (11) to get

(j − 1)

(
1−B

1
j−1

j

)
≤ Bi

Bj

− 1 (12)

Or equivalently,

−B
j

j−1

j ≤ Bi − jBj

j − 1
(13)

Bi ≥ jBj − (j − 1)B
j

j−1

j ≡ Bi

Bi is an increasing bijection from [0, 1] to [0, 1], such that if Bj = 0, Bi = 0, and if

Bj = 1, Bi = 1.

Note that the equilibria pinned down by Proposition 2 and Proposition 4 are essen-

tially the same, the difference being that Proposition 2 provides the range of Bi’s for

which the equilibrium is unique, and Proposition 4 provides the range of Bi’s for which

that equilibrium continues to exist although not necessarily uniquely. This is an impor-

tant finding in terms of uniqueness of a cost-continuous equilibrium. In fact, first notice

that Proposition 4 gives us for every Bj ∈ (0, 1) the lowest Bi for existence of the “Par-

tially Mixed” equilibrium p∗i (Bi) = 0 and p∗j(Bj) = 1 − B
1

j−1

j . This satisfies the system

Ai ≤ Bi and Aj = Bj, which implies that the system Ai = Bi and Aj = Bj is also

satisfied (Ai’s are continuous in pi’s). Therefore, exactly at those values of (Bi, Bj) there

must be a “Totally Mixed” equilibrium. In our (Redistribution-Parametrized Example),
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as discussed in Section 3 we set Bn = B and Bm = m
n
B. Numerical simulations show

that that “Totally Mixed” equilibrium survives from that value of B all the way down to

0.

Proposition 4 is silent with respect to which of the two groups will be playing a mixed

strategy and which will not be voting. What it says is that if Bm < 1 and Bn < 1 it

can be either that the m players do not vote and the n players play a mixed strategy,

or that the n players do not vote and the m players play a mixed strategy. The next

proposition shows that for a given pair (Bi, Bj) these two “Partially Mixed” equilibria of

Proposition 4 cannot co-exist; in other words, for a given pair (Bi, Bj) we either have m

players not voting and n playing a mixed strategy or n players not voting and m playing

a mixed strategy (but not both).

Proposition 5. For Bi < 1 and Bj < 1, Bi ≥ Bi and Bj ≥ Bj are mutually exclusive,

for all i, j ∈ {m,n} and i 6= j.

Proof. Suppose not and consider the (Bi, Bj)−space. We first show that Bi > Bj, or

equivalently:

(j − 1)Bj > (j − 1)B
j

j−1

j

1 > B
1

j−1

j .

For the same reason we also have Bj > Bi. Then, Bi ≥ Bi and Bi > Bj imply Bi > Bj,

while Bj ≥ Bj and Bj > Bi imply Bj > Bi leading to a contradiction.

4.2 “Partially Mixed”equilibria with voting

We are left to analyze the “Partially Mixed” equilibria in which players of one group are

voting with certainty and the others are playing a mixed strategy. There cannot be an

equilibrium in which the majority group votes with certainty and the minority group plays

a mixed strategy (see Mavridis and Serena (2018) for a proof). Therefore the equilibria
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left to analyze are of the type p∗n = 1 and p∗m ∈ (0, 1). The next four propositions

will establish conditions for this type of equilibrium to exist, and Proposition 10 will

characterize the equilibria behavior.

Proposition 6. There exists a B̂ < 1 such that if Bm ≤ Bn ≤ B̂ holds there exists a

unique “Partially Mixed” equilibrium of the form p∗n(Bn) = 1 and p∗m(Bm) ∈ (0, 1).

Proof. It follows from Proposition 3 in Mavridis and Serena (2018). However we repeat

some key steps of their proof that will help the proofs of the following propositions.

When p∗n = 1 we have:

Am =

(
m− 1

n

)
pnm(1− pm)m−n−1 +

(
m− 1

n− 1

)
pn−1
m (1− pm)m−n

and

An =

(
m

n− 1

)
pn−1
m (1− pm)m−n+1 +

(
m

n

)
pnm(1− pm)m−n.

Am is strictly increasing in pm in (0, p̂m) and strictly decreasing otherwise, with

p̂m =
n(n− 1)

n(n− 1) +
√
n(n− 1)(m− n)(m− n− 1)

.

We furthermore know that Am ≥ An if and only if pm ≤ p∗∗m , with

p∗∗m =
n(n− 1)

n(n− 1) +
√
n(n− 1)(m− n)(m− n+ 1)

.

The cut-off for costs is therefore B̂ = Am|pm=p∗∗m .

The following proposition shows that an equilibrium may not exist if either cost is

too high.

Proposition 7. If Bn > B̂ or if Bm > Bmax, Bmax = Am|pm=p̂m, no “Partially Mixed”

equilibrium of the form p∗n(Bn) = 1 and p∗m(Bm) ∈ (0, 1) exists.
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Proof. We will prove that An is strictly increasing in pm for pm < p∗∗m and strictly de-

creasing for pm > p∗∗m . Take the derivative of An with respect to pm. This derivative is

greater than zero when:

(
m

n− 1

)
((n− 1)pn−2

m (1− pm)m−n+1 − (m− n+ 1)pn−1
m (1− pm)m−n)

+

(
m

n

)
(npn−1

m (1− pm)m−n − (m− n)pnm(1− pm)m−n−1) ≥ 0

Simplifying this expression we get:

m(m− 2n+ 1)p2
m + 2pn(n− 1)− n(n− 1) ≤ 0,

which is precisely Inequality (5) of Mavridis and Serena (2018). Using a similar

analysis as in that paper we see that for pm < p∗∗m An is strictly increasing and for pm > p∗∗m

it is strictly decreasing. This implies that An is strictly increasing when An > Am and

strictly decreasing when An < Am, which further implies that the point of intersection

between Am and An is the maximum of An. Therefore, B̂ = Am|pm=p∗∗m , and if Bn > B̂

this would necessarily imply An < Bn. A similar argument follows for Bm > Bmax,

Bmax = Am|pm=p̂m .

Naturally if the cost of voting is too high for any group then nobody from that group

will vote, and no “Partially Mixed” equilibrium of the form p∗i = 1 and p∗j ∈ (0, 1) exists.

The ranking between Bn and Bm on its own does not affect the existence of this type

of equilibrium, but may affect its uniqueness. While Proposition 6 shows the existence

and uniqueness of an equilibrium when Bn ≥ Bm (provided of course that B̂ ≥ Bn), the

next two propositions show that if Bm ≥ Bn the equilibrium exists but may no longer be

unique; there might be two equilibria of this kind.

Proposition 8. Let m = n + 1 and Bmax > Bm > Bn with B̂ > Bn. Then there

exists a unique “Partially Mixed” equilibrium given by p∗n(Bn) = 1 and p∗m(Bm) ∈ (0, 1) if
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An|pm=p∗m(Bm) ≥ Bn. Let m = n+ 1 and Bm = Bmax, then there is no “Partially Mixed”

equilibrium.

Proof. The first part of the proof follows from Proposition 3 in Mavridis and Serena

(2018). Notice that if n = m − 1 then p̂m = 1 and in this case Am is strictly increasing

for pm ≤ 1. Because of this Am = Bm has a unique solution p∗m > p∗∗m . The equilibrium

exists as long as An|pm=p∗m ≥ Bn. For the second part notice that when Bm = Bmax then

necessarily p∗m = 1. But this means that An|pm=1 = 0, which means that nobody from

the minority group would vote.

The next proposition considers the m > n+ 1 case.

Proposition 9. Let m > n + 1 and Bmax > Bm > Bn with B̂ > Bn. There are two

equilibria p∗n(Bn) = 1 and p∗m1(Bm) ∈ (0, 1), and p∗n(Bn) = 1 and p∗m2(Bm) ∈ (0, 1) with

p∗m1(Bm) < p∗m2(Bm) if Bn < An|pm=p∗m2(Bm), one equilibrium p∗n(Bn) = 1 and p∗m1(Bm) ∈

(0, 1) if Bn ∈ [An|pm=p∗m1(Bm), An|pm=p∗m2(Bm)) and no equilibrium otherwise. Let m > n+1

and Bm = Bmax. Then there exists one equilibrium p∗n(Bn) = 1 and p∗m(Bm) ∈ (0, 1) if

Bn < An|pm=p∗m(Bm).

Proof. The first part of the proof follows from Proposition 3 in Mavridis and Serena

(2018). If m > n+ 1 then Am reaches a maximum at p̂m < 1 and at pm = 1 Am becomes

zero. Since B̂ = Am|pm=p∗∗m and p∗∗m < p̂m, Am = Bm has two roots, which we will call

p∗m1 and p∗m2 and without loss of generality we will assume that p∗m1 < p∗m2. It follows

from Proposition 3 in Mavridis and Serena (2018) that if Bn > An|pm=p∗m1
no equilibrium

exists. If Bn ∈ [An|pm=p∗m1
, An|pm=p∗m2

) then only the equilibrium p∗n = 1,p∗m1 ∈ (0, 1)

exists. Otherwise, if Bn < An|pm=p∗m2
, there are two equilibria p∗n = 1, p∗m1 ∈ (0, 1)

and p∗n = 1, p∗m2 ∈ (0, 1). For the second part notice that since Bm equals the unique

maximum of Am there is only one solution of Bmax = Am.

Comparative Statics. We provide comparative statics on p∗m of the “Partially

Mixed” equilibrium of the form p∗n = 1 and p∗m ∈ (0, 1).
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Proposition 10. In the intervals for which Am is increasing, p∗m is increasing in Bm

and decreasing otherwise. For Am ≤ (≥)An, p∗m is decreasing (increasing) in m. Finally

if m(m− 2n− 1)p2
m + 2n(n− 1)pm − n(n− 1) ≤ (≥)0 then p∗m is increasing (decreasing)

in n.

Proof. The first two statements follow from Proposition 3 in Mavridis and Serena (2018).

The only part that needs some further analysis is the last statement. Notice that this

quadratic inequality follows from Proposition 3 in Mavridis and Serena (2018) and that

the roots of the quadratic equation m(m− 2n− 1)p2
m + 2n(n− 1)pm − n(n− 1) = 0 are

given by:

p̃m =
n(n− 1)

n(n− 1)±
√
n(n− 1)(n(n− 1) +m(m− 2n− 1))

.

We discard the root with the negative sign in front of the square root because it

becomes negative if m− 2n− 1 > 0 and greater than one otherwise. Let m− 2n− 1 > 0.

If pm ≤ p̃m then m(m − 2n − 1)p2
m + 2n(n − 1)pm − n(n − 1) ≤ 0 holds and p∗m is

increasing in n. On the other hand if m − 2n − 1 < 0 the function f(pm) = m(m −

2n− 1)p2
m + 2n(n− 1)pm − n(n− 1) is strictly concave and has a unique maximum. At

the unique maximum the value of the function is: n(n − 1) + m(m − 2n − 1), which is

greater than zero as long as n(n − 1) ≥ m(2n + 1 − m). In this case if pm ≤ p̃m then

m(m−2n−1)p2
m+2n(n−1)pm−n(n−1) < 0 holds and p∗m is increasing in n. Otherwise

if n(n− 1) < m(2n+ 1−m) then m(m− 2n− 1)p2
m + 2n(n− 1)pm−n(n− 1) < 0 always

holds and p∗m is increasing in n.

In this section we derived the full characterization of the “Pure” and “Partially Mixed”

equilibria. Several differences emerge from the setting with symmetric benefits analyzed

in Mavridis and Serena (2018). While in the symmetric setting of Mavridis and Serena

(2018) the “Partially Mixed” is unique, in the present asymmetric setting there are two

“Partially Mixed” (as clear from the propositions of this section, and also already from

Figure 1). However, only one connects continuously with the unique “Pure”. Further-

more, the same “Partially Mixed” also connects continuously to one “Totally Mixed”, as
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we anticipated in Section 3 and we will further discuss in the next Section. Finally, while

Mavridis and Serena (2018) analysed the “Totally Mixed” only numerically, we derive an

analytical result in Proposition 11. The Proposition verifies Mavridis and Serena (2018)’s

conjectures, arising from their numerical results.

4.3 “Totally Mixed” equilibria and cost-continuity refinement

Analytical findings. Propositions 1 to 10 fully characterized the “Pure” and “Partially

Mixed” equilibria of the voting game. We are left to analyze the “Totally Mixed” equilib-

ria. As discussed earlier in the paper, the mixing conditions for the m players is defined

by:

Am = Bm (14)

and the mixing condition for the n players is defined by:

An = Bn (15)

Since we have imposed the condition that all players within a group employ the same

strategy, it suffices to focus on the mixing condition of an m player for every pn, and

that of an n player for every pm, and analyze the intersections between these two in the

(pm, pn)-space. These intersections are “Totally Mixed” equilibrium pairs (p∗m, p
∗
n), which

are what we are after in this Subsection.

In contrast with the “Pure” and “Partially Mixed” cases, it is challenging to derive

a general algebraic solution for equilibrium strategies of the “Totally Mixed” case, as

expressions (14) and (15) are a system of two polynomial equations of arbitrary power.

Instead, in order to analyze them we will use a number of indirect results about the

space these equilibria lie on. For this it is useful to distinguish among the three cases:

Bm = Bn, Bm > Bn, and Bm < Bn. Thus, by (14) and (15), these translate into

Am = An, Am > An, and Am < An. Analyzing Am = An will greatly help the analysis of
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the other two cases.

The set of points for which Am = An is depicted by the two black lines of Figure 3;

the increasing and the decreasing one. These two black lines divide the (pm, pn)-space in

four regions depending on the ranking of Am and An. Keep in mind that the two mixing

conditions are defined in the same space; dividing the space in these four regions will help

us analyze how the intersections of the two mixing conditions behave.16

Figure 3: Set of points in the (pm), pn)-space according to whether Am R An when m = 3
and n = 2.

In Appendix A we characterize the set Am = An, through a series of lemmas. First, we

find the four points where these two lines touch the edges of the (pm, pn)-space (Lemma

1). Second, we characterize the decreasing line connecting the top-left corner with the

bottom-right corner (Lemma 2). Finally we characterize the increasing line (Lemmas 3

16At this stage it is interesting to compare our analysis with the one of Palfrey and Rosenthal (1983). In
particular in Section 6 of Palfrey and Rosenthal (1983), they discuss “totally quasi-symmetric equilibria”,
which are what we call “Totally Mixed” equilibria. However they analyze two special cases, which in our
notation are: i) pm = pn and m = n and ii) pm + pn = 1. In terms of our Figure 3 it means that they
analyze equilibria that might arise along the two diagonals (in the case of the 45-degree line, they also
assume m = n).
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and 4).17 We summarize this series of lemmas in Proposition 11.

Proposition 11. The only points (pm, pn) ∈ (0, 1)2 satisfying condition

Am = An (16)

are the points along the line pm + pn = 1 and along a continuous line that goes from

(0, 0) to (p∗∗∗m , 1) where p∗∗∗m = n(n−1)

n(n−1)+
√
n(n−1)(m−n)(m−n+1)

.

Proof. See Appendix A.

This result characterizes analytically what Mavridis and Serena (2018) found numer-

ically, and described in their Figure 2. Furthermore, notice that in their Figure 2, the

mixing conditions always cross in the set Am = An, because they are interested only in

the symmetric case of Bm = Bn. On the contrary, we are interested in the more general

case where Bm R Bn. For what concerns our (Redistribution-Parametrized Example), as

can be seen in (5) and (6), we have Bm > Bn, and thus all equilibria lie in one of the two

regions where Am > An of Figure 3.

Numerical findings. Our numerical exercise build on the analytical results of sec-

tions 4.1-4.3. In fact, propositions 1-11 are necessary to look, when running numerical

simulations, for “Totally Mixed” equilibria only, which satisfy the cost-continuity refine-

ment, as our analytical results give us a full understanding of the behaviour of “Pure”

and “Partially Mixed” equilibria. Our numerical exercise shows that the two mixing con-

ditions (14) and (15) cross at most once in each of the four regions delimited by the set

of points such that Am = An (see Figure 3). This implies that for every pair (Bm, Bn),

we always have at most two “Totally Mixed” equilibria, one where p∗m + p∗n < 1 which

we name “Totally Mixed 1”, and one where p∗m + p∗n > 1 which we name “Totally Mixed

17Note that, as it will be explained in more detail later, the fact that the increasing line is in fact
increasing is not needed. What is only needed is that it crosses the decreasing line once.
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2”.18 Including the “Partially Mixed” equilibrium previously characterized, this shows

that, all in all, we have at most three equilibria.

The crucial feature that emerges from our numerical exercise is that exactly one

“Totally Mixed” equilibrium satisfies the cost-continuity refinement mentioned in Section

3. We now deliver the graphical intuition about uniqueness and cost-continuity.

In Figure 4 we depict in the (pm, pn)-space the conditions (14) and (15), where the

red (blue) lines represent the mixing condition correspondence An = Bn (Am = Bm)

for a n− (m−) player for four values of B, {0.166, 0.333, 0.5, 0.61}.19 In particular, we

choose the third value to be the minimum B such that the “Totally Mixed 1” equilibrium

disappears (bottom-left panel), and the fourth value to be the minimum B such that

even the ”Totally Mixed 2” equilibrium disappears. The black lines in Figure 4 are the

set of (pm, pn) satisfying Am = An, as in Figure 3.

The equilibrium on the right side of the panel is the “Totally Mixed 2” equilibrium,

which exists as long as B ≤ 0.61. This equilibrium cannot clearly be continuously

connected to the “Partially Mixed” equilibrium, as we need p∗i to go to 0 and at the same

time p∗j to be interior.20 For this to happen we need that p∗m + p∗n < 1, which contradicts

“Totally Mixed 2”, which hence is ruled out by the cost-continuity refinement.

The equilibrium on the left side of the panel is the “Totally Mixed 1” equilibrium,

which exists as long as B ≤ 0.5. In particular, it converges to the “Partially Mixed”

equilibrium (p∗m, p
∗
n) = (0, 0.5) as B → 0.5. Our numerical exercise shows that this

continuous connection between the “Partially Mixed” and the “Totally Mixed 1” is a

general property. We exploit the uniqueness of equilibrium under the cost-continuity

refinement that we derive in our numerical exercise in order to discuss comparative statics

and characterization of the (Redistribution-Parametrized Example), to which we dedicate

18These definitions of “Totally Mixed 1” and “Totally Mixed 2” are in line with those of Section 3.
19Notice that Figure 4 is reminiscent to Figure 2 in Mavridis and Serena (2018). However their setting

with symmetric payoffs yielded equilibria always lying along the increasing or decreasing line. In our
setting with asymmetric payoffs the equilibria do not lie on these two lines.

20In terms of Figure 3 and Figure 4, as the value of B changes, the equilibria move inside the unitary
box. One can see from the third panel of Figure 4 that for B = 0.5 the equilibria reach the edges of the
box; namely, (pm, pn) = (0, 0.5), and (pm, pn) = (0.5, 1).
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Figure 4: Mixing conditions correspondences in the (pm, pn)-space respectively for B =
{0.166, 0.333, 0.5, 0.61}.

the next Section, so as to shed light on the redistribution trade-off spelled out in the

Introduction.

5 Application - voting over redistribution of resources

From Proposition 4 we know that the “Partially Mixed” p∗m(Bm) = 0 and p∗n(Bn) =

1 − B
1

n−1
n exist if and only if Bm > nBn − (n − 1)B

n
n−1
n . Recall from (5) and (6) that

Bm = 2c(n + m)/n and Bn = 2c(n + m)/m. Finally, recall that the notation for our

(Redistribution-Parametrized Example) is Bn = B and Bm = m
n
B. Plugging these ex-

pressions into

Bm ≥ nBn − (n− 1)B
n

n−1
n , (17)
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we obtain

(
m− n2

)
B + n(n− 1)B

n
n−1 > 0

B >

(
n2 −m
n2 − n

)n−1

.

And in fact, the lowest value of B for which the “Partially Mixed” exists is 0 when

n2 ≤ m, while when n2 > m it is
(
n2−m
n2−n

)n−1

, which decreases in m. In fact, as we

increase m, we see that such threshold moves to the left in the graph.

Notice that the “Partially Mixed” p∗m(Bm) = 0 and p∗n(Bn) = 1 − B
1

n−1
n exists until

p∗n ↘ 0, which implies 1 − B
1

n−1
n = 0 ⇐⇒ Bn = B = 1. Hence, the highest B where

the “Partially Mixed” exists is always equal to B = 1. Moreover, the mixing equilibrium

probability p∗n(Bn) = 1− B
1

n−1 in the “Partially Mixed” has the same graph in the four

plots, as the functional form is the same and n does not change. Only its existence region

becomes bigger as m increases.

Therefore, if the “Partially Mixed” still exists as B goes to 0 (equivalently, c goes to

0), then the “Partially Mixed” and “Pure” together form the unique equilibrium without

any need for cost-continuity, and the poor players will never vote for any c > 0. Notice

that the second term of the right-hand side of (17) goes to 0 faster than the other terms

in the inequality as B’s go to zero, and thus in the limit it is negligible. Then, sufficiently

close to 0, we are left with only Bm > nBn. By plugging the expressions for Bm and Bn

we get:

m ≥ n2. (18)

This is a necessary and sufficient condition for p∗m = 0 to hold in the unique equilibrium

for any c > 0. If the number of poor voters is sufficiently low (m < n2), the poor might

vote and redistribution has a chance of winning. However, if their number is sufficiently

large (m ≥ n2), the poor are doomed to lose the election.
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Comparative Statics. How does a change of m affect (p∗m, p
∗
n)? We answer with

the support of Figure 5. We fix n = 3, and set m so as to initially have an economy

with similar group size (m = 4, top-left), and gradually increase the group size of m

(m = 5, top-right, and m = 6, bottom-left), until we hit threshold m = n2 (m = 9,

bottom-right). When we hit this threshold condition (18) is satisfied and the “Totally

Mixed 1” equilibrium (which survives cost-continuity) disappears, and we are left with

the “Partially Mixed” and “Pure” only.21

Consider n = 3 and m = 4. Since the economy has (slightly) more poor than rich

players, the average resource level is closer to the resources of a poor player than to

the resources of a rich player, thus if full redistribution wins, the individual loss of a

single rich player is greater than the individual gain of a single poor player. For this

reason, an n rich player is willing to vote for greater B’s than an m poor player. In other

words, a rich has more at stake than a poor, and thus is willing to face a greater cost of

voting. Therefore, p∗n turns positive for greater values of B than p∗m does, as we can see

in Figure 5.

Consider an increase of m (n = 3 and m = 5, or 6). This has the effect of sharpening

the asymmetry in willingness to face the cost of voting between rich and poor: in fact,

now, p∗n turns positive for even greater B’s (the rich has even more at stake to lose in case

of full redistribution), while p∗m turns positive for even lower B’s (the poor has even less

at stake to win in case of full redistribution). This widens the “Partially Mixed” region

(see Figure 5).

If the increase in m reaches the threshold when m = n2 (n = 3 and m = 9), the

poor has so little at stake that she is nowhere willing to face the cost of voting with

positive probability in equilibrium.22 A further increase in m would still imply p∗m = 0

everywhere, and further increases the willingness to vote of the rich (i.e., p∗n increases for

any given B, and p∗n turns positive for greater B’s).

21This possibility that members of the majority never vote in the unique continuous equilibrium did
not emerge from the discussion of the special case of m = 3 and n = 2 in Figure 1. In fact, when m = 3
and n = 2, m < n2.

22Remember that if m ≥ n2 the equilibrium is unique without the need for continuity selection.
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The direct interpretation of this result is that the greater is the share of poor in an

economy, the less likely is redistribution of resources to be the outcome of a democratic

process (and if m ≥ n2 this probability is zero).

Figure 5: Effects of increasing m, keeping n = 3, on voting probabilities in the unique
continuous equilibrium. First row left panel m = 4, right panel m = 5. Second row, left
panel m = 6 right panel m = 9.

Asymmetric costs and different benefits. The key parametrization of the redis-

tribution example we kept throughout the paper is Bm/Bn = m/n. First, the key contri-

bution of the present paper as opposed to the existing literature (i.e., Nöldeke and Pena,

2016; Mavridis and Serena, 2018) is that we allow Bm/Bn 6= 1. The choice of keeping

as a redistribution-parametrized running example the parametrization Bm/Bn = m/n

is for illustration purposes; the redistribution example, implying the simple relation

Bm/Bn = m/n, allows to draw tight conclusions of Section 5.
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Second, the parametrization Bm/Bn = m/n could be achieved not only assuming

cm = cn = c and the Bm and Bn specified in (5) and (6), as we did, but also al-

lowing for asymmetry in the costs cm = k1 × cn and rescaling the benefits such that

Bm/Bn = k1 × (m/n). Hence, our results under the parametrization of Section 5 hold

also for this case of asymmetric costs. In such case, the results of Section 5 carry over to

asymmetric costs if the two policies over which players are called to vote are two levels

of redistribution resulting in a ratio of benefits Bm/Bn = k1 × (m/n), rather than full-

and no-redistribution.

Third, and most importantly, one may want to model redistribution options and

asymmetries of costs such that the ratio Bm/Bn takes a different value than m/n; say

Bm/Bn = k2. Our results (i.e., propositions 1-11) are general and encompass any such

k2, and not only k2 = m/n as analyzed in Section 5. Fixing Bn = B again for visual

purposes such that Bm = k2×B (where k2 no longer takes value m/n), a k2 smaller than

m/n but still greater than 1 would produce the same qualitative effects of a change in m

depicted in Figure 5. If k2 takes value smaller than 1, the results are “as if” we swap the

identity of type m and type n. Think of k2 = n/m. Then Figure 5 would hold the way

it is just swapping identities.

6 Conclusions

We study a standard pivotal-voter model under majority rule, with two rival groups of

players, each preferring one of two public policies and simultaneously deciding whether to

cast a costly vote. We further the existing literature, in particular Palfrey and Rosenthal

(1983), Nöldeke and Peña (2016) and Mavridis and Serena (2018), by allowing the benefit

of the favorite public policy to differ across groups. We impose an intuitive refinement,

namely that voting probabilities are continuous in the cost of voting to pin down a

unique equilibrium. The unique cost-continuous equilibrium depends on a key threshold

that compares the sizes of the two groups.
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Besides cost-continuity, it would be interesting to study alternative refinements, such

as refinements based on the payoffs and preferences of players.23 Note, however, that the

exercise of checking whether an equilibrium which is the best for members of both groups

exists and finding it, is not a tractable one as a general closed-form solution is lacking

for equilibrium probabilities of voting. Simplifying the setup might yield the desired

tractability that allows a thorough analysis of individuals’ payoffs. For instance, the

setup of Nöldeke and Peña (2016), which assume that both the number of members and

the benefit from the favored alternative winning the election is identical across groups,

allows for an elegant characterization of a number of analytical properties of individual’s

probability of being pivotal. However, here, we focused on the case where both number

of members and benefits could vary across groups.

23We thanks an anonymous referee for pointing this out.

34



Appendix

We prove Proposition 11 by way of the following lemmata. See Figure 3.

Lemma 1. The only points satisfying (16) and (pm, pn) ∈ {0, 1}2 are: (0, 0), (0, 1), (1, 0),

and (p∗∗∗m , 1), with p∗∗∗m = n(n−1)

n(n−1)+
√
n(n−1)(m−n)(m−n+1)

. Also, p∗∗∗m = 1 iff m = n .

Proof. By continuity of Am and An in pm and pn, in order to analyze the behavior of Am

and An in (pm, pn) ∈ {0, 1}2 we can compute the following limits for Am

lim
pm→0

Am = npn(1− pn)n−1 + (1− pn)n

lim
pm→1

Am =


pnn + npn−1

n (1− pn)(
m−1
n

)
pnn

0

if m = n

if m = n+ 1

if m > n+ 1

lim
pn→0

Am = (1− pm)m−1

lim
pn→1

Am =

(
m− 1

n− 1

)
pn−1
m (1− pm)m−n +

(
m− 1

n

)
pnm(1− pm)m−n−1

and for An

lim
pm→0

An = (1− pn)n−1

lim
pm→1

An =

 pn−1
n

0

if m = n

if m > n

lim
pn→0

An = m(1− pm)m−1 + (1− pm)m

lim
pn→1

An =

(
m

n

)
pnm(1− pm)m−n +

(
m

n− 1

)
pn−1
m (1− pm)m−n+1

From the above,

- if pm = 0, (16) holds iff pn = 0 or pn = 1

- if pm = 1, (16) holds iff pn = 0 or pn = 1 and m = n

- if pn = 0, (16) holds iff pm = 0 or pm = 1
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- if pn = 1, (16) is equivalent to

(
m− 1

n− 1

)
pn−1
m (1− pm)m−n +

(
m− 1

n

)
pnm(1− pm)m−n−1

=

(
m

n

)
pnm(1− pm)m−n +

(
m

n− 1

)
pn−1
m (1− pm)m−n+1

(
m− 1

n− 1

)
(1− pm) +

(
m− 1

n

)
pm =

(
m

n

)
pm(1− pm) +

(
m

n− 1

)
(1− pm)2 (19)

If m = n, (19) boils down to

1− pm = pm(1− pm) +m (1− pm)2

whose unique solution is pm = 1.

If m > n, (19) boils down to

(1− pm)

m− n
+
pm
n

=
mpm(1− pm)

n(m− n)
+

m(1− pm)2

(m− n)(m− n+ 1)

Solving the simple polynomial in the last expression we see that p∗∗∗m is indeed one of

its two roots (the second root has to be discarded since it is greater than 1).

Lemma 2. Equation pm + pn = 1 solves Am = An ∀(pm, pn) ∈ [0, 1]2.

Proof. From (9) plug Am and An into (16), simplify for (1 − pm)m(1 − pn)n, and use

pn = 1− pm to obtain

n∑
s=0

(
m− 1

s

)(
n

s

)
ps−sm (1− pm)−s−1+s +

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
ps−s−1
m (1− pm)−s−1+s+1

=
n−1∑
s=0

(
m

s

)(
n− 1

s

)
ps−s−1
m (1− pm)−s+s +

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
ps+1−s−1
m (1− pm)−s−1+s
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pm

n∑
s=0

(
m− 1

s

)(
n

s

)
+ (1− pm)

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)

= (1− pm)
n−1∑
s=0

(
m

s

)(
n− 1

s

)
+ pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)

pm

n∑
s=0

(
m− 1

s

)(
n

n− s

)
+ (1− pm)

n−1∑
s=0

(
m− 1

s

)(
n

n− s− 1

)

= (1− pm)
n−1∑
s=0

(
m

s

)(
n− 1

n− s− 1

)
+ pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

n− s− 1

)

pm

(
m+ n− 1

n

)
+ (1− pm)

(
m+ n− 1

n− 1

)
= (1− pm)

(
m+ n− 1

n− 1

)
+ pm

(
m+ n− 1

n

)
0 = 0

where in the second-to-last step we used the symmetry rule for binomial coefficients,

and in the last step we used Vandermonde’s identity.24

Next we characterize the set of points Am = An that are depicted by an increasing

line in the (pm, pn)-space by means of two lemmas. In Lemma 3 we show that there

exists a point (p∗∗m , p
∗∗
n ) along the decreasing line which divides the neighborhoods of the

decreasing line into two parts:

1. The first part is the one connecting (p∗∗m , p
∗∗
n ) and (1, 0), where we prove that in-

creasing pm (i.e., moving to the right of the line), increases Am more than An. Since

exactly along the line Am = An, this result implies that to the right of the segment

connecting (p∗∗m , p
∗∗
n ) and (1, 0) we have Am > An and to its left we have Am < An.

2. The second part is the one connecting (0, 1) and (p∗∗m , p
∗∗
n ), where we prove that

increasing pm (i.e., moving to the right of the line), increases Am less than An.

Since exactly along the line, Am = An, this result implies that to the right of

24Vandermonde’s identity states that
(
m+n

r

)
=
∑r

k=0

(
m
k

)(
n

r−k
)

for m,n, r ∈ N0.
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the segment connecting (0, 1) and (p∗∗m , p
∗∗
n ) we have that Am < An and to its left

Am > An.

Lemma 3. There exists a unique pair (p∗∗m , p
∗∗
n ) ∈ (0, 1)2 with p∗∗m + p∗∗n = 1 such that

∂Am
∂pm

∣∣∣∣
pm+pn=1

>
∂An
∂pm

∣∣∣∣
pm+pn=1

iff pm > p∗∗m (or equivalently pn < p∗∗n )

Also, if m = n, then p∗∗m = p∗∗n = 1
2
, and if m > n, then p∗∗m ∈ (0, 1

2
) and p∗∗n ∈ (1

2
, 1).

In particular,

p∗∗m =
n(n− 1)

n(n− 1) +
√
m(m− 1)n(n− 1)

and p∗∗n = 1− p∗∗m

Proof. For notation simplicity and for the sake of space we define the following

p̃s,m =

(
pm

1− pm

)s
p̃s,n =

(
pn

1− pn

)s

Then,

∂Am
∂pm

∣∣∣∣
pm+pn=1

>
∂An
∂pm

∣∣∣∣
pm+pn=1

n∑
s=0

(
m− 1

s

)(
n

s

)
p̃s,mp̃s,n

s+ pm
pm(1− pm)2

+
n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
p̃s,mp̃s,n

s+ pm
pm(1− pm)2

pn
1− pn

∣∣∣∣∣
pm+pn=1

>

n−1∑
s=0

(
m

s

)(
n− 1

s

)
p̃s,mp̃s,n

s

pm(1− pm)(1− pn)

+
n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
p̃s,mp̃s,n

s+ 1

(1− pm)2(1− pn)

∣∣∣∣∣
pm+pn=1
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by noticing that pm + pn = 1 implies p̃s,mp̃s,n = 1 the above inequality simplifies to

n∑
s=0

(
m− 1

s

)(
n

s

)
s+ pm

pm(1− pm)2
+

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
s+ pm

p2
m(1− pm)

>

n−1∑
s=0

(
m

s

)(
n− 1

s

)
s

p2
m(1− pm)

+
n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
s+ 1

pm(1− pm)2

n∑
s=0

(
m− 1

s

)(
n

s

)
pm(s+ pm) +

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
(1− pm)(s+ pm) >

n−1∑
s=0

(
m

s

)(
n− 1

s

)
(1− pm)s+

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
pm(s+ 1)

Note that some summands in the above inequality contain s only in the binomial

coefficients. By applying to these terms the same procedure at the end of Lemma 2 (i.e.

symmetry rule for binomial coefficients and Vandermonde’s identity), we get

pm

n∑
s=0

(
m− 1

s

)(
n

s

)
s+ p2

m

(
m+ n− 1

n

)

+ (1− pm)
n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
s+ pm(1− pm)

(
m+ n− 1

n− 1

)
>

(1− pm)
n−1∑
s=0

(
m

s

)(
n− 1

s

)
s+ pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
s+ pm

(
m+ n− 1

n

)

pm

n∑
s=0

(
m− 1

s

)(
n

s

)
s+ (1− pm)

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
s >

(1−pm)
n−1∑
s=0

(
m

s

)(
n− 1

s

)
s+pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
s+pm(1−pm)

[(
m+ n− 1

n

)
−
(
m+ n− 1

n− 1

)]

we now analyze the summations left (containing s not only in the binomial coefficient),

39



and use the fact that
∑n

s=0

(
m
s

)(
n
s

)
s = n

(
m+n−1

n

)
and that

∑n
s=0

(
m
s

)(
n
s+1

)
s = m

(
m+n−1
n−2

)
,25

and get

npm

(
m+ n− 2

n

)
+ (m− 1)(1− pm)

(
m+ n− 2

n− 2

)
>

(n−1)(1−pm)

(
m+ n− 2

n− 1

)
+(n−1)pm

(
m+ n− 2

n

)
+pm(1−pm)

[(
m− n− 1

n

)
−
(
m− n− 1

n− 1

)]

(m− 1)(1− pm)

(
m+ n− 2

n− 2

)
>

(n−1)(1−pm)

(
m+ n− 2

n− 1

)
−pm

(
m+ n− 2

n

)
+pm(1−pm)

[(
m− n− 1

n

)
−
(
m− n− 1

n− 1

)]

and simplifying by (m+n−2)!
(m−2)!(n−2)!

we get

1− pm
m

>
1− pm
m− 1

− pm
n(n− 1)

+ pm(1− pm)
(m− n)(m+ n− 1)

m(m− 1)n(n− 1)

−n(n− 1)(1− pm) > −m(m− 1)pm + pm(1− pm)(m− n)(m+ n− 1)

(m− n)(m+ n− 1)p2
m + 2n(n− 1)pm − n(n− 1) > 0

pm >
n(n− 1)

n(n− 1) +
√
m(m− 1)n(n− 1)

= p∗∗m

If m = n it is trivial to see that p∗∗m = 1
2
. But notice also that p∗∗m decreases in m, and

hence by m > n, p∗∗m ∈ (0, 1
2
) and p∗∗n ∈ (1

2
, 1).

25

n∑
s=0

(
m

s

)(
n

s

)
s =

n∑
s=0

(
m

s

)
n!

s!(n− s)!
s

=

n∑
s=1

(
m

s

)
n!

(s− 1)!(n− s)!
=

n∑
s=1

(
m

s

)
n!

(s− 1)!(n− 1− s+ 1)!

=

n∑
s=1

(
m

s

)
(n− 1)!

(s− 1)!((n− 1)− (s− 1))!
n =

n∑
s=0

(
m

s

)(
n− 1

s− 1

)
n

=

n∑
s=0

(
m

s

)(
n− 1

n− s

)
n = n

(
m+ n− 1

n

)
Where the last equality follows from Vandermonde’s identity. The calculations for the other summation

are similar.
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Lemma 4 concludes the characterization of the increasing line.

Lemma 4. There exists a unique and continuous line in the (pm, pn)-space which satisfies

Am = An and connects (0, 0) and (p∗∗∗m , 1) Furthermore, this line crosses the pm + pn = 1

line once at (p∗∗m , p
∗∗
n ).

Proof. Lemma 2 establishes that the decreasing line connects two out of the four points

satisfying Am = An along the edges. The line connecting the remaining two points is

continuous and by Lemma 3 crosses the decreasing line once, at (p∗∗m , p
∗∗
n ).
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