Designing large quantum key distribution networks via medoid-based algorithms

Article


Garcia-Cobo, I. and Menéndez, H. 2021. Designing large quantum key distribution networks via medoid-based algorithms. Future Generation Computer Systems. 115, pp. 814-824. https://doi.org/10.1016/j.future.2020.09.037
TypeArticle
TitleDesigning large quantum key distribution networks via medoid-based algorithms
AuthorsGarcia-Cobo, I. and Menéndez, H.
Abstract

The current development of quantum mechanics and its applications suppose a threat to modern cryptography as it was conceived. The abilities of quantum computers for solving complex mathematical problems, as a strong computational novelty, is the root of that risk. However, quantum technologies can also prevent this threat by leveraging quantum methods to distribute keys. This field, called Quantum Key Distribution (QKD) is growing, although it still needs more physical basics to become a reality as popular as the Internet. This work proposes a novel methodology that leverages medoid-based clustering techniques to design quantum key distribution networks on commercial fiber optics systems. Our methodology focuses on the current limitations of these communication systems, their error loss and how trusted repeaters can lead to achieve a proper communication with the current technology. We adapt our model to the current data on a wide territory covering an area of almost 100,000 km2, and prove that considering physical limitations of around 45km with 3.1 error loss, our design can provide service to the whole area. This technique is the first to extend the state of the art network’s design, that is focused on up to 10 nodes, to networks dealing with more than 200 nodes.

PublisherElsevier Science
JournalFuture Generation Computer Systems
ISSN0167-739X
Publication dates
Online09 Oct 2020
Print01 Feb 2021
Publication process dates
Deposited09 Oct 2020
Accepted28 Sep 2020
Output statusPublished
Accepted author manuscript
License
Copyright Statement

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Object Identifier (DOI)https://doi.org/10.1016/j.future.2020.09.037
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/891wq

Download files


Accepted author manuscript
  • 36
    total views
  • 19
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as