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Abstract. Convolutional neural networks (CNNs) can achieve remark-
able performance in many computer vision tasks (e.g. classification, de-
tection and segmentation of images). However, the lack of labelled data
can significantly hinder their generalization capabilities and limit the
scope of their applications. Synthetic data augmentation (DA) is com-
monly used to address this issue, but uniformly applying global transfor-
mations can result in suboptimal performance when certain changes are
more relevant to specific classes. The success of DA can be improved by
adopting class-specific data transformations. However, this leads to an
exponential increase in the number of combinations of image transfor-
mations. Finding an optimal combination is challenging due to a large
number of possible transformations (e.g. some augmentation libraries
offering up to sixty default transformations) and the training times of
CNNs required to evaluate each combination. Here, we present an evolu-
tionary approach using a genetic algorithm (GA) to search for an optimal
combination of class-specific transformations subject to a feasible time
constraint. Our study demonstrates a GA finding augmentation strate-
gies that are significantly superior to those chosen randomly. We dis-
cuss and highlight the benefits of using class-specific data augmentation,
how our evolutionary approach can automate the search for optimal DA
strategies, and how it can be improved.

Keywords: Data Augmentation · Genetic Algorithm · Regularization ·
Hyperparameter Optimization

1 Introduction

As a field of study, computer vision strives to equip computers with the abil-
ity to accurately comprehend and efficiently process visual data, such as images
and videos [6],[27]. Computer vision involves several sub-domains, such as scene
reconstruction, object detection and recognition, and image restoration. Convo-
lutional neural networks (CNNs), a specialized variant of deep feedforward net-
works, have gained widespread popularity as a powerful technique in computer
vision [12]. These networks have demonstrated remarkable potential for achieving
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high generalization accuracy in classification tasks, as evidenced by their success
in various applications such as high-resolution remote sensing scene classification
[15], fashion item classification [11], facial recognition [16] and numerous other
use cases. Among these, CNNs are used in the field of computer-aided diagnoses
(CAD), such as liver lesion classification [10] and detecting lung diseases in X-
ray images [3]. A CNN learns to identify patterns and objects in the data using
a labelled dataset. This process involves iteratively updating the weights in the
network so that the model can learn to classify images or data samples into dif-
ferent categories accurately. This training process aims to develop a CNN model
that can generalize well to new data samples that it has not seen before. The
capability of a CNN to apply its learned knowledge from labelled datasets and
make predictions on new, unseen data is called generalization.

It is well-known that the generalization ability of a CNN is in direct rela-
tionship with the size and quality of the dataset. In this case, as the size and
quality of the dataset used to train a CNN increase, the network’s generalisation
ability also increases in a directly proportional manner [20]. However, many ap-
plications have difficulties with the data collection process, as sometimes data is
scarce or expensive to label [29]. A surrogate for data collection is data augmen-
tation (DA), which increases the dataset synthetically. DA facilitates creating
an artificially expanded training set by generating modified data from existing
data points [29]. Two main types of DA commonly used in computer vision are
global DA and class-specific DA. The former involves applying the same trans-
formations to all images in the dataset, regardless of their class. Several studies
have researched and proposed global DA strategies that improved the robustness
and generalization ability of deep feedforward networks [24]. Although this can
be beneficial in some cases, it can also result in suboptimal performance due to
the differential class relevance of different transformations [13].

On the other hand, class-specific DA applies data transformations designed
explicitly for each class in the dataset. The transformations used for each class
may vary depending on the specific characteristics of the class, such as object
orientation or lighting conditions [26]. Class-specific approaches to DA may be
beneficial, which has been empirically demonstrated in several cases [13], [25]
and [21]. DA can be considered an iterative process because it involves testing
different augmentation techniques (e.g. rotation, contrast) and parameters (e.g.
angles, limit) to see how they affect the performance of a machine-learning (ML)
model. This process typically involves trial and error, as different datasets and
models may require different augmentation methods and parameters to achieve
optimal performance [23]. Various augmentation libraries, including Albumen-
tations [4], provide an extensive selection of image transformation techniques,
with over sixty options available. The availability of such a vast range of tech-
niques further underscores the iterative nature of DA, as it may be necessary to
evaluate multiple methods before arriving at an optimal approach for a given
task. Additionally, implementing class-specific DA becomes more complex as
the number of potential combinations increases exponentially with each addi-
tional class in the dataset. This exponential growth in possible combinations
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highlights the challenges of developing effective DA strategies for multi-class
classification problems. The search space of class-specific DA can be computed
as αl, where α is the number of image transformations in a library, and l is
the number of classes in the dataset. As a result, we are confronted with a po-
tentially intractable combinatorial problem over a finite set of transformations.
Being intrinsically combinatorial, no immediate gradient descent procedure is
available, so the problem consequently cannot be absorbed into the underlying
ML problem, being thus one of hyperparametric optimization. For this reason,
metaheuristics were selected as our preferred approach. Metaheuristics represent
a class of optimization algorithms adept at finding approximate solutions to com-
plex optimization problems [18]. These algorithms are designed to explore large
search spaces and identify high-quality solutions efficiently. Noteworthy exam-
ples of metaheuristic algorithms include simulated annealing, genetic algorithm
(GA), ant colony optimization, particle swarm optimization, and tabu search.
The diverse metaheuristic approaches make them popular for addressing opti-
mization problems in various domains.

GA’s are an evolutionary algorithm that takes inspiration from genetic prin-
ciples, particularly natural selection. A GA utilizes various operators, including
selection, mutation, and recombination, to mimic the evolutionary process and
ultimately find an optimal solution to a given problem [2]. The application of evo-
lutionary algorithms for global DA has been investigated in prior research such
as [28] and [23]. Concurrently, various techniques for class-specific DA without
employing any search algorithm have been suggested and have exhibited ad-
vancements in the capacity for generalization, such as those presented in [25]
and [21].

To the best of our knowledge, there has been no prior research on using GA
to address class-specific DA problems. Consequently, we introduce an automated
search approach for class-specific DA in a classification task, utilizing a GA. The
proposed framework comprises two algorithmic components: a GA and a CNN.
The GA will be utilized to search for class-specific DA strategies doubling the
dataset, while the CNN will be trained to extract features from the augmented
dataset. The GA and CNN will work together in a fitness score-based testing
approach, where the CNN will test the solutions found by the GA and provide
a fitness score based on the final model generalization ability.

We present the results of our proposed framework on three datasets from the
e-commerce and healthcare industries. The results demonstrate the ability of the
GA to find better class-specific augmentation strategies with an improvement of
up to 62.57% and up to 36.70% on the fashion and medical dataset, respectively,
than the manually set global augmentation strategy. The results provide strong
evidence of the effectiveness of our framework in improving the performance of
CNN in image classification tasks.

The following structure is adhered to in the subsequent sections of this ar-
ticle. Initially, we provide an overview of various frameworks associated with
class-specific DA and evolutionary techniques for automating the DA process.
Subsequently, we introduce our methodologies and datasets. We then describe
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the experimental setups and metrics employed for evaluation. Lastly, we present
the performance of our approach in the results section.

The code can be found at
https://anonymous.4open.science/r/EvoStarComparison-32E1/

2 Related Works

Previous studies have proposed evolutionary-based global data augmentation
(DA) frameworks. For example, Terauchi et al. [28] applied a thermodynam-
ical genetic algorithm (GA) to an existing global auto-augmentation method
(AutoAugment[5]), and proposed a solution to controlling the diversity of geno-
types in the population. Their findings showed comparable improvement in ac-
curacy while significantly reducing the search space and time of the search.
Another example is presented in [23], where an evolutionary-based automatic
DA search tool is developed to explore optimal global augmentation strategies.
Despite the automation of the DA process, their findings indicate that the im-
plemented strategies did not exhibit statistically superior performance compared
to the manual strategies.

In addition, class-specific DA frameworks have been proposed. For instance,
in [25], semantic attacks are used to generate new data in the case of object
detection, where a small but imperceptible perturbation is introduced to the
real-world data to cause the model to predict incorrectly. The model is then
trained on the samples generated by the semantic attacks, resulting in improved
average precision of a specific class and the overall map of the object detection
network. Another study demonstrated that class-specific DA could improve ML
performance on datasets with limited data, [21]. This paper’s remaining sections
will present our methods, datasets, experimental setups, and results.

3 Methods

In deep learning (DL), it is widely acknowledged that deep feedforward neural
networks require a substantial amount of labelled data to achieve high levels of
accuracy. As a result, the generalization performance of a convolutional neural
network (CNN) is correlated with the size of the dataset [20]. Nevertheless,
acquiring new real-life data is infeasible, arduous, or cost-prohibitive in numerous
cases. For instance, the medical field may encounter such issues when dealing
with rare diseases where data is scarce. Another example, companies may face
obstacles when attempting to leverage DL models due to the expense or difficulty
of generating or labelling datasets [9]. Data augmentation (DA) is a cost-effective
approach that enables the synthetic enlargement of a dataset by manipulating
the existing data. DA typically involves the following steps:

1. Selecting the augmentation methods: These may include rotation, transla-
tion, scaling, flipping, colour shifting, etc.

https://anonymous.4open.science/r/EvoStarComparison-32E1/ 
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2. Applying the augmentation methods: This involves using libraries to auto-
matically generate new examples by applying the selected transformations
to the original images.

3. Adding the augmented data to the dataset: A more extensive dataset can be
used to train the ML model, potentially leading to better performance and
more accurate predictions.

4. Evaluate the performance of the ML model trained on the augmented dataset
and compare it to the model trained on the original dataset.

5. Repeat 1 to 4 steps until we are satisfied with the model’s performance.

Previous studies have shown that class-specific DA can improve the generaliza-
tion performance of CNNs. The principal advantage of utilizing class-specific
DA compared to global augmentation strategies is that the former facilitates
a more individualized DA approach customized to each class in the dataset.
Consequently, this may confer an edge regarding generalization capability and
increased accuracy compared to a global DA approach [26]. This study focuses
on automating the process of class-specific image DA in the context of multi-
class classification. It utilizes a CNN as a tool for image analysis and a GA for
searching for the best DA strategies.

Let us estimate the complexity of this problem. Let A be the set of all image
transformations used in our study A = {a1, . . . , aα}. Here, α is the total number
of such transformations. If the dataset contains l classes, the total number of
possible class-specific DA transformations is αl. Here we utilize Albumentations
[4], a pre-existing library that provides access to more than α = 60 diverse image
transformation techniques. The datasets used in our study contain l = 3 and l =
2 distinct classes. Thus, the total size of the search space is αl = 603 = 216, 000
and 602 = 3, 600, respectively.

Although this may not appear like a very large search space, the average
time required to obtain a single solution is approximately 4.55 minutes, which
involved training and testing a CNN on our system (Intel(R) Xeon(R) Platinum
8268 CPU 2.90GHz, 132GB of RAM, and a Quadro RTX 8000 GPU with
45556MiB using CUDA 11.2). It is easy to check that the total time required to
test all possible solutions is approximately 216, 000× 4.55m ≈ 1.87years. Due to
the enormous combinatorial challenge presented by the 216, 000 possible class-
specific DA strategies and the associated time required to solve the problem (≈ 2
years), a naive approach is deemed impractical. In computational optimization,
evolutionary algorithms have been widely acknowledged as efficient for large
combinatorial problems, thus offering a feasible solution to this challenge [8].

To address this, we present a framework that integrates two crucial elements:
a GA and a CNN, that function in a mutually beneficial fitness-score relationship
to determine the optimal class-specific DA strategy. The GA plays a pivotal role
in automating the selection of class-specific DA strategies required to augment
the original dataset. The resulting augmented dataset is then utilized for train-
ing the CNN architecture, with the validation loss serving as the fitness score,
guiding the GA’s evolution process.
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Fig. 1: The proposed framework starts from the GA generating a random pop-
ulation from a given list of image transformations. An individual contains l
augmentations where l is the number of classes in the dataset (e.g. 3). The aug-
mentations are used to double the size of the dataset. Then the dataset is fed
into the CNN model, outputting a validation loss which we use to calculate and
assign a fitness score to the individual.

The workflow of the proposed framework, as seen in Figure 1, is composed
of the following steps:

1. The CNN is trained on the original datasets. This process is repeated ten
times, and the resultant baseline score is obtained by averaging the scores
from these training sessions.

2. Next, the GA is employed to automatically generate a set of class-specific
DA strategies, which we call solutions.

3. For each class-specific DA strategy (solution) produced by the GA, a new
dataset is constructed by combining the baseline dataset with the augmented
dataset, thus doubling the number of images.

4. The CNN is then trained on the augmented dataset, and metrics such as
accuracy and loss are recorded.

5. The subsequent evaluation of the results involves comparing them with the
average baseline score to determine the effectiveness of the proposed frame-
work.

This framework offers a powerful solution for automating the selection of DA
strategies and improving the performance of image classification models. The
results of this study will contribute to a deeper understanding of the capabilities
of this framework and inform future research in this area.

In the subsequent portion of this section, we will expound upon the CNN
architectures used, datasets, pre-processing steps, and the representation of the
GA and its operators.
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3.1 CNN

In the present investigation, we employed two distinct CNN architectures: ResNet18
[14], an off-the-shelf architecture, and a customized architecture modelled after
an architecture described in [23].

In the case of ResNet18, we also utilized the pre-trained weights made avail-
able by the PyTorch library [22]. To adjust the ResNet18 architecture to our
datasets, we replaced the last fully connected layer with a novel layer with the
same number of input features as the original model and the number of classes
in our dataset. Our study employed the categorical cross-entropy loss function
as our optimization objective, quantifying the disparity between the predicted
class probabilities and the actual class labels [19]. The PyTorch library afforded
us access to a pre-existing sparse categorical cross-entropy criterion [22]. The
CNN architectures were optimized using the Adam and AdaDelta optimizers
[17], which are well-suited for fine-tuning deep learning models and use gradi-
ent descent to update the model parameters, with additional features such as
adaptive learning rates and momentum to improve convergence.

3.2 Datasets and Pre-processing

To guarantee the versatility of the proposed framework across diverse appli-
cations, we conducted experiments on three datasets originating from various
domains, such as medicine and fashion e-commerce. The initial dataset em-
ployed in this study is MESO [7], which comprises tissue microarrays stained
with hematoxylin and eosin, two commonly utilized staining agents to enhance
the visualization of cells in biopsies. The dataset is composed of 243 cores, of
which 155 are epithelioid, 64 are biphasic, and 24 are sarcomatoid in type. The
second dataset employed in this study is the Fashion dataset, a subset of the
DeepFashion2 dataset [11]. This dataset aims to distinguish between three com-
parable classes, specifically pants, joggers, and jeans. Additionally, to replicate a
scarcity of data scenario, we randomly chose 300 images for each class, resulting
in a total of 900 images for the complete dataset. The Breast Histopathology
dataset, containing 277,524 images measuring 50 x 50 pixels, is the third dataset
employed in this study, consisting of 198,738 IDC-negative images and 78,786
IDC-positive images. Invasive Ductal Carcinoma (IDC) is the most frequently
occurring breast cancer subtype.

Table 1: Number of images, classes and splits used in our experiments
Dataset # Classes # of samples Split
MESO 3 243 80/10/10
Fashion 3 900 80/10/10

BreastHisto 2 58,742 70/15/15
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Fig. 2: Examples of original images (left) and augmented images (right).

The datasets were divided into the train, validation, and test subsets using
random split, as seen in Table 1. The training subset was employed to train the
model, updating the model parameters to minimize the loss function through the
backpropagation of the optimisation algorithm (Adam or AdaDelta). Conversely,
the validation subset was not utilized to update the model parameters but to
evaluate the model’s performance and prevent overfitting. The test subset was
kept separate from the training and validation sets and only used once to evaluate
the final model performance after the training process. To ensure compatibility
with the ResNet18, all images were resized to a resolution of 224 × 224 pixels.
The entire dataset underwent normalization with means (0.485, 0.456, 0.406) and
standard deviations (0.229, 0.224, 0.225).

3.3 Genetic Algorithm

In this investigation, we employ a simple two-step genetic algorithm (GA) that
utilizes a singular crossover operator and incorporates the application of elitism.
The GA commences by producing a series of random solutions, subsequently
utilized to expand the primary datasets and train the convolutional neural net-
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work (CNN). The minimum validation loss attained through CNN training is
utilized to compute a fitness score subsequently assigned to each solution; see
Figure 3. The second step selects the best solutions for the crossover operation.

Fig. 3: Example of a GA-created solution and later scored by our CNN as found
in our code, here F represents the fitness score.

During the crossover, each top solution is decomposed into its constituent trans-
formations, which are then aggregated into a single list. New solutions are then
formed randomly using this aggregated list; see Algorithm 2.

Algorithm 1 Genetic Algorithm for optimal class-specific DA
Require: A list of possible augmentations, target score T
Ensure: Optimal class-specific DA strategy
1: Initialize population
2: while not last generation do
3: Evaluate each solution and assign a fitness score F ;
4: if F ≥ T then
5: break;
6: end if
7: Rank solutions from best to worst;
8: Select top n solutions as parents;
9: Keep the best solution intact (elitism);

10: Create new offspring through crossover;
11: Replace the old population with newly created offspring and the elite individual;
12: end while
13: return Best individual

The GA’s evolution process, as seen in Algorithm 1, is guided by a fitness
function that evaluates the performance of each solution and returns a fitness
score F . This is calculated as the value of the inverse of the best validation loss
achieved during the training of the CNN architecture, F = |ValidationLoss|−1.
This approach allows the GA to prioritize the solutions that lead to the lowest
validation loss and, consequently, to the highest fitness score.
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Algorithm 2 GA’s crossover operator
Require: List of top n individuals;
Ensure: New offspring formed through crossover;
1: Combine all image augmentations from top individuals into a single list
2: Shuffle the list to introduce randomness;
3: Select a random number m of augmentations and form new offspring ;
4: return New offspring list;

4 Experimental Setup

In this research article, we conduct two experimental setups. The first setup
involves replicating the experimental conditions described in [23], where we uti-
lize the CNN and workflow presented by the authors along with k-fold cross-
validation, elitism, dataset, and using Imgaug library and image transformations.
K-fold cross-validation is a widely used technique in ML and statistical mod-
elling to evaluate a predictive model’s performance and generalization ability
[1]. Specifically, k-fold cross-validation entails randomly partitioning the dataset
into k equal-sized subsets or folds, followed by the iterative training and testing
of the model k times. As a second experimental setup, we utilize only the genetic
algorithm and the crossover operator without incorporating the elitism strategy
and k-fold cross-validation. Here we use the Albumentations library.

In both setups, we train the CNN architectures on the datasets from Table 1
and record their baseline performances, saving the model with an R prefix fol-
lowed by a unique code (e.g., R_j2763), so we can later differentiate it from the
others, which are only saved as a unique code (e.g., 2nj942). We record metrics,
such as training loss and accuracy, validation loss and accuracy, confusion matri-
ces, precision, recall, the F1-score, best epoch, total training time, fitness score
and the augmentation strategy used. However, for the evaluation of the model,
we only use the validation loss and fitness score as described in Section 4.1.

4.1 Evaluation Metric

Validation loss is a commonly used metric in the training of neural networks. It
measures how well the model can generalize to new, unseen data. The validation
loss is calculated using a separate data set held out during training, known as
the validation set. This set evaluates the model’s performance on data not seen
during training. The validation loss is calculated after each epoch using the
PyTorch built-in categorical cross-entropy [22]. The validation loss is calculated
by feeding the validation set through the trained model and calculating the
average error between the model’s predictions and the actual class labels. It can
be used to track the model’s performance throughout training and to identify
overfitting, which occurs when the model starts to memorize the training data
and performs poorly on new data. In summary, the validation loss is an important
metric for evaluating the performance of a neural network, especially for avoiding
overfitting and ensuring that the model generalizes well to new, unseen data.
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Table 2: Performance of GA evolution. The numbers show an average cross-
entropy loss, their differences and per cent improvement relative to a baseline.

TestID Baseline Avg10BestSol Diff (%) Best Base. Best Sol. Diff (%)
T_6b7326 .3780 .3676 .0104 (2.7%) .3750 .3669 .0081 (2.2%)
T_347958 .4027 .3685 .0342 (8.5%) .3951 .3586 .0365 (9.3%)
T_f24029 .6873 .6844 .0029 (0.4%) .6864 .6843 .0020 (0.3%)
T_38b1e9 .6715 .6573 .0142 (2.1%) .6696 .6549 .0147 (2.2%)

5 Results

In this section, we present the results of our experiments. Across all three datasets
examined, our research consistently reveals notable improvements over the base-
line. Notably, on the BreastHisto dataset, which already featured a substantial
volume of images, we observed a commendable 8.49% improvement. In stark con-
trast, the MESO dataset, characterized by its comparably smaller and skewed na-
ture, exhibited a significant performance boost, registering an impressive 18.99%
improvement. The comparison between the baseline validation losses and the
performance of the GA is presented in Table 3. The results indicate that the
GA successfully discovered many class-specific DA solutions outperforming the
baseline. The table also displays the average validation losses of these improved
solutions and highlights the best validation loss achieved for each experiment.

In Experiment 1, the results do not consistently exhibit significant improve-
ments. Nevertheless, the improvements are consistent even in cases where the
CNN model fails to converge. Four tests were performed, and all showed im-
provements ranging from 2% to 5%. The failure of the CNN model to converge
is not necessarily correlated with the framework but rather with the CNN ar-
chitecture used. This observation is evident in T_f24029 and T_347958, where
one of the main reasons for the difference between the average baselines (.6873
and .4027) could be the CNN architecture or the optimizer. Conversely, the av-
erage baselines are similar when the same CNN architecture is used, such as in
T_347958 and T_6b7326 (.4027 and .3780). The results of T_6b7326 suggest
that class-specific DA outperforms global DA, as the baseline training was con-
ducted on a randomly oversampled dataset. The highest improvement ratio is
observed in T_347958, with an improvement of 0.0342 over the baseline score.

The graphs presented in Figure 4 and Figure 5 illustrate the average fitness
per generation, demonstrating the steady improvement of our Genetic Algo-
rithm (GA) in enhancing the overall population fitness score over time. In test
T_347958 Figure 5, we observe the progress of a 5-generation GA, while in
test T_6b7326, a 20-generation GA is displayed. In both cases, the populations
evolve towards enhanced performance, but it’s evident that increasing the num-
ber of generations results in more substantial performance improvements.

In contrast, the results of Experiment 2 demonstrate more significant im-
provements, ranging from 0.1537 to 0.2616, representing a substantial improve-
ment. We conducted four distinct experiments, all of which produced satisfactory
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Fig. 4: Mean and STD of fitness over generations in Experiment 1 test T_6b7326.

Fig. 5: Mean and STD of fitness over generations in Experiment 1 test T_347958.

Fig. 6: Mean of fitness over generations in Experiment 2 test T_1b07f2.
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Table 3: Experiment hyperparameters setup results, comparison
Hyper-parameter T_6b7326 T_347958 T_f24029 T_7749c9 T_e61c77 T_fc8b83 T_1b07f2
Dataset Breast Breast Breast Fashion MESO Fashion Fashion
CNN ResNet18 ResNet18 EvoCNN ResNet18 ResNet18 ResNet18 ResNet18
Optimiser Adam Adam AdaDelta Adam Adam Adam Adam
Resolution 24 24 32 224 224 224 224
Population Coef 2 2 1 2 2 1 1
Generations 20 10 20 30 30 20 30
Top solutions 10 10 5 10 10 10 10
Offsprings 15 10 10 10 10 10 10
Oversample True False False True True False False
Pre-trained False False False True True True True
K-Fold True True True False False False False
Experiment No. 1 1 1 2 2 2 2
Data split 70/15/15 70/15/15 70/15/15 80/10/10 80/10/10 80/10/10 80/10/10
BaselineAvg .3780 .4027 .6873 na na na na
Avg10BestSol .3676 .3685 .6844 .1718 .5773 .1677 .1481
Diff .0104 .0342 .0029 na na na na
(%) (2.75%) (8.49%) (0.42%) na na na na
Best Baseline .3750 .3951 .6864 .3639 .7127 .2968 .2944
Best Solution .3669 .3586 .6843 .1426 .4511 .1431 .1102
Diff .0081 .0365 .0020 .2213 .2616 .1537 .1842
(%) (2.16%) (9.23%) (0.29%) (60.81%) (36.70%) (51.79%) (62.57%)
Time(h) 90.45 56.04 35.91 31.63 26.89 23.42 23.75

outcomes. However, in T_e61c77, the dataset is exceptionally small, necessitat-
ing oversampling three or four times. Nevertheless, our framework could still
identify better class-specific DA strategies than global DA. If the oversample
baseline hyperparameter is true, it implies that the baseline validation was con-
ducted on a randomly augmented dataset at the global level. We do this to
simulate the manual selection of global DA and train the CNN on the same
number of images.

Finally, another substantial achievement is the time spent to find this im-
provement which does not exceed 3.75 days. Comparing this with the total time
that would be needed to use the brute force approach 682.5 days results in 182%
improvement in search efficiency.

6 Discussion

The study’s conclusion highlights the success of the proposed automatic frame-
work in finding class-specific data augmentation strategies using a combination
of a genetic algorithm and a convolutional neural network. The improvement in
validation loss compared to the baseline results indicates that the framework ef-
fectively optimizes data DA strategies for improved CNN performance. The pro-
posed framework can potentially impact various applications in the e-commerce
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and healthcare industries, where accurate and robust image classification models
are crucial. Automating the search for class-specific data augmentation strate-
gies can save time and effort compared to manual experimentation with different
augmentation strategies.

However, some limitations to the proposed framework should be considered.
For instance, the framework may not be suitable for all data types and may
require modifications for more complex and diverse data types. Furthermore,
when working with medical images, it is imperative for medical specialists to
validate the strategies discovered by the GA. In light of these limitations, future
work should focus on extending the framework to handle more complex and
diverse data types. This can help to improve the framework’s performance and
applicability to a broader range of image classification problems.

Overall, the proposed framework represents a promising approach to au-
tomating the search for class-specific data augmentation strategies, and the re-
sults of this study demonstrate its effectiveness in improving CNN performance.

7 Conclusion

In conclusion, this study introduces an automated framework to identify class-
specific data augmentation strategies through a genetic algorithm and a convo-
lutional neural network. The results demonstrate that the proposed framework
successfully found superior class-specific data augmentation strategies compared
to the manually set global augmentation strategy. The two experiments showed
that the genetic algorithm was able to achieve improvements of 62.57% and
36.70% in validation loss in contrast to the baseline results. Moreover, a sub-
stantial accomplishment within this framework is the minimal time required to
achieve these improvements, not exceeding 3.75 days. When juxtaposed with
the total time that would have been necessitated by the brute force approach,
amounting to a staggering 682.5 days, the efficiency of our framework shines. This
comparison reveals an extraordinary 182% improvement in search efficiency.

These findings highlight the effectiveness of the proposed framework in en-
hancing CNN performance by optimizing data augmentation strategies. The pro-
posed framework presents a promising approach for automating the search for
class-specific data augmentation strategies that can benefit various industries,
such as e-commerce and healthcare. Further research could extend the frame-
work’s capabilities to handle more complex and diverse data types while ex-
ploring different operators, such as controlled mutation rates for the genetic
algorithm component.
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