Enhancement of the communication efficiency of interactive robots for autism therapy by using touch and colour feedback

Article


Lee, J., Takehashi, H., Nagai, C. and Stefanov, D. 2014. Enhancement of the communication efficiency of interactive robots for autism therapy by using touch and colour feedback. Paladyn, Journal of Behavioral Robotics. 5 (1). https://doi.org/10.2478/pjbr-2014-0004
TypeArticle
TitleEnhancement of the communication efficiency of interactive robots for autism therapy by using touch and colour feedback
AuthorsLee, J., Takehashi, H., Nagai, C. and Stefanov, D.
Abstract

Previous studies in the field of robot assisted therapy demonstrated that robots engage autistic children’s attention in a better way. Therefore, the interactive robots appear to be a promising approach for improving the social interaction and communication skills of autistic children. However, most of the existing interactive robots use a very small number of communication variableswhich narrow their effectiveness to a few aspects of autistic childrens’ social communication behaviour. In the present work, we explore the effects of touching and colours on the communication effectiveness between a robot and an autistic child and their potential for further adjustability of the robot to child’s behaviour. Firstly, we investigated touching patterns of autistic and non-autistic children in three different situations and validated their responses by comparison of touching forces. Results showed that patterns of touching by non-autistic children have certain consistency, while reaction patterns in autistic children vary from person to person. Secondly, we studied the effect of colour feedback in autism therapy with the robot. Results showed that participants achieved better completion rate when colour feedback was provided. The results could support the design of more effective therapeutic robots for children with autism.

PublisherDe Gruyter
JournalPaladyn, Journal of Behavioral Robotics
ISSN2081-4836
Publication dates
Print26 Aug 2014
Publication process dates
Deposited30 Apr 2015
Output statusPublished
Additional information

Published online

Digital Object Identifier (DOI)https://doi.org/10.2478/pjbr-2014-0004
LanguageEnglish
Permalink -

https://repository.mdx.ac.uk/item/85358

  • 43
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Growing mycelium leather: a paste substrate approach with post-treatments
Crawford, A., Miller, S., Branco, S., Fletcher, J. and Stefanov, D. 2024. Growing mycelium leather: a paste substrate approach with post-treatments. Research Directions: Biotechnology Design. 2, p. 1–10. https://doi.org/10.1017/btd.2024.6
Development of a wheelchair stability assessment system: design tools and approaches
Moody, L., Magee, P. and Stefanov, D. 2020. Development of a wheelchair stability assessment system: design tools and approaches. in: McDonagh, D., Moody, L., Woodcock, A., Jain, A. and Jain, L. (ed.) Design of Assistive Technology for Ageing Populations Springer.
A study on the relationship between robotic movement with animacy and visual attention of young children
Lee, J., Aoki, H., Stefanov, D., Yamamoto, T. and Obinata, G. 2016. A study on the relationship between robotic movement with animacy and visual attention of young children. 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). New York, NY, USA 26 - 31 Aug 2016 IEEE. pp. 682-687 https://doi.org/10.1109/ROMAN.2016.7745192
Tongue interface based on surface EMG signals of suprahyoid muscles
Sasaki, M., Onishi, K., Stefanov, D., Kamata, K., Nakayama, A., Yoshikawa, M. and Obinata, G. 2016. Tongue interface based on surface EMG signals of suprahyoid muscles. Springer Open. https://doi.org/10.1186/s40648-016-0048-0
A concept for control of indoor-operated autonomous wheelchair
Stefanov, D., Avtanski, A. and Bien, Z. 2004. A concept for control of indoor-operated autonomous wheelchair. in: Bien, Z. and Stefanov, D. (ed.) Advances in Rehabilitation Robotics: Human-friendly Technologies on Movement Assistance and Restoration for People with Disabilities Berlin Springer.
Advances in human-friendly robotic technologies for movement assistance/movement restoration for people with disabilities
Stefanov, D. and Bien, Z. 2004. Advances in human-friendly robotic technologies for movement assistance/movement restoration for people with disabilities. in: Bien, Z. and Stefanov, D. (ed.) Advances in Rehabilitation Robotics: Human-friendly Technologies on Movement Assistance and Restoration for People with Disabilities Berlin Springer.
Wheelchairs within the context of smart house design
Stefanov, D. 2008. Wheelchairs within the context of smart house design. in: Helal, A., Mokhtari, M. and Abdulrazak, B. (ed.) The Engineering Handbook on Smart Technology for Aging, Disability and Independence John Wiley & Sons. pp. 439-457
Gait generation for powered Hip-Ankle-Linkage-Orthosis
Lee, J., Mizumoto, R., Obinata, G., Genda, E., Stefanov, D., Aoki, H. and Pei, Y. 2015. Gait generation for powered Hip-Ankle-Linkage-Orthosis. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, Italy 25 - 29 Aug 2015 Institute of Electrical and Electronics Engineers (IEEE). pp. 5732 -5735 https://doi.org/10.1109/EMBC.2015.7319694
Establishing user needs for a stability assessment tool to guide wheelchair prescription
Moody, L., Evans, J., Fielden, S., Heelis, M., Dryer, P., Shapcott, N., Magee, P. and Stefanov, D. 2017. Establishing user needs for a stability assessment tool to guide wheelchair prescription. Disability and Rehabilitation: Assistive Technology. 12 (1), pp. 47-55. https://doi.org/10.3109/17483107.2015.1063019
Shoulder joint contact force during lever-propelled wheelchair propulsion
Sasaki, M., Stefanov, D., Ota, Y., Miura, H. and Nakayama, A. 2015. Shoulder joint contact force during lever-propelled wheelchair propulsion. Robomech Journal. 2, pp. 1-10. https://doi.org/10.1186/s40648-015-0037-8
Device for wheelchair stability assessment
Stefanov, D. and Avtanski, A. 2014. Device for wheelchair stability assessment.
The design and evaluation of a novel system for predicting wheelchair and occupant stability
Fielden, S. and Stefanov, D. 2014. The design and evaluation of a novel system for predicting wheelchair and occupant stability. 30th International Seating Symposium. The Westin Bayshore, Vancouver, Canada 05 - 07 Mar 2014 pp. 150-153
Tongue motor training support system
Sasaki, M., Onishi, K., Nakayama, A., Kamata, K., Stefanov, D. and Yamaguchi, M. 2014. Tongue motor training support system. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. Chicago 26 - 30 Aug 2014 pp. 3582-3585
Simulation model of a lever-propelled wheelchair
Sasaki, M., Ota, Y., Hase, K., Stefanov, D. and Yamaguchi, M. 2014. Simulation model of a lever-propelled wheelchair. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’14). Chicago, IL, USA 26 - 30 Aug 2014 pp. 6923-6926
An approach to measure wheelchair stability. concept and benefits
Stefanov, D. and Pasco, D. 2014. An approach to measure wheelchair stability. concept and benefits. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’14). Chicago, IL, USA pp. 5840-5843
A novel system for wheelchair stability assessment : design and initial results
Stefanov, D., Avtanski, A., Shapcott, N., Magee, P., Dryer, P., Fielden, S., Heelis, M., Evans, J. and Moody, L. 2014. A novel system for wheelchair stability assessment : design and initial results. IEEE international symposium on medical measurements and applications (MeMeA 2014). ISCTE-IUL, the Lisbon University Institute 11 - 12 Jun 2014 pp. 429-433
The development and testing of a system for wheelchair stability measurement
Stefanov, D., Avtanski, A., Shapcott, N., Magee, P., Dryer, P., Fielden, S., Heelis, M., Evans, J. and Moody, L. 2015. The development and testing of a system for wheelchair stability measurement. Medical Engineering and Physics. 37 (11), pp. 1061-1069. https://doi.org/10.1016/j.medengphy.2015.08.013
The smart home for older people and people with physical disabilities: structure, technology arrangements, and perspectives
Stefanov, D., Bien, Z. and Bang, W-C. 2004. The smart home for older people and people with physical disabilities: structure, technology arrangements, and perspectives. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 12 (2), pp. 228-250. https://doi.org/10.1109/TNSRE.2004.828423