Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies

Article


Alkilabi, M., Narayan, A. and Tuci, E. 2017. Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies. Swarm Intelligence. 11 (3-4), pp. 185-209. https://doi.org/10.1007/s11721-017-0135-8
TypeArticle
TitleCooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies
AuthorsAlkilabi, M., Narayan, A. and Tuci, E.
Abstract

Cooperative object transport in distributed multi-robot systems requires the coordination and synchronisation of pushing/pulling forces by a group of autonomous robots in order to transport items that cannot be transported by a single agent. The results of this study show that fairly robust and scalable collective transport strategies can be generated by robots equipped with a relatively simple sensory apparatus (i.e. no force sensors and no devices for direct communication). In the experiments described in this paper, homogeneous groups of physical e-puck robots are required to coordinate and synchronise their actions in order to transport a heavy rectangular cuboid object as far as possible from its starting position to an arbitrary direction. The robots are controlled by dynamic neural networks synthesised using evolutionary computation techniques. The best evolved controller demonstrates an effective group transport strategy that is robust to variability in the physical characteristics of the object (i.e. object mass and size of the longest object’s side) and scalable to different group sizes. To run these experiments, we designed, built, and mounted on the robots a new sensor that returns the agents’ displacement on a 2D plane. The study shows that the feedback generated by the robots’ sensors relative to the object’s movement is sufficient to allow the robots to coordinate their efforts and to sustain the transports for an extended period of time. By extensively analysing successful behavioural strategies, we illustrate the nature of the operational mechanisms underpinning the coordination and synchronisation of actions during group transport.

Research GroupArtificial Intelligence group
LanguageEnglish
PublisherSpringer
JournalSwarm Intelligence
ISSN1935-3812
Publication dates
Online31 Mar 2017
Print01 Dec 2017
Publication process dates
Deposited13 Jun 2017
Accepted22 Mar 2017
Output statusPublished
Accepted author manuscript
Copyright Statement

This is a post-peer-review, pre-copyedit version of an article published in Swarm Intelligence. The final authenticated version is available online at Springer via: http://dx.doi.org/10.1007/s11721-017-0135-8

Digital Object Identifier (DOI)https://doi.org/10.1007/s11721-017-0135-8
Permalink -

https://repository.mdx.ac.uk/item/86zy8

Download files


Accepted author manuscript
  • 15
    total views
  • 20
    total downloads
  • 3
    views this month
  • 3
    downloads this month

Export as