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Abstract 

This chapter presents five deep learning architectures for identification of 
Human papillomavirus (HPV) through generation of super resolution (SR) 
images by 4 folds. Specifically, generative adversarial deep learning net-
works (GAN) and a texture-based vision transformer (TTSR) architecture 
are applied and evaluated. As such, the generated SR images are able to 
display the same way a high-resolution image offers in identification of 
HPV like structures. In comparison, TTSR appears to perform the best with 
PSNR and SSIM being 28.70 and 0.8778 respectively whereas 
25.80/0.7910, 18.35/0.5059. 30.31/0.8013, and 28.07/0.6074 are observed 
for the methods of RCAN, Pix2Pix, CycleGAN, and ESRGAN respectively. 
With regard to sensitivity and specificity when detecting HPV clusters, 
TTSR also leads with 83.6% and 83.33% respectively. It appears the com-
putational SR images are capable to differentiate distinguishing features of 
HPV like particles and to determine the effectiveness of anti-HPV agents, 
holding promise providing insights into the formation stage of a cancer from 
HPV in the near future. 
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Keywords: Texture transformer, Generative adversarial network (GAN), 
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1. Introduction 

This chapter extends the work presented at ICMLA 2021 [1] and concerns 
with the determination of the presence of human papillomavirus (HPV) from 
generated super resolution (SR) images that are acquired using conventional 
light microscopes, leading to potentially contribution to the development of 
an effective anti-HPV drugs in the future. The state of the art deep learning 
techniques are applied and compared. 

As one of the leading causes of virus-induced cancers, early detection of 
HPV plays a crucial role in providing timely, optimal and effective inter-
vention before such a cancer develops. While conventional light microscopy 
constitutes one of inseparable tools applied for studying biological cell 
structures, its low resolution at ~100nm per pixel falls short of detecting 
HPV that typically has a size of ~50nm in diameter, giving rise to visualisa-
tion of HPV and subsequent evaluation of the efficacy of anti-HPV drugs at 
such sub-pixel level a challenging task if not overwhelmingly. This study 
aims to leverage this gap by endowing conventional microscopic images 
with a visible account of super resolution (SR) images through computation-
ally up-sampling by four-fold (×4) by applying the burgeoning deep learn-
ing techniques. 

 

2. Background 
 

2.1 HPV Virus 

The human papillomavirus, or HPV, refers to a group around 150 types of 
viruses, including high risk type of HPV that pertain to a number of epithe-
lial cancer development and low risk types accounting for noncancerous 
papilloma such as HPV 6 and 11. As a small, non-enveloped, and double-
stranded DNA virus, a papillomavirus has a diameter of 52–55 nm [2] and 
infects mucosal by inducing cellular proliferation. 

A high risk HPV remains a leading cause of virus-induced cancers, mainly 
being discovered in cervical and head-and-neck cancers. Among those, 
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HPV16 and HPV18 retain the two major types that account for 70% of cer-
vical cancer cases [3,4,5] .   

Since it usually takes several years to eventuate in cancer cells from high 
risk HPV infection to integrate into cells, it is a clinical urgency for early 
detection of these viruses not only to the respect in which more specific tar-
geted treatments to improve patients’ survival rates and hence reduce the 
mortality can be realised, but to the fact that HPV can be eradicated all to-
gether effectively before it progresses into associated cancers. 

At present, the detection of HPV mainly relies on the molecular and cellular 
pathological evidence through labelling HPV oncogenes or oncoproteins us-
ing the approach of polymerase chain reaction (PCR), in situ hybridisation 
and immunohistochemical staining. This is because conventional light mi-
croscopes (e.g. Nikon C2plus Ti2 MS (Laser scan confocal, PMT)) can only 
depict sample structures at a maximum of ~70nm/pixel whereas an HPV 
sustains a size of ~50nm in diameter. As a result, direct identification of 
HPV at such a sub-pixel resolution visually confronts a great challenge to 
discern the details of infected individual cells or regions. 

While a transmission electron microscope (TEM) [6] presents an option for 
HPV identification at high resolution, the sample preparation procedure 
tends to be time-consuming, sophisticated and technical, which requires 
dedicated personnel to operate. Consequently, TEM is usually not readily 
available at many research centres, which therefore necessitates a simple 
imaging technique that can offer high resolution to identify nano-size struc-
tures. 

Furthermore, while there exist potential drugs, it is imperative to monitor 
cellular responses directly, such as apoptosis induction following drug treat-
ment, and to evaluate its effectiveness, by which microscopy proffers 
quicker, easier and visually achievable than any traditional detection meth-
ods including PCR approach. 

While the recent advent of high-resolution microscopy (HRM) holds a 
promise to be able to acquire information at nanoscale, it is not prevalent 
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and again encounters the difficulties to set up the correct complex large array 
of parameters.   

 

2.2 High Resolution Microscope (HRM) 

In cell biology, fluorescence microscopy (MS), characterised with non-in-
vasiveness, high sensitivity, and selectivity, composes an essential tool for 
imaging tagged biological structures. Due to the wave-like nature of light, 
the resolution of a conventional fluorescence microscope is limited laterally 
to about 200 nm and axially to about 600 nm per pixel, which is often re-
ferred to as the Abbe-diffraction limit [7] . 

Consequentially, various methods have been developed to circumvent this 
limit of resolution, leading to the development of high-resolution micros-
copy (HRM, also termed as super resolution microscopy). HRM resorts to a 
series of techniques in light microscopy to allow images to be taken with a 
higher resolution than the one imposed by the diffraction limit [8], including 
optical/instrumental modifications and specific labelling of samples  [9,10]. 
Current HRM methods rely on wide-field (WF), total internal reflection flu-
orescence (TIRF) or confocal microscope setups, which fundamentally dif-
fer in the way fluorescently labelled samples are excited and the manner 
those emitted photons are detected [11] . While HRM lends itself well to 
providing unprecedented access to the inner functions of cells and various 
biological processes, making up for the shortage of conventional MS, more 
accurate models often require exhaustive parameter search, sophisticated 
optical setups and high computational cost  [12]. Significantly, conventional 
microscopy scanners are more prevalent, more economic and easier to set 
up. 

Hence, in this study, computational approaches are employed to generate 
super resolution images. In particular, texture transformer based deep learn-
ing architecture will be evaluated and enhanced. In addition, the state of the 
art generative adversarial deep learning networks (GANs) are evaluated and 
compared. These systems are trained to transform low-resolution images 
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(e.g. 20nm/px) to a high-resolution one (5nm/px) with four-fold (×4) in-
crease of resolution.  

Specifically, this study is different in training from many other super reso-
lution networks where mathematical formulas, e.g. bicubic, are employed to 
generate low-resolution images from the available data. This work employs 
matching pairs of low- and high-resolution images that are obtained experi-
mentally. In this way, real experimental setup in relation to concerned mi-
croscopes can be taken into account instead of focusing on a fixed algorithm.  
Consequently, the trained model is applied to upscale images obtained using 
conventional confocal microscopy (70nm to 120nm) to identify HPV or 
HPV like particles (HPVLP) and to evaluate the effectiveness of the devel-
oped drug for combating HPV virus. The ground truth is obtained using 
Transmission Electron Microscope (TEM) to identify HPVLP which can 
achieve at a resolution at 0.5nm/px. Fig. 1 epitomises the data sets collected 
in this study, from three modalities at varying scales, including conventional 
microscope (d & e), HRM (b&c) and TEM (a).  

 
Fig. 1. Illustration of data sets applied in this study from three modalities, acquired at varying 
scales, including from (a): TEM, the ground truth; (b)(c): Data sets for training; (d)(e): low 
resolution datasets for testing. The bottom row of graphs of (a) to (c) are the selected regions 
on the top row of the same column that are acquired at a higher resolution. 

 

2.3 Deep learning techniques for super resolution 
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In computer vision field, there are broadly two ways to contend with the 
fundamental low-level single image super-resolution (SISR) problem. One 
is from theoretical point of view and another is based on subjects’ visual 
appearance evaluation.  While SISR attempts to recover a high-resolution 
(HR) image from a single low resolution (LR) one, it appears that the appli-
cation of deep learning neural networks (DNNs) can achieve state of the art 
results as pioneered by Dong et al. [13].  

DNNs denote a class of computing machines that can learn a hierarchy of 
features by establishing high-level features from low-level ones based on 
biologically inspired human vision systems. One of these models is Gener-
ative Adversarial Network [14] (GAN), designating an approach to genera-
tive modelling using deep learning methods, such as convolutional neural 
networks (CNN) [15]. GAN performs an unsupervised machine learning 
and involves automatically discovering and learning the regularities or pat-
terns from input data in such a way that the model can be used to generate 
or output new examples that plausibly could have been drawn from the orig-
inal dataset. 

Subsequently, a number of network architectures have been proposed to im-
prove the super resolution (SR) performance mainly at improving Peak Sig-
nal-to-Noise Ratio (PSNR) values [16, 17, 18].  This, however, tends to be 
in disagreement with human observers’ evaluation as pointed out in the net-
work of SRGAN [19], one of the seminal works on the improvement of vis-
ual quality of generated SR images. Towards this end, several perceptual-
driven methods are advanced, including incorporation of perceptual loss 
[20, 21] to optimise super-resolution models in a feature space instead of 
pixel space and segmentation of semantic images prior to recovering de-
tailed textures [22]. Significantly, the application of GAN in SRGAN im-
proves the overall visual quality of reconstruction over the PSNR-oriented 
methods considerably by encouraging the network to advocate solutions that 
look more like natural images.  Specifically, an enhanced SRGAN 
(ESRGAN) [23] further improves the visual quality by reducing generated 
accompanying artefacts. ESRGAN introduces relativistic GAN [24], in 
which Residual-in-Residual Dense Block (RRDB) without batch normali-
zation is utilised as basic network building blocks whereas SRGAN is built 
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with residual blocks [25], offering consistently better visual quality with 
more realistic and natural textures. In generation of SR for fluorescence mi-
croscopic images, the application of a GAN-based system appears to 
demonstrate convincing results [12]. 

More recently, vision transformers (ViT) are emerging and starting to show 
potentials by performing computer vision tasks, such as image recognition 
[26, 27]. Built upon self-attention architectures and being a leading model 
in natural language processing (NLP), ViT appears to demonstrate excellent 
performance when trained on sufficient data, outperforming comparable 
state-of-the-art CNNs with four times fewer computational resources [28].  
 
One of the advantages that that Transformers present is computational effi-
ciency and scalability. It has become possible to train models of unprece-
dented sizes, with over 100 billion parameters [29].  
 

In this work, the architecture of texture transformer (TTSR) [30] as well as 
GAN-based networks are evaluated for detection of HPV like particles 
(HPVLPs), or HPV viral factories. The four state of the art GAN models are 
ESRGAN [23], CycleGAN [31]. Pix2pix [32] and Pix2pixHD [33].  

 

3. Methodology 
 

3.1 Cell sample preparation for identifying HPVLP by confocal 
fluorescent microscopy and TEM scanning 

The cervical cancer cell lines, CaSki containing HPV16 DNA sequences and 
C33a without HPV were used in this study as detailed in Appendix A. These 
laboratory samples are prepared in Middlesex University, UK.  

The acquisition of EM data (Fig. 1(a)) for these samples then took place at 
Leicester University in the UK to provide ground truth. Before the scanning, 
these samples underwent a series of standard preparation processes (details 
are elaborated in Appendix B), then were viewed on a JEOL JEM-1400 
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transmission EM (TEM) (with an accelerating voltage of 120kV),  a micro-
scopic technique in which a beam of electrons is transmitted through a spec-
imen to form an image (Fig. 1(a)). All these acquired images are saved as 
TIFF image format. 

 

3.2 Microscopic Data Acquisition 

As training datasets, both high resolution (HR) and low resolution (LR) im-
ages are obtained using Nikon A1plus Manual Microscope with settings of 
Laser scan Confocal and GaAsP. These fluorescence microscopic images 
(Fig. 1 (b) & (c)) were captured by scanning a microscopic slide carrying 
dual fluorescent labelling for HPV16 oncoprotein E6/E7 in green and nuclei 
in blue (CaSki Control) and HPV treated with drugs (C33a) (acting as nor-
mal images), which took place at Nanjing University of Science and Tech-
nology, China. Table 1 summaries the technical information about each mi-
croscope utilised in this study, including TEM, SRM and conventional 
microscope. 

Table 1. Detailed information on the microscopies employed in this study where ExW = 
excitation wavelength and EmW = emission wavelength. 

Modality Scanning 
range 

(per pixel 
(px) 

ExW 

(nm) 

EmW – 
Red 

(nm) 

EmW – 
Green 

(nm) 

EmW –
Blue 

(nm) 

Pin-
hole 

(μm) 

JEOL JEM-
1400 Transmis-

sive Electron 
Microscope 

0.5-6nm      

Nikon A1plus 
Manual Micro-

scope (Laser 
scan confocal, 

GaAsP) 

5-30 nm 405, 
640nm 

700 

(Cy5) 

 450 

(Alexa 
Flour ) 

12.77 

Nikon C2plus 
Ti2 MS (Laser 
scan confocal, 

70-180 
nm 

488, 
405nm 

 510-590 450 20 
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PMT), (Plan 
Apo λ 100x 

Oil) 

(FITC) 

 

(DAPI) 

 

3.3 Visualisation of HPVLP from HR images 

Different from TEM where HPV or HPV like particles (HPVLP) can be vis-
ualised directly as illustrated in Fig. 2 (middle row), conventional micro-
scope exhibits HPVLP in a disguised way (Fig. 2 (b) & (h)) where those 
colourful pixels become unfathomable. Hence further processing takes place 
by undertaking Fast Fourier Transform (FFT) Gaussian filtering so that ex-
traneous features can be filtered out by removing less frequent signals in the 
Fourier space as presented in Fig. 2 (c) and (i), which appear to be similar 
Fig. 2(f) for TEM images, the ground truth (GT) by depicting clusters of 
individual dark particles. 

In the following sections, all the images displayed have undertaken the pro-
cess of FFT coloured with brgbcmyw lookup table, representing black, red, 
green, blue, cyan, magenta yellow and white. 
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Fig. 2. Identification of HPVLP from HR images obtained with two different colour channels 
with reference to TEM data. (a)(g) HR images. (b)(h) Magnified regions in (a) and (g) re-
spectively. (c)(i) Coloured and FFT-ed image of (b) and (h) respectively. (d) TEM data of 
ground truth as a reference. (e) Magnified region in (d). (f) Coloured and FFT-ed images of 
(e). BRGBCMYW = black, red, green, blue, cyan, magenta, yellow, white. 

 

3.4 Implementation 

The implementation is built upon Pytorch deep learning libraries [34, 35], 
through the application of Python language. The training and testing took 
place under Windows 10 system with one GPU Nvidia GeForce GTX1060 
with 16 Gbyte memory. The training samples comprise 2431 images with 
785 for validation and are of high resolution (x4). Test samples has 100 low 
resolution images containing 121 HPVLP clusters with 40 samples being 
normal. The input size is 256×256 pixels whereas the output size from 
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CycleGAN and Pix2pix remains the same. For Pix2pixHD and ESRGAN, 
the output size is 1024×1024 pixels, i.e., four time (x4) bigger. The training 
takes 50 epochs to complete for each network. For the application of TTSR, 
each patch is of 16×16 pixels. 

Two common measures are employed to calculate the similarity between 
HR (ground truth (GT)) and SR, which are structural similarity (SSIM) (Eq. 
(1)) and peak signal-to-noise ratio (PSNR) (Eq. (2)). 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1)(2𝜎𝜎𝑥𝑥,𝑦𝑦+𝑐𝑐2)
(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1)(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2)

     (1) 

Where 𝜇𝜇𝑥𝑥 ,𝜇𝜇𝑦𝑦 are the averages of  𝑥𝑥, 𝑦𝑦, with 𝜎𝜎𝑥𝑥 
2 ,𝜎𝜎𝑦𝑦2 being the variances of 

𝑥𝑥 , 𝑦𝑦 respectively and 𝜎𝜎𝑥𝑥,𝑦𝑦 the covariance of 𝑥𝑥  and 𝑦𝑦. The variables of 𝑐𝑐1 
and 𝑐𝑐2 are applied to stabilize the division when a small denominator occurs 
and are set to be (0.01𝐿𝐿)2 and (0.03𝐿𝐿)2 respectively, whereby L stands for 
the dynamic intensity range of an image, e.g. L=255 for a 8-bit image.  

In Eq. (2), 𝑆𝑆𝑀𝑀𝑀𝑀𝐼𝐼 refers to the maximum possible value of an image (𝑆𝑆) (e.g. 
255 for 8-bit) and 𝑆𝑆𝑆𝑆𝑀𝑀 the mean squared error. 

 

𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃 = 20 log10𝑆𝑆𝑀𝑀𝑀𝑀𝐼𝐼 − 10 log10 𝑆𝑆𝑆𝑆𝑀𝑀     (2) 

In addition, sensitivity and specificity are employed to calculate the accu-
racy of detection of HPV clusters from both HR and SR images. 

 

3.5 GAN Architectures for Super Resolution Images 

Conventionally, GAN based networks are favoured for generation of su-
per resolution images. In this work, four GAN-oriented architectures 
(ESRGAN, CycleGAN. Pix2pix and Pix2pixHD)  are evaluated. As illus-
trated in Fig. 3, the architecture of ESRGAN comprises two sub-networks, 
a generator and a discriminator where the generator contains twenty-three 
Residual-in-Residual Dense Blocks, to transform low-resolution images 
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(e.g. 20nm/px) to a high-resolution one (5nm/px) with four-fold (×4) in-
crease of resolution.  

 

 

 

  (b)      (c) 

Fig. 3. The architecture of GAN applied in this study. (a) Overall diagram. (b) Generator. (c) 
Discriminator. 
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Hence, the total loss (ℒ𝐺𝐺𝐺𝐺𝐺𝐺 ) for the generator in Eq. (3) integrate perception 
loss (ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝), structural similarity (SSIM) loss, content loss ( ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝) 
and adversarial loss (ℒ𝐺𝐺𝑅𝑅𝑅𝑅) . 

ℒ𝐺𝐺𝐺𝐺𝐺𝐺 = 𝛼𝛼ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛾𝛾ℒ𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 +  λℒ𝐺𝐺𝑅𝑅𝑅𝑅  + 𝛽𝛽 ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝   (3) 

In Eq. (3), SSIM (Eq.(1)) index is defined in Eq. (4) to measure the similarity 
between two images in relation to spatial structure where 𝑥𝑥𝑓𝑓 , 𝑥𝑥𝑝𝑝 indicate fake 
(SR) and real (HR) images respectively. 

ℒ𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑓𝑓 , 𝑥𝑥𝑝𝑝)     (4) 

The α, γ, λ and β in Eq. (3) are the coefficients to balance different loss terms 
and are set to be 1, 0.1, 0.005 and 0.1 respectively for perceptual, SSIM, 
adversarial and content losses in this study. 

In addition, Discriminator (D) loss is formulated in Eq. (5), 

 

ℒ𝐷𝐷𝑅𝑅𝑅𝑅 = −𝔼𝔼𝑥𝑥𝑟𝑟 �log �𝐷𝐷𝑅𝑅𝑅𝑅�𝑥𝑥𝑝𝑝,𝑥𝑥𝑓𝑓��� − 𝔼𝔼𝑥𝑥𝑓𝑓 �log �1 −𝐷𝐷𝑅𝑅𝑅𝑅�𝑥𝑥𝑝𝑝, 𝑥𝑥𝑓𝑓��� (5) 

where  

 

𝐷𝐷𝑅𝑅𝑅𝑅�𝑥𝑥𝑝𝑝,𝑥𝑥𝑓𝑓� = 𝜎𝜎(𝐶𝐶(𝑥𝑥𝑝𝑝) − 𝔼𝔼𝑥𝑥𝑓𝑓�𝐶𝐶�𝑥𝑥𝑓𝑓��     (6) 

In Eq. (6), σ refers to a sigmoid function whereas 𝐶𝐶(𝑥𝑥) represents the non-
transformed discriminator output. 𝔼𝔼𝑥𝑥𝑓𝑓[. ] takes the average of all fake data 
in a mini-batch (8 in this study). 

The adversarial loss for the generator presents a symmetrical form as ex-
pressed in Eq. (7). 

ℒ𝐺𝐺𝑅𝑅𝑅𝑅 = −𝔼𝔼𝑥𝑥𝑟𝑟 �log �1 − 𝐷𝐷𝑅𝑅𝑅𝑅�𝑥𝑥𝑝𝑝,𝑥𝑥𝑓𝑓��� − 𝔼𝔼𝑥𝑥𝑓𝑓 �log �𝐷𝐷𝑅𝑅𝑅𝑅�𝑥𝑥𝑓𝑓 , 𝑥𝑥𝑝𝑝��� (7) 

where 𝑥𝑥𝑓𝑓 = 𝐺𝐺(𝑥𝑥𝑖𝑖), indicates the generator output of fake image 𝑥𝑥𝑓𝑓 , and 𝑥𝑥𝑖𝑖 
stands for the input of an LR image.  



 Identification of HPV from Super Resolution Microscopic Images 
 

 

The content loss that is calculated in Eq. (8), evaluates the 1-norm distance 
between recovered image 𝐺𝐺(𝑥𝑥𝑖𝑖) from the generator (Fig. 3(b)) and the 
ground-truth 𝑥𝑥𝑝𝑝  using mean pixel-wise absolute error.   

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 = 𝔼𝔼𝑥𝑥𝑖𝑖‖𝐺𝐺(𝑥𝑥𝑖𝑖) − 𝑥𝑥𝑝𝑝‖1     (8) 

The perceptual loss function [21] runs by summing up all the squared errors 
between all the pixels in a feature layer and taking the mean as given in Eq. 
(9). 

ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 = 𝔼𝔼𝑥𝑥𝑖𝑖 �ℓ𝑓𝑓𝑝𝑝𝑅𝑅𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝
𝜙𝜙,𝑗𝑗 (𝐺𝐺(𝑥𝑥𝑖𝑖), 𝑥𝑥𝑝𝑝)�

1
    (9) 

where 

ℓ𝑓𝑓𝑝𝑝𝑅𝑅𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝
𝜙𝜙,𝑗𝑗 (𝐺𝐺(𝑥𝑥𝑖𝑖), 𝑥𝑥𝑝𝑝) = 1

𝐶𝐶𝑗𝑗𝐻𝐻𝑗𝑗𝑊𝑊𝑗𝑗
�𝜙𝜙𝑗𝑗(𝐺𝐺(𝑥𝑥𝑖𝑖)) − 𝜙𝜙𝑗𝑗(𝑥𝑥𝑝𝑝)�

2
2  (10) 

In Eq. (9), ϕ represents a pre-trained model built upon VGG19 [36] whereas 
𝜙𝜙𝑖𝑖(𝑥𝑥) in Eq. (10) refers to the activations of the 𝑗𝑗𝑝𝑝ℎ layer of the network 𝜙𝜙 
with a feature map of the shape  𝐶𝐶𝑗𝑗 × 𝐻𝐻𝑗𝑗 × 𝑊𝑊𝑗𝑗. 

In Fig. 4, the network of Pix2pixHD [33] is depicted, where the training 
takes place to translate original images (A) to its corresponding processed 
maps (B) that is undergone FFT Gaussian filtering and coloured using a col-
our lookup table, brgbcmyw.  
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Fig. 4. The architecture of Pix2pixHD. 

 

By decomposing the generator into two sub-networks, 𝐺𝐺1 and 𝐺𝐺2 as global 
generator and local enhancer networks respectively,  the Pix2pixHD net-
work first trains a residual network 𝐺𝐺1 on lower resolution images. Then, 
another residual network 𝐺𝐺2  is appended to 𝐺𝐺1 so that the two networks are 
trained jointly on high resolution images. Specifically, the input to the re-
sidual blocks in 𝐺𝐺2 (right most graph) is the element-wise sum of the feature 
map from 𝐺𝐺2 (left graph) and the last feature map from 𝐺𝐺1. In this work, the 
input image has a resolution of 256×256 whereas the output of the coloured 
map has 1024×1024 pixels, a four-folder increase. The overall loss inte-
grates both GAN (Eq.(3)) loss and feature matching loss as formulated in 
Eq.(11) [33]. 

min
𝐺𝐺

(( max
𝐷𝐷1,𝐷𝐷2,𝐷𝐷3

∑ ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑘𝑘)) + 𝜆𝜆 ∑ ℒ𝐹𝐹𝑆𝑆(𝐺𝐺,𝐷𝐷𝑘𝑘))𝐾𝐾=1,2,3𝑘𝑘=1,2,3        (11)               

Where  λ is a factor that controls the importance of the above two parts, ℒ𝐹𝐹𝑆𝑆 
refers to the feature matching loss and 𝐷𝐷𝑘𝑘 (𝑘𝑘 = 1,2,3) the feature extractor, 
extracting features from each of the three blocks in Fig. 4. During the test, 
the increasing size is set to be 4,  so that Pix2pixHD will up-sample, fine 
tune and output a high resolution image four time larger than the input one. 
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4. Texture transformer network 

In Fig. 5,  the architecture of texture transformer (TT) [30] is presented and 
applied in this study [2]. TT comprises four components: the learnable tex-
ture extractor (LTE), the relevance embedding module (RE), the hard-atten-
tion module for feature transfer (H) and the soft-attention module for feature 
synthesis (S). In the Fig., low-resolution (LR) and LR↑ represent the input 
and its 4 times higher (x4) bicubic-up-sampled counterpart respectively 
whereas Ref images are x4 high resolution (HR) ground truth (GT) images 
acquired experimentally. In addition, bicubic down-sampling (4x) and up-
sampling (x4) on Ref images take place to obtain Ref↓↑ which is domain-
consistent with LR↑. These images are the input to the texture transformer 
that produces a synthesized feature map, for the prediction of HR by gener-
ating super resolution (SR) images. 
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Fig. 5. The texture transformer [4] architecture where LR=low resolution, Ref=GT (x4), LR↑ 
= up-sampling by x4 from LR employing bicubic formula, and  ↑↓ refers to up-sampling and 
down-sampling by 4 folds. 

Specifically, the learnable texture extractor (LTE) extracts texture features 
of Q (query), K (key) and V (value), the three basic elements of the attention 
mechanism inside a transformer. Subsequently, the relevance embedding 
component estimates the similarity between Q and K as calculated in Eq. 
(12), where 𝑞𝑞𝑖𝑖 (𝑖𝑖 ∈  [1,𝐻𝐻𝐿𝐿𝑅𝑅  × 𝑊𝑊𝐿𝐿𝑅𝑅]) and 𝑘𝑘𝑗𝑗(𝑗𝑗 ∈  [1,𝐻𝐻𝑅𝑅𝑝𝑝𝑓𝑓  ×  𝑊𝑊𝑅𝑅𝑝𝑝𝑓𝑓 ]), 
representing the patches unfolded from Q and K respectively, where 𝐻𝐻𝐿𝐿𝑅𝑅 
and  𝑊𝑊𝐿𝐿𝑅𝑅 refer to the height and width of a LR image. 

𝑟𝑟𝑖𝑖,𝑗𝑗 = 〈 𝑞𝑞𝑖𝑖
‖𝑞𝑞𝑖𝑖‖

, 𝑘𝑘𝑖𝑖
‖𝑘𝑘𝑖𝑖‖

〉      (12) 
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Based on Eq. (12), hard attention is calculated to transfer features to a hard-
attention map 𝐻𝐻 from the most relevant position in 𝑉𝑉 for each query 𝑞𝑞𝑖𝑖 as 
formulated in Eq. (13), where ℎ𝑖𝑖  (𝑖𝑖 ∈  [1,𝐻𝐻𝐿𝐿𝑅𝑅  × 𝑊𝑊𝐿𝐿𝑅𝑅]). 

ℎ𝑖𝑖 = 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑗𝑗

𝑟𝑟𝑖𝑖,𝑗𝑗      (13) 

On the other hand, the component of soft attention is to synthesize features 
from the transferred HR texture features 𝑇𝑇 and L𝑃𝑃 features 𝐹𝐹 that is obtained 
from a Dense neural network (DNN) backbone (e.g. ResNet50) from 𝐿𝐿𝑃𝑃 
images, as computed in Eq. (14), forming a soft-attention map S of confi-
dence for 𝑇𝑇. 

𝑠𝑠𝑖𝑖 = max
𝑗𝑗

𝑟𝑟𝑖𝑖,𝑗𝑗       (14) 

As a result, the output of the texture transformer is calculated in Eq. (15). 

𝐹𝐹𝑐𝑐𝑓𝑓𝑝𝑝 = 𝐹𝐹 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑎𝑎𝐶𝐶(𝐹𝐹,𝑇𝑇)) ⊙𝑆𝑆    (15) 

In Eq. (5), ⊙ indicates element-wise multiplication between feature maps 
to ensure that HR texture features from 𝑃𝑃𝑅𝑅𝑅𝑅 are transferred into LR, enhanc-
ing the process of texture generation. 

The network is trained based on the overall loss (ℒ𝑇𝑇𝑇𝑇) of three loss functions 
[30], reconstruction loss (ℒ𝑝𝑝𝑝𝑝𝑐𝑐), perceptual loss (ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝  ) (Eq.(9)), and ad-
versarial loss (ℒ𝐺𝐺𝐺𝐺𝐺𝐺 ) (Eq.(3)), which are computed by employing 𝐿𝐿1 loss, 
penalization of gradient norm [37], and perceptual similarity between pre-
dicted SR and HR as well as predicted textures of SR and T respectively. 

 

ℒ𝑇𝑇𝑇𝑇 = 𝜆𝜆1ℒ𝑝𝑝𝑝𝑝𝑐𝑐 + 𝜆𝜆2ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜆𝜆3ℒ𝐺𝐺𝐺𝐺𝐺𝐺    (16) 

Where 

ℒ𝑝𝑝𝑝𝑝𝑐𝑐 = 1
𝐶𝐶𝐻𝐻𝑊𝑊

‖𝑆𝑆𝑥𝑥𝑟𝑟 − 𝑆𝑆𝑥𝑥𝑓𝑓‖1     (17) 

And (𝐶𝐶,𝐻𝐻,𝑊𝑊) is the size of 𝑥𝑥𝑝𝑝.  
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5. Results 

This work is probably one of the first to identify human papilloma (HP) viral 
particles in CaSki cell line using microscopic images. Table 2 lists the com-
parison with four GAN-based networks for classification of detected HPV 
clusters between high resolution (x4) images of ground truth (GT) and gen-
erated SR images. The drug treated samples are referred as normal, which 
have little trace of PHVLP clusters. 

 

Table 2. Sensitivity and specificity for four approaches in percentage (%). 

 Sensitivity  

(HPV)  

Specific-
ity 

(HPV) 

Sensitivity  

 (Treated) 

Specificity 

 (Treated) 

CycleGAN 74.28 85.98 75.40 79.60 

Pix2pix 65.74 80.26 85.00 74.48 

ESRGAN  70.14 81.63 77.5 77.01 

ESRGAN (with SSIM in loss) 74.46 81.63 77.5 79.77 

Pix2pixHD 86.66 84.84 82.14 85.22 

 

In Table 3, the average PSNR and SSIM between HR and SR images to-
gether with sensitivity and specificity for detecting HPV clusters from SR 
images are provided for several deep learning architectures. Similar to 
TTSR, RCAN [19] is another explainable attention-base network based on 
very deep residual channel attention network (RCAN). 

 

Table 3. Average PSNR and SSIM for different SR methods together with sensitivity and 
specificity when counting HPV clusters. 

 PSNR SSIM Sensitivity Specificity 
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RCAN 25.80 0.7910 79.80 83.33 

Pix2pix 18.35 0.5059 65.74 80.26 

CycleGAN 30.31 0.8013 74.28 85.98 

ESRGAN 28.07 0.6074 74.46 81.63 

TTSR 28.70 0.8778 83.6 83.33 

 

To quantify the quality of generated high resolution images, spatial fre-
quency spectrum analysis is commonly employed, which unveils the fre-
quency extrapolation nature of the developed GAN system and the closeness 
of similarity between generated fake image and GT real image in appear-
ance. Fig. 6 exemplifies such an example demonstrating a real (6(a)) and 
fake (6(b)) images and their respected frequency spectrum (in log scale) at 
Fig. 6(c) and 6(d). The cross-section of radially averaged power spectrum 
showing in Fig. 6(e) indicates an overall good agreement with largely close-
ness of spatial frequency spectrum. 

 

 
Fig. 6. Comparison of spatial frequency spectrum between generated fake image and GT for 
Pix2pixHD. (a) Real B; (b) Fake B; (c) (d) Spatial frequency spectrum (SFS) of (a) and (b) 
respectively; (e) Plot of cross-section of spatially averaged power spectrum of both real (in 
blue) and fake images (in orange) (in log scale). 
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In Fig. 7, visual comparison between ESRGAN and Pix2pixHD is pre-
sented, where top row is for ESRGAN and bottom row for Pix2pix2D.  

 

 
Fig. 7. Comparison the final results (last row) for ESRGAN (top row) and Pix2pixHD (bot-
tom row) approaches. The circles are identified HPV clusters. 

Fig. 7 demonstrates that by directly translating through the training from 
raw images to their corresponding filtered maps (e.g. Pix2pixHD) can lead 
to more accurate results with regard to detect HPV clusters, which is also 
evidenced in Table 2. In Fig. 7(h), 4 out of 5 HPV clusters (white circle) are 
detected in comparison with 7(f) (GT) whereas in 7(d) only 3 clusters are 
located.  

Understandably, both CycleGAN and Pix2Pix networks are developed for 
image translation and only applicable at the same resolution between input 
and output. Their advantage is that they do not require matching paired train-
ing data. Both methods perform similar in terms of detection of HPV clus-
ters as given in Table 2, as also illustrated in Fig. 8. 
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Fig. 8. Comparison results between CycleGAN (8(c)) and Pix2Pix (6(d)). White circle refers 
to HPV clusters. (a) & (b): training datasets. 

In Fig. 9, comparison is made to show the detection between LR, SR and 
HR images where SR is generated using TTSR approach. It shows that the 
left top squared regions from both LR (d) and SR (f) fail to show HPV clus-
ters whereas bottom right regions from all 3 resolution images detect a HPV 
cluster. 
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Fig. 9. The generated SR image using TT depicts HPVs in comparison with GT. (a): LR; (b) 
generated SR; (c) HR; (d) (f) (h): regions showing little trace of HPV; (e)(g)(i): regions ex-
hibit HPV. 

 

6. Discussion and Conclusion 
 

This work constitute one of the first to identify Human papillomavirus 
(HPV) like structures (LP) from conventional light microscopic images 
through the application of state-of-the-art deep learning techniques, making 
a step further to allow fluorescence microscopy living up to their expecta-
tions. While a conventional light microscope has established to be an essen-
tial tool in studying cell structures, super resolution appears to be the desid-
eratum for discerning these structures at nanoscale.  High risk HPVs, such 
as HPV16 and HPV18, have been confirmed to be associated with some 
cancers’ pathogenesis, especially cervical cancers. Hence early detection of 
HPV can assist to identify pre-cancerous lesions that subsequently can be 
treated before the onset of cancer develops. While detecting HPV from bio-
logical specimens is valuable in diagnosing HPV associated cancers and 
monitoring therapeutic effects, direct visualization of HPV or HPVLP in 
cells or tissue samples cannot be achieved through traditional molecular and 
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proteomic methods. Hence microscopic imaging has been resorted to for di-
rectly observing HPV or virus particles, which calls for the increase of mi-
croscope’s resolution (hence reducing pixel sizes) that is usually above 
100nm/px [39] whereas a typical HPV has a size of ~50nm in diameter. 
While TEM provides a solution to capture those nanostructures, it is not 
readily available in additional to lengthy and complex sample preparation 
procedures.  

This study investigates four state of the art generative adversarial deep learn-
ing networks (GAN) as well as vision transformer (ViT) to differentiate 
HPV clusters for microscopic images. The GAN-oriented architectures are 
CycleGAN, Pix2pix, ESRGAN and Pix2pixHD. Between GAN-based mod-
els, Pix2pixHD performs the best with sensitivity and specificity being 86% 
and 84% for detecting HPV clusters and 82% and 85% for detecting normal 
(i.e. drug treated) cells. For the other three networks, the averaged sensitivity 
and specificity are 78% 76% and 76% for CycleGAN, Pix2pix, ESRGAN 
respectively. When compared with Texture-based Transformer (TT), TT ap-
pears to perform the best with 83.6% an 83.33% sensitivity and specificity 
respectively. In addition, TTSR has the 2nd highest PSNR (28.70) and the 
highest SSIM (0.8778). 

In the future, further to collecting more samples for both training and eval-
uation, the study of  the effectiveness of anti-HPV drugs will be ascertained 
through the employment of ViT networks to produce SR images. ViT-based 
approach not only is explainable by building upon human attention mecha-
nism but also requires less data resources.  

While it presents advantageous to use TEM and HR microscopy (MS) at 
different research centres, it limits the number of acquired datasets due to 
sample preparation and travelling. On the other hand, this practice has led 
the trained system being robust by taking in the information from different 
scanners, especially when the test LR datasets come from different cohort 
of MS scanners. 

Furthermore, the authors will take the findings of effectiveness of generated 
super resolution (x4) forward and will consider to further to increase other 
scales, e.g. x8, on the premise of availability of data pairs of both LR and 



 Identification of HPV from Super Resolution Microscopic Images 
 

 

HR images in the future, raising the prospect of unravelling the insights of 
formation from HPV to cancer while maintaining the prosperity of conven-
tional light fluorescence microscopy. 
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Appendix A. Sample preparation for confocal fluorescent micros-
copy  

 

The cervical cancer cell lines, CaSki containing HPV16 sequences and C33a 
without HPV were used in this study. Both cell lines were grown on cover 
slips in a six-well culture plate containing RPMI culture media with 10% Fe-
tal calf serum and 1% penicillin/streptomysin. They were kept in a humidi-
fied incubator with 95% air and 5% Carbon dioxide for two days until the 
cells reached 70-80% confluence. The cells were washed by PBS three times 
with 1 minute each time before they were fixed by 4% paraformaldehyde for 
10 mins. They were then exposed to 0.1% Triton-100 for 5 mins following 
PBS washes. 50% house serum was then added for 8 mins, then it was re-
moved. Next,  200ul 1 in 100 dilution of anti-mouse HPV E6/E7 antibody 
(Abcam, UK) was added in and the cells were left at the room temperature 
for 2 hours before they were washed again and 100ul biotinyted 2nd antibody 
(ABC Universal Kit, Vector lab, UK) was added. After 30 mins, the cells 
were washed again then tertiary antibody was added and left for 20 minutes. 
Finally, 100 ul TSA/FITC amplification reagent exposed to the cells for 6 
minutes in the darkness before the cells were washed. DAPI containing 
mounting media was added on the labelled slides and cells attached on the 
cover slips were sealed inside for microscopic viewing.  

 

Appendix B. Sample preparation for TEM scanning 

 

Cells were grown and prepared in a similar way as described above in Sec-
tion S1 until the procedure reached at fixation step. Instead of fixing cells 
by paraformaldehyde,  2.5% glutaraldehyde in PBS buffer at pH 7 was used 
and the cells were fixed for 3 hours at RT before further steps taking place. 

In addition, before the scanning, these samples undertake a series of standard 
preparation processes, including (1) flat embedding into EM capsules and 
polymerise for 6 hours at 16oC; (2) sectioned to 70nm thick using a Leica 
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UC7 ultramicrotome, (3) collected onto copper mesh grids and (4) stained in 
lead citrate for 5 minutes. 
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