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ABSTRACT 

While white light imaging (WLI) of endoscopy has been set as the gold standard for screening and detecting oesophageal 
squamous cell cancer (SCC), the early signs of SCC are often missed (1 in 4) due to its subtle change of early onset of 
SCC. This study firstly enhances colour contrast of each of over 600 WLI images and their accompanying narrow band 
images (NBI) applying CIE colour appearance model CIECAM02. Then these augmented data together with the original 
images are employed to train a deep learning based system for classification of low grade dysplasia (LGD), SCC and high 
grade dysplasia (HGD). As a result, the averaged colour difference (∆E) measured using CIEL*a*b* increased from 11.60 
to 14.46 for WLI and from 17.52 to 32.53 for NBI in appearance between suspected regions and their normal neighbours. 
When training a deep learning system with added enhanced contrasted WLI images, the sensitivity, specific and accuracy 
for LGD increases by 10.87%, 4.95% and 6.76% respectively. When training with enhanced both WLI and NBI images, 
these measures for LGD increases by 14.83%, 4.89% and 7.97% respectively, the biggest increase among three classes of 
SCC, HGD and LGD.  In average, the sensitivity, specificity and accuracy for these three classes are 88.26%, 94.44% and 
92.63% respectively for classification of SCC, HGD and LGD, being comparable or exceeding existing published work. 
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1. INTRODUCTION 
Oesophagus cancer is the 9th most common cancer [1] and the 6th leading cause of cancer-related death [2]. Globally, the 
estimated number of new cases was 572,000, of which approximately 509,000 persons died from oesophageal cancer in 
2018 [1]. Histologically, there are two major types that constitute the majority of all oesophageal cancers, adenocarcinoma 
and squamous cell carcinoma cancer (SCC) (87%) [3, 4].  
 
While the overall five-year survival rate of oesophagus cancer is less than 20% [5], this figure can be improved significantly 
to more than 90% if oesophageal cancer is detected in its intramucosal stage when lymph node metastasis is unlikely and 
it still can be treated endoscopically. Unfortunately, routine upper gastrointestinal endoscopy carries a significant miss rate 
for detecting oesophageal cancer and precancerous lesions. Up to 25% [6] of patients diagnosed with oesophageal cancer 
had a gastroscopy within the previous year  are reported as normal findings.  Hence there is a clinical urgency to develop 
a computerised assistant system to improve the detection accuracy of oesophageal pre-cancerous stages, e.g. dysplasia, 
allowing effective endoscopic treatment and surveillance of affected patients to prevent progression to cancer. 
 
For endoscopy, while light imaging (WLI) has been the gold standard for screening oesophageal squamous cell cancer 
(SCC). However, the early sign of SCC presents inconspicuous changes in appearance, which results in considerable miss 
diagnosed rate (1 in 4).  Hence, a number of approaches have been proposed to further enhance and thereafter highlight 
diseases regions. While spectral [7] or multi-spectral imaging (with 4 to 16 mono spectrum bands) or hyper-spectral 
imaging (16 to 40 bands) techniques have demonstrated potential to depict endogenous contrast capitalising on 
wavelength-dependent light-tissue interactions [8, 9], these systems require complex designated optical devices to acquire 
spectral signals, which presents considerable challenges, including physical implementation, prolonged acquisition time 
and post co-registration.   



 

 

 
 

 
Another challenge facing the development of a deep learning based decision support system remains the large variations 
in colour  appearance of datasets when obtained from different research centres, leading to  that a system usually under 
performs when testing on an independent cohort of datasets provided from different research centres. 
 
Therefore, this study proposes a novel approach to responds to these challenges. It highlights the early onset of SCC from 
human perception point of view by increasing the contrast between these concerned regions and their surroundings. 
Significantly, this contrast enhancement originates from human colour vison by applying a colour appearance model of 
CIECAM02 [10], standardised by the Commission Internationale de l'éclairage (CIE), the first application in endoscopy. 
CIECAM02 is modelled based on human visual perception to transform between CIE tristimulus values (XYZ) and 
perceptual attribute correlates by taking into account viewing conditions. These contrasted images are then employed not 
only to assist clinicians’ diagnosis visually but also to be added to training a deep learning based system for detection, 
delineation and classification of low or high grade dysplasia and cancer as well as in real-time. 
 

 
2. METHODS 

Figure 1 illustrates the steps of colour contrast enhancement for both WLI and narrow band imaging (NBI) images when 
only two wavelengths of lighting at 415 nm (blue) and 540 nm (green) are employed. 
 

 
 

Figure 1. Colour contrast improvement using CIECAM02 model. (a) to (g) Obtaining relationship between image RGB values and 
CIE tristimulus values XYZ by a 3×3 matrix (M) for endoscopic cameras.  (h) Workflow to enhance colour contrast by CIECAM02 
model.  
 
The characterisation of endo camera (Figure 1(a)) was firstly performed to establish the relationship by a matrix (M) 
(Figure 1(g)) between a camera (and monitor) (Figure 1(c)) RGB values (Figure 1(d)) when filming and CIE tristimulus 
values of XYZ under D65 (average daylight) (Figure 1(f)).  XYZ values are a RGB equivalent from human perception’s 
perspective. Then based on CIE XYZ values, colour appearance model CIECAM02  was applied to calculate lightness (J), 
colourfulness (C) and hue (H), for each pixel of an input image (Figure 1(h), left most). JCH represent the colour attributes 
from human perception point of view. After enhancing visual meaningful JCH values, they are converted back to XYZ 
using inversed CIECAM02 model and then to RGB to realise the final contrasted images (Figure 1(h), right most). In 
Figure 1 (e)(f). the XYZ values for each of 24 colours was measured in advance employing a tele-spectroradiometer (TSR) 
under D65, whereas the colour monitor to display the video is also calibrated to D65, the average of daylight.  
 
2.1 datasets 



 

 

 
 

 
Over 600 white light image (WLI) with low grade of dysplasia (LGD) are collected from patents (n=184). All 
patients included in this study have given written informed consent to donate biopsies. The early sign of LGD 
(arrows) is confirmed biopsy test, which are also annotated by two experienced endoscopists with at least 15 
years of experience.   

While the LGD regions have similar hue values with their surroundings, i.e. skin colour within the hue angle 
range (0-360) between red (H=0) and yellow (H=90), the diseased regions appear to be more colourful, i.e. 
from skin colour of pinkish to more colourful reddish. Hence, to further increase the differences between 
suspected regions and their surroundings, the colourfulness is modified to as in Eq. (1).  

 

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶 ∗ 𝐶𝐶 ∗ 𝛽𝛽         (1) 

 

Where 𝛽𝛽 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶)/𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛), which allows small colourfulness being smaller and large being larger while 
ensuring the updated colourfulness in line with the original value range.  

After the modification of colour attributes, the JCH values are converted back to XYZ and then to RGB for the 
final display of enhanced images. Together both original WLI and enhanced ones are employed to train a deep 
learning system for detection of cancer (SCC), high grade dysplasia (HGD) and low grade dysplasia (LGD). 

The overall difference between diseased regions and their immediate surroundings are measured using both 
CIECAM02 and CIEL*a*b* models and are formulated as Eqs. (2) and (3). 

 

∆𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ �(𝐽𝐽𝑑𝑑−𝐽𝐽𝑠𝑠)2+(𝐶𝐶𝑑𝑑−𝐶𝐶𝑠𝑠)2+(𝐻𝐻𝑑𝑑−𝐻𝐻𝑠𝑠)2𝑛𝑛
𝑛𝑛

       (2) 

∆𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ �(𝐿𝐿𝑑𝑑−𝐿𝐿𝑠𝑠)2+(𝑎𝑎𝑑𝑑−𝑎𝑎𝑠𝑠)2+(𝑏𝑏𝑑𝑑−𝑏𝑏𝑠𝑠)2)𝑛𝑛
𝑛𝑛

       (3) 

 

Where 𝑑𝑑 refers to diseased region, 𝑠𝑠 the surroundind region and 𝑛𝑛 the total number of diseased-surrounding 
pairs. The colour attributes, e.g. L*, a*, b*, J, C, H, are the average of the selected each region that is manually 
delineated. H in Eq. (3) has been normalised to be within [0,100]. 

 

2.2 The Architecture of Developed Real Time Processing System  

In this study, an end-to-end detection system has been put forward, which built upon the real-time instance 
segmentation approach of Yolact [11].  The basic underline model was ResNet101 to extract initial feature 
maps. The program was implemented in Python using the PyTorch libraries. The training takes place by training 
samples of WLI only (n=666), WLI+ WLIenahnced+ NBI (n=2900), and WLI + WLIenhanced + NBI + NBIenhanced 
(n=4704) for three classes of SCC, HGD, and LGD. 

 

3. RESULTS 



 

 

 
 

Figure 2 illustrates an example of contrast enhancement from the original image (Figure 2(a)) to the colour 
contrast-enhanced one (Figure 2(b)). The blue and yellow boxes represent the selected suspected and 
surrounding regions respectively. Figures 2(c) and 2(d) are the detection results for 2(a) and 2(b) respectively 
where 2(d) presents near correct detection when the developed deep learning system was trained with only LGD 
class (normal as a default setting if no lesion is detected). The number in the bar on top of the detection box 
indicates the probability of the classification, e.g. ‘suspicious (s:) 0.93’ refers to that the detected region has 
93% chance to be LGD. 

  
Figure 2. Illustration of colour difference measurement between lesioned region and surroundings (boxes in (a) and (b)) together with 
LGD detection ((c) and (d), where (d) presents the correct detection for suspected regions when the system is trained with one LGD 
class (and normal). 

 

Table 1 lists the detection results in terms of sensitivity, specificity, and accuracy trained using WLI  with 
normal data augmentation technique, WLI + contrasted WLI and WLI+BNI+contrasted WLI+contrasted BNI 
whereas Table 2 measures the colour differences between each LGD region and its surrounding mucosa regions before 
and after contrast enhancement. 

Table 1. The detection results in terms of sensitivity, specificity and accuracy for the deep learning systems trained with WLI, 
WLI+WLIenhanced and WLI+NBI+WLIenhanced +NBIenhanced  images respectively. 

Methods Class Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

WLI + usual data augmentation SCC 82.35 95.34 90.50 

HGD 74.19 87.28 84.56 

LGD 74.50 88.29 83.44 

Average  77.13 90.31 86.19 

WLI + Enhanced WLI  SCC 86.11 93.08 90.25 

HGD 87.03 90.21 89.49 

LGD 82.97 95.45 90.26 

Average  85.37 93.24 90.47 

WLI + NBI + Enhanced WLI + 
enhanced NBI 

SCC 90.47 94.87 93.71 

HGD 85.00 95.12 88.26 



 

 

 
 

LGD 89.33 93.18 91.41 

Average  88.26 94.44 92.63 

 

Table 2. The colour differences measured using CIEL*a*b* between each LGD and its surrounding mucosa for original WLI and NBI 
and their enhanced counterparts. 

 ∆L ∆a* ∆b* ∆EL*a*b* ∆LCAM ∆CCAM ∆HCAM  ∆ECAM(%) 

WLI  5.76  6.23  7.38 11.60  4.83  9.23 19.30 13.12 

Enhanced WLI 7.74  8.48  8.44 14.46  6.62 12.29 27.48 18.35 

NBI  8.17 10.59  9.50 17.52 9.57  3.73  6.25 10.82 

Enhanced NBI 10.23 16.22 21.56 32.53 12.00 10.06 95.32 33.60 

 

 

4. NEW BREAKTHROUGH WORK TO BE PRESENTED 

This study is probably the first one to enhance colour differences from human perception point of view, which 
alleviates colour variations between datasets obtained from different research centres because all the enhanced 
images are processed applying CIECAM02 under a fixed lighting condition, e.g. D65.  In addition, it improves 
detection rate significantly in comparison with usual data augmentation technique by changing colours based 
on their RGB contents. Significantly, this developed system can operate in real time at 34 frames/second when 
processing endoscopic videos. 

 

5. CONCLUSION 

The challenges facing early detection of oesophageal cancer remain being limited changes presented on the 
surface of oesophagus and colour variations of datasets obtained from different centres when training an AI-
based decision support system. This study takes human colour perception into consideration and pre-process 
images to enhance image contrast. As a result, not only lesioned regions, mainly suspected or LGD, stand out 
significantly with colour differences in ∆EL*a*b*  increased from 11.60 to 14.46  and from 13.12 to 18.35 in 
∆ECAM for WLI and an increase of 15 and 22 for NBI when measured in ∆EL*a*b*  and ∆ECAM respectively. In 
addition, with the addition of these enhanced contrasted images to the training, the accuracy improves from 
86.19% to 90.25% for WLI and to 92.63% when both WLI and NBI images are applied. These results are based 
on the independent cohort of test datasets. Significantly, the sensitivity, specificity and accuracy for LGD are 
increased from 74.50%, 88.29% and 83.44% to 89.33%, 93.18% and 91.42% respectively when both WLI and 
NBI are included, an improvement by 14%, 5%, and 8% respectively.  

In comparison with  the work conducted by Osawa et al [7] on colour enhancement based on flexible spectral 
imaging, e.g.., where the averaged increase of ∆EL*a*b*  is 8.4 units from conventional 
esophagogastroduodenoscopy (EGD) WLI to NBI, the contrast in our study has been enhanced by 4.74 and 8.9 
units for WLI  to WLI and WLI to NBI respectively, demonstrating the effectiveness of computational 
technique on image contrast enhancement.  



 

 

 
 

In comparison with the recently studies on AI-oriented systems [12], this developed system exceeds the state-
of-the-art results in relation to early detection of squamous cell neoplasia and is probably the first tangible real-
time detection system for endoscopic videos, thanks to the inclusion of contrast enhanced images, by which the 
sensitivity, specificity and accuracy are 88.2%, 94.4% and 92.6% respectively for classification of three classes, 
an increase of 11.1%, 4.1% and 6.4% from the outcomes gained without the data enhancement when both WLI 
and NBI are considered. When only WLI images are employed, the increases are 8.2%, 2.9% and 4.2% 
respectively. 

Another strength of this study is the validation taking place in an independent cohort of patients from another 
centre, whereas the controls have included real-world patients with Barrett’s oesophagus, reflux oesophagitis, 
candida oesophagitis and anaemia. No magnifying endoscopy is included in this study. 
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