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ABSTRACT

Given a sample from a stationary sequence of random variables, we study the blocks
and runs estimators of the extremal index. Conditions are given for consistency and
asymptotic normality of these estimators. We show that moment restrictions assumed by
Hsing (1991, 1993) may be relaxed if a stronger mixing condition holds. The CLT for the
runs estimator seems to be proven for the first time.

1 Introduction

Let {Xi : i ≥ 1} be a strictly stationary sequence of random variables (r.v.’s) with a
marginal distribution function (df) F . For 0 ≤ m ≤ n and i, r ≥ 1 we define

Mm,n = max
m<i≤n

Xi , Mn = M0,n , M (i)
r = M(i−1)r,ir.

We suppose that sequence {Xi} possesses an extremal index θ ∈ (0, 1]. Namely, if a
threshold level un = un(τ) is chosen so that

n(1− F (un)) → τ > 0 (1.1)
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as n →∞, then
IP{Mn ≤ un} → e−θτ . (1.2)

This means that for large n, one can use the approximation

IP{Mn ≤ un} ≈ F nθ(un) (1.3)

for the distribution of the r.v. Mn. Hence, the extremal index θ is a key parameter for
the distribution of sample extremes.

The present paper is concerned with the estimation of θ.
We base our results on two types of approximations for θ. The first one was introduced

by O’Brien (1974, 1987), who showed that θ may be approximated by

θR(r, u) = P{M1,r ≤ u|X1 > u} .

The second type of approximation for θ is based on Leadbetter’s (1983) results: θ may
be approximated by

θB(r, u) = P{Mr > u}/rP{X1 > u} .

Both θR(r, u) and θB(r, u) converge to θ under suitable choices of r = rn → ∞ and
u = un → x∗ = sup{x : F (x) < 1}. This motivates the use of their sample analogs

θ̂R
n =

∑n
i=1 1I{Xi > u, Mi,i+r−1 ≤ u}∑n

i=1 1I{Xi > u} , θ̂B
n =

∑k
i=1 1I{M (i)

r > u}
∑kr

i=1 1I{Xi > u} ,

where k = [n/r], as runs and blocks estimators of the extremal index.
In this paper we suggest simple sifficient conditions for consistency and asymptotic

normality of those estimators. The results are given in Section 2; they are illustrated by
an example. Proofs are given in Section 3.

2 Consistency and Asymptotic Normality

It is assumed throughout, that the threshold u = un and the integer r = rn are chosen so
that

nIP{X1 > un} → ∞ , rnIP{X1 > un} → 0 (2.1)

as n →∞. Note that (2.1) implies that rn = o(n). We need the following notation:

pn = IP{X1 > un} , qn = IP{Mr > un} , q∗n = IP{X1 > un, M1,r ≤ un} ,

1Ii,r = 1I{M (i)
r > un} , 1Ii = 1I{Xi > un} , 1I∗i = 1I{Xi > un, Mi,i+r−1 ≤ un} .

For 1 ≤ m ≤ n we define Fm,n(u) = σ{1I{Xi > u} : m ≤ i < n}, the σ-field generated by
the variables involved, and let

ϕ(k) := ϕ(k, u) = sup |IP{B|A} − IP{B}| , (2.2)

where the supremum is taken over all sets A ∈ F1,m(u), B ∈ Fm+k,∞(u) such that
IP{A}IP{B} > 0 and m > 1.
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Theorem 1 Suppose that as n →∞,

θR
n := θR(rn, un) = q∗n/pn → θ (2.3)

and

γn :=
n∑

i=1

(1− i/n)
(
IP{1I∗i+1 = 1|1I∗1 = 1} − q∗n

)
= o(npn) (2.4)

for r = rn and r = 1. Then θ̂R
n
−→
p

θ as n →∞.

Condition (2.4) is weaker than the corresponding one in Theorem 2.1 of Hsing (1993)
(where the factor (1− i/n) seems to be missing):

lim sup
n→∞

∣∣∣∣∣
n∑

i=1

(
IP{1I∗i+1 = 1|1I∗1 = 1} − q∗n

)∣∣∣∣∣ < ∞ .

Note that |γn| ≤ ∑n
i=r ϕ(1 + i− r). Hence, a sufficient condition for (2.4) is the following

one:
n∑

i=1

ϕ(i, un) = o(npn) . (2.5)

Theorem 2 Suppose that

θB
n := θB(rn, un) = qn/rpn → θ (2.6)

as n →∞ and (k = [n/r])

δn :=
k∑

i=1

(1− i/k)(IP{1Ii+1,r = 1 | 1I1,r = 1} − qn) = o(npn) (2.7)

for r = rn and r = 1. Then θ̂B
n
−→
p

θ, as n →∞.

Note that |δn| ≤ ∑k
i=1 ϕ(1 + (i− 1)r) ≤ ∑n

1 ϕ(i). Hence, (2.7) holds if (2.5) is true.
We allow δn →∞ though it seems to be bounded in most cases. Moreover, Smith and

Weissman (1994), following Hsing et al. (1988) (i.e., assuming all the assumptions needed
for compound Poisson convergence of

∑n
1 1Ii) argue that Var

∑k
i=1 1Ii,r ≈ IE

∑k
i=1 1Ii,r ∼

npnθ, which means that δn → 0 (and, similarly, γn → 0).
Consistency of the blocks estimator θ̂B

n is proved in Hsing (1991) under more compli-
cated assumptions. Besides (2.1), Hsing assumed that

βn(ln; un)/rnpn + knβn(rn; un) → 0 for some ln = o(rn) (2.8)

IE Tr1I{Tr > npn}/rnpn → 0

IE T 2
r 1I{Tr ≤ npn}/nrnp2

n → 0
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as n → ∞, where Tr =
∑r

i=1 1I{Xi > un} and β(i, un) is a Rosenblatt strong mixing
coefficient for the sequence {1I{Xi > un} : i ≥ 1}. Conditions (2.3) and (2.6) are necessary
and sufficient for {Xi} to possess the extremal index θ.

Now we present conditions for the asymptotic normality of θ̂R
n and θ̂B

n . We need the
following notation:

Yi = 1I∗i − θR
n 1I{Xi > un} , Zi = 1Ii,r − θB

n

ir∑

j=1+(i−1)r

1Ii .

Observe that IEYi = IEZi = 0, Var Yi = θR
n (1− θR

n )pn.

Theorem 3 Suppose that θ < 1, conditions (2.3), (2.4) hold and

sup
n

ϕ(krn, un) → 0 (k →∞) . (2.9)

If (Var
∑n

i=1 Yi)/(nVar Y1) → σ2
R and r2

n = o(npn) as n →∞, then

√
npn(θ̂R

n − θR
n ) ⇒ N (0, σ2

Rθ(1− θ)) . (2.10)

Theorem 4 Suppose that conditions (2.6), (2.7), (2.9) hold, r4
n = o(npn) and

(Var
∑k

1 Zi)/npn → σ2
B as n →∞. Then

√
npn(θ̂B

n − θB
n ) ⇒ N (0, σ2

B) . (2.11)

Note that if (θR
n − θ) = o(

√
npn) and/or (θB

n − θ) = o(
√

npn) then θR
n and/or θB

n can
be replaced by θ in (2.10) and (2.11), respectively.

Hsing (1991) proved the asymptotic normality of θ̂B
n under more complicated restric-

tions. Besides (2.1) and (2.8), he imposed the following assumptions:

IE{T 2
r 1I{T 2

r > ε npn} |Tr > 0} → 0 (∀ ε > 0) ,
IE{T 2

r |Tr > 0} → σ2
H for some σ2

H > 0 .

The last one means that Var{Tr|Tr > 0} → σ2 = σ2
H − θ−2 which is the asymptotic

variance of a cluster size.
The asymptotic normality of the runs estimator seems to be proven for the first time.

Example Let {ξi}, {αi} be independent sequences of i.i.d.r.v.’s, IP{ξi ≤ x} = F (x),
IP{αi = 1} = 1 − IP{αi = 0} = 1 − ψ ∈ (0, 1). The sequence {Xi : i ≥ 1} is defined
as follows: X1 = ξ1 and for i ≥ 2, Xi = αiξi + (1 − αi)Xi−1. It is easy to check that
the marginal df of {Xi} is F , the cluster sizes are geometric with mean 1/(1− ψ), hence
θ = 1− ψ. Furthermore, with F̄ = 1− F , we have

θR(r, u) = IP{X1 > u, M1,r ≤ u, α2 = 1}/F̄ (u) (2.12)

= θIP{M1,r ≤ u} = θF (u)IEF V (u)

= θF (u)[1− θF̄ (u)]r−2;
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here V =
∑r

i=3 αi stands for a binomial r.v. with parameters (r− 2, θ). Similarly one has

θB(r, u) = {1− F (u)(1− θF̄ (u))r−1}/rF̄ (u) . (2.13)

Under (2.1),
θR

n = θ − θ2rpn + O(pn) (2.14)

and

θB
n = θ − 1

2
θ2rpn +

1− θ

r
+ o(1/r + rpn) . (2.15)

Now, for the function ϕ(k) we claim that

ϕ(k) ≤ ψk (k ≥ 1) . (2.16)

Indeed, suppose A ∈ σ(X1, . . . , Xm), B ∈ σ(Xm+k, . . .) and let ζ be the length of a 0-run
starting at αm+1 (we put ζ = 0 if αm+1 = 1). Then

IP{B, ζ < k|A} − IP{B, ζ < k} = 0

and
IP{B, ζ ≥ k|A} ≤ IP{ζ ≥ k|A} = IP{ζ ≥ k} = ψk.

This implies (2.16).
One can verify that EYiYi+j = 0 (i, j ≥ 1) and σ2

R = 1. If we choose r = rn, u = un

to satisfy (2.1), (2.3) and
r2
n = o(npn), nr2p3

n = o(1) , (2.17)

all the assumptions of Theorems 2.1 and 2.3 are satisfied. Thus, θ̂R
n is consistent, asymp-

totically unbiased and √
npn(θ̂R

n − θ) ⇒ N (0, θ(1− θ)) . (2.18)

Similar calculations show that Var
∑k

1 Zi = npnθ(1−θ)+o(npn), hence σ2
B = θ(1−θ).

In view of (2.14) and (2.15), θR
n is a better approximation for θ than θB

n . Moreover, under
(2.17) one has

√
npn(θB

n − θ) → ∞. Hence, one cannot replace θB
n by θ in (2.11). Smith

and Weissman (1994) also conclude that the runs estimator is preferred based on bias
considerations.

Hsing (1993) argues that for a large class of processes

θR(r, u)− θ = L(F̄ (u))(F̄ (u))ρ, (2.19)

where L(·) varies slowly at 0, r ≥ 2 is a constant and ρ > 0. Smith and Weissman (1994)
suppose that for a wide class of processes

θR(r, u)− θ = O(rF̄ (u) + βr) (∃β ∈ (0, 1)) (2.20)

if rF̄ (u) → 0. In our example, (2.20) holds with β = 0 and (2.19) with r = 2 :

θR(2, u) = θ(1− F̄ (u)) . (2.21)

Note that in the special situation considered by Novak (1993), θ was in fact calculated
up to O(pn). This together with (2.21) allows one to expect that in many cases θR(r, u)−
θ = O(F̄ (u)).
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3 Proofs

Proof of Theorem 2. Note that IE
∑k

i=1 1Ii,r = kθB
n rpn = kqn and IE

∑n
i=1 1Ii = npn —

these are the expectations of the numerator and denominator of θ̂B
n . We calculate

Var
k∑

i=1

1Ii,r =
k∑

i=1

Var1Ii,r + 2
∑

i<j

∑
Cov1Ii,r1Ij,r

= kqn


1− qn + 2

k∑

j=1

(1− j/k)
(
IP{M (j+1)

r > u|M (1)
r > u} − qn

)



= kqn(1− qn + 2δn) . (3.1)

Since k = [n/r],

qn = θB
n rpn → 0, kqn ∼ θB

n npn →∞, δn = o(npn) ,

the right-hand side of (3.1) is o((npn)2). Thus, by Chebychev inequality,

k∑

i=1

1Ii,r/kqn
−→
p 1 (3.2)

as n →∞. When r = 1, (3.2) implies
∑n

i=1 1Ii/npn
−→
p 1. Hence,

θ̂B
n
∼
p kqn/npn ∼ θB

n → θ

as n →∞. 2

Proof of Theorem 1. Note first that IE
∑n

i=1 1I∗i = nq∗n = nθR
n pn. Similarly to (3.1) we

show that

Var
n∑

1

1I∗i = nq∗n

(
1− q∗n + 2

n∑

i=1

(1− i/n)
(
IP{1I∗1+i = 1 | 1I∗1 = 1} − q∗n

))

= nq∗n(1− q∗n + 2γn) . (3.3)

The rest of the proof follows as before, since we assume γn = o(npn). 2

Proof of Theorem 3. The proof is based on the following result of Utev (1990):

Let {ξi,n : 1 ≤ i ≤ kn}n≥1 be a triangular array of r.v.’s, Sn =
∑kn

i=1 ξi,n,
σ2

n = Var Sn. Let ϕn(l) be the corresponding mixing coefficient. If for some sequence
of integers {jn}

sup
n

ϕn(ljn) → 0 (l →∞) (3.4)
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and

lim
n→∞ jnσ

−2
n

kn∑

i=1

IEξ2
i,n1I{|ξi,n| > εσn/jn} = 0 (∀ ε > 0) (3.5)

then
Sn/σn ⇒ N (0, 1) (n →∞) . (3.6)

Consider the identity √
npn(θ̂R

n − θR
n )

npn/
∑n

1 1i

=

∑n
1 Yi√
npn

. (3.7)

In view of Theorem 1, it is enough to show that

n∑

1

Yi/
√

npn =⇒ N (0, σ2
Rθ(1− θ)) (3.8)

as n →∞. Recall that

Var Y1 = pnθ
R
n (1− θR

n ) , σ2
n = Var

n∑

1

Yi ∼ npnθ
R
n (1− θR

n )σ2
R .

Conditions (3.4), (3.5) hold by assumption with jn = rn, kn = n, ξi,n = Yi. Hence, (3.6)
implies (3.8). This completes the proof. 2

Proof of Theorem 4. The condition r4
n = o(npn) as n → ∞ implies (3.5). The rest of

the proof runs along similar lines. 2
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[8] Leadbetter, M.R., Lindgren, G. and Rootzèn, H. (1983), Extremes and Related Properties
of Random Sequences and Processes, New York: Springer Verlag, 366 pp.

[9] Leadbetter, M.R., Weissman, I., de Haan, L. and Rootzèn, H. (1989), On clustering of high
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