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1. Introduction 

Recent research in cognitive science has seen the rapid increase in 
the use of linear modelling to investigate links between behaviour, 
cognition, and disease. The study of sensory processing has been 
particularly impacted by such methodologies, with one notable 
approach being the temporal response function (TRF), which describes 
the temporal relationship between selected features of a sensory stim
ulus and the corresponding neural signals (Ding and Simon, 2012; Lalor 
et al., 2006). TRF analyses have been used to investigate sensory pro
cessing with various neural recording technologies, such as non-invasive 
electro- and magneto- encephalography (EEG/MEG; (Brodbeck et al., 
2018b, Liberto et al., 2015a), electrocorticography (ECoG; (Mesgarani 
et al., 2014), and functional magnetic resonance imaging (fMRI; (Val
ente et al., 2014, Santoro et al., 2017). In that context, TRF analyses are 
ground-breaking in that they enable the study of sensory perception in 
realistic scenarios, involving stimuli such as natural speech, music, and 
cartoons. This has brought up new opportunities for investigating 
cognition in cohorts of participants that could find traditional paradigms 

uncomfortable and challenging (e.g., excessive distress), such as chil
dren with neurodevelopmental deficits and older adults with neuro
cognitive impairment (Liberto et al., 2018, Meyer et al., 2021, Mesik 
et al., 2021, Alickovic et al., 2020, Broderick et al., 2021). Translational 
research typically faces cohort-specific experimental constraints, 
involving limitations on the recording time and favouring devices that 
are portable and with a reduced number of sensors and capabilities, at 
the cost of recording quality. A particular issue corresponds to the 
temporal synchronisation between the sensory events and the neural 
recording, which may present varying degrees of imprecision in 
different devices and experimental setup. Another scenario that we 
consider is when the temporal imprecision is due to the task itself, with 
variability within or between participants, or both, as with auditory 
imagery tasks. This study answers the question of how imprecisions in 
the EEG temporal synchronisation can impact TRF analyses, providing a 
novel method to identify and estimate the extent of the problem. Finally, 
we present a case study on a pilot investigation on older participants 
with neurocognitive impairment in care-homes, where the EEG tempo
ral synchronisation was particularly problematic. 
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Investigating sensory processing with technologies such as EEG re
quires the precise temporal alignment of the sensory stimulus and the 
recorded neural signal (Woodman, 2010). This is a crucial processing 
operation when the investigation involves measuring the neural 
response to a given sensory input or class of sensory inputs. The infor
mation required for the temporal alignment is generally recorded as 
temporal triggers, indicating an identification code of the sensory 
stimulus and a timestamp indicating when it occurs (e.g., start) in the 
neural recording. Temporal triggers are recorded via wired setups in 
traditional research laboratory settings, which is a low-latency reliable 
solution. Recent technological developments have led to a variety of 
new solutions (Hairston et al., 2014; Bilucaglia et al., 2020; Ries et al., 
2014). Portable EEG systems, for example, perform the temporal syn
chronisation of multiple streams of information, such as the neural 
signal and temporal triggers, by using wireless protocols, like the Lab 
Streaming Layer (Kothe et al., 2014). While these solutions are 
becoming both widely accepted for scientific investigations and crucial 
for out-of-lab applications, it is expected that they lack precision 
compared with typical wired laboratory settings. As such, it is important 
that the researchers are aware of 1) the magnitude and characteristic of 
the temporal imprecision with their recording setup; and 2) the impact 
of that temporal imprecision on the analysis they are conducting. While 
the effect of temporal imprecisions has been studied for traditional event 
related potentials (ERPs; (Hairston, 2012), there is no investigation on 
how that impacts TRF analyses to date. The distinct analysis method
ologies between ERPs (time-locked averaging) and neural tracking (e.g., 
multiple lagged regression), as well as the fundamentally different 
sensory stimuli employed (repeated discrete events vs. continuous sen
sory stimuli) lead to different brain activations (Bonte et al., 2006). 
These fundamental differences raise the need for a dedicated assessment 
of the consequences that temporal desynchronisation bring upon TRFs. 
It is the goal of this investigation to determine the extent to which this 
desynchronisation may be problematic, offering important insights to 
the prompt identification of potential undesired synchronisation effects 
and proposing a method to mitigate their impact. 

Another important scenario leading to temporal imprecisions in
volves tasks that inherently present temporal imprecision between the 
participants’ perception or actions and the neural recording. One 
remarkable example is auditory imagery tasks, where the paradigm as 
well as the participant skills impact the precise synchronisation between 
the expected and actual timing of the imagery action (e.g., Martin et al., 
2014). Previous studies demonstrated several strategies that can guide 
the participants with their task, guaranteeing some level of synchroni
sation. Part of these approaches led to controlled but less naturalistic 
imagery tasks (e.g., auditory imagery during silent gaps), while others 
developed a more realistic music imagery task by using a metronome, 
but only focusing with expert musicians who could appropriately 
perform the task with precise timing. The present investigation quan
tifies the minimum synchronisation precision that is required to perform 
TRF analyses on neural recordings during such tasks. Furthermore, it is 
important to highlight that speech listening experiments are also 
impacted by temporal imprecisions, with the notable example of word 
comprehension, where the exact timing of word comprehension is un
known and typically only studied in relation to word onsets (Kutas and 
Federmeier, 2011; Broderick et al., 2018b). 

A TRF analysis captures an input-output relationship that is 
experiment-specific, meaning that it may reflect different neural un
derpinnings (e.g., evoked responses, neural oscillations) in distinct ex
periments (Obleser and Kayser, 2019). Hence, considerations on the 
neural basis of a TRF should be confined to each experiment. In general, 
the intuition is that TRFs estimate the systematic reaction in the neural 
activity corresponding to a specific event (e.g., auditory input). In other 
words, the TRF is an estimate of the system’s impulse response (Crosse 
et al., 2016a; Crosse et al., 2021). In the context of rapidly changing 
stimuli, such as speech and music, the systematic stimulus to neural 
signal relationship exhibits a phenomenon which is referred to as 

cortical entrainment in the broad sense, where the neural signal tracks a 
given property of the sensory input (a.k.a. neural tracking) (Obleser and 
Kayser, 2019). TRFs presented the field with a new opportunity of 
measuring the neural substrate of auditory perception based on EEG 
recordings where participants listen to continuous sounds such as nat
ural speech (e.g., audio-stories) (Ding and Simon, 2012; Lalor and Foxe, 
2010) and music (Liberto et al., 2020). Low-frequency cortical signals 
measured with EEG were shown to encode the hierarchical processing of 
speech, tracking information from acoustic-phonetic to semantic levels 
(Liberto et al., 2015, Liberto et al., 2021c, Brodbeck et al., 2018a, Bro
derick et al., 2018b, Teoh et al., 2019). This neural tracking phenome
non reflects attention (e.g., auditory selective attention, where stronger 
tracking is measured for attended vs. ignored sounds; (Ding and Simon, 
2014, O’sullivan et al., 2014), comprehension, as well as the level of 
consciousness of the participants (Legendre et al., 2019). Crucially, 
those measurements can be obtained with a limited number of elec
trodes and short experimental time (Di Liberto and Lalor, 2017; Jessen 
et al., 2019), which makes this methodology particularly suitable for 
field experiments and for studying vulnerable groups. 

The present investigation focusses on a particular TRF implementa
tion based on envelope tracking and lagged linear regression (mTRF- 
Toolbox; (Crosse et al., 2016b). This method was proven effective in 
applied settings involving realistic tasks, such as watching a cartoon, 
and in various applied cohorts, such as infants (Attaheri et al., 2022; 
Kalashnikova et al., 2018; Jessica Tan et al., 2022), children with 
dyslexia (Liberto et al., 2018), and older adults (Brodbeck et al., 2018b, 
Broderick et al., 2021). While the present study is methodological and 
informs us on TRF analyses in general, we discuss the case of speech and 
music to provide a clear focus. Specifically, we quantified the impact of 
temporal imprecision on the sound envelope TRF of publicly available 
datasets. The study proposes a methodology to assess the negative 
impact of temporal imprecision in the neural data by applying a 
TRF-based re-alignment attempting to recover the correct TRF, by fixing 
the N1 latency to a predefined value. Finally, we present the results of 
correcting for temporal imprecision in newly recorded data involving 
older participants (>80 yrs) with neurocognitive impairment in 
care-home settings. Due to older adults’ comorbidities, such as mild 
cognitive impairment, physical disabilities or psychiatric disorders, 
some participants are unable to access outdoor laboratory services 
(Brunnhuber et al., 2014), thus limiting the possibility to promote their 
participation in research. Recent developments in EEG technology 
resulted in the availability of various portable EEG systems tailored for 
out-of-lab scenarios, including care-homes (e.g., Nielsen Telemedical, 
mBrainTrain, Emotiv, Neurosky, g.tec, BrainVision). While the devel
opment of such devices has been largely promoted targeting brain 
computer interface systems for the entertainment field, recent studies 
have found that they are sufficiently reliable to be used in applied set
tings for scientific or clinical purposes (Badcock et al., 2013; Badcock 
et al., 2015; Sintotskiy and Hinrichs, 2020). Challenges of working with 
older adults living in care-homes, such as high participant dropout rate 
(due to participants’ frail condition and fatigue, experimental location, 
duration, and encumbrance of the EEG setup) can potentially be over
come by using rapid experimental procedures involving portable devices 
with few electrodes and a rapid (e.g., dry-electrodes) and comfortable 
(e.g., wireless) setup. While it is crucial to estimate the trigger syn
chronisation precision of any given EEG recording set up, the present 
study discusses a limit-case where cohort-specific requirements and 
technical limitations led to the acquisition of data with particularly low 
temporal synchronisation. Finally, we discuss how the validation and 
mitigation strategies proposed in this study can be used to detect 
whether temporal synchronisation was an issue or not in a given dataset. 

2. Part I: Investigating temporal imprecision on the TRF analysis 

In this part of the study, we assessed the impact of synchronisation 
imprecision by simulating a progressively larger synchronisation jitter 
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on two publicly available EEG datasets. We then proposed a re- 
alignment approach to detect and estimate the negative impacts of the 
temporal imprecision. 

3. Datasets 

3.1. Dataset 1: Speech listening task 

3.1.1. Participants and experimental design 
Data from this experiment was part of a set of studies examining how 

human cortical signals track the envelope and phonemic content of 
speech (Liberto et al., 2015, Broderick et al., 2018b, Crosse et al., 2016b, 
O’sullivan et al., 2014). 19 participants (13 male) aged between 19 and 
38 years participated in the first experiment. All participants were native 
English speakers, and reported normal hearing, normal or 
corrected-to-normal vision, and no history of neurological disease. The 
experiment was conducted in a single session for each participant. EEG 
data were recorded as participants listened to a single professional 
audiobook version of a popular mid-20th century American work of 
fiction. The audio stimuli were presented in 20 trials (chapters), each of 
about 180 s, preserving the storyline, with neither repetitions nor dis
continuities, and with an average speech rate of ~210 words/min. 

3.1.2. EEG data acquisition 
128-channel EEG data (plus two mastoid channels) were acquired at 

a rate of 512 Hz using an ActiveTwo system (BioSemi). Triggers indi
cating the start of each trial were sent by the stimulus presentation 
computer and included in the EEG recordings to ensure synchronisation. 
Testing was carried out in a dark, sound-attenuated room and partici
pants were instructed to maintain visual fixation on a crosshair centred 
on the screen for the duration of each trial, and to minimise eye blinking 
and all motor activities. Participants were free to have breaks in- 
between trials for as long as they needed. Stimuli were presented at a 
sampling rate of 44100 Hz using Sennheiser HD650 headphones and 
Presentation software from Neurobehavioral Systems (http://www. 
neurobs.com). The original dataset is available on Dryad (Broderick 
et al., 2018a). In the present study we used a standardised version of the 
dataset according to the Continuous-event Neural Data structure (CND; 
https://cnspworkshop.net). 

3.2. Dataset 2: Monophonic music listening task 

3.2.1. Participants and experimental design 
Data from this experiment was part of studies examining how human 

cortical signals track the acoustics and melodic expectations of music 
(Liberto et al., 2020, Liberto et al., 2021b). All participants reported 
normal hearing and no history of neurological disease and were paid for 
participating. 20 participants (10 female) aged between 23 and 42 years 
(median = 29) participated in this experiment. Ten of them were highly 
trained musicians with a degree in music and at least 10 years of active 
music experience, whereas the other participants had no musical 
training. The experiment was conducted in a single session. EEG data 
were recorded as participants listened to monophonic MIDI versions of 
10 music pieces from Bach’s monodic instrumental corpus. Stimuli were 
partitioned into short snippets of about 150 s. The selected melodies 
were originally extracted from violin (partita Bach Works Catalog BWV 
1001, presto; BWV 1002, allemande; BWV 1004, allemande and gigue; 
BWV 1006, loure and gavotte) and flute (partita BWV 1013 allemande, 
corrente, sarabande, and bourrée angloise) scores and were synthesised 
by using piano sounds with MuseScore 2 software, each played with a 
fixed rate (between 47 and 140 bpm). Each 150 s piece, corresponding to 
an EEG trial, was presented three times throughout the experiment, 
adding up to 30 trials that were presented in a random order. At the end 
of each trial, participants were asked to report on their familiarity with 
the piece (from 1 = unknown to 7 = know the piece very well). This 
rating could consider both their familiarity with the piece on first 

occurrence in the experiment as well as the build-up of familiarity across 
repetitions. Participants reported repeated pieces as more familiar 
(paired t-test on the average familiarity ratings for all participants across 
repetitions: rep2 > rep1, p = 6.910–6; rep3 > rep2, p = 0.003, Bonferroni 
correction). No significant difference emerged between musicians and 
non-musicians on this account (two-sample t-test, p = 0.07, 0.16,0.19 for 
repetitions 1, 2, and 3, respectively). 

3.2.2. EEG data acquisition 
64-channel EEG data (plus two mastoid channels) were acquired at a 

rate of 512 Hz using an ActiveTwo system (BioSemi). Triggers indicating 
the start of each trial were sent by the stimulus presentation computer 
and included in the EEG recordings to ensure synchronisation. The study 
was undertaken in accordance with the Declaration of Helsinki and was 
approved by the CERES Committee of Paris Descartes University (CERES 
2013–11). The participants provided their written informed consent to 
participate in this study. Testing was carried out at École Normale 
Supérieure (Paris, France) in a dark, electrically shielded, sound-proof 
room. Participants were instructed to maintain visual fixation on a 
crosshair centred on the screen for the duration of each trial, and to 
minimise eye blinking and all motor activities. Participants were free to 
have breaks in-between trials for as long as they needed. Stimuli were 
presented at a sampling rate of 44100 Hz using Sennheiser HD650 
headphones and Presentation software from Neurobehavioral Systems 
(http://www.neurobs.com). The original dataset is available on Dryad 
(Di Liberto et al., 2021d). In the present study we used a standardised 
version of the dataset according to the Continuous-event Neural Data 
structure (CND; https://cnspworkshop.net/resources.html). 

3.3. EEG signal analysis 

3.3.1. Pre-processing 
The same pre-processing procedure was used across all datasets. 

First, the broadband amplitude envelope of the speech signal (Env) was 
calculated using the Hilbert transform of the acoustic audio signal. Then, 
EEG data were analysed offline using MATLAB software (The Math
works Inc.), digitally filtered between 1 and 8 Hz using a Butterworth 
zero-phase filter (low- and high-pass filters both with order 2 and 
implemented with the function filtfilt). Signals were down-sampled to 
128 Hz and re-referenced to the average of the mastoid channels. To 
identify channels with excessive noise, the time series were visually 
inspected, and the standard deviation of each channel was compared 
with that of the surrounding channels. Channels contaminated by noise 
were recalculated by spline interpolating the surrounding clean chan
nels in EEGLAB (Delorme and Makeig, 2004). 

3.3.2. Objective auditory processing assessment 
System identification was used to compute the channel-specific 

mapping between Env and the pre-processed EEG data. This method 
allows us to estimate TRFs describing the spatio-temporal dynamics that 
underlie the speech-neural coupling (Ding et al., 2014; Lalor et al., 
2009). We used multivariate regularised lagged linear regression (Crosse 
et al., 2016a; Crosse et al., 2021) to estimate a subject-specific filter 
describing how the brain transforms acoustic envelopes into the corre
sponding neural response (forward model; Fig. 1-left). The TRF takes 
into consideration multiple time-lags between stimulus and neural 
signal, providing us with patterns of model weights interpretable in both 
space (scalp topographies) and time (speech-EEG latencies). 
Leave-one-out cross-validation (across trials) was used to assess how 
well the model can predict unseen data. This was quantified by calcu
lating Pearson’s correlation between the recorded signals and the cor
responding predictions for each scalp electrode (EEG prediction 
correlations; Fig. 1-right). Prediction correlations were calculated per 
trial. Then, such correlations were averaged, providing us with a single 
correlation value for a given subject. Prediction correlations were esti
mated for regularisation parameters lambda = [10− 6, 10− 4, …, 104]. 
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The lambda value corresponding to the highest prediction correlation 
was selected. In all datasets, the time-lag window [− 100,500] ms was 
used to fit the TRF models which were selected to capture the expected 
neural responses at latencies between about 0 and 250 ms (Liberto et al., 
2015) as well as the signal-to-noise ratio of such responses when 
compared with latencies that should not reflect significant speech-EEG 
interactions (such as TRF responses at negative lags). Note that this 
approach provides two complementary modes to objectively assess the 
neural tracking of the speech envelope: The first view involves studying 
the regression weights, which allows us to assess the spatio-temporal 
dynamics of the envelope-EEG coupling. A second view involves 
measuring the EEG prediction correlations for each EEG channel to 
determine the reliability of the model and the strength of the neural 
tracking. 

3.3.3. Simulating synchronisation imprecision 
Datasets 1 and 2 were collected with wired, laboratory-grade Bio

Semi ActiveTwo systems with a sampling frequency of 512 Hz, thus 
guaranteeing high signal quality and temporal precision. Specifically, 
triggers were delivered via the parallel port in Dataset 1 and via a 
custom-made trigger-box in Dataset 2. Both solutions guarantee high 
precision for the trigger timing (< 1 ms). It is important to note that this 
precision relies on the appropriate implementation of the stimulus 
presentation, especially at the level of software in the presentation PC (e. 
g., the audio file must be fully buffered before sending the trigger). 

All datasets used a single temporal trigger to mark the beginning of 
relatively long (> 1 min) EEG trials. To simulate temporal imprecision, 
which could be due to factors such as imprecise triggers or temporal 
imprecision in the task (e.g., auditory imagery), a random jitter was 
applied to produce a progressively more pronounced misalignment be
tween the sound stimulus and the EEG signal for each trigger (hence, for 
each trial). We simulated temporal jitters spanning from minimal to 
unacceptably high (compared to the width of typical sound envelope 
TRF components): M = [5, 10, 25, 50, 100, 150, 200, 400, 800, 1600] 
ms. For each trial and Mi, a different shift was applied between stimulus 
and EEG from a uniform distribution spanning from -Mi to Mi. TRF an
alyses were conducted for the original dataset as well as each of the 
datasets with simulated temporal imprecision. This procedure was car
ried out for both Datasets 1 and 2. Please note that jittering the EEG 
triggers also serves as a simulation for other types of imprecision, for 
example due to the particular task rather than technological limitations 
or issues. 

3.3.4. TRF-based temporal re-alignment procedure 
A re-alignment procedure was devised and applied on the datasets 

with simulated temporal imprecision. It is important to note that the 
main goal of the proposed re-alignment strategy is not to correct for 
poorly synchronised data, but instead to determine whether the dataset 
presents (unexpected) substantial temporal misalignments or not. 

The procedure consists of fitting a TRF model for each trial and by re- 
aligning the EEG data by forcing the dominant negative component (the 

N1) to emerge at a fixed, arbitrary time tN1. Indeed, this imposes the 
strong assumption that an N1 component emerges in all experimental 
trials TRFs, that such component occurs at a precise sound-EEG latency, 
and that the component has the largest negative weight. This assump
tion may not always be appropriate, depending on the goals of the 
experiment. The choice of re-aligning by focusing on the N1 component 
was based on the typical shape of auditory TRF measured with EEG, 
which includes two dominant positive components (P1 and P2), and one 
dominant negative component (N1) (Liberto et al., 2015). The presence 
of two dominant positive components at different latencies implies that 
the largest positive TRF weight could correspond to either component, 
thus causing significant uncertainty in the alignment, probably aggra
vated by inter-participant variability. Instead, a single dominant nega
tive correlation was expected for the time-latency corresponding to the 
N1 component, making this the most reliable choice for precise 
sound-EEG alignment. According to previous research on Dataset 1 
(Liberto et al., 2015), the N1 component was expected at a sound-EEG 
latency of 78 ms. As such, the alignment based on the largest negative 
correlations between Env and EEG was assigned to a fixed value of 
78 ms. 

The re-alignment procedure consists of fitting un-regularised for
ward TRFs by using the lagged regression procedure in the mTRF- 
Toolbox (mTRFtrain function) for each experimental trial. Note that 
this TRF fit was only performed for determining the re-alignment shift 
and was distinct from the TRF analysis used subsequently to assess the 
relationship between stimulus and EEG. The choice of un-regularised 
regression in the TRF fit for the re-alignment procedure is motivated 
by computational reasons, along with a potentially detrimental 
smoothing effect that regularisation may cause on the TRF per se. The 
TRF lag window was arbitrarily set to [− 0.2, 0.2] seconds, meaning that 
the algorithm could tolerate a maximum temporal misalignment of 
[− 0.2-tN1,0.2-tN1] seconds (where tN1 is the time-lag of the N1 TRF 
component). Next, the largest negative TRF weight was identified, by 
computing all channels’ global field power and assigning to it the po
larity of channel FCz, and the data was shifted to make that negative 
component emerge at 78 ms. Fitting a TRF will likely cause side arti
facts, which may in turn determine multiple negative peaks. To solve 
this issue in our re-alignment procedure, we removed from the search 
the initial and final five samples of our regression window. It is impor
tant to note that our results should be interpreted solely in terms of the 
shape and topographical distribution of the TRFs and the EEG prediction 
correlation while, again, they cannot be interpreted on the absolute 
latency values. Please also note that the procedure tends to inflate the 
N1 component, as the alignment is performed on that component. We 
also advise to assess the results with metrics such as the overall TRF 
shape or the N1-P2 magnitude, rather than the N1 magnitude, which is 
inflated by construction as the alignment is performed on that TRF 
component. 

To assess the significance of the re-alignment procedure, two control 
analyses were conducted. First, the TRF procedure was re-run after 
randomising the trial indices of the stimulus envelopes, producing a 

Fig. 1. : The Temporal Response Function 
Framework. Lagged linear regression is run to 
estimate how a given stimulus feature (e.g., 
sound envelope) is transformed into the elec
trical neural activity recorded with EEG. First, 
this mapping is estimated on a training portion 
of the data. Next, the quality of the estimated 
model is evaluated by predicting a separate 
portion of data (test set) and by calculating the 
prediction correlation. The procedure is then 
iterated for all possible test-sets (cross- 
validation).   
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mismatch control (MM). A second control was instead carried out by 
time-reversing the stimulus envelope (REV). In these control conditions, 
re-alignment was applied following the usual procedure of shifting the 
largest negative components to the reference 78 ms latency. Since, in 
these cases, the TRF was not systematically shifted according to certain 
trigger ranges, but it was either mismatched, by randomly shuffling trial 
indices, or temporally reversed (by time-reversing the stimulus enve
lope), the N1s were found at random latencies, as expected, and their 
latency and standard deviation were similar to those of the largest 
trigger jitters. 

4. Results 

4.1. Datasets 1: Speech listening task 

Forward TRFs were fit to assess how strongly EEG signals encode 
speech envelope information and to determine the temporal dynamics of 
that encoding. Then, we determined how precisely that encoding could 
be retrieved when considering simulated scenarios with progressively 
less precise temporal synchronisation or when applying a control 
Mismatch of the trials. As a first step, we successfully replicated the TRF 
results obtained in the original paper corresponding to Dataset 1 ((Di 
Liberto et al., 2015) Fig. 2A-left, zero jitter results), which is also in line 
with the TRF shape and latency in other previous related studies using 
different datasets (Vanthornhout et al., 2019). The TRF analysis con
ducted after applying jittering confirmed that larger temporal 

Fig. 2. : Impact of synchronisation imprecision on the envelope TRF when considering a natural speech listening task (Dataset 1). (A,B) EEG prediction correlation 
(avg across all EEG channels) and N1-P2 magnitude (FCz) for progressively larger temporal imprecision before (left) and after (right) re-alignment. In addition to 
jitters of ± 10 ms, 25, 50, 75, 100, 150, 200, 400, 800, and 1600 ms, results are shown for the control conditions trial mismatch (MM) and stimulus time-reversed 
(REV). The topographies indicate the EEG prediction correlations across all scalp channels for selected jitters. (C) TRF weights at FCz for selected trigger jitters and 
control MM condition, before (NR) and after (R) re-alignment. 
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imprecisions progressively impact both TRF shape and EEG prediction 
correlations (ANOVA: F(10,198) = 34.8, p = 1.8 * 10− 38; note that error 
bars refer to the standard error across individual participants; 
Fig. 2A-left), with significance against the mismatch control condition 
(MM) for jitters up to 200 ms (post-hoc FDR-corrected t-test, p < 0.001 
for jitters up to 100 ms, and p = 0.002, 0.465, 0.695, 0.465 for jitters of 
150, 200, 400, 800, and 1600 ms respectively). 

Imprecise synchronisation was also expected to impact the shape of 
the retrieved TRF. We studied this effect by measuring the impact of the 
jitter on the N1-P2 TRF amplitude (P2 minus N1, or N1-P2 amplitude; 
Fig. 2B-left) as well as by assessing the correlation between the TRFs for 
the original (zero jitter) and jittered EEG data (Supplementary Figure 1). 
For simplicity, we focussed on the TRFs at the electrode FCz, which was 
expected to be particularly relevant (e.g., Di Liberto et al., 2015). The 
N1-P2 amplitude was also computed on channel FCz. Note that the main 
result does not change when considering other adjacent channels (e.g., 
Cz, FT7, FT8). Fig. 2B shows that the N1-P2 amplitude is affected by the 
reduced synchronisation (ANOVA: F(10,198) = 8.11, p = 6.1 * 10− 11; 
Fig. 2B-left), with significance against MM for jitters up to 25 ms 
(post-hoc FDR-corrected t-test, p = 0.04, 0.05, 0.05, 0.95, 1, 1, 1, 0.7, 1, 
1, 1 for jitters of 0, 10, 25, 50, 75, 100, 150, 200, 400, 800, 1600 ms 
respectively). The reduced N1-P2 amplitude that we observed could also 
be the result of opposing polarities cancelling each other when 
combining different trials, but this effect is limited by the small number 
of trials. On the other hand, it is also possible that these components are 
shifted in time and emerge at other relevant latencies. 

The detailed TRFs are depicted in Fig. 2C for selected jitters. An 
additional analysis was carried out to more directly assess the accuracy 
of the re-alignment procedure by measuring the distance between the 
jitters and the shifts identified and used for the re-alignment (Supple
mentary Figure 2). Results were consistent with the patterns in Fig. 2A, 
B. Specifically, the larger the inaccuracy of the re-alignment, the smaller 
the resulting TRF prediction scores (r = − 0.76, p = 0.002). In other 
words, an accurate re-alignment improves the final EEG prediction 
correlations for the realigned TRFs. 

The re-alignment procedure attempted to restore the TRFs in case of 
large temporal imprecisions. Improved TRF scores (N1-P2 magnitude 
and prediction correlations) were expected only when considering sce
narios with a substantial temporal imprecision. Fig. 2A indicates that the 
larger jitters impact the EEG prediction correlations even after re- 
alignment (ANOVA: F(10,198) = 3.2, p = 8.0 * 10− 4, Fig. 2A-right), 
however with significance persisting up to 400 ms (post-hoc FDR- 
corrected t-test against MM, p < 0.01 for jitters up to 100 ms, 
p = 0.0244, 0.120, 0.557, 0.407 for jitters of 200, 400, 800, and 
1600 ms respectively), hence larger than without re-alignment. When 
looking at the prediction correlation scores, the re-alignment strategy 
appears particularly beneficial for larger trigger jitters, especially after 
100 ms. On the other hand, for the shorter jitters up to 50 ms, applying a 
re-alignment lowers the EEG prediction correlations. To evaluate this 
interesting pattern, we tested the impact of Trigger Jitters on prediction 
correlations scores. We compared, for each jitter, the prediction corre
lations before and after re-alignment, by using a Wilcoxon signed rank 
test (with FDR-correction for multiple comparisons). This revealed sig
nificant decreases of prediction correlations for re-alignment applied to 
small jitters and a significant increase for larger jitters (0 ms: p = 0.010, 
10 ms: p = 0.010, 25 ms: p = 0.007, 50 ms: p = 0.840, 75 ms: 
p = 0.040, 100 ms: p = 0.004, 150 ms: p = 0.001, 200 ms: p = 0.001, 
400 ms: p = 0.009, 800 ms: p = 0.001, 1600 ms: p = 0.001, MM: 
p = 0.001). Regarding the TRF shape, note that the re-alignment pro
cedure is based on the N1 TRF component, as such it is important to 
clarify that the re-aligned TRFs are indeed expected to exhibit an N1 
component by construction. A successful re-alignment is also expected 
to produce the other relevant envelope TRF components, especially the 
P2. The N1-P2 TRF amplitude showed that, in fact, the re-alignment 
procedure could recover the TRF shape for jitters up to 200 ms and 
that, in fact, jitter did not significantly affect the TRF shape overall 

(Fig. 2B-right; ANOVA: F(10,198) = 1.45, p = 0.16). Finally, we would 
like to highlight that the re-alignment “forces” the time latency of the N1 
TRF component to a pre-defined value, which should generally refer to 
the known literature. Since the current analysis gave us access to the 
original N1 latency, we used that exact value (78 ms). Nevertheless, in 
general, time-latencies in the TRF after the re-alignment procedure 
should be interpreted on their relative (latency between components 
and duration of a component) but not absolute values (i.e., the re- 
aligned N1 occurs at 78 ms because we decided so; while the P2 la
tency in relation to the N1 latency is informative). To clarify this 
concept, the re-alignment in the next section is performed based on the 
same N1 latency of 78 ms, which should lead to some differences be
tween original and re-aligned TRFs in terms of absolute time-latencies. 

4.2. Dataset 2: Monophonic music listening task 

To test the generalisability of the above findings, the previous 
analysis procedure was performed again on Dataset 2. Dataset 2 
involved music listening, which is an interesting additional challenge for 
the re-alignment procedure, as the stimulus includes inherent temporal 
regularities that may affect the algorithm. We successfully replicated the 
TRF results in the original paper corresponding to Dataset 2 (Di Liberto 
et al., 2020) (Fig. 3A-left, zero jitter results). We found that larger jitters 
progressively degraded both TRF shape and EEG prediction correlations 
(ANOVA: F(10, 209) = 49.1, p = 1.8 * 10− 49; Fig. 3A-left), with signif
icance against the mismatch control condition (MM) for jitters up to 
200 ms (post-hoc FDR-corrected t-test, p < 0.05). As for the previous 
dataset, we tested how prediction correlations are impacted by trigger 
jitters. We compared, for each jitter, the prediction correlations before 
and after re-alignment (Wilcoxon sign rank test, FDR corrected) and, 
consistently with the previous dataset, we observed a significant 
decrease and increase in prediction correlations for re-alignments 
applied to small and large jitters respectively (0 ms: p = 7.1 *10− 4, 
10 ms: p = 7.1 *10− 4, 25 ms: p = 7.6 *10− 4, 50 ms: p = 0.030, 75 ms: 
p = 0.560, 100 ms: p = 0.250, 150 ms: p = 0.020, 200 ms: p = 0.002, 
400 ms: p = 7.1 *10− 4, 800 ms: p = 0.002, 1600 ms: p = 7.1 *10− 4, 
MM: p = 0.040). We then assessed the impact of imprecise synchroni
sation on the shape of the retrieved TRF (Fig. 3B-left and Supplementary 
Figure 1). Similar to what found for Dataset 1, the N1-P2 amplitude was 
found to be affected by the reduced synchronisation (ANOVA: F(10, 
209) = 13.1, p = 1.1 * 10− 17; Fig. 3B-left), with significance for jitters 
up to 25 ms (post-hoc FDR-corrected t-test, p < 0.05 for jitters up to 
25 ms, all other jitters had average N1-P2 amplitude lower than base
line). The detailed TRFs are depicted in Fig. 3C for selected jitters. 

Fig. 3A-right indicates no significant effect of jitter on the EEG pre
diction correlations after re-alignment is performed (ANOVA: F(10,209) 
= 1.3, p = 0.21; Fig. 3A-right). Regarding the TRF shape, the N1-P2 TRF 
amplitude showed that the re-alignment procedure could recover the 
TRF shape for all jitters, even though the jitter had a significant impact 
on the N1-P2 TRF amplitude (Fig. 3B-right; ANOVA: F(10,209) = 2.0, 
p = 0.03; post-hoc FDR-corrected t-test, p < 0.05 for all jitters). As for 
the previous dataset, the accuracy of the re-alignment procedure was 
also assessed by calculating the distance between jitters and re- 
alignment shifts. Results were consistent with the patterns in Fig. 3A,B 
and Supplementary Figure 2. Specifically, the larger the inaccuracy of 
the re-alignment, the smaller the resulting TRF prediction scores 
(r = − 0.62, p = 0.010). 

5. Part II: Use-case study demonstrating the detection of 
temporal imprecision. 

Here we present a case study demonstrating the effectiveness of the 
temporal re-alignment procedure on the TRF analysis of a challenging 
EEG dataset recorded out-of-lab, in care-home settings. 
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6. Dataset 

6.1. Participants 

Participants were a subsample of a larger pre/post 4-month rando
mised control trial (RCT) study studying the impact of speech and music 
therapy on older individuals with cognitive impairment (Mangiacotti 
et al., 2019). 54 older adults with mild to moderate cognitive impair
ment (see Neuropsychological assessment section) living in 5 different 
MHA care homes (Methodist Homes, UK), were randomly assigned to 
either a music therapy group (MT) or a storytelling group (ST). Partic
ipants from the MT and ST groups were matched by age, gender, health 
level, education, cognitive reserve and cognitive level (Tucker and 
Stern, 2011). Participants attended one-to-one 40 min of the assigned 
therapy. Participants were selected according to the following inclusion 

criteria: i) aged 65 or older; ii) presence of mild to moderate cognitive 
impairment (Mini-mental State Examination, MMSE = 18–23); iii) no 
hearing impairment that would negatively interfere with participation 
in the proposed activities. Exclusion criteria were: a) presence of severe 
motor deficits; b) previous participation in a cognitive assessment 
within the last three months prior to the start of the study. 

Participants completed a “paper and pencil” neuro-psychological test 
battery before the start of the interventions (pre: pre-test phase) and one 
week after the end of the 4-month intervention process (post: post-test 
phase). Tests were selected to assess cognitive functioning, with a spe
cific focus on attention and executive functions (Mangiacotti et al., 
2019). Analyses on the full sample (N = 43) indicated significant 
improvement in almost all cognitive tests for MT, while significant ef
fects emerged for ST only in the verbal fluency test (see Neuropsycho
logical assessment section) (Mangiacotti, 2020). 

Fig. 3. : Impact of synchronisation imprecision on the envelope TRF when considering a music listening task (Dataset 2). (A,B) EEG prediction correlation (avg across 
all EEG channels) and N1-P2 magnitude (FCz) for progressively larger temporal imprecision before (left) and after (right) re-alignment. In addition to jitters of 
± 10 ms, 25, 50, 75, 100, 150, 200, 400, 800, and 1600 ms, results are shown for the control conditions trial mismatch (MM) and stimulus time-reversed (REV). The 
topographies indicate the EEG prediction correlations across all scalp channels for selected jitters. (C) TRF weights at FCz for selected trigger jitters and control MM 
condition, before (NR) and after (R) re-alignment. 
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A total of N1 = 9 (5 male) agreed to take part in the current feasibility 
study involving EEG recordings, 5 from the ST and 4 from the MT group 
(see Table 1). Information about the project was given in a meeting with 
staff and participants’ family members, before the beginning of the 
recruitment process. All participants gave written informed consent, in 
accordance with the Declaration of Helsinki. 

6.2. Neuropsychological assessment 

Several neuropsychological tests were conducted with the partici
pants, such as the Phonemic Verbal Fluency, Cumulative Illness Rating 
Scale, the Cognitive Reserve Index Questionnaire, and the Mini-mental 
State Examination. The present analysis will report only the results of 
the Phonemic Verbal Fluency test (Machado et al., 2009), which in
vestigates lexical skills as well as the ability to organize an adequate 
verbal search strategy. Participants were asked to orally produce as 
many words as they could, which begin with a given letter, within a 
minute of time. The score was calculated as the average number of 
words found for each letter (three in total). This test was selected as it is 
a “fast, user-friendly speech quality assessment tool” (Opasso et al., 
2016). 

6.3. EEG data acquisition 

Participants listened to excerpts from an audiobook (“The old man 
and the sea”, by Ernest Hemingway) while limiting motor movements. 
This experimental design is based on previous studies on speech 
perception that used a larger set of the same auditory stimuli (Liberto 
et al., 2015, Liberto et al., 2019, Broderick et al., 2018a). While the 
original design involved about 60 min of audiobook listening (Di Liberto 
and Lalor, 2017), older adults were expected to agree to this EEG 
experiment only for much shorter durations. Here, we invited partici
pants to undergo two sessions of a 3-min version of the audiobook 
listening EEG experiment which, considering the time required to po
sition and remove the EEG equipment, required about 20 min in total 
per session. The second session was run after a 4-month intervention 
therapy. 

EEG signal was recorded with a BioRadio™ system (Cleveland 
Medical Devices Inc.; Cleveland, OH). BioRadio is a portable wearable 
biomedical device for recording human physiological signals. Data is 
transmitted from the EEG unit to the acquisition Windows laptop 
wirelessly via Bluetooth. The signal is then recorded by BioCapture 
Software (Vilber Lourmat, France). Eight single-ended electrodes were 
placed on scalp locations that were most relevant for envelope tracking 
measurements based on previous studies: Cz, Pz, F3, F4, FC3, FC4, CP3, 
CP4 (Liberto et al., 2015). Left and right mastoids (A1, A2) were used 
respectively as reference and ground electrodes with the goal of max
imising the EEG responses to the auditory stimuli (Luck, 2005). Given 
the limited number of EEG channels and the short duration of the 
experiment, channel impedance was carefully monitored throughout the 

experiment and no electrodes had to be excluded. 
The same laptop was used both to present the audio stimuli and to 

record the EEG data (Fig. 4). A single 3-min audio file was presented 
with two Logitech Z506 loudspeakers placed in front of the participant 
at a one meter distance. The audio file was constructed as follows: 5 s 
silence, 1 s tone at 440 Hz, 5 s silence, 3 min audiobook. The experi
menter played the audio file and waited for the expected acoustic cue 
(note A at 440 Hz) to press a manual trigger button connected to the 
BioRadio, providing us with a first, approximate synchronisation be
tween the EEG and the audio stimulus. Tests occurred in a comfortable 
and well-lit room, acoustically attenuated and free of potentially inter
fering or disturbing events (e.g., other people walking, telephone ring
ing). All caregivers were notified of the experiment and a notable sign 
“do not disturb/enter” was placed outside the room. 

6.4. Qualitative evaluation of the assessment 

At the end of each EEG recording session, participants were asked to 
comment on the EEG assessment by answering verbal open-ended 
questions such as “Did you enjoy the story?” and “Did the EEG elec
trodes bother you?”. This form of simple assessment was chosen both to 
minimise participant burden with further quantitative evaluation and to 
give them more freedom to express themselves. The answers were 
manually transcribed by the examiner. A qualitative content analysis of 
the responses was performed (Biasutti, 2013) with the aid of a software 
for qualitative text analysis ATLAS.ti (Scientific Software Development 
GmbH). The following response categories were obtained from the 
‘categorization’ procedure: “Assessment experience”, “Symptoms”. 
Frequencies of the obtained categories were computed. Concerning to 
the first question “Did you enjoy the story?”, all the participants (100%) 
reported positive comments saying that they “enjoy/liked” the story, 
two of which added that the narrator’s voice was “monotonous” and 
another two reported that the story was “a little long”. As to the second 
question “Did the electrodes bother you?”, all the participants reported 

Table 1 
Participants demographic data. Note: CRIq (Cognitive Reserve Index Questionnaire; (Nucci et al., 2012); CIRS (Cumulative Illness Rating Scale; (Linn et al., 1968); 
MMSE (MiniMetal State Examination; (Folstein et al., 1983).  

ID Group Gender Age Education CriQ CIRS MMSE 

P1 ST m 86 10 119 19 22 
P2 ST m 80 15 120 4 18 
P3 ST m 82 9 107 12 24 
P4 ST f 81 20 123 2 22 
P5 ST f 96 12 120 7 18 
P6 MT f 86 9 110 4 24 
P7 MT f 82 14 94 5 17 
P8 MT m 88 14 154 5 19 
P9 MT m 88 18 154 6 20 
Mean  m= 55.6% 

f= 44.4% 
87.56 12.11 118.67 7.11 20.22 

SD   4.33 3.37 21.63 5.25 2.39  

Fig. 4. : Layout (A) and photo (B) of the experimental setup for the use- 
case study. 
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that electrodes did not bother them. 

6.5. EEG data pre-processing 

The use-case dataset was pre-processed as Datasets 1 and 2. The only 
difference compared to Datasets 1 and 2 is that signals were down- 

sampled to 125 Hz (rather than 128 Hz) and that data was already 
referenced to the mastoid channels at the recording stage (rather than 
being re-references offline). Due to the limited number of EEG channels, 
signals were manually inspected for excessive noise (standard deviation 
calculated on a 10-s moving window). No channels were removed 
because of excessive noise across all nine participants. 

Fig. 5. (A) TRF weights calculated at channel 
Cz with the original EEG event triggers for the 
pre and post therapy recording sessions. Shaded 
areas indicate the standard error of the mean 
across participants. (B) TRF weights calculated 
at Cz after re-alignment. Black dots indicate 
TRF weights significantly different from zero 
(FDR-corrected Wilcoxon test, p < 0.05). (C) 
Left: Topographies of the TRF weights at 
selected time-latencies calculated on the re- 
aligned EEG data. Right: N1-P2 amplitude 
calculated on the re-aligned EEG data.   
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6.6. Objective auditory processing assessment 

The analysis procedure was conducted as for Datasets 1 and 2. 

7. Results 

7.1. Cognitive psychological tests 

Pre/post intervention improvement of the performance in the Pho
nemic Verbal fluency test was found in both MT and ST groups in the full 
sample of 43 participants (Mangiacotti, 2020). Results from the pre (M =
5.61, SD = 1.87) and post (M = 5.84, SD = 1.94) t-test analysis on the 
verbal fluency test in the sub-sample used here (N = 9, ST and MT 
combined) confirmed a significant improvement in this executive 
function at post-test with medium effect size, t(8) = − 2.391, p = 0.044, 
d = 0.434 (Cohen’s d). 

7.2. EEG analysis 

Forward TRF weights averaged across all EEG channels are shown in  
Fig. 5 for the first and second EEG sessions (pre and post rehabilitation 
therapy, respectively). TRF calculated by using the original triggers did 
not lead to responses with any significant component in either session 
(Fig. 5A). Instead, TRFs after applying the re-alignment procedure used 
in Part I showed components that were significantly different from zero 
across participants in the post-treatment but not pre-treatment session 
(p < 0.05, Wilcoxon test across participants with FDR-correction over 
the time-latency dimension; Fig. 5B). In line with the simulation results, 
which indicated that the re-alignment procedure was effective for jitters 
up to 200 ms, the average re-alignment latencies in this this use-case 
were found within 200 ms (83 ms ± 16 ms (SEM), for the pre- 
treatment TRFs and 90 ms ± 11 ms (SEM), for the post-treatment 
TRFs). This provides us with a numerical indication that the trigger 
imprecision was below ~100 ms in this experiment. Please note that the 
emergence of an N1 component is not surprising, since the data were 
aligned based on the N1 component itself. Interestingly, significant P1 
and P2 components were measured in the post session (p < 0.05, Wil
coxon test). The topographical distributions of the TRF weights suggests 
that the increase in neural tracking comes from all scalp locations, 
especially from centro-frontal areas (Fig. 5C-left). The same effect also 
emerged as a robust increase in the N1-P2 amplitude difference from the 
pre to the post session (Fig. 5C-right; FDR-corrected Wilcoxon, 
p = 0.027). 

In the pre and post sessions respectively, five and seven participants 
showed EEG prediction correlations that were greater than chance 
(p < 0.01; the chance level was calculated by predicting the EEG on 
mismatched, circularly shifted folds from the same participant; N = 100 
shuffles). In addition to confirming that the TRF models are reliable as 
they can predict neural data, this result reveals an increasing trend from 
pre to post sessions (seven participants), which is consistent with the 
behavioural test (i.e., verbal fluency scores). 

8. Discussion 

This study investigated the impact of temporal imprecisions in the 
context of neural tracking of continuous sensory information, involving 
perception tasks and stimuli such as speech and music. We did so by 
carrying out TRF analyses on three different datasets, while also 
devising a proof-of-concept re-alignment methodology to detect tem
poral imprecisions, recovering both EEG prediction correlations and the 
TRF response shape. While this issue was previously investigated in the 
context of ERP analyses (Hairston, 2012), it is important to clarify that 
typical ERP paradigms differ from TRF experiments. The first difference 
is the distinct analysis methodologies used for calculating ERPs (time-
locked averaging) and neural tracking (e.g., multiple lagged regression). 
Second, ERPs typically involve discrete events (but see (Khalighinejad 

et al., 2017)), while neural tracking is measured based on continuous 
sensory stimuli, which likely leads to different brain activations (Bonte 
et al., 2006). Third, the possibility of using natural stimuli, such as 
speech and music, allows for experiments in previously unexplored 
scenarios (e.g., realistic driving; (Liberto et al., 2021a) and participant 
cohorts (e.g., older individuals in care-homes). These reasons make the 
present investigation necessary. 

TRF analyses offer several views on neural activations, such as la
tency of the TRF components, spatial localisation of the TRF compo
nents, shape of the TRF curves (similar to ERPs), as well as EEG 
prediction correlations and their topographical distribution. Temporal 
imprecision was shown to impact some of those views more than others. 
In the speech listening experiment (Part I), the TRF shape was shown to 
be particularly sensitive to synchronisation imprecision, with N1-P2 
amplitudes collapsing with trigger jitters from 50 ms, while the EEG 
prediction correlations were more robust and were significant up to 
200 ms. Similar effects were observed for the music listening experiment 
(Part II). Nevertheless, the novel temporal re-alignment procedure 
introduced here was proven effective in recovering both the TRF shape 
and prediction correlations, providing a valuable approach to assess 
neural tracking from a dataset that would be otherwise inoperable. It is 
important to clarify that the proposed re-alignment procedure should 
not be used as a standard pre-processing step for improving data quality. 
Instead, it offers an extra tool for determining if temporal imprecision 
could be degrading TRF results (as opposed to, for example, low SNR). 
Future studies could also investigate other potential uses for this 
methodology. For example, TRF methods (as for ERPs) assume the time- 
invariance of the target system (e.g., same N1 latency within and across 
trials) and the detection of optimal re-alignment shifts could serve as a 
way to quantify the (in)validity of that assumption. Another limitation 
of the present study that future work could address is also our 
assumption that a trigger misalignment will be constant within trials, 
which, despite being plausible, will likely not be the case for all 
scenarios. 

The effect of manipulating the data at the pre-processing stage (e.g., 
filtering (De Cheveigné and Nelken, 2019) must be carefully considered 
before drawing any conclusions on the results. Here, it is important to 
highlight two main limitations of the present approach that may 
otherwise mislead the experimenter. First, while the procedure can 
recover the TRF shape, a somewhat reliable N1 TRF component is ex
pected (by definition), as the re-alignment relies on that component. 
Second, the re-alignment prevents us from drawing any conclusion on 
the absolute TRF latency, as such values were forced to a time-value that 
was pre-defined and obtained from the literature. For these reasons, 
appropriate control analyses must be carried out to robustly assess 
neural tracking with the TRF analysis (Crosse et al., 2021). Here we 
presented two such controls. First, we shuffled the indices of the stim
ulus trials, producing a mismatch between stimulus and EEG. A second 
control consisted of simply time-reversing each stimulus trial, which 
produced a different type of stimulus-EEG mismatch. In principle, a 
meaningful TRF model (and EEG prediction) can be derived only when 
stimulus and EEG correspond. Indeed, this was shown to be true on the 
non-realigned analyses of Dataset 1, where EEG predictions were 
extremely small for both MM and REV. It is noted that the re-alignment 
is causing an unwanted side-effect in Dataset 1 for the MM condition, 
possibly due to the regular reading pace of the speaker in the audiobook 
used across trials. Interestingly, this issue was less prominent in Dataset 
2, which involved a variable tempo across the musical trials. In general, 
while the reversal profoundly disrupts the relationship between the 
speech envelope and EEG, music could be problematic if the control 
condition has the same tempo (e.g., another piece with same tempo or a 
time-reversal). While the re-alignment window may not have been large 
enough for this issue to arise in Dataset 2, this risk should be considered 
when using rhythmic stimuli such as music. Regarding the MM condi
tion, it should be noted that the re-alignment procedure itself determines 
an inflated N1 component. While this does not raise particular issues in 
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our study, since all the considered scenarios (e.g., the various jitters) 
would have been affected by the same N1 inflation, it is an important 
point to consider. 

Within the boundaries of these limitations, re-aligning the TRFs to 
the N1 component proved to be a feasible way to recover effects where 
synchronisation imprecision obscured them. Indeed, one could choose 
to set the N1 latency to another value without changing the effectiveness 
of the approach, for example based on the relevant literature for a 
particular task. This approach enabled the objective assessment of 
speech and music therapy effectiveness in a small cohort of patients with 
mild cognitive impairment, based on measures taken with simple, 
portable, and affordable set-ups (8 sensors) in out-of-lab settings. Such 
objective assessments play a crucial role in the validation of intervention 
efficacy and could strengthen the evidence-based implementation of 
support strategies for vulnerable populations. Specifically, the present 
use-case study offers a novel validation of the natural speech TRF 
approach in a challenging scenario and population, which will facilitate 
further, larger-scale studies. It is crucial to note that the re-alignment 
procedure cannot guarantee the appropriate correction of the tempo
ral imprecision. Instead, that analysis could determine that the re- 
alignment improves the TRF analysis, which confirms that the align
ment was imprecise to the point of corrupting the TRF results (without 
re-alignment). While this was expected here as the dataset selected was a 
limit-case for temporal misalignment, we propose that the re-alignment 
procedure could be used on other datasets to detect potential issues with 
the temporal alignment between stimuli or actions and the neural data. 
A re-alignment that improves the TRF model would reflect a poor tem
poral synchronisation, while the same procedure would instead either 
not affect or even damage a precisely aligned dataset (as showed for 
Datasets 1 and 2). 

In conclusion, we have shown the effect that synchronisation 
imprecision has on different representations of the forward TRF anal
ysis, particularly, on EEG predictions correlations, topographical TRF 
representations, and shape of the TRFs. It is noteworthy that forward 
TRF analysis seems to be able to cope with small jitters of up to 50 ms 
without complete compromise of EEG prediction correlations and 25 ms 
without complete compromise of N1-P2 amplitudes. When we state that 
the forward TRF is not excessively degraded when considering up to 
50 ms jitters, we mean that it is only for jitters larger than 50 ms that the 
TRF prediction correlations exhibit drop of over 50% compared to the 
original TRF, despite maintaining its statistical significance for jitters up 
to 150 ms. However, the presence of synchronisation imprecisions 
challenges the interpretability of the TRFs. The proposed TRF re- 
alignment restored EEG correlation predictions, N1-P2 amplitudes, 
and relative component latencies across a longer range of synchronisa
tion imprecision, but it cannot recover the interpretability of absolute 
TRF latency values. Instead, the improved TRF results after re-alignment 
can be taken as evidence for a substantial issue with the temporal 
alignment in the dataset. While this should not happen, and it is 
important that each experimenter ensures the precise temporal syn
chronisation of their device (triggers) and experiment (task), there are 
scenarios where technical issues (e.g., mistakes in the presentation 
script; substantial loss of packages with a wireless connection) or 
inherent properties of a task (e.g., auditory imagery) may challenge the 
precise temporal synchronisation. In those cases, the proposed proced
ure can be run to detect whether such imprecisions are a problem for the 
TRF analysis or not. 
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normativos de idosos saudáveis na prova de fluência verbal fonêmica - FAS. Dement. 
e Neuropsychol. 3, 55–60. 

Mangiacotti, A., Hsu, M.H., Barone, C., Di Liberto, G., V.A.N. Puyvelde, M., Biasutti, M. & 
Franco, F. 2019. P3–465: Effects of music therapy in elderly care: cognition, 
biomarkers, mood and social behaviour. Alzheimer’s & Dementia, 15, P1144-P1144. 

Mangiacotti, A.M.A. 2020. The Music Cognitive Test: Validation, training and 
applicability of a music-based cognitive tool for music therapists - a 
multidisciplinary study. University of Padua. 

Martin, S., Brunner, P., Holdgraf, C., Heinze, H.-J., Crone, N.E., Rieger, J., Schalk, G., 
Knight, R.T., Pasley, B.N., 2014. Decoding spectrotemporal features of overt and 
covert speech from the human cortex. Front. Neuroeng. 7. 

Mesgarani, N., Cheung, C., Johnson, K., Chang, E.F., 2014. Phonetic feature encoding in 
human superior temporal gyrus. Science 343, 1006–1010. 

Mesik, J., Ray, L., Wojtczak, M., 2021. Effects of age on cortical tracking of word-level 
features of continuous competing speech. Front. Neurosci. 15. 

Meyer, L., Lakatos, P., He, Y., 2021. Language dysfunction in Schizophrenia: assessing 
neural tracking to characterize the underlying disorder(s)? Front. Neurosci. 15. 

Nucci, M., Mapelli, D., Mondini, S., 2012. Cognitive Reserve Index questionnaire (CRIq): 
A new instrument for measuring cognitive reserve. Aging Clin. Exp. Res. 24, 
218–226. 

Obleser, J., Kayser, C., 2019. Neural Entrainment and Attentional Selection in the 
Listening Brain. Trends in Cognitive Sciences. Elsevier Ltd. 

Opasso, P.R., Barreto, S.D.S., Ortiz, K.Z., 2016. Phonemic verbal fluency task in adults 
with high-level literacy. Einstein 14, 398–402. 

O’sullivan, J.A., Power, A.J., Mesgarani, N., Rajaram, S., Foxe, J.J., Shinn-Cunningham, 
B.G., Slaney, M., Shamma, S.A., Lalor, E.C. 2014. Attentional Selection in a Cocktail 
Party Environment Can Be Decoded from Single-Trial EEG. Cerebral Cortex, bht355- 
bht355. 

Ries, A.J., Touryan, J., Vettel, J., Mcdowell, K., Hairston, W.D., 2014. A comparison of 
electroencephalography signals acquired from conventional and mobile systems. 
J. Neurosci. Neuroeng. 3, 10–20. 

Santoro, R., Moerel, M., Martino, D.E., Valente, F., Ugurbil, G., Yacoub, E, K., 
Formisano, E., 2017. Reconstructing the spectrotemporal modulations of real-life 
sounds from fMRI response patterns. Proc. Natl. Acad. Sci. USA 114, 4799–4804. 

Sintotskiy, G., Hinrichs, H., 2020. In-ear-EEG–a portable platform for home monitoring. 
J. Med. Eng. Technol. 44, 26–37. 

Teoh, E.S., Cappelloni, M.S., Lalor, E.C., 2019. Prosodic pitch processing is represented in 
delta-band EEG and is dissociable from the cortical tracking of other acoustic and 
phonetic features. Eur. J. Neurosci. 50, 3831–3842. 

Tucker, A.M., Stern, Y., 2011. Cognitive reserve in aging. Curr. Alzheimer Res. 8, 
354–360. 

Valente, G., Castellanos, A.L., Vanacore, G., Formisano, E., 2014. Multivariate linear 
regression of high-dimensional fMRI data with multiple target variables. Hum. Brain 
Mapp. 35, 2163–2177. 

Vanthornhout, J., Decruy, L., Francart, T., 2019. Effect of task and attention on neural 
tracking of speech. Front. Neurosci. 13, 977-977.  

Woodman, G.F., 2010. A brief introduction to the use of event-related potentials in 
studies of perception and attention. Atten., Percept. Psychophys. 72, 2031–2046. 

S. Carta et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref4
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref4
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref4
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref5
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref5
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref6
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref6
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref7
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref7
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref7
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref8
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref8
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref9
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref9
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref9
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref10
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref10
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref10
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref11
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref11
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref11
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref12
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref12
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref12
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref13
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref13
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref13
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref14
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref14
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref14
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref14
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref15
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref15
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref16
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref16
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref16
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref17
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref17
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref17
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref18
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref18
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref19
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref19
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref20
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref20
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref21
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref21
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref22
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref22
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref23
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref23
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref23
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref24
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref24
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref24
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref25
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref25
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref25
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref25
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref26
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref26
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref26
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref27
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref27
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref27
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref28
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref28
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref29
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref29
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref29
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref30
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref30
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref30
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref31
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref31
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref32
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref32
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref33
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref33
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref33
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref34
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref34
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref34
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref35
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref35
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref35
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref36
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref36
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref37
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref37
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref37
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref38
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref38
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref38
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref39
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref39
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref40
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref40
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref40
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref40
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref41
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref41
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref41
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref42
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref42
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref43
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref43
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref44
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref44
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref45
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref45
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref45
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref46
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref46
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref47
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref47
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref48
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref48
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref48
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref49
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref49
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref49
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref50
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref50
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref51
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref51
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref51
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref52
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref52
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref53
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref53
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref53
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref54
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref54
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref55
http://refhub.elsevier.com/S0165-0270(22)00291-6/sbref55

	The impact of temporal synchronisation imprecision on TRF analyses
	1 Introduction
	2 Part I: Investigating temporal imprecision on the TRF analysis
	3 Datasets
	3.1 Dataset 1: Speech listening task
	3.1.1 Participants and experimental design
	3.1.2 EEG data acquisition

	3.2 Dataset 2: Monophonic music listening task
	3.2.1 Participants and experimental design
	3.2.2 EEG data acquisition

	3.3 EEG signal analysis
	3.3.1 Pre-processing
	3.3.2 Objective auditory processing assessment
	3.3.3 Simulating synchronisation imprecision
	3.3.4 TRF-based temporal re-alignment procedure


	4 Results
	4.1 Datasets 1: Speech listening task
	4.2 Dataset 2: Monophonic music listening task

	5 Part II: Use-case study demonstrating the detection of temporal imprecision.
	6 Dataset
	6.1 Participants
	6.2 Neuropsychological assessment
	6.3 EEG data acquisition
	6.4 Qualitative evaluation of the assessment
	6.5 EEG data pre-processing
	6.6 Objective auditory processing assessment

	7 Results
	7.1 Cognitive psychological tests
	7.2 EEG analysis

	8 Discussion
	Ethics approval information
	Funding
	CRediT authorship contribution statement
	Declarations of interest
	Data Availability
	Acknowledgments
	Appendix A Supporting information
	References


