
INTERNATIONAL JOURNAL OF
GRID AND HIGH PERFORMANCE

COMPUTING

 R A

1 Peer-to-Peer Desktop Grids Based on an Adaptive Decentralized Scheduling

Mechanism
 H. Arafat Ali, Mansoura University, Egypt
 A.I. Saleh, Mansoura University, Egypt
 Amany M. Sarhan, Mansoura University, Egypt
 Abdulrahman. A. Azab, Mansoura University, Egypt

21 Single A estation Image for a Trusted and Scalable Grid
 Yuhui Deng, Jinan University, P.R. China
 Na Helian, University of Hertfordshire, UK

34 Balanced Job Scheduling Based on Ant Algorithm for Grid Network
 Nikolaos Preve, National Technical University of Athens, Greece

51 Modeling Scalable Grid Information Services with Colored Petri Nets
 Vijay Sahota, Middlesex University, UK
 Maozhen Li, Brunel University, UK
 Marios Hadjinicolaou, Brunel University, UK

69 Predictive File Replication on the Data Grids
 ChenHan Liao, Cranfield University, UK
 Na Helian, University of Hertfordshire, UK
 Sining Wu, Cranfield University, UK
 Mamunur M. Rashid, Cranfield University, UK

Table of Contents

January-March 2010, Vol. 2, No. 1

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 51

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Colored Petri Nets, Grid Computing, Information Services, P2P Modeling, P2P Networks

INTRODUCTION

The past few years have witnessed a rapid de-
velopment of grid computing infrastructures and
applications (Li & Baker, 2005; Wang, Helian,
Wu, Deng, Khare, & Thompson, 2007; Wang,
Wu, Helian, Parker, et al. 2007; Wang, Wu,
Helian, Xu, 2007). Information services play
a crucial role in grid environments in that they
facilitate the discovery of resources and services
(Czajkowski, Kesselman, Fitzgerald, & Foster,
2001). Information services periodically collect
data on available resources including hardware

and software in a grid environment. The data
can then be used by a number of elements in
a grid to keep the grid running smoothly. For
example, job schedulers use resource informa-
tion to make adaptive decisions on allocating
resources to jobs to achieve certain goals such
as a minimum make-span in execution of jobs
(Berman et al., 2003).

Grid middleware technologies facilitate
information services. For example, the cur-
rent Globus Toolkit (http://www.globus.org)
provides a component called the Monitoring
and Discovery System version 4 (MDS4)
(Schopf et al., 2006) for resource registration
and discovery. The MDS4 component adopts

Modeling Scalable Grid
Information Services with

Colored Petri Nets
Vijay Sahota, Middlesex University, UK

Maozhen Li, Brunel University, UK

Marios Hadjinicolaou, Brunel University, UK

ABSTRACT
Information services play a crucial role in grid computing environments in that the state information of a
grid system can be used to facilitate the discovery of resources and services available to meet user require-
ments and help tune the performance of the grid. This article models PIndex, which is a grouped peer-to-peer
network with Colored Petri Nets (CPNs) for scalable grid information services. Based on the CPN model, a
simulator is implemented for PIndex simulation and performance evaluation. The correctness of the simula-
tor is further verified by comparing the results computed from the CPN model with the results generated by
the PIndex simulator.

DOI: 10.4018/jghpc.2010092804

52 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a hierarchical tree structure to distribute its
monitoring data on resources across a virtual
organization (VO), in which every node runs
an index service monitoring its resources and
pushing this information up to a master index
server. A query to the top Index server could
retrieve all the information on the resources
available in a VO. The Relational Grid Moni-
toring Architecture (R-GMA) (Cooke et al.,
2004), which is now a component of the gLite
middleware (http://www.cern.ch/glite), also
facilitates resource registration and discovery.
It is worth noting that grids differentiate them-
selves from traditional distributed systems in
the following aspects:

The size of a grid is usually large in •
terms of the number of computing nodes
involved.
Resources in a grid are usually heteroge-•
neous with various computing capabili-
ties and services.
A grid is dynamic in that computing nodes •
may join or leave a grid freely. In addition,
some resources such as the CPU load of a
grid node may change frequently.

The aforementioned characteristics of grids
bring forth a number of challenges to existing
information services, notably the MDS4 and the
R-GMA. The hierarchical structure along with
centralized management of MDS4 has an inher-
ent delay associated with it which potentially
limits its scalability in resource registration. It
might take a long time for resource informa-
tion to be updated from the leaf nodes to the
root index service node. Cai, Frank, Chen, and
Szekely (2004) point out that the scheme to
partition resource information on index serv-
ers is typically predefined and cannot adapt to
the dynamic changes of VOs. The MDS4 also
lacks a mechanism to deal with failures of index
servers which may break the information service
network into isolated subnets. The R-GMA
contains a centralized registry (Groep, Templon,
& Loomis, 2006), and performs poorly when

dealing with only 100 consumer nodes (Zhang,
Freschl, & Schopf, 2007).

In parallel development with grid comput-
ing, peer-to-peer (P2P) computing has merged
into another promising computing paradigm
that typically facilitates file sharing in large
network environments (Milojicic et al., 2002).
P2P networks usually organize peer nodes in
a decentralized way, and the reliability can be
enhanced by replication of shared files among
peer nodes. Files can be arbitrarily distributed
into peer nodes without a structure, or they
are distributed following a structure such as
Distributed Hash Table (DHT). DHT based P2P
networks such as Chord (Stoica et al., 2002),
Pastry (Rowstron & Druschel, 2001), CAN
(Ratnasamy, Francis, Handley, Karp, & Shenker,
2001) have shown enhanced scalability in rout-
ing lookup messages for files with a guaranteed
number of hops. Foster and Iamnitchi (2003)
analyzed the differences between P2P and grid
computing and discussed a possible conver-
gence of the two computing paradigms. Talia and
Trunfio (2003) pointed out the benefits that P2P
networks could bring to grid systems in terms
of scalability and robustness. However, directly
applying DHT technologies to grid information
services mainly poses two challenges. On the
one hand, DHT systems usually incur high
maintenance overhead in dealing with churn
situations where peer nodes may join or leave
P2P networks at high rates (Godfrey, Shenker,
& Stoica, 2006; Rhea, Geels, Roscoe, & Kubia-
towicz, 2004). On the other hand, DHT based
P2P networks only support exact matches for
files using single hash keys. In a grid environ-
ment, it is not realistic to employ a single hash
key for a resource which may have a number of
attributes such as its CPU load, memory space,
storage space, and availability. Moreover, the
values of these resource attributes dynamically
change in a grid environment. Range queries on
resources should be supported in grid informa-
tion services.

We have implemented PIndex (Sahota,
Li, Baker, & Antonopoulos, 2009), which is

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 53

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a grouped P2P network for scalable grid in-
formation services. PIndex has the following
features:

It builds on Globus MDS4, but introduces •
the concept of peer groups (PGs) to speed
up the process in routing messages for re-
source discovery.
It supports both static and dynamic rout-•
ing of lookup messages for resources.
In the latter case, a number of messages
can be routed from one PG to another
concurrently.
It supports range queries searching for re-•
sources with a number of attributes.
It enhances fault resilience through the •
replication of state information of re-
sources among the computing nodes
within a PG.
It reduces the effects of • churn by limiting
them locally to a PG level and isolating
the effects from the rest of the network.

PIndex is designed for large-scale grid
systems. Simulations are required to observe
its features and to evaluate its performance. It
is worth noting that a number of grid simulators
have been proposed. For example, SimGrid
(Casanova, Legrand, & Quinson, 2008) aims
at a generic evaluation tool for large-scale
distributed computing. GridSim (Buyya &
Murshed, 2002) was initially designed for grid
economy but it only scales to a few 100 nodes as
presented in (Casanova et al., 2008). OptorSim
(Bell, Cameron, Capozza, Millar, Stockinger,
& Zini, 2003) are specifically designed for
data replications on grids. PlanetSim (López,
Pairot, Mondéjar, Ahulló, Tejedor, & Rallo,
2004) and PeerSim (http://peersim.sourceforge.
net) are proposed for the simulation of generic
P2P applications. However, these simulators
cannot be used for modeling and simulating
PIndex because they cannot satisfy the follow-
ing features of PIndex:

Performing the specific message routing •
algorithm used by PIndex.

Performing parallel PG operations.•
Modeling many thousands of nodes.•

This article models PIndex with Colored
Petri Nets (CPNs) (Jensen, Kristensen, & Wells,
2007). Based on the CPN model, a simulator
is implemented for PIndex simulation and
performance evaluation. Experimental results
have shown that PIndex is scalable in routing
messages among a large number of peer nodes
up to 10,000 and is resilient in dealing with node
failures (Sahota et al., 2009). The correctness
of the PIndex simulator is also verified.

The remainder of the article is organized
as follows. Next, we present the CPN modeling
work on PIndex. We then implement a simu-
lator based on the CPN model and verify the
correctness of the PIndex simulator by compar-
ing the results computed from the CPN model
with the results generated by the simulator. We
conclude the article by discussing future work
for PIndex.

Modeling PIndex with
Colored Petri Nets

A Colored Petri Net (CPN) is a modeling lan-
guage that can be used to graphically represent
the structure of a distributed system, employing
places and transitions to model complex sys-
tems. More importantly, it supports concurrent
processes. A Petri Net has place and transition
nodes, as well as directed arcs connecting places
with transitions. It is the tokens that transit on
places representing a system moving from one
state to another. The following main points have
been made to further demonstrate the rationale
in choosing CPNs to model PIndex:

The nodes in PIndex may have many dif-•
ferent states. These can be shown with
colored tokens.
As many PGs operating in parallel and in-•
teract with each other in PIndex, the abil-
ity to model concurrent events is needed.
This requirement is intrinsic to Petri Nets
as they are designed with concurrency in
mind.

54 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Since PIndex is a robust and fault tolerant •
network, these features must to be able to
be simulated. Petri Nets have the ability
to change states during a transition, al-
lowing for failures to occur randomly.
Each node in PIndex must operate inde-•
pendently which can be mimicked by the
use of tokens as objects in CPNs.

Modeling States

PIndex will encounter many states when placed
in a real working environment. Before a CPN
model can be established, firstly each state must
be recognized. In our case a token represents
a node on which its current state would be
represented by its colour from which our CPN
model will take its desired actions as shown in
Table 1. These states coupled with its buffer,
relative processing delay, bandwidth and node
usage will be the parameters for every token.
As it will be seen the requirement of buffers
and an introduction of bandwidth consump-
tion is introduced as additions to the current
basic model, further more keeping a count of
the number of nodes handling a request/state
will also be factored in for logging purposes. A
simple flow diagram will be used to represent
the actions that are needed for each state thus

their similarities can easily be seen, verifying the
use of CPNs. However, critical to the accurate
monitoring of PIndex’s performance, resources
such as time, bandwidth and node usage are
used will be different for each state.

Modeling Search Requests

At the heart of PIndex is its ability to send a
search and discover resources via its P2P algo-
rithm. As shown in Figure 1, the first step is to
check if the node is willing to accept a job (not
dead or about to leave), if so it may carry on
with the search request if not the message is lost,
although in our model the assumption is made
that the Table of External Contacts (TECs) are
kept up-to-date without error, message loss is
still possible in the case where a search arrives
at a node that has just failed.

The next step would be to set the nodes
current state to busy then increment a global
counter of nodes being used for processing (total
node usage), and a separate counter (PG node
usage) is also kept for PG monitoring. Before
the forwarded search messages are sent with a
counter for bandwidth use incremented globally
(total bandwidth) and locally (PG bandwidth),
then the process of calculating the next nodes to
query is executed and the message is sent, given
its relative delay the next step is to release the

Table 1. The state table of PIndex

Colors Description

Free The node is free and able to process jobs.

Dead The node is dead its position in the PG is vacant for joining nodes.

Busy The node is busy processing a job, but will place a job in its buffer.

Leaving The node will leave soon; it will not accept any more jobs but will complete the ones in its
buffer. It will also tell its PG and referencing nodes to update their TEC’s.

Search request The node is sending a search request; the receiving node responds and forwards it according
to the PIndex search algorithm.

Query Response The node is sending a response back, to any form of query.

Join Requests The node is requesting to join a PG (receiving), if space is vacant it will join, otherwise the
request is forwarded to a neighbouring PG.

Contact Updates The node is updating its TEC replacing its existing contacts with new ones.

Resources Updates The node is updating its resource information.

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 55

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

bandwidth and node count being used. Before
completing this state, a check is needed to see
if the node’s buffer is empty, if not a loop back
is made to the processing stage, and if empty
the node state is set to free.

Modeling Join Requests

In this situation a new node randomly selects
a PG to join, on the condition there is a vacant
space the node will be able to join, else the
node will have to repeat its request in the next
sequential PG. In this case we have a loop back
condition using the discovery of a vacant space
rather than checking if the buffer is empty.

Omitting the need to check if the node is
alive or busy henceforth, the first step in Figure
2 is to take count of the node usage and band-
width being used with its state set to Busy, then
the actual request message is sent after which
the resources are returned. The node receiving
the request will then check if there are any
vacant places in its PG, if not then the request
is forwarded to its neighbouring PG. If there
is a vacancy then it is given to the requesting
node, its state and buffers are then set to free.
The next logical step would be to invoke the
contact update state to populate its TEC.

Modeling Leave Requests

When leaving, a node in PIndex must complete
the tasks it already has in its buffer before leaving
the network. Further tasks it may receive are not
accepted in addition to telling its TEC contacts
to update their references as it will be leaving
soon. As shown in Figure 3, the flow starts by
setting the node usage count, and consumes
the required bandwidth resources and sends a
message forcing its contacts to get new contact
instead of itself whilst setting its state to leaving.
After having executed all the tasks in its buffer
the node is placed into a dead state

Modeling Resource Updates

The main concept of PIndex is to keep accurate
and dynamic record of the resources available.
This was achieved through the use of its up-
date messages sent to all its local peers in its
PG and any other node which has a reference
to it. Figure 4 shows a resource update, the
initial stage it consumes the resources required
(node usage and bandwidth counter), and then
proceeds in preparing a message to send to all
(alive) contacts in it PG, and in its TEC. The
message is then sent; note that if any nodes fail
during this period no affect is had since update
messages are sent in one way only. Given the

Figure 1. The flow chart of search requests

56 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

average time to send a message all the resources
taken are then returned.

Modeling Query Responses

In this situation a node is responding to any
request, and serves as a generic state any node
can be in when responding to a request. For
example, with a new TEC contact request, the

node checks to see if it can forward and split
the search space. Note: if the current node has
some or all of the search criteria, it will also
send a response back (query response).

The flow in Figure 5 starts by setting the
node usage count, and consumes the required
bandwidth resources; it then processes the
request and responds accordingly after which
the consumed resources are returned.

Figure 2. The flow chart of join requests

Figure 3. The flow chart of leave request

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 57

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Modeling Contacts Updates

As part of the joining procedure (join state),
newly joined nodes must update their TEC.
This is a random process where the joining
node randomly chooses a known external
contact within the PG and queries them for a
new contact in its PG for the joining node, this

process is repeated to populate the new nodes
TEC. This process is outlined in Figure 6, here
the resources needed are consumed and then a
request for a new contact is made (and response
given), which is repeated to populate its TEC
table. Note: not only does the new node gain
an external contact, but the new contact must
also add the new nodes ID to it list of nodes to

Figure 4. The flow chart of resource request

Figure 5. The flow chart of query responses

58 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

send updates to. Once the table is populated,
all consumed resources are returned and the
node is set free.

The CPN Model

Figure 7 shows a generic flow chart of PIndex.
There are 3 node states that do not consume
resources—Dead, Free and Busy. These states
are used as an indication of the current activ-
ity of a node. The remaining 6 node states are
used to perform tasks consuming resources
with some delays.

Figure 8 shows the CPN diagram of PIn-
dex that has 9 places (P1-P9) and 6 transitions

(t1-t6) which is explained in the following
two cases:

Case 1: A node is not busy and its buffer is empty.
The token of the node is placed onto P1 firing t1
and goes to P2. Since the node is not busy, P3
will have no tokens and t2 will be fired. As t2 is
fired it takes a token from both the node counter
(P6) and message counter (P7) and places a
token in P3 and P5 respectively. The amount
of delay of the two delay transitions (t4 and t5)
is dependent on the colors of the node. Since
the buffer is empty, P4 has no tokens and t5 is
fired which returns the token to both the node
counter (P6) and message counter (P7). This

Figure 6. The flow chart of contact updates

Figure 7. The generic flow chart of PIndex

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 59

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

will place a token onto P8. Since both P8 and
P3 have a token, then t6 is fired and the token
goes to P9 for completing the process.

Case 2: A node is busy and its buffer is not
empty. The token of the node is placed onto
P1 firing t1 and goes to P2. Since the node is
busy, P3 will have a token and t3 will be fired.
As t3 is fired a token will be placed onto both
P3 and P4. Since the buffer is not empty, t4 is
fired which removes a token from both P4 and
P5 and loops back to P5 to process the next
task. This will keep looping until the buffer is
empty which will then result in t5 firing return-
ing the token to both the node counter (P6) and
message counter (P7). This will place a token
onto P8. Since both P8 and P3 have a token,
then t6 is fired and the token goes to P9 for
completing the process.

PINDEX SIMULATOR

PIndex gains its speed in performance through
PGs operating independently and concur-
rently. However although Petri Nets have been
designed with concurrency in mind, running
multiple instances that interact with each other
is a not part of standard Petri Nets. Although
a number of PNs could be combined into a
single PN mimicking multiple instances with a
derived mathematical model. However having
a single PN would become cumbersome in that
the number of PGs would be fixed, limiting the
size of the network to be simulated, disabling
the model in investigating PIndex’s scalability.
Moreover, creating a fixed model will limit its
flexibility in investigating different network
and routing conditions, such as forcing a certain
type of PG grouping using a nodes probability
of failure as a metric which would involve a full
re-write of the CPN model and mathematics. In
this section we take the independent PG nature of

Figure 8. The CPN diagram of PIndex

60 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

PIndex, the CPN model and parallel executions
of threads to produce an object orientated simu-
lator. Using threads enables multiple instance
of a PG to run concurrently, truly Modeling
PIndex in a multi-network distribution (PIndex
over many independent sites). The following
section briefly describes the implementation of
the PIndex simulator.

Simulator Implementation

Based on CPN modeling, we have implemented
a simulator using Java programming language
for PIndex evaluation. Figure 9 shows the ar-
chitecture of the PIndex simulator. Tokens are
implemented as Java objects that contain a color
state, a buffer array, a Table of External Contact
(TEC), firing probabilities, a PG ID and a PG
node ID. In order to model parallel executions
of PGs in PIndex, each PG is implemented as
a thread. Multiple threads are instantiated for
the duration of the simulation creating a thread
pool. Each PG has its own Poisson distribution
generator, which provides Poisson rates for fir-
ing, updating, failures and leaving for the nodes
in the PG. Each PG also has its own probabilistic
normal distribution generator for its peer nodes.
The probability of the peer nodes is used in such

a way that when a peer node is chosen to run, a
random percentage of probability is generated
and compared with the probability of the node
determining if the node runs.

Each colour state has an associated action
as shown in Table 1, which was implemented as
a thread. The reason for creating these coloured
actions as threads is that, when a token is being
processed in the PG, an instance of its respec-
tive colour action thread is created. These
instances carry out the tasks that are specified
(consume/return resources, delay and send/
receive messages) and terminates once the job
is done (while setting the token free/ execute
next task in buffer). This frees the PG thread
from executing the colour, before processing
the next token in its queue allowing the current
token to rejoin the PG (population) such that it
can process further incoming request whilst its
colour task is being executed.

When a peer node is chosen to run, the
token object is passed into the PG thread which
is queried. The PG thread checks if the token
can accept the task:

If the token is busy, then the task color is •
placed into the token’s buffer.

Figure 9. The architecture of the PIndex simulator

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 61

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

If the token is dead or leaving, then the •
task color cannot be accepted.
If the token is free, then a thread will be •
created to process the task and some re-
sources will be consumed accordingly.

Simulating Peer Nodes

To examine the performance of PIndex under
heavy and dynamic conditions, our simulator
must be capable of representing and processing
many thousands of nodes, and exhibit dynamic
characteristics such as choosing when to leave
based on a nodes probability of leaving. In our
solution nodes were represented as CPN tokens
and so represented as objects in our simulator.
Each token object has attributes consisting of
the current state, a buffer, TEC, probabilities
of firing, dying and leaving. Having tokens
represented as objects not only simplified the
process of creating tokens, but enabled the
simulator to make as many instances of tokens
(nodes), as was required to be simulated; each
with its own independent buffer, states, TECs
and probabilities. In addition, to their indepen-
dent attributes using an object also meant that
they could be passed to methods or threads in
an exact way as tokens are passed from place
to place (via transitions).

Simulating Peer Groups

PIndex is primarily based on the formation of
PGs, such that their independent operations re-
move the need for a central store of information.
In order to successfully implement PGs in our
simulation they must exist as a single entity for
the duration of the simulation, and possess the
ability to process requests simultaneously. In
our solution, PGs were represented as threads,
with multiple instances forming a thread pool
that lasted for the duration of the simulation.
Since only a single thread is used to represent
a PG, we must reduce the amount of processing
per thread to a minimum so as not to create a
bottleneck in the simulation. The PG threads are
the actual implementation of the PIndex CPN,
the only difference being is that the execution

of a colour task is not handled by the PG thread,
but by a created instance of a colour thread. This
reduces the load of the PG thread, which means
that a PG thread simply checks the state of the
token and decides which thread to instantiate.
An implementation in this way made it easier
to simulate PIndex since the numbers of PG
threads were fixed per simulation and easier
to organize the priority level of tasks.

Simulating Resource Consumption

The main objective of PIndex is to produce an
information service that can work efficiently
over a dynamic network structure. Metrics for
bandwidth and node usage must be measured
during the simulation of PIndex, as these can
be used to gauge the operational efficiency of
PIndex. In order to make an accurate interpre-
tation of PIndex a log of both metrics must be
kept for the entire network and each individual
PG. In our simulation a simple counter was kept
for resource use, when a resource is being used
an increment to the counter is made, and once
completed (freeing the resource) the counter
is decremented. A global counter was kept
for resources regarding the entire network for
each monitored resource, in addition to local
counters. As these counters will vary in count
as the simulation progressed, our simulator
would record their values at the start of every
simulated clock.

Simulating Discreet Time

To ensure proper execution order of tasks a
simulated clock was needed. Having a discrete
clock allowed our simulator to carry out multiple
task before the clock rolled over, resulting in the
executed task appearing to be carried out simul-
taneously in the simulation. In our simulation
our discreet clock is implemented as a thread,
which allowed the simulator to take advantage
of thread priorities to ensure proper execution
of each task (timing). The task priorities were
as follows starting with the lowest.

Simulated clock•

62 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Colour state threads•
PG threads, highest being the pushing of •
jobs (firing)

Basically this order ensured that if nodes
were to fail, this would be first to be carried
out along with all the other firings. Then all the
recently fired tokens would be processed, and
then instantiated (colour threads) before finally
incrementing the simulated clock.

VERIFYING THE PINDEX
SIMULATOR

Before we used the CPN simulator to evaluate
the performance of PIndex, we verified the
correctness of the simulator based on CPN
matrix calculations. In this section, we present
the verification process.

Petri Net Matrices

In Petri nets (PNs), as tokens can enter a transi-
tion from a place (input) and leave a transition to
a place (output), transitions can be represented
in the form of matrices.

Let

• D− represent the inputs of the transitions
in a PN.

• D+ represent the outputs of the transi-
tions in a PN.

• D represent the transition matrix of a
PN.

Therefore,

D D D= −+ − (1)

Given the matrix D , an initial state matrix
M , and an input vector E

j
with all entries be-

ing equal to 0 except the j th entry being equal
to 1, then a PN can be modeled using equation
(2) to calculate the next states of the PN which
are represented by M ' .

M M E D E D M E D
j j j

' = − ⋅ + ⋅ = + ⋅− +

 (2)

Given that E
j

 only has a single entry
equal to 1, this will cause the transition t

j
to

fire. If a sequence of input vectors is placed
onto a PN E E Ei j k

(, ,) , then these will in turn
set a sequence of transactions to fire (, ,)t t t

i j k

and produce the state matrix M ' using equa-
tion (3).

M M E E E D M X D
i j k

' = + + +() ⋅ = + ⋅

 (3)

where X represents a firing vector.

Verifying the PIndex Simulator

In this section, we verify the correctness of the
PIndex simulator using CPN matrices. By apply-
ing colored states we filter out the correct color
matrices to use, and are able to model the CPN
of PIndex mathematically. Figure 10 shows the
transition matrix D which is derived from the
CPN diagram of PIndex shown in Figure 8.

We use a color vector C
i
with a size of n

to represent colors, where n is the total number
of colors being used, and the ith position repre-
sents the actual color. For example, if the color
is for updating, then C

4
0001= () . Having a

transition matrix for each color, we need a way
to isolate the transition matrix that receives the
correct colored token. This can be achieved
through the scalar product of the color vector
of the current token (C

t
) and the color vector

of the associated transition matrix (C
d

).
Given that

• C
t
is the color vector of the current

token.
• C

d
is the color vector of the current tran-

sition matrix.
• M

transition
 is the transition matrix of a

color.

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 63

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

• M is the previous state matrix.
• M ' is the current state matrix.
• M

color
is the resultant state matrix.

Then we have

M Col M C M

Col M C M

color d transition

d transit

= () ⋅ ⋅() ⋅()()
+()⋅ ⋅() ⋅

'

iion() (4)

where Col C C
t d

= ⋅

Equation (4) is repeated for each transition
matrix of every color, producing a resultant
M
color

 in which each column represents the
current number of tokens in each transition for
that specific color. For the purpose of simplicity
we use four colors in the CPN matrices to verify
the correctness of the CPN simulator. Each color
has the same transition matrixD . However, not
all transitions are enabled because inhibitors are
used at transitions t2 and t5 as shown in Figure
8. Therefore, an additional vector (σ) is used

to represent which transitions are allowed to
fire which is reflected in equation (5).

M Col M C M

Col M C M

color d transition

d tran

= () ⋅ ⋅()+ ⋅()()+
()⋅ ⋅()+

' σ

0 ssition
⋅()σ

 (5)

Given four color states as shown in Table
2, the test sequence used was 0001, 0100, 0100,
1000, 0010 and 0001.

Given M = 000009900 representing all
places are empty, except the bandwidth and
node buffer counters are both set to 9. Taking
the first color vector (0001) of the sequence as
an example, Table 3 shows the results of each
of the M

trnansition
transition matrix and Table 4

shows the complete results of the sequence.
Figure 11 and Figure 12 show the theo-

retical results of the CPN transition matrix and
the simulation results generated by the PIndex
simulator from the aspects of bandwidth use
and node usage respectively.

Figure 10. The D transition matrix of the CPN

64 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

As shown in Figure 11, both the simulation
and the theoretical results are the same in the
aspect of bandwidth use. However there is a
difference between simulation results and the
theoretical results in terms of node usage as
shown in Figure 12. We observe that in the 3rd
iteration node usage remains 1 in the simulated
results, whereas in the theoretical results node
usage returns to 0. This variation in node usage
is a direct result from the way the CPN simula-
tor was implemented, in that as soon as a node
receives a task its state is set to busy and does
not change until the node is set free, that is, all

tasks are completed and the buffer is empty. In
the case of the theoretical results of the CPN,
node usage changes as soon as a task starts or
finishes which can be seen in the 3rd iteration
where a task has completed and incremented
the node counter whilst a state check was being
carried out. This highlights how and where the
CPN simulator has deviated from the CPN tran-
sition matrix which represents an ideal situation
but is mathematically correct in reality.

Compared with the theoretical work of the
CPN model, the PIndex simulator is more close
to real grid information networks in which a peer

Table 2. The four colors used in the verification

Colors Color Vectors

Resource Update 0001

Contact Update 0010

Search Request 0100

Search Response 1000

Table 3. The transition matrix results of the resource update

C
t

M
transition

Results

0001 0001 Col 1

σ 100000000

M 000009900

Mcolor 010009900

0010 Col 0

σ 000000000

M 000009900

Mcolor 000009900

0100 Col 0

σ 000000000

M 000009900

Mcolor 000009900

1000 Col 0

σ 000000000

M 000009900

Mcolor 000009900

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 65

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

node is considered busy when it is running for
various purposes including checking whether
it is busy or not.

CONCLUSION

PIndex is a grouped P2P network which can
be used as a substrate for grid information ser-

Table 4. The transition matrix results of the whole sequence

C
t

M
color

0001
(Resource Update)

010009900
000009900
000009900
000009900

0100
(Search Request)

001018800
000008800
010008800
000008800

0100
(Search Request)

001009910
011109900
001009900
001009900

1000
(Search Response)

000008801
000008800
001118800
010008800

0010
(Contact Update)

001008801
011008800
001018810
001108800

0001
(Resource Update)

011008801
001108800
001008811
001018800

Figure 11. Verification of bandwidth use

66 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

vices. This article modelled PIndex with CPN.
Building on the CPN model, a PIndex simulator
was implemented for PIndex simulation and
performance evaluation. Experimental results
have shown that PIndex is scalable when deal-
ing with a large number of computing nodes
up to 10,000, and is resilient in handling churn
situations (Sahota et al., 2009). The correctness
of the PIndex simulator was further verified.
Future works include the implementation of the
PIndex network and evaluate its performance
in real grid environments.

REFERENCES

Bell, W. H., Cameron, D. G., Capozza, L., Millar, A.
P., Stockinger, K., & Zini, F. (2003). OptorSim - a
grid simulator for studying dynamic data replication
strategies. International Journal of High Perfor-
mance Computing Applications, 17(4), 403–416.
doi:10.1177/10943420030174005

Berman, F., Wolski, R., Casanova, H., Cirne, W.,
Dail, H., & Faerman, M. (2003). Adaptive comput-
ing on the grid using AppLeS. IEEE Transactions on
Parallel and Distributed Systems, 14(4), 369–382.
doi:10.1109/TPDS.2003.1195409

Buyya, R., & Murshed, M. (2002). GridSim: A
toolkit for the modeling and simulation of distributed
resource management and scheduling for grid com-
puting. Concurrency and Computation, 14(13-15),
1175–1220. doi:10.1002/cpe.710

Cai, M., Frank, M., Chen, J., & Szekely, P. (2004).
MAAN: A multi-attribute addressable network for
grid information services. Journal of Grid Comput-
ing, 2(1), 3–14. doi:10.1007/s10723-004-1184-y

Casanova, H., Legrand, A., & Quinson, M. (2008,
April 1-3). SimGrid: a generic framework for large-
scale distributed experimentations. In Proceedings of
the 10th IEEE International Conference on Computer
Modeling and Simulation (UKSIM/EUROSIM’08),
Cambridge, UK (pp. 126-131). Washington, D.C.:
IEEE Computer Society.

Cooke, A. W., Gray, A. J. G., Nutt, W., Magowan,
J., Oevers, M., & Taylor, P. (2004). The relational
grid monitoring architecture: Mediating information
about the grid. Journal of Grid Computing, 2(4),
323–339. doi:10.1007/s10723-005-0151-6

Czajkowski, K., Kesselman, C., Fitzgerald, S., &
Foster, I. (2001, August 7-9). Grid information
services for distributed resource sharing. In Proceed-
ings of the 10th IEEE International Symposium on
High Performance Distributed Computing (HPDC
2001), San Francisco (pp. 181-194). Washington,
D.C.: IEEE Computer Society.

Figure 12. Verification of node usage

International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010 67

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Foster, I., & Iamnitchi, A. (2003, February 20-21).
On death, taxes, and the convergence of peer-to-peer
and grid computing. In Proceedings of the 2nd Interna-
tional Workshop on P2P Systems, Berkeley, CA (pp.
118-128). University of California, Berkeley.

Godfrey, B. Shenker, S., & Stoica, I. (2006, Septem-
ber). Minimizing churn in distributed systems. In
Proceedings of ACM SIGCOMM Conference 2006,
Pisa, Italy (pp.147-158). ACM Publishing.

Groep, D. L., Templon, J., & Loomis, C. (2006).
Crunching real data on the grid: Practice and expe-
rience with the European DataGrid. Concurrency
and Computation, 18(9), 925–940. doi:10.1002/
cpe.962

Jensen, K., Kristensen, L. M., & Wells, L. (2007).
Coloured petri nets and CPN Tools for Modeling
and validation of concurrent systems. International
Journal on Software Tools for Technology Transfer,
9(3-4), 213–254. doi:10.1007/s10009-007-0038-x

Li, M., & Baker, M. (2005). The grid: Core technolo-
gies. London: John Wiley & Sons.

López, P., Pairot, C., Mondéjar, R., Ahulló, J., Teje-
dor, H., & Rallo, R. (2004, September). PlanetSim:
A new overlay network simulation framework. In
Proceedings of the 4th International Workshop on
Software Engineering and Middleware (SEM), Linz,
Austria (pp. 123-136).

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja,
K., Pruyne, J., Rihard, B., et al. (2002). Peer-to-peer
computing (Tech. Rep. HPL-2002-57). Palo Alto,
CA: HP Labs.

Ratnasamy, S., Francis, P., Handley, M., Karp, R.
M., & Shenker, S. (2001, August 27-31). A scalable
content-addressable network. In Proceedings of the
ACM SIGCOMM Conference 2001, San Diego, CA
(pp.161-172). ACM Publishing.

Rhea, S., Geels, D., Roscoe, T., & Kubiatowicz, J.
(2004, June 27-July 2). Handling churn in a DHT. In
Proceedings of the 2004 USENIX Annual Technical
Conference, Boston (pp. 127-140). USENIX.

Rowstron, A., & Druschel, P. (2001, November
12-16). Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems.
In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany (pp. 329-350).
ACM Publishing.

Sahota, V., Li, M., Baker, M., & Antonopoulos, N.
(2009). A grouped P2P network for scalable grid
information services. Peer-to-Peer Networking
and Applications, 2(1), 3–12. doi:10.1007/s12083-
008-0016-4

Schopf, J. M., Pearlman, L., Miller, N., Kesselman,
C., Foster, I., & D’Arcy, M. (2006). Monitoring
the grid with the Globus Toolkit MDS4. Jour-
nal of Physics: Conference Series, 46, 521–525.
doi:10.1088/1742-6596/46/1/072

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.
R., Kaashoek, M. F., & Dabek, F. (2002). Chord: A
scalable peer-to-peer lookup protocol for Internet
applications. IEEE Transactions on Networks, 11(1),
17–32. doi:10.1109/TNET.2002.808407

Talia, D., & Trunfio, P. (2003). Toward a synergy
between P2P and grids. IEEE Internet Computing,
7(4), 94–96. doi:10.1109/MIC.2003.1215667

Wang, Z., Helian, N., Wu, S., Deng, Y., Khare, V., &
Thompson, C. (2007). Grid-based storage architec-
ture for accelerating bioinformatics computing. VLSI
Signal Processing, 48(3), 311–324. doi:10.1007/
s11265-007-0066-5

Wang, Z., Wu, S., Helian, N., Parker, M., Guo, Y.,
& Deng, Y. (2007). Grid-oriented storage: A single-
image, cross-domain, high-bandwidth architecture.
IEEE Transactions on Computers, 56(4), 474–487.
doi:10.1109/TC.2007.1005

Wang, Z., Wu, S., Helian, N., Xu, Z., Deng, Y., &
Khare, V. (2007). Grid-based data access to nucleotide
sequence database. New Generation Computing,
25(4), 409–424. doi:10.1007/s00354-007-0026-4

68 International Journal of Grid and High Performance Computing, 2(1), 51-68, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Vijay Sahota received his PhD from the School of Engineering and Design at Brunel University,
UK in May 2008. He is now a post-doctoral research fellow at Middlesex University. His research
interests are in the areas of distributed systems, grid computing specifically on grid information
services, scalable peer-to-peer networks.

Maozhen Li is a lecturer in the School of Engineering and Design at Brunel University, United
Kingdom. He received the PhD from Institute of Software, Chinese Academy of Sciences in
1997. He joined Brunel University as a full-time lecturer in 2002. His research interests are
in the areas of grid computing, intelligent systems, P2P computing, semantic web, information
retrieval, content based image retrieval. He has over 60 scientific publications in these areas.
He authored The Grid: Core Technologies, a well-recognized textbook on grid computing which
was published by Wiley in 2005. He has served as an IPC member for over 30 IEEE conferences.
He is on editorial boards of the International Journal of Grid and High Performance Computing,
the International Journal of Distributed Systems and Technologies, and the International Journal
on Advances in Internet Technology.

Marios Hadjinicolaou received the BS degree in electronics from the University of London in
1979 and the MS and PhD degrees in electronic and electrical engineering from Brunel Uni-
versity, UK in 1982 and 1986 respectively. He is a senior lecturer in the School of Engineering
and Design at Brunel University. His research interests are in the fields of Colored Petri Nets,
video-on-demand, multimedia applications.

