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a b s t r a c t 

The optimal insurance problem represents a fast growing topic that explains the most efficient contract 

that an insurance player may get. The classical problem investigates the ideal contract under the assump- 

tion that the underlying risk distribution is known, i.e. by ignoring the parameter and model risks. Taking 

these sources of risk into account, the decision-maker aims to identify a robust optimal contract that is 

not sensitive to the chosen risk distribution. We focus on Value-at-Risk (VaR) and Conditional Value-at-Risk 

(CVaR)-based decisions, but further extensions for other risk measures are easily possible. The Worst-case 

scenario and Worst-case regret robust models are discussed in this paper, which have been already used in 

robust optimisation literature related to the investment portfolio problem. Closed-form solutions are ob- 

tained for the VaR Worst-case scenario case, while Linear Programming (LP) formulations are provided for 

all other cases. A caveat of robust optimisation is that the optimal solution may not be unique, and there- 

fore, it may not be economically acceptable, i.e. Pareto optimal. This issue is numerically addressed and 

simple numerical methods are found for constructing insurance contracts that are Pareto and robust opti- 

mal. Our numerical illustrations show weak evidence in favour of our robust solutions for VaR-decisions, 

while our robust methods are clearly preferred for CVaR-based decisions. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Finding the optimal insurance contract has represented a topic

of interest in the actuarial science and insurance literature for

more than 50 years. The seminal papers of Borch (1960) and Arrow

(1963) had opened this field of research and since then, many

papers discussed this problem under various assumptions on the

risk preferences of the insurance players involved in the contract

and how the cost of insurance (known as premium ) is quanti-

fied. Specifically, the optimal contracts in the context of Expected

Utility Theory are investigated amongst others in Kaluszka (2005) ,

Kaluszka and Okolewski (2008) and Cai and Wei (2012) . Extensive

research has been made when the preferences are made via coher-

ent risk measures (as defined in Artzner, Delbaen, Eber, and Heath,

1999 ; recall that CVaR is an element of this class) and VaR; for ex-

ample, see Cai and Tan (2007) , Balbás, Balbás, and Heras (2009) ;
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011 ), Asimit, Badescu, and Verdonck (2013b) , Cheung, Sung, Yam,

nd Yung (2014) and Cai and Weng (2016) among others. 

The choice of a risk measure is usually subjective, but VaR and

VaR represent the most known risk measures used in the insur-

nce industry. Solvency II and Swiss Solvency Test are the regu-

atory regimes for all (re)insurance companies that operate within

he European Union and Switzerland, respectively, and their capital

equirements are solely based on VaR and CVaR. For these reasons

nd not only, these standard risk measures have received special

ttention by academics, practitioners and regulators, and therefore,

ivid discussions have risen among them. VaR is criticised for its

ack of sub-additivity and it may create regulatory arbitrage in an

nsurance group (see Asimit, Badescu, & Tsanakas, 2013a ). A de-

ailed discussion on possible regulatory arbitrages in a CVaR-based

egime is provided in Koch-Medina and Munari (2016) . A desirable

roperty for a risk measure is the elicitability , which allows one

o compare competitive forecasting methods, a property that VaR

oes have (see Gneiting, 2011 ). The lack of elicitability for CVaR

as been adjusted via the joint elicitability , concept formalised in

issler and Ziegel (2016) , but earlier flagged out by Acerbi and

zékely (2014) . Robustness properties of a risk measure are also

f great interest since they imply that the estimate is insensitive to
 under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ata contamination. Parameter risk (uncertainty with parameter es-

imation) and model risk (uncertainty with model selection) are the

wo main sources of uncertainty in modelling. The robust statistic

as its roots in the papers of Huber (1964) and Hampel (1968) ,

hich has been shown to be less appropriate in the context of risk

anagement (see for example, Cont, Deguest, & Scandolo, 2010 ). A

ore informative discussion is given in the next section due to its

ength. Finally, a summary of all properties exhibited by the two

isk measures is detailed in the comprehensive work of Emmer,

ratz, and Tasche (2015) , but the general conclusion is that there

s no evidence for global advantage of one risk measure against the

ther. 

Whenever the model and parameter risks are present, it is pru-

ent to consider insurance contracts that are optimal under a set

f plausible models and this is precisely what robust optimisation

oes. It is a vast area of research with applications in various fields

nd a standard reference is Ben-Tal, El Ghaoui, and Nemirovski

2009) , while comprehensive surveys can be found in Ben-Tal and

emirovski (2008) , Bertsimas, Brown, and Caramanis (2011) and

abrel, Murat, and Thiele (2014) . 

The aim of the paper is to identify the optimal insurance con-

ract under the model/parameter risk in the robust optimisation

ense and understand how robust these solutions are from the

ractical point of view. That is, we aim to explain how large the

ncertainty set should be for relatively small or medium sized his-

orical data sets as is expected in insurance practice. At the same

ime, since the insurance contract is in fact a risk allocation, it is

f great interest to find whether or not our robust contracts are

areto optimal. Robust optimisation may lead to inefficient risk al-

ocations, i.e. not Pareto optimal, which are clearly not acceptable,

nd special attention is given to this issue by providing a simple

ethodology to overcome such caveats of robust optimisation. Our

umerical illustrations have shown weak evidence in favour of our

obust solutions for VaR-based decisions, which is not surprising

ue to the erratic behaviour of VaR. On the contrary, CVaR-based

ecisions are more robust via robust optimisation than using sta-

istical methods, which can be explained by the fact that CVaR

akes into account some part of the tail risk as opposed to VaR.

ither Worst-case scenario or regret robust optimisations is pre-

erred (comparing to the classical statistical methods) for less (sta-

istically) robust risk measures that are purely tail risk measures,

here the estimation is based on a small portion of the sample

hat explains only the tail risk. We also find that the Worst-case

ptimisation is once again advantageous even for risk measures

hat are sensitive to the entire sample, i.e. are not only based on

he tail risk. 

The structure of the paper is as follows: the next section con-

ains the necessary background and the mathematical formula-

ion of our problems, while Sections 3 and 4 investigate the VaR

nd CVaR-based optimal insurance contracts, but also discuss sim-

le extensions for distortion risk measures when the moral haz-

rd is removed; these robust solutions are further investigated in

ection 5 to becoming Pareto optimal as well; extensive numerical

xamples are elaborated in Section 6 , which help in justifying our

onclusions summarised in Section 7 . 

. Background and problem definition 

.1. Optimal insurance 

An insurance contract represents a risk transfer between two

arties, insurance buyer (or simply buyer ) and insurance seller (or

imply seller ). When the buyer is also an insurance company, then

he transfer becomes a reinsurance contract and the seller is called

einsurer . Let X ≥ 0 be the total amount that the buyer is li-

ble to pay in the absence of any risk transfer. In addition, the
eller agrees to pay R [ X ], the amount by which the entire loss ex-

eeds the buyer’s amount, I [ X ], and clearly we have I[ X] + R [ X] = X .

he most common risk transfers are the Proportional and Stop-

oss contracts for which I[ X] = cX (with 0 ≤ c ≤ 1) and I[ X] =
in { X, M} , respectively. Note that in order to avoid moral hazard

ssues (both players are incentivised to reduce the overall risk, i.e.

 and R are non-decreasing functions), I, R ∈ C co , where 

 

co = { f is non-decreasing | 0 ≤ f (x ) ≤ x, | f (x ) − f (y ) | 
≤ | x − y | for all x, y ∈ �} . 

he comonotonic risk transfers (as defined above) are omnipresent

n practice, but it is not always the case and the mathematical for-

ulation of the feasibility set becomes 

 = 

{
f | 0 ≤ f (x ) ≤ x for all x ∈ � 

}
. 

Let P be the insurance premium, and it is further assumed that

ny feasible contract satisfies 0 ≤ P ≤ P , where P represents a max-

mal amount of premium that the buyer would accept to pay. If the

oss distribution is known, then the premium calculations are pos-

ible via certain rules, known as premium principles . A concise re-

iew of premium principles can be found in Young (2004) . Specif-

cally, if P is the probability measure for X , then P ≥ ω 0 + (1 +
) H P 

(
R [ X] 

)
, where ω 0 ≥ 0 represents some fixed/administrative

osts, θ ≥ 0 is the risk loading parameter/factor, and H is a mono- 

one functional on the space of non-negative random variables that

epends on the seller’s choice of premium principle. The mono-

onicity property is of practical importance and it means that if

wo random losses satisfy Y ≤ Z , then H P (Y ) ≤ H P (Z) . A commonly

ncountered premium principle is the distortion premium principle

see Wang, Young, & Panjer, 1997 ), 

 P (Y ) = 

∫ ∞ 

0 

g 
(
P(Y > y ) 

)
dy (2.1)

or any non-negative loss random variable Y , where g : [0, 1] →
0, 1] is non-decreasing with g(0) = 0 and g(1) = 1 known as dis-

ortion function . When the distortion function is taken to be the

dentity function, we obtain the expected value premium principle ,

hich is standard in the insurance industry. The mathematical for-

ulation of the optimal insurance problem becomes 

min 

R,P) ∈C×� 
{ ρP (X − R [ X ] + P ) } , s.t. ω 0 + (1 + θ ) H P (R [ X ]) 

≤ P ≤ P , (2.2) 

here ρP is a risk measure chosen by the buyer to order its pref-

rences to risk. As explained in Section 1 , it is first assumed in

his paper that ρP ∈ { VaR , CVaR } . Recall that the lower script P 
ndicates the probability measure under which the risk measure-

ent is made. The VaR of a loss variable Y at a confidence level

∈ (0, 1), is given by VaR α(Y ;P) = inf y ∈� {P(Y ≤ y ) ≥ α} . Note

hat VaR α is representable as in (2.1) with g(t) = I { t> 1 −p} , where

 A represents the indicator operator that assigns the value 1 if

 is true and 0 otherwise. The CVaR risk measure is defined in

ockafeller and Uryasev (20 0 0) as follows: 

VaR α(Y ;P) = inf 
t∈� 

{ 

t + 

1 

1 − α
E P 

(
Y − t 

)
+ 

} 

, where (t) + 

= max (t, 0) . (2.3) 

lternative representations are known in the literature (see for ex-

mple, Acerbi & Tasche, 2002 ) and one of them is as in (2.1) with

(t) = 

t 
1 −α ∧ 1 . 

Due to the monotonicity property of VaR, CVaR and the func-

ional H , (2.2) becomes much simpler when removing the eco-

omic constraint P ≤ P and it has been investigated under vari-

us sets of assumptions. Recently, Cheung and Lo (2017) included

he latter constraint and analytically solved (2.2) for a large class
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of premium principles and risk measures, including the class from

(2.1) . 

The existing literature assumes that the loss distribution is cer-

tainly known, and as a result, the parameter and model risks are

removed. Small and medium sized samples (present in non-high

frequency data, as is usually the case in insurance data) raises

many questions when estimating any parameter even if the model

risk is completely removed, i.e. the chosen model is correct. Large

samples are more concerned with the model risk, which can be re-

duced if the model is carefully selected. Thus, if we know what we

need to estimate, for example the optimal objective function value

from (2.2) , for which its closed-form solution is required, the elic-

itability (see Gneiting, 2011 ) of this functional (induced by the op-

timal objective function value) is the next step in order to compare

various models and reduce the model risk. While VaR is elicitable,

VaR and CVaR are jointly elicitable, our functional may not be elic-

itable or impossible to assess the presence of this property, since

one has to find a scoring function to measure the estimation er-

ror under the plausible models. Therefore, the model selection for

VaR/CVaR do not apply for our problem, even though these two

simple risk measures are well-accepted as “good” risk measures.

Now, even if we can select the “best” possible model that reduces

the uncertainty with the optimal objective function value, we in

fact solve a secondary problem, since the main purpose of this ex-

ercise is to obtain a robust decision (with respect to the insurance

contract, i.e. R ). 

Therefore, it would be interesting to identify a more robust op-

timal insurance contract that would take into account the param-

eter and/or model error. Thus, we assume that the reference prob-

ability measure P is unknown and could be one of the m possible

probability measures {P 1 , P 2 , . . . , P m 

} . Consequently, the premium

feasibility constraint becomes 

ω 0 + (1 + θ ) · H P k 
(
R [ X ] 

)
≤ P ≤ P , for any k ∈ M = { 1 , 2 , . . . , m }

A prudent and hopefully robust decision is obtained when investi-

gating the worst-case scenario optimisation problem {
min 

(R,P) ∈C×� 
max 
k ∈M 

{ ρP k (X − R [ X ] + P ) } , 
s.t. ω 0 + (1 + θ ) H P k (R [ X ]) ≤ P ≤ P , for any k ∈ M . 

(2.4)

An alternative prudent decision can be achieved via the worst-case

regret optimisation problem {
min 

(R,P) ∈C×� 
max 
k ∈M 

{ ρP k (X − R [ X ] + P ) − ρ∗
k 
} , 

s.t. ω 0 + (1 + θ ) H P k (R [ X ]) ≤ P ≤ P , for any k ∈ M , 
(2.5)

where the buyer’s “regret” is measured with respect to some m

benchmark values ρ∗
k 

. Naturally, these values are the optimal ob-

jective values for the individual models and are variants of (2.2) .

Specifically, {
ρ∗

k 
= min 

(R,P) ∈C×� 
{ ρP k (X − R [ X ] + P ) } , 

s.t. ω 0 + (1 + θ ) H P k (R [ X ]) ≤ P ≤ P , for any k ∈ M . 
(2.6)

These robust representations have been seen before in various

ways. The worst-case type decisions were axiomatically investi-

gated by Gilboa and Schmeidler (1989) in the expected utility con-

text. Not surprisingly, the robust optimisation within the Portfo-

lio Theory has its counterpart; among others, see El Ghaoui, Oks,

and Oustry (2003) , Zhu and Fukushima (2009) , Polak, Rogers, and

Sweeney (2010) , Zymler, Kuhn, and Rustem (2013) and Kakouris

and Rustem (2014) . The worst-case and worst-case regret CVaR-

based decisions in portfolio optimisation are discussed in Huang,

Zhu, Fabozzi, and Fukushima (2010) . According to our knowledge,

the optimal insurance contract problem under parameter/model

uncertainty has been investigated only by Balbás, Balbás, Bal-

bás, and Heras (2015) , where only the worst-case is investigated
or a large class of risk measures that includes CVaR, but not

aR, and a particular choice of the uncertainty set of probability

easures. 

We now discuss the choice of the feasibility set, i.e. C or C co .

ote that whenever the risk transfer is made between two large

nsurance companies, the moral hazard may not be an issue, due

o the presence of rating agencies; rating downgrading has a huge

egative commercial impact for such insurance companies and

hus, moral hazard is less likely to occur. One may also argue

hat a risk transfer within an insurance group does not necessarily

ave to exclude the moral hazard due to the common ownership

f the buyer and seller. Nevertheless, the insurance regulator re-

uires the insurer buyer to justify the commercial purpose of such

 risk transfer. In the absence of distributional uncertainty, there is

 huge literature that discusses whether or not the indemnity of

n insurance contract should be comonotone, but in general, the

onclusion depends on the nature of the underwritten risk. On the

ther hand, the classical Pareto optimality problem explains the

hape of an “optimal” contract and the extensive existing litera-

ure discusses how viable the comonotonic property is; an inter-

sting discussion appears in Huberman, Mayers, and Smith (1983) .

ptimal transfers are shown to be comonotone (for a large class

f risk preferences) in Landsberger and Meilljson (1994) if the to-

al risk is finite, while Ludkovski and Rüschendorf (2008) extends

his results to unbounded risks. In summary, choosing between a

et of feasible contracts given by C or C co is related to the spe-

ific nature of the total risk that is shared and the insurance play-

rs’ risk preferences whenever the total risk distribution is known.

n the presence of distributional uncertainty, the choice of fea-

ibility set is sensitive to the nature of the total risk. Therefore,

olutions to Problems (2.4) –(2.6) are given to non-comonotone

ontracts set, C, whenever possible, otherwise the comonotone

ontracts set C co is chosen. Recall that we do not intend to

haracterise the optimal contract, but instead we examine when

ur proposed robust methods reduce the effect of distributional

ncertainty. 

Note that the feasible sets of Problems (2.4) –(2.6) are empty

f ω 0 > P . We now gather the set of assumptions, stated

s Assumption 2.1 , under which the results of the paper

old. 

ssumption 2.1. We consider m possible probability models

P 1 , . . . , P m 

} and the reference probability model P may or may

ot belong to this set. Denote M = { 1 , . . . , m } . Let X ≥ 0 be a

oss random variable and denote F k (·) = P k (X ≤ ·) , k ∈ M , its cu-

ulative distribution function (cdf) under P k , we write X ∼ P k ,

nd F k (·) = 1 − F k (·) its corresponding survival function. Moreover,

 0 ≤ P . The premium principle is based on a monotonic functional

 . 

.2. Robustness of risk measures 

In the last few years there has been a wide and open de-

ate on the robustness properties of VaR and CVaR, with rele-

ant contributions from regulators, practitioners and academics.

hese risk measures, that we denote for brevity ρ depend on

he probability model P used. The key question is whether

 small perturbation of the probability model P would result

n a small perturbation of ρP , which is detailed in the next

efinition. 

efinition 2.1. Let X n , n ≥ 1 be a sequence of random variables

ith distribution P n , n ≥ 1 and X a random variable with dis-

ribution P . A risk measure ρP (X ) is (statistically) robust at P,

f lim n →∞ 

d(P n , P) = 0 implies lim n →∞ 

| ρP n (X n ) − ρP (X ) | = 0 for

ome distance d between probability measures. 
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Different specifications of the metric d correspond to differ-

nt notions of robustness. For instance, Kiesel, Rühlicke, Stahl, and

heng (2016) consider the Wasserstein distance 

 W 

(P, Q ) := inf { E[ | X − Y | ] : X ∼ P, Y ∼ Q} 
nder which both VaR and CVaR are robust. Cont et al. (2010) use

he Lévy distance and show that there is a partial conflict between

oherent risk measures (including CVaR) and Hampel’s classical

otion of robustness, Krätschmer, Schied, and Zähle (2014) and

elbaen, Bellini, Bignozzi, and Ziegel (2016) consider continuity

ith respect to the ϕ-weak topology. We refer the interested

eader to Emmer et al. (2015) for a brief summary on the topic.

tatistical robustness is particularly relevant when the probability

easure is estimated from available data; indeed if the estimated

robability measure P n is sufficiently close to the real one (that

s d(P n , P) → 0 ) and the risk measure is robust, than ρP n can be

onsidered as a good approximation of ρP . 
Due to data scarcity, as it is often the case in practice, the esti-

ates based on the empirical measure exhibit weak statistical ev-

dence and alternative methods are necessary to consider. For ex-

mple, a more conservative approach is to consider a robustified

isk measure ρ̄ defined as follows: 

¯ (X ) = sup 

P∈S 
ρP (X ) , (2.7)

here ρP (X ) represents the risk measure for the random loss X

ith probability distribution P and S is a set of candidates mod-

ls. This approach is not new in the literature, it is at the basis

f decision making under ambiguity (that is when there is uncer-

ainty about the probability distribution). The simple idea of this

pproach is that when there is ambiguity between different mod-

ls, a conservative and therefore robust approach is to select the

ne that represents the worst scenario. In Assumption 2.1 , we as-

ume that the real probability model P may not belong to the set

. Indeed, since P is unknown, we cannot guarantee that it be-

ongs to the set of models considered. Note that taking the supre-

um over a set of models reduces the impact of model risk, but it

annot eliminate it completely. 

The specification of the set S plays a crucial role in the worst-

ase approach and, in general, is a difficult task. Clearly selecting

 wide set, increases the chances of including the real model P
nd makes the risk measure more conservative; on the other hand

f S is too large ρ̄ might become unrealistic. Several choices have

een considered in the literature and present different interpreta-

ions. In this contribution we assume S = {P 1 , . . . , P m 

} , that is we

onsider a finite set of probability measures. This choice is rather

requent in a context of model ambiguity and it has also the ben-

fit of making the problem mathematically tractable. A finite set

f models is typical in situations where there is not enough ev-

dence from data to select a model and the specification of S is

eft to experts opinion. In the context of measuring market risk,

he Standard portfolio Analysis of Risk ( SPAN, 1995 ) proposed by

he Chicago Mercantile Exchange provides an example of finite S
onsisting of 16 probability measures obtained combining up and

own movement of the volatility with up, down or no move of the

uture prices (see Artzner et al., 1999 , Section 3.2 for a detailed

escription of how these scenarios are built). To reduce the impact

f model risk in option pricing, Cont (2006) presents a worst-case

pproach over two probability measures: one providing a jump-

iffusion model and the other one a simpler diffusion model, see

xample 4.4 in his paper. In the insurance framework, an example

f finite set S is obtained considering the set of different Catastro-

he Models provided by Cat modelling agencies; the insurer then

as to take a robust decision with respect to these models, see for

nstance Calder, Couper, and Lo (2012) . 
A valid alternative for S is to consider the convex hull of

P 1 , . . . , P m 

} 

 

′ 
:= 

{ 

P : λ ≥ 0 , 1 

T λ = 1 and P(·) = 

∑ 

k ∈M 

λk P k (·) 
} 

, 

hich is precisely what Zhu and Fukushima (2009) consider when

≡ CVaR. It is shown that 

 CV aR α(X ) := sup 

P∈S ′ 
ρ(X ;P) = min 

t∈� 
max 
k ∈M 

{ 

t + 

1 

1 − α
E P k 

(
X − t 

)
+ 

} 

,

(2.8) 

here E P k (·) is the expectation with respect to P k . Clearly, 

ax 
k ∈M 

ρP k (X ) ≤ sup 

P∈S ′ 
ρ(X ;P) (2.9) 

olds for any risk measure. Proposition 2.1 shows that the “worst-

ase” definitions are identical if ρ ≡ VaR and it is followed by an

xample showing that the above inequality may hold strictly if ρ
CVaR. 

roposition 2.1. Let {P 1 , . . . , P m 

} be a set of candidate models.

hen, 

ax 
k ∈M 

VaR α(X ;P k ) = sup 

P∈S ′ 
VaR α(X ;P) 

roof. Without loss of generality, we may assume that m = 2 . It

s well-known that VaR has convex level sets, i.e. if two probabil-

ty models P 1 , P 2 are such that VaR α

(
X ;P 1 

)
= VaR α

(
X ;P 2 

)
, then

aR α

(
X, λP 1 + (1 − λ) P 2 

)
= VaR α

(
X;P 1 

)
for any λ ∈ [0, 1] (see

neiting, 2011 ). Further, VaR is monotone and translation invari-

nt (see properties (a) and (b) from Section 2.3 ) and therefore, we

an apply Lemma 2.2 in Bellini and Bignozzi (2015) to obtain that

aR is quasilinear. That is, 

min 

 ∈{ 1 , 2 } 
VaR α

(
X ;P k 

)
≤ VaR α

(
X ;λP 1 + (1 − λ) P 2 

)
≤ max 

k ∈{ 1 , 2 } 
VaR α

(
X, P 

)
. 

hich in turn implies that 

up 

P∈S 
VaR α(X, P) ≤ max 

k ∈{ 1 , 2 } 
VaR α(X, P) . 

he latter and (2.9) conclude the proof. �

As it has been anticipated, the same result does not

old for CVaR. Indeed, the following example shows that

ax k ∈M 

CVaR α

(
X ;P k 

)
< sup P∈S CVaR α

(
X ;P 

)
may hold. 

xample 2.1. Consider a discrete random variable X which takes

nly four values, i.e. {1, 2, 3, 4}. We only consider two possible

robability models, P 1 and P 2 , such that 

P 1 (X = 1) = 0 , P 1 (X = 2) = 

1 

2 

, P 1 (X = 3) = 

1 

6 

, P 1 (X = 4) = 

1 

2 

,

P 2 (X = 1) = 

1 

2 

, P 2 (X = 2) = 0 , P 2 (X = 3) = 0 , P 2 (X = 4) = 

1 

2 

. 

t is not difficult to find that CVaR 2 / 3 (X;P 1 ) = CVaR 2 / 3 (X;P 2 ) = 

13 
4 .

et P 0 = 

1 
2 P 1 + 

1 
2 P 2 , i.e. 

 0 (X =1) = 

1 

4 

, P 0 (X =2) = 

1 

4 

, P 0 (X =3) = 

1 

12 

, P 0 (X =4) = 

5 

12 

, 

hich is an element of ∈ S ′ . Clearly, CVaR 2 / 3 

(
X;P 0 

)
= 

27 
8 , which

ustifies our claim as follows: 

13 = max CVaR α(X ;P k ) < CVaR α(X ;P 0 ) ≤ sup CVaR α(X ;P) . 

4 k ∈{ 1 , 2 } P∈S ′ 
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2.3. Properties of the worst-case risk measure 

Some properties of the worst-case risk measures have been

briefly discussed in Zhu and Fukushima (2009) and therefore, we

further outline the main traits of this class. We now restate some

of the properties often satisfied by a risk measure and examine if

its worst-case counterpart preserves these properties. Thus, 

(a) Monotonicity : ρP (X ) ≤ ρP (Y ) holds if P(X ≤ Y ) = 1 . 

(b) Translation Invariance : ρP (X − m ) = ρP (X ) − m holds for any

m ∈ R . 

(c) Positive homogeneity : ρP (λX ) = λρP (X ) holds for any λ > 0.

(d) Subadditivity : ρP (X + Y ) ≤ ρP (X ) + ρP (Y ) . 
(e) Convexity : ρP 

(
βX + (1 − β) Y 

)
≤ βρP (X ) + (1 − β) ρP (Y )

holds for any β ∈ (0, 1). 

(f) Comonotonic additivity : If X , Y are comonotone, then ρP (X +
Y ) = ρP (X ) + ρP (Y ) . 

(g) Comonotonic subadditivity : If X , Y are comonotone, then

ρP (X + Y ) ≤ρP (X ) + ρP (Y ) , 

where X, Y ∈ X . By definition, X and Y are comonotone if (
X (ω) − X (ω 

′ ) 
)(

Y (ω) − Y (ω 

′ ) 
)

≥ 0 for any ω × ω 

′ ∈ 	 × 	.

It is well-known that VaR satisfies properties (a)–(c) and (f)–(g),

while CVaR fulfils all properties (a)–(g). Proposition 1 in Zhu and

Fukushima (2009) also shows that ρ̄(X ) = sup k ∈M 

ρP k (X ) satisfies

(a)–(e) if ρ satisfies (a)–(e). Properties ( f ) and ( g ) are detailed in

Proposition 2.2 . 

Proposition 2.2. Let {P 1 , . . . , P m 

} be a set of candidate models and

ρ be a risk measure that satisfies properties (f) (or (g)). Then, ρ̄(X ) =
sup k ∈M 

ρP k (X ) satisfies (g). 

Proof. Let X and Y be comonotone and assume ρ is comonotonic

additive, then 

ρ̄(X + Y ) = sup 

k ∈M 

ρ(X + Y ;P k ) = sup 

k ∈M 

{
ρ(X ;P k ) + ρ(Y ;P k ) 

}
≤ ρ(X ) + ρ(Y ) . 

If ρ is comonotonic subadditive then it is sufficient to replace

the second equality from above with a less than or equal to

inequality. �

Relaxing the assumption of properties (f)–(g) is rather com-

mon in a model uncertainty setting, where no pre-specified ref-

erence probability measure is available (for example, see Song

& Yan, 2009 ). The next example illustrates that CVaR α(X ) :=
sup k ∈M 

CVaR α

(
X;P k 

)
may be strictly comonotonic subadditive,

i.e. 

CVaR α(X + Y ) < CVaR α(X ) + CVaR α(Y ) . 

Example 2.2. Consider a discrete random variable X which takes

only three values, i.e. {2, 3, 4}. Let there be two comonotone ran-

dom variables, X and X 

2 , and only two possible probability models

{P 1 , P 2 } such that 

P 1 (X =2) = 

3 

4 

, P 1 (X =3) = 

1 

6 

, P 2 (X =2) = 0 . 8 , P 2 (X = 3) = 0 . 08

We compute CVaR at level α = 

2 
3 . It is not difficult to find that 

CVaR 2 / 3 (X ;P 1 ) = 3 , CVaR 2 / 3 (X 

2 ;P 1 ) = 9 . 5 , 

CVaR 2 / 3 (X + X 

2 ;P 1 ) = 12 . 5 

CVaR 2 / 3 (X ;P 2 ) = 2 . 96 , CVaR 2 / 3 (X 

2 ;P 2 ) = 9 . 52 , 

CVaR 2 / 3 (X + X 

2 ;P 2 ) = 12 . 48 , 

and thus, CVaR 2 / 3 

(
X + X 2 

)
< CVaR 2 / 3 (X ) + CVaR 2 / 3 

(
X 2 

)
, as previ-
ously claimed. w
. VaR robust optimisation 

In this section, we solve the worst-case scenario optimisa-

ion problem (2.4) and worst-case regret optimisation problem

2.5) under the C co × � feasibility set, when the risk measure ρ is

aR. Note that 

aR α(X − R [ X ] ;P) = VaR α(X ;P) − R 

(
VaR α(X ;P) 

)
, (3.1)

or any I ∈ C co . For brevity, we denote a k = VaR α(X;P k ) . 

.1. Worst-case scenario VaR optimisation problem 

We first observe that the objective function is increasing and

ontinuous in P and any feasible premium P is bounded below

y ω 0 + (1 + θ ) max k ∈M 

H P k 
(
R [ X] 

)
for any fixed R ∈ C co . The latter

eads us to define the following subset of C co , which essentially

uts an upper bound on the set of feasible contracts: 

 

′ = 

{ 

R ∈ C co | ω 0 + (1 + θ ) max 
k ∈M 

H P k 
(
R [ X ] 

)
≤ P 

} 

. 

q. (3.1) helps in justifying the next lemma. 

emma 3.1. If Assumption 2.1 holds with ρ ≡ VaR α , then any con-

ract R ∈ C co is feasible for Problem 2.4 with a feasibility set C co × � if

nd only if R ∈ C ′ . Further, for any fixed R ∈ C ′ , the optimal premium

s given by P ∗R = ω 0 + (1 + θ ) max k ∈M 

H P k 
(
R [ X] 

)
and the optimisa-

ion problem from (2.4) is equivalent to 

in 

R ∈C ′ 

{ 

P ∗R + max 
k ∈M 

(a k − R [ a k ]) 
} 

. (3.2)

Define now a ∗ = max k ∈M 

a k . Since R ∈ C co , the map x 
→ x − R [ x ]

s non-decreasing, and thus 

ax 
k ∈M 

(a k − R [ a k ]) = a ∗ − R [ a ∗] for all R ∈ C . 

ence, Problem (3.2) becomes min R ∈C ′ { P ∗R + a ∗ − R [ a ∗] } . By strati-

ying the set C ′ of feasible contracts according to the values ξ =
 [ a ∗] , this optimisation problem can be decomposed into a two-

tep minimisation problem: 

min 

 ≤ξ≤a ∗
{ a ∗ − ξ + min 

R ∈C ′ 
ξ

P ∗R } , where C ′ ξ = { R ∈ C ′ | R [ a ∗] = ξ} 
or any 0 ≤ ξ ≤ a ∗. (3.3)

ue to the presence of the premium constraint P ∗
R 

≤ P , the set C ′ 
ξ

ould be empty if ξ is too large. The next result explains the ef-

ective range of ξ of the outer minimisation of Problem (3.3) . The

roof relies on the simple observation that the insurance layer con-

ract 

 

∗
ξ [ X ] = (X − a ∗ + ξ ) + − (X − a ∗) + 

elongs to C co with R ∗
ξ

[ a ∗] = ξ and the fact that this contract is

inimal in the following sense: 

 

∗
ξ [ X ] ≤ R [ X ] for all R ∈ C co with R [ a ∗] = ξ. 

emma 3.2. If Assumption 2.1 holds with ρ ≡ VaR α , then for any ξ
 [0, a ∗], the set C ′ 

ξ
is non-empty if and only if 

 ≤ ξ ≤ � = max 

{ 

ξ ≤ a ∗ | ω 0 + (1 + θ ) max 
k ∈M 

H P k 
(
R 

∗
ξ [ X ] 

)
≤ P 

} 

. 

roof. If 0 ≤ ξ ≤ �, the contract R ∗
ξ

belongs to C ′ 
ξ

by construction.

o prove the converse, suppose that there exists a contract R ∈ C ′ 
ξ

ith ξ > �. Since R [ X] ≥ R ∗
ξ

[ X] , we have 

 0 + (1 + θ ) max 
k ∈M 

H P k 
(
R [ X ] 

)
≥ ω 0 + (1 + θ ) max 

k ∈M 

H P k 
(
R 

∗
ξ [ X ] 

)
> P ,

hich contradicts the definition of C ′ . �
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Recall that the premium principle H is monotone. By

emma 3.2 and the minimality of the insurance layer contract R ∗
ξ

n the set C ′ 
ξ

for 0 ≤ ξ ≤ �, the inner minimisation of Problem

3.3) is solved by the contract R ∗
ξ
, whenever 0 ≤ ξ ≤ �. Therefore,

t remains to obtain the optimal value of ξ for the outer minimi-

ation, which is essentially a one-dimensional problem. We sum-

arise our findings for the worst-case scenario VaR optimisation

roblem in the next theorem. 

heorem 3.1. If Assumption 2.1 holds with ρ ≡ VaR α , then the so-

ution ( R ∗, P ∗) of Problem (2.4) , assumed to be solved over the set

 

co × � , is given by 

 

∗[ X ] = R 

∗
ξ ∗ [ X ] = (X − a ∗ + ξ ∗) + − (X − a ∗) + 

nd P ∗ = ω 0 + (1 + θ ) max 
k ∈M 

H P k 
(
R 

∗[ X ] 
)
, 

here ξ ∗ is a solution of 

min 

 ≤ξ≤�

{ 

a ∗ − ξ + ω 0 + (1 + θ ) max 
k ∈M 

H P k (R 

∗
ξ [ X ]) 

} 

. (3.4) 

oreover, the optimal objective value is a ∗ − ξ ∗ + P ∗. 

emark 3.1. The solution of (3.4) is unique as long as g and all F i 
re strictly increasing functions. 

In the rest of this section, we demonstrate how Problem

3.4) can be solved rather explicitly, whenever H is a distortion

remium principle as given in (2.1) . Note that g is non-decreasing,

nd thus, H holds the comonotonic additivity property (for details,

ee Dhaene, Kukush, Linders, & Tang, 2012 ). Consequently, 

 P k (R 

∗
ξ [ X ]) = H P k ((X − a ∗ + ξ ) + ) − H P k ((X − a ∗) + ) 

= 

∫ a ∗

a ∗−ξ
g( F k (t )) dt . 

lso, the above function is convex in ξ ∈ [0, a ∗] for any k ∈ M ,

ince g is non-decreasing. Thus, 

 (ξ ) = a ∗ − ξ + ω 0 + (1 + θ ) max 
k ∈M 

H P k 

(
R 

∗
ξ [ X ] 

)
s convex in ξ ∈ [0, �]. Therefore, Problem (3.4) can be solved by

nding the directional derivatives of G . To this end, we define the

irectional derivative of an arbitrary convex function H at ξ along

he direction d ∈ � , if exists, as 

 

′ (ξ ; d) = lim 

t↘ 0 

H(ξ + td) − H(ξ ) 

t 
, 

hich is positively homogeneous in d ∈ � . The right-hand and left-

and derivatives of H can be expressed as H 

′ + (ξ ) = H 

′ (ξ ; 1) and

 

′ −(ξ ) = −H 

′ (ξ ; −1) , respectively. A point ξ ∗ ∈ [0, �] is optimal

or Problem (3.4) if and only if it satisfies the first order condition

 

′ (ξ ∗; ξ − ξ ∗) ≥ 0 for all ξ ∈ [0, �]. The next lemma provides a

implified expression for the directional derivative of G . 

emma 3.3. Assume that H satisfies (2.1) and denote 

 (ξ ) = 

{ 

i ∈ M 

∣∣∣H P i 

(
R 

∗
ξ [ X ] 

)
= max 

k ∈M 

H P k 

(
R 

∗
ξ [ X ] 

)} 

, 

or any 0 ≤ ξ ≤ �. The directional derivative of G at ξ along the

irection d ∈ � is given by 

 

′ (ξ ; d) = 

{
d{−1 + (1 + θ ) max i ∈ A (ξ ) g( F i ((a ∗ − ξ )−)) } , d ≥ 0 , 

d{−1 + (1 + θ ) min i ∈ A (ξ ) g( F i (a ∗ − ξ )) } , d < 0 . 

roof. For each k ∈ M , let 

 k (ξ ) = 

∫ ∞ 

a ∗−ξ
g( F k (t)) dt − H P k ((X − a ∗) + ) , ξ ∈ [0 , �] . 
ts right-hand and left-hand derivatives at ξ are given by 

 

′ 
k (ξ , 1) = g( F k ((a ∗ − ξ )−)) and − g ′ k (ξ , −1) = g( F k (a ∗ − ξ )) , 

espectively. Therefore, the directional derivative of g k at ξ ∈ [0, �]

long the direction d ∈ � equals to 

 

′ 
k (ξ ; d) = 

{ 

d g( F k 
(
(a ∗ − ξ )−)) , d ≥ 0 , 

d g( F k (a ∗ − ξ )) , d < 0 . 

ur claim follows from the classical Danskin’s Theorem (see for

xample, Corollary 1.30 of Güler, 2010 ), which asserts that 

( max 
k ∈M 

g k ) 
′ (ξ ; d) = max 

i ∈ A (ξ ) 
g ′ i (ξ ; d) , d ∈ � . 

he proof is now complete. �

.2. Worst-case regret VaR optimisation problem 

We turn our attention to the worst-case regret VaR optimisa-

ion from (2.5) . Since we are no longer able to use similar argu-

entation as in the previous subsection, the usual approach in the

xisting literature is to assume a discrete distributed X . That is,

 = 

{
x 1 , . . . , x n 

}
, where without loss of generality, it can be as-

umed that x 1 ≤ · · · ≤ x n . Let us denote p ik = P k (X = x i ) . Clearly,

 k ≥ 0 and 1 T p k = 1 for all k ∈ M , where 0 and 1 are the n -

imensional column vector of zeroes and ones, respectively. By

onvention, the inequality and equality between two vectors is un-

erstood componentwise. Denote R [ x i ] = y i and if R ∈ C co , then we

hould have 

 ≤ y i ≤ x i and 0 ≤ y i − y i −1 ≤ x i − x i −1 , for all i ∈ M , 

here by convention y 0 = x 0 = 0 . The above can be rewritten as

 ≤ y ≤ x and 0 ≤ A y ≤ A x with the (n − 1) × n matrix A given by 

 = 

⎛ ⎝ 

−1 1 · · · 0 0 

. . . 
. . . 

0 0 · · · −1 1 

⎞ ⎠ . 

ince x − y is increasingly ordered, then 

aR α

(
X − R [ X ] 

)
= x p(k ) − y p(k ) , where p(k ) = min 

j 

{ 

j ∑ 

i =1 

p ik ≥ α

}
n order to make our optimisation problems tractable, we assume

hat H satisfies (2.1) . Thus, 

 P k [ X ] = πT 
k x (3.5) 

s a result of Dhaene et al. (2012) . Specifically, If g is a left contin-

ous function, then 

ik = g 

( 

1 −
i −1 ∑ 

j=1 

p jk 

) 

− g 

( 

1 −
i ∑ 

j=1 

p jk 

) 

, 1 ≤ i ≤ n, k ∈ M . 

onsequently, Problem (2.5) is an LP and we state this result as

roposition 3.1 . 

roposition 3.1. Let Assumption 2.1 hold with ρ ≡ VaR α . If X is a

iscrete random variable that takes the values 
{

x 1 , . . . , x n 
}

such that

 1 ≤ . . . ≤ x n and H satisfies (2.1) , then solving Problem (2.5) over the

et C co × � is equivalent to solving 

 

 

 

 

 

 

 

 

 

min 

( y ,P,r) ∈� n ×�×� 
r, 

s.t. x π(k ) − y π(k ) + P − ρ∗
k 

≤ r, k ∈ M , 

ω 0 + (1 + θ ) πT 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x , 

0 ≤ A y ≤ A x , 
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where ρ∗
k 

is the optimal objective value of Problem (2.6) . That is, ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ρ∗
k 

= min 

( y ,P) ∈� n ×� 
{ x p(k ) − y p(k ) + P } , 

s.t. ω 0 + (1 + θ ) πT 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x , 

0 ≤ A y ≤ A x . 

Remark 3.2. Keeping the same set of assumptions as given in

Proposition 3.1 , solving Problem (2.4) over the set C co × � is equiv-

alent to solving ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

min 

( y ,P,r) ∈� n ×�×� 
r, 

s.t. x π(k ) − y π(k ) + P ≤ r, k ∈ M , 

ω 0 + (1 + θ ) πT 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x , 

0 ≤ A y ≤ A x . 

Remark 3.3. Due to relation (3.5) , a variant of the LP reformu-

lations from Proposition 3.1 and Remark 3.2 can be written for

any case in which the risk measure ρ is a distortion risk mea-

sure. The key assumption is that R ∈ C co and the fact that distor-

tion risk measures are comonotonic and thus, Problems (2.4) –(2.6)

can be reformulated as LPs for any comonotone additive risk

measure ρ . For example, any risk measure that satisfies (2.1) is

comonotone additive (see Dhaene et al., 2012 ). Note that y and

x − y are increasingly ordered (as x is increasingly ordered), which

make the optimisation problems under the set C co × � tractable.

The lack of ordering could be overcome only if ρ ≡ CVaR α , as

it can be seen in Section 4 , where the comonotonic assumption

is removed. Finally, if the cost of insurance follows a different

premium calculation, i.e. does not satisfy (2.1) , then the corre-

sponding constraints may not be linear, but are Second-order cone

programming (SOCP) representable for any well-known premium

calculations (for details, see Asimit, Gao, Hu, & Kim, 2017 ), case

in which, we only require I ∈ C co , i.e. x − y is increasingly or-

dered, in order to preserve the linearity of the objective functions.

Thus, if H does not satisfy (2.1) , the optimisation problems are of

SOCP-type. 

4. CVaR robust optimisation 

The current section provides numerical solutions to the CVaR-
type of Problems (2.4) and (2.5) under similar assumptions to
the ones made in Section 3.2 . The crucial change is made by
the fact that the set of feasible solutions, namely C × � , is
larger and moral hazard is permitted. Recall that if moral haz-
ard is excluded, then the optimisation problems could have been
solved as in Section 3.2 (for details, see Remark 3.3 ). More-
over, the rationality constraints, 0 ≤ R [ X ] ≤ X , are still required.
With the help of Eq. (2.3) , Problem (2.4) can be rewritten as
follows: ⎧ ⎪ ⎨ ⎪ ⎩ 

min 
(y ,P) ∈� n ×� 

max 
k ∈M 

min 
t ∈� m 

{ 
t k + 

1 
1 −α p T 

k 

(
x − y − 1 t k 

)
+ + P 

} 
, 

s.t. ω 0 + (1 + θ ) p T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

(4.1)

where without loss of generality H P k = E P k with k ∈ M could be

assumed (see Remark 3.3 ). In addition, Problem (2.5) is given by 

⎧ ⎪ ⎨ ⎪ ⎩ 

min 
(y ,P) ∈� n ×� 

max 
k ∈M 

min 
t ∈� m 

{ 
t k + 

1 
1 −α p T 

k 

(
x − y − 1 t k 

)
+ + P − ρ∗

k 

} 
, 

s.t. ω 0 + (1 + θ ) p T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

(4.2)
ecall that ρ∗
k 

represents the optimal value of the objective func-

ion from Problem (2.6) with ρ ≡ CVaR α and is given by 

 

 

 

 

 

ρ∗
k 

= min 
( t, y ,P ) ∈�×� n ×� 

{ 
t + 

1 
1 −α p T 

k 

(
x − y − 1 t 

)
+ + P 

} 
, 

s.t. ω 0 + (1 + θ ) πT 
k 

y ≤ P k ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

(4.3)

n the remaining part of this section, we show that Problems (4.1) –

4.3) can be reduced to LP reformulations. The next theorem deals

ith Problem (4.1) . 

heorem 4.1. Let Assumption 2.1 hold with ρ ≡ CVaR α . If X is a
iscrete random variable that takes the values { x 1 , . . . , x n } and H P k =
 P k for all k ∈ M , then solving Problem (4.1) over the set C × � is
quivalent to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

min 
( t , y , ξ,P,z ) ∈� m ×� n ×� n×m ×�×� 

z, 

s.t. t k + 

1 
1 −α p T 

k 
ξk + P ≤ z, k ∈ M , 

x − y − 1 t k ≤ ξk , k ∈ M , 

0 ≤ ξk , k ∈ M , 

ω 0 + (1 + θ ) p T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

(4.4)

roof. Let ξk = 

(
ξ1 k , . . . , ξnk 

)T 
for all k ∈ M . Then, (4.1) may be

quivalently formulated as: 

 

 

 

 

 

 

 

 

 

 

 

min 
( y , ξ,P ) ∈� n ×� n×m ×� 

max 
k ∈M 

min 
t ∈� m 

{
t k + 

1 
1 −α p T 

k 
ξk + P 

}
, 

s.t. x − y − 1 t k ≤ ξk , k ∈ M , 

0 ≤ ξk , k ∈ M , 

ω 0 + (1 + θ ) p T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

(4.5)

Note that the objective function in (4.5) is increasing in ξ ik for
ll 1 ≤ i ≤ n and k ∈ M . Thus, the first two constraints from the
atter optimisation problem ensure that ξk = 

(
x − y − 1 t k 

)
+ for k ∈

 . Thus, (4.5) can be rewritten as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

min 
( y , ξ,P,z ) ∈� n ×� n×m ×�×� 

z, 

s.t. min t ∈� m 
{

t k + 

1 
1 −α p T 

k 
ξk + P 

}
≤ z, k ∈ M , 

x − y − 1 t k ≤ ξk , k ∈ M , 

0 ≤ ξk , k ∈ M , 

ω 0 + (1 + θ ) p T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

(4.6)

We now show that 
(
y ∗, ξ∗

, P ∗, z ∗
)

solves Problem (4.6) if and

nly if 
(
t ∗, y ∗, ξ∗

, P ∗, z ∗
)

solves Problem (4.4) , where 

 

∗ = argmin t ∈� m 
{ 

t k + 

1 

1 − α
p 

T 
k ξ

∗
k + P ∗

} 

for all k ∈ M . (4.7)

uppose that 
(
y ∗, ξ∗

, P ∗, z ∗
)

solves Problem (4.6) , which implies

hat 
(
t ∗, y ∗, ξ∗

, P ∗, z ∗
)

is a feasible solution to Problem (4.4) . If

t ∗, y ∗, ξ∗
, P ∗, z ∗

)
does not solve Problem (4.4) , then there exists

 feasible solution 

(
t ′ , y ′ , ξ′ 

, P ′ , z ′ 
)

such that z ′ < z ∗. Now, for all

 ∈ M we have that 

in 

t ∈� m 

{ 

t k + 

1 

1 − α
p 

T 
k ξk + P 

} 

≤ t ′ k + 

1 

1 − α
p 

T 
k ξ

′ 
k + P ′ ≤ z ′ . (4.8)

hus, 
(
y ′ , ξ′ 

, P ′ , z ′ 
)

is feasible to Problem (4.6) , which contradicts

hat 
(
y ∗, ξ∗

, P ∗, z ∗) is an optimal solution to Problem (4.6) . 
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mal solution of (5.3) . The proof is now complete. �
Conversely, suppose that 
(
t ′ , y ′ , ξ′ 

, P ′ , z ′ 
)

solves Problem (4.4) .

q. (4.8) implies that 
(
y ′ , ξ′ 

, P ′ , z ′ 
)

is feasible to Problem (4.6) . If

y ′ , ξ′ 
, P ′ , z ′ 

)
does not solve Problem (4.6) , then there exists a feasi-

le solution 

(
y ∗, ξ∗

, P ∗, z ∗
)

such that z ∗ < z ′ . Then, 
(
t ∗, y ∗, ξ∗

, P ∗, z ∗
)

olves Problem (4.4) , where t ∗ is defined as in (4.7) . The latter con-

radicts our initial assumption that 
(
t ′ , y ′ , ξ′ 

, P ′ , z ′ 
)

is an optimal

olution to Problem (4.4) . The proof is now complete. �

Finally, we solve Problems (4.2) and (4.3) . By following the

ame arguments as provided in the proof of Theorem 4.1 , one may

how our claims from Proposition 4.1 , and therefore, the proofs are

eft to the reader. 

roposition 4.1. Let Assumption 2.1 hold with ρ ≡ CVaR α . If X is a

iscrete random variable that takes the values { x 1 , . . . , x n 
}

and H P k =
 P k for all k ∈ M , then solving Problem (4.3) over the set C × � is

quivalent to 
 

 

 

 

 

 

 

 

 

 

 

ρ∗
k 

= min 

( t, y , ξ,P ) ∈�×� n ×� n ×� 

{
t + 

1 
1 −α p 

T 
k 
ξ + P 

}
, 

s.t. x − y − 1 t ≤ ξ, 

0 ≤ ξ, 

ω 0 + (1 + θ ) p 

T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

oreover, Problem (4.2) is equivalent to 
 

 

 

 

 

 

 

 

 

 

 

 

 

min 

( t , y , ξ,P,z) ∈� m ×� n ×� n×m ×�×� 
z, 

s.t. t k + 

1 
1 −α p 

T 
k 
ξk + P − ρ∗

k 
≤ z, k ∈ M , 

x − y − 1 t k ≤ ξk , k ∈ M , 

0 ≤ ξk , k ∈ M , 

ω 0 + (1 + θ ) p 

T 
k 

y ≤ P ≤ P , k ∈ M , 

0 ≤ y ≤ x . 

. Pareto robust optimisation 

Robust optimal contracts have been found in Sections 3 and

 without discussing the drawbacks and possible remedies of our

roposed robust solutions. One major issue is when there are mul-

iple robust solutions and we explain our point by considering the

ollowing general worst-case optimisation problem: 

in 

x ∈X 
max 
k ∈M 

f k ( x ) , with f k : � 

n → � , (5.1) 

here X ∈ � 

n is a non-empty feasibility set. Denote X 

Ro =
rg min x ∈X max k ∈M 

f k ( x ) the Robust solution set corresponding to

5.1) . Identifying the Pareto solutions is a classical problem in eco-

omics, since those solutions make the allocation amongst various

layers as fair as possible, in the sense that no improvement could

e made for one or more players without affecting the allocation

f at least one player. The mathematical formulation of the Pareto

olution set corresponding to (5.1) is given by: 

 

Pa = 

{
x ∈ X | � ̃  x ∈ X s.t. f k ( x ) ≥ f k 

(̃
 x 

)
or all k ∈ M and at least one inequality is strict 

}
. 

t is not surprising that a Pareto solution may not be an element

f X 

Ro , since worst-case type solutions are concerned only with

xtreme scenarios. Further, x ∗ ∈ X 

Ro does not always imply that

 

∗ ∈ X 

Pa , when (5.1) admits multiple solutions. It is not difficult

o show that if x ∗ is the unique solution of (5.1) then, x ∗ ∈ X 

Pa .

herefore, it is possible to solve (5.1) and produce a robust solu-

ion that is suboptimal for all concurrent objectives, which plays

avoc with the entire decision process. Recall that Remark 3.1 ex-

lains when the closed-form solution is unique and one may show

n that case that the unique solution is Pareto optimal as well. 

Appa (2002) and Mangasarian (1979) provide methodologies to

heck the uniqueness property of an LP and therefore, there is no
ssue with linear-type (5.1) optimisation problems with a unique

olution. It is still not clear how to verify if a solution of (5.1) is

n element of X 

Pa . In addition, it would be interesting to provide

 constructive method to generate solutions from X 

Ro 
⋂ 

X 

Pa . These

re the aims of this section. Specifically, we first note that the dis-

rete versions of (2.4) and (2.5) have the following linear represen-

ation: 

in 

x ∈� n 
max 
k ∈M 

c T k x + d k , s.t. A k x ≤ b k , k ∈ M , (5.2) 

ith known A k , b k , c k , d k matrices and column vectors of appro-

riate dimensions and known scalars d k . The main result of this

ection, stated as Theorem 5.1 , simply says how to always find a

areto and robust optimal solution for (5.2) by solving at most one

dditional LP. These results are inspired by Theorem 1 of Iancu and

richakis (2014) that solves a similar linear problem, where the

ecision-maker perceives the uncertainty in a very different way. 

heorem 5.1. Let x ∗ be any optimal solution of (5.2) , where the latter

roblem is assumed to be non-trivial, i.e. c k with k ∈ M are not all

ull vectors. Consider the following optimisation problem: 

in 

y 

∑ 

k ∈M 

c T k y , s.t. A k ( x 

∗ + y ) ≤ b k , c T k y ≤ 0 , k ∈ M . (5.3) 

f the optimal value in (5.3) is zero, then x ∗ ∈ X 

Ro 
⋂ 

X 

Pa in (5.2) . If

he optimal value in (5.3) is negative, then x ∗ + y ∗ ∈ X 

Ro 
⋂ 

X 

Pa in

5.2) , where y ∗ is an optimal solution of (5.3) . 

roof. It is not difficult to find that the objective function of

5.3) is always non-positive. Assume now that the objective func-

ion is zero such that x ∗ is not Pareto solution, but is a robust op-

imal solution of (5.2) . Therefore, there exists a feasible solution ˆ x

f (5.2) such that 

 

T 
k x 

∗ + d k ≥ c T k ̂  x + d k , for all k ∈ M (5.4) 

nd at least one inequality holds strictly. Denote ˆ y = ˆ x − x ∗ and

ince ˆ x is a feasible solution of (5.2) , we get that 

 k ( x 

∗ + ̂  y ) = A k ̂  x ≤ b k , for all k ∈ M . 

ecall that Eq. (5.4) tells us that c T 
k ̂

 x ≤ c T 
k 

x ∗ for all k ∈ M , and in

urn we get that 

 

T 
k ̂  y = c T k ̂  x − c T k x 

∗ ≤ 0 , for all k ∈ M . 

hus, ˆ y is a feasible solution of (5.3) . Moreover, Eq. (5.4) suggests

hat c T 
k ̂

 x < c T 
k 

x ∗ for some k ∈ M , and therefore, c T 
k ̂

 y is negative for

ome k ∈ M . Consequently, the optimal objective value in (5.3) is

egative, which contradicts our assumption of a null optimal ob-

ective value. 

Assume now that the optimal objective value in (5.3) is nega-

ive. Note first that x ∗ + y ∗ is feasible in (5.2) , since it is feasible in

5.3) . Assume that x ∗ + y ∗ is not a Pareto solution, but is a robust

ptimal solution of (5.2) . Thus, there exists a feasible solution, ̃  x , of

5.2) such that x ∗ + y ∗ is Pareto dominated by ̃  x . The mathematical

ormulation of the former is that 

 

T 
k 

(
x 

∗ + y ∗
)

+ d k ≥ c T k ̃  x + d k , for all k ∈ M (5.5) 

nd at least one inequality holds strictly. Denote ˜ y = ̃

 x − x ∗ and

ince ˜ x is a feasible solution of (5.2) , one may find that x ∗ + ̃

 y is

 feasible solution to (5.2) as follows: 

 k 

(
x 

∗ + ̃

 y 
)

= A k ̃  x ≤ b k , for all k ∈ M . 

ow, Eq. (5.5) and the fact that y ∗ is feasible solution for (5.3) im-

ly that 

 

T 
k ̃

 y = c T k ̃  x − c T k x 

∗ ≤ c T k y 
∗ ≤ 0 , 

hich shows that ̃  y is feasible in (5.3) . We also know that at least

ne inequality from Eq. (5.5) is a strict inequality and as a re-

ult, one of the above inequality holds strictly, which results in
 

k ∈M 

c T 
k ̃

 y < 

∑ 

k ∈M 

c T 
k 

y ∗. The latter contradicts that y ∗ is an opti-
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6. Numerical analysis 

This section provides numerical illustrations to our worst-case

scenario and regret optimisation problems from (2.4) and (2.5) , re-

spectively. Recall that in order to empirically solve these problems,

a sample x = (x 1 , x 2 , . . . , x n ) 
T , is drawn from the underlying distri-

bution of X , and in turn, we find the optimal insurance contract

y ∗ = (y ∗1 , y 
∗
2 , . . . , y 

∗
n ) 

T and the optimal premium P ∗. Let ( y ∗wc , P 
∗
wc )

and ( y ∗wr , P 
∗
wr ) denote the empirical optimal solutions to our robust

models (2.4) and (2.5) , respectively. Our main aim is to give a qual-

ity comparison between ( y ∗w 

, P ∗w 

) , w ∈ { wc, wr} , and a best possible

choice ( y ∗, P ∗) . Essentially, the latter is the “best solution” based

on estimating a particular model chosen via two well-known stan-

dard statistical goodness-of-fit methods, namely Akaike Informa-

tion Criterion (AIC) and Corrected Akaike Information Criterion (AICc),

which are denoted as ( y ∗
AIC 

, P ∗
AIC 

) and ( y ∗
AICC 

, P ∗
AICC 

) , respectively. We

believe that those comparisons are fair and explain the advantages

and disadvantages of robust optimisation over a standard optimi-

sation after choosing the most significant model (in the statistical

sense). Finally, recall that all optimisations are implemented on a

desktop with 6 core Intel i7-5820K at 3.30 gigahertz, 16 gigabytes

RAM, running Linux x64, MATLAB R2014b, CVX 2.1. 

The parameterisation employed in our empirical optimisation

assumes that the loss variable X is LogNormal distributed with

mean E(X ) = 5 , 0 0 0 and standard deviation 

√ 

3 × E(X ) . An ex-

pected value premium principle with a risk loading factor θ = 0 . 25

and no fixed/administrative costs, i.e. ω 0 = 0 , is assumed. In ad-

dition, P = 

(1+ θ ) E(X ) 
2 . Since the underlying loss distribution of X

is unknown, five candidate models are further assumed by the

decision-maker: 

(i) Model 1: Exponential distribution with mean 1/ ν . 

(ii) Model 2: LogNormal distribution with parameters ( μ, σ 2 ). 

(iii) Model 3: Pareto distribution with parameters ( α, λ) and cdf

F (z) = 1 −
(

λ
λ+ z 

)α
, z > 0 . 

(iv) Model 4: Weibull distribution with parameters ( c , γ ) and cdf

F (z) = 1 − e −cz γ , z > 0 . 

(v) Model 5: Empirical distribution. 

Recall that p 5 = 

1 
n 1 . For all other models, p k ’s are obtained by

discretising the Maximum Likelihood fitted model. For example, 

p ik = F k 

(
x i +1 + x i 

2 

; ˆ ν
)

− F k 

(
x i + x i −1 

2 

; ˆ ν
)
, 

for all i = 1 , . . . , n, k ∈ { 1 , 2 , 3 , 4 } , 
where by convention x 0 = −∞ and x n +1 = ∞ . Moreover, ˆ ν is the

Maximum Likelihood estimate of the unknown parameters. 

The next step is to understand whether or not robust op-

timisation reduces the variability of the optimal decision. Thus,

( y ∗wc , P 
∗
wc ) , ( y 

∗
wr , P 

∗
wr ) , ( y 

∗
AIC 

, P ∗
AIC 

) and ( y ∗
AICC 

, P ∗
AICC 

) are compared un-

der three collections of candidate models denoted as M j , j ∈
{2, 4, 5}. In particular, M 2 := { 1 , 5 } , M 4 := { 1 , 3 , 4 , 5 } and M 5 :=
{ 1 , 2 , 3 , 4 , 5 } . Recall that our sample is drawn from a LogNormal

distribution model and for this reason the “true model”, i.e. Model

2, is purposely ruled out from M 2 and M 4 . Therefore, it would

be interesting to understand the effect of reducing the model risk

and analyse the robust optimal solutions under M 

∗
2 := { 2 , 5 } and

M 

∗
4 

:= { 2 , 3 , 4 , 5 } . That is, Model 1 (that exhibits the lightest tail

amongst all considered parametric models) is replaced by the “true

model” (with a moderated light tail). For each of the model col-

lection M j and M 

∗
l 
, j ∈ {2, 4, 5} and l ∈ {2, 4}, ( y ∗wc , P 

∗
wc ) and

( y ∗wr , P 
∗
wr ) are obtained by empirically solving the robust models

(2.4) and (2.5) with M = M j and M = M 

∗
l 
. 

Before we explain the procedure of finding ( y ∗
AIC 

, P ∗
AIC 

) and

( y ∗
AICC 

, P ∗
AICC 

) , we briefly explain the AIC and AICc model selection.

Given that a sample x and a set of candidate probability mod-

els, the AIC value of Model k is calculated as AIC k = 2 q k − 2 Ln 
(

ˆ L k 
)
,

here q k is the number of parameters estimated and 

ˆ L k is the

aximum value of the likelihood function of Model k . Under the

IC model selection criterion, the preferred Model k ∗ is the one

hat gives the smallest AIC value, i.e. k ∗ = argmin k ∈M 

AIC k . On the

ther hand, the AICc value of Model k penalises the utility of each

odel for its complexity when the sample size n is not large, i.e.

ICc k = 2 q k × n 
n −1 −q k 

− 2 Ln 
(

ˆ L k 
)
. Similarly, the preferred Model k ∗∗

nder the AICc criterion is chosen to have the smallest AICc value,

.e. k ∗∗ = argmin k ∈M 

AICc k . Finally, ( y ∗
AIC 

, P ∗
AIC 

) and ( y ∗
AICC 

, P ∗
AICC 

) are

btained by solving (2.4) with M = { k ∗} and M = { k ∗∗} , respec-

ively. 

Denote the underlying distribution of X as Model 0 that is

quipped with its discretised probability vector p 

∗
0 obtainable as

efore: 

p i 0 = F 0 

(
x i +1 + x i 

2 

)
− F 0 

(
x i + x i −1 

2 

)
, for all i = 1 , . . . , n, 

here F 0 is the cdf of X , i.e. a LogNormal distribution with param-

ters defined earlier. Let ( y ∗
T 
, P ∗

T 
) be the optimal solution obtained

y solving a non-robust version of Problem 2.4 with M = { 0 } as

iven by p 

∗
0 
. This optimal solution mimics the ideal optimal de-

ision, since the “true” distribution is assumed to be known and

hus, all possible robust methods are compared with the decision

nder Model 0. Clearly, the model risk induces uncertainty with

he model choice and this issue is numerically experimented in the

emaining part of this section. In order to compare various deci-

ions, we need to measure the distance between the robust meth-

ds and the one obtained via Model 0. That is, each optimal con-

ract y ∗
ξ
, where ξ ∈ { wc, wr, AIC, AIC C } , is compared to the bench-

ark optimal contract y ∗
T 

as follows: 

ξ = 

n ∑ 

i =1 

| y ∗iξ − y ∗iT | × p i 0 for all ξ ∈ { wc, wr, AIC, AIC C } . 

learly, the smaller the value for �ξ is, the more robust of a de-

ision is achieved. This criterion, further called simple criterion , as-

esses the choice of the optimal contract and it would be inter-

sting to understand the possible drawbacks of those robust con-

racts, which may require increased premiums. A composite crite-

ion would be needed when comparing ( y ∗w 

, P ∗w 

) to ( y ∗c , P ∗c ) and is

iven by: 

a) ( y ∗w 

, P ∗w 

) is preferred and called “good scenario” if �w 

< �c and

P ∗w 

− P ∗c < 10 −2 ; 

b) ( y ∗c , P ∗c ) is preferred and called “bad scenario” if �w 

> �c and

P ∗w 

− P ∗c > −10 −2 . 

or any given w ∈ { wc, wr} and c ∈ { AIC , AICC }. Our numerical illus-

rations generate samples of size n ∈ {25, 50, 100, 250} for N = 500

imes and compare the robust optimal decisions to the AIC non-

obust optimal decisions under the two criteria (simple and com-

osite). Extensive numerical experiments (for various parametric

odels and sample sizes) have shown that the AIC and AICc-based

ptimal decisions lead to similar results and for this reason, only

IC results are further reported. That is, we display the number of

good” and “bad” scenarios, namely G w,AIC and B w,AIC , respectively,

here w ∈ { wc, wr} . 
We first examine the VaR 0.75 -based optimal solutions for the

imple test, where only the robustness of the risk transfer is anal-

sed. Table 6.1 shows those results when the “true model” is re-

oved from two of the three candidate models, while Table 6.2

isplays similar results when the LogNormal is always present

mongst all potential parametric distributions. 

Clearly, introducing the “true model” amongst the potential

odels, our robust methods are more efficient, but not sufficiently

nough for various sample sizes; there is a marginal incentive to

se our methods for small and medium sized samples. The results
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Table 6.1 

Number of good and bad scenarios for VaR 0.75 -based scenarios within 500 samples of various sample 

sizes n and collection of candidate models {M 2 , M 4 , M 5 } under the simple criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 

G wc,AIC 222 217 225 196 195 195 143 143 143 67 67 68 

B wc,AIC 278 283 275 304 305 305 357 357 357 433 433 432 

G wr,AIC 258 257 250 255 246 236 200 185 182 125 110 109 

B wr,AIC 242 243 250 245 254 264 300 315 318 375 390 391 

Table 6.2 

Number of good and bad scenarios for VaR 0.75 -based scenarios within 500 samples of various sample 

sizes n and collection of candidate models {M 

∗
2 , M 

∗
4 , M 5 } under the simple criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 

G wc,AIC 222 225 279 196 179 291 143 134 310 67 47 278 

B wc,AIC 278 275 221 304 321 209 357 366 189 433 453 222 

G wr,AIC 258 260 304 255 247 318 200 210 345 125 95 345 

B wr,AIC 242 240 196 245 253 182 300 290 155 375 405 155 

Table 6.3 

Number of good and bad scenarios for non-comonotonic CVaR 0.75 -based scenarios within 500 samples 

of various sample sizes n and collection of candidate models {M 2 , M 4 , M 5 } under the simple criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 

G wc,AIC 337 349 353 307 331 338 328 331 329 307 308 291 

B wc,AIC 163 151 147 193 169 162 172 169 171 193 192 209 

G wr,AIC 336 339 339 292 304 305 287 302 268 222 240 204 

B wr,AIC 164 161 161 208 196 195 213 198 232 278 260 296 

G wcv ar,AIC 322 323 323 305 327 336 305 326 324 305 304 313 

B wcv ar,AIC 178 177 177 195 172 164 195 174 176 195 196 187 

Table 6.4 

Number of good and bad scenarios for non-comonotonic CVaR 0.75 -based scenarios within 500 samples 

of various sample sizes n and collection of candidate models {M 

∗
2 , M 

∗
4 , M 5 } under the simple criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 

G wc,AIC 337 340 354 307 308 306 328 328 315 307 309 305 

B wc,AIC 163 160 146 193 192 194 172 172 185 193 191 195 

G wr,AIC 336 340 330 292 299 270 287 295 292 222 234 265 

B wr,AIC 164 160 170 208 201 230 213 205 208 278 266 235 

G wcv ar,AIC 322 312 306 305 301 289 305 324 302 305 300 321 

B wcv ar,AIC 178 187 194 195 199 211 195 176 198 195 200 179 

Table 6.5 

Number of good and bad scenarios for non-comonotonic CVaR 0.75 -based scenarios within 500 samples of 

various sample sizes n and collection of candidate models {M 2 , M 4 , M 5 } under the composite criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 

G wc,AIC 333 345 351 307 331 338 328 331 329 307 308 291 

B wc,AIC 158 146 140 193 169 162 172 169 171 193 192 209 

G wr,AIC 332 335 336 292 304 305 287 302 268 222 240 204 

B wr,AIC 157 154 152 208 196 194 213 198 231 278 259 296 

G wcv ar,AIC 316 317 316 305 327 336 305 326 324 305 304 313 

B wcv ar,AIC 176 174 177 195 172 164 195 174 176 195 196 187 
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t  
nder the composite criterion (not reported) lead to a similar

onclusion. This is not surprising, since the VaR risk measure is

uite robust (see Cont et al., 2010 ) in the sense that the whole

ample could be contaminated, but not a single value, and still

ave the same estimate. This peculiar behaviour of this tail risk

easure explains why our methods are not recommended for

aR-based decisions. 

Next, we turn our attention to another tail risk measure,

amely CVaR 0.75 . Our results for various sample sizes n and model

ollections are presented in Tables 6.3 and 6.4 for the simple cri-

erion, while Tables 6.5 and 6.6 replicate similar results for the
omposite criterion. The first two rows of Tables 6.3 –6.6 are com-

uted via the LP formulation from Theorem 4.1 , while the results

f the third and fourth rows are based on the LP reformulation

rom Proposition 4.1 . The last two rows are obtained by optimising

he WCVaR risk measure, as defined in (2.8) . 

There is an overwhelming empirical evidence that our worst-

ase scenario method performs uniformly better that the WCVaR

obust method from Zhu and Fukushima (2009) under both crite-

ia, simple and composite, for any sample size. This could be ex-

lained by the fact WCVaR is a more conservative risk measure

han our proposed robust risk measures. It is interesting to note
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Table 6.6 

Number of good and bad scenarios for non-comonotonic CVaR 0.75 -based scenarios within 500 samples of 

various sample sizes n and collection of candidate models {M 

∗
2 , M 

∗
4 , M 5 } under the composite criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 

G wc,AIC 333 336 354 307 308 306 328 328 315 307 309 305 

B wc,AIC 158 155 137 193 192 194 172 172 185 193 191 195 

G wr,AIC 332 336 330 292 299 270 287 295 292 222 234 265 

B wr,AIC 157 152 155 208 201 227 213 205 208 278 266 235 

G wcv ar,AIC 316 306 299 305 301 289 305 324 302 305 300 321 

B wcv ar,AIC 176 185 192 195 199 211 195 176 198 195 200 179 

Table 6.7 

Number of good and bad scenarios for comonotonic CVaR 0.75 -based scenarios within 500 samples of 

various sample sizes n and collection of candidate models {M 2 , M 4 , M 5 } under the simple criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 

G wc,AIC 259 247 264 277 282 270 315 333 307 301 313 284 

B wc,AIC 241 253 236 223 217 230 185 167 193 199 187 216 

G wr,AIC 307 307 318 304 305 302 283 278 263 221 223 206 

B wr,AIC 193 193 182 196 195 198 217 222 237 279 277 294 

G wcv ar,AIC 259 271 234 264 277 256 277 296 265 282 297 267 

B wcv ar,AIC 241 229 265 236 223 244 223 204 235 218 203 233 

Table 6.8 

Number of good and bad scenarios for comonotonic CVaR 0.75 -based scenarios within 500 samples of 

various sample sizes n and collection of candidate models {M 

∗
2 , M 

∗
4 , M 5 } under the simple criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 

G wc,AIC 259 250 230 277 274 252 315 311 290 301 306 298 

B wc,AIC 241 250 270 223 226 248 185 189 210 199 194 202 

G wr,AIC 307 311 308 304 313 305 283 286 319 221 231 299 

B wr,AIC 193 189 192 196 187 195 217 214 181 279 269 201 

G wcv ar,AIC 259 249 215 264 250 202 277 273 239 282 285 233 

B wcv ar,AIC 241 251 285 236 250 298 223 227 261 218 215 267 

Table 6.9 

Number of good and bad scenarios for comonotonic CVaR 0.75 -based scenarios within 500 samples of 

various sample sizes n and collection of candidate models {M 2 , M 4 , M 5 } under the composite criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 M 5 M 4 M 2 

G wc,AIC 253 240 258 276 281 269 315 333 307 301 313 284 

B wc,AIC 239 252 235 223 217 230 185 167 193 199 187 216 

G wr,AIC 299 299 312 302 303 301 283 278 263 221 223 206 

B wr,AIC 191 191 180 196 195 198 217 222 237 279 277 294 

G wcv ar,AIC 255 267 233 263 276 255 277 296 265 282 297 267 

B wcv ar,AIC 237 225 259 236 223 244 223 204 235 218 203 233 

Table 6.10 

Number of good and bad scenarios for comonotonic CVaR 0.75 -based scenarios within 500 samples of 

various sample sizes n and collection of candidate models {M 

∗
2 , M 

∗
4 , M 5 } under the composite criterion. 

n = 25 n = 50 n = 100 n = 250 

M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 M 5 M 

∗
4 M 

∗
2 

G wc,AIC 253 243 227 276 273 252 315 311 290 301 306 298 

B wc,AIC 239 249 266 223 226 248 185 189 210 199 194 202 

G wr,AIC 299 304 304 302 311 305 283 286 319 221 231 299 

B wr,AIC 191 188 189 196 187 195 217 214 181 279 269 201 

G wcv ar,AIC 255 245 215 263 249 202 277 273 239 282 285 233 

B wcv ar,AIC 237 247 278 236 250 298 223 227 261 218 215 267 
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that the worst-case regret method tends to under-perform both

worst-case methods, but we believe that this due to the fact CVaR

is a tail risk measure. 

Tables 6.7–6.10 are the replica of Tables 6.3 –6.5 , where the set

of feasible solutions is reduced such that the insurance contracts

are assumed to be comonotone. That is, the first two rows of
ables 6.7 –6.10 are computed as explained in Remark 3.2 , while

he results of the third and fourth rows are based on an LP for-

ulation similar to the one from Proposition 3.1 . As before, the

ast two rows are obtained by optimising the WCVaR risk mea-

ure, as defined in (2.8) , but adding the comonotonicity constraint.

estricting our optimisation to comonotone contracts does not
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hange our results, but we observe a loss of power amongst all

hree robust methods, which could be explained by the fact that

n additional constraint increases the complexity of the problem.

he general conclusions do not change and there is clear evidence

o recommend our worst-case scenario method that outperforms

he WCVaR robust method from Zhu and Fukushima (2009) and

ur worst-case regret method under both criteria. 

As a final remark, it is worth mentioning that applying

heorem 5.1 to our robust methods, all numerical results remain

nchanged. Therefore, the power of results are similar to those

isplayed in the section, which suggests that one should use our

orst-case method in conjunction with Theorem 5.1 in order to

btain a robust insurance contract that economically is viable to

oth insurance players. 

. Conclusions 

The VaR and CVaR-based optimal insurance contract has been

nvestigated under uncertainty, where the model risk is taken

nto account. This source of uncertainty is considered by incor-

orating multiple plausible models that the decision-maker would

ave available via estimation, proxy models or expert opinion con-

ultation. Model risk always represents an important source of

ncertainty in risk modelling and it is more pronounced when

ata scarcity is present. Our aim has been to provide a robust

ecision and not to produce a distribution robust method of

he underlying insurance risk. Two robust methods are proposed,

amely the Worst-case and Worst-regret. Our numerical results

ave shown that our Worst-case method outperforms the Worst-

egret method for CVaR-based decisions. Moreover, our Worst-

ase method proved to be more robust than the Worst-case CVaR

ethod proposed by Zhu and Fukushima (2009) . Unfortunately,

he VaR-based decisions are not efficiently robustified for all sam-

le sizes by neither methods proposed in this paper, though en-

ouraging results are obtained for small samples. Another achieve-

ent of this paper is related to the well-known caveat in robust

ptimisation that optimal decision may be economically unaccept-

ble. That is, the optimal contract may be not efficient in the

areto optimality sense. We resolve this issue by providing a sim-

le numerical method that allows one to identify an optimal Pareto

nd robust decision that is (numerically) shown to be efficient for

educing the model risk. 
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