Facial expression recognition in image sequences using geometric deformation features and support vector machines

Article


Kotsia, I. and Pitas, I. 2007. Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Transactions on Image Processing. 16 (1), pp. 172-187.
TypeArticle
TitleFacial expression recognition in image sequences using geometric deformation features and support vector machines
AuthorsKotsia, I. and Pitas, I.
Abstract

In this paper, two novel methods for facial expression recognition in facial image sequences are presented. The user has to manually place some of Candide grid nodes to face landmarks depicted at the first frame of the image sequence under examination. The grid-tracking and deformation system used, based on deformable models, tracks the grid in consecutive video frames over time, as the facial expression evolves, until the frame that corresponds to the greatest facial expression intensity. The geometrical displacement of certain selected Candide nodes, defined as the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as an input to a novel multiclass Support Vector Machine (SVM) system of classifiers that are used to recognize either the six basic facial expressions or a set of chosen Facial Action Units (FAUs). The results on the Cohn-Kanade database show a recognition accuracy of 99.7% for facial expression recognition using the proposed multiclass SVMs and 95.1% for facial expression recognition based on FAU detection.

KeywordsCandide grid , Facial Action Coding S (FACS) , Facial Action Unit (FAU) , Support Vector Machines (SVMs) , facial expression recognition , machine vision , pattern recognition
Research GroupResearch Group on Development of Intelligent Environments
PublisherInstitute of Electrical and Electronics Engineers
JournalIEEE Transactions on Image Processing
ISSN1057-7149
Publication process dates
Deposited19 Nov 2012
Output statusPublished
Web address (URL)http://dx.doi.org/10.1109/TIP.2006.884954
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/83w79

  • 21
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as